[go: up one dir, main page]

TW201935834A - Method for controlling resonant converter - Google Patents

Method for controlling resonant converter Download PDF

Info

Publication number
TW201935834A
TW201935834A TW107104678A TW107104678A TW201935834A TW 201935834 A TW201935834 A TW 201935834A TW 107104678 A TW107104678 A TW 107104678A TW 107104678 A TW107104678 A TW 107104678A TW 201935834 A TW201935834 A TW 201935834A
Authority
TW
Taiwan
Prior art keywords
resonant converter
output voltage
signal
feedback circuit
unit
Prior art date
Application number
TW107104678A
Other languages
Chinese (zh)
Other versions
TWI672899B (en
Inventor
陳博銘
呂紹捷
Original Assignee
大陸商明緯(廣州)電子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商明緯(廣州)電子有限公司 filed Critical 大陸商明緯(廣州)電子有限公司
Priority to TW107104678A priority Critical patent/TWI672899B/en
Publication of TW201935834A publication Critical patent/TW201935834A/en
Application granted granted Critical
Publication of TWI672899B publication Critical patent/TWI672899B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

The present invention discloses a method applied in a controller unit of a feedback circuit for controlling a resonant converter. When the operation mode of the resonant converter turns from no load (or light load) to full load, the controller unit is configured to control a power switch unit of the resonant converter to switch ON and OFF according to an operation frequency of full load (such as 100 KHz) in the case of the fact that an instantaneous drop of the output voltage and a variation of the output current of the resonant converter are over predicted, so as to largely reduce the instantaneous drop of the output voltage. Therefore, this method is able to make the resonant converter provide the output voltage stably during the switch between the no-load operation mode and the full-load operation mode.

Description

諧振轉換器的控制方法Control method of resonant converter

本發明係關於電源轉換器的相關技術領域,尤指一種諧振轉換器的控制方法。The present invention relates to the related technical field of power converters, and in particular, to a method for controlling a resonant converter.

切換式電源轉換器(Switching-mode power supply, SMPS)的技術已被廣泛地應用於製作各式電機與電子產品的電源供應器。並且,隨著電子產品朝向輕薄短小的趨勢發展,必須透過提升切換頻率的方式來增加切換式電源轉換器的功率密度,才能夠有效地縮小切換式電源轉換器的機構體積。於是,具零電壓切換(Zero voltage switching, ZVS)與零電流切換(Zero current switching, ZCS)特色的LLC諧振轉換器(LLC resonant converter)因此被提出。Switching-mode power supply (SMPS) technology has been widely used in the manufacture of power supplies for various motors and electronic products. In addition, as electronic products develop toward the trend of thinness, lightness, and shortness, the power density of the switching power converter must be increased by increasing the switching frequency to effectively reduce the mechanism size of the switching power converter. Therefore, an LLC resonant converter with the characteristics of Zero Voltage Switching (ZVS) and Zero Current Switching (ZCS) was proposed.

請參閱圖1,係顯示習知的一種LLC串聯諧振轉換器的電路架構圖。如圖1所示,習知的LLC串聯諧振轉換器2’係包括:耦接直流電源VDC ’的一功率開關單元23’、一諧振單元24’、 一變壓器單元25’、一輸出整流單元26’、以及一輸出濾波單元27’;其中,一閉環控制模組1’係連接於該LLC串聯諧振轉換器2’的輸出端與所述功率開關單元23’之間。並且,由圖1可以得知所述閉環控制模組1’主要包括一訊號檢出單元11’、一控制器單元12’、與一隔離驅動單元13’。在LLC串聯諧振轉換器2’的正常工作下,調變操作頻率(operating frequency)可以改變LLC串聯諧振轉換器2’的電壓增益,以控制輸出電壓範圍之調整。換句話說,相對於寬範圍的輸出電壓,操作頻率也必須跟著變寬。輸出電壓調變的範圍越寬,操作頻率也越寬,諧振線路的硬體也需要相對提升以因應操作頻率,但這會造成體積增加,且效率如未相對提升,還會產生熱能。Please refer to FIG. 1, which is a circuit diagram of a conventional LLC series resonant converter. As shown in FIG. 1, the conventional LLC series resonant converter 2 ′ includes: a power switch unit 23 ′, a resonance unit 24 ′, a transformer unit 25 ′, and an output rectification unit coupled to a DC power source V DC ′. 26 'and an output filtering unit 27'; wherein a closed-loop control module 1 'is connected between the output terminal of the LLC series resonant converter 2' and the power switching unit 23 '. Moreover, it can be known from FIG. 1 that the closed-loop control module 1 ′ mainly includes a signal detection unit 11 ′, a controller unit 12 ′, and an isolated driving unit 13 ′. Under the normal operation of the LLC series resonant converter 2 ', the operating frequency can be adjusted to change the voltage gain of the LLC series resonant converter 2' to control the adjustment of the output voltage range. In other words, with respect to a wide range of output voltages, the operating frequency must also be widened accordingly. The wider the range of output voltage modulation, the wider the operating frequency, and the hardware of the resonant line also needs to be relatively increased to correspond to the operating frequency, but this will cause an increase in volume, and if the efficiency is not relatively improved, thermal energy will also be generated.

除了上述問題以外,輸出電壓越寬,轉換器越難被控制,例如,當負載3’從空載(no load or light load)切換至滿載(full load)時,操作頻率必須被快速且大幅度地調變,如此才能夠將輸出電壓穩定於規格內。圖2係顯示習知的LLC串聯諧振轉換器的量測資料圖。由圖2可知,當負載從空載跳滿載時,因輸出電容的能量不夠且操作頻率從高頻往低頻調變太慢(如虛線方框所標示),導致輸出電壓先是瞬降,且瞬降值超過2V。有鑑於此,LLC串聯諧振轉換器2’的製造商提出了通過調整控制器單元12’的補償參數來加快操作頻率的調變速度的方法。然而,實務上發現此方法雖然可以改善輸出電壓瞬降的問題,但卻會造成穩態輸出電壓的不穩定跳動。In addition to the above problems, the wider the output voltage, the more difficult it is to control the converter. For example, when the load 3 'is switched from no load or light load to full load, the operating frequency must be fast and large. Ground regulation, so that the output voltage can be stabilized within specifications. FIG. 2 is a measurement data chart showing a conventional LLC series resonant converter. It can be seen from Figure 2 that when the load jumps from no-load to full-load, the output capacitor energy is not enough and the operating frequency is adjusted from high frequency to low frequency too slowly (as indicated by the dashed box). Depreciation exceeds 2V. In view of this, the manufacturer of the LLC series resonant converter 2 'has proposed a method of accelerating the modulation speed of the operating frequency by adjusting the compensation parameter of the controller unit 12'. However, it has been found in practice that although this method can improve the problem of instantaneous output voltage drop, it can cause unstable jumps in the steady-state output voltage.

由上述說明可以得知,實有必要重新設計並提出一個解決方案,用以使LLC串聯諧振轉換器2’能夠穩態輸出寬範圍的電壓調整。有鑑於此,本案之創作人係極力加以研究發明,而終於研發完成本發明之一種諧振轉換器的控制方法。It can be known from the above description that it is really necessary to redesign and propose a solution to enable the LLC series resonant converter 2 'to output a wide range of voltages in steady state. In view of this, the creators of this case made great efforts to research and invent, and finally developed a control method for a resonant converter of the present invention.

於習知的LLC串聯諧振轉換器的架構中,主要是利用回授電路依照(輸出電壓)誤差量進行回授補償,接著輸出以控制訊號控制功率開關單元的操作頻率以穩定輸出電壓;然而,實際的執行面顯示,當負載從空載跳滿載之時,操作頻率無法快速地從高頻往低頻調變(如圖2的虛線方框所標示),導致輸出電壓瞬降。因此,本發明之主要目的在於提出一種諧振轉換器的控制方法,係應用於回授電路的控制器單元之中。如此設置,當諧振轉換器由空載(或輕載)操作跳至滿載操作時,回授電路會在輸出電壓的瞬降值與輸出電流的變化量超過設定值之時,控制功率開關單元依照滿載操作頻率(例如:100 KHz)進行開/關切換,藉此方式大幅降低輸出電壓的瞬降值。因此,本發明之控制方法可以在諧振轉換器於空載操作轉滿載操作的過程中,發揮穩定輸出電壓之功效。除此之外,本發明之控制方法同時能夠在諧振轉換器於空載操作轉滿載操作的過程中,避免過載(流)現象的發生。具體的過載防護措施是先設立兩個輸出電流變化量的設定值。當輸出電流變化量超過第一個設定值之時(例如:10A),回授電路直接輸出第二控制訊號控制該功率開關單元依照滿載操作頻率進行開/關切換。並且,當電流變化量持續增大並達到或超過第二個設定值之時(例如:13A),回授電路便會對應地輸出控制訊號以關閉該功率開關單元持續兩個電壓環執行時間。In the conventional LLC series resonant converter architecture, the feedback circuit is mainly used to perform feedback compensation according to the (output voltage) error amount, and then the output is used to control the signal to control the operating frequency of the power switching unit to stabilize the output voltage; however, The actual execution surface shows that when the load jumps from no-load to full-load, the operating frequency cannot be adjusted from high frequency to low frequency quickly (as indicated by the dashed box in Figure 2), resulting in a sudden drop in output voltage. Therefore, the main purpose of the present invention is to provide a control method of a resonant converter, which is applied to a controller unit of a feedback circuit. In this way, when the resonant converter jumps from no-load (or light-load) operation to full-load operation, the feedback circuit will control the power switch unit in accordance with the instantaneous drop in the output voltage and the change in the output current to exceed the set value. Full load operating frequency (for example: 100 KHz) is switched on / off to greatly reduce the instantaneous drop of output voltage. Therefore, the control method of the present invention can exert the effect of stabilizing the output voltage during the process of the resonant converter from no-load operation to full-load operation. In addition, the control method of the present invention can also avoid the occurrence of an overload (flow) phenomenon during the process of the resonant converter turning from a no-load operation to a full-load operation. Specific overload protection measures are to set up two set values of output current change. When the output current change exceeds the first set value (for example: 10A), the feedback circuit directly outputs a second control signal to control the power switch unit to switch on / off according to the full-load operating frequency. In addition, when the current variation continuously increases and reaches or exceeds the second set value (eg, 13A), the feedback circuit will output a control signal correspondingly to turn off the power switch unit for two voltage loop execution times.

值得特別強調的是,本發明之控制方法可令諧振轉換器還具有以下優點: (1)不需變更回授電路的設計,能夠以最低成本的方式使諧振轉換器具備輸出寬範圍電壓之能力,同時亦可根據負載的大幅變動而快速地變更操作頻率,維持穩定電壓的輸出; (2)在PWM的控制模式下,快速調變操作頻率;或者,在相移控制(Phase-shift)模式下,快速調變量移量;以及 (3)將本發明之控制方法整合至現有的回授電路之中,可獲得能夠同時穩定暫態反應與穩態反應的回授控制器。It is worth emphasizing that the control method of the present invention can make the resonant converter also have the following advantages: (1) Without changing the design of the feedback circuit, the resonant converter can be provided with the ability to output a wide range of voltages at the lowest cost. At the same time, the operating frequency can be quickly changed according to the large fluctuation of the load to maintain a stable voltage output; (2) In the PWM control mode, the operating frequency can be quickly adjusted; or, in the phase-shift mode Next, quickly adjust the variable displacement; and (3) integrate the control method of the present invention into an existing feedback circuit to obtain a feedback controller capable of simultaneously stabilizing the transient response and the steady-state response.

為了達成上述本發明之主要目的,本案創作人係提供所述諧振轉換器的控制方法的一實施例,係應用於一回授電路之中;其中,該回授電路係連接於一諧振轉換器與連接於該諧振轉換器的至少一負載之間;該諧振轉換器的控制方法係包括以下步驟: (1)輸入一使用者控制訊號至該回授電路之一控制器中,其中,該控制器係連接該諧振轉換器之一功率開關單元,同時還連接一功率因數轉換器之一PFC開關; (2)該使用者控制訊號可被轉換為一輸出電壓控制訊息,且該控制器根據該使用者控制訊號控制該功率因數轉換器以及該功率開關單元; (3)該功率因數轉換器建立一第一輸出電壓,同時,該功率開關單元控制該諧振轉換器的一諧振單元以及一變壓器單元,以建立一第二輸出電壓;其中,該第一輸出電壓係早於該第二輸出電壓被建立; (4)該控制器判斷該輸出電壓控制訊息為一調高輸出電壓訊息或一調低輸出電壓訊息;若為所述調高輸出電壓訊息則執行步驟(5);並且,若為所述調低輸出電壓訊息則執行步驟(6); (5)該第一輸出電壓被提高,同時,該第二輸出電壓被提高;回到該步驟(3);以及 (6)該第一輸出電壓被降低,同時,該第二輸出電壓被降低;回到該步驟(3)。In order to achieve the above-mentioned main purpose of the present invention, the creator of this case provides an embodiment of the control method of the resonant converter, which is applied to a feedback circuit; wherein the feedback circuit is connected to a resonant converter And at least one load connected to the resonant converter; the control method of the resonant converter includes the following steps: (1) inputting a user control signal to a controller of the feedback circuit, wherein the control The device is connected to a power switching unit of the resonant converter, and is also connected to a PFC switch of a power factor converter; (2) the user control signal can be converted into an output voltage control message, and the controller according to the The user control signal controls the power factor converter and the power switch unit; (3) The power factor converter establishes a first output voltage, and at the same time, the power switch unit controls a resonance unit and a transformer unit of the resonance converter To establish a second output voltage; wherein the first output voltage is established earlier than the second output voltage; (4) the controller judges If the output voltage control message is a high output voltage message or a low output voltage message; if it is the high output voltage message, step (5) is executed; and if it is the low output voltage message, then execute Step (6); (5) the first output voltage is increased, and at the same time, the second output voltage is increased; return to step (3); and (6) the first output voltage is decreased, and at the same time, the first The two output voltages are reduced; return to step (3).

為了能夠更清楚地描述本發明所提出之一種諧振轉換器的控制方法,以下將配合圖式,詳盡說明本發明之較佳實施例。In order to more clearly describe a control method of the resonant converter provided by the present invention, the preferred embodiments of the present invention will be described in detail below with reference to the drawings.

請參閱圖3,係顯示應用有本發明之一種諧振轉換器的控制方法的諧振轉換器的架構圖。如圖3所示,本發明之諧振轉換器的控制方法係應用於一回授電路1之中;其中,該回授電路1係連接於一諧振轉換器2與連接於該諧振轉換器2的至少一負載3之間。由圖3可知,該諧振轉換器2係至少包括:一功率因數轉換器21、一PFC開關22、一功率開關單元23、一諧振單元24、一變壓器單元25、一輸出整流單元26、與一輸出濾波單元27;並且,該回授電路1係包括:一訊號檢出單元11、一控制器12與一隔離驅動單元13。長期涉及諧振轉換器2開發製造的電子工程師應該知道,諧振轉換器2內部的功率因數轉換器21可以是Buck線路、Boost線路或者Buck-Boost線路,且該PFC開關22係為該功率因數轉換器21之工作開關,是以透過改變控制該PFC開關22之佔空比,便可以調整該功率因數轉換器21之輸出電壓。Please refer to FIG. 3, which is a structural diagram of a resonant converter to which the control method of the resonant converter of the present invention is applied. As shown in FIG. 3, the control method of the resonant converter of the present invention is applied to a feedback circuit 1; wherein the feedback circuit 1 is connected to a resonant converter 2 and connected to the resonant converter 2. At least one load between 3. As can be seen from FIG. 3, the resonant converter 2 includes at least: a power factor converter 21, a PFC switch 22, a power switching unit 23, a resonance unit 24, a transformer unit 25, an output rectification unit 26, and a The output filtering unit 27 includes a signal detection unit 11, a controller 12 and an isolated driving unit 13. Electronic engineers who have long been involved in the development and manufacture of resonant converter 2 should know that the power factor converter 21 inside the resonant converter 2 can be a Buck line, a Boost line, or a Buck-Boost line, and the PFC switch 22 is the power factor converter. The working switch of 21 can adjust the output voltage of the power factor converter 21 by changing and controlling the duty cycle of the PFC switch 22.

一般而言,功率開關單元23可以是由兩個金氧半導體場效電晶體所組成的半橋架構,該諧振單元24可為LLC串聯諧振線路,且該訊號檢出單元11可以包含由放大器所組成之電路,用以檢測諧振轉換器2傳送至負載3的輸出電壓與輸出電流。另一方面,隔離驅動單元13可為光耦合器,而該控制器12可為一般可程式數位控制晶片。在本發明中,如圖3所示,該訊號檢出單元11檢測輸出電壓及電流後,經過隔離驅動單元13回傳到該控制器12,使得控制器12依照檢測輸出的結果控制所述功率開關單元23的開/關。必須補充說明的是,就實際電路的安排上,控制器12也可設置在隔離驅動單元13的另一側;如此設置,在訊號檢出單元11檢測輸出電壓與電流之後,控制器12根據檢測結果產生用以控制功率開關單元23的開/關的控制訊號,再透過隔離驅動單元13將該控制訊號傳送至該功率開關單元23。Generally speaking, the power switching unit 23 may be a half-bridge structure composed of two metal-oxide-semiconductor field-effect transistors, the resonance unit 24 may be an LLC series resonance circuit, and the signal detection unit 11 may include an amplifier circuit. A circuit is formed to detect the output voltage and output current transmitted from the resonant converter 2 to the load 3. On the other hand, the isolated driving unit 13 may be an optical coupler, and the controller 12 may be a general programmable digital control chip. In the present invention, as shown in FIG. 3, after the signal detection unit 11 detects the output voltage and current, it is transmitted back to the controller 12 through the isolation driving unit 13, so that the controller 12 controls the power according to the result of the detection output. On / off of the switching unit 23. It must be added that in terms of the actual circuit arrangement, the controller 12 can also be arranged on the other side of the isolation drive unit 13; in this way, after the signal detection unit 11 detects the output voltage and current, the controller 12 As a result, a control signal for controlling the on / off of the power switch unit 23 is generated, and the control signal is transmitted to the power switch unit 23 through the isolation driving unit 13.

由此可知,使用者可以依照實務需求而適當規畫回授電路1的架構,例如輸出訊號需要兩個以上的偵測點,那就會需要兩個隔離驅動單元13回傳到該控制器12。簡單地說,隨著偵測點的增加,可以對應地在回授線路1內安排上等數量的隔離驅動單元13。繼續地參閱圖3,並請同時參閱圖4A與圖4B,係顯示本發明之一種諧振轉換器的控制方法的流程圖。本發明欲提供具有寬範圍電壓輸出的線路,包含以下步驟: 步驟(S1):輸入一使用者控制訊號4至該回授電路1的一控制器12中,其中,該控制器12係連接該諧振轉換器2之一功率開關單元23,同時還連接一功率因數轉換器21之一PFC開關22; 步驟(S2):該使用者控制訊號4為一輸出電壓控制訊息,且該控制器12根據該使用者控制訊號4控制該功率因數轉換器21以及該功率開關單元23; 步驟(S3):該功率因數轉換器21建立一第一輸出電壓V1,同時,該功率開關單元23控制該諧振轉換器2的一諧振單元24以及一變壓器單元25,以建立一第二輸出電壓V2;其中,該第一輸出電壓V1係早於該第二輸出電壓V2被建立; 步驟(S4):該控制器12判斷該輸出電壓控制訊息為一調高輸出電壓訊息或一調低輸出電壓訊息;若為所述調高輸出電壓訊息則執行步驟(S5);並且,若為所述調低輸出電壓訊息則執行步驟(S6); 步驟(S5):該第一輸出電壓V1被提高,同時,該第二輸出電壓V2被提高;回到該步驟(3);以及 步驟(S6):該第一輸出電壓V1被降低,同時,該第二輸出電壓V2被降低;回到該步驟(3)。It can be known that the user can appropriately plan the structure of the feedback circuit 1 according to practical requirements. For example, if the output signal requires more than two detection points, then two isolated drive units 13 will be required to transmit back to the controller 12 . In short, as the number of detection points increases, an equivalent number of isolation drive units 13 can be arranged in the feedback line 1 accordingly. Continue to refer to FIG. 3, and also refer to FIG. 4A and FIG. 4B, which are flowcharts showing a control method of a resonant converter according to the present invention. The present invention intends to provide a circuit with a wide range of voltage output, including the following steps: Step (S1): input a user control signal 4 to a controller 12 of the feedback circuit 1, wherein the controller 12 is connected to the controller 12 A power switching unit 23 of the resonant converter 2 is also connected to a PFC switch 22 of a power factor converter 21; Step (S2): The user control signal 4 is an output voltage control message, and the controller 12 is based on The user control signal 4 controls the power factor converter 21 and the power switching unit 23; Step (S3): The power factor converter 21 establishes a first output voltage V1, and at the same time, the power switching unit 23 controls the resonance conversion A resonance unit 24 and a transformer unit 25 of the converter 2 to establish a second output voltage V2; wherein the first output voltage V1 is established earlier than the second output voltage V2; step (S4): the controller 12 It is judged that the output voltage control message is a high output voltage message or a low output voltage message; if it is the high output voltage message, step (S5) is performed; and if the low output voltage is The message executes step (S6); step (S5): the first output voltage V1 is increased, and at the same time, the second output voltage V2 is increased; return to step (3); and step (S6): the first The output voltage V1 is reduced, and at the same time, the second output voltage V2 is reduced; return to step (3).

須特別說明的是,在本發明中,該第一輸出電壓V1必須早於該第二輸出電壓V2被建立,否則系統將會不穩定。所述使用者控制訊號4可以被轉換為一佔空比訊號,且該控制器12依照該佔空比訊號控制該功率因數轉換器21,同時,該使用者控制訊號4被轉換為一頻率訊號,該頻率訊號在一定範圍內調變,且在固定佔空比的情況下,該控制器12依照該頻率訊號控制該功率開關單元23;此時,如圖5所示,操作頻率被固定在最高頻率f1以及最低頻率f2之間,佔空比可以被固定在0.5,而頻率則隨著輸出電壓不同而調整。接續前述,該使用者控制訊號4被轉換為該頻率訊號,如果該控制器12判斷該頻率訊號已經超過預設值,此時,為了能夠繼續調整輸出電壓,該使用者控制訊號4被轉成佔空比訊號,該佔空比訊號在一定範圍內調變,並在固定頻率之情況下,該控制器12依照該佔空比訊號控制該功率開關單元23;如圖5所示,佔空比則是在最低佔空比d以及最高佔空比Tr之間調變,如此,便能夠讓輸出電壓的調變範圍更寬。It should be particularly noted that, in the present invention, the first output voltage V1 must be established earlier than the second output voltage V2, otherwise the system will be unstable. The user control signal 4 may be converted into a duty cycle signal, and the controller 12 controls the power factor converter 21 according to the duty cycle signal, and at the same time, the user control signal 4 is transformed into a frequency signal The frequency signal is modulated within a certain range, and in the case of a fixed duty cycle, the controller 12 controls the power switch unit 23 according to the frequency signal; at this time, as shown in FIG. 5, the operating frequency is fixed at Between the highest frequency f1 and the lowest frequency f2, the duty cycle can be fixed at 0.5, and the frequency is adjusted with different output voltages. Continuing from the foregoing, the user control signal 4 is converted into the frequency signal. If the controller 12 determines that the frequency signal has exceeded a preset value, at this time, in order to continue to adjust the output voltage, the user control signal 4 is converted into Duty cycle signal, the duty cycle signal is modulated within a certain range, and at a fixed frequency, the controller 12 controls the power switch unit 23 according to the duty cycle signal; as shown in FIG. 5, the duty cycle The ratio is adjusted between the lowest duty cycle d and the highest duty cycle Tr. In this way, the modulation range of the output voltage can be made wider.

一般而言,要讓諧振轉換器2達成寬範圍電壓輸出,則調變的頻率範圍也要變寬,但這會增加硬體體積。有鑑於此,本發明之控制方法也同時提供可以令諧振轉換器2達成寬範圍輸出的方法。具體的作法係將所述使用者控制訊號4被轉換為一第一佔空比訊號,使得該控制器12依照該第一佔空比訊號控制該功率因數轉換器21,諧振轉換器2之輸出電壓要調整範圍時,可以調整該第一佔空比訊號改變該功率因數轉換器21的輸出電壓,進而改變諧振轉換器2之輸出電壓;同時,該使用者控制訊號4也被轉換成在一定範圍內調變的頻率訊號,在固定佔空比的情況下,調整控制該功率開關單元23的頻率,當頻率已經超過範圍,例如圖5所示,當頻率已經高到H點時,硬體上已經無法達到更高的頻率,則該使用者控制訊號4被轉換成在一第二佔空比訊號,使得該控制器12在固定頻率的情況下調整該第二佔空比訊號來控制該功率開關單元23,進而改變諧振轉換器2之輸出電壓。。Generally speaking, in order for the resonant converter 2 to achieve a wide range of voltage output, the frequency range of the modulation must also be widened, but this will increase the hardware volume. In view of this, the control method of the present invention also provides a method that enables the resonant converter 2 to achieve a wide range of output. The specific method is to convert the user control signal 4 into a first duty cycle signal, so that the controller 12 controls the output of the power factor converter 21 and the resonant converter 2 according to the first duty cycle signal. When the voltage needs to be adjusted, the first duty cycle signal can be adjusted to change the output voltage of the power factor converter 21, thereby changing the output voltage of the resonant converter 2. At the same time, the user control signal 4 is also converted to a certain value. The frequency signal modulated in the range, under the condition of fixed duty cycle, adjust and control the frequency of the power switch unit 23, when the frequency has exceeded the range, for example, as shown in Figure 5, when the frequency has reached the H point, the hardware It is no longer possible to reach a higher frequency, the user control signal 4 is converted into a second duty cycle signal, so that the controller 12 adjusts the second duty cycle signal to control the signal at a fixed frequency. The power switching unit 23 further changes the output voltage of the resonant converter 2. .

另外,在本發明中,使用者控制訊號4可以包含電壓值;如此設定,當該步驟(S4)判斷由所述使用者控制訊號4轉換而成的電壓值高於一預設值,則控制器12便會將佔空比以及該頻率訊號同時向上調整,使得該第一輸出電壓V1以及該第二輸出電壓V2整體工作區間被提高。相反地,當該步驟(S4)判斷由所述使用者控制訊號4轉換而成的電壓值低於預設值,則第一輸出電壓V1與第二輸出電壓V2整體工作區間則是被降低。換句話說,使用本發明之方法係以階梯式控制諧振轉換器2的整體輸出電壓。每當由使用者控制訊號4轉換而成的電壓值高(低)過一個預設值,便將第一輸出電壓V1與第二輸出電壓V2往上提升(降低)。值得說明的是,本發明的控制方法除了可以控制諧振轉換器2的寬範圍輸出電壓,也使得回授電路1的硬體設計可以比較簡單同時也降低諧振轉換器2整體的體積。In addition, in the present invention, the user control signal 4 may include a voltage value; so set, when it is determined in this step (S4) that the voltage value converted by the user control signal 4 is higher than a preset value, the control The controller 12 adjusts the duty cycle and the frequency signal upward at the same time, so that the overall working interval of the first output voltage V1 and the second output voltage V2 is increased. Conversely, when it is determined in this step (S4) that the voltage value converted by the user control signal 4 is lower than a preset value, the overall working interval of the first output voltage V1 and the second output voltage V2 is reduced. In other words, the method of the present invention is used to control the overall output voltage of the resonant converter 2 in a stepwise manner. The first output voltage V1 and the second output voltage V2 are increased (decreased) every time the voltage value converted by the user control signal 4 passes through a preset value. It is worth noting that the control method of the present invention can not only control the wide-range output voltage of the resonant converter 2, but also make the hardware design of the feedback circuit 1 simpler and reduce the overall volume of the resonant converter 2.

請參考圖6,係顯示本發明之輸出電壓穩定步驟圖。當負載有變動時,可能會造成整個諧振轉換器不穩定;此時,如圖6所示,本發明之諧振轉換器的控制方法會首先執行步驟S11,以該回授電路1監測該諧振轉換器2的一輸出電流與一輸出電壓之變化。繼續地,控制方法接著執行步驟S12以判斷是否該輸出電壓的變化大於一電壓臨界值且該輸出電流的變化大於一電流臨界值。若步驟S12的判斷結果為“否”,則方法流程接著執行步驟S13。於此,必須補充說明的是,此處所稱電壓臨界值可以設定為200mV;簡單地說,若輸出電壓的變化量超過200mV,則系統會趨向不穩定;另一方面,該電流臨界值則可設定為10A,並且當輸出電流值超過10A表示系統已經操作在重載。將本發明之控制方法應用至回授電路1時,使用者可以依照諧振單元24的特性來調整電壓臨界值以及電流臨界值。Please refer to FIG. 6, which shows a step diagram of output voltage stabilization of the present invention. When the load changes, the entire resonant converter may be unstable. At this time, as shown in FIG. 6, the control method of the resonant converter of the present invention first executes step S11, and the feedback conversion circuit 1 monitors the resonant conversion. The change of an output current and an output voltage of the device 2. Continuing, the control method then executes step S12 to determine whether the change in the output voltage is greater than a voltage threshold and the change in the output current is greater than a current threshold. If the determination result of step S12 is "No", the method flow then proceeds to step S13. Here, it must be added that the voltage threshold referred to here can be set to 200mV; simply, if the output voltage changes more than 200mV, the system will tend to be unstable; on the other hand, the current threshold can be Set to 10A, and when the output current value exceeds 10A, the system is already operating at heavy load. When the control method of the present invention is applied to the feedback circuit 1, the user can adjust the voltage critical value and the current critical value according to the characteristics of the resonance unit 24.

相反地,若回授電路1偵測到諧振轉換器2的輸出電壓瞬降值未超過200mV,同時也偵測到諧振轉換器2的單位時間輸出電流的變化量未超過10A,則本發明之控制方法就會執行步驟S13,進以令該回授電路1依據所測得的輸出電流與輸出電壓計算出該諧振轉換器2之一頻率訊號,並對應地輸出一第一控制訊號至該諧振轉換器2。在步驟S11中,該功率開關單元23係以一脈寬調變數值被控制,一脈寬調變數值代表該功率開關單元23被導通的時間加上被關斷的時間,代表一個工作週期,而該週期範圍在二工作週期至十九工作週期之間。另外,該滿載操作頻率係依據該諧振單元24之諧振槽所得,並預先被存入於該回授電路1之控制器12中。簡單地說,在負載的變化量未達設定條件之時,回授電路1仍舊是依照(輸出電壓)誤差量進行回授補償,接著輸出以所述第一控制訊號控制該功率開關單元23的操作頻率。Conversely, if the feedback circuit 1 detects that the output voltage transient drop value of the resonant converter 2 does not exceed 200 mV, and also detects that the output current change amount per unit time of the resonant converter 2 does not exceed 10 A, the present invention The control method executes step S13, so that the feedback circuit 1 calculates a frequency signal of the resonant converter 2 according to the measured output current and output voltage, and outputs a first control signal to the resonance correspondingly. Converter 2. In step S11, the power switching unit 23 is controlled with a pulse width modulation value. A pulse width modulation value represents the time when the power switch unit 23 is turned on plus the time that it is turned off, and represents a duty cycle. The period ranges from two working cycles to nineteen working cycles. In addition, the full-load operating frequency is obtained according to the resonance slot of the resonance unit 24 and is stored in the controller 12 of the feedback circuit 1 in advance. In short, when the load change amount does not reach the set condition, the feedback circuit 1 still performs feedback compensation according to the (output voltage) error amount, and then outputs a signal that controls the power switch unit 23 with the first control signal. Operating frequency.

請同時參閱圖7,係顯示串聯諧振轉換器的量測資料圖。若步驟S12的判斷結果為“是”,方法流程便會執行步驟S14,進以令該回授電路1對應地輸出一第二控制訊號至該諧振轉換器2,使該諧振轉換器2基於一滿載操作頻率而運轉。依據發明人針對特定的諧振轉換器2之機型的量測資料,可以得知所述滿載操作頻率為100 KHz。簡單地說,當回授電路1偵測到負載的變化量超過設定條件之時(如圖7的量測資料(a)所示),回授電路1不依據(輸出電壓)誤差量進行回授補償,而是直接輸出第二控制訊號控制該功率開關單元23依照100 KHz的滿載操作頻率進行開/關切換。如圖7的量測資料(b)所示,直接控制功率開關單元23依照滿載操作頻率進行開/關切換之後,輸出電壓的瞬降值可降至0.9V,同時也不會造成穩態輸出電壓的不穩定跳動。Please refer to FIG. 7 at the same time, which shows the measurement data of the series resonant converter. If the judgment result of step S12 is "YES", the method flow will execute step S14, so that the feedback circuit 1 correspondingly outputs a second control signal to the resonance converter 2, so that the resonance converter 2 is based on a Runs at full load operating frequency. According to the inventor's measurement data for a specific model of the resonant converter 2, it can be known that the full-load operating frequency is 100 KHz. In short, when the feedback circuit 1 detects that the load change amount exceeds the set condition (as shown in the measurement data (a) of Fig. 7), the feedback circuit 1 does not perform the feedback based on the (output voltage) error amount. Compensation is given, but a second control signal is directly output to control the power switch unit 23 to switch on / off according to a full load operating frequency of 100 KHz. As shown in the measurement data (b) of Fig. 7, after the power switch unit 23 is directly controlled to switch on / off according to the full-load operating frequency, the instantaneous drop in output voltage can be reduced to 0.9V without causing steady-state output. Unstable jump in voltage.

值得特別強調的是,本發明之諧振轉換器的控制方法進一步具有過負載(流)保護之功能。請重複參閱圖5與圖6,並請同時參閱圖8與圖9;其中,圖8係顯示本發明之過負載穩定步驟圖,而圖9則是顯示串聯諧振轉換器的量測資料圖。當發生過負載的時候,本發明進一步提供過負載穩定方法,包含以下步驟:(S21) 該諧振轉換器2提供能量至該負載3,且該回授電路1檢測一輸出電流;(S22)該控制器12判斷該輸出電流的變化是否上升至一第一預定值,若是,執行步驟(S23);若否,則重複執行步驟(S21);(S23) 該控制器12調整該功率開關單元23之一頻率訊號,並判斷該輸出電流的變化是否上升至一第二預定值,若是,執行步驟(S24);若否,則重複執行步驟(S21);(S24) 該回授電路1對應地輸出一第三控制訊號至該諧振轉換器2,用以關閉該功率開關單元23持續一諧振週期;接著,重複執行步驟(S21)。在本發明中,該第二預定值係大於該第一預定值,而該諧振周期係指該諧振單元24之能量完全被釋放所需時間。能量能夠被完全釋放與諧振單元24的諧振槽相關,在本發明中,該功率開關單元23係以一脈寬調變數值被控制,也就是一個佔空比數值,一脈寬調變數值代表該功率開關單元23被導通的時間加上被關斷的時間,也代表了一個工作週期,該諧振周期的範圍在一工作週期至三工作週期之間。It is worth emphasizing that the control method of the resonant converter of the present invention further has the function of overload (current) protection. Please refer to FIG. 5 and FIG. 6 repeatedly, and refer to FIG. 8 and FIG. 9 at the same time. Among them, FIG. 8 shows a diagram of the overload stabilization procedure of the present invention, and FIG. When an overload occurs, the present invention further provides an overload stabilization method, including the following steps: (S21) The resonant converter 2 provides energy to the load 3, and the feedback circuit 1 detects an output current; (S22) the The controller 12 determines whether the change in the output current has risen to a first predetermined value, and if so, executes step (S23); if not, repeats step (S21); (S23) the controller 12 adjusts the power switching unit 23 A frequency signal, and determine whether the change in the output current has risen to a second predetermined value. If so, perform step (S24); if not, repeat step (S21); (S24) The feedback circuit 1 correspondingly A third control signal is output to the resonant converter 2 to turn off the power switch unit 23 for a resonant period. Then, the step (S21) is repeatedly performed. In the present invention, the second predetermined value is greater than the first predetermined value, and the resonance period refers to a time required for the energy of the resonance unit 24 to be completely released. The energy can be completely released related to the resonance slot of the resonance unit 24. In the present invention, the power switch unit 23 is controlled with a pulse width modulation value, that is, a duty cycle value, and a pulse width modulation value represents The time when the power switch unit 23 is turned on plus the time that it is turned off also represents a working cycle, and the resonance cycle ranges from one working cycle to three working cycles.

本發明特別設計兩個輸出電流變化量的設定值,例如第一設定值以及第二設定值分別為10A與13A。如圖9的量測資料(a)所示,當電流變化量超過10A時,回授電路1直接輸出第二控制訊號控制該功率開關單元23依照100 KHz的滿載操作頻率進行開/關切換。進一步地,若電流變化量仍持續增加並達到或超過第二個設定值(亦即,13A),則本發明之控制方法即令回授電路1對應地輸出一第三控制訊號至該諧振轉換器2,用以關閉該功率開關單元23持續兩個電壓環執行時間。執行的成效如圖7的量測資料(b)所示。The present invention specifically designs two set values of output current variation, for example, the first set value and the second set value are 10A and 13A, respectively. As shown in the measurement data (a) of FIG. 9, when the current variation exceeds 10A, the feedback circuit 1 directly outputs a second control signal to control the power switch unit 23 to switch on / off according to a full-load operating frequency of 100 KHz. Further, if the amount of current change continues to increase and reaches or exceeds the second set value (ie, 13A), the control method of the present invention causes the feedback circuit 1 to output a third control signal to the resonant converter correspondingly. 2. It is used to turn off the power switch unit 23 for two voltage loop execution times. The performance of the implementation is shown in the measurement data (b) of Figure 7.

如此,上述係已完整且清楚地說明本發明之諧振轉換器的控制方法的所有實施步驟;並且,經由上述可知本發明係具有下列之優點:In this way, the above-mentioned system has completely and clearly explained all the implementation steps of the control method of the resonant converter of the present invention; and according to the above-mentioned, the present invention has the following advantages:

(1)於習知的LLC串聯諧振轉換器2’(如圖1所示)的架構中,主要是閉環控制模組1’難以控制LLC串聯諧振轉換器2’提供電壓書出。因此,本發明特別提出一種諧振轉換器的控制方法,當諧振轉換器2由空載(或輕載)操作跳至滿載操作時,回授電路1會在輸出電壓的瞬降值與輸出電流的變化量超過設定值之時,控制功率開關單元23依照滿載操作頻率(例如: 100 KHz)進行開/關切換,藉此方式大幅降低輸出電壓的瞬降值。因此,本發明之控制方法可以在LLC諧振轉換器於空載操作轉滿載操作的過程中,發揮穩定輸出電壓之功效。(1) In the conventional LLC series resonant converter 2 '(as shown in FIG. 1) architecture, it is mainly the closed-loop control module 1' that is difficult to control the LLC series resonant converter 2 'to provide the voltage. Therefore, the present invention particularly proposes a control method for a resonant converter. When the resonant converter 2 jumps from a no-load (or light-load) operation to a full-load operation, the feedback circuit 1 will respond to the instantaneous drop in output voltage and output current. When the amount of change exceeds the set value, the power switch unit 23 is controlled to switch on / off according to the full-load operating frequency (for example: 100 KHz), thereby greatly reducing the instantaneous drop of the output voltage. Therefore, the control method of the present invention can exert the effect of stabilizing the output voltage during the process of transferring the LLC resonant converter from no-load operation to full-load operation.

(2)除此之外,本發明之控制方法同時能夠在諧振轉換器於空載操作轉滿載操作的過程中,避免過載(流)現象的發生。具體的過載防護措施是先設立兩個輸出電流變化量的設定值。當輸出電流變化量超過第一個設定值之時(例如:10A),回授電路1直接輸出第二控制訊號控制該功率開關單元23依照滿載操作頻率進行開/關切換。並且,當電流變化量持續增大並達到或超過第二個設定值之時(例如:13A),回授電路1便會對應地輸出控制訊號以關閉該功率開關單元23持續兩個電壓環執行時間。(2) In addition, the control method of the present invention can also avoid the occurrence of an overload (current) phenomenon during the process of the resonant converter transferring from a no-load operation to a full-load operation. Specific overload protection measures are to set up two set values of output current change. When the output current variation exceeds the first set value (for example: 10A), the feedback circuit 1 directly outputs a second control signal to control the power switch unit 23 to switch on / off according to the full-load operating frequency. And, when the amount of current change continues to increase and reaches or exceeds the second set value (for example: 13A), the feedback circuit 1 will output a corresponding control signal to turn off the power switch unit 23 for two voltage loop executions. time.

必須加以強調的是,上述之詳細說明係針對本發明可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。It must be emphasized that the above detailed description is a specific description of the feasible embodiment of the present invention, but this embodiment is not intended to limit the patent scope of the present invention, and any equivalent implementation or change without departing from the technical spirit of the present invention, All should be included in the patent scope of this case.

<本發明> 1‧‧‧回授電路<Invention> 1‧‧‧ feedback circuit

2‧‧‧諧振轉換器 2‧‧‧ resonant converter

3‧‧‧負載 3‧‧‧ load

4‧‧‧使用者控制訊號 4‧‧‧user control signal

21‧‧‧功率因數轉換器 21‧‧‧Power Factor Converter

22‧‧‧PFC開關 22‧‧‧PFC switch

23‧‧‧功率開關單元 23‧‧‧Power Switch Unit

24‧‧‧諧振單元 24‧‧‧Resonant unit

25‧‧‧變壓器單元 25‧‧‧Transformer unit

26‧‧‧輸出整流單元 26‧‧‧Output rectifier unit

27‧‧‧輸出濾波單元 27‧‧‧output filter unit

11‧‧‧訊號檢出單元 11‧‧‧Signal detection unit

12‧‧‧控制器 12‧‧‧ Controller

13‧‧‧隔離驅動單元 13‧‧‧Isolated drive unit

16a‧‧‧第二電性插銷 16a‧‧‧Second electrical bolt

S1-S6‧‧‧步驟 S1-S6‧‧‧ steps

S11-S14‧‧‧步驟 S11-S14‧‧‧step

S21-S24‧‧‧步驟 S21-S24‧‧‧step

V1‧‧‧第一輸出電壓 V1‧‧‧ the first output voltage

V2‧‧‧第二輸出電壓 V2‧‧‧Second output voltage

f2‧‧‧最高頻率 f2‧‧‧ maximum frequency

f1‧‧‧最低頻率 f1‧‧‧lowest frequency

D‧‧‧最低佔空比 D‧‧‧Minimum Duty Cycle

Tr‧‧‧最高佔空比 Tr‧‧‧ Maximum Duty Cycle

<習知> 2’‧‧‧LLC串聯諧振轉換器< Learning > 2’‧‧‧LLC series resonant converter

VDC’‧‧‧直流電源V DC '‧‧‧ DC Power Supply

23’‧‧‧功率開關單元 23’‧‧‧Power Switch Unit

24’‧‧‧諧振單元 24’‧‧‧ resonant unit

25’‧‧‧變壓器單元 25’‧‧‧Transformer unit

26’‧‧‧輸出整流單元 26’‧‧‧ output rectifier unit

27’‧‧‧輸出濾波單元 27’‧‧‧ output filter unit

1’‧‧‧閉環控制模組 1’‧‧‧closed-loop control module

11’‧‧‧訊號檢出單元 11’‧‧‧Signal detection unit

12’‧‧‧控制器單元 12’‧‧‧controller unit

13’‧‧‧隔離驅動單元 13’‧‧‧ Isolated Drive Unit

3’‧‧‧負載 3’‧‧‧ load

圖1係顯示習知的一種LLC串聯諧振轉換器的電路架構圖; 圖2係顯示習知的LLC串聯諧振轉換器的量測資料圖; 圖3係顯示應用有本發明之一種諧振轉換器的控制方法的諧振轉換器的架構圖; 圖4A與圖4B係顯示本發明之一種諧振轉換器的控制方法的流程圖; 圖5係顯示本發明之一種諧振轉換器的控制方法的曲線圖; 圖6係顯示本發明之輸出電壓穩定步驟圖; 圖7係顯示串聯諧振轉換器的量測資料圖; 圖8係顯示本發明之過負載穩定步驟圖;以及 圖9係顯示串聯諧振轉換器的量測資料圖。Fig. 1 is a circuit structure diagram of a conventional LLC series resonant converter; Fig. 2 is a measurement data diagram of a conventional LLC series resonant converter; Fig. 3 is a circuit diagram of a resonant converter to which the present invention is applied; 4A and 4B are flowcharts showing a control method of a resonant converter according to the present invention; FIG. 5 is a graph showing a control method of a resonant converter according to the present invention; Series 6 shows the step of stabilizing the output voltage of the present invention; Figure 7 shows the measurement data chart of the series resonant converter; Figure 8 shows the step of stabilizing the overload of the present invention; and Figure 9 shows the amount of series resonant converter Test data map.

Claims (10)

一種諧振轉換器的控制方法,係應用於一回授電路之中;其中,該回授電路係連接於一諧振轉換器與連接於該諧振轉換器的至少一負載之間;該諧振轉換器的控制方法係包括以下步驟: (1)輸入一使用者控制訊號至該回授電路之一控制器中,其中,該控制器係連接該諧振轉換器之一功率開關單元,同時還連接一功率因數轉換器之一PFC開關; (2)該使用者控制訊號為一輸出電壓控制訊息,且該控制器根據該輸出電壓控制訊息制該功率因數轉換器以及該功率開關單元; (3)該功率因數轉換器建立一第一輸出電壓,同時,該功率開關單元控制該諧振轉換器的一諧振單元以及一變壓器單元,以建立一第二輸出電壓;其中,該第一輸出電壓係早於該第二輸出電壓被建立; (4)該控制器判斷該輸出電壓控制訊息為一調高輸出電壓訊息或一調低輸出電壓訊息;若為所述調高輸出電壓訊息則執行步驟(5);並且,若為所述調低輸出電壓訊息則執行步驟(6); (5)該第一輸出電壓被提高,同時,該第二輸出電壓被提高;回到該步驟(3);以及 (6)該第一輸出電壓被降低,同時,該第二輸出電壓被降低;回到該步驟(3)。A control method of a resonant converter is applied to a feedback circuit; wherein the feedback circuit is connected between a resonant converter and at least one load connected to the resonant converter; The control method includes the following steps: (1) inputting a user control signal into a controller of the feedback circuit, wherein the controller is connected to a power switching unit of the resonant converter and also connected to a power factor One of the converters' PFC switch; (2) the user control signal is an output voltage control message, and the controller controls the power factor converter and the power switch unit according to the output voltage control message; (3) the power factor The converter establishes a first output voltage. At the same time, the power switching unit controls a resonant unit and a transformer unit of the resonant converter to establish a second output voltage. The first output voltage is earlier than the second output voltage. The output voltage is established; (4) The controller judges that the output voltage control message is a higher output voltage message or a lower output voltage message; if it is If the output voltage is increased, step (5) is performed. If the output voltage is decreased, step (6) is performed. (5) The first output voltage is increased, and the second output voltage is increased. ; Return to step (3); and (6) the first output voltage is reduced, and at the same time, the second output voltage is reduced; return to step (3). 如申請專利範圍第1項所述之諧振轉換器的控制方法,其中,在該步驟(5)與該步驟(6)之後,該使用者控制訊號被轉換為一頻率訊號,且該頻率訊號在一定範圍內調變;並且,在固定該頻率訊號的一佔空比的情況下,該控制器依照該頻率訊號控制該功率開關單元。The control method of the resonant converter according to item 1 of the scope of patent application, wherein after the step (5) and the step (6), the user control signal is converted into a frequency signal, and the frequency signal is in The modulation is performed within a certain range; and when a duty cycle of the frequency signal is fixed, the controller controls the power switch unit according to the frequency signal. 如申請專利範圍第1項所述之諧振轉換器的控制方法,其中,在該步驟(5)與該步驟(6)之後,該使用者控制訊號被轉換為一佔空比訊號,且該佔空比訊號在一定範圍內調變;並且,在固定該佔空比訊號的一頻率的情況下,該控制器依照該佔空比訊號控制該功率開關單元。The control method of the resonant converter according to item 1 of the scope of patent application, wherein after the step (5) and the step (6), the user control signal is converted into a duty cycle signal, and the The air-to-air signal is modulated within a certain range; and when a frequency of the duty cycle signal is fixed, the controller controls the power switch unit according to the duty cycle signal. 如申請專利範圍第1項所述之諧振轉換器的控制方法,更包括以下步驟: (71)以該回授電路監測該諧振轉換器的一輸出電流與一輸出電壓之變化; (72)判斷在一週期範圍內,是否該輸出電壓的變化大於一電壓臨界值且該輸出電流的變化大於一電流臨界值;若是,執行步驟(74);若否,則執行步驟(73); (73)該回授電路1依據所測得的該輸出電流與該輸出電壓計算出該諧振轉換器之一頻率訊號,並對應地輸出一第一控制訊號至該諧振轉換器;接著,重複執行該步驟(71); (74)該回授電路對應地輸出一第二控制訊號至該諧振轉換器,使該諧振轉換器基於一滿載操作頻率而運轉;接著,重複執行該步驟(71)。The control method of the resonant converter according to item 1 of the scope of patent application, further comprising the following steps: (71) monitoring the change of an output current and an output voltage of the resonant converter with the feedback circuit; (72) judgment In a period, whether the change of the output voltage is greater than a voltage threshold and the change of the output current is greater than a current threshold; if yes, go to step (74); if not, go to step (73); (73) The feedback circuit 1 calculates a frequency signal of the resonant converter according to the measured output current and the output voltage, and outputs a first control signal to the resonant converter correspondingly; then, repeats this step ( 71); (74) The feedback circuit correspondingly outputs a second control signal to the resonant converter, so that the resonant converter operates based on a full-load operating frequency; then, the step (71) is repeatedly performed. 如申請專利範圍第4項所述之諧振轉換器的控制方法,其中,在該步驟(71)之中,該功率開關單元係受到一脈寬調變訊號控制;並且,該脈寬調變訊號包含2-19個工作週期,且每個工作週期包含該功率開關單元被導通的時間與該功率開關單元被關斷的時間。The control method of the resonant converter according to item 4 of the scope of patent application, wherein in the step (71), the power switching unit is controlled by a pulse width modulation signal; and the pulse width modulation signal It includes 2-19 working cycles, and each working cycle includes the time when the power switch unit is turned on and the time when the power switch unit is turned off. 如申請專利範圍第4項所述之諧振轉換器的控制方法,其中,該滿載操作頻率係依據該諧振單元所得,並預先被存入於該回授電路之控制器中。The method for controlling a resonant converter according to item 4 of the scope of patent application, wherein the full-load operating frequency is obtained according to the resonant unit and is stored in the controller of the feedback circuit in advance. 如申請專利範圍第1項所述之諧振轉換器的控制方法,更包括以下步驟: (81)該諧振轉換器提供能量至該負載,且該回授電路檢測該諧振轉換器的一輸出電流; (82)該控制器判斷該輸出電流的變化是否上升至一第一預定值,若是,執行步驟(83);若否,則重複執行該步驟(81); (83)該控制器調整該功率開關單元之一頻率訊號,並判斷該輸出電流的變化是否上升至一第二預定值,若是,執行步驟(84);若否,則重複執行步驟(81); (84)該回授電路對應地輸出一第三控制訊號至該諧振轉換器,以關閉該功率開關單元持續一諧振週期;接著,重複執行步驟(81)。The method for controlling a resonant converter according to item 1 of the patent application scope further includes the following steps: (81) The resonant converter provides energy to the load, and the feedback circuit detects an output current of the resonant converter; (82) The controller determines whether the change in the output current has risen to a first predetermined value, and if so, executes step (83); if not, repeats this step (81); (83) the controller adjusts the power Switch on a frequency signal and determine whether the change in the output current has risen to a second predetermined value. If yes, go to step (84); if not, repeat step (81); (84) the feedback circuit corresponds Ground outputs a third control signal to the resonant converter to turn off the power switch unit for a resonant period; then, step (81) is repeatedly performed. 如申請專利範圍第7項所述之諧振轉換器的控制方法,其中,該第二預定值係大於該第一預定值。The method for controlling a resonant converter according to item 7 of the scope of patent application, wherein the second predetermined value is greater than the first predetermined value. 如申請專利範圍第7項所述之諧振轉換器的控制方法,其中,該諧振周期係指該諧振單元之能量完全被釋放所需時間。The control method of the resonant converter according to item 7 of the scope of the patent application, wherein the resonant period refers to the time required for the energy of the resonant unit to be completely released. 如申請專利範圍第7項所述之諧振轉換器的控制方法,其中,該功率開關單元23係以一脈寬調變數值被控制,一脈寬調變數值代表該功率開關單元23被導通的時間加上被關斷的時間,代表一個工作週期,該諧振周期的範圍在一工作週期至三工作週期之間。The control method of the resonant converter according to item 7 of the scope of patent application, wherein the power switch unit 23 is controlled by a pulse width modulation value, and a pulse width modulation value represents that the power switch unit 23 is turned on. The time plus the time to be turned off represents a duty cycle, and the resonance period ranges from one duty cycle to three duty cycles.
TW107104678A 2018-02-09 2018-02-09 Method for controlling resonant converter TWI672899B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107104678A TWI672899B (en) 2018-02-09 2018-02-09 Method for controlling resonant converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107104678A TWI672899B (en) 2018-02-09 2018-02-09 Method for controlling resonant converter

Publications (2)

Publication Number Publication Date
TW201935834A true TW201935834A (en) 2019-09-01
TWI672899B TWI672899B (en) 2019-09-21

Family

ID=68618518

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107104678A TWI672899B (en) 2018-02-09 2018-02-09 Method for controlling resonant converter

Country Status (1)

Country Link
TW (1) TWI672899B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112003480A (en) * 2020-09-01 2020-11-27 亚瑞源科技(深圳)有限公司 Conversion device with overload control function and overload control method thereof
TWI755736B (en) * 2020-05-22 2022-02-21 亞源科技股份有限公司 Conversion device with overload control and method of overload control the same
CN115686123A (en) * 2022-10-28 2023-02-03 石家庄通合电子科技股份有限公司 Voltage overshoot adjustment method, electronic device, and storage medium
TWI812354B (en) * 2022-07-18 2023-08-11 宏碁股份有限公司 Power supply device with high efficiency

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8330434B2 (en) * 2008-07-25 2012-12-11 Cirrus Logic, Inc. Power supply that determines energy consumption and outputs a signal indicative of energy consumption
CN202282743U (en) * 2011-09-29 2012-06-20 南京博兰得电子科技有限公司 Resonant converter control device
TW201332274A (en) * 2012-01-19 2013-08-01 Xiao-Xian Nian LLC resonant type converter operated at near constant frequency
CN104377959B (en) * 2013-08-16 2017-04-26 台达电子企业管理(上海)有限公司 Power converter and method for stabilizing voltage gain
CN105207484B (en) * 2015-08-31 2018-01-16 天津电气科学研究院有限公司 A kind of new full-bridge LLC is unloaded and with voltage control method when carrying
CN204967624U (en) * 2015-10-14 2016-01-13 苏州翊宣电子有限公司 Soft switching power supply system of LLC resonance based on integrated main inductance and resonant inductance
CN205123584U (en) * 2015-10-31 2016-03-30 哈尔滨理工大学 3kW communication power supply based on LLC resonant transformation ware
TWI601367B (en) * 2016-10-05 2017-10-01 A DC-DC Converter Based on Load Current Modulation Full-Bridge Control Mode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI755736B (en) * 2020-05-22 2022-02-21 亞源科技股份有限公司 Conversion device with overload control and method of overload control the same
US11532980B2 (en) 2020-05-22 2022-12-20 Asian Power Devices Inc. Conversion apparatus with overload control and overload control method for the same
CN112003480A (en) * 2020-09-01 2020-11-27 亚瑞源科技(深圳)有限公司 Conversion device with overload control function and overload control method thereof
TWI812354B (en) * 2022-07-18 2023-08-11 宏碁股份有限公司 Power supply device with high efficiency
US12081132B2 (en) 2022-07-18 2024-09-03 Acer Incorporated Power supply device with high efficiency
CN115686123A (en) * 2022-10-28 2023-02-03 石家庄通合电子科技股份有限公司 Voltage overshoot adjustment method, electronic device, and storage medium

Also Published As

Publication number Publication date
TWI672899B (en) 2019-09-21

Similar Documents

Publication Publication Date Title
CN101183830B (en) Method and apparatus for controlling a circuit with multiple modes of operation
US10097077B2 (en) Control method for improving dynamic response of switch power
CN109004839B (en) A control method for improving the dynamic response of switching power supply between heavy load and light load
US9209697B2 (en) Switching power-supply device
KR101840412B1 (en) Buck switch-mode power converter large signal transient response optimizer
US8406014B2 (en) Circuit for adjusting the output voltage for a resonant DC/DC converter
US9543847B2 (en) Switched mode power supply with improved light load efficiency
US9362835B2 (en) Resonant power conversion apparatus and controlling method thereof
US10250126B1 (en) Method for controlling resonant converter
CN105978344B (en) A kind of method for improving primary side feedback flyback sourse and constant-pressure stable being exported under CCM
US20130016531A1 (en) Power supply device and method of controlling power supply device
US8737099B2 (en) Controllers for power converters
TWI543516B (en) Relative efficiency measurement in a pulse width modulation system
TW201935834A (en) Method for controlling resonant converter
CN109004840B (en) A control method for improving output precision of switching power supply
JP6089529B2 (en) Switching power supply
CN110138222B (en) Control method of resonant converter
TWI822344B (en) Switching power converter circuit and conversion control circuit and method thereof
CN111509978A (en) DC-DC converter and power management system
JP2011160565A (en) Switching power supply device
CN110957915B (en) Active-clamp flyback power converter with switchable operating modes
CN104022645A (en) Constant-frequency fixed turning-off time control device of switching converter
CN119921580B (en) Switch control method, switch control circuit and electronic equipment
KR102786215B1 (en) Method and apparatus for controlling boost-integrated resonant converter
CN120389624A (en) Light-load efficiency improvement and load expansion circuit of CLLLC converter based on variable resonant cavity control and its control method