TW202519974A - Method and system for training a prediction model to generate a two-dimensional-element representation of a mask pattern - Google Patents
Method and system for training a prediction model to generate a two-dimensional-element representation of a mask pattern Download PDFInfo
- Publication number
- TW202519974A TW202519974A TW113118511A TW113118511A TW202519974A TW 202519974 A TW202519974 A TW 202519974A TW 113118511 A TW113118511 A TW 113118511A TW 113118511 A TW113118511 A TW 113118511A TW 202519974 A TW202519974 A TW 202519974A
- Authority
- TW
- Taiwan
- Prior art keywords
- mask pattern
- elements
- image
- element representation
- mask
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/36—Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/68—Preparation processes not covered by groups G03F1/20 - G03F1/50
- G03F1/70—Adapting basic layout or design of masks to lithographic process requirements, e.g., second iteration correction of mask patterns for imaging
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70425—Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
- G03F7/70433—Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
- G03F7/70441—Optical proximity correction [OPC]
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70491—Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
- G03F7/70508—Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Image Analysis (AREA)
Abstract
Description
本文中所提供之實施例係關於半導體製造,且更特定言之,係關於設計光罩圖案。Embodiments provided herein relate to semiconductor manufacturing, and more particularly, to designing mask patterns.
微影設備為將所要圖案施加至基板之目標部分上之機器。微影設備可用於例如積體電路(IC)之製造中。舉例而言,智慧型手機中之IC晶片可小至人的拇指甲,且可包括超過20億個電晶體。製作IC為複雜且耗時之程序,其中電路組件在不同層中且包括數百個個別步驟。即使一個步驟中之誤差亦有可能導致最終IC出現問題且可引起裝置故障。高程序良率及高晶圓產出量可能受到缺陷存在的影響。A lithography apparatus is a machine that applies a desired pattern onto a target portion of a substrate. Lithography apparatus can be used, for example, in the manufacture of integrated circuits (ICs). For example, an IC chip in a smartphone can be as small as a human thumbnail and can include more than 2 billion transistors. Making ICs is a complex and time-consuming process, where circuit components are in different layers and include hundreds of individual steps. An error in even one step may cause problems in the final IC and can cause device failure. High process yields and high wafer throughput may be affected by the presence of defects.
在一些態樣中,本文中所描述之技術係關於一種用於判定與一微影程序一起使用之一光罩圖案的方法,該方法包括:將對應於一目標圖案之一輸入光罩圖案提供至一預測模型;使用該預測模型產生對應於該輸入光罩圖案之一輸出光罩圖案的一二維(2D)元素表示,其中該2D元素表示包括表示該輸出光罩圖案之一光罩特徵的多個2D元素且各2D元素界定一封閉區域;及基於該2D元素表示而判定該輸出光罩圖案之光罩特徵輪廓。In some embodiments, the technology described herein relates to a method for determining a mask pattern for use with a lithography process, the method comprising: providing an input mask pattern corresponding to a target pattern to a prediction model; using the prediction model to generate a two-dimensional (2D) element representation of an output mask pattern corresponding to the input mask pattern, wherein the 2D element representation includes multiple 2D elements representing a mask feature of the output mask pattern and each 2D element defines a closed region; and determining a mask feature contour of the output mask pattern based on the 2D element representation.
在一些態樣中,本文中所描述之技術係關於一種用於訓練一預測模型以產生與微影程序一起使用之光罩圖案的2D元素表示之方法,該方法包括:獲得輸入光罩圖案集及對應於該輸入光罩圖案集之輸出光罩圖案集的2D元素表示集作為訓練資料,其中該2D元素表示集中之2D元素表示包括表示該光罩圖案之光罩特徵的多個2D元素且各2D元素界定封閉區域;及使用該訓練資料訓練該預測模型以產生2D元素表示。In some embodiments, the technology described herein relates to a method for training a prediction model to generate a 2D element representation of a mask pattern used with a lithography process, the method comprising: obtaining a 2D element representation set of an input mask pattern set and an output mask pattern set corresponding to the input mask pattern set as training data, wherein the 2D element representation in the 2D element representation set includes multiple 2D elements representing mask features of the mask pattern and each 2D element defines a closed region; and using the training data to train the prediction model to generate the 2D element representation.
在一些實施例中,提供一種具有指令之非暫時性電腦可讀媒體,該等指令在由電腦執行時使得該電腦執行以上實施例中之任一者的方法。In some embodiments, a non-transitory computer-readable medium having instructions is provided, which when executed by a computer causes the computer to perform the method of any one of the above embodiments.
在一些實施例中,提供一種設備,該設備包括:記憶體,其儲存指令集;及處理器,其經組態以執行該指令集以使得該設備進行以上實施例中之任一者的方法。In some embodiments, a device is provided, the device comprising: a memory storing an instruction set; and a processor configured to execute the instruction set so that the device performs the method of any one of the above embodiments.
微影設備為將經設計圖案施加至基板之目標部分上之機器。將經設計圖案轉印至基板之此程序稱為圖案化程序或微影程序。圖案化程序可包括用以將圖案自圖案化裝置(諸如,光罩)轉印至基板之圖案化步驟。各種變化(例如,圖案化程序或微影設備中之變化)可潛在地限制用於半導體大規模製造(HVM)之微影實施。最佳近接校正(OPC)可用於光罩設計中以最佳化光罩圖案,使得使用光罩圖案製造之光罩最終將光遞送至基板以使得形成所要設計佈局。習知光罩最佳化可包括自目標圖案多邊形(例如,表示待製造之所要圖案)開始且提取此類多邊形以充當光罩之基礎。然而,光罩特徵之此習知最佳化在運算上可為昂貴的,此係由於可存在需要經調整以便形成經最佳化光罩特徵的許多元件。另外,習知OPC有時可導致違反光罩規則檢查(MRC)規則之光罩特徵。一些方法使用機器學習(ML)模型(例如,神經網路)預測光罩影像(例如,光罩圖案之層集(level-set) phi影像),接著自層集影像提取多邊形,該等多邊形可用作OPC最佳化程序之輸入以調整光罩特徵輪廓。多邊形提取對phi影像中之值極敏感。像素值中之較小改變可引起大輪廓移位。習知ML模型可不提供充分預測準確度,且因此,經提取初始多邊形可與地面真像具有較大偏差、MRC違規,且因此微影效能較差。A lithography apparatus is a machine that applies a designed pattern onto a target portion of a substrate. This process of transferring the designed pattern to the substrate is called a patterning process or a lithography process. The patterning process may include a patterning step for transferring the pattern from a patterning device (e.g., a mask) to the substrate. Various variations (e.g., variations in the patterning process or the lithography apparatus) may potentially limit the implementation of lithography for semiconductor mass manufacturing (HVM). Optimal proximity correction (OPC) may be used in reticle design to optimize the reticle pattern so that a reticle manufactured using the reticle pattern is ultimately delivered to the substrate so that the desired design layout is formed. Learned reticle optimization may include starting with target pattern polygons (e.g., representing the desired pattern to be manufactured) and extracting such polygons to serve as the basis for the reticle. However, such learned optimization of reticle features may be computationally expensive because there may be many elements that need to be adjusted in order to form optimized reticle features. Additionally, learned OPC may sometimes result in reticle features that violate reticle rule checking (MRC) rules. Some methods use a machine learning (ML) model (e.g., a neural network) to predict a reticle image (e.g., a level-set phi image of the reticle pattern), and then extract polygons from the level-set image that may be used as input to an OPC optimization procedure to adjust the reticle feature profile. Polygon extraction is extremely sensitive to the values in the phi image. Small changes in pixel values may cause large contour shifts. Learned ML models may not provide sufficient prediction accuracy, and therefore, the extracted initial polygons may have large deviations from the ground truth, MRC violations, and thus poor lithography performance.
揭示用於使用預測模型(例如,諸如神經網路之ML模型)預測光罩圖案之二維元素表示的實施例。在二維(2D)元素表示中,可使用多個2D元素(例如,圓形、橢圓形、半圓、圓形之部分等)表示各光罩特徵。關於2D元素表示之額外細節描述於PCT申請第PCT/EP2023/055028號中,其揭示內容以全文引用之方式併入。光罩特徵輪廓可自2D元素得出。可接著將經得出光罩特徵輪廓提供至光罩最佳化程序(例如,以進一步調整光罩特徵輪廓),該光罩最佳化程序可產生可用於製造光罩以在基板上印刷目標圖案的經最佳化光罩圖案。Embodiments of two-dimensional element representations for predicting mask patterns using a prediction model (e.g., an ML model such as a neural network) are disclosed. In the two-dimensional (2D) element representation, each mask feature can be represented using multiple 2D elements (e.g., circles, ellipses, semicircles, portions of circles, etc.). Additional details regarding the 2D element representation are described in PCT application No. PCT/EP2023/055028, the disclosure of which is incorporated by reference in its entirety. A mask feature profile can be derived from the 2D elements. The derived mask feature profile can then be provided to a mask optimization process (e.g., to further adjust the mask feature profile), which can produce an optimized mask pattern that can be used to manufacture a mask to print a target pattern on a substrate.
在一個實施例中,預測模型預測2D元素表示資料,可自該2D元素表示資料產生2D元素表示。經預測2D元素表示資料可包括界定2D元素在網格中之置放的影像集。舉例而言,第一影像可指示在特定網格位置處是否存在2D元素。第二影像可指示2D元素在x方向上距特定網格位置之移位,且第三影像可指示2D元素在y方向上距特定網格位置之移位。在另一實例中,該影像集中之一或多個影像亦可界定2D元素之間的關聯,該等2D元素界定光罩特徵輪廓之形狀。可使用影像集來產生其中使用多個2D元素來表示光罩圖案之各光罩特徵的2D元素表示。可接著自2D元素產生光罩特徵輪廓。接著可使用OPC程序最佳化所得光罩圖案。在一些實施例中,預測模型可經訓練以預測光罩圖案之2D元素表示。訓練資料可包括可自目標圖案(例如,GDS設計佈局)產生之輸入光罩圖案,及指示對應於輸入光罩圖案之經最佳化光罩圖案的2D元素表示的影像集。藉由使預測模型預測2D元素表示而非層集影像,使用該預測得出之光罩特徵輪廓對預測誤差不太敏感(例如,由於與習知預測技術之大輪廓移位相反,任何誤差可引起最小局部輪廓移位),且因此導致光罩圖案之更精確預測。另外,相比於習知預測技術,訓練此類預測模型較不複雜,且預測模型為容錯的、收斂更快且具有更少的過度擬合問題。In one embodiment, the prediction model predicts 2D element representation data from which a 2D element representation may be generated. The predicted 2D element representation data may include a set of images that define the placement of 2D elements in a grid. For example, a first image may indicate whether a 2D element exists at a particular grid position. A second image may indicate the displacement of a 2D element in the x-direction from a particular grid position, and a third image may indicate the displacement of a 2D element in the y-direction from a particular grid position. In another example, one or more images in the image set may also define associations between 2D elements that define the shape of a mask feature profile. The image set may be used to generate a 2D element representation of each mask feature in which multiple 2D elements are used to represent a mask pattern. Mask feature profiles may then be generated from the 2D elements. The resulting mask pattern may then be optimized using an OPC procedure. In some embodiments, the prediction model may be trained to predict a 2D element representation of a reticle pattern. The training data may include an input reticle pattern that may be generated from a target pattern (e.g., a GDS design layout), and a set of images indicating a 2D element representation of an optimized reticle pattern corresponding to the input reticle pattern. By having the prediction model predict a 2D element representation rather than a set of images, the reticle feature contours derived using the prediction are less sensitive to prediction errors (e.g., because any error may result in a minimal local contour shift as opposed to a large contour shift of a learned prediction technique), and thus result in a more accurate prediction of the reticle pattern. Additionally, training such prediction models is less complex than learning prediction techniques, and the prediction models are error-tolerant, converge faster, and have fewer overfitting problems.
在本揭示中,儘管可特定地參考IC製造,但應明確地理解,本文中之描述具有許多其他可能的應用。舉例而言,其可用於製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、液晶顯示面板、薄膜磁頭等。熟習此項技術者將瞭解,在此替代應用之上下文中,本文中對術語「倍縮光罩」、「晶圓」或「晶粒」之任何使用應視為可分別與更一般的術語「光罩」、「基板」及「目標部分」互換。In this disclosure, although specific reference may be made to IC manufacturing, it should be expressly understood that the description herein has many other possible applications. For example, it can be used to manufacture integrated optical systems, guide and detection patterns for magnetic memory, liquid crystal display panels, thin film heads, etc. Those skilled in the art will understand that in the context of this alternative application, any use of the terms "reduction mask", "wafer" or "die" herein should be considered interchangeable with the more general terms "mask", "substrate" and "target portion", respectively.
在本文件中,術語「輻射」及「光束」用於涵蓋所有類型之電磁輻射,包括紫外線輻射(例如,具有365 nm、248 nm、193 nm、157 nm或126 nm之波長)及EUV (極紫外線輻射,例如,具有在約5 nm至100 nm的範圍內之波長)。在本文件中,術語「輻射源」或「源」用於涵蓋所有類型之輻射源,包括雷射源、白熾源等,其可包括輻射源與光學器件之目標部分或其他部分之間的輻射處理,包括濾波、準直、聚焦等。In this document, the terms "radiation" and "beam" are used to cover all types of electromagnetic radiation, including ultraviolet radiation (e.g., having a wavelength of 365 nm, 248 nm, 193 nm, 157 nm, or 126 nm) and EUV (extreme ultraviolet radiation, e.g., having a wavelength in the range of about 5 nm to 100 nm). In this document, the terms "radiation source" or "source" are used to cover all types of radiation sources, including laser sources, incandescent sources, etc., which may include radiation processing between the radiation source and the target portion or other portions of the optical device, including filtering, collimation, focusing, etc.
圖案化裝置可包含或可形成一或多個設計佈局。可利用CAD (電腦輔助設計)程式來產生設計佈局。此程序通常稱為電子設計自動化(EDA)。大多數CAD程式遵循預定設計規則之集合,以便產生功能設計佈局/圖案化裝置。基於處理及設計限制而設定此等規則。舉例而言,設計規則界定裝置(諸如閘、電容器等)或互連線之間的空間容許度,以確保該等裝置或線彼此不以不合需要之方式相互作用。設計規則限制中之一或多者可稱為「關鍵尺寸」(CD)。裝置之關鍵尺寸可界定為線或孔之最小寬度,或兩條線或兩個孔之間的最小空間。因此,CD調節經設計裝置之總體大小及密度。裝置製造中之目標中之一者為(經由圖案化裝置)在基板上如實地再生原始設計意圖。A patterned device may include or may form one or more design layouts. A CAD (computer-aided design) program may be used to generate the design layout. This program is often referred to as electronic design automation (EDA). Most CAD programs follow a set of predetermined design rules in order to generate a functional design layout/patterned device. These rules are set based on process and design constraints. For example, design rules define the spatial tolerances between devices (such as gates, capacitors, etc.) or interconnects to ensure that the devices or lines do not interact with each other in an undesirable manner. One or more of the design rule constraints may be referred to as a "critical dimension" (CD). The critical dimension of a device may be defined as the minimum width of a line or hole, or the minimum space between two lines or two holes. Thus, CD regulates the overall size and density of the designed device. One of the goals in device manufacturing is to faithfully reproduce the original design intent on the substrate (by patterning the device).
此文中所採用之術語「光罩」或「圖案化裝置」可廣泛地解釋為指代可用於向入射輻射光束賦予經圖案化橫截面之通用圖案化裝置,該經圖案化橫截面對應於待在基板之目標部分中產生的圖案。在此上下文中,亦可使用術語「光閥」。除經典光罩(透射或反射;二元、相移、混合式等)以外,其他此類圖案化裝置之實例亦包括可程式化鏡面陣列。此類裝置之實例為具有黏彈性控制層及反射表面的矩陣可定址表面。此類設備所隱含之基本原理為(例如):反射表面之經定址區域使入射輻射反射為繞射輻射,而未經定址區域使入射輻射反射為非繞射輻射。在使用適當濾光器之情況下,可自經反射光束濾出該非繞射輻射,從而僅留下繞射輻射;以此方式,光束根據矩陣可定址表面之定址圖案而變得圖案化。可使用合適之電子構件來進行所需矩陣定址。其他此等圖案化裝置之實例亦包括可程式化LCD陣列。以引用方式併入本文中之美國專利第5,229,872號中給出此類構造之實例。The terms "mask" or "patterning device" as used herein may be broadly interpreted as referring to a generic patterning device that can be used to impart a patterned cross-section to an incident radiation beam, which patterned cross-section corresponds to the pattern to be produced in a target portion of a substrate. In this context, the term "light valve" may also be used. In addition to classical masks (transmissive or reflective; binary, phase-shifting, hybrid, etc.), other examples of such patterning devices include programmable mirror arrays. Examples of such devices are matrix-addressable surfaces with viscoelastic control layers and reflective surfaces. The basic principle underlying such an apparatus is, for example, that addressed areas of a reflective surface reflect incident radiation as diffracted radiation, while unaddressed areas reflect incident radiation as undiffracted radiation. With the use of appropriate filters, the undiffracted radiation can be filtered out of the reflected beam, leaving only the diffracted radiation; in this way, the beam becomes patterned according to the addressing pattern of the matrix-addressable surface. Suitable electronic components can be used to perform the desired matrix addressing. Other examples of such patterned devices also include programmable LCD arrays. An example of such a construction is given in U.S. Patent No. 5,229,872, which is incorporated herein by reference.
如本文中所使用之術語「投影光學器件」應廣泛地解譯為涵蓋各種類型之光學系統,包括例如折射光學器件、反射光學器件、孔徑及反射折射光學器件。術語「投影光學器件」亦可包括根據此等設計類型中之任一者操作以用於共同地或單獨地引導、塑形或控制投影輻射光束的組件。術語「投影光學器件」可包括微影投影設備中之任何光學組件,而不管光學組件在微影投影設備之光程上位於何處。投影光學器件可包括用於在來自源之輻射通過圖案化裝置之前塑形、調節及/或投影該輻射的光學組件,及/或用於在該輻射通過圖案化裝置之後塑形、調節及/或投影該輻射的光學組件。投影光學器件通常不包括源及圖案化裝置。The term "projection optics" as used herein should be broadly interpreted to cover various types of optical systems, including, for example, refractive optics, reflective optics, apertures, and reflective-refractive optics. The term "projection optics" may also include components that operate according to any of these design types for guiding, shaping, or controlling a projected radiation beam, either collectively or individually. The term "projection optics" may include any optical component in a lithography projection apparatus, regardless of where the optical component is located on the optical path of the lithography projection apparatus. Projection optics may include optical components for shaping, conditioning, and/or projecting radiation from a source before it passes through a patterning device, and/or optical components for shaping, conditioning, and/or projecting radiation after it passes through a patterning device. Projection optics typically do not include the source and patterning device.
圖1繪示根據實施例之微影投影設備10A之各種子系統的方塊圖。主要組件為:輻射源12A,其可為深紫外線準分子雷射源或包括極紫外線(EUV)源之其他類型之源(微影投影設備自身不需要具有輻射源);照明光學器件,其例如界定部分相干性(表示為均方偏差)且可包括塑形來自源12A之輻射的光學器件14A、16Aa及16Ab;圖案化裝置(或光罩) 18A;及透射光學器件16Ac,其將圖案化裝置圖案之影像投影至基板平面22A上。1 shows a block diagram of various subsystems of a lithographic projection apparatus 10A according to an embodiment. The main components are: a radiation source 12A, which may be a deep ultraviolet excimer laser source or other types of sources including extreme ultraviolet (EUV) sources (the lithographic projection apparatus itself need not have a radiation source); illumination optics, which, for example, define partial coherence (expressed as mean square deviation) and may include optics 14A, 16Aa, and 16Ab that shape the radiation from source 12A; a patterning device (or mask) 18A; and transmission optics 16Ac, which projects an image of the patterning device pattern onto substrate plane 22A.
光瞳20A可包括透射光學器件16Ac。在一些實施例中,在光罩18A之前及/或之後可存在一或多個光瞳。本文中進一步詳細地描述,光瞳20A可提供最終達至基板平面22A之光的圖案化。投影光學器件之光瞳平面處的可調整濾光器或孔徑可限定照射於基板平面22A上之光束角度之範圍,其中最大可能角度界定投影光學器件之數值孔徑NA= n sin(Θ max),其中n為基板與投影光學器件之最後元件之間的介質之折射率,且Θ max為自投影光學器件射出的仍可照射於基板平面22A上之光束的最大角度。 The pupil 20A may include the transmission optics 16Ac. In some embodiments, there may be one or more pupils before and/or after the mask 18A. As described in further detail herein, the pupil 20A may provide patterning of the light that ultimately reaches the substrate plane 22A. An adjustable filter or aperture at the pupil plane of the projection optics may limit the range of angles of the light beam that impinges on the substrate plane 22A, where the maximum possible angle defines the numerical aperture NA of the projection optics = n sin(θ max ), where n is the refractive index of the medium between the substrate and the last element of the projection optics, and θ max is the maximum angle of the light beam emitted from the projection optics that can still impinge on the substrate plane 22A.
在微影投影設備中,源將照明(亦即,輻射)提供至圖案化裝置,且投影光學器件經由該圖案化裝置將該照明引導至基板上且塑形該照明。此不否認源自身並不向輻射提供圖案化、引導或塑形,或彼圖案化、引導或塑形並不出現於源與投影光學器件之間。投影光學器件可包括組件14A、16Aa、16Ab及16Ac中之至少一些。空中影像(AI)為在基板位階處之輻射強度分佈。可使用抗蝕劑模型以自空中影像計算抗蝕劑影像,此情形之實例可見於美國專利申請公開案第US 2009-0157360號中,該美國專利申請公開案之揭示內容特此以全文引用之方式併入。抗蝕劑模型係關於抗蝕劑層之屬性(例如,在曝光、曝光後烘烤(PEB)及顯影期間發生的化學程序之效應)。微影投影設備之光學屬性(例如,照明、圖案化裝置及投影光學器件之屬性)指定空中影像且可被界定於光學模型中。由於可改變微影投影設備中所使用之圖案化裝置,因此需要使圖案化裝置之光學屬性與至少包括源及投影光學器件的微影投影設備之其餘部分的光學屬性分離。用以將設計佈局變換成各種微影影像(例如,空中影像、抗蝕劑影像等)、使用彼等技術及模型應用OPC且評估效能(例如,依據程序窗)的技術及模型之細節描述於美國專利申請公開案US 2008-0301620、2007-0050749、2007-0031745、2008-0309897、2010-0162197及2010-0180251中,前述各案之揭示內容特此以全文引用的方式併入。In a lithographic projection apparatus, a source provides illumination (i.e., radiation) to a patterning device, and projection optics direct the illumination via the patterning device onto a substrate and shapes the illumination. This does not deny that the source itself does not provide patterning, directing, or shaping to the radiation, or that the patterning, directing, or shaping does not occur between the source and the projection optics. The projection optics may include at least some of components 14A, 16Aa, 16Ab, and 16Ac. The aerial image (AI) is the radiation intensity distribution at the substrate level. An etchant model may be used to calculate the etchant image from the aerial image, an example of which may be found in U.S. Patent Application Publication No. US 2009-0157360, the disclosure of which is hereby incorporated by reference in its entirety. The resist model is concerned with the properties of the resist layer (e.g., the effects of the chemical processes that occur during exposure, post-exposure bake (PEB), and development). The optical properties of the lithographic projection apparatus (e.g., the properties of the illumination, patterning device, and projection optics) specify the aerial image and can be defined in the optical model. Since the patterning device used in the lithographic projection apparatus can be varied, it is desirable to separate the optical properties of the patterning device from the optical properties of the rest of the lithographic projection apparatus, including at least the source and projection optics. Details of techniques and models for transforming design layouts into various lithographic images (e.g., aerial images, resist images, etc.), applying OPC using those techniques and models, and evaluating performance (e.g., based on process windows) are described in U.S. patent application publications US 2008-0301620, 2007-0050749, 2007-0031745, 2008-0309897, 2010-0162197, and 2010-0180251, the disclosures of which are hereby incorporated by reference in their entirety.
理解微影程序之一個態樣為理解輻射與圖案化裝置的相互作用。可自在輻射達至圖案化裝置之前的輻射之電磁場及表徵相互作用之函數判定在輻射通過圖案化裝置之後的輻射之電磁場。此函數可稱為光罩透射函數(其可用於描述藉由透射圖案化裝置及/或反射圖案化裝置之相互作用)。One aspect of understanding lithography is understanding the interaction of radiation with the patterning device. The electromagnetic field of the radiation after it passes through the patterning device can be determined from the electromagnetic field of the radiation before it reaches the patterning device and a function that characterizes the interaction. This function can be called the mask transmission function (it can be used to describe the interaction through the transmission patterning device and/or the reflection patterning device).
光罩透射函數可具有各種不同形式。一種形式為二進制的。二進制光罩透射函數在圖案化裝置上之任何給定位置處具有兩個值(例如,零及正常數)中之任一者。呈二進制形式之光罩透射函數可稱為二進制光罩。另一形式為連續的。亦即,圖案化裝置之透射率(或反射率)之模數為圖案化裝置上之位置的連續函數。透射率(或反射率)之相位亦可為圖案化裝置上之位置的連續函數。呈連續形式之光罩透射函數可稱為連續色調光罩或連續透射光罩(CTM)。舉例而言,CTM可表示為像素化影像,其中可向各像素指派介於0與1之間的值(例如,0.1、0.2、0.3等)而非0或1之二進制值。在實施例中,CTM可為像素化灰階影像,其中各像素具有若干值(例如,在範圍[-255, 255]內、在範圍[0, 1]或[-1, 1]內或其他適當範圍內之正規化值)。The mask transmission function can have a variety of different forms. One form is binary. A binary mask transmission function has either of two values (e.g., zero and a positive constant) at any given position on the patterned device. A mask transmission function in binary form may be referred to as a binary mask. Another form is continuous. That is, the modulus of the transmittance (or reflectance) of the patterned device is a continuous function of the position on the patterned device. The phase of the transmittance (or reflectance) may also be a continuous function of the position on the patterned device. A mask transmission function in continuous form may be referred to as a continuous tone mask or a continuous transmission mask (CTM). For example, the CTM may be represented as a pixelated image, where each pixel may be assigned a value between 0 and 1 (e.g., 0.1, 0.2, 0.3, etc.) rather than a binary value of 0 or 1. In an embodiment, the CTM may be a pixelated grayscale image, where each pixel has a number of values (e.g., a normalized value in the range [-255, 255], in the range [0, 1] or [-1, 1], or other appropriate range).
薄光罩近似(亦稱為克希荷夫(Kirchhoff)邊界條件)廣泛地用於簡化對輻射與圖案化裝置之相互作用的判定。薄光罩近似假定圖案化裝置上之結構之厚度與波長相比極小,且光罩上的結構之寬度與波長相比極大。因此,薄光罩近似假定在圖案化裝置之後的電磁場為入射電磁場與光罩透射函數之乘積。然而,當微影程序使用具有愈來愈短之波長的輻射,且圖案化裝置上之結構變得愈來愈小時,對薄光罩近似之假定可分解。舉例而言,由於結構(例如,頂部表面與側壁之間的邊緣)之有限厚度,輻射與結構之相互作用(「光罩3D效應」或「M3D」)可變得重要。在光罩透射函數中涵蓋此散射可使得光罩透射函數能夠較佳地捕捉輻射與圖案化裝置之相互作用。在薄光罩近似下之光罩透射函數可稱為薄光罩透射函數。涵蓋M3D的光罩透射函數可稱為M3D光罩透射函數。The thin mask approximation (also known as the Kirchhoff boundary condition) is widely used to simplify the determination of the interaction of radiation with the patterned device. The thin mask approximation assumes that the thickness of the structures on the patterned device is very small compared to the wavelength, and the width of the structures on the mask is very large compared to the wavelength. Therefore, the thin mask approximation assumes that the electromagnetic field behind the patterned device is the product of the incident electromagnetic field and the mask transmission function. However, as lithography processes use radiation with shorter and shorter wavelengths, and the structures on the patterned device become smaller and smaller, the assumption of the thin mask approximation breaks down. For example, due to the finite thickness of structures (e.g., the edge between the top surface and the sidewalls), the interaction of radiation with the structure ("mask 3D effect" or "M3D") can become important. Including this scattering in the mask transmission function allows the mask transmission function to better capture the interaction of radiation with the patterned device. The mask transmission function under the thin mask approximation can be called the thin mask transmission function. The mask transmission function that includes M3D can be called the M3D mask transmission function.
圖2示意性地描繪其照明源可利用本文中所描述之方法來最佳化之例示性微影投影設備。該設備包含: -照明系統IL,其用以調節輻射光束B。在此特定情況下,照明系統亦包含輻射源SO; -第一物件台(例如,光罩台、圖案化裝置台或倍縮光罩載物台) MT,其具備用以固持圖案化裝置MA (例如,倍縮光罩)之圖案化裝置固持器,且連接至用以相對於項目PS來準確地定位該圖案化裝置之第一定位器; -第二物件台(基板台或晶圓載物台) WT,其具備用以固持基板W (例如,抗蝕劑塗佈矽晶圓)之基板固持器,且連接至用以相對於項目PS來準確地定位該基板之第二定位器; -投影系統(「透鏡」) PS (例如,折射、反射或反射折射光學系統),其用以將圖案化裝置MA之經輻照部分成像至基板W之目標部分C (例如,包含一或多個晶粒)上。 FIG2 schematically depicts an exemplary lithography projection device whose illumination source can be optimized using the method described herein. The device comprises: - an illumination system IL for conditioning the radiation beam B. In this particular case, the illumination system also comprises a radiation source SO; - a first object stage (e.g., a mask stage, a patterning device stage or a doubling mask stage) MT having a patterning device holder for holding a patterning device MA (e.g., a doubling mask) and connected to a first positioner for accurately positioning the patterning device relative to the item PS; - a second object stage (substrate stage or wafer stage) WT having a substrate holder for holding a substrate W (e.g., an anti-etchant coated silicon wafer) and connected to a second positioner for accurately positioning the substrate relative to the item PS; - a projection system ("lens") PS (e.g., a refractive, reflective, or catadioptric optical system) for imaging the irradiated portion of the patterning device MA onto a target portion C of the substrate W (e.g., comprising one or more dies).
本文中所描繪,設備屬於透射類型(亦即,具有透射光罩)。然而,一般而言,其亦可屬於例如反射類型(具有反射光罩)。替代地,設備可採用另一種類之圖案化裝置作為經典光罩之使用的替代例;實例包括可程式化鏡面陣列或LCD矩陣。As described herein, the apparatus is of the transmissive type (i.e., having a transmissive mask). However, in general, it may also be of the reflective type (having a reflective mask), for example. Alternatively, the apparatus may employ another type of patterning device as an alternative to the use of a classical mask; examples include a programmable mirror array or an LCD matrix.
源SO (例如,水銀燈或準分子雷射)產生輻射光束。舉例而言,此光束直接地抑或在已橫穿諸如光束擴展器Ex之調節構件之後饋入至照明系統(照明器) IL中。照明器IL可包含調整構件AD,以用於設定光束中之強度分佈之外部徑向範圍或內部徑向範圍(通常分別稱為σ外部及σ內部)。另外,照明器IL通常將包含各種其他組件,諸如積光器IN及聚光器CO。以此方式,照射於圖案化裝置MA上之光束B在其橫截面中具有所要均一性及強度分佈。A source SO (e.g. a mercury lamp or an excimer laser) generates a radiation beam. This beam is fed into an illumination system (illuminator) IL, either directly or after having traversed an adjustment member such as a beam expander Ex, for example. The illuminator IL may comprise an adjustment member AD for setting the outer radial extent or the inner radial extent (usually referred to as σ-external and σ-inner, respectively) of the intensity distribution in the beam. In addition, the illuminator IL will typically comprise various other components, such as an integrator IN and a condenser CO. In this way, the beam B impinging on the patterning device MA has the desired uniformity and intensity distribution in its cross section.
關於圖2應注意,源SO可在微影投影設備之外殼內(此常常為源SO為例如水銀燈時之情況),但其亦可遠離微影投影設備,源SO產生之輻射光束經導引至該設備中(例如,藉助於合適導向鏡);此後一情境常常為當源SO為準分子雷射(例如,基於KrF、ArF或F 2雷射)時的情況。 With respect to FIG. 2 , it should be noted that the source SO can be within the housing of the lithography projection device (this is often the case when the source SO is, for example, a mercury lamp), but it can also be remote from the lithography projection device, into which the radiation beam generated by the source SO is guided (for example, with the aid of suitable guiding mirrors); the latter situation is often the case when the source SO is an excimer laser (for example, based on KrF, ArF or F2 lasers).
光束B隨後截取固持於圖案化裝置台MT上之圖案化裝置MA。在已橫穿圖案化裝置MA之情況下,光束B穿過透鏡PS,該透鏡PS將光束B聚焦至基板W之目標部分C上。藉助於第二定位構件(及干涉量測構件IF),可準確地移動基板台WT,例如以便將不同目標部分C定位於光束B之路徑中。類似地,例如在自圖案化裝置庫對圖案化裝置MA之機械擷取之後或在掃描期間,第一定位構件可用於相對於光束B之路徑來準確地定位圖案化裝置MA。一般而言,將藉助於未在圖11中明確描繪之長衝程模組(粗略定位)及短衝程模組(精細定位)來實現物件台MT、WT之移動。然而,在晶圓步進器(相對於步進掃描工具)之情況下,圖案化裝置台MT可僅連接至短衝程致動器,或可為固定的。The light beam B then intercepts the patterning device MA held on the patterning device table MT. Having traversed the patterning device MA, the light beam B passes through a lens PS which focuses the light beam B onto a target portion C of the substrate W. With the aid of the second positioning element (and the interferometry element IF), the substrate table WT can be moved exactly, for example in order to position different target portions C in the path of the light beam B. Similarly, the first positioning element can be used to accurately position the patterning device MA relative to the path of the light beam B, for example after a mechanical retrieval of the patterning device MA from a patterning device library or during a scan. In general, movement of the object table MT, WT will be realized with the aid of a long-stroke module (coarse positioning) and a short-stroke module (fine positioning) which are not explicitly depicted in FIG. 11 . However, in the case of a wafer stepper (as opposed to a step-and-scan tool), the patterning table MT may only be connected to a short-stroke actuator, or may be fixed.
所描繪之工具可用於兩種不同模式: -在步進模式下,圖案化裝置台MT保持基本上靜止,且將整個圖案化裝置影像一次性(亦即,單次「閃光」)投影至目標部分C上。接著基板台WT在x或y方向上移位,使得不同目標部分C可由光束B輻照; -在掃描模式下,除單次「閃光」中不曝光給定目標部分C以外,基本上適用相同情形。替代地,圖案化裝置台MT可在給定方向(所謂的「掃描方向」,例如y方向)上以速度v移動,以使得致使投影光束B掃描遍及圖案化裝置影像;同時,基板台WT以速度V = Mv在相同或相反方向上同時移動,其中M為透鏡PS之放大率(通常,M = 1/4或1/5)。以此方式,可在不必損害解析度之情況下曝光相對較大目標部分C。 The depicted tool can be used in two different modes: - In step mode, the patterning device table MT remains essentially stationary and the entire patterning device image is projected onto the target portion C at once (i.e. a single "flash"). The substrate table WT is then displaced in the x or y direction so that a different target portion C can be irradiated by the light beam B; - In scan mode, essentially the same situation applies, except that a given target portion C is not exposed in a single "flash". Alternatively, the patterning device table MT can be moved in a given direction (the so-called "scanning direction", e.g. the y direction) with a speed v so as to cause the projection light beam B to scan across the patterning device image; at the same time, the substrate table WT is simultaneously moved in the same or opposite direction at a speed V = Mv, where M is the magnification of the lens PS (typically, M = 1/4 or 1/5). In this way, a relatively large target portion C can be exposed without sacrificing resolution.
圖3繪示根據實施例之用於模擬微影投影設備中之微影的例示性流程圖。如將瞭解,模型可表示不同圖案化程序且無需包含下文所描述之所有模型。源模型300表示圖案化裝置之照明的光學特性(包括輻射強度分佈、頻寬及/或相位分佈)。源模型300可表示照明之光學特性,其包括但不限於數值孔徑設定、照明均方偏差(σ)設定以及任何特定照明形狀(例如,離軸輻射形狀,諸如環形、四極、偶極等),其中σ (或均方偏差)為照明器之外部徑向範圍。FIG3 illustrates an exemplary flow chart for simulating lithography in a lithographic projection apparatus according to an embodiment. As will be appreciated, models may represent different patterning processes and need not include all of the models described below. Source model 300 represents the optical characteristics of the illumination of the patterning device (including the radiation intensity distribution, bandwidth, and/or phase distribution). Source model 300 may represent the optical characteristics of the illumination, including but not limited to a numerical aperture setting, an illumination mean square deviation (σ) setting, and any specific illumination shape (e.g., off-axis radiation shape, such as annular, quadrupole, dipole, etc.), where σ (or mean square deviation) is the outer radial extent of the illuminator.
投影光學器件模型310表示投影光學器件之光學特性(包括由投影光學器件引起之輻射強度分佈及/或相位分佈的改變)。投影光學器件模型310可表示投影光學器件之光學特性,包括像差、失真、一或多個折射率、一或多個實體大小、一或多個實體尺寸等。The projection optics model 310 represents the optical properties of the projection optics (including changes in the radiation intensity distribution and/or phase distribution caused by the projection optics). The projection optics model 310 may represent the optical properties of the projection optics, including aberrations, distortions, one or more refractive indices, one or more physical sizes, one or more physical dimensions, etc.
圖案化裝置/設計佈局模型模組320捕捉設計特徵如何置於圖案化裝置之圖案中,且可包括圖案化裝置之詳細實體屬性的表示,例如在以全文引用之方式併入之美國專利第7,587,704號中所描述。在實施例中,圖案化裝置/設計佈局模型模組320表示設計佈局(例如,對應於積體電路、記憶體、電子裝置等之特徵的裝置設計佈局)之光學特性(包括由給定設計佈局引起之輻射強度分佈及/或相位分佈的改變),該設計佈局為圖案化裝置上或由圖案化裝置形成之特徵配置的表示。由於可改變微影投影設備中所使用之圖案化裝置,因此需要使圖案化裝置之光學屬性與至少包括照明及投影光學器件的微影投影設備之其餘部分的光學屬性分離。模擬之目標常常為準確地預測例如邊緣置放及CD,接著可與裝置設計進行比較。裝置設計一般定義為預OPC圖案化裝置佈局,且將以諸如GDSII或OASIS之標準化數位檔案格式之形式來提供。The patterned device/design layout model module 320 captures how design features are placed in a pattern of a patterned device and may include a representation of detailed physical properties of a patterned device, such as described in U.S. Patent No. 7,587,704, which is incorporated by reference in its entirety. In an embodiment, the patterned device/design layout model module 320 represents the optical characteristics (including changes in radiation intensity distribution and/or phase distribution caused by a given design layout) of a design layout (e.g., a device design layout corresponding to features of an integrated circuit, memory, electronic device, etc.), which is a representation of a configuration of features on or formed by a patterned device. Since the patterning device used in a lithographic projection apparatus can vary, there is a need to separate the optical properties of the patterning device from the optical properties of the rest of the lithographic projection apparatus, including at least the illumination and projection optics. The goal of the simulation is often to accurately predict, for example, edge placement and CD, which can then be compared to the device design. The device design is generally defined as a pre-OPC patterned device layout and will be provided in a standardized digital file format such as GDSII or OASIS.
可自源模型300、投影光學器件模型310及圖案化裝置/設計佈局模型模組320模擬空中影像330。空中影像(AI)為在基板位階處之輻射強度分佈。微影投影設備之光學屬性(例如,照明、圖案化裝置及投影光學器件之屬性)規定空中影像。An aerial image 330 may be simulated from source model 300, projection optics model 310, and patterning device/design layout model module 320. The aerial image (AI) is the radiation intensity distribution at the substrate level. The optical properties of the lithography projection apparatus (e.g., properties of the illumination, patterning device, and projection optics) dictate the aerial image.
藉由空中影像曝光基板上之抗蝕劑層,且將空中影像轉印至抗蝕劑層以作為其中之潛在「抗蝕劑影像」(RI)。可將抗蝕劑影像(RI)定義為抗蝕劑層中之抗蝕劑之溶解度的空間分佈。可使用抗蝕劑模型340自空中影像330模擬抗蝕劑影像350。抗蝕劑模型可用於根據空中影像來計算抗蝕劑影像,其實例可見於美國專利申請案第8,200,468號中,該美國專利申請案之揭示內容特此以全文引用之方式併入本文中。抗蝕劑模型340通常描述在抗蝕劑曝光、曝光後烘烤(PEB)及顯影期間出現的化學程序之效應,以便預測例如形成於基板上之抗蝕劑特徵之輪廓,且因此其通常僅與抗蝕劑層之此類性質(例如,在曝光、曝光後烘烤及顯影期間出現的化學程序之效應)相關。在實施例中,可捕捉抗蝕劑層之光學屬性(例如,折射率、膜厚度、傳播及偏振效應)作為投影光學器件模型310之部分。The resist layer on the substrate is exposed by the aerial image, and the aerial image is transferred to the resist layer as a potential "resist image" (RI) therein. The resist image (RI) can be defined as the spatial distribution of the solubility of the resist in the resist layer. The resist image 350 can be simulated from the aerial image 330 using a resist model 340. The resist model can be used to calculate the resist image based on the aerial image, an example of which can be found in U.S. Patent Application No. 8,200,468, the disclosure of which is hereby incorporated by reference in its entirety. The resist model 340 typically describes the effects of chemical processes occurring during resist exposure, post-exposure baking (PEB), and development in order to predict, for example, the profile of resist features formed on a substrate, and therefore it is typically only related to such properties of the resist layer (e.g., the effects of chemical processes occurring during exposure, post-exposure baking, and development). In an embodiment, the optical properties of the resist layer (e.g., refractive index, film thickness, propagation and polarization effects) may be captured as part of the projection optics model 310.
因此,一般而言,光學模型與抗蝕劑模型之間的連接為抗蝕劑層內之經模擬空間影像強度,其起因於輻射至基板上之投影、抗蝕劑界面處之折射及抗蝕劑膜堆疊中的多個反射。輻射強度分佈(空中影像強度)藉由吸收入射能量而變為潛在「抗蝕劑影像」,其藉由擴散程序及各種負載效應進一步修改。足夠快以用於全晶片應用之有效率模擬方法藉由3維空中(及抗蝕劑)影像而近似抗蝕劑堆疊中之實際3維強度分佈。Thus, in general, the connection between the optical model and the resist model is the simulated spatial image intensity within the resist layer, which results from the projection of the radiation onto the substrate, refraction at the resist interface, and multiple reflections in the resist film stack. The radiation intensity distribution (aerial image intensity) becomes a latent "resist image" by absorbing the incident energy, which is further modified by diffusion processes and various loading effects. An efficient simulation method fast enough for full-wafer applications approximates the actual 3-dimensional intensity distribution in the resist stack by means of a 3-dimensional aerial (and resist) image.
在實施例中,可將抗蝕劑影像350用作至圖案轉印後程序模型模組360之輸入。圖案轉印後程序模型模組360界定一或多個抗蝕劑顯影後程序(例如,蝕刻、顯影等)之效能。In an embodiment, the resist image 350 may be used as an input to a post-pattern transfer process model module 360. The post-pattern transfer process model module 360 defines the performance of one or more post-resist development processes (eg, etching, developing, etc.).
圖案化程序之模擬可例如預測抗蝕劑及/或經蝕刻影像中之輪廓、CD、邊緣置放(例如,邊緣置放誤差)等。因此,模擬之目標為準確地預測例如印刷圖案之邊緣置放,及/或空中影像強度斜率,及/或CD等。可將此等值與預期設計進行比較以例如校正圖案化程序,識別預測出現缺陷之位置等。預期設計一般定義為可以諸如GDSII或OASIS或其他檔案格式之標準化數位檔案格式提供的預OPC設計佈局。The simulation of the patterning process can, for example, predict the contours, CD, edge placement (e.g., edge placement error), etc. in the resist and/or etched image. Thus, the goal of the simulation is to accurately predict, for example, edge placement of the printed pattern, and/or aerial image intensity slope, and/or CD, etc. These values can be compared to the expected design to, for example, calibrate the patterning process, identify locations where defects are predicted to occur, etc. The expected design is generally defined as a pre-OPC design layout that can be provided in a standardized digital file format such as GDSII or OASIS or other file formats.
因此,模型公式化描述總程序之大多數(若非全部)已知物理學及化學方法,且模型參數中之各者理想地對應於相異物理或化學效應。因此,模型公式化設定關於模型可用於模擬總造程序之良好程度之上限。Thus, the model formulation describes most, if not all, of the known physics and chemistry of the overall process, and each of the model parameters ideally corresponds to a distinct physical or chemical effect. Thus, the model formulation sets an upper limit on how well the model can be used to simulate the overall manufacturing process.
以下段落描述用於預測光罩圖案之2D元素表示的系統及方法。預測模型(例如,諸如神經網路之ML模型)經訓練以基於輸入光罩圖案(例如,自待印刷於基板上之目標圖案產生)來預測2D元素表示。由預測模型預測之2D元素表示為多通道輸出(儘管其可為下文所描述之單通道輸出),該2D元素表示包括指示表示光罩特徵之2D元素的位置資訊之影像集。可以多種方式產生訓練資料(例如,真實影像),該訓練資料包括輸入光罩圖案及指示2D元素之位置資訊的影像集。The following paragraphs describe systems and methods for predicting 2D element representations of a mask pattern. A prediction model (e.g., an ML model such as a neural network) is trained to predict the 2D element representation based on an input mask pattern (e.g., generated from a target pattern to be printed on a substrate). The 2D element representation predicted by the prediction model is a multi-channel output (although it can be a single-channel output as described below), the 2D element representation comprising a set of images indicating position information of the 2D elements representing features of the mask. Training data (e.g., real images) comprising the input mask pattern and a set of images indicating position information of the 2D elements can be generated in a variety of ways.
圖4及圖5分別提供光罩特徵之2D元素表示及自該2D元素表示產生光罩特徵輪廓的簡要介紹。4 and 5 provide a brief introduction to a 2D elemental representation of a mask feature and the generation of a mask feature outline from the 2D elemental representation, respectively.
圖4繪示與各種實施例一致之用於置放、關聯及調整形成光罩特徵之2D元素的方法。在一些實施例中,判定與微影程序一起使用之光罩圖案(或其部分)可包括基於目標圖案而指派2D元素410之位置。在圖4之第一(頂部)部分400A中所展示,光罩特徵401之形狀可表示為2D元素410集合(在此實例中展示為圓形)。2D元素位於不同位置以形成光罩特徵之形狀,如由點展示之網格所示出以供參考。可不產生網格位置之點,僅出於說明之目的展示該等點。在一些實施例中,網格可為影像中之像素集合。2D元素中之四者標記為410a、410b、410c及410d。儘管本文中至少參考圖5進一步描述,但可見圍繞2D元素形成之輪廓(例如,具有由MRC規則指定之至少最小寬度之直徑的圓形)可固有地及自動地滿足MRC規則而無論2D元素之位置如何。FIG. 4 illustrates a method for placing, associating, and adjusting 2D elements that form mask features consistent with various embodiments. In some embodiments, determining a mask pattern (or portion thereof) to be used with a lithography process may include assigning locations of 2D elements 410 based on a target pattern. As shown in the first (top) portion 400A of FIG. 4 , the shape of a mask feature 401 may be represented as a collection of 2D elements 410 (shown as circles in this example). The 2D elements are located at different locations to form the shape of the mask feature, as shown by a grid of dots for reference. The dots at the grid locations may not be generated, and are shown for illustration purposes only. In some embodiments, the grid may be a collection of pixels in an image. Four of the 2D elements are labeled 410a, 410b, 410c, and 410d. Although further described herein with reference to at least FIG. 5 , it can be seen that a contour formed around a 2D element (e.g., a circle having a diameter of at least the minimum width specified by the MRC rule) can inherently and automatically satisfy the MRC rule regardless of the position of the 2D element.
圖4中之下一部分(panel) 400B描繪基於關聯準則而使2D元素相關聯以形成表示光罩特徵之叢集430的實例。關聯420描繪為2D元素之間的線段。相關聯之2D元素接著可依本文中進一步所解釋用以形成具有對應於光罩特徵401之形狀的叢集430。在圖4中,所展示之所有2D元素為叢集430的部分。由於相關聯之元素取決於光罩特徵最佳化,因此並非叢集中之全部2D元素皆需要彼此相關聯。舉例而言,左上中之2D元素410a不與右下之2D元素410d相關聯,儘管其與其他2D元素之關聯為相同叢集430的部分。在一些實施例中,關聯準則可為基於規則之準則。舉例而言,一個關聯準則可為基於距離的,其中若兩個2D元素位於規定距離內,則該等兩個2D元素可彼此相關聯。雖然規定距離可藉由使用者任意地設定或藉由系統以其它方式操控,但在一些實施例中,所規定距離可基於用於光罩特徵之最小寬度的MRC規則。在一些實施例中,兩個2D元素可基於來自預測模型之預測彼此相關聯,至少參考圖7、圖8及圖12至圖13所描述。The lower panel 400B in FIG. 4 depicts an example of associating 2D elements based on an association criterion to form a cluster 430 representing a mask feature. Associations 420 are depicted as line segments between 2D elements. The associated 2D elements can then be used to form a cluster 430 having a shape corresponding to mask feature 401 as further explained herein. In FIG. 4 , all 2D elements are shown as part of cluster 430. Because the elements that are associated depend on the mask feature optimization, not all 2D elements in the cluster need to be associated with each other. For example, the 2D element 410a in the upper left center is not associated with the 2D element 410d in the lower right, despite its association with other 2D elements as part of the same cluster 430. In some embodiments, the association criteria may be rule-based criteria. For example, an association criterion may be distance-based, where two 2D elements may be associated with each other if they are within a specified distance. Although the specified distance may be arbitrarily set by the user or otherwise manipulated by the system, in some embodiments, the specified distance may be based on an MRC rule for a minimum width of a reticle feature. In some embodiments, two 2D elements may be associated with each other based on predictions from a prediction model, as described at least with reference to FIGS. 7 , 8 , and 12 - 13 .
圖4中之中間部分400C描繪圍繞叢集430的例示性輪廓440。本文中進一步詳細地描述,諸如參考圖5,輪廓440可經產生以涵蓋由2D元素形成的區域及2D元素之間的區。因此,輪廓可為叢集的對應於光罩特徵之外部邊緣的外部輪廓。類似地,對於諸如圓環狀光罩特徵之具有內部邊緣的光罩特徵,輪廓可為對應於光罩特徵之內部邊緣的叢集之內部輪廓。The middle portion 400C in FIG4 depicts an exemplary outline 440 surrounding the cluster 430. As described in further detail herein, such as with reference to FIG5, the outline 440 can be generated to encompass the area formed by the 2D elements and the area between the 2D elements. Thus, the outline can be an outer outline of the cluster corresponding to the outer edge of the mask feature. Similarly, for a mask feature having an inner edge, such as a donut-shaped mask feature, the outline can be an inner outline of the cluster corresponding to the inner edge of the mask feature.
下一部分400D類似於中間部分,再次展示2D元素410、關聯420、叢集430及輪廓440,但未展示形成2D元素之間的區之線或展示光罩特徵401。此處,輪廓440更清晰可見且包圍2D元素之叢集。The next portion 400D is similar to the middle portion, again showing 2D elements 410, associations 420, clusters 430, and outlines 440, but without showing the lines forming the regions between the 2D elements or showing mask features 401. Here, outlines 440 are more clearly visible and surround the clusters of 2D elements.
圖4中之底部部分400E描繪調整叢集430之2D元素以使由叢集430形成之光罩特徵變化。在一些實施例中,光罩特徵之調整可基於與微影程序(例如,至少參考圖3所描述)、OPC模型等相關聯的模擬。在其他實施例中,光罩特徵之調整可基於光罩圖案之幾何屬性(例如,寬度、間隔等)且基於針對OPC規定的規則(例如,在主要特徵上添加襯線、偏置、錘頭、SRAF等)。在調整係基於模擬的一些實施例中,在SMO或OPC等中之光罩產生程序可藉由調整針對模擬光罩形成之叢集中之任一者的2D元素之任何組合來最佳化光罩特徵。在此實例中,2D元素450a展示為處於稍微不同的位置,且2D元素450b已被添加(其中鄰近2D元素亦稍微移動)。本文中所使用,「調整」2D元素意謂移動、改變2D元素之形狀,或添加/減去2D元素。舉例而言,圓形2D元素之中心可按需要移動以最佳化光罩。在其他實施中,圓形2D元素之半徑可作為最佳化程序之部分而改變。利用判定/調整光罩特徵之輪廓的此等方法,所揭示方法中的任一者可包括自包括由經調整2D元素產生之輪廓的光罩圖案製造光罩。The bottom portion 400E in FIG. 4 depicts adjusting the 2D elements of cluster 430 to vary the reticle features formed by cluster 430. In some embodiments, the adjustment of the reticle features may be based on simulations associated with a lithography process (e.g., as described with reference to at least FIG. 3 ), an OPC model, etc. In other embodiments, the adjustment of the reticle features may be based on geometric properties of the reticle pattern (e.g., width, spacing, etc.) and based on rules specified for OPC (e.g., adding liner, offset, hammer, SRAF, etc. on primary features). In some embodiments where the adjustment is based on simulation, the reticle generation process in SMO or OPC, etc. may optimize the reticle features by adjusting any combination of the 2D elements of any of the clusters formed for the simulated reticle. In this example, 2D element 450a is shown as being in a slightly different position, and 2D element 450b has been added (with neighboring 2D elements also moved slightly). As used herein, "adjusting" a 2D element means moving, changing the shape of, or adding/subtracting a 2D element. For example, the center of a circular 2D element may be moved as needed to optimize the mask. In other implementations, the radius of the circular 2D element may be changed as part of the optimization process. Utilizing these methods of determining/adjusting the profile of a reticle feature, any of the disclosed methods may include manufacturing a reticle from a reticle pattern that includes a profile generated by the adjusted 2D elements.
本揭示預期可利用許多種類之2D元素。由於2D元素可用以界定至少一特定尺寸(例如,CD、光罩特徵之間的最小間距等),且在一些情況下界定特定區域(例如,光罩特徵所允許之最小區域),因此,2D元素可界定非零區域(例如,與點不同)。在一些實施例中,2D元素為二維(2D)元素。舉例而言,2D元素可為圓形,或更一般而言可為橢圓形。2D元素可為相同大小或可在叢集內或在叢集當中變化大小。2D元素並非必需為圓形/橢圓形。舉例而言,2D元素可為多邊形(例如,正方形、三角形、矩形、六邊形等)或合適之任意形狀。在此等實施中,輪廓可圍繞頂點內接或抵靠邊緣內接。此等2D元素可界定封閉區域(例如,所展示之圓形區域)、至少部分封閉區域或半封閉(例如,半圓形)。雖然諸如圓形、多邊形等之形狀為封閉區域之實例,但在一些實施例中,2D元素可由弧形或其他類似結構有效地表示。舉例而言,圖4之底部部分中之相同輪廓可藉由定位具有與圓形相同之中心的弧形段產生且其中弧形段經適當定向並具有足夠長度以產生所描繪輪廓。因此,等效於本文中所描繪之2D元素之其他2D元素可被視為在本揭示的範疇內。The present disclosure contemplates the use of many types of 2D elements. Since 2D elements can be used to define at least one specific dimension (e.g., CD, minimum spacing between mask features, etc.), and in some cases to define a specific area (e.g., the minimum area allowed by the mask features), 2D elements can define non-zero areas (e.g., different from points). In some embodiments, 2D elements are two-dimensional (2D) elements. For example, 2D elements can be circular, or more generally, elliptical. 2D elements can be the same size or can vary in size within or among clusters. 2D elements are not necessarily circular/elliptical. For example, 2D elements can be polygons (e.g., squares, triangles, rectangles, hexagons, etc.) or any suitable arbitrary shape. In such embodiments, the outline can be inscribed around the vertices or inscribed against the edges. These 2D elements may define a closed area (e.g., the circular area shown), at least partially closed area, or semi-closed (e.g., a semicircle). Although shapes such as circles, polygons, etc. are examples of closed areas, in some embodiments, 2D elements may be effectively represented by arcs or other similar structures. For example, the same outline in the bottom portion of FIG. 4 may be produced by positioning arc segments having the same center as the circle and wherein the arc segments are appropriately oriented and have sufficient length to produce the depicted outline. Therefore, other 2D elements equivalent to the 2D elements depicted herein may be considered within the scope of the present disclosure.
圖5繪示與各種實施例一致之用於基於該2D元素獲得光罩特徵之輪廓的方法。2D元素之叢集可在不脫離本揭示之範疇情況下以任何合適之方式形成輪廓,其中一個實施在圖5中描繪。圖5之頂部部分500A描繪兩個例示性相關聯之2D元素510a及510b。虛擬線段520可連接2D元素之中心。系統無需產生虛擬線段520 (本文出於解釋性目的而提供)。關於圍繞二維元素之輪廓530a,虛擬線段520可在任一側上偏移等於2D元素之半徑的距離。此接著可形成本文中稱為「子區域」(基於該偏移線之2D元素之區域及其之間的區域),其中一個子區域展示為子區域522a。在2D元素之大小不相同之實施中,偏移可使得偏移距離自一個半徑過渡至另一半徑。然而,應瞭解,此論述僅為例示性的。偏移距離或子區域可以任何其他合適之方式界定且光罩特徵可具有許多此等子區域。由輪廓530a封閉之區域可為藉由子區域及已連接子區域集合內部的任何對應區域(例如,圍繞光罩特徵之周邊的子區域之區域及此類周邊可封閉的區域)佔據之區域。FIG. 5 illustrates a method for obtaining an outline of a mask feature based on the 2D element consistent with various embodiments. A cluster of 2D elements may be outlined in any suitable manner without departing from the scope of the present disclosure, one implementation of which is depicted in FIG. 5 . The top portion 500A of FIG. 5 depicts two exemplary associated 2D elements 510 a and 510 b. A virtual line segment 520 may connect the centers of the 2D elements. The system need not generate the virtual line segment 520 (which is provided herein for illustrative purposes). With respect to the outline 530 a surrounding the two-dimensional element, the virtual line segment 520 may be offset on either side by a distance equal to the radius of the 2D element. This can then form what are referred to herein as "sub-regions" (areas of 2D elements based on the offset line and areas between them), one of which is shown as sub-region 522a. In implementations where the 2D elements are not of equal size, the offset can be such that the offset distance transitions from one radius to another. However, it should be understood that this discussion is merely exemplary. The offset distance or sub-regions can be defined in any other suitable manner and a mask feature can have many such sub-regions. The area enclosed by outline 530a can be the area occupied by the sub-regions and any corresponding areas within the connected set of sub-regions (e.g., the area of the sub-regions surrounding the perimeter of the mask feature and the area that such perimeters can be enclosed).
下一部分500B擴展上述實例以包括2D元素510c。另一虛擬線段520a以及形成輪廓530b之部分的對應偏移線段展示於510b與510c之間。因此,在各種實施中,類似於上文所描述之程序的程序可包括藉由將多邊形偏移操作應用於相關聯2D元素對(例如,510a/510b及510b/510c)來產生輪廓之子區域(例如,522a及522b)。程序接著可包括運算子區域之聯集,其中輪廓530b為子區域之聯集。由於所描繪2D元素可形成叢集,因此系統可藉此基於2D元素而產生叢集之輪廓。在此實例中,輪廓對應於叢集中形成叢集之周邊之所有子區域的外部輪廓。此程序可擴展至藉由底部部分500C展示之任意數目及組態之2D元素,從而展示輪廓530c。The next section 500B expands the above example to include 2D element 510c. Another virtual line segment 520a and a corresponding offset line segment that forms part of the outline 530b are shown between 510b and 510c. Thus, in various implementations, a process similar to that described above may include generating sub-regions of the outline (e.g., 522a and 522b) by applying a polygon offset operation to associated 2D element pairs (e.g., 510a/510b and 510b/510c). The process may then include operating on the union of the sub-regions, where the outline 530b is the union of the sub-regions. Since the depicted 2D elements may form a cluster, the system may thereby generate an outline of the cluster based on the 2D elements. In this example, the outline corresponds to the outer outline of all sub-areas within the cluster that form the perimeter of the cluster. This process can be extended to any number and configuration of 2D elements displayed by the bottom portion 500C, thereby displaying the outline 530c.
雖然圖5之在部分500A至500C中之實例經提供以提供形成輪廓的例示性逐步方法,但在一些實施中,形成輪廓可使用實質上較少步驟來進行。舉例而言,一旦判定將形成光罩形狀之基礎的2D元素,則此等2D元素接著可形成單一形狀(其可包含多邊形與線段的任何組合)。接著可將此形狀視為「多邊形」(再次,未必嚴格地為多邊形,此係由於其可具有為線段之部分)且根據本文中之實例中的任一者,此「多邊形」接著可藉由進行多邊形偏移操作而形成輪廓,其中幾個在下文描述。Although the examples of FIG. 5 in portions 500A-500C are provided to provide an exemplary step-by-step method of forming an outline, in some implementations, forming an outline may be performed using substantially fewer steps. For example, once the 2D elements that will form the basis of the mask shape are determined, these 2D elements may then be formed into a single shape (which may include any combination of polygons and line segments). This shape may then be considered a "polygon" (again, not necessarily strictly a polygon, since it may have portions that are line segments) and this "polygon" may then be formed into an outline according to any of the examples herein by performing polygon offset operations, several of which are described below.
在一些實施例中,可進行「多邊形偏移」操作,其中待形成輪廓之多邊形可藉由選擇對應於所要光罩特徵的2D元素之位置(例如,中心)來界定。此類多邊形540之一個實例藉由較粗線展示於500C中,其中展示連接2D元素之某些中心的各種線段。多邊形540 (包括例示性額外線段550)接著可經偏移(例如,2D元素之半徑)以形成所描繪輪廓530c。儘管圖5之實例中未展示,但任何內部區(例如,如在「圓環狀」光罩特徵中)可依本文所描述類似地界定、形成輪廓及塑形。In some embodiments, a "polygon offset" operation may be performed, wherein a polygon to be outlined may be defined by selecting the location (e.g., center) of a 2D element corresponding to a desired mask feature. An example of such a polygon 540 is shown in 500C by a thicker line, where various line segments are shown connecting certain centers of the 2D elements. Polygon 540 (including exemplary additional line segments 550) may then be offset (e.g., by the radius of the 2D element) to form the depicted outline 530c. Although not shown in the example of FIG. 5 , any interior regions (e.g., as in a "donus-shaped" mask feature) may be similarly defined, outlined, and shaped as described herein.
所界定外部輪廓可以任何合適之技術來進一步處理。如自圖4及圖5中之圓形2D元素的實例所見,經判定輪廓之一些部分基於2D元素之半徑自然地圓化。然而,在諸如輪廓530a至530c之凹形部分的一些位置中,所揭示之方法亦可包括對外部輪廓進行拐角圓化或任何其他類型的平滑化操作。拐角圓化之一種方法可包括在拐角之任一側上的兩個點之間進行樣條內插。在一些實施例中,樣條內插可將輪廓修改為平滑的,但可使輪廓不觸碰2D元素。此等偏差可為可接受的,此係由於其可進一步加強對最小寬度MRC規則的順應性。The defined outer contour can be further processed by any suitable technology. As seen from the examples of the circular 2D elements in Fig. 4 and Fig. 5, it is determined that some parts of the contour are naturally rounded based on the radius of the 2D element. However, in some positions such as the concave parts of the contours 530a to 530c, the disclosed method may also include performing corner rounding or any other type of smoothing operation on the outer contour. One method of corner rounding may include performing spline interpolation between two points on either side of the corner. In some embodiments, the spline interpolation can modify the contour to be smooth, but the contour can be made not to touch the 2D element. Such deviations may be acceptable because they can further enhance the compliance to the minimum width MRC rule.
在部分500D中所展示之一些實施例中,系統可產生圍繞已形成輪廓之多邊形之頂點的「方形拐角」570 (而非圓化拐角560),使得通常將形成尖銳頂點的相交段而與第三線段相遇(例如,類似於倒角)。另一選項可允許線段相遇以形成「斜接拐角」580,然而,在某些實施例中,此可引起輪廓之非所要延伸(例如,其可超過距相關聯頂點之距離的規定限制)。在此情況下,系統可使斜接拐角580正方形化以變成另一方形拐角580a,使得輪廓不延伸超出指定限制。在PCT申請案第PCT/EP2023/055028號中描述產生2D元素表示或自2D元素表示產生光罩特徵輪廓的額外細節,該申請案之揭示內容以全文引用之方式併入本文中。In some embodiments shown in portion 500D, the system may generate "square corners" 570 (rather than rounded corners 560) around the vertices of the polygons that have formed the outline, so that the intersecting segments that would normally form a sharp vertex meet a third line segment (e.g., similar to a chamfer). Another option may allow the line segments to meet to form a "mitered corner" 580, however, in some embodiments, this may cause an undesirable extension of the outline (e.g., it may exceed a specified limit on the distance from the associated vertex). In this case, the system may square the mitered corner 580 to become another square corner 580a so that the outline does not extend beyond the specified limit. Additional details of generating 2D element representations or generating mask feature outlines from 2D element representations are described in PCT Application No. PCT/EP2023/055028, the disclosure of which is incorporated herein by reference in its entirety.
在一些實施例中,可使用表示光罩特徵之2D元素之位置資訊來表達2D元素表示。圖6繪示與各種實施例一致之使用該光罩特徵之2D元素的位置資訊之2D元素表示的表示。舉例而言,考慮圖6中所展示之光罩特徵630的2D元素表示600。在一些實施例中,2D元素表示600類似於圖4之部分400E中的2D元素表示。2D元素可指派網格之位置(例如,像素集合),諸如網格625。應注意,圖6中展示為點之網格625為假想的,僅出於說明之目的,且不藉由系統來產生。網格位置可對應於影像中之一或多個像素,且網格之解析度或大小可為使用者定義的。舉例而言,網格可為「10X10」或「25X25」網格位置,其中各網格位置可對應於一個像素或多於一個像素。在一些實施例中,網格625可被視為2D矩陣。In some embodiments, the 2D element representation may be expressed using position information of the 2D elements representing the mask features. FIG. 6 illustrates a representation of the 2D element representation using position information of the 2D elements of the mask features consistent with various embodiments. For example, consider the 2D element representation 600 of the mask feature 630 shown in FIG. 6 . In some embodiments, the 2D element representation 600 is similar to the 2D element representation in portion 400E of FIG. 4 . The 2D elements may be assigned locations of a grid (e.g., a set of pixels), such as grid 625. It should be noted that the grid 625 shown as points in FIG. 6 is imaginary, for illustrative purposes only, and is not generated by the system. The grid locations may correspond to one or more pixels in the image, and the resolution or size of the grid may be user defined. For example, the grid may be a "10X10" or "25X25" grid position, where each grid position may correspond to one pixel or more than one pixel. In some embodiments, the grid 625 may be viewed as a 2D matrix.
諸如第一2D元素603之2D元素可使用位置資訊表示。2D元素可指派網格625之座標。在一些實施例中,指派給2D元素之網格座標取決於2D元素的幾何特質。在圖6之實例中,指派給2D元素之網格座標可為最接近2D元素之中心的網格座標。舉例而言,對於第一2D元素603,指派最接近第一2D元素603之中心602之網格座標(1,1)作為第一2D元素603的位置。類似地,指派最接近第二2D元素605之中心612之網格座標(2,3)作為第二2D元素605的位置。因此,可針對2D元素表示600中之所有2D元素產生位置資訊(例如,網格座標)。應注意,雖然網格座標用於指示位置資訊,但亦可使用其他參數。舉例而言,可使用(x, y)座標來代替矩陣式座標。2D elements such as the first 2D element 603 can be represented using position information. The 2D element can be assigned coordinates of a grid 625. In some embodiments, the grid coordinates assigned to the 2D element depend on the geometric properties of the 2D element. In the example of Figure 6, the grid coordinates assigned to the 2D element can be the grid coordinates closest to the center of the 2D element. For example, for the first 2D element 603, the grid coordinates (1,1) closest to the center 602 of the first 2D element 603 are assigned as the position of the first 2D element 603. Similarly, the grid coordinates (2,3) closest to the center 612 of the second 2D element 605 are assigned as the position of the second 2D element 605. Therefore, position information (e.g., grid coordinates) can be generated for all 2D elements in the 2D element representation 600. Note that although grid coordinates are used to indicate location information, other parameters may also be used. For example, (x, y) coordinates may be used instead of matrix coordinates.
在一些實施例中,位置資訊亦可包括存在資訊,其可為指示在特定網格位置處是否存在2D元素之二進制值。舉例而言,對於第一網格座標(1,1),存在資訊可包括指示在第一網格座標(1,1)處存在2D元素之值「1」。類似地,對於第二網格座標(1,2),存在資訊可包括指示在第二網格座標(1,2)處不存在2D元素之值「0」。因此,位置資訊可包括所有網格座標之存在資訊。可以多種方式(例如,「0」或「1」、「是」或「否」、「真」或「假」等)表達二進制值。In some embodiments, the location information may also include existence information, which may be a binary value indicating whether a 2D element exists at a particular grid position. For example, for a first grid coordinate (1,1), the existence information may include a value "1" indicating that a 2D element exists at the first grid coordinate (1,1). Similarly, for a second grid coordinate (1,2), the existence information may include a value "0" indicating that a 2D element does not exist at the second grid coordinate (1,2). Therefore, the location information may include existence information for all grid coordinates. Binary values may be expressed in a variety of ways (e.g., "0" or "1", "yes" or "no", "true" or "false", etc.).
在一些實施例中,位置資訊亦可包括2D元素距特定網格位置的移位或位移量。在一些實施例中,位置資訊可分別在不同方向(例如,x方向及y方向)上提供移位值。舉例而言,位置資訊可包括諸如((6,3), a x )之位移資訊,其指示2D元素(例如,第五2D元素606)在x方向上距網格座標(6,3)位移了量652,亦即 a x 。舉例而言,位置資訊可包括諸如((6,3), a y )之位移資訊,其指示2D元素(例如,第五2D元素606)在y方向上距網格座標(6,3)位移了量654,亦即 a y 。 In some embodiments, the position information may also include a displacement or displacement amount of a 2D element from a specific grid position. In some embodiments, the position information may provide displacement values in different directions (e.g., the x direction and the y direction). For example, the position information may include displacement information such as ((6,3), a x ), which indicates that the 2D element (e.g., the fifth 2D element 606) is displaced in the x direction from the grid coordinate (6,3) by an amount 652, i.e., a x . For example, the position information may include displacement information such as ((6,3), a y ), which indicates that the 2D element (e.g., the fifth 2D element 606) is displaced in the y direction from the grid coordinate (6,3) by an amount 654, i.e., a y .
在一些實施例中,位置資訊亦可包括2D元素之間的關聯資訊。舉例而言,關聯資訊可指示哪個2D元素與哪個其他2D元素相關聯。可以各種方式指示關聯資訊。在第一實例中,關聯622、623及624可指示為((1,1), (2,1), (2,2)),其指示網格座標(1,1)中之2D元素(例如,第一2D元素603)與網格座標(2,1)中之2D元素(例如,第三2D元素608)、網格座標(2,2)及(2,3)中之2D元素(例如,第二2D元素605)相關聯。在第二實例中,可分別針對x方向及y方向指示關聯資訊。舉例而言,網格座標(2,1)處之2D元素之x方向關聯資訊可表達為((2,1), (2,2)),指示網格座標(2,1)中之2D元素(例如,第三2D元素608)在x方向上與網格座標(2,2)處之另一2D元素相關聯。類似地,網格座標(2,1)處之2D元素之y方向關聯資訊可表達為((2,1), (1,1), (3,2)),其指示網格座標(2,1)中之2D元素(例如,第三2D元素608)在y方向上與網格座標(1,1)處之其他2D元素(例如,第一2D元素603)及網格座標(3,2)處之其他2D元素(例如,第四2D元素610)相關聯。在第三實例中,關聯資訊可指示為二進制值,其指示特定網格位置處之2D元素是否在一或多個方向上與相鄰位置中之2D元素相關聯。舉例而言,網格座標(2,1)處之2D元素之x方向關聯資訊可表達為((2,1), 1),其指示網格座標(2,1)中之2D元素(例如,第三2D元素608)在x方向上與相鄰網格(網格座標(2,2))中之2D元素相關聯。類似地,網格座標(2,1)處之2D元素之y方向關聯資訊可表達為((2,1), 0),其指示網格座標(2,1)中之2D元素(例如,第三2D元素608)不在y方向上與相鄰網格位置(網格座標(3,1))中之2D元素相關聯。In some embodiments, the position information may also include association information between 2D elements. For example, the association information may indicate which 2D element is associated with which other 2D element. The association information may be indicated in various ways. In the first example, associations 622, 623, and 624 may be indicated as ((1,1), (2,1), (2,2)), which indicates that a 2D element in grid coordinates (1,1) (e.g., first 2D element 603) is associated with a 2D element in grid coordinates (2,1) (e.g., third 2D element 608), and 2D elements in grid coordinates (2,2) and (2,3) (e.g., second 2D element 605). In the second example, the association information may be indicated for the x direction and the y direction, respectively. For example, the x-direction association information of the 2D element at the grid coordinate (2,1) can be expressed as ((2,1), (2,2)), indicating that the 2D element (e.g., the third 2D element 608) at the grid coordinate (2,1) is associated with another 2D element at the grid coordinate (2,2) in the x-direction. Similarly, the y-direction association information of the 2D element at the grid coordinate (2,1) can be expressed as ((2,1), (1,1), (3,2)), indicating that the 2D element (e.g., the third 2D element 608) at the grid coordinate (2,1) is associated with other 2D elements (e.g., the first 2D element 603) at the grid coordinate (1,1) and other 2D elements (e.g., the fourth 2D element 610) at the grid coordinate (3,2) in the y-direction. In a third example, the association information may be indicated as a binary value indicating whether a 2D element at a particular grid position is associated with a 2D element in a neighboring position in one or more directions. For example, the x-direction association information of a 2D element at grid coordinate (2,1) may be expressed as ((2,1), 1), indicating that a 2D element (e.g., the third 2D element 608) in grid coordinate (2,1) is associated with a 2D element in a neighboring grid (grid coordinate (2,2)) in the x-direction. Similarly, the y-direction association information of a 2D element at grid coordinate (2,1) can be expressed as ((2,1), 0), which indicates that the 2D element in grid coordinate (2,1) (e.g., the third 2D element 608) is not associated with the 2D element in the adjacent grid position (grid coordinate (3,1)) in the y direction.
在一些實施例中,諸如存在資訊、位置資訊、位移資訊、關聯資訊等之上述資訊可編碼成可得出2D元素表示600的影像集。雖然上述資訊可用於產生影像集,但在一些實施例中,影像集可自光罩圖案之層集影像得出。圖7展示與各種實施例一致之表示光罩圖案之2D元素表示的影像集。在圖7之實例中,第一影像715a可為二進制影像,其中各像素值可指示對應網格位置處是否存在2D元素。舉例而言,白色像素可表示在對應網格位置處存在2D元素或其部分,且黑色像素可表示在對應網格位置處不存在2D元素。In some embodiments, the above information, such as presence information, position information, displacement information, association information, etc., may be encoded into an image set that may derive a 2D element representation 600. Although the above information may be used to generate an image set, in some embodiments, the image set may be derived from a layer set image of a mask pattern. FIG. 7 shows an image set representing a 2D element representation of a mask pattern consistent with various embodiments. In the example of FIG. 7 , the first image 715a may be a binary image, wherein each pixel value may indicate whether a 2D element exists at a corresponding grid position. For example, a white pixel may indicate that a 2D element or a portion thereof exists at a corresponding grid position, and a black pixel may indicate that a 2D element does not exist at a corresponding grid position.
第二影像715b可指示2D元素在第一方向上之位移資訊。舉例而言,第二影像715b中之各像素值可指示2D元素在x方向上距彼像素之位置的位移量。The second image 715b may indicate the displacement information of the 2D element in the first direction. For example, each pixel value in the second image 715b may indicate the displacement amount of the 2D element from the position of the pixel in the x direction.
第三影像715c可指示2D元素在第二方向上的位移資訊。舉例而言,第三影像715c中之各像素值可指示2D元素在y方向上距彼像素之位置的位移量。The third image 715c may indicate the displacement information of the 2D element in the second direction. For example, each pixel value in the third image 715c may indicate the displacement amount of the 2D element from the position of the pixel in the y direction.
影像集可包括比圖7中描繪之更少或更多數目個影像。舉例而言,影像集可不包括第一影像715a,在此情況下,存在資訊自第二影像715b及第三影像715c得出。在一些實施例中,影像集可包括諸如指示關聯資訊之影像的額外影像。可產生一或多個影像以描繪不同方向上之關聯。舉例而言,第一關聯影像可為指示第一方向(例如,x方向)上之關聯的二進制影像。各像素值可指示特定位置處之2D元素是否在x方向上與相鄰位置中之2D元素相關聯。在另一實例中,第二關聯影像可為指示在第二方向(例如,y方向)上之關聯的二進制影像。各像素值可指示特定位置處之2D元素是否在y方向上與相鄰位置中的2D元素相關聯。在又一實例中,第三關聯影像可為指示在第三方向(例如,東北(NE)方向)上之關聯的二進制影像。各像素值可指示特定位置處之2D元素是否在NE方向上與相鄰位置中的2D元素相關聯。舉例而言,對應於網格座標(3,2)之像素的像素值可指示網格座標(3,2)處之2D元素與網格座標(2,3)處之2D元素之間的關聯635。亦可產生用於其他方向(例如,西北方向、東南方向、西南方向)上之關聯的其他影像。The image set may include fewer or more images than depicted in FIG. 7 . For example, the image set may not include the first image 715a, in which case the existence information is derived from the second image 715b and the third image 715c. In some embodiments, the image set may include additional images such as images indicating association information. One or more images may be generated to depict associations in different directions. For example, the first association image may be a binary image indicating associations in a first direction (e.g., the x direction). Each pixel value may indicate whether a 2D element at a particular position is associated with a 2D element in an adjacent position in the x direction. In another example, the second association image may be a binary image indicating associations in a second direction (e.g., the y direction). Each pixel value may indicate whether a 2D element at a particular position is associated with a 2D element in an adjacent position in the y direction. In yet another example, the third association image may be a binary image indicating associations in a third direction, such as the northeast (NE) direction. Each pixel value may indicate whether a 2D element at a particular location is associated with a 2D element in a neighboring location in the NE direction. For example, a pixel value corresponding to a pixel at grid coordinates (3,2) may indicate an association 635 between a 2D element at grid coordinates (3,2) and a 2D element at grid coordinates (2,3). Other images for associations in other directions, such as the northwest direction, the southeast direction, and the southwest direction, may also be generated.
在一些實施例中,訓練預測模型以產生表示2D元素表示之影像集(例如,上述影像集中之一或多者)比訓練預測模型以產生光罩圖案本身更高效。舉例而言,此類ML模型比訓練ML模型以產生光罩圖案本身可更容錯、收斂更快或消耗更少運算資源。在產生影像集之後,可自影像集得出或構造2D元素表示,且光罩特徵輪廓可經構造以產生輸出光罩圖案。圖8至圖11描述使用ML模型來產生或預測光罩圖案之2D元素表示。In some embodiments, training a prediction model to generate an image set (e.g., one or more of the above-described image sets) that represents a 2D element representation is more efficient than training a prediction model to generate a reticle pattern itself. For example, such an ML model may be more error-tolerant, converge faster, or consume less computational resources than training an ML model to generate a reticle pattern itself. After generating the image set, a 2D element representation may be derived or constructed from the image set, and a reticle feature profile may be constructed to generate an output reticle pattern. FIGS. 8-11 describe using an ML model to generate or predict a 2D element representation of a reticle pattern.
圖8為與各種實施例一致之用於使用預測模型來預測光罩圖案之2D元素表示的例示性系統之方塊圖。圖11為與各種實施例一致之用於使用預測模型來預測光罩圖案之2D元素表示的方法之流程圖。Figure 8 is a block diagram of an exemplary system for predicting a 2D element representation of a mask pattern using a prediction model consistent with various embodiments. Figure 11 is a flow chart of a method for predicting a 2D element representation of a mask pattern using a prediction model consistent with various embodiments.
在圖11之程序P1105處,將輸入光罩圖案805提供至預測模型850。在一些實施例中,預測模型850為經訓練以預測光罩圖案之2D元素表示的ML模型(例如,神經網路模型)。至少參考圖12及圖13描述訓練預測模型850之額外細節。At process P1105 of FIG. 11 , the input mask pattern 805 is provided to the prediction model 850. In some embodiments, the prediction model 850 is an ML model (e.g., a neural network model) trained to predict 2D element representations of the mask pattern. Additional details of training the prediction model 850 are described with reference to at least FIG. 12 and FIG. 13 .
輸入光罩圖案805可為待印刷於基板上之光罩圖案之初始版本的影像表示。在一些實施例中,輸入光罩圖案805可自目標圖案(例如,GDS佈局)產生,如圖9中所展示。圖9為與各種實施例一致之用於自目標圖案產生光罩圖案之影像表示的方塊圖。成像組件950可自目標圖案905產生輸入光罩圖案805,該目標圖案為待印刷於基板上之圖案的設計佈局。成像組件950可使用已知數目個方法中之任一者產生輸入光罩圖案805。舉例而言,成像組件950可使用光柵化程序自目標圖案905產生輸入光罩圖案805。在光柵化程序中,目標圖案分解成梯形,且將所有梯形光柵化至暫時緩衝區中。接著將傳輸及相位應用於緩衝區上以產生輸入光罩圖案805之影像。在一些實施例中,目標圖案905之特徵之拐角可圓化,邊緣可平滑化(例如,抗失真),像素值可被填充(例如,轉換為灰度影像)作為光柵化程序之部分。在一些實施例中,輸入光罩圖案805之產生可不包括模擬微影程序(例如,至少參考圖3描述)。The input mask pattern 805 can be an image representation of an initial version of the mask pattern to be printed on the substrate. In some embodiments, the input mask pattern 805 can be generated from a target pattern (e.g., a GDS layout), as shown in FIG. 9 . FIG. 9 is a block diagram of an image representation of a mask pattern generated from a target pattern consistent with various embodiments. An imaging assembly 950 can generate the input mask pattern 805 from a target pattern 905, which is a designed layout of a pattern to be printed on the substrate. The imaging assembly 950 can generate the input mask pattern 805 using any of a number of known methods. For example, the imaging assembly 950 can generate the input mask pattern 805 from the target pattern 905 using a rasterization process. In the rasterization process, the target pattern is decomposed into trapezoids, and all the trapezoids are rasterized into a temporary buffer. The transmission and phase are then applied to the buffer to generate an image of the input mask pattern 805. In some embodiments, the corners of the features of the target pattern 905 may be rounded, the edges may be smoothed (e.g., anti-aliasing), and the pixel values may be filled (e.g., converted to a grayscale image) as part of the rasterization process. In some embodiments, the generation of the input mask pattern 805 may not include an analog lithography process (e.g., as described with reference to at least FIG. 3).
返回參考圖11,在程序P1110處,預測模型850產生表示輸出光罩圖案之2D元素表示(例如,其為輸入光罩圖案之中間最佳化版本)的影像集815。影像集815可指示2D元素表示中之2D元素的位置資訊。在一些實施例中,位置資訊包括關於指派給2D元素之網格位置及2D元素距所指派網格位置之位移的資訊。影像集815可包括上文至少參考圖7所描述之影像中之一或多者。舉例而言,影像集815包括指示在指定網格位置處是否存在2D元素之二進制影像(例如,第一影像715a)。影像集815可包括指示2D元素在第一方向(例如,x方向)上距指定網格位置之位移量的第二影像(例如,第二影像715b),及指示2D元素在第二方向(例如,y方向)上距指定網格位置之位移量的第三影像(例如,第三影像715c)。在一些實施例中,影像集815可不包括第一影像715a,在此情況下,可自第二影像715b及第三影像715c得出存在資訊。Referring back to FIG. 11 , at process P1110, the prediction model 850 generates an image set 815 representing a 2D element representation of an output mask pattern (e.g., an intermediate optimized version of an input mask pattern). The image set 815 may indicate position information of 2D elements in the 2D element representation. In some embodiments, the position information includes information about a grid position assigned to the 2D element and a displacement of the 2D element from the assigned grid position. The image set 815 may include one or more of the images described above with reference to at least FIG. 7 . For example, the image set 815 includes a binary image (e.g., a first image 715a) indicating whether a 2D element exists at a specified grid position. The image set 815 may include a second image (e.g., second image 715b) indicating the displacement of the 2D element from the specified grid position in a first direction (e.g., x direction), and a third image (e.g., third image 715c) indicating the displacement of the 2D element from the specified grid position in a second direction (e.g., y direction). In some embodiments, the image set 815 may not include the first image 715a, in which case the presence information may be derived from the second image 715b and the third image 715c.
在一些實施例中,影像集815亦可包括指示2D元素表示之2D元素之間的關聯之影像。舉例而言,第一關聯影像可為指示特定位置處之2D元素是否在第一方向(例如,x方向)上與相鄰位置中之2D元素相關聯的二進制影像。第二關聯影像可為指示特定位置處之2D元素是否在第二方向(例如,y方向)上與相鄰位置中之2D元素相關聯的二進制影像。在一些實施例中,關聯資訊可不藉由預測模型預測。2D元素可基於關聯準則相關聯。在一些實施例中,關聯準則可為基於規則之準則。舉例而言,一個關聯準則可為基於距離的,其中若兩個2D元素位於規定距離內,則該兩個2D元素可彼此相關聯,如至少參考圖4所描述。在一些實施例中,預測模型850稱為單通道輸入及多通道輸出預測模型,由於產生多個影像(例如,影像集815)作為單個影像之輸入(例如,輸入光罩圖案805)的輸出。在預測模型850輸出單個影像(例如,諸如第一影像715a之僅存在資訊)之實施例中,預測模型850稱為單通道輸入及單通道輸出預測模型。In some embodiments, the image set 815 may also include images indicating associations between 2D elements represented by the 2D elements. For example, a first association image may be a binary image indicating whether a 2D element at a specific position is associated with a 2D element in a neighboring position in a first direction (e.g., the x direction). A second association image may be a binary image indicating whether a 2D element at a specific position is associated with a 2D element in a neighboring position in a second direction (e.g., the y direction). In some embodiments, the association information may not be predicted by a prediction model. 2D elements may be associated based on an association criterion. In some embodiments, the association criterion may be a rule-based criterion. For example, an association criterion may be distance-based, wherein if two 2D elements are within a specified distance, the two 2D elements may be associated with each other, as described with reference to at least FIG. 4. In some embodiments, prediction model 850 is referred to as a single-channel input and multiple-channel output prediction model, since multiple images (e.g., image set 815) are generated as output for a single image input (e.g., input mask pattern 805). In embodiments where prediction model 850 outputs a single image (e.g., only information such as first image 715a), prediction model 850 is referred to as a single-channel input and single-channel output prediction model.
應注意,預測模型可經訓練以基於所要資訊而預測任何數目個影像。舉例而言,若僅需要2D元素之存在資訊,則預測模型可經訓練以預測單個影像(例如,第一影像715a)。在單通道輸出實施例中,位移資訊(例如,2D元素距特定網格位置之位移)可被視為「0」。在另一實例中,若僅需要2D元素在兩個方向上之位移資訊,則預測模型可經訓練以預測兩個影像(例如,第二影像715b及第三影像715c)。各種位置處之2D元素之存在資訊可自包括於兩個影像中之位移資訊得出。在另一實例中,若需要存在資訊及2D元素在兩個方向上之位移資訊,則預測模型可經組態以產生三個影像(例如,第一影像715a、第二影像715b及第三影像715c)。在又一實例中,若需要存在資訊、2D元素在兩個方向上之位移資訊及2D元素在兩個方向上之關聯資訊,則預測模型可經組態以分別產生五個影像(例如,第一影像715a、第二影像715b、第三影像715c及指示2D元素在兩個方向(例如,x方向-2D元素左側及y方向-2D元素下方)上之關聯的兩個額外影像)。在又一實例中,若需要存在資訊、2D元素在兩個方向上之位移資訊及2D元素在四個方向上之關聯資訊,則預測模型可經組態以分別產生七個影像(例如,第一影像715a、第二影像715b、第三影像715c及指示2D元素在兩個方向(例如,x方向-分別指示與2D元素左側及右側的關聯之兩個影像,及y方向-指示與2D元素上方及下方的關聯之兩個影像)上之關聯的四個額外影像)。各種此等輸出為可能的。It should be noted that the prediction model can be trained to predict any number of images based on the desired information. For example, if only the existence information of the 2D element is needed, the prediction model can be trained to predict a single image (e.g., the first image 715a). In a single-channel output embodiment, the displacement information (e.g., the displacement of the 2D element from a specific grid position) can be considered as "0". In another example, if only the displacement information of the 2D element in two directions is needed, the prediction model can be trained to predict two images (e.g., the second image 715b and the third image 715c). The existence information of the 2D elements at various positions can be derived from the displacement information included in the two images. In another example, if the presence information and the displacement information of the 2D element in two directions are required, the prediction model may be configured to generate three images (e.g., the first image 715a, the second image 715b, and the third image 715c). In yet another example, if the presence information, the displacement information of the 2D element in two directions, and the association information of the 2D element in two directions are required, the prediction model may be configured to generate five images (e.g., the first image 715a, the second image 715b, the third image 715c, and two additional images indicating the association of the 2D element in two directions (e.g., the x direction-the left side of the 2D element and the y direction-the bottom of the 2D element)). In another example, if existence information, displacement information of a 2D element in two directions, and association information of the 2D element in four directions are required, the prediction model may be configured to generate seven images, respectively (e.g., a first image 715a, a second image 715b, a third image 715c, and four additional images indicating associations of the 2D element in two directions (e.g., x direction - two images indicating associations with the left and right sides of the 2D element, respectively, and y direction - two images indicating associations with the top and bottom of the 2D element)). A variety of such outputs are possible.
2D元素表示基於影像集815而產生。舉例而言,2D元素表示可類似於光罩特徵630之2D元素表示600或圖4中之底部部分400E中之光罩特徵401的2D元素表示,且可使用自影像集815得出之各種資訊產生。在一些實施例中,針對輸出光罩圖案之所有光罩特徵產生2D元素表示。A 2D element representation is generated based on image set 815. For example, the 2D element representation may be similar to 2D element representation 600 of reticle feature 630 or the 2D element representation of reticle feature 401 in bottom portion 400E of FIG. 4 , and may be generated using various information derived from image set 815. In some embodiments, a 2D element representation is generated for all reticle features of an output reticle pattern.
在程序P1115處,基於2D元素表示中之2D元素而針對光罩特徵產生光罩特徵輪廓。在一些實施例中,光罩特徵輪廓可使用2D元素之多邊形偏移或叢集來構造,如至少參考圖4及圖5所描述。舉例而言,2D元素可基於關聯準則或自由預測模型預測之影像集獲得的關聯資訊而與一或多個其他2D元素相關聯以產生一或多個2D元素叢集以形成光罩特徵的形狀,且接著光罩特徵輪廓可自2D元素產生,如至少參考圖5所描述。舉例而言,如圖10中所繪示,可基於2D元素表示600中之2D元素而針對光罩特徵630產生光罩特徵輪廓1005。針對所有光罩特徵產生光罩特徵輪廓,因此產生輸出光罩圖案。At process P1115, a mask feature outline is generated for the mask feature based on the 2D elements in the 2D element representation. In some embodiments, the mask feature outline can be constructed using polygonal offsets or clusters of 2D elements, as described with reference to at least FIGS. 4 and 5. For example, a 2D element can be associated with one or more other 2D elements based on association information obtained from an image set predicted by an association criterion or a free prediction model to generate one or more 2D element clusters to form the shape of the mask feature, and then the mask feature outline can be generated from the 2D elements, as described with reference to at least FIG. 5. For example, as shown in FIG. 10, a mask feature outline 1005 can be generated for a mask feature 630 based on the 2D elements in the 2D element representation 600. Generates mask feature outlines for all mask features, thus producing an output mask pattern.
在一些實施例中,在程序P1120處,輸出光罩圖案可藉由進行諸如OPC之光罩最佳化程序進一步最佳化以產生經最佳化光罩圖案1120。可基於用於微影程序中之經最佳化光罩圖案1120而製造光罩或圖案化裝置以在基板上印刷目標圖案。In some embodiments, at process P1120, the output mask pattern may be further optimized by performing a mask optimization process such as OPC to generate an optimized mask pattern 1120. A mask or patterning device may be manufactured based on the optimized mask pattern 1120 used in a lithography process to print a target pattern on a substrate.
圖12至圖14繪示訓練預測模型850以產生光罩圖案之2D元素表示。圖12為與各種實施例一致之用於訓練預測模型以產生光罩圖案之2D元素表示的系統之方塊圖。圖13為與各種實施例一致之用於訓練預測模型以產生光罩圖案之2D元素表示的方法之流程圖。Figures 12-14 illustrate training a prediction model 850 to generate a 2D element representation of a mask pattern. Figure 12 is a block diagram of a system for training a prediction model to generate a 2D element representation of a mask pattern consistent with various embodiments. Figure 13 is a flow chart of a method for training a prediction model to generate a 2D element representation of a mask pattern consistent with various embodiments.
在程序P1305處,獲得訓練資料以用於訓練預測模型。在一些實施例中,訓練資料包括輸入光罩圖案影像集1205及若干影像集1210,其中各影像集表示對應輸入光罩圖案之輸出光罩圖案的2D元素表示。舉例而言,訓練資料可包括輸入光罩圖案1205a及對應於輸出光罩圖案(例如,輸入光罩圖案1205a之經最佳化版本)之2D元素表示的影像集1210a1至1210an。At process P1305, training data is obtained for training a prediction model. In some embodiments, the training data includes an input mask pattern image set 1205 and a plurality of image sets 1210, each of which represents a 2D element representation of an output mask pattern corresponding to the input mask pattern. For example, the training data may include an input mask pattern 1205a and image sets 1210a1 to 1210an of 2D element representations of the output mask pattern (e.g., an optimized version of the input mask pattern 1205a).
在一些實施例中,輸入光罩圖案1205a為例如使用成像組件950自目標圖案產生之影像,如至少參考圖9所描述。In some embodiments, the input mask pattern 1205a is an image generated from a target pattern, for example using imaging assembly 950, as described with reference to at least FIG. 9.
在一些實施例中,影像集1210a1至120an可類似於指示2D元素表示中之2D元素之位置資訊、存在資訊、位移資訊、關聯資訊等的影像集815。影像集1210a1至1210an可自2D元素表示產生,該2D元素表示可以多種方式產生。在第一方法中,光罩圖案之2D元素表示可以反覆方式產生,如至少參考圖4所描述。舉例而言,獲得來自初始光罩圖案之光罩特徵,且藉由指派位置、關聯及調整2D元素以產生輸出光罩圖案之2D元素表示來產生2D元素表示。2D元素之調整可基於與微影程序(例如,如至少參考圖3所描述)、OPC模型等相關聯之模擬,或基於光罩圖案之幾何屬性(例如,寬度間隔等)及基於針對OPC規定的規則(例如,在主要特徵上添加襯線、偏置、錘頭、SRAF等)。In some embodiments, the image sets 1210a1 to 120an may be similar to the image set 815 indicating position information, presence information, displacement information, association information, etc. of 2D elements in the 2D element representation. The image sets 1210a1 to 1210an may be generated from the 2D element representation, which may be generated in a variety of ways. In a first approach, a 2D element representation of a mask pattern may be generated in an iterative manner, as described with reference to at least FIG. 4. For example, mask features from an initial mask pattern are obtained, and a 2D element representation is generated by assigning positions, associations, and adjustments to the 2D elements to generate a 2D element representation of an output mask pattern. Adjustments to 2D elements may be based on simulations associated with a lithography process (e.g., as described with reference to at least FIG. 3 ), an OPC model, etc., or based on geometric properties of the mask pattern (e.g., width spacing, etc.) and based on rules specified for OPC (e.g., adding lining, offsets, hammers, SRAFs, etc. on key features).
在第二方法中,光罩圖案之2D元素表示可以非反覆方式產生,如圖14中所繪示。圖14繪示與各種實施例一致之用於訓練預測模型中之光罩圖案之2D元素表示的產生。舉例而言,獲得來自初始光罩圖案之光罩特徵的輪廓1405。輪廓1405減小(例如,收縮)指定量以產生經收縮輪廓1435。指定量可關於與2D元素相關聯之幾何參數,諸如圓形1415的半徑1410。2D元素接著沿著經收縮輪廓1435置放於網格位置處或附近。在一些實施例中,藉由使輪廓1405收縮達等於2D元素之半徑之量,且沿著經收縮輪廓1435置放2D元素以產生2D元素表示1425,自2D元素表示1425重建構的輪廓1454將為與初始輪廓1405幾乎相同大小及形狀(例如,由於經重建構輪廓1454將自經收縮輪廓1435朝外延伸等於圓形1415之半徑的量)。在一些實施例中,可沿著經收縮輪廓1435置放之2D元素之數目可取決於網格1430的解析度。舉例而言,網格1430之解析度愈大,可沿著經收縮輪廓1435置放之2D元素的數目愈大,經重建構輪廓1454愈精細,且經重建構輪廓1454將更類似於初始輪廓1405。在一些實施例中,使用第二方法產生2D元素表示可比使用第一方法產生2D元素表示更快且消耗更少運算資源。In a second method, a 2D element representation of a mask pattern can be generated in a non-iterative manner, as shown in Figure 14. Figure 14 shows the generation of a 2D element representation of a mask pattern for training a prediction model consistent with various embodiments. For example, an outline 1405 of a mask feature from an initial mask pattern is obtained. The outline 1405 is reduced (e.g., shrunk) by a specified amount to produce a shrunk outline 1435. The specified amount can be related to a geometric parameter associated with the 2D element, such as the radius 1410 of a circle 1415. The 2D element is then placed at or near a grid location along the shrunk outline 1435. In some embodiments, by shrinking the outline 1405 by an amount equal to the radius of the 2D element, and placing 2D elements along the shrunken outline 1435 to generate the 2D element representation 1425, the outline 1454 reconstructed from the 2D element representation 1425 will be approximately the same size and shape as the initial outline 1405 (e.g., because the reconstructed outline 1454 will extend outward from the shrunken outline 1435 by an amount equal to the radius of the circle 1415). In some embodiments, the number of 2D elements that can be placed along the shrunken outline 1435 can depend on the resolution of the grid 1430. For example, the greater the resolution of the grid 1430, the greater the number of 2D elements that can be placed along the shrunk outline 1435, the finer the reconstructed outline 1454 will be, and the more similar the reconstructed outline 1454 will be to the initial outline 1405. In some embodiments, generating a 2D element representation using the second method may be faster and consume less computational resources than generating a 2D element representation using the first method.
在(使用第一方法或第二方法)產生2D元素表示之後,來自2D元素表示之2D元素的諸如存在資訊、位置資訊、位移資訊、關聯資訊等之資訊可用於產生影像集1210a1至1210an。After the 2D element representation is generated (using the first method or the second method), information such as existence information, position information, displacement information, association information, etc. of the 2D elements from the 2D element representation can be used to generate the image set 1210a1 to 1210an.
返回參考圖13,在程序P1310處,預測模型850藉由輸入訓練資料(例如,輸入光罩圖案影像集1205及影像集1210)來執行。預測模型850基於輸入光罩圖案1205a而產生影像集1215a1至1215an。將經預測影像集1215a1至1215an與訓練資料中之輸入影像集1210a1至1210an進行比較,且運算分別指示經預測影像集1215a1至1215an與輸入影像集1210a1至1210an之間的差異的成本函數1250。判定成本函數1250是否最小化。若成本函數1250未經最小化,則調整預測模型850之參數(例如,權重及偏置)且再次執行預測模型850以預測影像集1215a1至1215an。重複預測影像集、判定成本函數1250、調整預測模型參數以減小成本函數1250之程序直至最小化成本函數1250。在最小化該成本函數1250之後,預測模型850被視為經訓練的,且經訓練預測模型可用於產生影像集(例如,影像集815),影像集表示任何輸入光罩圖案(例如,輸入光罩圖案805)之光罩圖案的2D元素表示,如至少參考圖8及圖11所描述。Referring back to FIG. 13 , at process P1310, the prediction model 850 is executed by inputting training data (e.g., input mask pattern image set 1205 and image set 1210). The prediction model 850 generates image sets 1215a1 to 1215an based on the input mask pattern 1205a. The predicted image sets 1215a1 to 1215an are compared with the input image sets 1210a1 to 1210an in the training data, and a cost function 1250 indicating the difference between the predicted image sets 1215a1 to 1215an and the input image sets 1210a1 to 1210an is calculated. It is determined whether the cost function 1250 is minimized. If the cost function 1250 is not minimized, the parameters (e.g., weights and biases) of the prediction model 850 are adjusted and the prediction model 850 is executed again to predict the image set 1215a1 to 1215an. The process of predicting the image set, determining the cost function 1250, and adjusting the prediction model parameters to reduce the cost function 1250 is repeated until the cost function 1250 is minimized. After minimizing the cost function 1250, the prediction model 850 is considered trained, and the trained prediction model can be used to generate an image set (e.g., image set 815) that represents a 2D element representation of a mask pattern of any input mask pattern (e.g., input mask pattern 805), as described with reference to at least Figures 8 and 11.
圖15為繪示可輔助實施本文中所揭示之各種方法及系統之電腦系統1500的方塊圖。電腦系統1500可用於實施諸圖之實例中所描繪之實體、組件、模組或服務(及本說明書中所描述的任何其他實體、組件、模組或服務)中之任一者。電腦系統1500可經程式化以執行電腦程式指令以進行本文中所描述之功能、方法、流程或服務(例如,實體、組件或模組中之任一者)。電腦系統1500可經程式化以藉由軟體、硬體或韌體中之至少一者來執行電腦程式指令。FIG. 15 is a block diagram illustrating a computer system 1500 that can assist in implementing the various methods and systems disclosed herein. The computer system 1500 can be used to implement any of the entities, components, modules, or services depicted in the examples of the various figures (and any other entities, components, modules, or services described in this specification). The computer system 1500 can be programmed to execute computer program instructions to perform the functions, methods, processes, or services described herein (e.g., any of the entities, components, or modules). The computer system 1500 can be programmed to execute computer program instructions by at least one of software, hardware, or firmware.
電腦系統1500包括用於傳達資訊之匯流排1502或其他通訊機構,及與匯流排1502耦接以用於處理資訊的處理器1504 (或多個處理器1504及1505)。電腦系統1500亦包括耦接至匯流排1502以用於儲存待由處理器1504執行之資訊及指令的主記憶體1506,諸如,隨機存取記憶體(RAM)或其他動態儲存裝置。主記憶體1506亦可用於在待由處理器1504執行之指令之執行期間儲存暫時性變數或其他中間資訊。電腦系統1500進一步包括耦接至匯流排1502以用於儲存用於處理器1504之靜態資訊及指令的唯讀記憶體(ROM) 1508或其他靜態儲存裝置。提供諸如磁碟或光碟之儲存裝置1510,且儲存裝置耦接至匯流排1502以用於儲存資訊及指令。Computer system 1500 includes a bus 1502 or other communication mechanism for communicating information, and a processor 1504 (or multiple processors 1504 and 1505) coupled to bus 1502 for processing information. Computer system 1500 also includes a main memory 1506, such as a random access memory (RAM) or other dynamic storage device, coupled to bus 1502 for storing information and instructions to be executed by processor 1504. Main memory 1506 can also be used to store temporary variables or other intermediate information during the execution of instructions to be executed by processor 1504. Computer system 1500 further includes a read-only memory (ROM) 1508 or other static storage device coupled to bus 1502 for storing static information and instructions for processor 1504. A storage device 1510, such as a magnetic or optical disk, is provided and coupled to bus 1502 for storing information and instructions.
電腦系統1500可經由匯流排1502耦接至用於向電腦使用者顯示資訊之顯示器1512,諸如,陰極射線管(CRT)或平板顯示器或觸控面板顯示器。包括文數字按鍵及其他按鍵之輸入裝置1514耦接至匯流排1502以用於將資訊及命令選擇傳達至處理器1504。另一類型之使用者輸入裝置為用於將方向資訊及命令選擇傳達至處理器1504且用於控制顯示器1512上之游標移動的游標控制件1516,諸如,滑鼠、軌跡球或游標方向鍵。此輸入裝置通常在兩個軸線(第一軸線(例如,x)及第二軸線(例如,y))上具有兩個自由度,其允許該裝置指定在平面中之位置。觸摸面板(螢幕)顯示器亦可用作輸入裝置。The computer system 1500 may be coupled to a display 1512, such as a cathode ray tube (CRT) or a flat panel display or a touch panel display, via a bus 1502 for displaying information to a computer user. An input device 1514 including alphanumeric keys and other keys is coupled to the bus 1502 for communicating information and command selections to the processor 1504. Another type of user input device is a cursor control 1516, such as a mouse, trackball, or cursor arrow keys, for communicating directional information and command selections to the processor 1504 and for controlling the movement of a cursor on the display 1512. Such an input device typically has two degrees of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), which allows the device to specify a position in a plane. Touch panel (screen) displays can also be used as input devices.
根據一個實施例,本文中所描述之一或多種方法的部分可由電腦系統1500回應於處理器1504執行含於主記憶體1506中之一或多個指令的一或多個序列而進行。可將此等指令自諸如儲存裝置1510之另一電腦可讀媒體讀取至主記憶體1506中。主記憶體1506中含有之指令序列的執行使得處理器1504進行本文中所描述之程序步驟。呈多處理配置之一或多個處理器亦可用於執行主記憶體1506中含有之指令序列。在替代實施例中,可代替或結合軟體指令而使用硬連線電路系統。因此,本文中之描述不限於硬體電路系統及軟體之任何特定組合。According to one embodiment, portions of one or more methods described herein may be performed by the computer system 1500 in response to the processor 1504 executing one or more sequences of one or more instructions contained in the main memory 1506. These instructions may be read into the main memory 1506 from another computer-readable medium such as the storage device 1510. Execution of the sequences of instructions contained in the main memory 1506 causes the processor 1504 to perform the program steps described herein. One or more processors in a multi-processing configuration may also be used to execute the sequences of instructions contained in the main memory 1506. In alternative embodiments, hard-wired circuitry may be used in place of or in conjunction with software instructions. Therefore, the description herein is not limited to any specific combination of hardware circuitry and software.
本文中所使用之術語「電腦可讀媒體」係指參與將指令提供至處理器1504以供執行之任何媒體。此類媒體可呈許多形式,包括但不限於非揮發性媒體、揮發性媒體及傳輸媒體。非揮發性媒體包括例如光碟或磁碟,諸如儲存裝置1510。揮發性媒體包括動態記憶體,諸如主記憶體1506。傳輸媒體包括同軸纜線、銅線及光纖,包括包含匯流排1502之線。傳輸媒體亦可呈聲波或光波之形式,諸如,在射頻(RF)及紅外線(IR)資料通訊期間產生之聲波或光波。電腦可讀媒體之常見形式包括例如軟碟、軟性磁碟、硬碟、磁帶、任何其他磁媒體、CD-ROM、DVD、任何其他光學媒體、打孔卡、紙帶、具有孔圖案之任何其他實體媒體、RAM、PROM及EPROM、FLASH-EPROM、任何其他記憶體晶片或卡匣、如下文所描述之載波,或可供電腦讀取之任何其他媒體。As used herein, the term "computer-readable media" refers to any media that participates in providing instructions to processor 1504 for execution. Such media can take many forms, including but not limited to non-volatile media, volatile media, and transmission media. Non-volatile media include, for example, optical or magnetic disks, such as storage device 1510. Volatile media include dynamic memory, such as main memory 1506. Transmission media include coaxial cables, copper wire, and optical fibers, including the wires comprising bus 1502. Transmission media can also take the form of acoustic or light waves, such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media include, for example, floppy disks, diskettes, hard disks, magnetic tapes, any other magnetic media, CD-ROMs, DVDs, any other optical media, punch cards, paper tape, any other physical media with a pattern of holes, RAM, PROM and EPROM, FLASH-EPROM, any other memory chip or cartridge, a carrier as described below, or any other medium that can be read by a computer.
在將一或多個指令之一或多個序列攜載至處理器1504以供執行時可涉及各種形式之電腦可讀媒體。舉例而言,指令可初始地承載於遠端電腦之磁碟上。遠端電腦可將指令載入至其動態記憶體內,且使用數據機經由電話線來發送指令。在電腦系統1500本端之數據機可接收電話線上之資料,且使用紅外線傳輸器將資料轉換成紅外線信號。耦接至匯流排1502之紅外線偵測器可接收紅外線信號中攜載之資料且將資料置放於匯流排1502上。匯流排1502將資料攜載至主記憶體1506,處理器1504自該主記憶體擷取且執行指令。由主記憶體1506接收之指令可視情況在由處理器1504執行之前或之後儲存於儲存裝置1510上。Various forms of computer-readable media may be involved in carrying one or more sequences of one or more instructions to processor 1504 for execution. For example, the instructions may initially be carried on a disk of a remote computer. The remote computer may load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem at the local end of computer system 1500 may receive data on the telephone line and convert the data into an infrared signal using an infrared transmitter. An infrared detector coupled to bus 1502 may receive the data carried in the infrared signal and place the data on bus 1502. The bus 1502 carries the data to the main memory 1506, from which the processor 1504 retrieves and executes the instructions. The instructions received by the main memory 1506 may be stored on the storage device 1510 before or after execution by the processor 1504, as appropriate.
電腦系統1500亦較佳地包括耦接至匯流排1502之通訊介面1518。通訊介面1518提供耦接至網路鏈路1520的雙向資料通訊,該網路鏈路連接至區域網路1522。舉例而言,通訊介面1518可為整合式服務數位網路(ISDN)卡或數據機以提供與對應類型之電話線的資料通訊連接。作為另一實例,通訊介面1518可為區域網路(LAN)卡以提供與相容LAN之資料通訊連接。亦可實施無線鏈路。在任何此實施中,通訊介面1518發送且接收攜載表示各種類型之資訊之數位資料流的電信號、電磁信號或光學信號。The computer system 1500 also preferably includes a communication interface 1518 coupled to the bus 1502. The communication interface 1518 provides two-way data communication coupled to a network link 1520, which is connected to a local area network 1522. For example, the communication interface 1518 can be an integrated services digital network (ISDN) card or a modem to provide a data communication connection with a corresponding type of telephone line. As another example, the communication interface 1518 can be a local area network (LAN) card to provide a data communication connection with a compatible LAN. A wireless link can also be implemented. In any such implementation, the communication interface 1518 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.
網路鏈路1520通常經由一或多個網路將資料通訊提供至其他資料裝置。舉例而言,網路鏈路1520可經由區域網路1522而向主機電腦1524或向由網際網路服務業者(ISP) 1526操作之資料設備提供連接。ISP 1526繼而經由全球封包資料通訊網路(現在通常稱為「網際網路」1528) 提供資料通訊服務。區域網路1522及網際網路1528兩者使用攜載數位資料串流之電信號、電磁信號或光學信號。經由各種網路之信號及在網路鏈路1520上且經由通訊介面1518之信號(該等信號將數位資料攜載至電腦系統1500且自電腦系統攜載數位資料)為輸送資訊的例示性載波形式。Network link 1520 typically provides data communications to other data devices via one or more networks. For example, network link 1520 may provide connectivity to host computers 1524 or to data equipment operated by an Internet service provider (ISP) 1526 via a local area network 1522. ISP 1526 in turn provides data communications services via the global packet data communications network, now commonly referred to as the "Internet" 1528. Both local area network 1522 and Internet 1528 use electrical, electromagnetic, or optical signals that carry digital data streams. The signals through the various networks and the signals on the network link 1520 and through the communication interface 1518 (which carry the digital data to and from the computer system 1500) are exemplary carrier forms of transporting information.
電腦系統1500可經由一或多個網路、網路鏈路1520及通訊介面1518發送訊息且接收包括程式碼的資料。在網際網路實例中,伺服器1530可經由網際網路1528、ISP 1526、區域網路1522及通訊介面1518而傳輸用於應用程式之所請求程式碼。舉例而言,一個此經下載應用程式可提供實施例之照明最佳化。所接收程式碼可在其被接收時由處理器1504執行,或儲存於儲存裝置1510或其他非揮發性儲存器中以供稍後執行。以此方式,電腦系統1500可獲得呈載波形式之應用程式碼。The computer system 1500 can send messages and receive data including program code via one or more networks, network links 1520, and communication interfaces 1518. In the Internet example, a server 1530 can transmit the requested program code for an application via the Internet 1528, ISP 1526, local area network 1522, and communication interface 1518. For example, one such downloaded application can provide lighting optimization of an embodiment. The received program code can be executed by the processor 1504 as it is received, or stored in the storage device 1510 or other non-volatile storage for later execution. In this way, the computer system 1500 can obtain the application code in carrier form.
雖然本文所揭示之概念可用於在諸如矽晶圓之基板上之成像,但應理解,所揭示概念可供與任何類型之微影成像系統一起使用,例如,用於在除矽晶圓以外的基板上之成像的微影成像系統。Although the concepts disclosed herein may be used for imaging on substrates such as silicon wafers, it should be understood that the disclosed concepts may be used with any type of lithography imaging system, for example, lithography imaging systems used for imaging on substrates other than silicon wafers.
本文中所使用之術語「最佳化(optimizing」及「最佳化(optimization)」係指或意謂調整圖案化設備(例如,微影設備)、圖案化程序等,使得結果及/或程序具有更合乎需要的特性,諸如設計圖案於基板上之較高投影準確度、較大程序窗等。因此,本文所使用之術語「最佳化」及「最佳化」係指或意謂識別用於一或多個參數之一或多個值的程序,該一或多個值相比於用於彼等一或多個參數之一或多個值之初始集合提供在至少一個相關度量方面的改良,例如,局部最佳。應相應地解釋「最佳」及其他相關術語。在實施例中,可反覆應用最佳化步驟,以提供一或多個度量之進一步改良。As used herein, the terms "optimizing" and "optimization" refer to or mean adjusting a patterning apparatus (e.g., a lithography apparatus), a patterning process, etc., so that the result and/or process has more desirable characteristics, such as higher projection accuracy of the design pattern on the substrate, a larger process window, etc. Thus, as used herein, the terms "optimizing" and "optimization" refer to or mean a process of identifying one or more values for one or more parameters that provide an improvement in at least one relevant metric, e.g., a local optimum, over an initial set of one or more values for those one or more parameters. "Optimum" and other related terms should be interpreted accordingly. In embodiments, the optimization step may be applied repeatedly to provide further improvements in one or more metrics.
本發明之態樣可以任何方便形式實施。舉例而言,可藉由一或多個適當電腦程式來實施實施例,該一或多個適當電腦程式可在可為有形載體媒體(例如,磁碟)或無形載體媒體(例如,通訊信號)的適當載體媒體上進行。本發明之實施例可使用可具體地採取可程式化電腦之形式的合適設備來實施,該可程式化電腦運行經配置以實施本文中所描述之方法之電腦程式。因此,本揭示之實施例可以硬體、韌體、軟體或其任何組合來實施。本揭示之實施例亦可實施為儲存於機器可讀媒體上之指令,該等指令可由一或多個處理器讀取及執行。機器可讀媒體可包括用於儲存或傳輸呈可由機器(例如,運算裝置)讀取之形式之資訊的任何機構。舉例而言,機器可讀媒體可包括:唯讀記憶體(ROM);隨機存取記憶體(RAM);磁碟儲存媒體;光學儲存媒體;快閃記憶體裝置;電學、光學、聲學或其他形式之傳播信號(例如,載波、紅外線信號、數位信號等);及其他者。另外,韌體、軟體、常式、指令可在本文中描述為進行某些動作。然而,應瞭解,此等描述僅係出於方便起見,且此等動作事實上係由運算裝置、處理器、控制器或執行韌體、軟體、常式、指令等之其他裝置引起。Aspects of the present invention may be implemented in any convenient form. For example, embodiments may be implemented by one or more appropriate computer programs, which may be performed on an appropriate carrier medium that may be a tangible carrier medium (e.g., a disk) or an intangible carrier medium (e.g., a communication signal). Embodiments of the present invention may be implemented using suitable equipment that may specifically take the form of a programmable computer that runs a computer program configured to implement the methods described herein. Therefore, embodiments of the present disclosure may be implemented in hardware, firmware, software, or any combination thereof. Embodiments of the present disclosure may also be implemented as instructions stored on a machine-readable medium that may be read and executed by one or more processors. Machine-readable media may include any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computing device). For example, machine-readable media may include: read-only memory (ROM); random access memory (RAM); disk storage media; optical storage media; flash memory devices; electrical, optical, acoustic or other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.); and others. Additionally, firmware, software, routines, instructions may be described herein as performing certain actions. However, it should be understood that such descriptions are for convenience only and such actions are actually caused by computing devices, processors, controllers or other devices executing firmware, software, routines, instructions, etc.
在方塊圖中,所說明之組件描繪為離散功能區塊,但實施例不限於本文中所描述之功能性依所說明進行組織之系統。由組件中之各者提供之功能性可由軟體或硬體模組提供,該等模組以與目前所描繪之方式不同之方式組織,例如,可摻和、結合、複寫、分解、指派(例如,在資料中心內或按地區),或以其它方式組織此軟體或硬體。本文中所描述之功能性可由執行儲存於有形的非暫時性機器可讀媒體上之程式碼之一或多個電腦的一或多個處理器提供。在一些情況下,第三方內容遞送網路可主控經由網路傳達之資訊中的一些或全部,在此情況下,在據稱供應或以其它方式提供資訊(例如,內容)之情況下,可藉由發送指令以自內容遞送網路擷取彼資訊而提供該資訊。In the block diagrams, the components described are depicted as discrete functional blocks, but the embodiments are not limited to systems in which the functionality described herein is organized as described. The functionality provided by each of the components may be provided by software or hardware modules that are organized differently than presently depicted, for example, the software or hardware may be blended, combined, replicated, decomposed, assigned (e.g., within a data center or by region), or otherwise organized. The functionality described herein may be provided by one or more processors of one or more computers executing program code stored on a tangible, non-transitory, machine-readable medium. In some cases, a third-party content delivery network may host some or all of the information communicated via the network, in which case, where information (e.g., content) is purportedly supplied or otherwise provided, the information may be provided by sending instructions to retrieve that information from the content delivery network.
除非另外具體說明,否則在自論述顯而易見,應瞭解,貫穿本說明書,利用諸如「處理」、「運算」、「計算」、「判定」或其類似者之術語的論述係指諸如專用電腦或類似專用電子處理/運算裝置之具體設備的動作或程序。Unless otherwise specifically stated, it should be understood that discussions throughout this specification using terms such as "processing," "computing," "calculating," "determining," or the like refer to actions or procedures of specific devices such as special-purpose computers or similar special-purpose electronic processing/computing devices, unless otherwise specifically stated or apparent from the description.
本揭示之實施例可藉由以下條項進一步描述。 1.一種用於判定與微影程序一起使用之光罩圖案的方法,該方法包含: 將對應於目標圖案之輸入光罩圖案提供至預測模型; 使用該預測模型產生對應於該輸入光罩圖案之輸出光罩圖案的2D元素表示,其中該2D元素表示包括表示該輸出光罩圖案之光罩特徵的多個2D元素,且各2D元素界定封閉區域;及 基於該2D元素表示判定該輸出光罩圖案之光罩特徵輪廓。 2.如條項1之方法,其中該2D元素表示包括指示該2D元素表示中之該等2D元素之位置資訊的影像集。 3.如條項2之方法,其中該位置資訊包括關於指派給該等2D元素之網格位置及該等2D元素距該等所指派網格位置之位移的資訊。 4.如條項2之方法,其中影像集包括指示在指定網格位置處是否存在2D元素的二進制影像。 5.如條項2之方法,其中該影像集包括: 第一影像,其指示2D元素在第一方向上距指定網格位置之位移量,及 第二影像,其指示該2D元素在第二方向上距該指定網格位置之位移量。 6.如條項2之方法,其中影像集包括: 二進制影像,其指示在指定網格位置處是否存在2D元素; 第一影像,其指示2D元素在第一方向上距指定網格位置之位移量;及 第二影像,其指示該2D元素在第二方向上距該指定網格位置之位移量。 7.如條項2之方法,其進一步包含: 基於影像集而產生該2D元素表示。 8.如條項1之方法,其中該等2D元素中之各者為圓形。 9.如條項1之方法,其中該等2D元素中之各者為橢圓形。 10.如條項1之方法,其中該等2D元素中之各者為相同大小。 11.如條項1之方法,其中該等2D元素具有不同大小。 12.如條項1之方法,其中自該2D元素表示判定該輸出光罩圖案的該光罩特徵輪廓包括: 基於關聯準則使該等2D元素相關聯以形成表示該光罩特徵之叢集;及 基於該等2D元素而產生該叢集之輪廓。 13.如條項12之方法,其中該關聯準則包括基於規則之準則。 14.如條項13之方法,其中該基於規則之準則包括基於距離之準則,該準則指示兩個2D元素之間的距離。 15.如條項12之方法,其中基於自該2D元素表示之二進制影像得出之關聯資訊而使該等2D元素相關聯,其中該二進制影像指示指定位置處之2D元素是否與相鄰位置處之另一2D元素相關聯。 16.如條項12之方法,其中該輪廓為該叢集的對應於該光罩特徵之外部邊緣的外部輪廓。 17.如條項12之方法,其中該輪廓為該叢集的對應於該光罩特徵之內部邊緣的內部輪廓。 18.如條項12之方法,其進一步包含: 藉由將多邊形偏移操作應用於該等相關聯2D元素對來產生該輪廓之子區域;及 運算該等子區域之該聯集,其中該輪廓為該等子區域之該聯集。 19.如條項1之方法,其進一步包含: 使用光學近接校正程序最佳化該輸出光罩圖案。 20.如條項19之方法,其進一步包含: 自該輸出光罩圖案製造光罩,該輸出光罩圖案包括自該等2D元素產生之該等光罩特徵輪廓。 21.如條項1之方法,其中提供該輸入光罩圖案包括: 獲得該目標圖案之表示; 自該目標圖案產生影像,其中該影像表示該輸入光罩圖案;及 將該輸入光罩圖案之該影像提供至該預測模型。 22.如條項1之方法,其進一步包含: 使用訓練資料訓練該預測模型以產生2D元素表示,其中該訓練資料包括輸入光罩圖案集及對應於輸入光罩圖案集之輸出光罩圖案集之2D元素表示。 23.如條項22之方法,其中訓練該預測模型包括: 獲得對應於輸入光罩圖案集之第一輸入光罩圖案的輸出光罩圖案集之第一輸出光罩圖案; 獲得該第一輸出光罩圖案之第一2D元素表示;及 執行該預測模型以基於該第一輸入光罩圖案及該第一2D元素表示而產生該第一輸出光罩圖案的指定2D元素表示。 24.如條項23之方法,其中獲得該第一2D元素表示包括: 基於該第一輸入光罩圖案之形狀而指派2D元素集合的位置; 基於關聯準則使該2D元素集合相關聯以形成表示該第一輸入光罩圖案之指定光罩特徵的叢集;及 調整該叢集之該2D元素集合以使該指定光罩特徵變化。 25.如條項24之方法,其中該調整係基於該第一輸出光罩圖案之幾何屬性且基於針對最佳近接校正(OPC)程序規定的規則。 26.如條項24之方法,其中該調整係基於與該微影製程相關聯的模擬。 27.如條項24之方法,其進一步包含: 產生指示該第一2D元素表示中之該2D元素集合之位置資訊的影像集。 28.如條項23之方法,其中獲得該第一2D元素表示包括: 將指定光罩特徵輪廓收縮達與2D元素相關聯之指定尺寸以產生經收縮輪廓;及 沿著該經收縮輪廓指派2D元素集合的位置,使得自該2D元素集合產生之輪廓近似該指定光罩特徵輪廓。 29.如條項23之方法,其中該第一光罩圖案之該第一2D元素表示係自該第一輸出光罩圖案的層集影像得出。 30.一種用於訓練預測模型以產生與微影程序一起使用之光罩圖案的2D元素表示之方法,該方法包含: 獲得輸入光罩圖案集及對應於該輸入光罩圖案集之輸出光罩圖案集的2D元素表示集作為訓練資料,其中該2D元素表示集中之2D元素表示包括表示該光罩圖案之光罩特徵的多個2D元素,且各2D元素界定至少部分封閉區域;及 使用該訓練資料訓練該預測模型以產生2D元素表示。 31.如條項30之方法,其中訓練該預測模型包括: 獲得對應於該輸入光罩圖案集之第一輸入光罩圖案的該輸出光罩圖案集之第一輸出光罩圖案; 獲得該第一輸出光罩圖案之第一2D元素表示;及 執行該預測模型以基於該第一輸入光罩圖案及該第一2D元素表示而產生該第一輸出光罩圖案的指定2D元素表示。 32.如條項31之方法,其中訓練該預測模型包括: 訓練該預測模型直至成本函數減小為止,其中該成本函數指示(a)由該預測模型產生之指定2D元素表示與(b)該第一2D元素表示之間的差異。 33.如條項31之方法,其中獲得該第一2D元素表示包括: 基於該第一輸入光罩圖案之形狀而指派2D元素集合的位置; 基於關聯準則使該2D元素集合相關聯以形成表示該第一輸入光罩圖案之指定光罩特徵的叢集;及 調整該叢集之該2D元素集合以使該指定光罩特徵變化。 34.如條項33之方法,其中該調整係基於該第一輸出光罩圖案之幾何屬性且基於針對最佳近接校正(OPC)程序規定的規則。 35.如條項33之方法,其中該調整係基於與該微影製程相關聯的模擬。 36.如條項33之方法,其進一步包含: 產生指示該第一2D元素表示中之該2D元素集合之位置資訊的影像集。 37.如條項33之方法,其中獲得該第一2D元素表示包括: 將指定光罩特徵輪廓收縮達與2D元素相關聯之指定尺寸以產生經收縮輪廓;及 沿著該經收縮輪廓指派2D元素集合的位置,使得自該2D元素集合產生之輪廓近似該指定光罩特徵輪廓。 38.如條項31之方法,其中該第一光罩圖案之該第一2D元素表示係自該第一輸出光罩圖案的層集影像得出。 39.如條項30之方法,其進一步包含: 將對應於目標圖案之輸入光罩圖案提供至預測模型; 使用該預測模型產生輸出光罩圖案之經預測2D元素表示;及 基於該經預測2D元素表示而判定該輸出光罩圖案之光罩特徵輪廓。 40.如條項39之方法,其進一步包含: 使用光學近接校正程序最佳化該輸出光罩圖案以產生光罩圖案。 41.如條項40之方法,其進一步包含: 自該光罩圖案製造光罩,該光罩圖案包括自該等2D元素產生之該等光罩特徵輪廓。 42.一種設備,該設備包含: 記憶體,其儲存指令集;及 處理器,其經組態以執行該指令集以使得該設備進行如以上中之任一條項的方法。 43.一種其上記錄有指令之非暫時性電腦可讀媒體,該等指令在由電腦執行時實施如以上條項中任一項之方法。 Embodiments of the present disclosure may be further described by the following clauses. 1. A method for determining a mask pattern for use with a lithography process, the method comprising: providing an input mask pattern corresponding to a target pattern to a prediction model; using the prediction model to generate a 2D element representation of an output mask pattern corresponding to the input mask pattern, wherein the 2D element representation includes a plurality of 2D elements representing mask features of the output mask pattern, and each 2D element defines a closed region; and determining a mask feature contour of the output mask pattern based on the 2D element representation. 2. The method of clause 1, wherein the 2D element representation includes an image set indicating position information of the 2D elements in the 2D element representation. 3. A method as in item 2, wherein the position information includes information about grid positions assigned to the 2D elements and the displacement of the 2D elements from the assigned grid positions. 4. A method as in item 2, wherein the image set includes a binary image indicating whether a 2D element exists at a specified grid position. 5. A method as in item 2, wherein the image set includes: a first image indicating the displacement of the 2D element from the specified grid position in a first direction, and a second image indicating the displacement of the 2D element from the specified grid position in a second direction. 6. A method as in item 2, wherein the image set includes: a binary image indicating whether a 2D element exists at a specified grid position; a first image indicating the displacement of the 2D element from the specified grid position in the first direction; and a second image indicating the displacement of the 2D element from the specified grid position in the second direction. 7. The method of clause 2, further comprising: Generating the 2D element representation based on an image set. 8. The method of clause 1, wherein each of the 2D elements is circular. 9. The method of clause 1, wherein each of the 2D elements is elliptical. 10. The method of clause 1, wherein each of the 2D elements is the same size. 11. The method of clause 1, wherein the 2D elements have different sizes. 12. The method of clause 1, wherein determining the mask feature outline of the output mask pattern from the 2D element representation comprises: Associating the 2D elements based on an association criterion to form a cluster representing the mask feature; and Generating an outline of the cluster based on the 2D elements. 13. The method of clause 12, wherein the association criterion comprises a rule-based criterion. 14. The method of clause 13, wherein the rule-based criterion comprises a distance-based criterion indicating the distance between two 2D elements. 15. The method of clause 12, wherein the 2D elements are associated based on association information derived from a binary image represented by the 2D elements, wherein the binary image indicates whether a 2D element at a specified position is associated with another 2D element at an adjacent position. 16. The method of clause 12, wherein the contour is an outer contour of the cluster corresponding to an outer edge of the mask feature. 17. The method of clause 12, wherein the contour is an inner contour of the cluster corresponding to an inner edge of the mask feature. 18. The method of claim 12, further comprising: generating sub-regions of the contour by applying a polygon offset operation to the associated 2D element pairs; and computing the union of the sub-regions, wherein the contour is the union of the sub-regions. 19. The method of claim 1, further comprising: optimizing the output mask pattern using an optical proximity correction procedure. 20. The method of claim 19, further comprising: producing a mask from the output mask pattern, the output mask pattern comprising the mask feature contours generated from the 2D elements. 21. The method of clause 1, wherein providing the input mask pattern comprises: obtaining a representation of the target pattern; generating an image from the target pattern, wherein the image represents the input mask pattern; and providing the image of the input mask pattern to the prediction model. 22. The method of clause 1, further comprising: training the prediction model using training data to generate a 2D element representation, wherein the training data comprises a set of input mask patterns and a set of output mask patterns corresponding to the set of input mask patterns. 23. The method of clause 22, wherein training the prediction model comprises: obtaining a first output mask pattern of an output mask pattern set corresponding to a first input mask pattern of an input mask pattern set; obtaining a first 2D element representation of the first output mask pattern; and executing the prediction model to generate a specified 2D element representation of the first output mask pattern based on the first input mask pattern and the first 2D element representation. 24. The method of clause 23, wherein obtaining the first 2D element representation comprises: assigning a position of a set of 2D elements based on the shape of the first input mask pattern; associating the set of 2D elements based on an association criterion to form a cluster representing a specified mask feature of the first input mask pattern; and adjusting the set of 2D elements of the cluster to vary the specified mask feature. 25. The method of clause 24, wherein the adjustment is based on geometric properties of the first output mask pattern and based on rules specified for a best proximity correction (OPC) procedure. 26. The method of clause 24, wherein the adjustment is based on a simulation associated with the lithography process. 27. The method of clause 24, further comprising: generating an image set indicating position information of the set of 2D elements in the first 2D element representation. 28. The method of clause 23, wherein obtaining the first 2D element representation comprises: shrinking a specified mask feature contour by a specified size associated with the 2D element to generate a shrunk contour; and assigning positions of the set of 2D elements along the shrunk contour so that the contour generated from the set of 2D elements approximates the specified mask feature contour. 29. The method of clause 23, wherein the first 2D element representation of the first mask pattern is derived from a layer set image of the first output mask pattern. 30. A method for training a prediction model to generate a 2D element representation of a mask pattern for use with a lithography process, the method comprising: Obtaining a 2D element representation set of an input mask pattern set and an output mask pattern set corresponding to the input mask pattern set as training data, wherein the 2D element representation in the 2D element representation set includes a plurality of 2D elements representing mask features of the mask pattern, and each 2D element defines at least a portion of a closed region; and Using the training data to train the prediction model to generate the 2D element representation. 31. The method of clause 30, wherein training the prediction model comprises: Obtaining a first output mask pattern of the output mask pattern set corresponding to a first input mask pattern of the input mask pattern set; Obtaining a first 2D element representation of the first output mask pattern; and Executing the prediction model to generate a specified 2D element representation of the first output mask pattern based on the first input mask pattern and the first 2D element representation. 32. The method of clause 31, wherein training the prediction model comprises: Training the prediction model until a cost function is reduced, wherein the cost function indicates a difference between (a) a specified 2D element representation generated by the prediction model and (b) the first 2D element representation. 33. The method of clause 31, wherein obtaining the first 2D element representation comprises: assigning a position of a set of 2D elements based on a shape of the first input mask pattern; associating the set of 2D elements based on an association criterion to form a cluster representing a specified mask feature of the first input mask pattern; and adjusting the set of 2D elements of the cluster to vary the specified mask feature. 34. The method of clause 33, wherein the adjustment is based on geometric properties of the first output mask pattern and based on rules specified for a best proximity correction (OPC) procedure. 35. The method of clause 33, wherein the adjustment is based on a simulation associated with the lithography process. 36. The method of clause 33, further comprising: generating an image set indicating position information of the set of 2D elements in the first 2D element representation. 37. The method of clause 33, wherein obtaining the first 2D element representation comprises: shrinking a specified mask feature contour by a specified size associated with the 2D element to generate a shrunk contour; and assigning positions of the set of 2D elements along the shrunk contour so that the contour generated from the set of 2D elements approximates the specified mask feature contour. 38. The method of clause 31, wherein the first 2D element representation of the first mask pattern is derived from a layer set image of the first output mask pattern. 39. The method of clause 30, further comprising: Providing an input mask pattern corresponding to a target pattern to a prediction model; Using the prediction model to generate a predicted 2D element representation of an output mask pattern; and Determining a mask feature profile of the output mask pattern based on the predicted 2D element representation. 40. The method of clause 39, further comprising: Optimizing the output mask pattern using an optical proximity correction procedure to generate a mask pattern. 41. The method of clause 40, further comprising: Producing a mask from the mask pattern, the mask pattern comprising the mask feature profiles generated from the 2D elements. 42. A device comprising: a memory storing an instruction set; and a processor configured to execute the instruction set so that the device performs a method as in any of the above items. 43. A non-transitory computer-readable medium having instructions recorded thereon, which when executed by a computer implement a method as in any of the above items.
讀者應瞭解,本申請案描述若干發明。此等發明已分組成單一文件,而非將彼等發明分離成多個單獨的專利申請案,此係由於該等發明之相關主題在應用程序中有助於經濟發展。但不應合併此等發明之相異優點及態樣。在一些情況下,實施例解決本文中所提及之所有缺點,但應理解,該等發明係獨立地有用,且一些實施例僅解決此等問題之子集或提供其他未經提及之益處,該等益處對於檢閱本揭示之熟習此項技術者將顯而易見。歸因於成本約束,目前可能不主張本文中所揭示之一些發明,且可在後續申請案(諸如接續申請案或藉由修正本申請專利範圍)中主張該等發明。類似地,歸因於空間限制,本文件之發明摘要及發明內容章節皆不應被視為含有所有此等發明之全面清單或此等發明之所有態樣。The reader should understand that this application describes several inventions. These inventions have been grouped into a single document rather than separating them into multiple separate patent applications because the related subject matter of these inventions contributes to economic development in applications. However, the different advantages and aspects of these inventions should not be combined. In some cases, embodiments solve all of the shortcomings mentioned herein, but it should be understood that these inventions are independently useful and some embodiments only solve a subset of these problems or provide other benefits that are not mentioned, which will be obvious to those skilled in the art who review this disclosure. Due to cost constraints, some inventions disclosed herein may not be claimed at present, and such inventions may be claimed in subsequent applications (such as continuation applications or by amendment of the present patent scope). Similarly, due to space limitations, the invention abstract and invention content section of this document should not be considered to contain a comprehensive list of all such inventions or all aspects of such inventions.
應理解,描述及圖式並不意欲將本發明限制於所揭示之特定形式,而相反,本發明意欲涵蓋屬於由所附申請專利範圍所界定之本發明之精神及範疇的所有修改、等效物及替代方案。It should be understood that the description and drawings are not intended to limit the invention to the particular forms disclosed, but on the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
鑒於此描述,本發明之各種態樣的修改及替代實施例對於熟習此項技術者而言將顯而易見。因此,此描述及圖式應解釋為僅為說明性的且係出於教示熟習此項技術者實行本發明之一般方式之目的。應理解,本文中所展示且描述之本發明之形式應被視為實施例的實例。元件及材料可替代本文中所說明及描述之元件及材料,部分及程序可顛倒或省略,某些特徵可獨立地利用,且實施例或實施例之特徵可組合,此皆對於熟習此項技術者在受益於此描述之後將顯而易見的。可在不脫離在以下申請專利範圍中所描述之本發明之精神及範疇的情況下對本文中所描述之元件作出改變。本文中所使用之標題係僅出於組織性目的,且不意謂用於限制描述之範疇。In view of this description, modifications and alternative embodiments of various aspects of the present invention will be apparent to those skilled in the art. Therefore, this description and drawings should be interpreted as being illustrative only and for the purpose of teaching those skilled in the art the general manner of practicing the present invention. It should be understood that the forms of the present invention shown and described herein should be regarded as examples of embodiments. Elements and materials may be substituted for elements and materials illustrated and described herein, parts and procedures may be reversed or omitted, certain features may be utilized independently, and embodiments or features of embodiments may be combined, all of which will be apparent to those skilled in the art after having the benefit of this description. Changes may be made to the elements described herein without departing from the spirit and scope of the present invention as described in the following claims. The headings used herein are for organizational purposes only and are not intended to limit the scope of the description.
如本文中所使用,除非另外特定陳述,否則術語「或」涵蓋除不可行外之所有可能組合。舉例而言,若陳述組件包括A或B,則除非另外特定陳述或不可行,否則組件可包括A,或B,或A及B。作為第二實例,若陳述組件可包括A、B或C,則除非另外特定陳述或不可行,否則組件可包括A,或B,或C,或A及B,或A及C,或B及C,或A及B及C。諸如「中之至少一者」之表述未必修飾以下清單之全部且未必修飾清單中的各成員,使得「A、B及C中之至少一者」應理解為包括僅A中之一者、僅B中之一者、僅C中之一者或A、B及C的任何組合。片語「A及B中之一者」或「A及B中之任一者」應最廣意義上解譯為包括A中之一者或B中之一者。As used herein, unless otherwise specifically stated, the term "or" encompasses all possible combinations except those that are not feasible. For example, if a component is stated to include A or B, then unless otherwise specifically stated or not feasible, the component may include A, or B, or A and B. As a second example, if a component is stated to include A, B, or C, then unless otherwise specifically stated or not feasible, the component may include A, or B, or C, or A and B, or A and C, or B and C, or A and B and C. Expressions such as "at least one of" do not necessarily modify the entire list below and do not necessarily modify each member of the list, such that "at least one of A, B, and C" should be understood to include only one of A, only one of B, only one of C, or any combination of A, B, and C. The phrase "one of A and B" or "either of A and B" should be interpreted in the broadest sense to include one of A or one of B.
本文中之描述意欲為說明性的,而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下按所描述進行修改。The description herein is intended to be illustrative rather than restrictive. Therefore, it will be apparent to those skilled in the art that modifications may be made as described without departing from the scope of the claims set forth below.
10A:微影投影設備 12A:輻射源 14A:光學器件 16Aa:光學器件 16Ab:光學器件 16Ac:透射光學器件 18A:光罩 20A:光瞳 22A:基板平面 300:源模型 310:投影光學器件模型 320:圖案化裝置/設計佈局模型模組 330:空中影像 340:抗蝕劑模型 350:抗蝕劑影像 360:圖案轉印後程序模型模組 400A:第一部分 400B:部分 400C:部分 400D:部分 400E:底部部分 401:光罩特徵 410:2D元素 410a:2D元素 410b:2D元素 410c:2D元素 410d:2D元素 420:關聯 430:叢集 440:輪廓 450a:2D元素 450b:2D元素 500A:頂部部分 500B:部分 500C:部分 500D:部分 510a:2D元素 510b:2D元素 510c:2D元素 520:虛擬線段 520a:虛擬線段 522a:子區域 522b:子區域 530a:輪廓 530b:輪廓 530c:輪廓 540:多邊形 550:額外線段 560:圓化拐角 570:方形拐角 580:斜接拐角 580a:方形拐角 600:2D元素表示 602:中心 603:第一2D元素 605:第二2D元素 606:第五2D元素 608:第三2D元素 610:第四2D元素 612:中心 622:關聯 623:關聯 624:關聯 625:網格 630:光罩特徵 635:關聯 652:量 654:量 715a:第一影像 715b:第二影像 715c:第三影像 805:輸入光罩圖案 815:影像 850:預測模型 905:目標圖案 950:成像組件 1005:光罩特徵輪廓 1120:經最佳化光罩圖案 1205:輸入光罩圖案影像 1205a:輸入光罩圖案 1210:影像 1210a1:影像 1210an:影像 1215a1:影像 1215an:影像 1250:成本函數 1405:輪廓 1410:半徑 1415:圓形 1425:2D元素表示 1430:網格 1435:經收縮輪廓 1454:輪廓 1500:電腦系統 1502:匯流排 1504:處理器 1505:處理器 1506:主記憶體 1508:唯讀記憶體 1510:儲存裝置 1512:顯示器 1514:輸入裝置 1516:游標控制件 1518:通訊介面 1520:網路鏈路 1522:區域網路 1524:主機電腦 1526:ISP 1528:網際網路 1530:伺服器 AD:調整構件 B:輻射光束 C:目標部分 CO:聚光器 Ex:光束擴展器 IF:干涉量測構件 IL:照明系統 IN:積光器 MA:圖案化裝置 MT:第一物件台 P1105:程序 P1110:程序 P1115:程序 P1120:程序 P1305:程序 P1310:程序 PS:透鏡 SO:輻射源 W:基板 WT:第二物件台 10A: Lithography projection equipment 12A: Radiation source 14A: Optical device 16Aa: Optical device 16Ab: Optical device 16Ac: Transmission optical device 18A: Mask 20A: Pupil 22A: Substrate plane 300: Source model 310: Projection optical device model 320: Patterning device/design layout model module 330: Aerial image 340: Anti-etching agent model 350: Anti-etching agent image 360: Pattern transfer post-processing model module 400A: First part 400B: Part 400C: Part 400D: Part 400E: Bottom part 401: Mask feature 410: 2D element 410a: 2D element 410b: 2D element 410c: 2D element 410d: 2D element 420: association 430: cluster 440: outline 450a: 2D element 450b: 2D element 500A: top part 500B: part 500C: part 500D: part 510a: 2D element 510b: 2D element 510c: 2D element 520: virtual line segment 520a: virtual line segment 522a: subregion 522b: subregion 530a: outline 530b: outline 530c: outline 540: polygon 550: additional line segment 560: rounded corners 570: square corners 580: mitered corners 580a: square corners 600: 2D element representation 602: center 603: first 2D element 605: second 2D element 606: fifth 2D element 608: third 2D element 610: fourth 2D element 612: center 622: association 623: association 624: association 625: grid 630: mask feature 635: association 652: quantity 654: quantity 715a: first image 715b: second image 715c: third image 805: input mask pattern 815: image 850: prediction model 905: target pattern 950: imaging assembly 1005: mask feature profile 1120: optimized mask pattern 1205: input mask pattern image 1205a: input mask pattern 1210: image 1210a1: image 1210an: image 1215a1: image 1215an: image 1250: cost function 1405: profile 1410: radius 1415: circle 1425: 2D element representation 1430: grid 1435: shrunk profile 1454: profile 1500: computer system 1502: bus 1504: processor 1505: processor 1506: Main memory 1508: Read-only memory 1510: Storage device 1512: Display 1514: Input device 1516: Cursor control 1518: Communication interface 1520: Network link 1522: Local area network 1524: Host computer 1526: ISP 1528: Internet 1530: Server AD: Adjustment component B: Radiation beam C: Target part CO: Condenser Ex: Beam expander IF: Interferometry component IL: Illumination system IN: Integrator MA: Patterning device MT: First object stage P1105: Program P1110: Program P1115: Program P1120: Program P1305: Program P1310: Program PS: Lens SO: Radiation source W: Substrate WT: Second object stage
現將參考隨附圖式而僅藉助於實例來描述實施例,在隨附圖式中:Embodiments will now be described, by way of example only, with reference to the accompanying drawings, in which:
圖1繪示根據實施例之微影投影設備之各種子系統的方塊圖。FIG. 1 is a block diagram showing various subsystems of a lithographic projection apparatus according to an embodiment.
圖2為根據實施例之微影投影設備的示意圖。FIG2 is a schematic diagram of a lithographic projection apparatus according to an embodiment.
圖3繪示根據實施例之用於模擬微影投影設備中之微影的例示性流程圖。FIG. 3 illustrates an exemplary flow chart for lithography in an analog lithography projection apparatus according to an embodiment.
圖4繪示與各種實施例一致之用於置放、關聯及調整形成光罩特徵之二維(2D)元素的方法。FIG. 4 illustrates a method for placing, associating, and adjusting two-dimensional (2D) elements that form reticle features, consistent with various embodiments.
圖5繪示與各種實施例一致之用於基於該2D元素獲得光罩特徵之輪廓的方法。FIG. 5 illustrates a method for obtaining an outline of a mask feature based on the 2D elements, consistent with various embodiments.
圖6繪示與各種實施例一致之使用該光罩特徵之2D元素的位置資訊之2D元素表示的表示。FIG. 6 illustrates a representation of a 2D element representation using position information of the 2D elements of the mask feature, consistent with various embodiments.
圖7展示與各種實施例一致之表示光罩圖案之2D元素表示的影像集。FIG. 7 shows an image set representing a 2D element representation of a mask pattern consistent with various embodiments.
圖8為與各種實施例一致之用於使用預測模型來預測光罩圖案之2D元素表示的例示性系統之方塊圖。8 is a block diagram of an exemplary system for predicting a 2D element representation of a reticle pattern using a prediction model, consistent with various embodiments.
圖9為與各種實施例一致之用於自目標圖案產生光罩圖案之影像表示的方塊圖。FIG. 9 is a block diagram of an image representation for generating a mask pattern from a target pattern, consistent with various embodiments.
圖10繪示與各種實施例一致之自光罩特徵之經預測2D元素表示產生的光罩特徵之輪廓。FIG. 10 illustrates an outline of a reticle feature generated from a predicted 2D element representation of the reticle feature, consistent with various embodiments.
圖11為與各種實施例一致之用於使用預測模型來預測光罩圖案之2D元素表示的方法之流程圖。11 is a flow chart of a method for predicting a 2D element representation of a mask pattern using a prediction model, consistent with various embodiments.
圖12為與各種實施例一致之用於訓練預測模型以產生光罩圖案之2D元素表示的系統之方塊圖。12 is a block diagram of a system for training a prediction model to generate a 2D element representation of a mask pattern, consistent with various embodiments.
圖13為與各種實施例一致之用於訓練預測模型以產生光罩圖案之2D元素表示的方法之流程圖。13 is a flow chart of a method for training a prediction model to generate a 2D element representation of a mask pattern, consistent with various embodiments.
圖14繪示與各種實施例一致之作為用於訓練預測模型之訓練資料的光罩圖案之2D元素表示的產生。FIG. 14 illustrates the generation of a 2D element representation of a mask pattern as training data for training a prediction model, consistent with various embodiments.
圖15為繪示可輔助實施本文中所揭示之系統及方法之電腦系統的方塊圖。FIG. 15 is a block diagram illustrating a computer system that may assist in implementing the systems and methods disclosed herein.
現將參考圖式詳細地描述實施例,該等圖式被提供為說明性實例以便使熟習此項技術者能夠實踐該等實施例。值得注意地,以下之諸圖及實例不意謂將範疇限於單一實施例,而是藉助於所描述或所說明元件中之一些或全部之互換而使其他實施例為可能的。在任何方便之處,將貫穿圖式使用相同附圖符號以指相同或相似部件。在可使用已知組件來部分地或完全地實施此等實施例之某些元件的情況下,將僅描述理解該等實施例所必需之此等已知組件的彼等部分,且將省略此等已知組件之其他部分的詳細描述以免混淆該等實施例之描述。在本說明書中,展示單數組件之實施例不應視為限制性的;實情為,除非本文中另有明確陳述,否則範疇意欲涵蓋包括複數個相同組件之其他實施例,且反之亦然。此外,除非如此明確闡述,否則申請者並不意欲使本說明書或申請專利範圍中之任何術語歸結於不常見或特殊涵義。另外,範疇涵蓋本文中藉助於說明而提及之組件的目前及未來已知等效者。Embodiments will now be described in detail with reference to the drawings, which are provided as illustrative examples to enable those skilled in the art to practice the embodiments. It is noteworthy that the following figures and examples are not intended to limit the scope to a single embodiment, but rather to make other embodiments possible by means of the interchange of some or all of the described or illustrated elements. Wherever convenient, the same figure symbols will be used throughout the drawings to refer to the same or similar parts. In the case where certain elements of the embodiments can be partially or completely implemented using known components, only those parts of these known components necessary for understanding the embodiments will be described, and detailed descriptions of other parts of these known components will be omitted to avoid confusing the description of the embodiments. In this specification, embodiments showing singular components should not be considered limiting; rather, unless otherwise expressly stated herein, the scope is intended to cover other embodiments including a plurality of the same components, and vice versa. In addition, unless so expressly stated, the applicant does not intend for any term in this specification or the scope of the patent application to be attributed with an uncommon or special meaning. In addition, the scope covers the current and future known equivalents of the components mentioned herein by way of description.
400A:第一部分 400A: Part 1
400B:部分 400B:Partial
400C:部分 400C: Partial
400D:部分 400D: Partial
400E:底部部分 400E: Bottom part
401:光罩特徵 401: Mask characteristics
410:2D元素 410:2D elements
410a:2D元素 410a:2D elements
410b:2D元素 410b: 2D elements
410c:2D元素 410c: 2D elements
410d:2D元素 410d: 2D elements
420:關聯 420: Association
430:叢集 430: Cluster
440:輪廓 440:Outline
450a:2D元素 450a:2D elements
450b:2D元素 450b: 2D elements
Claims (15)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US202363469755P | 2023-05-30 | 2023-05-30 | |
| US63/469,755 | 2023-05-30 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| TW202519974A true TW202519974A (en) | 2025-05-16 |
Family
ID=91027222
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW113118511A TW202519974A (en) | 2023-05-30 | 2024-05-20 | Method and system for training a prediction model to generate a two-dimensional-element representation of a mask pattern |
Country Status (2)
| Country | Link |
|---|---|
| TW (1) | TW202519974A (en) |
| WO (1) | WO2024245689A1 (en) |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5229872A (en) | 1992-01-21 | 1993-07-20 | Hughes Aircraft Company | Exposure device including an electrically aligned electronic mask for micropatterning |
| CN101258498B (en) | 2005-08-08 | 2011-04-13 | Asml荷兰有限公司 | System and method for creating a focus-exposure model of a lithography process |
| US7695876B2 (en) | 2005-08-31 | 2010-04-13 | Brion Technologies, Inc. | Method for identifying and using process window signature patterns for lithography process control |
| JP4954211B2 (en) | 2005-09-09 | 2012-06-13 | エーエスエムエル ネザーランズ ビー.ブイ. | System and method for performing mask verification using an individual mask error model |
| US7694267B1 (en) | 2006-02-03 | 2010-04-06 | Brion Technologies, Inc. | Method for process window optimized optical proximity correction |
| US7882480B2 (en) | 2007-06-04 | 2011-02-01 | Asml Netherlands B.V. | System and method for model-based sub-resolution assist feature generation |
| US7707538B2 (en) | 2007-06-15 | 2010-04-27 | Brion Technologies, Inc. | Multivariable solver for optical proximity correction |
| NL1036189A1 (en) | 2007-12-05 | 2009-06-08 | Brion Tech Inc | Methods and System for Lithography Process Window Simulation. |
| US8669023B2 (en) * | 2008-09-01 | 2014-03-11 | D2S, Inc. | Method for optical proximity correction of a reticle to be manufactured using shaped beam lithography |
| NL2003699A (en) | 2008-12-18 | 2010-06-21 | Brion Tech Inc | Method and system for lithography process-window-maximixing optical proximity correction. |
| CN113227899B (en) * | 2018-12-28 | 2025-01-28 | Asml荷兰有限公司 | Method for generating patterning device patterns at segment boundaries |
-
2024
- 2024-05-03 WO PCT/EP2024/062365 patent/WO2024245689A1/en active Pending
- 2024-05-20 TW TW113118511A patent/TW202519974A/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| WO2024245689A1 (en) | 2024-12-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI466171B (en) | Method of selecting subset of patterns, computer program product for performing thereto and method of performing source mask optimization | |
| JP4717153B2 (en) | Method for generating complementary mask, computer program product, device manufacturing method and method for mapping onto wafer | |
| JP4922112B2 (en) | Method and apparatus for performing model-based OPC for pattern decomposition features | |
| US8542340B2 (en) | Illumination optimization | |
| JP4602962B2 (en) | Method, program product and apparatus for model-based geometry decomposition used in multiple exposure processes | |
| US8356261B1 (en) | Determining the gradient and hessian of the image log slope for design rule optimization for accelerating source mask optimization (SMO) | |
| KR20120113198A (en) | Integration of lithography apparatus and mask optimization process with multiple patterning process | |
| US20240288764A1 (en) | Determining localized image prediction errors to improve a machine learning model in predicting an image | |
| TW202101128A (en) | Method and apparatus for imaging using narrowed bandwidth | |
| KR101394585B1 (en) | A lithography model for 3d topographic wafers | |
| US20250189881A1 (en) | Lithographic pattern representation with curvilinear elements | |
| TW202519974A (en) | Method and system for training a prediction model to generate a two-dimensional-element representation of a mask pattern | |
| KR101198348B1 (en) | Pattern selection for full-chip source and mask optimization | |
| TW202530842A (en) | Method and system for perturbing mask pattern | |
| US20240193338A1 (en) | Free-form layout feature retargeting | |
| WO2025119604A1 (en) | Method and system for perturbing mask pattern | |
| WO2025140817A1 (en) | Method and system for multi channel mask prediction | |
| TW202530857A (en) | Method and system for clustering patterns for optical proximity correction verification process | |
| TW202514258A (en) | Method and system for predicting after-development stochastic effects for full chip applications | |
| WO2025087650A1 (en) | Monitoring fading effect based on computational lithography simulation | |
| WO2025124841A1 (en) | Method and system for primitive-based mask prediction | |
| WO2025098716A1 (en) | Method and system for assessing machine learning model prediction accuracy in optical proximity correction verification process | |
| WO2024217856A1 (en) | Method and system for simulating overlay correction induced imaging impact in lithography | |
| TW202530881A (en) | Method and system for selecting pattern and cutline for monitoring fading effect | |
| WO2025036637A1 (en) | Method and system for generating an overlay-tolerant mask pattern design |