TW202041974A - Lithographic apparatus with thermal conditioning system for conditioning the wafer - Google Patents
Lithographic apparatus with thermal conditioning system for conditioning the wafer Download PDFInfo
- Publication number
- TW202041974A TW202041974A TW108146407A TW108146407A TW202041974A TW 202041974 A TW202041974 A TW 202041974A TW 108146407 A TW108146407 A TW 108146407A TW 108146407 A TW108146407 A TW 108146407A TW 202041974 A TW202041974 A TW 202041974A
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- thermal
- lithography
- temperature
- radiation
- Prior art date
Links
- 230000003750 conditioning effect Effects 0.000 title claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 223
- 230000005855 radiation Effects 0.000 claims abstract description 83
- 238000003384 imaging method Methods 0.000 claims abstract description 19
- 230000000295 complement effect Effects 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims description 44
- 238000001459 lithography Methods 0.000 claims description 42
- 230000033228 biological regulation Effects 0.000 claims description 14
- 230000001678 irradiating effect Effects 0.000 claims description 7
- 238000010521 absorption reaction Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 28
- 238000005259 measurement Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 238000005286 illumination Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 235000012431 wafers Nutrition 0.000 description 11
- 238000001816 cooling Methods 0.000 description 9
- 238000000059 patterning Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 7
- 230000001276 controlling effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000001900 extreme ultraviolet lithography Methods 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 4
- 210000001747 pupil Anatomy 0.000 description 4
- 230000000153 supplemental effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000012809 cooling fluid Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70858—Environment aspects, e.g. pressure of beam-path gas, temperature
- G03F7/70866—Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
- G03F7/70875—Temperature, e.g. temperature control of masks or workpieces via control of stage temperature
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70008—Production of exposure light, i.e. light sources
- G03F7/7005—Production of exposure light, i.e. light sources by multiple sources, e.g. light-emitting diodes [LED] or light source arrays
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70783—Handling stress or warp of chucks, masks or workpieces, e.g. to compensate for imaging errors or considerations related to warpage of masks or workpieces due to their own weight
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Toxicology (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
本發明係關於一種微影設備。The invention relates to a lithography device.
熱誘發之效應Thermally induced effect
實體物質之性質傾向於回應於溫度改變而改變。系統之實體組件之性質的熱誘發之改變對於系統之效能可為關鍵的。大體而言,因此較佳的是經由組件之受控加熱及/或受控冷卻而使系統熱穩定。此穩定化縮減組件之溫度相依性質的變化,該等變化由在系統之操作使用期間接收自組件之環境的熱負荷引起。舉例而言,組件可熱耦接至自組件提取熱的散熱片。因此,組件可達成熱平衡且採用恆定之空間上均一的溫度,因此保持熱誘發變形,該熱誘發變形又保持恆定及空間上均一的。 微影系統 The properties of physical substances tend to change in response to changes in temperature. Thermally induced changes in the properties of the physical components of the system can be critical to the performance of the system. In general, it is therefore preferable to thermally stabilize the system through controlled heating and/or controlled cooling of the components. This stabilization reduces the temperature-dependent changes in the components caused by the thermal load received from the environment of the components during the operation of the system. For example, the component may be thermally coupled to a heat sink that extracts heat from the component. Therefore, the components can achieve thermal equilibrium and use a constant spatially uniform temperature, thereby maintaining thermally induced deformation, which in turn remains constant and spatially uniform. Lithography System
微影系統為系統之實例,其中限制熱誘發變形對於系統之效能為關鍵的。微影系統經組態以將圖案成像於感光性抗蝕劑(「抗蝕劑」)上,該感光性抗蝕劑覆蓋半導體晶圓(或:半導體基板)。在成像之後,因此曝光之抗蝕劑經顯影以形成用於處理步驟的模具,其中下一層產生於最終形成整合式電子電路之陣列的多層堆疊中。微影系統包括光源及掃描器(亦被稱作:微影設備)。由光源產生之電磁輻射用於掃描器中以經由投影光學件將存在於光罩上之圖案(亦被稱作圖案化裝置,或倍縮光罩)投影於晶圓上的抗蝕劑層上。 光化及非光化輻射 The lithography system is an example of a system in which limiting thermally induced deformation is critical to the performance of the system. The lithography system is configured to image the pattern on a photosensitive resist ("resist") that covers the semiconductor wafer (or: semiconductor substrate). After imaging, the thus exposed resist is developed to form a mold for processing steps, where the next layer is created in the multilayer stack that ultimately forms the array of integrated electronic circuits. The lithography system includes a light source and a scanner (also known as: lithography equipment). The electromagnetic radiation generated by the light source is used in the scanner to project the pattern existing on the photomask (also known as patterning device, or reduction photomask) onto the resist layer on the wafer through projection optics . Actinic and non-actinic radiation
實務上,由光源產生之電磁輻射可包含光化輻射及非光化輻射。如所知曉,光化輻射經由例如使分子鍵斷裂而催化光阻的改變以便能夠將光罩之圖案印刷至光阻中。非光化輻射並不產生此類改變,且因此不可用於將圖案印刷於光阻上。非光化輻射亦被稱作帶外(OOB)輻射。特別而言,非光化輻射可在晶圓上引起非所要熱負荷,且因此在成像製程期間可引起非所要的熱誘發之變形。 對疊對與焦點的熱誘發之效應 In practice, the electromagnetic radiation generated by the light source can include actinic radiation and non-actinic radiation. As is known, actinic radiation catalyzes the change of photoresist by, for example, breaking molecular bonds so that the pattern of the photomask can be printed into the photoresist. Non-actinic radiation does not produce such changes and therefore cannot be used to print patterns on photoresists. Non-actinic radiation is also called out-of-band (OOB) radiation. In particular, non-actinic radiation can cause undesired thermal loads on the wafer, and therefore can cause undesired thermally induced deformations during the imaging process. Thermally induced effects of anti-overlapping and focal points
微影掃描器具有實體組件,該等實體組件之功能對於熱負荷為敏感的,且其熱狀態,例如熱誘發之變形對於掃描器之效能為關鍵的。掃描器之效能可依據疊對及焦點來表達。術語「疊對」為「疊對誤差」之縮寫,且指示積體電路晶片中之哪些連續層對於彼此經側向移位的程度。疊對因此指示用於在晶圓上形成一個層之圖案與先前形成於晶圓中之層對準的程度。覆疊為圖案之間的水平距離,亦即晶圓平面內之量測值,且可描述為方位相依二維(向量)場。術語「焦點」為「焦點誤差」之縮寫,且指示在成像期間實際焦平面自理想焦點平面的垂直偏差。微影上之重要態樣維持產生於基板之表面上的特徵之大小之均一性。特徵大小之變化被要求以小於預定標稱值之微小分率。對於達成此等效能為準關鍵的是焦點誤差的緊密控制。 覆疊及焦點之控制變得愈來愈重要 The lithographic scanner has physical components whose functions are sensitive to thermal load, and their thermal conditions, such as thermally induced deformation, are critical to the performance of the scanner. The performance of the scanner can be expressed in terms of overlay and focus. The term "stacking" is an abbreviation of "stacking error", and indicates the degree to which successive layers in the integrated circuit chip are laterally displaced from each other. The overlap thus indicates the degree to which the pattern used to form a layer on the wafer is aligned with the layer previously formed in the wafer. Overlay is the horizontal distance between patterns, that is, the measured value in the wafer plane, and can be described as an orientation-dependent two-dimensional (vector) field. The term "focus" is an abbreviation of "focus error" and indicates the vertical deviation of the actual focal plane from the ideal focal plane during imaging. The important aspect of lithography maintains the uniformity of the size of the features generated on the surface of the substrate. The change in feature size is required to be a small fraction less than the predetermined nominal value. The key to achieving such performance is tight control of focus error. Overlay and focus control become more and more important
在每一新一代積體電路情況下,成像至晶圓上之特徵的大小藉助於使用具有較短波長之光化輻射來進一步減少。當前,極遠紫外線(EUV)微影是在使用具有13.5 nm或甚至較低波長的光化輻射之前沿。因此,晶圓中熱誘發之效應的更緊密控制隨著每一新一代積體電路變得愈來愈重要。 ASML 背景技術的實例 With each new generation of integrated circuits, the size of the features imaged on the wafer is further reduced by using actinic radiation with a shorter wavelength. Currently, extreme ultraviolet (EUV) lithography is used before the use of actinic radiation with 13.5 nm or even lower wavelengths. Therefore, tighter control of thermally induced effects in wafers becomes more and more important with each new generation of integrated circuits. ASML Background example
為了勾劃說明在晶圓之熱控制的內容背景內在微影領域內進行之努力的一些實例,參看以下文獻。 In order to outline some examples of efforts made in the field of lithography within the context of thermal control of wafers, refer to the following documents.
針對Cox等人申請、讓渡給ASML且以引用方式併入本文中的國際申請公開案第WO 2018041491揭示一種具有投影系統之EUV微影設備,該投影系統經組態以經由縫隙將藉助於光罩圖案化之輻射射束投影於固持於基板台上之基板上的曝光區域上。微影設備以掃描模式操作,其中在投影期間同時地掃描光罩及基板。微影設備包含定位於投影系統與基板之間的冷卻設備。冷卻設備在經圖案化輻射射束經由縫隙入射於基板上之區域附近提供基板之區域化冷卻。由冷卻設備提供之冷卻量在沿著縫隙之方向上,例如在實質上垂直於掃描之方向的方向上通常為恆定的。可能需要的是在沿著縫隙之方向的方位處提供不同冷卻量。此是因為由經圖案化輻射射束引起之基板的加熱在在曝光區域E內在沿著縫隙之方向上在基板之不同位置處可不同。基板之由經圖案化輻射射束引起之加熱量取決於輻射射束之強度,且此可沿著縫隙方向越過曝光區域發生變化。光罩之不同部分可具有不同反射率,此是由於反射率之空間變化由光罩上圖案特徵的性質判定。因此,微影設備亦包含具有一或多個輻射源,例如紅外雷射的加熱設備,該一或多個輻射源經組態以提供照明並加熱基板之部分的一或多個額外輻射射束。一或多個額外輻射射束可照明且加熱曝光區域的至少一部分,亦即,基板之接收經圖案化輻射射束的區域。加熱設備進一步包含經組態以感測來自基板之紅外線輻射的一或多個感測器。控制器控制紅外雷射以按需要調整其輻射射束之功率以便在曝光區域內在不同區段處選擇性地提供所要加熱量。由於紅外雷射之操作,基板越過曝光區域之淨加熱維持實質上恆定。因此,基板之將以其他方式由在基板上之縫隙下面的不同位置處之不同加熱量引起的失真被縮減。The International Application Publication No. WO 2018041491, which was filed by Cox et al., assigned to ASML and incorporated herein by reference, discloses an EUV lithography apparatus with a projection system that is configured to use light through a gap. The radiation beam patterned by the mask is projected onto the exposure area on the substrate held on the substrate stage. The lithography apparatus operates in a scanning mode, in which the photomask and substrate are scanned simultaneously during projection. The lithography device includes a cooling device positioned between the projection system and the substrate. The cooling device provides regionalized cooling of the substrate near the area where the patterned radiation beam is incident on the substrate through the slit. The amount of cooling provided by the cooling device is generally constant in the direction along the slit, for example, in a direction substantially perpendicular to the scanning direction. What may be required is to provide different amounts of cooling in the orientation along the direction of the gap. This is because the heating of the substrate caused by the patterned radiation beam may be different at different positions of the substrate in the direction along the slit in the exposure area E. The amount of heating of the substrate caused by the patterned radiation beam depends on the intensity of the radiation beam, and this can vary across the exposure area along the slit direction. Different parts of the photomask can have different reflectivities. This is because the spatial variation of reflectivity is determined by the nature of the pattern features on the photomask. Therefore, the lithography equipment also includes heating equipment having one or more radiation sources, such as infrared lasers, which are configured to provide illumination and heat one or more additional radiation beams of the substrate . One or more additional radiation beams can illuminate and heat at least a part of the exposed area, that is, the area of the substrate that receives the patterned radiation beam. The heating device further includes one or more sensors configured to sense infrared radiation from the substrate. The controller controls the infrared laser to adjust the power of its radiation beam as needed so as to selectively provide the required heating amount at different sections within the exposure area. Due to the operation of the infrared laser, the net heating of the substrate across the exposure area remains substantially constant. Therefore, the distortion of the substrate caused by the different heating amounts at different positions under the gap on the substrate in other ways is reduced.
頒予Berendsen等人、讓渡給ASML且以引用之方式併入本文中的美國專利9,983,489揭示一種用於補償微影設備之曝光製程中之曝光誤差的方法。該方法包含:獲得指示達到基板位準之IR輻射劑量的劑量量測值,其中劑量量測值用以計算在曝光製程期間由物件吸收之IR輻射的量;及使用劑量量測值來控制曝光製程以便補償與在曝光製程期間由物件吸收之IR輻射相關聯的曝光誤差。物件之實例包括:基板、基板台、投影光學件之鏡子。曝光製程之控制的實例包括:控制加熱器以加熱鏡子;控制熱調節系統以控制微影設備之基板支撐件的溫度。 US Patent 9,983,489, issued to Berendsen et al., assigned to ASML and incorporated herein by reference, discloses a method for compensating exposure errors in the exposure process of photolithography equipment. The method comprises: obtaining a dose measurement value indicating the IR radiation dose reaching the substrate level, wherein the dose measurement value is used to calculate the amount of IR radiation absorbed by the object during the exposure process; and using the dose measurement value to control the exposure Processed to compensate for exposure errors associated with IR radiation absorbed by the object during the exposure process. Examples of objects include: substrates, substrate tables, and mirrors for projection optics. Examples of the control of the exposure process include: controlling the heater to heat the mirror; controlling the thermal adjustment system to control the temperature of the substrate support of the lithography equipment.
頒予Ottens等人、讓渡給ASML且以引用之方式併入本文中之美國專利7,630,060揭示一種微影設備,該微影設備包括用於提供輻射射束之照明系統,及用於支撐圖案化裝置的支撐結構。圖案化裝置用以運用其橫截面中之圖案賦予輻射射束。設備亦包括用於固持基板之基板支撐件,及用於將經圖案化射束投影至基板之目標部分上的投影系統。設備具備用於提供基板之額外加熱的額外加熱系統。基板另外經加熱,使得基板具有相對恆定之熱負荷。本文中,術語「恆定」意謂時間及/或位置上為恆定的。術語「另外」意謂另外照明該投影射束。補充加熱較佳地藉由使用額外照明系統補充地照明基板來提供。額外加熱,例如照明假定為加熱基板而不影響例如抗蝕劑圖案化。因此,在額外照明用以使用抗蝕劑不敏感之輻射,例如紅外輻射的實施例中可為有利的以另外照明基板。前饋系統可基於由圖案化射束產生之(已知)熱控制補充照明系統的劑量。補充照明系統可包括例如雷射及/或「經典」輻射源。補充照明系統可例如均一地輻照整個基板表面、均一地輻照縫隙、呈圖案化樣式之縫隙或縫隙周圍的區。本文中,縫隙為投影於基板上的實際光線。其他補充照明策略亦有可能。補充加熱之優勢為,基板之溫度在微影製程期間可保持相對穩定。因此,基板之熱膨脹在時間上保持恆定及/或在位置上保持均一地恆定。另一優勢為,基板溫度可經相對容易地控制。因此,疊對誤差可經最小化,此是因為所有基板可在相同溫度下曝光。 US Patent 7,630,060, issued to Ottens et al., assigned to ASML and incorporated herein by reference, discloses a lithography apparatus that includes an illumination system for providing a radiation beam and for supporting patterning The supporting structure of the device. The patterning device is used to impart the radiation beam with the pattern in its cross section. The equipment also includes a substrate support for holding the substrate, and a projection system for projecting the patterned beam onto the target portion of the substrate. The equipment has an additional heating system to provide additional heating of the substrate. The substrate is additionally heated so that the substrate has a relatively constant thermal load. Here, the term "constant" means constant in time and/or position. The term "in addition" means to additionally illuminate the projection beam. Supplementary heating is preferably provided by supplemental lighting of the substrate using an additional lighting system. Additional heating, such as lighting, is assumed to heat the substrate without affecting, for example, resist patterning. Therefore, it may be advantageous to additionally illuminate the substrate in embodiments where additional illumination is used to use resist-insensitive radiation, such as infrared radiation. The feedforward system can control the dose of the supplemental lighting system based on the (known) heat generated by the patterned beam. Supplemental lighting systems may include, for example, lasers and/or "classical" radiation sources. The supplemental lighting system can, for example, uniformly irradiate the entire substrate surface, uniformly irradiate the gap, the gap in a patterned pattern, or the area around the gap. Here, the gap is the actual light projected on the substrate. Other supplementary lighting strategies are also possible. The advantage of supplementary heating is that the temperature of the substrate can be kept relatively stable during the lithography process. Therefore, the thermal expansion of the substrate remains constant in time and/or uniformly constant in position. Another advantage is that the substrate temperature can be controlled relatively easily. Therefore, the stacking error can be minimized because all the substrates can be exposed at the same temperature.
針對Koevoets等人申請、讓渡給ASML且以引用方式併入本文中的美國專利申請公開案2018/0173116揭示一種具有投影系統之掃描微影設備,該投影系統經組態以投影經圖案化輻射射束以在固持於基板台上之基板上形成曝光區域。微影設備進一步具有用於加熱基板的加熱設備。加熱設備包含第一加熱元件及第二加熱元件,該第一加熱元件及第二加熱元件經組態以加熱位於微影設備之非掃描方向上曝光區域的相對末端處的基板區域。加熱設備可加熱與曝光區域重疊之區域。該加熱設備為有利的,此係因為其防止或縮減在該非掃描方向上之該曝光區域之該等末端處該基板之失真。此允許改良該微影設備之疊對效能。更具體而言,加熱元件將區域化加熱遞送至基板,該區域化加熱用以加熱基板的部分,該部分就在由輻射射束照明之曝光區域的邊緣外部。因此,基板之溫度在曝光區域之邊緣處並不快速逐步降低,而是替代地較緩慢地縮減。此情形為有利的,此係因為縮減了將另外由此溫度下降造成的基板之失真。此情形啟用準確性之改良,亦即微影設備之疊對效能之改良,圖案可運用該改良投影於基板上。第一加熱元件及第二加熱元件可定位於基板支撐件上方,且在微影設備之非掃描方向上定位於曝光區域的相對末端處。加熱元件可各自包含發射紅外輻射之LED陣列,或發射非光化波長之輻射的兩個或兩個以上雷射。 The U.S. Patent Application Publication 2018/0173116 filed by Koevoets et al., assigned to ASML and incorporated herein by reference discloses a scanning lithography apparatus with a projection system configured to project patterned radiation The beam is used to form an exposure area on the substrate held on the substrate stage. The lithography device further has a heating device for heating the substrate. The heating device includes a first heating element and a second heating element, and the first heating element and the second heating element are configured to heat the substrate area at the opposite end of the exposure area in the non-scanning direction of the lithography device. The heating device can heat the area overlapping with the exposure area. The heating device is advantageous because it prevents or reduces the distortion of the substrate at the ends of the exposure area in the non-scanning direction. This allows to improve the stacking performance of the lithography device. More specifically, the heating element delivers zoned heating to the substrate, which zone heating is used to heat the part of the substrate just outside the edge of the exposure area illuminated by the radiation beam. Therefore, the temperature of the substrate does not gradually decrease rapidly at the edge of the exposure area, but instead decreases slowly. This situation is advantageous because it reduces the distortion of the substrate that would otherwise be caused by the temperature drop. This situation enables the improvement of accuracy, that is, the improvement of the stacking performance of lithography equipment, and the pattern can be projected on the substrate using this improvement. The first heating element and the second heating element can be positioned above the substrate support and positioned at the opposite ends of the exposure area in the non-scanning direction of the lithography device. The heating elements may each include an LED array emitting infrared radiation, or two or more lasers emitting radiation of non-actinic wavelength.
本發明係關於進一步改良微影設備中曝光製程的控制外加其他。The present invention is about further improving the control of the exposure process in the lithography equipment plus others.
本發明係關於一種微影設備,該微影設備經組態以接收輻射,該輻射用於經由投影光學件將一圖案成像於一基板上之複數個目標區域上。該等目標區域中之每一特定目標區域用以在成像於該特定目標區域上期間經由吸收該輻射之至少部分而接收一熱負荷。該微影設備包含一熱調節系統。該熱調節系統經組態以在該成像期間將該基板維持於一空間上均一的恆定之第一溫度。該熱調節系統包含:一散熱片,其用以自該基板提取熱;及一第一加熱器系統,其用以在該成像期間供應一空間上均一的第一額外熱負荷至該基板之一部分。該部分為該圖案正成像於上面之該特定目標區域之補體。每單位面積之該第一額外熱負荷之一量值等於或超出每單位面積之該熱負荷之一量值。The present invention relates to a lithography device configured to receive radiation for imaging a pattern onto a plurality of target areas on a substrate via projection optics. Each specific target area of the target areas is used to receive a thermal load by absorbing at least part of the radiation during imaging on the specific target area. The lithography equipment includes a thermal regulation system. The thermal regulation system is configured to maintain the substrate at a spatially uniform and constant first temperature during the imaging period. The thermal conditioning system includes: a heat sink for extracting heat from the substrate; and a first heater system for supplying a spatially uniform first additional heat load to a portion of the substrate during the imaging period . This part is the complement of the specific target area on which the pattern is being imaged. A magnitude of the first additional heat load per unit area is equal to or exceeds a magnitude of the heat load per unit area.
在該基板之一空間均一溫度下,使得圖案成像於複數個目標區域上獨立於熱誘發之變形越過基板的變化。At a uniform temperature in a space of the substrate, the pattern is imaged on a plurality of target areas independent of thermally induced deformation across the substrate.
在實施例中,該熱調節系統經組態以經由輻照該補體而供應該第一熱負荷。為此目的,熱調節系統可包含經配置用於供應第一額外熱負荷的LED及掃描雷射中之至少一者。In an embodiment, the thermal regulation system is configured to supply the first thermal load via irradiating the complement. To this end, the thermal conditioning system may include at least one of an LED and a scanning laser configured to supply the first additional thermal load.
在另一實施例中,熱調節系統包含用以供應第二額外熱負荷至特定目標區域的第二加熱器系統。此類第二額外熱負荷可用於每單位面積之來自成像輻射之熱負荷相較於每單位面積提供之第一額外熱負荷較低的狀況。第二加熱器系統可經組態以經由輻照特定目標區域而供應第二額外熱負荷。為此目的,該第二加熱器系統可包含以下各者中之至少一者:經配置用於供應該第二額外熱負荷的一第二LED及一第二掃描雷射。In another embodiment, the thermal regulation system includes a second heater system for supplying a second additional heat load to a specific target area. This type of second additional heat load can be used when the heat load from imaging radiation per unit area is lower than the first additional heat load provided per unit area. The second heater system can be configured to supply a second additional heat load by irradiating a specific target area. For this purpose, the second heater system may include at least one of the following: a second LED and a second scanning laser configured to supply the second additional heat load.
在另一實施例中,微影設備包含一預加熱系統,該預加熱系統經組態以在開始成像之後預加熱基板至實質上空間上均一的第二溫度。該第一溫度可等於第二溫度。預加熱系統可經組態以經由輻照基板而預加熱基板。為此目的,該預加熱系統包含以下各者中之至少一者:一第三LED及一第三掃描雷射。In another embodiment, the lithography apparatus includes a pre-heating system that is configured to pre-heat the substrate to a substantially spatially uniform second temperature after imaging is started. The first temperature may be equal to the second temperature. The pre-heating system can be configured to pre-heat the substrate by irradiating the substrate. For this purpose, the pre-heating system includes at least one of the following: a third LED and a third scanning laser.
圖1為極遠紫外線(EUV)微影系統之圖式,該極遠紫外(EUV)微影系統包含輻射源SO及微影設備LA。輻射源SO包括EUV輻射源,例如雷射產生之電漿(LLP) EUV源或無電子雷射(FEL)。微影設備LA包括EUV掃描器。輻射源SO經組態以產生EUV輻射射束B及將EUV輻射射束B供應至微影設備LA。微影設備LA包含照明系統IL、經組態以支撐圖案化裝置MA (例如光罩)的支撐結構MT、投影系統(或:投影光學件) PS及經組態以支撐基板W的基板支撐件WT。FIG. 1 is a schematic diagram of an extreme ultraviolet (EUV) lithography system. The extreme ultraviolet (EUV) lithography system includes a radiation source SO and a lithography device LA. The radiation source SO includes an EUV radiation source, such as a laser-generated plasma (LLP) EUV source or an electron-free laser (FEL). The lithography equipment LA includes an EUV scanner. The radiation source SO is configured to generate an EUV radiation beam B and supply the EUV radiation beam B to the lithography apparatus LA. The lithography equipment LA includes an illumination system IL, a support structure MT configured to support the patterning device MA (such as a photomask), a projection system (or: projection optics) PS, and a substrate support configured to support the substrate W WT.
照明系統IL經組態以在EUV輻射射束B入射於圖案化裝置MA上之前調節EUV輻射射束B。另外,照明系統IL可包括琢面化場鏡面裝置10及琢面化光瞳鏡面裝置11。琢面化場鏡面裝置10及琢面化光瞳鏡面裝置11一起向EUV輻射射束B提供橫截面中的所要橫截面形狀及所要強度分佈。作為琢面化場鏡面裝置10及琢面化光瞳鏡面裝置11之補充或替代,照明系統IL亦可包括其他鏡面或裝置。The illumination system IL is configured to adjust the EUV radiation beam B before it is incident on the patterning device MA. In addition, the illumination system IL may include a faceted
在由此調節之後,EUV輻射射束B與圖案化裝置MA相互作用。由於此相互作用,產生了經圖案化EUV輻射射束B'。投影系統PS經組態以一次一個目標區域地將經圖案化EUV輻射射束B'投影於基板W之一系列目標區域上。在特定目標區域已曝光至輻射射束B'之後,基板支撐件WT相對於輻射射束B'之路徑經重新定位以便將下一目標區域定位於射束B'的路徑中。投影系統PS可包含複數個鏡面13、14,該等鏡面經組態以將經圖案化EUV輻射射束B'投影於由基板支撐件WT固持的基板W上。投影系統PS可將縮減因數應用於經圖案化EUV輻射射束B',因此形成具有小於圖案化裝置MA上之對應特徵之特徵的影像。舉例而言,可應用縮減因數4或8。儘管投影系統PS在圖1之圖式中經說明為僅具有兩個鏡面13、14,但投影系統PS可包括不同數目個鏡面(例如,六個或八個鏡面)。出於清楚之目的,此處注意的是,微影設備LA通常以掃描模式操作,其中同時掃描支撐結構MT及基板支撐件WT,同時賦予至輻射射束B'之圖案投影於目標區域上(亦即,單一動態曝光)。可藉由投影系統PS之(縮小)放大率及影像反轉特性來判定基板支撐件WT相對於支撐結構MT之速度及方向。After this adjustment, the EUV radiation beam B interacts with the patterning device MA. Due to this interaction, a patterned EUV radiation beam B'is generated. The projection system PS is configured to project the patterned EUV radiation beam B′ onto a series of target areas of the substrate W one target area at a time. After the specific target area has been exposed to the radiation beam B', the substrate support WT is repositioned relative to the path of the radiation beam B'to position the next target area in the path of the beam B'. The projection system PS may include a plurality of
基板W可包括先前形成之圖案。在此狀況下,微影設備LA針對每一目標區域對準由經圖案化EUV輻射射束B'形成之影像與先前形成於目標區域上之圖案。The substrate W may include a previously formed pattern. In this situation, the lithography apparatus LA aligns the image formed by the patterned EUV radiation beam B′ with the pattern previously formed on the target area for each target area.
在基板W已進入掃描器LA且已定位於基板支撐件WT上之後,基板W經受量測操作。量測操作經實施以便獲得表示以下兩者的資料:垂直於離開投影系統PS之輻射射束B'之軸線的平面中目標區域之方位,及基板W相對於該平面之仰角之變化。基板W在因此獲得之資料的控制下變得曝光至輻射射束B'以便將光罩MA之圖案準確地印刷於基板W上之目標區域上。資料可用以在六個自由度上控制基板支撐件之位置及定向,及/或控制投影光學件等。After the substrate W has entered the scanner LA and has been positioned on the substrate support WT, the substrate W undergoes a measurement operation. The measurement operation is performed to obtain data representing both: the orientation of the target area in a plane perpendicular to the axis of the radiation beam B′ leaving the projection system PS, and the change in the elevation angle of the substrate W relative to the plane. The substrate W becomes exposed to the radiation beam B′ under the control of the data thus obtained in order to accurately print the pattern of the mask MA on the target area on the substrate W. The data can be used to control the position and orientation of the substrate support in six degrees of freedom, and/or control the projection optics, etc.
圖2為EUV掃描器LA中曝光方位202之垂直橫截面的圖式。曝光方位202為掃描器LA內之區,其中晶圓W變得曝光於輻射射束B'以便將光罩MA之圖案打印於基板W上之目標區域204上。FIG. 2 is a diagram of a vertical cross-section of the
掃描器LA具有經組態以熱調節基板W的熱調節系統。The scanner LA has a thermal regulation system configured to thermally regulate the substrate W.
熱調節系統包括經組態以自基板W提取熱之散熱片206。在所展示之實例中,散熱片206容納於基板支撐件WT上。散熱片206包含例如冷卻系統,使得冷卻流體流動通過冷卻系統,該冷卻流體經由基板W與基板支撐件WT之間的熱接觸自基板W提取熱。The thermal conditioning system includes
熱調節系統包括用以供應第一額外熱負荷至基板W之該部分的第一加熱器系統208,該部分為特定目標204區域之補體,圖案正經由輻射射束B'成像於該特定目標區域上。即,第一加熱器系統208正供應第一額外熱負荷至基板W的全部,除當前正曝光至輻射射束B'的目標區域204外。The thermal conditioning system includes a
第一加熱器系統208在所展示之實例中包括LED陣列,該LED陣列經組態以運用紅外光輻照基板W,該紅外光由基板W的吸收產生熱且因此產生熱誘發之變形。第一加熱器系統208之操作參看圖3及圖4之圖式解釋。The
圖3及圖4為展示平面圖中在移動基板W至曝光位置之不同階段之曝光方位202之部分的圖式。當基板W之目標區域存在於縫隙下面時,由參考數字302指示之特徵示意性地表示該縫隙,輻射射束B'通過縫隙自投影系統PS傳播至基板W上之基板上的相關目標區域。假定基板W在由基板支撐件WT支撐的基板W進入曝光方位202之前具有空間上均一的溫度。進一步假定,第一加熱器系統208之LED初始地皆關斷。雖然基板支撐件WT正將基板W移動至曝光方位202,但基板W逐漸變得在第一加熱器系統208的範圍內。一旦基板W變得整個在LED之子集的範圍內,此子集之LED便經接通。此情形導致基板W正以空間上均一方式由紅外光輻照。基板W完全在範圍內之此階段說明於圖3的圖式中。接通之LED以白色指示,諸如LED 208.1及208.2。關斷之LED以黑色指示,諸如LED 208.3、208.4、208.5及208.6。3 and 4 are diagrams showing parts of the
雖然基板W正在進一步移動以便將基板W朝向待將目標區域曝光(以掃描樣式)至輻射射束B'的位置,但接通之一些LED關斷,且關斷之其他LED接通,以便維持基板W的均一輻照,且因此維持基板W上的均一熱負荷。在圖4之圖式中,在圖3之圖式中接通的LED 208.1及208.2現關斷,而在圖3之圖式中關斷的LED 208.5及208.6在圖4之圖式中接通。Although the substrate W is moving further in order to expose the substrate W toward the target area to be exposed (in a scanning pattern) to the position of the radiation beam B', some LEDs that are turned on are turned off, and other LEDs that are turned off are turned on to maintain Uniform irradiation of the substrate W, and thus maintain a uniform thermal load on the substrate W. In the diagram of FIG. 4, the LEDs 208.1 and 208.2 that were turned on in the diagram of FIG. 3 are now off, and the LEDs 208.5 and 208.6 that are turned off in the diagram of FIG. 3 are turned on in the diagram of FIG. 4 .
在圖3之圖式中,基板W尚未到達其中基板W在縫隙302下面之位置,而基板W在圖4之圖式中存在於縫隙302下面。In the diagram of FIG. 3, the substrate W has not yet reached the position where the substrate W is under the
在基板W是在第一加熱器系統208之範圍內但尚未在縫隙302下面同時,基板W接收恆定且空間上均一的熱負荷。接收自第一加熱器系統208之每單位時間的熱負荷及經由散熱片206提取自基板W之每單位面積的熱經控制以彼此平衡,使得基板W維持於恆定、空間上均一的溫度。While the substrate W is within the range of the
現今,當諸如目標區域204之目標區域是在縫隙302下方從而曝光至輻射射束B'時,目標區域不再由來自第一加熱器系統208一或多個LED的紅外輻射覆蓋。實情為,目標區域204在曝光期間經由來自射束B'之輻射之部分的接收來接收熱負荷。若接收自第一加熱器系統208之每單位時間的熱負荷之空間密度出於所有實際目的等於經由射束B'之輻射之部分之吸收的每單位時間之熱負荷的空間密度,則基板W將不經歷所接收之淨熱負荷的改變,且因此在曝光期間維持於空間上均一且時間上恆定的溫度。Nowadays, when a target area such as the
熱調節系統進一步包括一第二加熱器系統210,該第二加熱器系統用以供應第二額外熱負荷至在縫隙302下方之目標區域204用於曝光至輻射射束B'。針對此的功能性之基本原理如下。第一加熱器系統208提供每單位時間之熱負荷之空間密度至基板W,該空間密度與由輻射射束B'提供至基板W之每單位時間之熱負荷的空間密度匹配。由射束B'供應之每單位時間的熱負荷之空間密度可隨時間且以不同時間按規模發生變化。舉例而言,最終判定目標區域204處經由吸收之熱產生的射束B'之參數之量值可變動。作為另一實例,不同光罩MA可反映接收自源SO之輻射的不同量。作為具有變化之熱負荷的另一實例,不同照明模式(亦即,射束B之橫截面中的不同強度分佈)可用以照明不同光罩MA。此類照明模式之實例為:環形、偶極、四極、六極、客戶特定、經偏振、非偏振等。對於關於照明模式之某背景資訊,請參看例如針對Voogd等人申請、讓渡給ASML且讓渡給ASML的美國專利申請公開案US 20180224715或針對Godfried等人申請、讓渡給ASML且以引用方式併入本文中的美國專利申請公開案20170293229。作為另一實例,來自源SO之輻射可包括OOB輻射,諸如紅外(IR)及深紫外(DUV)外加EUV。OOB輻射之部分可變得由基板W吸收,且亦可引起基板W中的非所要熱產生。此OOB輻射產生可取決於例如源SO之效能的設定點。因此,若由輻射射束B'供應至基板W之熱負荷隨時間發生變化,則由第一加熱器系統208及輻射射束B'供應之熱負荷的空間密度可能足夠準確地匹配,從而不能將基板W保持於空間上均一之恆定溫度。第一加熱器系統208可接著經控制以調整額外熱負荷以便恢復平衡。另一控制選項由第二加熱器系統210提供以經控制以便藉由供應第二額外熱負荷至目標區域204以補償差而恢復熱負荷之空間密度的平衡。在圖3及圖4之圖式中,第二加熱器系統210包含定位於縫隙302附近的另一LED陣列。關於第二加熱器系統210中之LED,LED 210.1及210.2經明確指示。在圖3之圖式中,第二加熱器系統210之LED經關斷,而在圖4之圖式中,LED經接通。The thermal conditioning system further includes a
熱調節系統亦具有控制器212,該控制器用以控制第一加熱器系統208及第二加熱器系統210,且視需要控制散熱片206以便將基板W維持於恆定且空間上均一的溫度。為此目的,熱調節系統包括一或多個感測器,例如基板支撐件WT處的溫度感測器及/或應力感測器,其感測器信號可用作至控制器212的回饋輸入。熱調節系統之此控制態樣將參看圖7進一步詳細地論述。The thermal conditioning system also has a
控制器212可獨立地控制第一加熱器系統及/或第二加熱器系統210之LED中的個別LED (或掃描雷射)以便使基板W處之局部溫差平衡。控制器212亦可控制LED及/或掃描雷射以便調整在基板W處產生之全域熱。即,控制器212可以共同模式控制LED及/或掃描雷射且疊加LED及/或掃描雷射中每個別者的調變。圖2之圖式展示發明人214預期到熱調節系統的控制選項。The
如參看圖3及圖4之圖式所指示,第一加熱器系統208可取決於以下各者來控制:基板W相對於縫隙302的位置,及基板W相對於縫隙302的速度。位置及速度判定第一加熱器系統208中之哪些LED接通且哪些LED關斷。此外:一直保持所有LED接通將產生若干難題,諸如:供應至基板支撐件WT之非所要額外熱負荷;基板W之溫度歸因於基板W之首先進入第一加熱器系統208之範圍的部分相較於最後進入範圍之部分將接收更多熱之事實的梯度。此外,如上所提及,第一加熱器系統208可取決於在其曝光期間由射束B'供應至相關目標區域的熱負荷之空間密度而控制。就此而言,第一加熱器系統208及/或第二加熱器系統210亦可取決於關於即將來臨之曝光製程變化之前饋資訊而受到控制。舉例而言,第二加熱器系統210可切斷,或其熱輸出可下降,同時跳過基板W上之特定目標區域的照明。As indicated with reference to the diagrams of FIGS. 3 and 4, the
作為對LED之替代方案,第一加熱器系統208及/或第二加熱器系統210可使用一或多個掃描雷射或一或多個掃描雷射與LED的混合式組合。對於關於掃描雷射之某背景,參看例如Wikipedia的條目「雷射掃描」及「雷射照明顯示器」。為了完整性,此處應注意的是,第一加熱器系統208及第二加熱器系統210可具備其自身之散熱片(圖式中未展示)或共同散熱片(圖式中未展示)以便防止基板W上來自此等加熱器系統208及210之補充熱負荷的非所要變化。As an alternative to the LED, the
為了完整性,此處應注意的是,第一加熱器系統208之接通之LED的集合可在基板W的平面中產生在一定程度上為空間非均一的照明圖案。此可歸因於由接通之LED照明之平面之區域的形狀及強度分佈。然而,在掃描器LA中,每一目標部分藉由在給定方向(「掃描」方向)上經由投影輻射射束B (請參看圖1)掃描光罩MA的圖案來輻照,同時平行於或反平行於此給定方向同步地掃描基板W。即,基板W正以此步調在第一加熱器系統208之LED下面且縫隙302下面移動,由LED產生之照明圖案在對於基板W靜止之座標系經模糊。模糊因此傾向於使此照明圖案中之非均一性及基板W中之所得熱產生之均一性均衡。類似考量可在第一加熱器系統208中應用至掃描雷射之使用。又,類似考量可應用至第二加熱器系統210。For completeness, it should be noted here that the set of turned-on LEDs of the
在圖2、圖3及圖4的圖式中,第一加熱器系統208及第二加熱器系統210經繪製為運用紅外射束輻照基板W之多個實體(LED及/或掃描雷射)的陣列,該等紅外射束在基板W上相對於垂直於基板W的方向具有相對較小之入射角。為了清楚,此處應注意的是,入射角之量值為可取決於若干因數的設計選項。一個此因數為例如掃描器LA中可用的容積。另一此類因數為例如其中第一加熱器系統208及第二加熱器系統210自身可需要經熱調節以便使其掃描器LA中除基板W外之組件上的熱負荷最小化的方式。In the diagrams of Figures 2, 3 and 4, the
圖5為說明在本發明之內容背景內且在垂直於基板W之平面中使用掃描雷射502的圖式。掃描雷射502為產生方向可控制之雷射射束504的雷射裝置。在圖式中,雷射射束504被展示兩次,一次是垂直地入射於基板W上時,且一次是依據非零角θ在所展示之平面中入射於基板W上時。藉由使雷射射束504在此平面中之方向發生變化,基板W之不同部分可經輻射。基板W之經輻照表面積之量值取決於角度θ。由垂直入射射束504輻照之表面區域的寬度由「X1
」指示。由以角度θ照射基板W之射束504輻照的表面區域之寬度由「X2
」指示。寬度X2
及寬度X1
符合:X2
=X1
/cosθ。即,經輻照之區域取決於雷射射束504照射基板W之角度。藉由依據角度θ控制雷射射束504之強度,亦即,藉由使強度作為cosθ之倒數發生變化,空間上均一的熱負荷可經產生而無關於射束504的方向。5 is a diagram illustrating the use of a
以上內容論述射束504在垂直於基板W之特定平面中強度的角度相依控制。若射束504之方向在垂直於基板W且垂直於彼此之兩個平面中經控制,則強度經控制以取決於一個平面中一個角度的兩個角度以便提供空間上均一的熱負荷。The above discusses the angle-dependent control of the intensity of the
若掃描雷射502供應脈衝化射束504,亦即,掃描雷射以離散脈衝遞送雷射能量而非連續地遞送雷射能量,則脈衝之工作循環及/或重複率可依據角度來控制以便產生空間上均一的熱負荷。在此狀況下,強度可保持恆定。強度之角度相依控制以及重複率及工作循環的組合亦可為可行的。If the
射束504之方向可經改變的速度且因此基板W之不同表面區域可得到輻照的速度相較於貫穿基板W之熱的傳播速度高得多。因此且出於所有實際目的,使用掃描雷射502強加熱負荷於基板W上具有與經由上文參看圖2及圖3論述之靜止LED陣列強加熱負荷相同的熱效應。The speed at which the direction of the
圖6為掃描器LA處之在曝光方位202外部的另一方位602的圖式。掃描器之另一方位602例如為掃描器內之量測方位。在量測方位處,基板W經受如較早所論述之量測操作以便獲得資料從而在曝光方位處控制基板W上目標區域的曝光。替代地或另外,另一方位可為基板處置器(或:晶圓處置器)或負載鎖定件。基板處置器為機電整合模組,該機電整合模組經設計以經由負載鎖定件將基板移入及移出掃描器LA的(真空)中心。負載鎖定件為用於在兩個或兩個以上環境之間轉移基板的設備,其中不同條件佔優勢,例如,不同壓力、不同溫度、不同氣體組合物等。在EUV掃描器中,負載鎖定件用以將基板自具有環境壓力之環境轉移至具有低得多之壓力的另一環境,該另一環境出於所有實際目的而被稱作「真空」。對於關於基板處置器之更多背景資訊,請參見例如頒予Westerlaken等人、讓渡給ASML且以引用方式併入本文中的美國專利9,885,964。對於關於負載鎖定件之更多背景,請參見例如頒予Klomp等人、讓渡給ASML且以引用方式併入本文中的美國專利7,878,755。6 is a diagram of another
在另一方位602處,基板W使用預加熱系統604經預加熱至空間上均一之恆定預加熱溫度。預加熱系統604可例如使用LED陣列或一或多個掃描雷射或一或多個LED與一或多個掃描雷射之組合以類似於第一加熱器系統210或第二加熱器系統210的方式實施。At the
預加熱溫度之恆定性及均一性促進第一加熱器系統208及第二加熱器系統210的控制。此處注意的是,實際上,基板之預加熱溫度的空間均一度相較於其恆定性更重要,此是由於非均一性相較於溫度量值之偏移更難以補償。The constancy and uniformity of the preheating temperature promote the control of the
假定,另一方位602為掃描器LA內的量測方位。在量測基板W之性質期間及之後,基板W之尺寸較佳地不再改變。因此,基板W之空間上均一之預加熱溫度較佳地與空間上均一溫度相同,在該空間上均一溫度下,基板W保持於曝光方位處。若基板W僅經受經由吸收來自源SO之輻射的熱負荷,則基板W在曝光側處之空間上均一溫度較佳地等於或大於基板W在目標區域中將局部地採用的局部溫度。因此,基板W之溫度獨立於曝光之熱負荷可保持恆定且均一。Assume that the
基板W之預加熱可在量測操作經實行之前執行以便排除熱誘發之變形之空間變化對資料的效應,該等空間變化針對控制曝光製程之控制的量測操作的結果提取。若恆定之空間上均一預加熱溫度不同於由熱調節系統在曝光方位202處產生的基板W之恆定之空間上均一溫度,則此差可被曝光製程慮及。由於由熱調節系統產生的基板W之預加熱溫度以及基板W之溫度兩者為恆定且空間上均一的,因此基板W在預加熱溫度下之形狀以及基板W在曝光方位202處在該溫度下的形狀相同,除均一縮放因數外。此縮放因數可接著用於針對曝光製程判定目標區域之方位中、提供由量測操作產生之此等目標區域的方位。視需要,基板W之均一預加熱溫度可設定為在曝光期間高於基板W之均一溫度的一位元以便在基板W自預加熱之方位行進至曝光方位期間慮及熱量損耗。然而,此情形暗示,熱量損耗且因此基板W之熱誘發之變形的所得改變需要經校準並慮及熱調節的控制。The pre-heating of the substrate W can be performed before the measurement operation is performed in order to eliminate the effect of the spatial variation of the thermally induced deformation on the data, and the spatial variation is extracted for the result of the measurement operation that controls the exposure process. If the constant spatially uniform preheating temperature is different from the constant spatially uniform temperature of the substrate W generated by the thermal conditioning system at the
作為另一選項,基板W上方之預加熱系統604可與基板支撐件WT一起自量測側602移動至曝光側202。當基板W變成在第一加熱器系統208之範圍內時,第一加熱器系統208可接管。As another option, the
簡而言之,因此,基板W之溫度較佳地在掃描器LA中在其存在情況下始終保持均一且恆定。In short, therefore, the temperature of the substrate W preferably always remains uniform and constant in the presence of the scanner LA.
熱調節系統經由控制器212的控制參看圖7予以解釋。圖7中之圖式表示圖2之圖式中攜載基板W之基板支撐件WT的部分702。請參見圖2之圖式中的參考標號702。The control of the thermal regulation system via the
基板支撐件WT包含攜載致動器(圖中未示)之模組704,該等致動器經控制以定位基板W以供曝露及量測。模組704容納用於攜載基板W的基板台706。基板台706經由複數個凸起與基板W介接,複數個凸起中的兩者由參考標號708及710明確地指示。基板台706經由複數個其他凸起與模組704介接,該等其他凸起中之兩者由參考標號712及714明確地指示。基板W經由靜電夾具(圖中未示)夾持至基板台706。基板台706經由另一靜電夾具(圖中未示)夾持至模組704。對於關於靜電夾具之某背景,請參見例如頒予Ockwell等人、讓渡給ASML且以引用之方式併入本文中的美國專利9,366,973。The substrate support WT includes a
基板支撐件WT之基板台706具有定位於基板台706之側處的凸起之間的一或多個溫度感測器,例如溫度感測器716、718及720,該側在操作使用中面向基板W。一或多個溫度感測器716至720可用以控制第一加熱器系統208及/或第二加熱器系統210及/或預加熱系統604。溫度感測器716至720用以感測基板W的溫度。因此,基板台706之溫度對感測之影響較佳地藉助於使溫度感測器716至720與基板台706熱隔離限制。The
來自溫度感測器716至720中之一者的感測器信號表示如由此溫度感測器感測之局部溫度。控制藉由將來自溫度感測器716至720之感測器信號皆維持於恆定且皆表示亦被稱作溫度設定點的相同溫度來實施。第一加熱器系統208、第二加熱器系統210及預加熱系統602當如所感測之局部溫度降至溫度設定點以下時各自經控制以在基板W中產生局部較多的熱,且當如所感測之局部溫度升高於溫度設定點以上時產生局部較少的熱。The sensor signal from one of the
溫度感測器在基板台706處之空間密度經選擇,使得基板W之變形之量值歸因於感測溫度之不確定性的不確定性對於曝光製程之準確性為可接受的,亦即,圖案於基板W上之成像正確的準確性。The spatial density of the temperature sensor at the
基板台具有在基板台706之側處定位於凸起之間的一或多個應力感測器,例如,應力感測器722及724,該側在操作使用中面向模組704。應力感測器722及724包括例如應變計,且可用以判定基板台706是否正經歷全域變形(相對於僅單局部變形)。若全域變形正經感測,則控制器212回應於變形由第一加熱器系統208及/或由第二加熱器系統210調整全域輻照以便產生基板W的穩定熱條件。The substrate stage has one or more stress sensors, such as
10:琢面化場鏡面裝置 11:琢面化光瞳鏡面裝置 13:鏡面 14:鏡面 202:曝光方位 204:目標區域 206:散熱片 208:第一加熱器系統 208.1:LED 208.2:LED 208.3:LED 208.4:LED 208.5:LED 208.6:LED 210:第二加熱器系統 210.1:LED 210.2:LED 212:控制器 214:發明人 302:縫隙 502:掃描雷射 504:雷射射束 602:另一方位 604:預加熱系統 702:部分/參考標號 704:模組 706:基板台 708:參考標號/凸起 710:參考標號/凸起 712:參考標號/凸起 714:參考標號/凸起 716:溫度感測器 718:溫度感測器 720:溫度感測器 722:應力感測器 724:應力感測器 B:極遠紫外線(EUV)輻射射束 B':經圖案化極遠紫外線(EUV)輻射射束 IL:照明系統 LA:微影設備/掃描器 MA:圖案化裝置/光罩 MT:支撐結構 PS:投影系統/投影光學件 SO:輻射源 W:基板 WT:基板支撐件 X1:寬度X2:寬度10: Faceted field mirror device 11: Faceted pupil mirror device 13: Mirror 14: Mirror 202: Exposure orientation 204: Target area 206: Heat sink 208: First heater system 208.1: LED 208.2: LED 208.3: LED 208.4: LED 208.5: LED 208.6: LED 210: second heater system 210.1: LED 210.2: LED 212: controller 214: inventor 302: gap 502: scanning laser 504: laser beam 602: another direction 604: pre-heating system 702: part/reference number 704: module 706: substrate stage 708: reference number/protrusion 710: reference number/protrusion 712: reference number/protrusion 714: reference number/protrusion 716: temperature Sensor 718: Temperature sensor 720: Temperature sensor 722: Stress sensor 724: Stress sensor B: Extreme ultraviolet (EUV) radiation beam B': Patterned extreme ultraviolet (EUV) Radiation beam IL: Illumination system LA: lithography equipment/scanner MA: patterning device/mask MT: support structure PS: projection system/projection optics SO: radiation source W: substrate WT: substrate support X 1 : Width X 2 : width
本發明藉助於實例且參看附圖來進一步解釋,其中: 圖1為包含輻射源及掃描器之EUV微影系統的圖式; 圖2為掃描器中曝光方位的圖式; 圖3及圖4為正移動至曝光方位之曝光位置之基板的不同狀態之圖式; 圖5為說明使用掃描雷射來控制在基板上產生額外熱負荷的圖式; 圖6為掃描器之量測方位的圖式;且 圖7為攜載基板之基板支撐件之部分的圖式。 圖式中相同圖示元件符號或相同參考首字母縮寫詞指示類似或對應部件。The present invention is further explained by means of examples and with reference to the accompanying drawings, in which: Figure 1 is a diagram of an EUV lithography system including a radiation source and a scanner; Figure 2 is a diagram of the exposure position in the scanner; 3 and 4 are diagrams of different states of the substrate moving to the exposure position of the exposure position; Figure 5 is a diagram illustrating the use of a scanning laser to control the additional thermal load generated on the substrate; Figure 6 is a diagram of the measurement orientation of the scanner; and Fig. 7 is a diagram of a part of a substrate support carrying a substrate. The same illustrated element symbols or the same reference acronyms in the drawings indicate similar or corresponding parts.
208.1:LED 208.1: LED
208.2:LED 208.2: LED
208.3:LED 208.3: LED
208.4:LED 208.4: LED
208.5:LED 208.5: LED
208.6:LED 208.6: LED
210.1:LED 210.1: LED
210.2:LED 210.2: LED
302:縫隙 302: Gap
W:基板 W: substrate
WT:基板支撐件 WT: substrate support
Claims (10)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP18213862 | 2018-12-19 | ||
| EP18213862.8 | 2018-12-19 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| TW202041974A true TW202041974A (en) | 2020-11-16 |
Family
ID=64746062
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW108146407A TW202041974A (en) | 2018-12-19 | 2019-12-18 | Lithographic apparatus with thermal conditioning system for conditioning the wafer |
Country Status (6)
| Country | Link |
|---|---|
| EP (1) | EP3899663A1 (en) |
| KR (1) | KR20210104853A (en) |
| CN (1) | CN113330369A (en) |
| NL (1) | NL2024322A (en) |
| TW (1) | TW202041974A (en) |
| WO (1) | WO2020126389A1 (en) |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1030222B1 (en) * | 1999-02-18 | 2006-01-04 | ASML Netherlands B.V. | Lithographic projection apparatus |
| SG115631A1 (en) | 2003-03-11 | 2005-10-28 | Asml Netherlands Bv | Lithographic projection assembly, load lock and method for transferring objects |
| DE60319087T2 (en) * | 2003-10-16 | 2009-02-05 | Asml Netherlands B.V. | Lithographic method for producing a device |
| WO2012110144A1 (en) | 2011-02-18 | 2012-08-23 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method. |
| NL2009533A (en) | 2011-10-27 | 2013-05-07 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method. |
| TWI663481B (en) | 2014-06-03 | 2019-06-21 | 荷蘭商Asml荷蘭公司 | A method for compensating for an exposure error, a device manufacturing method, a substrate table, a lithographic apparatus, a control system, a method for measuring reflectivity and a method for measuring a dose of euv radiation |
| CN106716256B (en) | 2014-09-25 | 2018-08-03 | Asml荷兰有限公司 | Irradiation system |
| NL2016541A (en) | 2015-04-21 | 2016-10-24 | Asml Netherlands Bv | Lithographic Apparatus. |
| KR102458061B1 (en) | 2016-09-02 | 2022-10-24 | 에이에스엠엘 네델란즈 비.브이. | lithographic apparatus |
| US10578949B2 (en) | 2017-02-03 | 2020-03-03 | Apple Inc. | Asymmetric zones in a Fresnel lens |
-
2019
- 2019-11-28 WO PCT/EP2019/082878 patent/WO2020126389A1/en not_active Ceased
- 2019-11-28 CN CN201980089412.8A patent/CN113330369A/en active Pending
- 2019-11-28 NL NL2024322A patent/NL2024322A/en unknown
- 2019-11-28 EP EP19809088.8A patent/EP3899663A1/en not_active Withdrawn
- 2019-11-28 KR KR1020217022778A patent/KR20210104853A/en not_active Withdrawn
- 2019-12-18 TW TW108146407A patent/TW202041974A/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| KR20210104853A (en) | 2021-08-25 |
| CN113330369A (en) | 2021-08-31 |
| NL2024322A (en) | 2020-07-07 |
| EP3899663A1 (en) | 2021-10-27 |
| WO2020126389A1 (en) | 2020-06-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7359029B2 (en) | Lithographic apparatus and method of reducing thermal distortion | |
| JP5155967B2 (en) | Lithographic apparatus | |
| KR100940087B1 (en) | Lithographic apparatus and device manufacturing method | |
| CN102890424B (en) | Radiation source and control method, lithographic equipment and device making method | |
| JP5181047B2 (en) | Lithographic projection apparatus | |
| JP6034972B2 (en) | Reticle heater that keeps reticle heating uniform | |
| CN1577106A (en) | Lithographic apparatus and device manufacturing method | |
| JP2010068003A (en) | Lithographic apparatus and device manufacturing method | |
| KR101676741B1 (en) | Lithographic method and apparatus | |
| KR101248537B1 (en) | Illumination system and lithographic apparatus | |
| US10114298B2 (en) | Conditioning system and lithographic apparatus comprising a conditioning system | |
| JP5990613B1 (en) | Heating and cooling systems in lithographic apparatus | |
| TW202041974A (en) | Lithographic apparatus with thermal conditioning system for conditioning the wafer | |
| CN113490884B (en) | Lithographic apparatus and method with thermal control system | |
| JP2006041524A (en) | Lithographic device and device manufacturing method | |
| JP2019509521A (en) | Patterning device cooling system and method for thermally conditioning a patterning device | |
| JP2006013528A (en) | Method for producing marker on substrate, lithographic apparatus and device manufacturing method |