[go: up one dir, main page]

TW482917B - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
TW482917B
TW482917B TW87121724A TW87121724A TW482917B TW 482917 B TW482917 B TW 482917B TW 87121724 A TW87121724 A TW 87121724A TW 87121724 A TW87121724 A TW 87121724A TW 482917 B TW482917 B TW 482917B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
crystal layer
layer
polarizer
substrate
Prior art date
Application number
TW87121724A
Other languages
Chinese (zh)
Inventor
Masumi Kubo
Yozo Narutaki
Shogo Fujioka
Yuko Maruyama
Takayuki Shimada
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP19846498A external-priority patent/JP3410665B2/en
Priority claimed from JP19845998A external-priority patent/JP3410663B2/en
Application filed by Sharp Kk filed Critical Sharp Kk
Application granted granted Critical
Publication of TW482917B publication Critical patent/TW482917B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

A liquid crystal display device includes a first substrate; a second substrate; a liquid crystal layer interposed between the first substrate and the second substrate; a first polarizer provided on a surface of the first substrate which is on the opposite side to the liquid crystal layer; a second polarizer provided, on a surface of the second substrate which is on the opposite side to the liquid crystal layer; a first phase compensation element provided between the first polarizer and the liquid crystal layer; and a second phase compensation element provided between the second polarizer and the liquid crystal layer. A plurality of pixel areas are provided for display. The first substrate includes at least one transmissive electrode, and the second substrate includes a reflective electrode region and a transmissive electrode region in correspondence with each of the plurality of pixel areas.

Description

482917 A7482917 A7

1 ·發明領域: 本發明係關於一種可在一反射模式與一透過模式中操作之 2射式液晶顯示裝置及一種液晶顯示裝置,其係用於辦公 室自動化設備如文字處理器及個人電腦、行動式資料裝置 如手持式電腦、及結合於一攝影機與一液晶監視器之 VTRs。本發明亦關於一種製造此液晶顯示裝置之方法。本 又中,液晶顯示裝置簡稱為LCD裝置,可在一反射模式與 一透過模式中操作一液晶顯示裝置則稱之為一「透過與反 射型LCD裝置」。 2 .相關技藝說明: LCD裝置本身並不放射光線,不同於CRTs(陰極射線管) 與EL(電螢光)裝置’據此,所使用之透過型lcd裝置係在 其一後表面上配備一背光。 背光通常耗用LCD裝置總耗電力之50%以上,時常用於 戶外或由使用者攜帶之有些行動式資料裝置則包含一反射 型LCD裝置,其包括一反射板且僅利用環境光線進行顯 示0 反射型LCD裝置包括TN(扭曲向列)型裝置與STN(超扭 曲向列)型裝置’其皆採用一偏光器且泛用於今日之透過型 LCD裝置以及近年來已蓬勃發展之相位變化(pc)客-主型裝 置,PC客-主型裝置並不使用一偏光器,且可取得較明亮之 顯示,例如此一裝置可見述於4-75022號日本先行公開之公 告案,其對應於第5,220,444號美國專利及9-133930號日本 先行公開公告案。 -4- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)1. Field of the invention: The present invention relates to a 2-ray liquid crystal display device and a liquid crystal display device which can be operated in a reflection mode and a transmission mode, which are used in office automation equipment such as word processors and personal computers, and mobile phones. Data devices such as handheld computers and VTRs combined with a camera and an LCD monitor. The invention also relates to a method for manufacturing the liquid crystal display device. In this case, a liquid crystal display device is simply referred to as an LCD device, and a liquid crystal display device that can be operated in a reflection mode and a transmission mode is called a "transmission and reflection type LCD device". 2. Related technical description: The LCD device itself does not emit light, which is different from CRTs (cathode ray tubes) and EL (electric fluorescent) devices. 'Accordingly, the transmissive LCD device used is equipped with a rear surface. Backlight. The backlight usually consumes more than 50% of the total power consumption of LCD devices. Some mobile data devices often used outdoors or carried by users include a reflective LCD device that includes a reflective plate and uses only ambient light for display. Reflective LCD devices include TN (Twisted Nematic) devices and STN (Super Twisted Nematic) devices, both of which use a polarizer and are widely used in today's transmissive LCD devices, and phase changes that have flourished in recent years ( pc) guest-host device, PC guest-host device does not use a polarizer, and can obtain a brighter display. For example, this device can be seen in the Japanese prior public notice 4-75022, which corresponds to U.S. Patent No. 5,220,444 and Japanese Advance Public Notice No. 9-133930. -4- This paper size applies to China National Standard (CNS) A4 (210X 297 mm)

Order

482917 A7 B7 五、發明説明(2 ) 惟,PC客-主型LCD裝置係利用液晶層中顏料之光學吸收 性以進行顯示,液晶層包含液晶分子與顏料散佈於内,據 此,相位變化之客-主型LCD裝置可比使用一偏光器之TN 裝置與STN裝置提供顯著較低之品質。 在含有平行與扭曲配列式液晶分子之LCD裝置中,位於 液晶層中央與附近處之液晶分子係在垂直方向傾斜於基材 表面,惟,配列層附近之液晶分子並不在垂直方向傾斜於 基材表面,據此,液晶層之雙折射率無法為0,因此,當施 加一電壓時LCD裝置在一顯示模式中操作以進行黑色顯示 之情況下,由於剩餘之雙折射而無法進行令人滿意之黑色 顯示,因此未能取得充分之明暗比。 TN模式與STN模式裝置在亮度與對比上並未能提供充分 之高品質顯示,據此,有必要進一步改善亮度與對比。 反射型LCD裝置之缺點在於當環境光線昏暗時,用於顯 示之反射光線強度即降低,反之,透過型LCD裝置之缺點 在於當環境光線極為明亮時,例如在晴天之戶外下,則可 見度降低。 發明概述 依本發明之一内容所示,一種液晶顯示裝置,包含一第一 基材;一第二基材;一液晶層,係介設於第一基材與第二 基材之間;一第一偏光器,設於與液晶層呈相對立側之第 一基材之一表面上;一第二偏光器,設於與液晶層呈相對 立側之第二基材之一表面上;一第一相位補償元件,設於 第一偏光器與液晶層之間;及一第二相位補償元件,設於 -5- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 482917 A7 ____ B7 五、發明説明(3 ) 第二偏光器與液晶層之間。複數像素區係提供用於顯示, 第一基材包括至少一透過電極,且第二基材包括一反射電 極區及一透過電極區,以對應於各像素區。 在本發明之一實例中,複數像素區各具有一反射區以利用 反射光線進行顯示及一透過區以利用透過光線進行顯示, 且反射電極區定義反射區及透過電極區定義透過區。 在本發明之一實例中,當液晶層中之液晶分子之一分子軸 線相關於第一、二基材之表面而大致呈垂直時,則液晶層 具有零阻滞帶,且第一相位補償元件與第二相位補償元件 各具有一延緩值而滿足於λ /4條件。 在本發明之一實例中,當液晶層中之一液晶分子之一分子 轴線相關於第一、二基材之表面而幾乎呈垂直時,則液晶 層具有一 α延緩值,且第一相位補償元件具有一延緩值而 滿足於λ / 4 - α條件。 在本發明之一實例中,當液晶層中之液晶分子之一分子軸 線相關於第一、二基材之表面而幾乎呈垂直時,則液晶層 具有一 α延緩值,且第一相位補償元件具有一延緩值而滿 足於λ /4 - α條件,而第二相位補償元件具有一延緩值以滿 足於Λ /4-(冷· α )條件。 在本發明之一實例中,第一相位補償元件及第二相位補償 凡件係各由一;1/4波板製成,第一偏光器之一透過軸線與 第一相位補償元件形成一大約4 5度角,且第二偏光器之第 一透過軸線與第二相位補償元件形成一大約45度角。 在本發明 &lt; 一實例中,第二相位補償元件係由一 λ /4波板 -6- W—尺度通用中國國家標準(CNS) Α4^_(210Χ297μ)- _— —______B7\ 五、發明説明(4 ) 製成’且第二相位補償元件之一較延緩軸線匹配於透過通 過液晶層及入射於第二相位補償元件上之橢圓形偏光光線 之一較長軸線或一較短軸線其中一者,以利將橢圓形偏光 光、’泉轉’交成直線偏光光線,及第二偏光器之一透過軸線係 垂直於直線偏光光線之一偏光軸線。 依本發明之另一内容所示,一種液晶顯示裝置,包含一第 一基材,包含一透過電極;一第二基材,包含一反射電 極,一液晶層,係介設於第一基材與第二基材之間,且包 含液晶分子’係呈現負謗電率異方性及當無電壓施加時大 致在垂直方向配列於第一基材與第二基材之表面;一偏光 器’設於與液晶層相對立之第一基材之一表面上;及一入 /4波板,設於偏光器與液晶層之間。λ/4波板之一較緩慢 軸線與偏光器之一透過軸線形成一大約45度角。 在本發明之一實例中,液晶顯示裝置進一步包含一相位 補償元件設於反射電極與偏光器之間。 依本發明之又一内容所示,一種液晶顯示裝置,包含一 第一基材;一第二基材;一液晶層,係介設於第一基材與 第二基材之間,且包含液晶分子,係呈現負誘電率異方性 及當無電壓施加時大致在垂直方向配列於第一基材與第二 基材之表面;一第一偏光器,設於與液晶層呈相對立側之 第一基材之一表面上;一第二偏光器,設於與液晶 對立側之第二基材之一表面上;一第- “相 入/4波板,設於第一偏光器與液晶層之間;及—第二 波板,設於第二偏光器與液晶層之間。複數像素區係提供 本紙張尺度適用中國國家標準(CNS) Α4規格(21〇χ297公釐) A7 ------- B7 五、發明説~) ---- 用於顯不,第一基材包括至少一透過電極,且第二基材包 括反射電極區及一透過電極區,以對應於各像素區,第 一及第二λ /4波板之較緩慢軸線係在同一方向,且與第 一、二偏光器之各透過軸線形成之大約45度角。 在本發明足一實例中,複數像素區各具有一反射區以利用 反射光線進行顯示及一透過區以利用透過光線進行顯示, 且反射電極區定義反射區及透過電極區定義透過區。 在本發明之一實例中,液晶顯示裝置進一步包含至少一相 位補償元件設於第一偏光器與第二偏光器之間。 在本發明之一貫例中,液晶層進一步包含一偏光迴轉摻雜 物。 在本發明之一實例中,液晶層具有一大約90度之扭轉方 向0 在本發明之一實例中,第一偏光器與第二偏光器具有相互 垂直之透過軸線,且第一相位補償元件與第二相位補償元 件具有相互垂直之較緩慢軸線。 在本發明之一實例中,第一相位補償元件將來自第一偏光 器之直線偏光光線轉變成圓形偏光光線,且第二相位補償 元件將來自第二偏光器之直線偏光光線轉變成圓形偏光光 線,液晶顯示裝置進一步包含一第三相位補償元件設於第 一偏光器與液晶層之間,用於補償第一相位補償元件之折-射指數異方性之波長依存關係。 在本發明之一實例中,第三相位補償元件係一 λ /2波板, 且^弟偏光器之一透過軸線與第三相位補償元件之一較 -8 - 本紙張尺度適_ g @家科(CNS) Α4規格(2iqx 297純) A7 B7 五、發明説明(6 ) 、友^軸線形成—71角時,第一偏光器之透過軸線即與第一 相位補償7°件之—較緩慢軸線形成-2Τ1+45度角。 上在t發明(~實例中,液晶顯示裝置進-步包含-第四相 —、甫4貝元件汉於第二偏光器與液晶層之間,用於補償第二 Μ補&amp;7L件 &lt; 折射指數異方性之波長依存關係。 ^本#發明足一實例中,第四相位補償元件係一;1/2波板, 且:第一偏光器之一透過軸線與第四相位補償元件之一較 緩慢轴線形成一 r2角時,第二偏光器之透過軸線即與第二 相位補償元件之一較緩慢軸線形成一272 + 45度角。 在本發明之一實例中,第一偏光器之透過軸線係垂直於第 一偏光器之透過軸線,第一相位補償元件之一較緩慢軸線 垂直於第二相位補償元件之較緩慢軸線,及第三相位補償 7C件足一較緩慢軸線垂直於第四相位補償元件之較緩慢軸 線。 依本發明之再一内容所示,一種液晶顯示裝置,包含一第 一基材;一第二基材;及一液晶層,係介設於第一基材與 第二基材之間。複數像素區係提供用於顯示,複數像素區 各具有一反射區以利用反射光線進行顯示及一透過區以利 用透過光線進行顯示,第一基材包含一逆電極設於液晶層 附近’第二基材係在液晶層附近包含複數閘線、垂直於複 數閘線之複數源線、設於複數閘線與複數源線相交點附近 之複數切換元件、具有一高光線透過效率之一第一導電層 及具有一高光線反射效率之第二導電層,第一導電層與第 一導電層連接於各切換元件,且相互連接及設於各像素區 * 9 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) A7 B7 五、發明說明(7 ) 内〇 \在本發明之一實例中,液晶顯示裝置進一步包含一絕緣層 &quot;又於第—導電層與第二導電層之間。 本發明之一貫例中,第二基材進一步包含一第三導電 層’且第一導電層及第二導電層經由第三導電層而相互 接。 +在本發明之一實例中,第一導電層、第二導電層及第三導 電層足其中一者係由一相同於構成複數閘極或複數源極之 其中一材料所構成。 在本發明之一貫例中,絕緣層具有一波形表面設於第二導 電層下方。 、一 依本發明之又再一内容所示,一種液晶顯示裝置,包含一 第:基材;一第二基材;及一液晶層,係介設於第一基材 與第二基材之間。複數像素區係提供用於顯示,複數像素 區各具有一反射區以利用反射光線進行顯示及一透過區以 利用透過光線進行顯示,第一基材包含一逆電極設於液晶 層附近,第二基材係在液晶層附近包含複數閘線、垂直於 複數閘線之複數源線、設於複數閘線與複數源線相交點附 近之複數切換元件、具有一高光線透過效率之一第一導電 層及具有一高光線反射效率之一第二導電層,第一導電層 與第一導電層連接於各切換元件,且相互連接及設於各像 素區内,及一絕緣層設於第一導電層與第二導電層之間。 該方法包含以下步驟:製成第一導電層於一板件上;製成 絕緣層至少於第一導電層上;製成第二導電層於絕緣層 -10- 本紙張尺度適用中國國豕標準(CNS) A4規格(210X297公爱) B7 五、發明説明(8 上二及將製成於第—導電層上之第二導電層局 nl實例中,該方法進—步包含以下步驟:製成 W _一々兒層於一連接區上,即於至少第一導電層上,以 绫=過弟三導電層而相互連接第-與第二導電層;製成絕 緣層;及5 4、+、土 1、 在連接區上局部地去除絕緣層,以利連接第 一導電層與第二導電層。 在本發明 &lt; 一實例中,局部地去除絕緣層之步驟包含在第 導電層之一區域上去除絕緣層之步驟。 因此文内所述之本發明有利於提供一種反射型l c D裝 置及透過與反射型LCD裝置,其提供一充分高對比值令 人滿意之顯示,及提供其製造方法。 本發明《上述及其他優點在經由審閱及瞭解以下詳細說明 以及相關圖式後,足可供習於此技者明瞭。 圖式簡單說明 圖1係本發明之一範例中之一反射型L c d裝置示意圖; 圖2係本發明之一範例中之一透過與反射型l c d裝置示意 圑, 圖3係本發明之一範例中之一透過與反射型[CD裝置示意 圖, 圖4係一圖表表示當光線垂直地入射與接收時,具有 d = 3.56微米間隙之本發明一反射型lcd裝置之光譜反射率 特徵; 圖5係一圖表表示當光線垂直地入射與接收時,具有 d = 4.5微米間隙之本發明一反射型LCD裝置之光譜反射率特 -11 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) &quot;&quot; ----- —______B7 五、發明説明(9 ) 徵; 圖6係一圖表表示當光線以55〇奈米波長垂直地入射及接 收時’本發明之一反射型LCD裝置之細胞間隙與明暗比之 間關係; 圖7 A係本發明第一範例中之一主動陣列基材平面圖; 圖7B係沿圖7A之7Β_7Βι線所取之主動陣列基材截面 1¾} · _ , 圖8 A係本發明第二範例中之一主動陣列基材平面圖; 圖8B係沿圖8A之8B_8B,線所取之主動陣列基材截面 圖, 圖8C係用於本發明半透過與半反射型LCD裝置中之一主 動陣列基材平面圖; 圖8 D係沿圖8 c之8 D - 8 D,線所取之主動陣列基材截面 圖, 圖8E係沿圖8C之8E-8E,線所取之主動陣列基材截面圖; 圖9係一圖表表示當光線垂直地入射及接收時,具有 d = 3.56微米間隙之本發明一透過與反射型LCD裝置之光譜 反射率特徵; — 圖10係一圖表表示當光線垂直地入射與接收時,具有 d = 4.5微米間隙之本發明一透過與反射型LCD裝置之光譜反 射率特徵; 圖1 1係一圖表表示當光線以550奈米波長垂直地入射及接 收時,本發明一透過與之一反射型LCD裝置之細胞間隙與 明暗比之間關係; -12- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) A7 B7 五、發明説明(10 ) 圖12係-圖表表示第一範例中&quot;4波板較延緩軸線角度 與明暗比之間關係; 圖13Α係一示意圖說明本發明LCD裝置在黑色顯示中之 光線透過與反射; 圖13B係-π意圖說明本發明第二範例匕⑶裝置在白色 顯示中之光線透過與反射; 圖14A係一示意圖說明本發明第四範例中lcD裝置在反 射模式之黑色顯示中之光線透過與反射; 圖1 4B係一示意圖說明本發明第四範例中lcD裝置在反 射模式之白色顯示中之光線透過與反射; 圖1 5 A係一示意圖說明本發明第四範例中[〔D裝置在反 射模式之黑色顯示中之光線透過與反射; 圖1 5 B係一 π意圖說明本發明第四範例中l c D裝置在反 射模式之白色顯示中之光線透過與反射; 圖1 6係一圖表說明第四範例中黑色顯示中之波長與透過 率之間關係; 圖1 7係本發明一第五範例中一反射型L c D裝置示意圖; 圖1 8 A係一示意圖說明本發明第五範例l c D裝置中在反 射模式之黑色顯示中之光線透過與反射; 圖1 8 B係一示意圖說明本發明第五範例乙c D裝置中在反 射模式之白色顯示中之光線透過與反射; 圖1 8 C係一示意圖說明本發明第五範例l c D裝置中在透 過模式之黑色顯示中之光線透過與反射; 圖18D係一示意圖說明本發明第五範例lcd裝置中在透 -13- 本纸張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) A7482917 A7 B7 V. Description of the invention (2) However, PC guest-host LCD devices use the optical absorption of pigments in the liquid crystal layer for display. The liquid crystal layer contains liquid crystal molecules and pigments dispersed therein. According to this, the phase changes Guest-host LCD devices can provide significantly lower quality than TN devices and STN devices using a polarizer. In an LCD device containing parallel and twisted aligned liquid crystal molecules, the liquid crystal molecules located at the center and the vicinity of the liquid crystal layer are inclined to the substrate surface in the vertical direction, but the liquid crystal molecules near the aligned layer are not inclined to the substrate in the vertical direction. On the surface, according to this, the birefringence of the liquid crystal layer cannot be 0. Therefore, when the LCD device is operated in a display mode to perform black display when a voltage is applied, it cannot be satisfactorily performed due to the remaining birefringence. It is displayed in black, so a sufficient light-dark ratio cannot be obtained. The TN mode and STN mode devices do not provide sufficient high-quality displays in terms of brightness and contrast. Based on this, it is necessary to further improve brightness and contrast. The disadvantage of a reflective LCD device is that when the ambient light is dim, the intensity of the reflected light used for display is reduced. Conversely, the disadvantage of a transmissive LCD device is that when the ambient light is extremely bright, for example, outdoors in sunny days, the visibility is reduced. SUMMARY OF THE INVENTION According to one aspect of the present invention, a liquid crystal display device includes a first substrate; a second substrate; a liquid crystal layer interposed between the first substrate and the second substrate; A first polarizer provided on a surface of a first substrate on a side opposite to the liquid crystal layer; a second polarizer provided on a surface of a second substrate on a side opposite to the liquid crystal layer; The first phase compensating element is provided between the first polarizer and the liquid crystal layer; and the second phase compensating element is provided at -5- This paper size is applicable to Chinese National Standard (CNS) A4 specification (210X 297 mm) 482917 A7 ____ B7 5. Description of the invention (3) Between the second polarizer and the liquid crystal layer. The plurality of pixel regions are provided for display. The first substrate includes at least one transmissive electrode, and the second substrate includes a reflective electrode region and a transmissive electrode region to correspond to each pixel region. In one example of the present invention, each of the plurality of pixel regions has a reflective region for displaying with reflected light and a transmissive region for displaying with transmitted light, and the reflective electrode region defines the reflective region and the transmissive electrode region defines the transmissive region. In an example of the present invention, when a molecular axis of one of the liquid crystal molecules in the liquid crystal layer is substantially perpendicular to the surfaces of the first and second substrates, the liquid crystal layer has a zero retardation band and the first phase compensation element The second phase compensation element and the second phase compensation element each have a delay value and satisfy the λ / 4 condition. In an example of the present invention, when one molecular axis of one liquid crystal molecule in the liquid crystal layer is almost perpendicular to the surfaces of the first and second substrates, the liquid crystal layer has an alpha retardation value, and the first phase The compensation element has a retardation value and satisfies the λ / 4-α condition. In one example of the present invention, when one molecular axis of liquid crystal molecules in the liquid crystal layer is almost perpendicular to the surfaces of the first and second substrates, the liquid crystal layer has an alpha retardation value, and the first phase compensation element It has a retardation value to satisfy the λ / 4-α condition, and the second phase compensation element has a retardation value to satisfy the Δ / 4- (cold · α) condition. In an example of the present invention, each of the first phase compensation element and the second phase compensation element is made of one; a 1/4 wave plate, and one of the first polarizers passes through the axis to form an approximately The angle is 45 degrees, and the first transmission axis of the second polarizer and the second phase compensation element form an angle of about 45 degrees. In the present invention &lt; an example, the second phase compensation element is composed of a λ / 4 wave plate-6-W-scale Common Chinese National Standard (CNS) Α4 ^ _ (210 × 297μ)-__ —______ B7 \ V. Invention Explanation (4) is made, and one of the slower axes of the second phase compensation element matches one of a longer axis or a shorter axis of the elliptical polarized light passing through the liquid crystal layer and incident on the second phase compensation element That is, Eli intersects the elliptical polarized light and the 'quanzhuan' into a linearly polarized light, and a transmission axis of one of the second polarizers is perpendicular to a polarized axis of the linearly polarized light. According to another aspect of the present invention, a liquid crystal display device includes a first substrate including a transmissive electrode, a second substrate including a reflective electrode, and a liquid crystal layer interposed on the first substrate. And the second substrate, and the liquid crystal molecules are included, the negative anisotropy of the electric conductivity is exhibited, and when no voltage is applied, they are arranged in the vertical direction on the surface of the first substrate and the second substrate; a polarizer ' It is disposed on a surface of a first substrate opposite to the liquid crystal layer; and an I / 4 wave plate is disposed between the polarizer and the liquid crystal layer. The slower axis of one of the λ / 4 wave plates forms an angle of about 45 degrees with the transmission axis of one of the polarizers. In one example of the present invention, the liquid crystal display device further includes a phase compensation element disposed between the reflective electrode and the polarizer. According to still another aspect of the present invention, a liquid crystal display device includes a first substrate, a second substrate, and a liquid crystal layer interposed between the first substrate and the second substrate, and includes Liquid crystal molecules exhibit negative anisotropy and are arranged on the surface of the first substrate and the second substrate in a vertical direction when no voltage is applied. A first polarizer is disposed on the side opposite to the liquid crystal layer. On a surface of a first substrate of a first substrate; a second polarizer provided on a surface of a second substrate opposite to the liquid crystal; a first- "incoming / 4 wave plate provided on the first polarizer and Between the liquid crystal layer; and—the second wave plate is provided between the second polarizer and the liquid crystal layer. A plurality of pixel regions provide the paper size applicable to the Chinese National Standard (CNS) A4 specification (21 × 297 mm) A7- ------ B7 V. Invention ~) ---- For display, the first substrate includes at least one transmissive electrode, and the second substrate includes a reflective electrode region and a transmissive electrode region to correspond to In each pixel area, the slower axes of the first and second λ / 4 wave plates are in the same direction, and are the same as those of the first and second polarizers. An angle of approximately 45 degrees formed by the axis. In a full example of the present invention, each of the plurality of pixel regions has a reflective region for displaying with reflected light and a transmitting region for displaying with transmitted light, and the reflective electrode region defines the reflective region and The transmissive electrode area defines a transmissive area. In one example of the present invention, the liquid crystal display device further includes at least one phase compensation element disposed between the first polarizer and the second polarizer. In one embodiment of the present invention, the liquid crystal layer is further Contains a polarized rotation dopant. In one example of the present invention, the liquid crystal layer has a twist direction of about 90 degrees. In one example of the present invention, the first polarizer and the second polarizer have transmission axes perpendicular to each other. The first phase compensation element and the second phase compensation element have relatively slow axes that are perpendicular to each other. In an example of the present invention, the first phase compensation element converts linearly polarized light from the first polarizer into circularly polarized light. And the second phase compensation element converts the linearly polarized light from the second polarizer into circularly polarized light, and the liquid crystal display The display device further includes a third phase compensation element disposed between the first polarizer and the liquid crystal layer, and used to compensate the wavelength dependence of the refractive index anisotropy of the first phase compensation element. In an example of the present invention, The third phase compensating element is a λ / 2 wave plate, and one of the polarizers has a transmission axis that is more than one of the third phase compensating element.-This paper is suitable for size_ g @ 家 科 (CNS) Α4 size ( 2iqx 297 pure) A7 B7 V. Description of the invention (6) When the axis of the friend is at -71 angle, the transmission axis of the first polarizer is 7 ° from the first phase compensation-the slower axis forms -2T1 + 45 degrees In the invention (~ examples, the liquid crystal display device further includes-the fourth phase), and the element is between the second polarizer and the liquid crystal layer, and is used to compensate for the second M compensation & 7L. <Wavelength dependence of refractive index anisotropy. ^ In one example of this invention, the fourth phase compensation element is a one-half wave plate, and when one of the first polarizers passes through the axis and one of the fourth phase compensation elements forms a slower axis with an r2 angle The transmission axis of the second polarizer forms an angle of 272 + 45 degrees with the slower axis of one of the second phase compensation elements. In an example of the present invention, the transmission axis of the first polarizer is perpendicular to the transmission axis of the first polarizer, one of the slower axes of the first phase compensation element is perpendicular to the slower axis of the second phase compensation element, and the first The three-phase compensation 7C piece has a slower axis perpendicular to the slower axis of the fourth phase compensation element. According to still another aspect of the present invention, a liquid crystal display device includes a first substrate, a second substrate, and a liquid crystal layer interposed between the first substrate and the second substrate. The plurality of pixel regions are provided for display. Each of the plurality of pixel regions has a reflection region for displaying by reflected light and a transmission region for displaying by transmitted light. The first substrate includes a counter electrode disposed near the liquid crystal layer. The base material includes a plurality of gate lines near the liquid crystal layer, a plurality of source lines perpendicular to the plurality of gate lines, a plurality of switching elements disposed near the intersection of the plurality of gate lines and the plurality of source lines, and a first conductive material having a high light transmission efficiency. Layer and a second conductive layer with a high light reflection efficiency, the first conductive layer and the first conductive layer are connected to each switching element, and are connected to each other and located in each pixel area * 9-This paper standard is applicable to the Chinese National Standard (CNS ) A4 specification (210X297 mm) A7 B7 5. In the description of the invention (7) 〇 In one example of the present invention, the liquid crystal display device further includes an insulating layer &quot; and between the first conductive layer and the second conductive layer between. In one embodiment of the present invention, the second substrate further includes a third conductive layer ', and the first conductive layer and the second conductive layer are connected to each other via the third conductive layer. + In one example of the present invention, one of the first conductive layer, the second conductive layer, and the third conductive layer is composed of one material which is the same as the material constituting the plurality of gates or the plurality of sources. In one embodiment of the present invention, the insulating layer has a corrugated surface disposed below the second conductive layer. As shown in still another aspect of the present invention, a liquid crystal display device includes a first substrate, a second substrate, and a liquid crystal layer interposed between the first substrate and the second substrate. between. The plurality of pixel regions are provided for display. Each of the plurality of pixel regions has a reflection region for displaying by reflected light and a transmission region for displaying by transmitted light. The first substrate includes a counter electrode disposed near the liquid crystal layer, and the second The base material includes a plurality of gate lines near the liquid crystal layer, a plurality of source lines perpendicular to the plurality of gate lines, a plurality of switching elements disposed near the intersection of the plurality of gate lines and the plurality of source lines, and a first conductive material having a high light transmission efficiency. Layer and a second conductive layer having a high light reflection efficiency, the first conductive layer and the first conductive layer are connected to each switching element, are connected to each other and are disposed in each pixel region, and an insulating layer is disposed on the first conductive layer Between the layer and the second conductive layer. The method includes the following steps: making a first conductive layer on a board; making an insulating layer at least on the first conductive layer; making a second conductive layer on the insulating layer-10- This paper size applies to the Chinese national standard (CNS) A4 specification (210X297 public love) B7 V. Description of the invention (8 top two and second conductive layer n1 example to be made on the first conductive layer, the method further includes the following steps: making W _ a layer on a connection area, that is, on at least the first conductive layer, the first and second conductive layers are connected to each other with 绫 = the third conductive layer; made of an insulating layer; and 5 4, +, Soil 1. The insulating layer is partially removed on the connection area to facilitate the connection between the first conductive layer and the second conductive layer. In one example of the present invention, the step of partially removing the insulating layer is included in an area of the first conductive layer. Step of removing the insulating layer. Therefore, the present invention described herein is advantageous for providing a reflective LCD device and a transmissive and reflective LCD device, which provides a display with a sufficiently high contrast value and a manufacturing method thereof The invention described above and other advantages After reviewing and understanding the following detailed description and related drawings, it will be enough for those skilled in the art to understand. The drawings briefly explain FIG. 1 is a schematic diagram of a reflective L cd device in one example of the present invention; FIG. 2 is a schematic view of the present invention. One example of a transmissive and reflective LCD device in an example is shown in FIG. 3. FIG. 3 is a schematic view of a transmissive and reflective LCD device in one example of the present invention. FIG. 4 is a chart showing that when light is incident and received vertically, The spectral reflectance characteristics of a reflective LCD device of the present invention with d = 3.56 micron gap; FIG. 5 is a graph showing the spectrum of a reflective LCD device of the present invention with d = 4.5 micron gap when light is incident and received vertically Reflectivity Special-11-This paper scale is applicable to China National Standard (CNS) A4 specification (210 X 297 mm) &quot; &quot; ----- —______ B7 V. Description of invention (9) characteristics; Figure 6 is a chart Represents the relationship between the cell gap and the light-dark ratio of a reflective LCD device of the present invention when light is incident and received perpendicularly at a wavelength of 55 nm; FIG. 7A is an active array substrate in a first example of the present invention Floor plan FIG. 7B is a cross-sectional view of the active array substrate taken along line 7B_7Bι of FIG. 7A, and FIG. 8A is a plan view of an active array substrate according to a second example of the present invention; FIG. 8B is a view taken along line 8B_8B of FIG. 8A. A cross-sectional view of the active array substrate taken, FIG. 8C is a plan view of an active array substrate used in one of the semi-transmissive and semi-reflective LCD devices of the present invention; and FIG. 8D is taken along line 8D-8D of FIG. 8c. A cross-sectional view of the active array substrate taken, FIG. 8E is a cross-sectional view of the active array substrate taken along line 8E-8E of FIG. 8C; FIG. 9 is a chart showing that when light is incident and received vertically, it has d = 3.56 micron gap of a transmissive and reflective LCD device according to the present invention;-Figure 10 is a graph showing a transmissive and reflective LCD of the present invention with a d = 4.5 micron gap when light is incident and received vertically The spectral reflectance characteristics of the device; Figure 1 1 is a graph showing the relationship between the cell gap and the light-dark ratio of a reflective LCD device of the present invention when light is incident and received perpendicularly at a wavelength of 550 nm;- 12- This paper size applies to Chinese national standards (CNS) A4 specification (210 X 297 mm) A7 B7 V. Description of the invention (10) Figure 12 series-The diagram shows the relationship between the retardation axis angle of the 4-wave plate and the light-dark ratio in the first example; Figure 13AA series A schematic diagram illustrates the light transmission and reflection of the LCD device of the present invention in a black display; FIG. 13B series -π is intended to illustrate the light transmission and reflection of a second example device of the present invention in a white display; FIG. 14A is a schematic view illustrating the present invention In the fourth example, the light transmission and reflection of the lcd device in the black display in the reflection mode; FIG. 1 4B is a schematic diagram illustrating the light transmission and reflection of the lcd device in the white display in the reflection mode in the fourth example of the present invention; FIG. 1 5 A is a schematic diagram illustrating the light transmission and reflection in the black display of the D device in the reflection mode in the fourth example of the present invention; FIG. 1 5 B is a π intended to illustrate the lc D device in the reflection mode in the fourth example of the present invention. Light transmission and reflection in a white display; Figure 16 is a chart illustrating the relationship between wavelength and transmittance in a black display in the fourth example; Figure 17 is a reflective L in a fifth example of the present invention c D device schematic diagram; Figure 1 A is a schematic diagram illustrating the fifth example of the present invention lc D device in the black display of reflection mode light transmission and reflection; Figure 18 B is a schematic diagram illustrating the fifth example of the present invention B c Transmission and reflection of light in the white display of the D device in the reflection mode; Figure 18 C is a schematic diagram illustrating the transmission and reflection of light in the black display of the fifth example lc D device of the present invention; Figure 18D is a Schematic diagram illustrating the fifth example of the LCD device of the present invention. The paper size applies to Chinese National Standard (CNS) A4 specifications (210 X 297 mm) A7

過杈式之白色顯示中之光線透過與反射; 圖1 9係-圖表表示第五範例在黑色顯示 率之間關係; m 圖20係-圖表表示第五範例在黑色顯示中之波長盥透過 率之間關係; ^ 圖2 1係本發明第六範例中一 LCD裝置之一主動陣列基材 平面圖; 圖2 2係圖2 1所示主動陣列基材截面圖; 圖23A至23E係截面圖說明一種用於製造圖21、22所示 主動陣列基材之方法; 圖2 4係本發明第七範例中一 L c D裝置之一主動陣列基材 平面圖; 圖2 5係沿圖2 4之2 5 - 2 5 ’線所取之L C D裝置截面圖; 圖2 6 A至2 6 C係截面圖說明一種用於製造本發明第八範例 中一 LCD裝置之一主動陣列基材之方法; 圖27A至27C係截面圖說明一種用於製造本發明第九範例 中一 LCD裝置之一主動陣列基材之方法; 圖2 8 A至2 8 C係截面圖說明一種用於製造本發明第十範例 中一LCD裝置之一主動陣列基材之方法; 圖29A至29C係截面說明一種用於製造本發明第十一範例 中一 LCD裝置之一主動陣列基材之方法; 圖30係第十一範例中LCD裝置之主動陣列基材平面圖; 圖31A至31E及32A至32C係截面圖說明一種用於製造第 十一範例中LCD裝置之一顯示段之方法; -14- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公爱) 482917 A7 B7 五、發明説明(12 ) 圖33A至33F係截面圖說明一種用於製成第十一範例中 LCD裝置之一閘終端段之方法; 圖34A係第十一範例修改型中之一 LCD裝置閘終端段截 面圖; 圖3 4B係第十一範例修改型中之一LCD裝置閘終端段截 面圖; 圖3 5 A至3 5 C係一種用於製成本發明第十二範例中一 LCD裝置之方法之截面圖; 圖3 6係由本發明一第十三範例所示一方法製成之乙c D裝 置截面圖; 圖3 7 A係由本發明一第十三範例所示另一方法製成之 LCD裝置之截面圖; 圖37B係一圖表表示圖37A所示LCD裝置之電壓-亮度關 係; 圖3 8A係由一比較方法所製成之LCD裝置截面圖;及 圖38B係一圖表表示圖38A所示LCD裝置之電壓-亮度關 係。 元件符號說明Light transmission and reflection in a white display with a cross-type display; Figure 19 Series-the graph shows the relationship between the fifth example and the black display rate; m Figure 20 Series-the graph shows the fifth example of the wavelength and black transmittance in the black display ^ FIG. 2 is a plan view of an active array substrate of an LCD device in a sixth example of the present invention; FIG. 2 is a sectional view of the active array substrate shown in FIG. 21; A method for manufacturing the active array substrate shown in FIGS. 21 and 22; FIG. 24 is a plan view of an active array substrate of one of the L c D devices in the seventh example of the present invention; A cross-sectional view of an LCD device taken along lines 5-2 '; Figures 2 A to 2 6 C are cross-sectional views illustrating a method for manufacturing an active matrix substrate for an LCD device in an eighth example of the present invention; Figure 27A Sections 27 to 27C illustrate a method for manufacturing an active matrix substrate of an LCD device in a ninth example of the present invention; Figures 2 A to 2 8 C are sectional views illustrating a method for manufacturing a tenth example in the present invention. A method for an active matrix substrate of an LCD device; Figures 29A to 29C are cut-aways A method for manufacturing an active array substrate for an LCD device in the eleventh example of the present invention is illustrated; FIG. 30 is a plan view of an active array substrate for the LCD device in the eleventh example; FIGS. 31A to 31E and 32A to 32C The cross-sectional view illustrates a method for manufacturing a display segment of an LCD device in the eleventh example; -14- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 public love) 482917 A7 B7 V. Description of the invention (12) FIGS. 33A to 33F are cross-sectional views illustrating a method for forming a gate terminal section of an LCD device in the eleventh example; FIG. 34A is a cross-sectional view of one terminal terminal of an LCD device in the eleventh modified example. Figure 3 4B is a sectional view of a gate terminal section of an LCD device in an eleventh modified example; Figure 3 5 A to 3 5 C are sectional views of a method for manufacturing an LCD device in a twelfth example of the present invention Figure 3 6 is a cross-sectional view of a BCD device made by a method shown in a thirteenth example of the present invention; Figure 37 is a cross-section of an LCD device made by another method shown in a thirteenth example of the present invention FIG. 37B is a diagram showing the LCD device shown in FIG. 37A Voltage-brightness relationship; FIG. 38A is a cross-sectional view of an LCD device made by a comparison method; and FIG. 38B is a graph showing the voltage-brightness relationship of the LCD device shown in FIG. 38A. Component symbol description

裝 訂Binding

1 第一基材 2 第一基材 3 反射電極區 4 透過電極 5 液晶層 55半導體層 56a半導體接觸層 56b半導體接觸層 57薄膜電晶體 58a透過電極 -15- 本紙張尺度適用中國國豕標準(CNS) A4規格(210X297公爱) 482917 A7 B7 五、發明説明(13 ) 6 偏光器 58b 源極 7 波板^ 58c 汲極 8 透過電極區 59a 源線 9 第二偏光器 59b 源極 10 第二相位補償元件 59c 沒極 11 第三相位補償元件 59d 連接金屬層 12 第四相位補償元件 59e 金屬層 21 閘線 60 層間絕緣層 22 資料線 61 反射電極 23 驅動元件 62 導電金屬層 24 汲極 63 接觸孔 25 儲存電容電極 64 圓突起 26 閘絕緣層 70 閘線 27 絕緣基材 71 源線 28 接觸孔 78 透過電極 29 層間絕緣層 79 反射層 30 反射電極 80 透明之層間絕緣層 30T 透過電極區 88 透過電極 31 透過像素電極(透過電極區) 89 反射電極 32 儲存電容線 90R 反射區 35 儲存電容電極 90T透過區 42 層間絕緣層 100 層間絕緣層 44 透過電極 dr 厚度 51 絕緣板 dt 厚度 -16- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 482917 A7 B7 五、發明説明(14 ) 52 閘極 R 反射區 53 閘線. T 透過區 54 閘絕緣層 較佳實例說明 「反射電極區」、「透過電極區」、「反射區」及「透過 區」將說明如下。 一利用環境光線以執行顯示之反射型LCD裝置具有一反 射電極於第二基材之其中一者上,用於將透過通過一液晶 層之環境光線反射。反射電極區可由一反射電極或一透過 電極與一反射電極之併合型式所構成(例如反射板),易言 之,用於施加一電壓至液晶層之一電極可為一透過電極, 且在此情形下用於反射輸入光線之反射電極區即不需做為 一電極。 一透過與反射型LCD裝置具有一反射電極區,如同反射 型LCD裝置者,反射電極區可由一反射電極或一透過電極 與一反射層(例如反射板)之併合型式所構成,而透過電極區 通常由一透過電極構成。在一具有較小透過電極區於反射 電極内之LCD裝置例子中(稱之為半透過與半反射型LCD裝 置),液晶分子係藉由透過電極區中之反射電極施加一電壓 至液晶層而驅動’因此,透過電極區不需要做為電極。在 此型LCD裝置中,各透過電極區具有一小於液晶層厚度之 度量(例如在透過電極區為一圓形例子中之直徑)。在反射電 極區以一透過電極與一反射層併合型式構成而使用於半透 -17- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 482917 A7 B71 First substrate 2 First substrate 3 Reflective electrode area 4 Transmissive electrode 5 Liquid crystal layer 55 Semiconductor layer 56a Semiconductor contact layer 56b Semiconductor contact layer 57 Thin film transistor 58a Transmissive electrode-15- This paper applies the Chinese national standard ( CNS) A4 specification (210X297 public love) 482917 A7 B7 V. Description of the invention (13) 6 Polarizer 58b Source 7 Wave plate ^ 58c Drain 8 Transmit electrode area 59a Source line 9 Second polarizer 59b Source 10 Second Phase compensation element 59c Pole 11 Third phase compensation element 59d Connected to metal layer 12 Fourth phase compensation element 59e Metal layer 21 Gate line 60 Interlayer insulation layer 22 Data line 61 Reflective electrode 23 Drive element 62 Conductive metal layer 24 Drain 63 Contact Hole 25 Storage capacitor electrode 64 Round protrusion 26 Gate insulation layer 70 Gate line 27 Insulating substrate 71 Source line 28 Contact hole 78 Transmission electrode 29 Interlayer insulation layer 79 Reflection layer 30 Reflective electrode 80 Transparent interlayer insulation layer 30T Transmission electrode area 88 Electrode 31 through pixel electrode (through electrode area) 89 reflective electrode 32 storage capacitor line 90R reflection area 35 storage capacitor electrode 90T through 42 Interlayer insulation layer 100 Interlayer insulation layer 44 Transmissive electrode dr Thickness 51 Insulation board dt Thickness -16- This paper size applies to China National Standard (CNS) A4 specification (210X 297 mm) 482917 A7 B7 V. Description of the invention (14) 52 Gate electrode R Reflective region 53 Gate line. T Transmission region 54 Gate insulating layer A better example of the "reflective electrode region", "transmissive electrode region", "reflection region" and "transmissive region" will be described below. A reflective LCD device using ambient light to perform a display has a reflective electrode on one of the second substrates for reflecting ambient light transmitted through a liquid crystal layer. The reflective electrode region may be composed of a reflective electrode or a combination of a transmissive electrode and a reflective electrode (such as a reflective plate). In other words, an electrode for applying a voltage to the liquid crystal layer may be a transmissive electrode, and here In this case, the reflective electrode area for reflecting the input light does not need to be an electrode. A transmissive and reflective LCD device has a reflective electrode area. As with reflective LCD devices, the reflective electrode area can be composed of a reflective electrode or a combination of a transmissive electrode and a reflective layer (such as a reflective plate), and the transmissive electrode area It usually consists of a transmissive electrode. In an example of an LCD device having a small transmissive electrode area inside a reflective electrode (referred to as a transflective and semi-reflective LCD device), the liquid crystal molecules are applied to the liquid crystal layer by applying a voltage to the liquid crystal layer through the reflective electrode in the transmissive electrode area Driven. Therefore, the transmissive electrode area does not need to be an electrode. In this type of LCD device, each of the transmission electrode regions has a measure smaller than the thickness of the liquid crystal layer (for example, a diameter in the case where the transmission electrode region is a circle). The reflective electrode area is composed of a combination of a transmissive electrode and a reflective layer and is used for semi-transparent -17- This paper size applies to China National Standard (CNS) A4 (210X 297 mm) 482917 A7 B7

過與半反射型LCD裝置之例子中,可使用一由各像素區與 一具有複數開孔之反射層全體構成之透過電極。 … 在本發明之透過與反射型LCD裝置中(不含透過與反射型 LCD裝置),在一透過模式中用於執行顯示之區域可視為二 「透過區」,而在一反射模式中用於執行顯示之區域可視 為一「反射區」,透過區及反射區各包括一透過電極區、 一反射電極區、及一由透過電極區與反射電極區所定義之 液晶層。半透過與半反射型LCD裝置亦包括一反射電極及 一透過電極區,但是由反射電極反射之光線及由透過電極 區透過之光線係混合且重疊,據此,透過區與反射區並非 獨王地定義。易T之,在具有一透過電極區與一反射電極 區以用於各像素區之諸LCD裝置中,其透過區與反射區無 法獨三地足義(即諸區域大致重疊)之一 L c D裝置係可稱之 為半透過與半反射型LCD裝置。 「像素區」一詞係定義如下。本發明之一LCD裝置具有 複數像素區以執行顯示,「像素區」一詞係定義為-;LCD 裝置之一部份(一元件),其構成一像素,即一最小之顯示單 元。通常在一包括有一逆電極與複數像素電極之主動陣列 L C D裝置中且像素電極排列成一陣列及由各主動元件(例如 TFTs)切換,則一像素區係包括其中一像素電極、一定位以 對應於像素電極之逆電極區、及一位於其間之液晶層區。 在一單純陣列之LCD裝置中,即其包括若干長條形電極(掃 描電極及訊號電極)且各形成於二基材上及相互交叉排列而 液晶層設於其間,一像素區係包括一供長條形電極相互交 -18- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)In the example of the transflective LCD device, a transmissive electrode composed of each pixel region and a reflective layer having a plurality of openings as a whole can be used. … In the transmissive and reflective LCD devices of the present invention (excluding transmissive and reflective LCD devices), the area used to perform display in a transmissive mode can be regarded as two “transmissive areas”, and used in a reflective mode The area where the display is performed can be regarded as a "reflection area". The transmission area and the reflection area each include a transmission electrode area, a reflection electrode area, and a liquid crystal layer defined by the transmission electrode area and the reflection electrode area. Semi-transmissive and semi-reflective LCD devices also include a reflective electrode and a transmissive electrode area, but the light reflected by the reflective electrode and the light transmitted by the transmissive electrode area are mixed and overlapped, and according to this, the transmissive area and the reflective area are not alone地 definition. Easily, in LCD devices having a transmissive electrode region and a reflective electrode region for each pixel region, the transmissive region and the reflective region cannot be uniquely defined (that is, the regions substantially overlap). The D device can be referred to as a transflective and transflective LCD device. The term "pixel area" is defined as follows. An LCD device according to the present invention has a plurality of pixel areas for performing display. The term "pixel area" is defined as-; a part (a component) of the LCD device constitutes a pixel, that is, a smallest display unit. Generally, in an active-array LCD device including a counter electrode and a plurality of pixel electrodes, and the pixel electrodes are arranged in an array and switched by various active elements (such as TFTs), a pixel region includes one of the pixel electrodes, one positioned to correspond to A counter electrode region of the pixel electrode and a liquid crystal layer region located therebetween. In a simple array LCD device, that is, it includes a plurality of elongated electrodes (scanning electrodes and signal electrodes) each formed on two substrates and arranged crosswise with each other with a liquid crystal layer disposed therebetween. A pixel region includes a supply The strip electrodes intersect with each other -18- This paper size applies to China National Standard (CNS) A4 (210X 297 mm)

装 訂Binding

線 ____ B7 五、發明説明(16 ) 又之交又區及一定位以相對應於交又區之液晶層區。本發 明之一透過與反射型LCD裝置具有一反射電極區及一透過 電極區,以用於各像素區。 相位補頂元件」包括一相位板或一相位膜,且「偏光 器」包括一偏光板或一偏光膜。 「阻;帶」係指一相關於光線垂直地入射於液晶層或一相位 補償元件上之阻滯,除非另有指定。 (實例1) 本發明之一第一實例,一具有較習知LCD裝置為高顯示 品質之反射型LCD裝置係特別說明於第一範例中,如圖1所 示’第一實例中之反射型LCD裝置包括一含有一透過電極4 之第一基材1、一含有一反射電極區3之第二基材、一設於 第一基材1與第二基材2之間之液晶層5、一設於第一基材1 之一表面上且相對於液晶層5之偏光器6、及一設於偏光器6 與液晶層5之間之λ/4波板7。圖1簡示本發明反射型[CD 裝置之一像素區。 液晶層5包括呈現負誘電率異方性之液晶分子(圖中未 示)’液晶層5中之液晶分子係大致經過處理,以利於當無 電壓施加時可在垂直方向配列第一、二基材1、2之表面(一 液晶層經過處理以使其内之液晶分子在無電壓施加時可在 垂直方向配列基材表面,此即稱之為「垂直配列之液晶 層」,而一液晶層經過處理以使其内之液晶分子在無電壓 施加時可在水平方向配列基材表面,此稱之為「水平配列 之液晶層」)。Λ/4波板7之一較延緩軸線與偏光器6之一透 -19- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 482917 A7 __B7 五、發明説明^ 過軸線係設定為形成大約4 5度角,入射通過偏光器6之直線 偏光光線則轉變成圓形偏光光線,且由反射電極區3反射及 透過通過液晶層5之圓形偏光光線再轉變成直線偏光光線。 據此’當無電壓:施加時,由液晶層5阻滯者大致為零,因而 取得令人滿意之黑色顯示。 如圖2所示,第一實例中之一透過與反射型lcd裝置包括 一第一基材1、一第二基材2、一設於第一與第二基材丨、2 之間之液晶層5、一設於第一基材1之一表面上且相對於液 晶層5之第一偏光器6、及一設於第二基材2之一表面上且相 對於液晶層5之第二偏光器9。透過與反射型LCD裝置另包 含一第一相位補償元件7(通常為一 λ /4波板)設於第一偏光 器6與液晶層5之間,以及一第二相位補償元件1 〇 (通常為一 λ /4波板)設於第二偏光器9與液晶層5之間。第二基材2包 括一反射電極區(R)3及一透過電極區g(T),以用於複數個 像素區之各者。圖2簡示透過與反射型LCD裝置之一像素 區’在圖2中,反射電極區3(R)與透過電極區8(T)係各揭 示為一區ν以求簡明,但是本發明之透過與反射型L c D裝 置並不僅限於此,且其可具有複數透過電極區8於反射電極 區3中’如同一半透過與半反射型lcd裝置。 透過與反射型LCD裝置在圖2中所示係依以下方式操作。 在反射模式中’當目視方向(即液晶層之厚度方向)中之液 晶層阻滞(雙折射)大致為零時(即垂直配列模式中之初期配 列狀態及水平配列模式中以前述飽和電壓供給之狀態),黑 色(暗色)顯示即由以下原因執行。透過通過第一偏光器之直 -20- 本紙張尺度適用中國國家標準(CMS) A4規格(210X297公 482917 A7 B7 五、發明説明(18 線偏光光線係透過通過第一相位補償元件與液晶層,隨後 反射且再次透過通過液晶層與第一補償元件,以利入射至 第一偏光器上,在此處,光線具有足夠之偏光分量垂直於 第一偏光器之透過軸線,以進行黑色顯示。 當目視方向中有一阻滯時,白色(亮色)顯示即依以下原因 執行。透過通過第一偏光器之直線偏光光線係透過通過第 一相位補償元件與液晶層,隨後反射且再次透過通過液晶 層與第一補償元件,以利入射至第一偏光器上,在此處, 光線具有足夠之偏光分量平行於第一偏光器之透過轴線, 以進行白色顯示。由液晶層所做對應於不同阻滯之灰階顯 示係利用一電壓施加通過液晶層而取得。 在透過模式中,當目視方向中之阻滯大致為零時,黑色顯 示係依以下原因執行。透過通過第二偏光器之直線偏光光 線係透過通過第二相位補償元件、液晶層、及第一相位補 償元件,以利入射於第一偏光器上,在此處,光線具有足 夠偏光分量平行於第一偏光器之透過軸線,以進行黑色顯 示。 當目視方向中有阻滯時,白色顯示即依以下原因執行。透 過通過第二偏光器之直線偏光光線係透過通過第二相位補 償元件、液晶層、及第一相位補償元件,以利入射於第一 偏光器上,在此處,光線具有足夠偏光分量平行於第一偏 光器之透過軸線,以進行白色顯示,對應於不同阻滯之灰 階顯示即可取得。 據此,當反射模式與透過模式一併使用時,黑色顯示即以 -21 - 本紙張尺度適用中國國家標準&lt;CNS) A4規格(210 X 297公釐) 裝Line ____ B7 V. Description of the invention (16) The intersection area and a liquid crystal layer area positioned to correspond to the intersection area. A transmissive and reflective LCD device of the present invention has a reflective electrode region and a transmissive electrode region for each pixel region. The “phase compensation component” includes a phase plate or a phase film, and the “polarizer” includes a polarizing plate or a polarizing film. "Resistance; band" refers to a retardation related to the vertical incidence of light on a liquid crystal layer or a phase compensation element, unless otherwise specified. (Example 1) A first example of the present invention, a reflective LCD device with higher display quality than conventional LCD devices is specifically illustrated in the first example, as shown in FIG. 1 'Reflective type in the first example The LCD device includes a first substrate 1 including a transmissive electrode 4, a second substrate including a reflective electrode region 3, a liquid crystal layer 5 disposed between the first substrate 1 and the second substrate 2, A polarizer 6 disposed on a surface of the first substrate 1 and opposite to the liquid crystal layer 5, and a λ / 4 wave plate 7 disposed between the polarizer 6 and the liquid crystal layer 5. FIG. 1 schematically illustrates a pixel area of a reflective [CD device of the present invention. The liquid crystal layer 5 includes liquid crystal molecules (not shown in the figure) that exhibit negative anisotropy. The liquid crystal molecules in the liquid crystal layer 5 are roughly processed to facilitate the arrangement of the first and second radicals in the vertical direction when no voltage is applied. The surface of materials 1 and 2 (a liquid crystal layer is processed so that the liquid crystal molecules in it can arrange the surface of the substrate in the vertical direction when no voltage is applied. This is called a "vertical alignment liquid crystal layer", and a liquid crystal layer After being processed so that the liquid crystal molecules in it can arrange the surface of the substrate in the horizontal direction when no voltage is applied, this is called "horizontal liquid crystal layer"). One of the Λ / 4 wave plates 7 is more transparent than one of the retarded axes and one of the polarizers 6-This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) 482917 A7 __B7 V. Description of the invention ^ Axial system Set to form an angle of about 45 degrees, the linearly polarized light incident through the polarizer 6 is converted into circularly polarized light, and the circularly polarized light reflected by the reflective electrode region 3 and transmitted through the liquid crystal layer 5 is converted into linearly polarized light. . Accordingly, when no voltage is applied, the blocker by the liquid crystal layer 5 is substantially zero, and a satisfactory black display is obtained. As shown in FIG. 2, a transmissive and reflective LCD device in a first example includes a first substrate 1, a second substrate 2, and a liquid crystal disposed between the first and second substrates 1 and 2. Layer 5, a first polarizer 6 disposed on one surface of the first substrate 1 and opposite to the liquid crystal layer 5, and a second polarizer 6 disposed on one surface of the second substrate 2 and opposite to the liquid crystal layer 5. Polarizer 9. The transmissive and reflective LCD device further includes a first phase compensation element 7 (usually a λ / 4 wave plate) disposed between the first polarizer 6 and the liquid crystal layer 5, and a second phase compensation element 1 (usually Is a λ / 4 wave plate) provided between the second polarizer 9 and the liquid crystal layer 5. The second substrate 2 includes a reflective electrode region (R) 3 and a transmissive electrode region g (T) for each of a plurality of pixel regions. FIG. 2 schematically illustrates a pixel region of a transmissive and reflective LCD device. In FIG. 2, the reflective electrode region 3 (R) and the transmissive electrode region 8 (T) are each disclosed as a region ν for simplicity. The transmissive and reflective L c D device is not limited to this, and it may have a plurality of transmissive electrode regions 8 in the reflective electrode region 3 'as a semi-transmissive and semi-reflective lcd device. The transmissive and reflective LCD devices shown in FIG. 2 operate in the following manner. In the reflection mode, when the retardation (birefringence) of the liquid crystal layer in the visual direction (that is, the thickness direction of the liquid crystal layer) is substantially zero (that is, the initial alignment state in the vertical alignment mode and the horizontal alignment mode are supplied with the aforementioned saturated voltage) Status), black (dark) display is performed for the following reasons. Straight through the first polarizer -20- This paper size applies the Chinese National Standard (CMS) A4 specification (210X297 male 482917 A7 B7 V. Description of the invention (18-line polarized light is transmitted through the first phase compensation element and the liquid crystal layer, It is then reflected and transmitted again through the liquid crystal layer and the first compensation element to facilitate incidence on the first polarizer, where the light has a sufficient polarization component perpendicular to the transmission axis of the first polarizer for black display. When there is a block in the visual direction, the white (bright color) display is performed for the following reasons. The linearly polarized light passing through the first polarizer passes through the first phase compensation element and the liquid crystal layer, and then reflects and passes through the liquid crystal layer and again. The first compensation element is incident on the first polarizer, where the light has a sufficient polarization component parallel to the transmission axis of the first polarizer for white display. The liquid crystal layer corresponds to different resistances. The gray scale display of retardation is obtained by applying a voltage through the liquid crystal layer. In the transmission mode, when the retardation in the visual direction is approximately At this time, the black display is performed for the following reasons. The linearly polarized light transmitted through the second polarizer is transmitted through the second phase compensation element, the liquid crystal layer, and the first phase compensation element to facilitate incident on the first polarizer. Here, the light has a sufficient polarization component parallel to the transmission axis of the first polarizer for black display. When there is a block in the visual direction, the white display is performed for the following reasons. Linearly polarized light passing through the second polarizer It is transmitted through the second phase compensation element, the liquid crystal layer, and the first phase compensation element to facilitate incidence on the first polarizer. Here, the light has a sufficient polarization component parallel to the transmission axis of the first polarizer to perform The white display can be obtained according to the gray scale display of different retardation. According to this, when the reflection mode and the transmission mode are used together, the black display is -21-this paper scale applies the Chinese national standard &lt; CNS) A4 specification (210 X 297 mm) loaded

k 482917 A7 五、發明説明 __B7 19 )k 482917 A7 V. Description of the invention __B7 19)

二種模式進行,而取得高對比之顯示,灰階顯示則藉由拎 制電壓以改變阻滯而進行。 二 在反射模式中進行顯示之反射區及透過模式中進行顯示之 透過區皆用於各像素區之情況中,反射光線之使用因素$ 得以改善。此外,在此一結構中,反射區與透過區中之液 晶層厚度(阻滯)可獨立地調整。因此,各顯示模式可達 s 佳化。 瑕 當液晶分子之分子軸線大致垂直於第一、二基材之表面 時,液晶層所致之阻滯即大致為零,而當第一、二相位補 償元件各者所致之阻滯可滿足λ /4條件時,在反射模式中 之目視方向幾乎無液晶層所致之雙折射,其係使用由具有 反射功能之區域所反射之光線,如一反射層或反射板。據 此’圓形偏光光線入射於反射電極區上,且由其反射或具 有一相反旋轉方向之圓形偏光光線。光線透過通過第一相 位補償元件,成為直線偏光光線且垂直於第一偏光器之透 過軸線’由於反射區係做為一光隔離器,因而可提供一極 小光漏損之黑色顯示。 當反射模式中之目視方向有液晶層所致之阻滯(雙折射) 時,阻滯可藉控制電壓而改變,因此,已入射於第一偏光 器上、反射及再次入射於第一偏光器上之光線可具有平行 於第一偏光器透過軸線之分量,據此可得到具有灰階之亮 色顯示。 當透過模式中之目視方向幾乎無液晶層所致之阻滞時,入 射於液晶層上之圓形偏光光線即在透過通過液晶層時保持 -22- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐)Two modes are performed, and a high-contrast display is obtained, and a gray-scale display is performed by controlling the voltage to change the blocking. 2. The reflection area displayed in the reflection mode and the transmission area displayed in the transmission mode are used in the case of each pixel area, and the use factor $ of the reflected light is improved. In addition, in this structure, the thickness (blocking) of the liquid crystal layer in the reflection region and the transmission region can be independently adjusted. Therefore, each display mode can be optimized. When the molecular axis of the liquid crystal molecules is substantially perpendicular to the surfaces of the first and second substrates, the retardation caused by the liquid crystal layer is approximately zero, and the retardation caused by each of the first and second phase compensation elements can satisfy Under the condition of λ / 4, the visual direction in the reflection mode is almost free of the birefringence caused by the liquid crystal layer. It uses light reflected by a region having a reflection function, such as a reflection layer or a reflection plate. Accordingly, the circularly polarized light is incident on the reflective electrode area and is reflected by it or has circularly polarized light having an opposite rotation direction. The light passes through the first phase compensation element to become linearly polarized light and is perpendicular to the transmission axis of the first polarizer. Since the reflection area is used as an optical isolator, it can provide a black display with very little light leakage. When there is a retardation (birefringence) caused by the liquid crystal layer in the viewing direction in the reflection mode, the retardation can be changed by the control voltage. Therefore, it has been incident on the first polarizer, reflected, and incident on the first polarizer again. The light on it may have a component parallel to the transmission axis of the first polarizer, thereby obtaining a bright color display with a gray scale. When there is almost no blocking caused by the liquid crystal layer in the viewing direction in the transmission mode, the circularly polarized light incident on the liquid crystal layer is maintained as it passes through the liquid crystal layer. -22- This paper applies the Chinese National Standard (CNS) Α4 Specifications (210 X 297 mm)

装 訂Binding

482917 A7 B7 五、發明説明(20 ) 圓形偏光。光線透過通過第一相位補償元件,成為直線偏 光光線且垂直於第一偏光器之透過軸線,因而可提供具有 極小光漏損之黑色顯示。 當透過模式中之目視方向有液晶層所致之阻滯時,阻滯可 藉控制電壓而改變,因此,入射於第二偏光器上之光線即 入射於第一偏光器上,且平行於第一偏光器之透過軸線, 因此可提供具有灰階之白色顯示。 如上所述,當使用反射模式與透過模式時,用於黑色顯示 之液晶分子狀態係在二種模式中皆相同,且提供大致無光 漏損之黑色顯示。不論環境之光強度如何,透過與反射型 L C D裝置可提供高對比之顯示。 在此一LCD裝置中,甚至當液晶分子所致之阻滯(α)仍 在幾乎垂直於第一、二基材狀態且無法忽略不計時,例如 當使用一水平配列液晶層或當預先傾斜角度在一垂直配列 液晶層中呈過大時,皆可藉由設定液晶層所致剩餘阻滯及 相位補償元件所致阻滯併合以滿足於一寬波長範圍内之 λ / 4條件,而在反射模式中提供高對比之顯示。 在反射模式中,透過通過液晶層二次後即離開液晶層之光 線係橢圓偏光光線,其與圓形偏光光線之歧異為剩餘之延 緩值α,橢圓偏光光線與入射光線呈9〇度之相位歧異。據 此,當透過通過具有λ/4-α延緩值之第一相位補償元件 時,光線即逐漸成為垂直於第一偏光器透過軸線之直線偏 光光線,由於反射區有如一光隔離器,因此可提供極小光 漏損之黑色顯示。 -23- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 482917 A7 _ B7 五、發明説明(21 ~&quot; 可以瞭解的是,甚至當剩餘之阻滯無法忽略時,高對比顯 示仍可在反射模式中取得。在進行主要反射模式顯示之情 況下,例如當反射像素電極大於透過像素電極時,則圖3所 示之第二相位補償元件1〇可為一又/ 4之波板。 甚至在剩餘阻滯不可忽略之情況下,例如當使用一水平配 列液晶層或當預先傾斜角度在一垂直配列液晶層中呈過大 時’則高對比之顯示可利用以下結構而提供用於一反射型 LCD裝置、一透過型LCD裝置及一透過與反射型LCD裝 置。當液晶分子幾乎在垂直方向配列基材時,α為反射區 中液晶層所致之延緩值,及沒為透過區中液晶層所致之延 緩值’則第一相位補償元件之延緩值滿足於λ /4 - α且第二 相位補償元件之延緩值滿足於又/4 -(占-α )。 如上所述’在反射模式中,透過通過液晶層二次後即離開 液晶層之光線為橢圓偏光光線,其與圓形偏光光線之歧異 為剩餘之延緩值α。當透過通過具有λ/4-α延緩值之第一 相位補償元件時,光線逐漸成為直線偏光光線,且垂直於 第一偏光器之透過軸線。 在透過模式中。當視角中液晶分子所致之延緩值(石)不可 忽略時’離開液晶層之光線即如反射模式中之橢圓偏光光 線,因為第二相位補償元件係設定為具有λ /4_(冷-α )之延 緩值。當透過通過相位補償元件時,橢圓偏光光線成為直 線偏光光線,且垂直於第一偏光器之透過軸線,因此可取 得具有極小光漏之黑色顯示。 即使在剩餘阻滯為不可忽略之情況下,高對比之顯示係利 -24 - 本紙張尺度適财關家標準(CNS) Α4祕(21Gχ 297公爱) 482917 A7 _ B7 ___ 五、發明説明(22 ) 用以下結構而提供用於一反射型LCD裝置、一透過型LCD 裝置及一透過與反射型LCD裝置。 當剩餘阻滯為可忽略不計時,圓形偏光光線即入射於液晶 層上,以利用以下之設定而取得具有最簡省結構之高對比 顯示。第一、二補償元件係各由一又/4波板構成,第一偏 光器之透過軸線及第一相位補償元件之較延緩軸線係設定 為呈大約45度角,第二偏光器之透過軸線及第二相位補償 元件之較延緩軸線亦設定為呈大約4 5度角。 在一透過與反射型LCD裝置中,可使用一液晶層且其内 之液晶分子係在無電壓施加時可於垂直方向大致配列基材 之表面,在此情況下,LCD裝置可在環境光線呈黑暗時做 為一透過型LCD裝置,以利用來自背光與透過通過透過電 極區之光線進行顯示,透過電極區係由一具有較高光線透 過率之材料製成。當環境光線呈明亮時,LCD裝置可做為 一反射型L C D裝置,以利用由反射電極區反射之環境光線 進行顯示,反射電極區係由一具有較高光線反射率之材料 製成。當透過彳吴式與反射模式一併使用時,大致上完整之 黑色顯示即可以二種模式進行。因此,可取得高對比之顯 示,容後詳述。 一透過與反射型L C D裝置大致上可利用雙折射而操作於 常態黑色(以下稱NB )模式與常態白色(以下稱n w)模式。 在NW模式中,施加以取得黑色顯示之電壓係隨著細胞間 隙變化而變化,在Ν β模式中,施加以取得白色顯示之電壓 係隨著細胞間隙變化而變化,據此,在N w模式中,明暗比 -25- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公董) 482917 A7 B7 五、發明説明(23 ) 係明顯隨著需做精確細胞間隙控制之細胞間隙而變化。在 N B模式中,對比並未依據細胞間隙做大致上之變化,其對 細胞間隙控制提供一較大之邊際,此外在NB模式中,當切 換元件(例如T F T )失效而防止電壓施加於像素電極上時,此 將造成不顯著之黑點。 一可操作於NB模式中之透過與反射型LCD裝置具有—高 生產效率,且高對比之顯示可取易取得,而無關於本發明 之環境光線強度。 一相位補償元件可提供以補償在液晶層上之光入射方向中 及目視方向中所致液晶分子折射指數異方性之影響,在此 一結構中’依據光入射方向與目視方向之對比降低可得以 避免。 當一偏光迴轉摻雜物添加至由具有LCD裝置負誘電率異 方性之一液晶材料製成之垂直配列液晶層時,液晶分子即 在一電壓施加時產生旋轉,因此,液晶分子在電壓施加時 之旋轉係由偏光迴轉摻雜物穩定。 當二基材附近中之配列層在不同方向摩擦時,配列處理之 痕跡並不在相同方向,且因而並不明顯。當液晶層具有9 〇 度之扭曲方向時,具有極小光漏損之黑色顯示即可依以下 原因取得’二基材附近中之液晶分子傾斜方向係呈9 〇度 角’因此產生於傾斜方向中之阻滯會相互抵銷。 形成相位補償元件而相關於平常光線與異常光線之雙折射 材料之折射指數係取決於波長,因此,在相位補償元件中 特疋厚度處累積之相位延遲亦取決於波長。易言之,相位 -26- 本紙張尺度適用中國國家標準(CNS) A4規格(21〇X 297公釐)-:----- 482917482917 A7 B7 V. Description of the invention (20) Circular polarized light. The light passes through the first phase compensating element to become linearly polarized light and is perpendicular to the transmission axis of the first polarizer, thereby providing a black display with extremely small light leakage. When there is a block caused by the liquid crystal layer in the visual direction in the transmission mode, the block can be changed by the control voltage. Therefore, the light incident on the second polarizer is incident on the first polarizer and parallel to the first polarizer. A polarizer has a transmission axis, so it can provide a white display with a gray scale. As described above, when the reflection mode and the transmission mode are used, the state of the liquid crystal molecules used for black display is the same in both modes, and a black display with substantially no light leakage is provided. Regardless of the ambient light intensity, the transmissive and reflective LCD devices provide a high contrast display. In this LCD device, even when the retardation (α) caused by the liquid crystal molecules is still almost perpendicular to the first and second substrate states and cannot be ignored, for example, when a horizontally aligned liquid crystal layer is used or when the tilt angle is previously set, When the vertical alignment liquid crystal layer is too large, the residual retardation caused by the liquid crystal layer and the retardation caused by the phase compensation element can be set to meet the λ / 4 condition in a wide wavelength range, and in the reflection mode Medium provides high contrast display. In the reflection mode, the light that passes through the liquid crystal layer twice and then leaves the liquid crystal layer is elliptical polarized light. The difference between the polarized light and the circular polarized light is the remaining retardation value α. The elliptical polarized light and the incident light have a phase of 90 ° Disagreement. According to this, when passing through the first phase compensation element having a retardation value of λ / 4-α, the light gradually becomes linearly polarized light perpendicular to the transmission axis of the first polarizer. Since the reflection area is like an optical isolator, it can Provides black display with minimal light leakage. -23- This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) 482917 A7 _ B7 V. Description of the invention (21 ~ &quot; It can be understood that even when the remaining block cannot be ignored, The high contrast display can still be obtained in the reflection mode. In the case of the main reflection mode display, for example, when the reflective pixel electrode is larger than the transmissive pixel electrode, the second phase compensation element 10 shown in FIG. 3 may be Wave plate of 4. Even in cases where the remaining retardation is not negligible, such as when a horizontally aligned liquid crystal layer is used or when the pretilt angle is too large in a vertically aligned liquid crystal layer, 'high contrast display can use the following structure and Provided for a reflective LCD device, a transmissive LCD device, and a transmissive and reflective LCD device. When the liquid crystal molecules are aligned in the vertical direction, α is the retardation value caused by the liquid crystal layer in the reflection area, and Is the retardation value caused by the liquid crystal layer in the transmission region, then the retardation value of the first phase compensation element satisfies λ / 4-α and the retardation value of the second phase compensation element satisfies / 4-(accounting for -α). As above In the reflection mode, the light transmitted through the liquid crystal layer twice and then leaving the liquid crystal layer is elliptical polarized light, and the difference between the polarized light and the circular polarized light is the remaining retardation value α. When transmitted through has λ / 4-α When the retardation value of the first phase compensation element, the light gradually becomes linearly polarized light, and is perpendicular to the transmission axis of the first polarizer. In the transmission mode. When the retardation value (stone) caused by the liquid crystal molecules in the viewing angle cannot be ignored ' The light leaving the liquid crystal layer is the elliptically polarized light in the reflection mode, because the second phase compensation element is set to have a retardation value of λ / 4_ (cold-α). When passing through the phase compensation element, the elliptically polarized light becomes a straight line The polarized light is perpendicular to the transmission axis of the first polarizer, so a black display with very small light leakage can be obtained. Even in the case where the remaining retardation is not negligible, the display with high contrast is Li-24-this paper is suitable for the standard Financial Standards (CNS) Α4 secret (21Gχ 297 public love) 482917 A7 _ B7 ___ V. Description of the invention (22) The following structure is provided for a reflective LCD device, a Transmissive LCD device and a transmissive and reflective LCD device. When the remaining retardation is negligible, circularly polarized light is incident on the liquid crystal layer, so as to use the following settings to obtain a high-contrast display with the simplest and provincial structure. The first and second compensation elements are each composed of a 1/4 wave plate, the transmission axis of the first polarizer and the slower axis of the first phase compensation element are set at an angle of about 45 degrees, and the transmission of the second polarizer is The axis and the relatively retarded axis of the second phase compensation element are also set to have an angle of about 45 degrees. In a transmissive and reflective LCD device, a liquid crystal layer can be used and the liquid crystal molecules within it can be applied at no voltage. The surface of the substrate is generally arranged in the vertical direction. In this case, the LCD device can be used as a transmissive LCD device when the ambient light is dark, so as to display using the light from the backlight and the light passing through the electrode area. Made of a material with high light transmittance. When the ambient light is bright, the LCD device can be used as a reflective LCD device to display the ambient light reflected by the reflective electrode area, which is made of a material with a higher light reflectivity. When the transmission mode and reflection mode are used together, the almost complete black display can be performed in two modes. Therefore, a high contrast display can be obtained, which will be described in detail later. A transmissive and reflective LCD device can be operated in a normal black (hereinafter referred to as NB) mode and a normally white (hereinafter referred to as nw) mode by using birefringence. In the NW mode, the voltage applied to obtain a black display changes as the cell gap changes. In the N β mode, the voltage applied to obtain a white display changes as the cell gap changes. Accordingly, in the N w mode Medium-light-dark ratio -25- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 public directors) 482917 A7 B7 V. Description of the invention (23) Obviously with the need for precise cell gap control Variety. In the NB mode, the comparison does not change roughly according to the cell gap. It provides a large margin for the control of the cell gap. In addition, in the NB mode, when a switching element (such as a TFT) fails, voltage is prevented from being applied to the pixel electrode. This will cause insignificant black spots. A transmissive and reflective LCD device operable in the NB mode has high production efficiency, and a high contrast display can be obtained easily without regard to the ambient light intensity of the present invention. A phase compensation element can be provided to compensate for the influence of the anisotropy of the refractive index of the liquid crystal molecules in the light incident direction and the visual direction on the liquid crystal layer. In this structure, 'the reduction can be based on the contrast between the light incident direction and the visual direction. To avoid. When a polarization-rotating dopant is added to a vertically aligned liquid crystal layer made of a liquid crystal material having an anisotropy of the negative electromotive force of the LCD device, the liquid crystal molecules rotate when a voltage is applied. Therefore, the liquid crystal molecules are subjected to a voltage application. The rotation of the time is stabilized by the polarization dopant. When the alignment layers in the vicinity of the two substrates are rubbed in different directions, the traces of the alignment treatment are not in the same direction, and thus are not obvious. When the liquid crystal layer has a twisted direction of 90 degrees, a black display with a very small light leakage can be obtained as follows: 'The tilt direction of the liquid crystal molecules in the vicinity of the two substrates is at a 90 degree angle' and is therefore generated in the tilted direction. The stagnation will offset each other. The refractive index of a birefringent material that forms a phase compensation element and is related to normal light and abnormal light depends on the wavelength. Therefore, the phase delay accumulated at the special thickness in the phase compensation element also depends on the wavelength. In other words, phase -26- This paper size applies to Chinese National Standard (CNS) A4 (21〇X 297mm)-: ----- 482917

延遲(例如λ/4)只有當人射光線具有特定之單—波長時才會 冗全提供於入射之直線偏光光線。據此,纟又/4相位延‘ 因為構成λ Μ波板之雙折射材料之折射指數異方性波長依 存關係而未達成之區域中,一部份光線係在離開側上通過 偏光器,而未由偏光器吸收,#果,累色顯示之暗度改 又依本發明所示,第一、二相位補償元件波板之較延緩 軸線係設定為相互垂直,由於此一結構,第一相位補償元 件 &lt; 折射指數異方性之波長依存關係即由第二相位補償元 件之折射指數異方性之波長依存關係抵銷,因此一特定之 相位差係滿足於整個特定波長範圍内,以改善黑色顯示之 暗度。 &quot; 如圖1 7所示,一第三相位補償元件丨丨可提供於第一偏光 器6與液晶層5之間,由於此一結構,當直線偏光光線由第 一相位補償元件轉變為圓形偏光光線時所致之折射指數波 長依存關係即抵銷至某一程度。據此,在反射模式中,轉 變成圓形偏光光線係在偏光狀態中之分散於一廣泛波長範 圍上減少之狀態下進行,以改善黑色顯示之暗度。 在第三相位補償元件由一又/2波板構成且第一偏光器之透 過軸線與第一相位補償元件之較延緩軸線設定呈 2r 1+4 5度角之情況中(其中r 1為第一偏光器之透過軸線 與第三補償元件之較延緩軸線之夾角),來自第一補償元件 之直線偏光光線之偏光方向係由第三相位補償元件改變方 位’且隨後由第一相位補償元件轉變為圓形偏光光線,據 此’第一相位補償元件之折射指數異方性波長依存關係可 -27- 本紙張尺度適用中國@家標準(CNS) A4規格(210X 297公隽〉Delay (for example, λ / 4) will only be provided in the form of incident linearly polarized light only when the human light has a specific single-wavelength. According to this, the 纟 / 4 phase delay 'part of the area where the refractive index anisotropy wavelength dependence of the birefringent material constituting the λM wave plate has not been reached, a part of the light passes through the polarizer on the exit side, and It is not absorbed by the polarizer. As a result, the darkness of the cumulative display is changed according to the present invention. The relatively slow axis of the wave plate of the first and second phase compensation elements is set to be perpendicular to each other. Due to this structure, the first phase The wavelength dependence of the refractive index anisotropy of the compensation element is offset by the wavelength dependence of the refractive index anisotropy of the second phase compensation element, so a specific phase difference is satisfied within the entire specific wavelength range to improve The darkness of the black display. &quot; As shown in FIG. 17, a third phase compensation element can be provided between the first polarizer 6 and the liquid crystal layer 5. Due to this structure, when the linearly polarized light is changed from the first phase compensation element to a circle The refractive index wavelength dependence caused by polarized light is offset to a certain degree. Accordingly, in the reflection mode, the conversion into circularly polarized light is performed in a state where the dispersion in a polarized state is reduced over a wide range of wavelengths to improve the darkness of the black display. In the case where the third phase compensation element is composed of a / 2 wave plate and the transmission axis of the first polarizer and the slower axis of the first phase compensation element are set at an angle of 2r 1 + 4 5 degrees (where r 1 is the first The angle between the transmission axis of a polarizer and the slower axis of the third compensation element), the polarization direction of the linearly polarized light from the first compensation element is changed by the third phase compensation element 'and then changed by the first phase compensation element It is a circularly polarized light. According to this, the refractive index anisotropy and wavelength dependence of the first phase compensation element can be -27- This paper size is applicable to China @ 家 标准 (CNS) A4 specification (210X 297 public 隽>

裝 訂Binding

A7 B7 25 五、發明説明 經補償以達理-想。因此,偏光狀態中之分散即在反射模式 中之廣泛波長範圍内減少,而圓形偏光光線可用令人滿意 之方式取得’以改善反射模式中之黑色顯示之暗度。當第 一二相位補償元件呈對立設置時,可取得大致相同之效 果。 特別是當使用一垂直配列液晶層或液晶層所致剩餘阻滯在 暗色狀態中可忽略不計時,第一相位補償元件可由一 λ/4波板構成。 當一 α延緩值仍在暗色狀態反射模式中之液晶内時,第一 相位補償元件之延緩值為;^ /4 - α板,使得分歧於圓形偏光 光線之光線入射於液晶層上。當光線透過通過液晶層且到 達反射電極時’光線逐漸因為偏光狀態中之分散在廣泛波 長範圍上消除而成為圓形偏光,因此在反射模式中可取得 令人滿意之黑色顯示。 一第四相位補償元件丨2可提供於第二偏光器9與液晶層5 之間’由於此一結構,當直線偏光光線轉變成圓形偏光光 線時所致之折射指數異方性之波長依存關係即抵銷至某一 程度。據此’在透過模式中,轉變成圓形偏光光線係在偏 光狀態中之分散於一廣泛波長範圍中減少之狀態下進行, 以利改善黑色顯示之暗度,甚至當反射模式與透過模式一 併使用時仍可取得令人滿意之黑色顯示。 在第四相位補償元件由一 λ/2波板構成且第二偏光器之透 過抽線與第二相位補償元件之較延緩軸線設定呈 2 Τ 2+45度角之情況中(其中為第二偏光器之透過軸線與 -28- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公董) A7 B7 五、發明説明(26 ) 第四補償元件之較延緩軸線之夾角),來自第二補償元件之 直線偏光光線係由弟四相位補償元件改變方位,且隨後由 第二相位補償元件轉變為圓形偏光光線,據此,第一相位 補償元件之折射指數異方性波長依存關係可經補償以達理 想。因此,偏光狀態中之分散即在透過模式中之廣泛波長 範圍内減少,而圓形偏光光線可用令人滿意之方式取得。 特別是當使用一垂直配列液晶層或液晶層所致剩餘阻滞在 暗色狀態中可忽略不計時,第二相位補償元件可由一几/4 波板構成。 當一 α延緩值仍在反射模式中及一 /3延緩值仍在透過模式 中且皆在暗色狀態之液晶層中時,後者所用元件之延緩值 為人/4-(沒-α ),使得分歧於圓形偏光光線之光線入射於液 曰9層上’當光線透過通過液晶層時,光線係相同用於反射 模式中之偏光狀態。因此,當透過通過第三相位補償元件 時’光線漸成直線偏光光線,且垂直於第一偏光器之透過 軸線,以利改善黑色顯示之暗度,甚至當透過模式與反射 模式一併使用時仍可取得令人滿意之黑色顯示。 在第一、二相位補償元件之較延緩軸線相互垂直及第三、 四相位補償元件之較延緩軸線相互垂直情況下,第一、三 相位補償元件之折射指數異方性之波長依存關係可分別由 第二、四相位補償元件之折射指數異方性之波長依存關係 抵銷,在此情況下,黑色顯示之暗度得以改善。 (範例1) 本發明一第一範例中之L C D裝置將參考圖1說明。 -29- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 482917 A7 _____B7 五、發明説明(27 ) 一基材2包括一反射電極3 (如圖i之反射電極區所示),係 由具有一高反射率之材料製成,例如鋁或姮。一基材1包括 一逆電極(如圖1之透過電極所示),一由呈現負誘電率異方 性液晶材料製成之液晶層5係設於反射電極3與逆電極4之 間。 配列層(圖中未示)係提供於與液晶層5接觸之反射電極3 及逆電極4之表面上,配列層用於配列液晶層5中之液晶分 子(圖中未示),以垂直於基材丨、2之表面。在提供配列層 之後,至少其中一配列層進行配列處理,例如利用摩擦。 由於配列處理,液晶層5中之液晶分子相關於垂直方向而 對於基材1、2之表面呈大約〇· 1至5度之傾斜角。 由於液晶層5係以具有負謗電率異方性之材料製成,因此 當一電壓施加於反射電極3與逆電極4之間時,液晶分子即 相關於基材1、2之表面而傾斜成水平。 反射電極3係用於施加一電壓至液晶層5,但是反射電極3 僅可做為一反射板,而非做為一施加電壓之電極。在此情 況下,例如透過電極8可延伸至反射電極3上,以做為一電 極而施加一電壓至反射區中之液晶層5。 此處所用之液晶材料具有一折射指數異方性N e (相關於異 常光線之折射指數)= 1.5546、No(相關於平常光線之折射指 數)= 1.4773、及△NiNe-NohO.imS。 一又/4波板7設於基材1之表面上且相對立於逆電極4,入 /4波板7之一較延緩軸線係設定為相關於液晶分子之一縱軸 線(即分子軸線)呈傾斜45度角,且在一電壓施加於液晶層5 -30-A7 B7 25 V. Description of the invention Compensation is reasonable. Therefore, the dispersion in the polarized state is reduced over a wide range of wavelengths in the reflection mode, and circularly polarized light can be obtained in a satisfactory manner 'to improve the darkness of the black display in the reflection mode. When the first and second phase compensating elements are arranged in opposition, approximately the same effect can be obtained. Especially when the vertical retardation of the liquid crystal layer or the residual retardation caused by the liquid crystal layer is negligible in the dark state, the first phase compensation element may be composed of a λ / 4 wave plate. When an alpha retardation value is still in the liquid crystal in the reflection mode in the dark state, the retardation value of the first phase compensation element is; ^ / 4-alpha plate, so that the light branched by the circularly polarized light is incident on the liquid crystal layer. When light passes through the liquid crystal layer and reaches the reflective electrode, the light gradually becomes circularly polarized because the dispersion in the polarized state is eliminated over a wide wavelength range, so that a satisfactory black display can be obtained in the reflective mode. A fourth phase compensation element 2 can be provided between the second polarizer 9 and the liquid crystal layer 5 'Due to this structure, the wavelength dependence of the refractive index anisotropy caused when the linearly polarized light is converted into circularly polarized light The relationship is offset to a certain degree. According to this, in the transmission mode, the transformation into circularly polarized light is performed in a state where the polarization is reduced in a wide range of wavelengths, in order to improve the darkness of the black display, even when the reflection mode and the transmission mode are And can still obtain a satisfactory black display when used. In the case where the fourth phase compensation element is composed of a λ / 2 wave plate and the transmission axis of the second polarizer and the slower axis of the second phase compensation element are set at an angle of 2T 2 + 45 degrees (wherein the second The transmission axis of the polarizer and -28- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 public directors) A7 B7 V. Description of the invention (26) The angle between the slower axis of the fourth compensation element) The linearly polarized light of the second compensation element is changed in orientation by the fourth phase compensation element, and then converted into circularly polarized light by the second phase compensation element. Based on this, the refractive index anisotropy wavelength dependence of the first phase compensation element Can be compensated to achieve the ideal. Therefore, the dispersion in the polarized state is reduced over a wide range of wavelengths in the transmission mode, and circularly polarized light can be obtained in a satisfactory manner. Especially when the vertical retardation of the liquid crystal layer or the residual retardation caused by the liquid crystal layer is negligible in the dark state, the second phase compensating element may be composed of a few 4 wave plates. When an alpha retardation value is still in the reflection mode and a / 3 retardation value is still in the transmission mode and both are in the dark liquid crystal layer, the retardation value of the elements used by the latter is human / 4- (none-α), so that The light that diverges from the circularly polarized light is incident on the 9th layer of the liquid. When the light passes through the liquid crystal layer, the light is the same as the polarized state in the reflection mode. Therefore, when the light passes through the third phase compensation element, the light gradually becomes linearly polarized light and is perpendicular to the transmission axis of the first polarizer to improve the darkness of the black display, even when the transmission mode and the reflection mode are used together. A satisfactory black display can still be obtained. In the case where the slower axes of the first and second phase compensation elements are perpendicular to each other and the relatively slower axes of the third and fourth phase compensation elements are perpendicular to each other, the wavelength dependence of the refractive index anisotropy of the first and third phase compensation elements can be respectively The wavelength dependence of the refractive index anisotropy of the second and fourth phase compensation elements is offset. In this case, the darkness of the black display is improved. (Example 1) An L C D device in a first example of the present invention will be described with reference to FIG. 1. -29- This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) 482917 A7 _____B7 V. Description of the invention (27) A substrate 2 includes a reflective electrode 3 (as shown in the reflective electrode area of Figure i) (Shown), is made of a material with a high reflectivity, such as aluminum or osmium. A substrate 1 includes a counter electrode (shown as a transmissive electrode in FIG. 1), and a liquid crystal layer 5 made of a liquid crystal material exhibiting a negative dielectric anisotropy is disposed between the reflective electrode 3 and the counter electrode 4. The alignment layer (not shown) is provided on the surfaces of the reflective electrode 3 and the counter electrode 4 which are in contact with the liquid crystal layer 5. The alignment layer is used to align liquid crystal molecules (not shown) in the liquid crystal layer 5 so as to be perpendicular to The surface of the substrate 丨, 2. After the alignment layer is provided, at least one of the alignment layers is subjected to alignment processing, for example, using friction. Due to the alignment treatment, the liquid crystal molecules in the liquid crystal layer 5 are related to the vertical direction and have an inclination angle of about 0.1 to 5 degrees with respect to the surfaces of the substrates 1 and 2. Since the liquid crystal layer 5 is made of a material with negative anisotropy, when a voltage is applied between the reflective electrode 3 and the counter electrode 4, the liquid crystal molecules are inclined in relation to the surfaces of the substrates 1 and 2. Level. The reflective electrode 3 is used to apply a voltage to the liquid crystal layer 5, but the reflective electrode 3 can only be used as a reflective plate, not as an electrode for applying a voltage. In this case, for example, the transmissive electrode 8 may be extended to the reflective electrode 3 as an electrode to apply a voltage to the liquid crystal layer 5 in the reflective region. The liquid crystal material used here has a refractive index anisotropy Ne (refractive index related to ordinary light) = 1.5546, No (refractive index related to ordinary light) = 1.4773, and △ NiNe-NohO.imS. A / 4 wave plate 7 is provided on the surface of the substrate 1 and is opposite to the counter electrode 4. One of the slower axes of the 4 wave plate 7 is set to be related to a longitudinal axis of the liquid crystal molecules (ie, the molecular axis). At an angle of 45 degrees, a voltage is applied to the liquid crystal layer 5 -30-

482917 A7 ___B7 五、發明説明(28 ) 時0 λ /4波板7係用於轉變直線偏光光線成圓形偏光光線,及 轉變圓形偏光光線成直線偏光光線。 在此範例中λ /4波板7係設於基材1表面上且相對立於逆 電極4,但是可設於反射極3與液晶層5之間。 λ/4波板7可施加於基材1表面,或一體於一偏光器6 ,以 利減少生產成本。 一偏光器6設於λ/4波板7之一表面上且相對立於基材1 , 偏光器6之一透過軸線係設定為相關於λ /4波板7之較延緩 軸線而傾斜4 5度角β 圖7 Α係第一範例中一主動陣列基材(基材2 )平面圖,而圖 7 B為沿圖7 A之7 B - 7 B,線所取之主動陣列基材截面圖。 如圖7 A、7 B所示,主動陣列基材包括一閘線2 1、一資料 線22、一驅動元件23、一沒極24、一儲存電容電極25、一 閘絕緣層2 6、一絕緣基材2 7、一接觸孔2 8、一層間絕緣層 2 9及一反射電極3 0 (對應於圖1中之反射電極3 )。 儲存電容電極25係通電至汲極24,且疊覆於一儲存電容 線3 2而令閘絕緣層2 6設於其間,因此,儲存電容電極2 5、 絕緣層2 6、及儲存電容線3 2構成一儲存電容。 接觸孔2 8設於層間絕緣層2 9中,用於連接反射電極3 0與 儲存電容電極25。 請參閱圖1 3 A、1 3 B,第一範例L C D裝置在反射模式中 之光線透過及反射將說明如下。 圖1 3 A揭示當無電壓施加於液晶層5時所進行之黑色顯 -31 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 482917 A7 ______ B7 五、發明説明(29 ) 示,而圖1 3 B揭示當一電壓施加於液晶層5時所進行之白色 顯示’在諸圖式中,反射電極3 (反射電極區3 )係設於左側 參閱圖1 3 A,黑色顯示將說明如下。 入射於偏光器6頂表面上之光線係透過通過偏光器6成為 直線偏光光線’且平行於偏光器6之透過軸線,然後入射於 λ / 4波板7上。 λ /4波板7排列成使偏光器6之透過軸線與λ /4波板7之較 延緩軸線呈4 5度角,因此,透過通過久/ 4波板7之光線漸成 圓形偏光光線。 當無電壓施加於液晶層5時,用於液晶層5中而具有負誘 電率異方性之液晶分子即大致垂直於基材1、2之表面,據 此,液晶層5對入射光之折射指數異方性係極小。易言之, 藉由光線透過通過液晶層5所致之相位差大致為零。 據此,來自λ /4波板7之圓形偏光光線透過通過液晶層 5,而保持圓形偏光且由基材2中之反射電極3之反射。 由反射電極3所反射之圓形偏光光線透過通過液晶層5, 而趨向基材1且入射於λ /4波板7上,但是仍保持圓形偏 光。 隨後,圓形偏光光線透過通過λ/4波板7成為直線偏光光 線,且垂直於偏光器6之透過軸線,然後入射於偏光器6 上。 由於光線之偏光方向現在為垂直於偏光器6之透過軸線, 因此光線由偏光器6吸收而不透過。 -32- 本紙張尺度適用中國國家標準(CNS) Α4规格(210 X 297公釐) 482917 A7 __B7 五、發明説明(3〇 ) 依此情況,黑色顯示即得以進行。 參閱圖1 3 B,白色顯示將說明如下。 直到光線透過通過;1/4波板7或為圓形偏光光線為止之過 程係相同於上者,故不予以贅述。 當一電壓施加於液晶層5時,液晶分子係相關於基材1、2 之表面而傾斜成水平,據此,入射於液晶層5上之圓形偏光 光線藉由液晶分子之雙折射而成橢圓形偏光光線。光線隨 後由反射電極3反射,在光線透過通過液晶層5後偏光即改 變’而在透過通過又/4波板7時,光線並非成為垂直於偏光 器6透過軸線之直線偏光光線。因此,光線透過通過偏光器 ό 〇 藉由控制施加於液晶層5之電壓,由反射電極3反射後通 過偏光器6之光線量即可調整,因此,灰階顯示得以提供。 當一電壓由反射電極3及逆電極4施加於液晶層5以改變液 晶分子方向,而使液晶層5所致之相位差滿足於1 / 4波長(即 λ / 4 )條件時,當光線透過通過液晶層5而到達反射電極3時 來自λ/4波板7之圓形偏光光線即漸成直線偏光光線,且垂 直於偏光器6之透過軸線。光線再次透過通過液晶層5與入 /4波板7成為直線偏光光線,且平行於偏光器6之透過軸 線’在此情況下’透過通過偏光器6之光線量為最大值。 如上所述’當無電壓施加過液晶層5時,黑色顯示即因液 晶層5大致上無雙折射而可取得;及當一電壓施加過液晶層 5時’可藉由依據電壓r以改變光線透過率而取得灰階顯示。 圖4揭示第一範例中之反射型LCD裝置光譜反射率特徵, -33- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)482917 A7 ___B7 V. Description of the invention (28) When 0 λ / 4 wave plate 7 is used to convert linearly polarized light into circularly polarized light, and convert circularly polarized light into linearly polarized light. In this example, the λ / 4 wave plate 7 is provided on the surface of the substrate 1 and is opposed to the counter electrode 4, but may be provided between the reflective electrode 3 and the liquid crystal layer 5. The λ / 4 wave plate 7 can be applied to the surface of the substrate 1 or integrated into a polarizer 6 to reduce production costs. A polarizer 6 is disposed on one surface of the λ / 4 wave plate 7 and is opposite to the substrate 1. A transmission axis of the polarizer 6 is set to be inclined relative to the slower axis of the λ / 4 wave plate 7 4 5 Degree angle β FIG. 7A is a plan view of an active array substrate (substrate 2) in the first example, and FIG. 7B is a cross-sectional view of the active array substrate taken along lines 7B-7B of FIG. 7A. As shown in FIGS. 7A and 7B, the active array substrate includes a gate line 21, a data line 22, a driving element 23, a pole 24, a storage capacitor electrode 25, a gate insulation layer 26, a An insulating substrate 27, a contact hole 28, an interlayer insulating layer 29, and a reflective electrode 30 (corresponding to the reflective electrode 3 in FIG. 1). The storage capacitor electrode 25 is energized to the drain electrode 24, and is stacked on a storage capacitor line 3 2 with a gate insulation layer 2 6 interposed therebetween. Therefore, the storage capacitor electrode 25, the insulation layer 26, and the storage capacitor line 3 2 constitutes a storage capacitor. The contact hole 28 is provided in the interlayer insulating layer 29 for connecting the reflective electrode 30 and the storage capacitor electrode 25. Please refer to FIGS. 3A and 1B. The transmission and reflection of light in the reflection mode of the first example L C D device will be described below. Figure 1 3 A reveals the black display performed when no voltage is applied to the liquid crystal layer 5. -31-This paper size applies Chinese National Standard (CNS) A4 specifications (210 X 297 mm) 482917 A7 ______ B7 V. Description of the invention 29), and FIG. 13B reveals the white display performed when a voltage is applied to the liquid crystal layer 5. In the drawings, the reflective electrode 3 (reflective electrode region 3) is located on the left side. Referring to FIG. 1A, The black display will be explained below. The light incident on the top surface of the polarizer 6 passes through the polarizer 6 to become linearly polarized light rays' and is parallel to the transmission axis of the polarizer 6, and then incident on the λ / 4 wave plate 7. The λ / 4 wave plate 7 is arranged so that the transmission axis of the polarizer 6 is at a 45 degree angle with the slower axis of the λ / 4 wave plate 7. Therefore, the light passing through the long / 4 wave plate 7 gradually becomes circularly polarized light. . When no voltage is applied to the liquid crystal layer 5, the liquid crystal molecules used in the liquid crystal layer 5 and having a negative dielectric anisotropy are approximately perpendicular to the surfaces of the substrates 1, 2. According to this, the liquid crystal layer 5 refracts incident light. Exponential anisotropy is minimal. In other words, the phase difference caused by the transmission of light through the liquid crystal layer 5 is substantially zero. Accordingly, the circularly polarized light from the λ / 4 wave plate 7 passes through the liquid crystal layer 5 while maintaining the circularly polarized light and is reflected by the reflective electrode 3 in the substrate 2. The circularly polarized light reflected by the reflective electrode 3 passes through the liquid crystal layer 5 and approaches the substrate 1 and is incident on the λ / 4 wave plate 7, but the circularly polarized light is maintained. Subsequently, the circularly polarized light passes through the λ / 4 wave plate 7 to become a linearly polarized light, is perpendicular to the transmission axis of the polarizer 6, and then enters the polarizer 6. Since the polarization direction of the light is now perpendicular to the transmission axis of the polarizer 6, the light is absorbed by the polarizer 6 and not transmitted. -32- This paper size is in accordance with Chinese National Standard (CNS) A4 specification (210 X 297 mm) 482917 A7 __B7 V. Description of the invention (30) In this case, the black display can be performed. Referring to Figure 1 3B, the white display will be explained as follows. The process until the light passes through; the 1/4 wave plate 7 or circularly polarized light is the same as the above, so it will not be described in detail. When a voltage is applied to the liquid crystal layer 5, the liquid crystal molecules are tilted horizontally in relation to the surfaces of the substrates 1, 2. According to this, the circularly polarized light incident on the liquid crystal layer 5 is formed by the birefringence of the liquid crystal molecules. Oval polarized light. The light is then reflected by the reflective electrode 3, and the polarized light is changed after passing through the liquid crystal layer 5. When the light passes through the 4 wave plate 7, the light does not become a linearly polarized light perpendicular to the transmission axis of the polarizer 6. Therefore, the amount of light transmitted through the polarizer through the polarizer can be adjusted by controlling the voltage applied to the liquid crystal layer 5 and reflected by the reflective electrode 3 and then passed through the polarizer 6. Therefore, a gray scale display can be provided. When a voltage is applied to the liquid crystal layer 5 by the reflective electrode 3 and the counter electrode 4 to change the direction of the liquid crystal molecules, so that the phase difference caused by the liquid crystal layer 5 satisfies the condition of 1/4 wavelength (that is, λ / 4), when light passes through When reaching the reflective electrode 3 through the liquid crystal layer 5, the circularly polarized light from the λ / 4 wave plate 7 becomes a linearly polarized light, and is perpendicular to the transmission axis of the polarizer 6. The light passes through the liquid crystal layer 5 and the I / O wave plate 7 again to become linearly polarized light, and is parallel to the transmission axis of the polarizer 6 'in this case'. The amount of light transmitted through the polarizer 6 is the maximum. As described above, "when no voltage is applied across the liquid crystal layer 5, black display is obtained because the liquid crystal layer 5 is substantially free of birefringence; and when a voltage is applied across the liquid crystal layer 5," light transmission can be changed according to the voltage r. Rate to obtain a grayscale display. Figure 4 reveals the spectral reflectance characteristics of the reflective LCD device in the first example. -33- This paper size is in accordance with China National Standard (CNS) A4 (210 X 297 mm)

裝 訂Binding

A7 B7 五、發明説明(31 ) 其係在液晶層之細胞間隙d = 3 56微米及液晶層之延緩值(即 相位差ΗΔΝ = 〇·2752時取得,此時光線係垂直地入射及接 收。 圖4中’在光線呈垂直入射與接收之情況下,單一反射板 之光譜反射率為1〇〇。 如圖4所示,5 0以上之足夠明暗比可於無電壓施加時之黑 色顯示與施加3 ·25伏電壓時之白色顯示之間之4〇〇至700奈 米波長範圍上取得。 當施加3.25伏電壓時,可取得大約4〇%反射率,其大致等 於偏光器6之透過率,此一高光線使用因素係適用於一反射 型LCD裝置。 圖5揭示第一範例中之反射型l c D裝置光譜反射率特徵, 其係在液晶層之細胞間隙d==4 5微米及液晶層之延緩值(即 相位差)dAN = 0.3479時取得,此時光線係垂直地入射及接 收。 如圖5所示,5 0以上之足夠明暗比可於無電壓施加時之黑 色顯示與施加3伏電壓時之白色顯示之間之4〇〇至7〇〇奈米波 長範圍上取得。 當施加3伏電歷:時,可取得大約4 〇❶/❶反射率,此時細胞間 隙d = 3.56微米。 圖6揭示當光線以550奈米之波長在垂直方向入射及接收 時,第一範例反射型L C D裝置之細胞間隙與明暗比之間關 係。 明暗比係藉由施加一電壓而測得,液晶層所致之延緩值 -34- 本紙張尺度適用中國國家標準&lt;CNS) A4規格(210 X 297公复) 482917 A7 ___ B7 五、發明説明(32 ) (相位差)dZ\N藉此電壓以滿足於1 /4波長條件。 如圖6所示,第一範例中之反射型l C D裝置維持500以上 之明暗比,而無關於液晶層之細胞間隙。 據此,當一電壓施加過液晶層時,顯示即可提供且不減低 明暗比,只要相位差dAN可滿足1 /4波長條件。細胞間隙d 可任意設定。 圖1 2揚示λ /4波板較延緩軸線之角度與明暗比之間關 係,當較延緩軸線相關於偏光器之透過軸線而傾斜4 5度角 時,;I / 4波板之較延緩軸線角度即設定為零值。 當較延緩軸線之角度差在3度以内時,可取得500以上之 明暗比’故可提供一具有令人滿意顯示特徵之反射型LCd 裝置。 易言之’甚至當;1/4波板與偏光器併合,且λ/4波板較延 緩軸線與偏光器透過軸線之角度略為歧異於設定值時,仍 可取得高對比。 圖6揭示板面之反射影響省略後之值,在實際使用中,板 面之反射不可省略不計,具有面板反射之明暗比可視為大 約2 0,其仍滿足於一反射型l c D裝置。 在第一範例中利用一垂直配列液晶層之L c D裝置使得當 無電壓施加時液晶層所致之阻滯大致為零,在正常之黑色 顯示情況中,黑色狀態之暗度可提供以改善對比。 (範例2) 本發明第二範例中之一 L C D裝置將參考圖2說明如下,其 相同於第一範例中之元件採用相同之參考編號。 -35- 本紙張尺度適用中國國家標準(CNS) Α4規格(21〇χ 297公釐) 482917 A7 B7 五、發明説明(33 一基材2包括一反射電極3 (如圖2之反射電極區所示),係 由具有一局反射率之材料製成,例如鋁或钽,及一透過電 極8 (如圖2之透過電極區所示),係由高透過率材料製成, 如ITO ° —基材1包括一逆電極4(如圖2之透過電極所示), 一由呈現負誘電率異方性液晶材料製成之液晶層5係設於反 射電極3 /透過電極8與逆電極4之間。 配列層(圖中未示)係提供於與液晶層5接觸之反射電極3 / 透過電極8及逆電極4之表面上,配列層用於配列液晶層5中 之液晶分子(圖中未示),以垂直於基材1、2之表面。在提 供配列層之後,至少其中一配列層進行配列處理,例如利 用摩擦。 由於配列處理’液晶層5中之液晶分子相關於垂直方向而 對於基材1、2之表面呈大約〇.丨至5度之傾斜角。 反射電極3係用於施加一電壓至液晶層5,但是反射電極3 僅可做為一反射板,而非做為一施加電壓之電極。在此情 況下,例如透過電極8可延伸至反射電極3上,以做為一電 極而施加一電壓至反射區中之液晶層5。 此處所用之液晶材料具有一折射指數異方性N e (相關於異 常光線之折射指數)= 1.5546、No(相關於平常光線之折射指 數)=1·4773 〇 一 λ/4波板7設於基材1之表面上且相對立於逆電極4,λ /4波板7之一較延緩軸線係設定為相關於液晶分子之一縱軸 線呈傾斜4 5度角,且在一電壓施加於液晶層5時。 一又/4波板1 〇係設於基材2表面上且相對立於反射電極3 -36- 本紙張尺度適用中國國家標準(CNS〉A4規格(210 x 297公釐) 裝· ij * k 482917 A7 ______ B7 五、發明説明(34~) 與透過電極8’ λ /4波板1〇之一較延緩軸線係平行於λ /4波 板7之較延緩軸線。 一偏光器6設於λ/4波板7之一表面上且相對立於基材1, 一偏光器9設於λ/4波板1〇之一表面上且相對立於基材2, 偏光器6之一透過軸線係設定為相關於λ /4波板7之較延緩 軸線而傾斜4 5度角,偏光器9之一透過軸線則設定為相關於 λ / 4波板1 〇之較延緩軸線而傾斜4 5度角。 圖8 Α係第二範例中一主動陣列基材(基材2 )平面圖,而圖 8 B為沿圖8 A之8 B - 8 B,線所取之主動陣列基材截面圖。 如圖8 A、8 B所示,主動陣列基材包括一閘線2 1、一資料 線2 2、一驅動元件2 3、一汲極2 4、一儲存電容電極3 5、一 閘絕緣層2 6、一絕緣基材2 7、一接觸孔2 8、一層間絕緣層 2 9、一反射像素電極(反射電極區)3 〇 (對應於圖2中之反射 電極3)、及一透過像素電極(透過電極區)31(對應於圖2中 之透過電極8 )。 儲存電容電極3 5係通電至汲極2 4,且疊覆於閘線2 1而令 閘絕緣層2 6設於其間,因此,儲存電容電極3 5、絕緣層 2 6、及閘線2 1構成一儲存電容。 接觸孔2 8設於層間絕緣層2 9中,用於連接透過像素電極 31與儲存電容電極35。 反射像素電極3 0及透過像素電極3 1係在L C D裝置内之複 數像素區各者中獨立地定義出一反射區及一透過區,反射 區利用反射之外部光線以進行反射模式顯示,而透過區藉 由容許背光光線透過通過以進行透過模式顯示。毋庸置疑 -37· 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐)A7 B7 V. Description of the invention (31) It is obtained when the cell gap of the liquid crystal layer is d = 3 56 microns and the retardation value of the liquid crystal layer (that is, the phase difference ΔΔN = 0 · 2752, at which time the light is incident and received vertically. In Figure 4, 'in the case of normal incidence and reception of light, the spectral reflectance of a single reflecting plate is 100. As shown in Figure 4, a sufficient light-dark ratio of 50 or more can be displayed and displayed in black when no voltage is applied. Obtained over a wavelength range of 400 to 700 nm with a white display when a voltage of 3.25 volts is applied. When a voltage of 3.25 volts is applied, approximately 40% reflectance is obtained, which is approximately equal to the transmittance of the polarizer 6. This high light usage factor is suitable for a reflective LCD device. Figure 5 reveals the spectral reflectance characteristics of the reflective LCD device in the first example, which is in the cell gap of the liquid crystal layer d == 4 5 microns and liquid crystal The retardation value of the layer (that is, the phase difference) is obtained when dAN = 0.3479, at which time the light is incident and received vertically. As shown in FIG. 5, a sufficient light-dark ratio of 50 or more can be displayed and applied in black when no voltage is applied Between white display at volts Obtained in the wavelength range of 400 to 700 nanometers. When applying a 3 volt e-calendar, a reflectance of approximately 40 ❶ / ❶ can be obtained, at which time the cell gap d = 3.56 microns. Figure 6 reveals when the light is at 550 When the wavelength of nanometer is incident and received in the vertical direction, the relationship between the cell gap and the light-dark ratio of the first example reflective LCD device. The light-dark ratio is measured by applying a voltage, and the retardation value caused by the liquid crystal layer is -34. -This paper size applies the Chinese National Standard &lt; CNS) A4 specification (210 X 297 public copy) 482917 A7 ___ B7 V. Description of the invention (32) (Phase difference) dZ \ N This voltage is used to meet the 1/4 wavelength condition . As shown in FIG. 6, the reflective IC device in the first example maintains a light-to-dark ratio of 500 or more without regard to the cell gap of the liquid crystal layer. According to this, when a voltage is applied to the liquid crystal layer, the display can be provided without reducing the light-dark ratio, as long as the phase difference dAN can satisfy the 1/4 wavelength condition. The cell gap d can be arbitrarily set. Figure 12 shows the relationship between the angle of the retarded axis of the λ / 4 wave plate and the light-dark ratio. When the retarded axis is inclined at a 45-degree angle in relation to the transmission axis of the polarizer, the retardation of the I / 4 wave plate is slower. The axis angle is set to zero. When the angle difference of the slower axis is within 3 degrees, a light-dark ratio of more than 500 can be obtained, so a reflective LCd device with satisfactory display characteristics can be provided. In other words, even when the 1/4 wave plate is combined with the polarizer and the angle of the λ / 4 wave plate is slightly different from the set axis, the high contrast can still be achieved. Figure 6 reveals the value of the reflection of the plate after it is omitted. In actual use, the reflection of the plate can not be ignored, and the light-dark ratio with the reflection of the panel can be regarded as about 20, which still satisfies a reflective l c D device. In the first example, an L c D device with a vertically aligned liquid crystal layer is used so that the retardation caused by the liquid crystal layer is substantially zero when no voltage is applied. In normal black display conditions, the darkness of the black state can be provided to improve Compared. (Example 2) An LCD device in a second example of the present invention will be explained with reference to FIG. 2 as follows, and the same reference numbers are used for the same components as in the first example. -35- This paper size is in accordance with Chinese National Standard (CNS) A4 specification (21〇χ 297 mm) 482917 A7 B7 V. Description of the invention (33 A substrate 2 includes a reflective electrode 3 (as shown in the reflective electrode area of Figure 2) (Shown), is made of a material with a local reflectivity, such as aluminum or tantalum, and a transmission electrode 8 (as shown in the transmission electrode area of Figure 2), is made of a high transmission material, such as ITO ° — The substrate 1 includes a counter electrode 4 (shown as a transmissive electrode in FIG. 2), and a liquid crystal layer 5 made of a liquid crystal material exhibiting anisotropy of a negative electrical conductivity is provided on the reflective electrode 3 / transmitting electrode 8 and the counter electrode 4 The alignment layer (not shown) is provided on the surface of the reflective electrode 3 / transmissive electrode 8 and the counter electrode 4 which are in contact with the liquid crystal layer 5. The alignment layer is used to align the liquid crystal molecules in the liquid crystal layer 5 (in the figure) (Not shown) to be perpendicular to the surfaces of the substrates 1 and 2. After the alignment layer is provided, at least one of the alignment layers is subjected to alignment treatment, such as rubbing. Because the alignment liquid crystal molecules in the liquid crystal layer 5 are related to the vertical direction, For substrates 1 and 2, the surface has an inclination angle of about 0.1 to 5 degrees The reflective electrode 3 is used to apply a voltage to the liquid crystal layer 5, but the reflective electrode 3 can only be used as a reflective plate, not as an electrode for applying a voltage. In this case, for example, the transmission electrode 8 can be extended to the reflective electrode. 3, a voltage is applied as an electrode to the liquid crystal layer 5 in the reflection area. The liquid crystal material used here has a refractive index anisotropy N e (refractive index related to abnormal light) = 1.5546, No ( Refraction index related to ordinary light) = 14773 〇 A λ / 4 wave plate 7 is set on the surface of the substrate 1 and is opposite to the counter electrode 4, and one of the λ / 4 wave plates 7 is set to a slower axis as The longitudinal axis of one of the liquid crystal molecules is inclined at an angle of 45 degrees, and a voltage is applied to the liquid crystal layer 5. A / 4 wave plate 10 is provided on the surface of the substrate 2 and is opposite to the reflective electrode 3- 36- This paper size applies to Chinese national standards (CNS> A4 size (210 x 297 mm). Ij * k 482917 A7 ______ B7 V. Description of the invention (34 ~) and transmission electrode 8 'λ / 4 wave plate 1〇 One of the slower axes is parallel to the slower axis of the λ / 4 wave plate 7. A polarizer 6 is provided at λ / 4 A polarizer 9 is disposed on one surface of the plate 7 and is opposite to the substrate 1, and a polarizer 9 is disposed on one surface of the λ / 4 wave plate 10 and is opposite to the substrate 2. One transmission axis of the polarizer 6 is set to be related It is inclined at an angle of 45 degrees at the slower axis of the λ / 4 wave plate 7, and the transmission axis of one of the polarizers 9 is set to be inclined at an angle of 45 degrees with respect to the slower axis of the λ / 4 wave plate 10. A is a plan view of an active array substrate (substrate 2) in the second example, and FIG. 8B is a cross-sectional view of the active array substrate taken along line 8B-8B of FIG. 8A. As shown in Figs. 8A and 8B, the active array substrate includes a gate line 2 1, a data line 2 2, a driving element 2 3, a drain electrode 2 4, a storage capacitor electrode 3 5, and a gate insulation layer. 2 6. An insulating substrate 2 7. A contact hole 2 8. An interlayer insulating layer 29 9. A reflective pixel electrode (reflective electrode area) 3 0 (corresponding to the reflective electrode 3 in FIG. 2) and a transmission pixel The electrode (transmissive electrode region) 31 (corresponds to the transmissive electrode 8 in FIG. 2). The storage capacitor electrode 3 5 is energized to the drain electrode 24 and is superposed on the gate wire 2 1 with the gate insulation layer 2 6 interposed therebetween. Therefore, the storage capacitor electrode 3 5, the insulation layer 2 6, and the gate wire 2 1 Forms a storage capacitor. The contact hole 28 is provided in the interlayer insulating layer 29 and is used to connect the transmission pixel electrode 31 and the storage capacitor electrode 35. The reflective pixel electrode 30 and the transmissive pixel electrode 3 1 independently define a reflective area and a transmissive area in each of the plurality of pixel areas in the LCD device. The reflective area uses reflected external light for reflective mode display, and transmits The area is displayed in transmission mode by allowing backlight light to pass through. Needless to say -37 · This paper size applies to China National Standard (CNS) A4 (210X297 mm)

裝 訂Binding

482917 A7 _________B7 五、發明説明(35 ) 地’由於在貫際顯示中有光線分量斜向地入射於L 〇 d裝置 上,因此二個區域之間之邊界並不十分清楚。 如圖8A所示,其最好提供反射電極區3()於像素區之一周 邊區内,及提供透過電極區31於像素區之一中央區内。藉 由將反射電極區3 0局部地疊覆於閘線2丨與資料線2 2,以利 形成一儲存電容及擴大顯示面積。 第一範例中’其提供一半透過與半反射型LCD裝置,圖 8C係用於半透過與半反射型lcd裝置中之一主動陣列基材 平面圖’圖8 D係沿圖8 C之8 D - 8 D ’線所取之主動陣列基材 截面圖,及圖8E係沿圖8C之8E-8E’線所取之主動陣列基 材截面圖。 圖8 C所示之主動陣列基材包括一設於反射電極區3 〇内之 小型透過電極區30T,反射電極區30及透過電極區3〇τ並非 獨乂地定義區反射區及透過區,但是反射與透過模式中之 顯示係在整個像素區中混合及重疊。 如圖8 D所示,圖8 C中之主動陣列基材例如係利用形成一 具有複數開孔3 0 T之反射電極3 0而製成,由於一電壓係利 用反射電極3 0以施加過反射電極3 0開孔3 0 T上之液晶分子 (斜向之電場形成於反射電極3 〇與逆電極之間),因此可省 略透過電極31之形成,易言之,反射電極3〇可由一半透過 與半反射型層構成。另者,當反射電極3 〇利用光石版印刷 以製出圖案時,具有一預定形狀之開孔即可以_預定密度 形成,開孔之一尺寸應不大於液晶層厚度,使得一足量電 壓可由一斜向電場施加過液晶層。由一半透過與半反射刑 -38- 本紙張尺度適用中國國家標準&lt;CNS) A4規格(210X297公釐) 482917 A7 ------- B7 五、發明説明~~&quot; 一― 層構成之電極可見於7_ 333598號日本先前公開公告案中, 一半透過與半反射型層係藉由積置金屬顆粒至一像素區内 4極小厚度,或在一像素區内形成散亂式之微細孔或凹穴 而構成。 另者,如圖8Ε所示,圖8 C中之主動陣列基材例如係在整 個像素區内藉由形成一透過電極44於具有開孔之反射電極 區3 0上而製成,在此一結構中,透過電極區3 〇 τ上之液晶 分子係供給以相同施加於反射電極區3 〇上液晶分子之電 壓。在製成透過電極44之蝕刻製程期間(例如當反射電極區 30由鋁製成且透過電極44*ΙΤ〇製成),電腐蝕會發生於反 射電極區3 0與透過電極4 4之間,如圖8 Ε所示,電腐蝕可藉 由形成一層間絕緣層4 2 (例如以氧化矽或聚合樹脂製成)於 反射電極區30上及形成透過電極44於層間絕緣層42上而避 免之。 請參閱圖13Α、13Β,第二範例LCD裝置在透過模式中 之光線透過與反射將說明如下。 圖1 3 A揭示當無電壓施加於液晶層5時所進行之黑色顯 示,而圖1 3 B揭示當一電壓施加於液晶層5時所進行之白色 顯示,在諸圖式中,透過電極8 (透過電極區)係設於右側 上。在圖1 3 A、1 3 B中’反射電極區3具有相同於第一範例 者之結構,故不予以贅述。當LCD裝置使用做為反射型 L C D裝置時,L C D裝置係以相同於第一範例之方式操作, 文後將說明透過模式中之LCD裝置,反射模式中之LCD裝 置不再重覆。 -39- 本紙張尺度適用中國國家標準&lt;CNS) A4規格(210X297公爱^ 482917 A7 ______B7_ ___ 五、發明説明(37 ) 參閱圖1 3 A,黑色顯示將說明如下。 由一光源(圖中未示)放射之光線係入射於偏光器9上,成 為直線偏光光線且平行於偏光器之透過軸線。 λ /4波板1 〇係排列成使其較緩慢之光學軸線相關於偏光 器9之透過軸線而傾斜45度角,因此,透過通過λ /4波板 1 0之光線漸成圓形偏光光線。 當無電壓施加於液晶層5時,用於液晶層5中而具有負謗 電率異方性之液晶分子即大致垂直於基材1、2之表面,據 此’液晶層5對入射光之折射指數異方性係極小。易言之, 藉由光線透過通過液晶層5所致之相位差大致為零。 據此,來自λ /4波板1 〇之圓形偏光光線透過通過液晶層 5 ’而保持圓形偏光且入射於χ/4波板7上。 λ /4波板1 〇之較延緩軸線與λ /4波板7之較延緩軸線係相 互平行,因此,入射於λ/4波板7上之圓形偏光光線成為直 線偏光光線,且垂直於偏光器9之透過軸線及入射於偏光器 6上。 來自λ/4波板7之直線偏光光線係垂直於偏光器6之透過 軸線,且由偏光器6吸收而不透過。 依此情形,黑色顯示即待以進行。 參閱圖13Β,白色顯示將說明如下。 直到光線透過通過λ /4波板1 〇為止之過程係相同於上 者,故不予以贅述。 當一電壓施加於液晶層5時,液晶分子係相關於基材1、2 之表面傾斜成水平,據此,入射於液晶層5上之圓形偏光光 -40- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) &quot;&quot; '&quot;&quot;&quot;&quot; 482917 A7 ____B7 五、發明説明(38 ) 線藉由液晶分子之雙折射而成橢圓形偏光光線。而在透過 通過λ / 4波板7後’光線並非成為垂直於偏光器6透過軸線 之直線偏光光線,因此,光線透過通過偏光器6。 藉由控制施加過液晶層5之電壓,入射於偏光器6上之光 線量可加以調整,以利提供灰階顯示。 當一電壓施加過液晶層5使液晶層5所致之相位差滿足於 1/2波長條件時,來自Λ/4波板1〇之圓形偏光光線漸成直線 偏光光線,且在液晶層5之一半厚度處垂直於偏光器6之透 過軸線,隨後當其完全透過通過液晶層5時漸成為圓形偏光 光線。 由於來自液晶層5之圓形偏光光線在透過通過A/#波板7 時漸成平行於偏光器6之透過軸線之直線偏光光線,因此入 射於偏光器6上之大部份光線皆透過通過。在此情形下,透 過通過偏光器6之光線量為最大值。 如上所述’當無電壓施加過液晶層5時,黑色顯示即可在 反射電極區3及透過電極8中取得,因為無液晶層5之雙折 射。當一電壓施加過液晶層5而控制電壓r值時,透過通過 LCD裝置之光線量可調整,且因而取得一灰階顯示。 圖9揭示第二範例中之透過與反射型l c D裝置光譜反射率 特徵,其係在液晶層之細胞間隙(1 = 3.56微米及液晶層之相 位差dAN = 0.2752時取得,此時光線係垂直地入射及接收。 圖9中,反射電極區中之光譜反射率係相同於圖4者。 圖9中,在光線呈垂直地入射與接收之情況下,對空氣之 光譜反射率為100。 -41 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 482917482917 A7 _________B7 V. Description of the Invention (35) Ground ’Because the light component is obliquely incident on the L o d device in the cross display, the boundary between the two areas is not very clear. As shown in FIG. 8A, it is preferable to provide a reflective electrode region 3 () in a peripheral region of a pixel region and a transmissive electrode region 31 in a central region of a pixel region. By partially overlapping the reflective electrode area 30 on the gate line 2 丨 and the data line 22, it is advantageous to form a storage capacitor and expand the display area. In the first example, 'it provides a semi-transmissive and semi-reflective LCD device, FIG. 8C is a plan view of an active array substrate used in one of the semi-transmissive and semi-reflective LCD devices'. FIG. 8 D is along FIG. 8 C-8 D- A cross-sectional view of the active array substrate taken along line 8D ', and FIG. 8E is a cross-sectional view of the active array substrate taken along line 8E-8E' of FIG. 8C. The active array substrate shown in FIG. 8C includes a small transmissive electrode region 30T provided in the reflective electrode region 30, and the reflective electrode region 30 and the transmissive electrode region 30T do not uniquely define the reflective region and the transmissive region. However, the display in reflection and transmission modes is mixed and overlapped in the entire pixel area. As shown in FIG. 8D, the active array substrate in FIG. 8C is made by, for example, forming a reflective electrode 30 with a plurality of openings 30T. Since a voltage system uses the reflective electrode 30 to apply over-reflection The liquid crystal molecules on the electrode 30 openings 30 T (the oblique electric field is formed between the reflective electrode 30 and the counter electrode), so the formation of the transmissive electrode 31 can be omitted, in other words, the reflective electrode 30 can be transmitted through half Formed with a semi-reflective layer. In addition, when the reflective electrode 30 uses a light lithography to make a pattern, openings having a predetermined shape can be formed at a predetermined density. One of the openings should be not larger than the thickness of the liquid crystal layer, so that a sufficient amount of voltage can be obtained by An oblique electric field is applied across the liquid crystal layer. Semi-transmitting and semi-reflecting punishment -38- This paper size applies the Chinese National Standard &lt; CNS) A4 specification (210X297 mm) 482917 A7 ------- B7 V. Description of the invention ~~ &quot; The electrode can be seen in the previous Japanese public announcement No. 7_333598. The semi-transmissive and semi-reflective layer is formed by depositing metal particles to a minimum thickness of 4 in a pixel region, or forming scattered micro-pores in a pixel region. Or pits. In addition, as shown in FIG. 8E, the active array substrate in FIG. 8C is made, for example, by forming a transmissive electrode 44 on a reflective electrode region 30 having an opening in the entire pixel region. In the structure, the liquid crystal molecules on the transmissive electrode region 30 τ are supplied with the same voltage as the liquid crystal molecules on the reflective electrode region 30. During the etching process for forming the transmissive electrode 44 (for example, when the reflective electrode region 30 is made of aluminum and the transmissive electrode 44 * ITO), electrical corrosion occurs between the reflective electrode region 30 and the transmissive electrode 44. As shown in FIG. 8E, electrical corrosion can be avoided by forming an interlayer insulating layer 4 2 (for example, made of silicon oxide or a polymer resin) on the reflective electrode region 30 and forming a transmission electrode 44 on the interlayer insulating layer 42. . Please refer to FIGS. 13A and 13B. The transmission and reflection of light in the transmission mode of the second example LCD device will be described below. FIG. 13A reveals the black display when no voltage is applied to the liquid crystal layer 5, and FIG. 13B reveals the white display when a voltage is applied to the liquid crystal layer 5. In the drawings, the transmission electrode 8 (Transmissive electrode area) is provided on the right side. In Figs. 13A and 1B, the 'reflective electrode region 3' has the same structure as that of the first example, so it will not be described in detail. When the LCD device is used as a reflective LCD device, the LCD device operates in the same manner as the first example. The LCD device in the transmission mode will be described later, and the LCD device in the reflective mode will not be repeated. -39- This paper size applies to Chinese National Standards &lt; CNS) A4 specification (210X297 public love ^ 482917 A7 ______B7_ ___ V. Description of the invention (37) Refer to Figure 1 3 A, the black display will be explained as follows. The light emitted is incident on the polarizer 9 and becomes linearly polarized light parallel to the transmission axis of the polarizer. The λ / 4 wave plate 10 is arranged so that its slower optical axis is related to the polarizer 9 It is inclined at an angle of 45 degrees through the axis, so that the light passing through the λ / 4 wave plate 10 gradually becomes circularly polarized light. When no voltage is applied to the liquid crystal layer 5, it is used in the liquid crystal layer 5 and has a negative rate of electrical conductivity. The anisotropic liquid crystal molecules are approximately perpendicular to the surfaces of the substrates 1 and 2. According to this, the refractive index anisotropy of the liquid crystal layer 5 to incident light is extremely small. In other words, it is caused by light passing through the liquid crystal layer 5. The phase difference is approximately zero. Accordingly, the circularly polarized light from the λ / 4 wave plate 10 passes through the liquid crystal layer 5 'to maintain the circularly polarized light and is incident on the χ / 4 wave plate 7. The λ / 4 wave plate The slower axis of 1 〇 and the slower axis of λ / 4 wave plate 7 are mutually Therefore, the circularly polarized light incident on the λ / 4 wave plate 7 becomes linearly polarized light, and is perpendicular to the transmission axis of the polarizer 9 and incident on the polarizer 6. The linearly polarized light from the λ / 4 wave plate 7 The light is perpendicular to the transmission axis of the polarizer 6, and is absorbed and not transmitted by the polarizer 6. In this case, the black display is pending. Referring to FIG. 13B, the white display will be explained below. Until the light passes through the λ / 4 wave The process up to plate 10 is the same as the above, so it will not be repeated. When a voltage is applied to the liquid crystal layer 5, the liquid crystal molecules are related to the surface of the substrates 1 and 2 to be inclined horizontally, and accordingly, incident on the liquid crystal layer Circular polarized light on 5-40- This paper size applies to China National Standard (CNS) A4 specification (210 X 297 mm) &quot; &quot; '&quot; &quot; &quot; &quot; 482917 A7 ____B7 V. Description of the invention ( 38) The line is elliptical polarized light by the birefringence of the liquid crystal molecules. After passing through the λ / 4 wave plate 7, the light does not become a linearly polarized light perpendicular to the transmission axis of the polarizer 6, so the light passes through the polarized light.器 6。 By control The voltage applied to the liquid crystal layer 5 can be adjusted, and the amount of light incident on the polarizer 6 can be adjusted to provide a gray-scale display. When a voltage is applied to the liquid crystal layer 5, the phase difference caused by the liquid crystal layer 5 is 1 / At the 2 wavelength condition, the circularly polarized light from the Λ / 4 wave plate 10 gradually becomes linearly polarized light, and is perpendicular to the transmission axis of the polarizer 6 at one and a half thickness of the liquid crystal layer 5, and then passes through the liquid crystal layer when it is completely transmitted It becomes a circularly polarized light at 5 o'clock. Since the circularly polarized light from the liquid crystal layer 5 passes through the A / # wave plate 7 and gradually becomes a linearly polarized light parallel to the transmission axis of the polarizer 6, it enters the polarizer 6 Most of the light on it passes through. In this case, the amount of light passing through the polarizer 6 is the maximum. As described above, when no voltage is applied to the liquid crystal layer 5, black display can be obtained in the reflective electrode region 3 and the transmissive electrode 8, because there is no birefringence of the liquid crystal layer 5. When a voltage is applied across the liquid crystal layer 5 to control the voltage r value, the amount of light passing through the LCD device can be adjusted, and thus a grayscale display is obtained. Figure 9 reveals the spectral reflectance characteristics of the transmissive and reflective LCD devices in the second example. It is obtained at the cell gap of the liquid crystal layer (1 = 3.56 microns and the phase difference dAN of the liquid crystal layer dAN = 0.2752, and the light is perpendicular at this time). Ground incidence and reception. In Figure 9, the spectral reflectance in the reflective electrode area is the same as that in Figure 4. In Figure 9, when the light is incident and received vertically, the spectral reflectance to air is 100.- 41-This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 482917

如圖9所示,足夠之對比係取得於無電壓施加時之黑色顯 π與施加5伏特之白色顯示之間之4〇〇至7〇〇奈米波長範圍 内0 當施加5伏特之電壓時,可取得一大約3〇%反射率,其大 約為偏光器6透過率之80%,此一高光線使用因素係適用於 一透過與反射型LCD裝置。 圖1 0揭示第二範例中之透過與反射型L c D裝置光譜反射 率特徵,其係在液晶層之細胞間隙d = 4.5微米及液晶層之相 位差(1ΔΝ = 0.3749時取得,此時光線係垂直地入射及接收。 如圖1 0所示,足夠之對比係取得於無電壓施加時之黑色 顯示與施加5伏之白色顯示之間之4〇〇至7〇〇奈米波長範圍 内。 當施加5伏之電壓時,可取得一大約4 〇 %反射率。 圖1 1揭示當光線以550奈米之波長在垂直方向入射及接收 時’第一範例透過與反射型L C D裝置之細胞間隙與明暗比 之間關係。 明暗比係藉由施加一電壓而測得,液晶層所致之延緩值 (相位差)(1ΔΝ藉此電壓以滿足於1 /2波長條件。 如圖1 1所示,第二範例中之透過與反射型L c D裝置保持 800以上之明暗比於透過電極區内(做為一透過型LCD裝 置),及保持500以上之明暗比於反射電極内(做為一反射型 L C D裝置),而無關於液晶層之細胞間隙。 據此,當一電壓施加過液晶層時,顯示即可提供且不減低 明暗比,只要相位差dZ\N可滿足1 /2波長條件。細胞間隙d -42- 本紙張尺度適用中國國家標準(CNS) A4規格(21〇X297公I)As shown in FIG. 9, a sufficient contrast is obtained in a wavelength range of 400 to 700 nanometers between a black display π when no voltage is applied and a white display with 5 volts applied. 0 When a voltage of 5 volts is applied It can obtain a reflectivity of about 30%, which is about 80% of the transmittance of the polarizer 6. This high light use factor is suitable for a transmissive and reflective LCD device. Figure 10 reveals the spectral reflectance characteristics of the transmissive and reflective L c D device in the second example, which is obtained when the cell gap of the liquid crystal layer is d = 4.5 microns and the phase difference of the liquid crystal layer (1ΔN = 0.3749. At this time, the light It is vertically incident and receiving. As shown in FIG. 10, a sufficient contrast is obtained in a wavelength range of 400 to 700 nanometers between a black display when no voltage is applied and a white display with 5 volts applied. When a voltage of 5 volts is applied, a reflectance of about 40% can be obtained. Figure 1 1 reveals that when light is incident and received in a vertical direction at a wavelength of 550 nm, the first example is the cell gap between a reflective and LCD device. The relationship between light and dark ratio. The light and dark ratio is measured by applying a voltage, and the retardation value (phase difference) caused by the liquid crystal layer (1ΔN takes this voltage to meet the 1/2 wavelength condition. As shown in Figure 1 1 In the second example, the transmission and reflection type L c D device maintains a brightness ratio of more than 800 in the transmission electrode area (as a transmissive LCD device), and maintains a brightness ratio of more than 500 in the reflection electrode (as a Reflective LCD device) without regard to Cell gap of the liquid crystal layer. According to this, when a voltage is applied to the liquid crystal layer, the display can be provided without reducing the light-dark ratio, as long as the phase difference dZ \ N can meet the 1/2 wavelength condition. Cell gap d -42- This paper Standards are applicable to China National Standard (CNS) A4 specifications (21 × 297 male I)

裝 訂Binding

可任意設定。 圖1 2揭不;I /4波板較延緩軸線之角度與明暗比之間關 係,當較延緩軸線相關於偏光器之透過軸線而傾斜4 5度角 時,;1/4波板之較延緩軸線角度即設定為零值。 當較延緩軸線之角度差在3度以内時,一 5 〇以上之明暗比 可取得於透過電極區内(當LCD裝置做為一透過型[CD裝置 時)及反射電極區内(當LCD裝置做為一反射型LCD裝置), 以利彳疋供一具有令人滿意顯示特徵之透過與反射型L C d裝 置。 據此,一LCD裝置可使用做為一透過型裝置,以利 於%境光線變暗時可藉由光線自被光透過通過透過電極8而 進行顯不’及使用做為一反射型L c d裝置,以利於環境光 線變亮時可藉由一較高光反射率材料製成之反射電極3所反 射之彡哀境光線而進行顯示。此外,L c D裝置可利用背光及 環境光線。 當壤境光線明亮時,背光即不需使用,因此,其相較於習 知之透過型LCD裝置而可減少功率消耗;當環境光線昏暗 時’背光即可使用。因此,習知反射型L c D裝置無法取得 足夠顯示之問題即得以克服。 第二範例中使用一垂直配列液晶層之L C D裝置係當無施 加電壓時可令液晶層所致之阻滯大致為零,在常態黑色顯 不情形下’透過模式與反射模式中之黑色暗度即可取得而 改善對比。 (範例3 ) -43- 本纸張尺度適用中國國家標準(CNS) Α4規格(21〇χ297公釐) A7 B7 五、發明説明(41 ) 本發明第三範例中一 L C D裝置將參考圖3說明之,相同於 第一、二範例中之元件係使用相同參考編號,且其詳細說 明將不再贅述。 第三範例中之LCD裝置包括設於基材2及偏光器9之間之 一 λ /4波板10與一相位補償元件12,亦包括設於基材 偏光器6之間之一 λ / 4波板7與一相位補償元件1 ^。 λ /4波板10與相位補償元件丨2之位置以及;1/4波板7與相 位補償元件1 1之位置可分別互換。 當典電壓施加過液晶層5時,在液晶層5中呈現負誘電率 異方性之液晶層液晶分子係大致在垂直方向配列基材1、2 之表面,因此,液晶層5對於入射至L C D裝置上之光線之折 射指數異方性大致上為零。 惟,當LCD裝置做為一反射型LCD裝置時,以其他方向 入射之光線及垂直方向入射之光線係用於顯示。當斜向入 射於液晶層5上之光線用於顯示時,包括環境光線,則顯示 會受到折射指數異方性之影響。 視角並不需要垂直於基材表面,當視角偏離於基材表面之 垂直方向時’顯示係較易於受到液晶層5中之液晶分子折射 指數異方性影響,因此而降低明暗比。 在此範例中,用於補償此液晶分子折射指數異方性影響之 相位補償元件i ii 2係提供以防止對比依光線入射角及目 視方向而降低。 當液晶分子之預先傾斜角相關於基材表面之垂直方向而略 為傾斜,致使一電壓施加過垂直配列液晶層5時液晶分子依 -44 - 本紙張尺度適用中國國家標準&lt;CNS) A4規格(210 X 297公釐) 482917 A7 B7Can be set arbitrarily. Figure 12: The relationship between the angle of the retarded axis of the I / 4 wave plate and the light-dark ratio. When the retarded axis is inclined at a 45 degree angle relative to the transmission axis of the polarizer, the comparison of the quarter wave plate The retard axis angle is set to zero. When the angle difference of the slower axis is within 3 degrees, a brightness ratio of more than 50 can be obtained in the transmissive electrode area (when the LCD device is a transmissive [CD device) and the reflective electrode area (when the LCD device As a reflective LCD device), a transmissive and reflective LC d device with satisfactory display characteristics is provided. According to this, an LCD device can be used as a transmissive device, so that when the ambient light becomes dark, it can be displayed by the light being transmitted by the light through the transmission electrode 8 and used as a reflective L cd device. In order to facilitate the display of ambient light when the ambient light becomes bright, it can be displayed by the sorrow light reflected by the reflective electrode 3 made of a material with a higher light reflectivity. In addition, the L c D device can utilize backlight and ambient light. When the ambient light is bright, the backlight does not need to be used. Therefore, it can reduce power consumption compared to the conventional transmissive LCD device; when the ambient light is dim, the backlight can be used. Therefore, the problem that the conventional reflective L c D device cannot obtain sufficient display is overcome. In the second example, an LCD device using a vertically aligned liquid crystal layer can cause the retardation caused by the liquid crystal layer to be substantially zero when no voltage is applied, and the black darkness in the transmission mode and the reflection mode under normal black display conditions. Get it and improve contrast. (Example 3) -43- This paper size applies Chinese National Standard (CNS) A4 specification (21 × 297 mm) A7 B7 V. Description of the invention (41) An LCD device in the third example of the present invention will be explained with reference to FIG. 3 In other words, components that are the same as those in the first and second examples use the same reference numbers, and detailed descriptions thereof will not be repeated. The LCD device in the third example includes a λ / 4 wave plate 10 disposed between the substrate 2 and the polarizer 9 and a phase compensation element 12, and also includes a λ / 4 disposed between the substrate polarizer 6 The wave plate 7 and a phase compensation element 1 ^. The positions of the λ / 4 wave plate 10 and the phase compensation element 1 and 2; and the positions of the 1/4 wave plate 7 and the phase compensation element 11 can be interchanged respectively. When a typical voltage is applied to the liquid crystal layer 5, the liquid crystal layer in the liquid crystal layer 5 exhibits a negative dielectric anisotropy. The liquid crystal molecules arrange the surfaces of the substrates 1 and 2 in the vertical direction. Therefore, the liquid crystal layer 5 is resistant to incident on the LCD. The refractive index anisotropy of the light on the device is approximately zero. However, when the LCD device is a reflective LCD device, light incident in other directions and light incident in a vertical direction are used for display. When light incident on the liquid crystal layer 5 obliquely is used for display, including ambient light, the display will be affected by the refractive index anisotropy. The viewing angle does not need to be perpendicular to the surface of the substrate. When the viewing angle deviates from the vertical direction of the substrate surface, the display is more susceptible to the anisotropy of the refractive index of the liquid crystal molecules in the liquid crystal layer 5 and thus reduces the light-dark ratio. In this example, a phase compensation element i ii 2 for compensating the influence of the anisotropy of the refractive index of the liquid crystal molecules is provided to prevent the contrast from decreasing depending on the incident angle of the light and the viewing direction. When the pre-tilt angle of the liquid crystal molecules is slightly inclined in relation to the vertical direction of the substrate surface, which causes a voltage to be applied across the liquid crystal layer 5 arranged vertically, the liquid crystal molecules are in accordance with -44-this paper size applies to Chinese national standards &lt; CNS) A4 specifications ( 210 X 297 mm) 482917 A7 B7

某-万向倾斜情形τ ’則少許之折射指數異方性即使在盏 施加電壓時仍會生成於基材之垂直方向。相位補償元件亦 用於補償折射指數異方性,且進—步改善基材垂直方向中 之對比。 ϋ範例中,又/4波板及相位補償元件係說明呈分離式, 但是當;I /4波板與相位補償元件在同一層時仍可取得相同 效果。 在此範例中,其提供二相位補償元件u、12,但是僅有 一相位補償元件11令人滿意。 在第三範例中,其說明透過與反射型Lcd裝置,在第一 範例之反射型L C D裝置中(如圖1), 一相位補償元件可提供 於偏光器6與反射電極3之間,以利補償液晶層5之折射指數 異方性’因而可防止對比降低。 在第一至第三範例中,其說明黑色與白色顯示,藉由提供 彩色過/慮器於反射電極區與透過電極區之適當區域上, 則彩色顯示亦可取得。In a certain-universal tilt condition τ ′, a small refractive index anisotropy will be generated in the vertical direction of the substrate even when a voltage is applied. The phase compensation element is also used to compensate the refractive index anisotropy and further improve the contrast in the vertical direction of the substrate. ϋ In the example, the / 4 wave plate and the phase compensation element are described separately, but when the I / 4 wave plate and the phase compensation element are on the same layer, the same effect can still be obtained. In this example, two phase compensation elements u, 12 are provided, but only one phase compensation element 11 is satisfactory. In the third example, it illustrates a transmissive and reflective LCD device. In the reflective LCD device of the first example (see FIG. 1), a phase compensation element may be provided between the polarizer 6 and the reflective electrode 3 to facilitate Compensating the refractive index anisotropy of the liquid crystal layer 5 thus prevents a decrease in contrast. In the first to third examples, which illustrate black and white displays, color displays can also be obtained by providing color filters / reflectors on appropriate areas of the reflective electrode area and the transmissive electrode area.

δ —偏光迴轉掺雜物添加入第一至第三範例Lcd裝置中 呈現負#電率異方性液晶材料所製成之垂直配列液晶層内 時’液晶分子即在施加一電壓時旋轉,因此,液晶分子在 電壓施加時之旋轉呈穩定。 當液晶層配列而具有9 〇度扭曲時,黑色顯示且含極少光 學漏損者即可依以下原因取得。當液晶分子配列而相關於 基材表面垂直方向傾斜數度以防止一電壓施加時發生傾斜 時’阻滞即發生於液晶分子之傾斜方向中。惟,由於頂、 -45- 本紙張尺度相巾g g家標準(CNS) M祕( x挪公寶) A7 _________ ___B7 五、發明説明(3 ' ' --- 底基材附近區域中之液晶 、义T 便曰曰刀子王90度,阻滯發生抵銷,因 此生成之黑色顯示具有極少之光學漏損。 第、至—範例中之L C D裝置使用—由負誘電率異方性材 料製成(垂直配列液晶層,當液晶層經過處理而使液晶分 子配列於基材表面水平方向時,即可取得相同效果。 在此一情況下,當無電壓施加時液晶分子係配列於表面之 水平方向,而當一電壓施加時液晶分子則傾斜向基材之垂 直方向。據此,白色顯示可在無電壓施加時進行,而黑色 顯示則在一電壓施加時進行。 在水平配列液晶層之黑色顯示中,剩餘阻滯係大於基材附 近中之液晶分子所致之垂直配列液晶層者。欲進行較徹底 之黑色顯示時,可使用一相位補償元件。 在液晶分子在垂直方向幾乎配列於基材及延緩值α仍在反 射模式内之情況下,一相位補償元件可使用λ /4 - α延緩值 以取代;I /4波板7(如圖1、2、3)。 在反射模式中,以液晶層之剩餘延緩值而分歧於圓形偏光 光線之橢圓形偏光光線係入射於液晶層上,糖圓形偏光光 線係在透過通過液晶層後到達反射電極區漸成為圓形偏光 光線’由於反射而使光線漸成具有一相反轉向之圓形偏光 光線。當透過通過及離開參晶層時,光線漸成橢圓形偏光 光線,且分旗於圓形偏光光、纟i,此時之橢圓形偏光光線係 與入射光線偏差9 0度。當透過通過相位補償元件時,橢圓 形偏光光線漸成為直線偏光光線,且垂直於偏光器6之透過 軸線。 -46 - 本紙張尺度適用中國國家標準&lt;CNS) A4規格(210 X 297公釐) 482917 A7 _B7 五、發明説明(44 ) 可以瞭解的是,即使當垂直配列液晶層中剩餘之阻滯並非 可忽略不計,高對比顯示仍可藉由提供一相位補償元件而 在反射模式中取得,以考量於阻滯。 包括一水平配列液晶層5之圖2所示一 L C D裝置將說明 之。 液晶層5係由取自Merck &amp; Co.,Inc.之材料製成,且具有 Ne = 1.5328、No = 1.4722 及 ANsO.0606,透過區中之液晶 層5厚度大約為5.2微米。 提供於基材1、2上之配列層係藉由在垂直於閘線(或源線) 方向中摩擦而處理,基材1、2併合而使基材1、2之配列層 互為相對立(反平行)。當無電壓施加於液晶層5時,液晶層 5中之液晶分子之分子軸線係配列平行於基材1、2表面且垂 直於閘線;當一電壓施加時,液晶分子之分子軸線在基材 1、2表面之垂直方向傾斜,而大致垂直於閘線。在此範例 中’偏光器6、9以及相位補償元件7、1 0之軸線係設定為 施加過液晶層5以做白色顯示之電壓大約丨.6伏,而施加於 液晶層5以做黑色顯示之電壓大約5.3伏。 偏光器6之透過軸線係設定為相關於液晶分子之分子軸線 而在順時針方向呈4 5度,相位補償元件7之較延緩軸線則相 關於偏光器6之透過軸線而在順時針方向呈4 5度,易言之, 相位補償元件7之較延緩軸線設定為相關於液晶分子之分子 軸線而在順時針方向呈9 0度。 在考量黑色顯示反射區中之液晶層5所致阻滯時,可使用 二種具有大約1〇5奈米延緩值及大約9 5奈米延緩值之相位補 償疋件’此延緩值係歧異於λ/4條件(大約137·5奈米),藉 -47- 本紙張尺度適用中@ g *標準(CNS) Μ規格(⑽χ撕公爱) 482917 A7 _____B7_— 一 五、發明説明(45 ) 由使用一具有λ /4- α延緩值之相位補償元件,則令人滿意 之對比可取得於反射區中。 相位補償元件1 0之較延緩軸線及偏光器9之透過軸線係設 定為考量黑色顯示透過區中之液晶層5所致之阻滯。首先, 以一透過及反射型LCD裝置而言,偏光器6之方位及相位補 償元件7之較延緩軸線阻滯係相關於反射區而決定;然後, 偏光器6之阻滯及較緩慢方位與相位補償元件丨〇之阻滯及較 延緩軸線以及偏光器9之方位係相關於透過區而決定。當光 線入射於顯示表面上及當光線自背光入射時,透過通過透 過區中各層之光線偏光狀態變化皆相等,以下之說明即相 關於入射至顯示表面上之光線,以利明瞭。 在黑色狀態中入射於液晶層5上且通過偏光器6之直線偏 光光線係以橢圓形偏光光線離開液晶層5,其相關於液晶分 子之分子軸線而具有一呈順時針4 5度之較長或較短軸線。 橢圓形偏光光線可藉由提供相位補償元件丨〇以具有大約140 奈米延緩值設於其較延緩軸線之λ /4波板製成而轉變成直 線偏光光線,較延緩軸線之方向相同於離開液晶層5之橢圓 形偏光光線較長軸線,即相關於液晶分子之分子軸線呈順 時針方向45度,然後偏光器9定位使其透過軸線垂直於離開 相位補償元件1 〇之直線偏光光線之偏光軸線。 離開相位補償元件1 〇之直線偏光光線之偏光軸線角度係 取決於入射在相位補償元件1 〇上之橢圓形偏光光線之偏光 狀態’在此範例中,當相位補償元件7之延緩值大約10 5奈 米時,離開相位補償元件1 〇之直線偏光光線之偏光軸線為 相關於液晶分子之分子軸線呈順時針大約1 〇度。據此,藉 -48- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 482917 A7 _____B7 __ 五、發明説明(46 ) 由設定偏光器9之透過軸線為相關於液晶分子之分子軸線呈 順時針1 0度,則透過區中即可取得令人滿意之黑色顯示。 當相位補償元件7之延緩值大約9 5奈米時,離開相位補償元 件1 0之直線偏光光線之偏光軸線為相關於液晶分子之分子 軸線呈順時針9 7度。據此,藉由設定偏光器9之透過軸線為 相關於液晶分子之分子軸線呈順時針大約7度,則透過區中 可取得令人滿意之黑色顯示。 包括一水平配列液晶層5之圖3所示一 L C D裝置將說明 之。 液晶層5係由取自Merck &amp; Co,,Inc.之材料製成,且具有 Ne= 1.5328、Νο=1·4722 及 ^1^ = 0.0606,液晶廣 5 厚度大約 為5.2微米。配列層係定位成反平行,偏光器6、9及相位補 &quot;ί貝元件7、1 0、1 1、1 2之軸線皆設定為施加過液晶層5以做 白色顯示之電壓大約1 · 8伏,而施加過液晶層5以做黑色顯 示之電壓大約5.3伏。 偏光器6之透過軸線設定為相關於液晶分子之分子軸線呈 順時針大約1 5度’相位補償元件1 1由一具有大約no奈米 延緩值之λ / 2波板製成,相位補償元件1 1定位以令其較延 緩轴線相關於液晶分子之分子軸線呈順時針大約3 〇度。此 外’相位補償元件7定位以令其較延緩軸線相關於液晶分子 之分子軸線呈順時針大約90度,定位之順序為偏光器6、相 位補償元件11及相位補償元件7。考量黑色顯示中反射區内 液晶層5所致之阻滯,可使用具有大約1〇5及95奈米延緩值 之二種相位補償元件,此延緩值係歧異於λ /4條件(大約 -49- 本紙張尺度適用中國國家標準(CNS) Α4規格(210X 297公釐) 482917 A7 B7 五、發明説明(47 ) 137.5奈米),藉由使用一具有λ /4 - α延緩值之相位補償元 件,則在反射區内可取得令人滿意之對比。 相位補償元件1 0、1 2之較延緩軸線及偏光器9之透過軸線 係設定考量於黑色顯示中之透過區内液晶層5所致之阻滯, 定位之順序為相位補償元件1 0、相位補償元件1 2及偏光器 9 〇 在黑色狀態中入射於液晶層5上且通過偏光器6之直線偏 光光線離開液晶層5成為橢圓形偏光光線,在黑色狀態中入 射於液晶層5上且通過偏光器6之直線偏光光線係以橢圓形 偏光光線離開液晶層5,其相關於液晶分子之分子軸線而具 有一呈順時針4 5度之較長或較短軸線。橢圓形偏光光線可 藉由提供相位補償元件1 0以具有大約140奈米延緩值設於其 較延緩軸線之λ / 4波板製成而轉變成直線偏光光線,較延 緩軸線之方向相同於離開液晶層5之橢圓形偏光光線較長軸 線,即相關於液晶分子之分子軸線呈順時針方向4 5度。然 後以大約270奈米延緩值之λ /2波板製成之相位補償元件1 2 定位,以令其較延緩軸線相關於液晶分子之分子軸線呈順 時針約114度。然後偏光器9定位使其透過軸線垂直於離開 相位補償元件1 2之直線偏光光線之偏光轴線。 離開相位補償元件1 2之直線偏光光線之偏光軸線角度係 取決於入射在相位補償元件1 〇上之橢圓形偏光光線之偏光 狀態,在此範例中,當相位補償元件7之延緩值大約1〇5奈 米時,離開相位補償元件1 〇之直線偏光光線之偏光軸線為 相關於液晶分子之分子軸線呈順時針大約丨〇度。離開相位 -50- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公袭) 482917 A7 ______ B7_ 五、發明説明(48 ) 補償元件1 2之直線偏光光線之偏光軸線為相關於液晶分子 之分子軸線呈順時針方向大約128度,據此,藉由設定偏光 器9之透過軸線為相關於液晶分子之分子軸線呈順時針3 8 度’則透過區中即可取得令人滿意之黑色顯示。當相位補 償元件7之延緩值大約9 5奈米時,離開相位補償元件丨〇之 直線偏光光線之偏光軸線為相關於液晶分子之分子軸線呈 順時針9 7度。離開相位補償元件1 2之直線偏光光線之偏光 軸線係相關於液晶分子之分子軸線而呈順時針方向大約12 $ 度’據此,藉由設定偏光器9之透過軸線為相關於液晶分子 之分子軸線呈順時針大約3 5度,則透過區中可取得令人滿 意之黑色顯示。 在液晶層於反射模式中具有剩餘延緩值α及在透過模式中 具有剩餘延緩值沒之情況中,一具有λ /4- α延緩值之相位 補償元件可用於替代λ /4波板7,而一具有λ /4-( /3 - α )延 緩值之相位補償元件可替代λ /4波板10。 在利用光線透過通過一具有透過功能區域如透過電極區者 之透過模式中,當液晶分子在垂直方向配列於基材時,— 具有λ / 4 - ( /3 - α )延緩值之相位補償元件即設定以使離開液 晶層之光線呈橢圓形偏光光線,如同反射模式中之狀態。 具有此一相位差之橢圓形偏光光線係入射於具有;^ / 4 - α延 緩值之相位補償元件上,因此,當透過通過具有;t / 4 - α延 緩值之相位補償元件時,光線漸成直線偏光光線且垂直於 偏光器6之透過軸線,據此可取得極小光漏損之黑色顯示。 可以瞭解的是,即使當垂直配列液晶層中之剩餘之延緩值 -51 - 本紙張尺度適用中國國家標準(CNS) Α4規格(210 χ 297公釐)δ —Polarized polarization dopants added to the first to third example Lcd devices exhibit negative #electric rate anisotropic liquid crystal materials in the vertical alignment liquid crystal layer. The liquid crystal molecules rotate when a voltage is applied, so The rotation of the liquid crystal molecules is stable when a voltage is applied. When the liquid crystal layers are aligned and have a 90-degree distortion, those with black display and few optical leakage can be obtained for the following reasons. When the liquid crystal molecules are aligned and related to the substrate surface tilting several degrees in the vertical direction to prevent tilting when a voltage is applied, the 'blocking occurs in the tilting direction of the liquid crystal molecules. However, due to the top, -45- this paper standard photo paper gg home standard (CNS) M secret (x Norwegian public treasure) A7 _________ ___B7 V. Description of the invention (3 '' --- liquid crystal in the area near the bottom substrate, The meaning of T is 90 degrees, and the retardation is offset, so the black display generated has very little optical leakage. The first to-the use of LCD devices in the example-is made of anisotropic materials with negative electrical conductivity ( The liquid crystal layer is arranged vertically, and the same effect can be obtained when the liquid crystal layer is processed so that the liquid crystal molecules are aligned horizontally on the surface of the substrate. In this case, when no voltage is applied, the liquid crystal molecules are aligned horizontally on the surface. When a voltage is applied, the liquid crystal molecules are inclined to the vertical direction of the substrate. Accordingly, white display can be performed when no voltage is applied, and black display can be performed when a voltage is applied. In the black display of the horizontally aligned liquid crystal layer The remaining retardation is larger than the vertical alignment of the liquid crystal layer caused by the liquid crystal molecules in the vicinity of the substrate. For a more complete black display, a phase compensation element can be used. In the vertical direction of the liquid crystal molecules Almost arranged in the case of the substrate and the retardation value α is still in the reflection mode, a phase compensation element can be replaced by a retardation value of λ / 4-α; I / 4 wave plate 7 (as shown in Figs. 1, 2, and 3). In the reflection mode, the elliptical polarized light that diverges from the circularly polarized light with the remaining retardation value of the liquid crystal layer is incident on the liquid crystal layer. The sugar circularly polarized light reaches the reflective electrode area after passing through the liquid crystal layer and gradually becomes circular. Due to the reflection, the shape of the polarized light gradually turns into a circularly polarized light with a reversed direction. When passing through and leaving the parametric layer, the light gradually becomes an oval polarized light, and the flag is divided into circular polarized light, 纟 i At this time, the elliptical polarized light is 90 degrees away from the incident light. When passing through the phase compensation element, the elliptical polarized light gradually becomes linearly polarized light and is perpendicular to the transmission axis of the polarizer 6. -46-This paper The scale is applicable to the Chinese National Standard &lt; CNS) A4 specification (210 X 297 mm) 482917 A7 _B7 V. Description of the invention (44) It can be understood that even when the vertical retardation of the remaining liquid crystal layer is not negligible The high contrast display can still be obtained in reflection mode by providing a phase compensation element to take into account the retardation. An LCD device shown in Fig. 2 including a horizontally aligned liquid crystal layer 5 will be explained. Liquid crystal layer 5 series Made of materials from Merck &amp; Co., Inc. and having Ne = 1.5328, No = 1.4722, and ANsO.0606, the thickness of the liquid crystal layer 5 in the transmission region is approximately 5.2 microns. Provided on substrates 1, 2 The alignment layers above are processed by rubbing in a direction perpendicular to the gate line (or source line). The substrates 1 and 2 are merged so that the alignment layers of the substrates 1 and 2 are opposed to each other (anti-parallel). When no voltage is applied to the liquid crystal layer 5, the molecular axis of the liquid crystal molecules in the liquid crystal layer 5 is aligned parallel to the surface of the substrates 1 and 2 and perpendicular to the gate line; when a voltage is applied, the molecular axis of the liquid crystal molecules is on the substrate The vertical direction of the surfaces 1 and 2 is inclined, and is approximately perpendicular to the gate line. In this example, the axes of the polarizers 6, 9 and the phase compensation elements 7, 10 are set to a voltage of about .6 volts applied to the liquid crystal layer 5 for white display, and applied to the liquid crystal layer 5 for black display. The voltage is about 5.3 volts. The transmission axis of the polarizer 6 is set to be related to the molecular axis of the liquid crystal molecules and is 45 degrees in the clockwise direction. The slower axis of the phase compensation element 7 is related to the transmission axis of the polarizer 6 and is 4 in the clockwise direction. 5 degrees, in other words, the slower axis of the phase compensation element 7 is set to be 90 degrees in the clockwise direction relative to the molecular axis of the liquid crystal molecules. When considering the blocking caused by the liquid crystal layer 5 in the black display reflection area, two types of phase compensation files having a retardation value of about 105 nm and a retardation value of about 95 nm can be used. This retardation value is different from λ / 4 condition (approximately 137.5 nanometers), borrowed -47- This paper standard is applicable @ g * standard (CNS) Μ specifications (⑽χ tear public love) 482917 A7 _____ B7_— One, five, the description of the invention (45) Using a phase compensation element with a λ / 4-α retardation value, a satisfactory contrast can be obtained in the reflection area. The retarded axis of the phase compensation element 10 and the transmission axis of the polarizer 9 are set in consideration of the retardation caused by the liquid crystal layer 5 in the black display transmission region. First, for a transmissive and reflective LCD device, the orientation of the polarizer 6 and the slower retardation of the phase compensation element 7 are determined in relation to the reflection area; then, the retardation and slower orientation of the polarizer 6 are related to The retardation and retardation axis of the phase compensation element 丨 0 and the orientation of the polarizer 9 are determined in relation to the transmission area. When the light is incident on the display surface and when the light is incident from the backlight, the polarization changes of the light passing through the layers in the transmission area are all equal. The following description is related to the light incident on the display surface for clarity. In the black state, the linearly polarized light incident on the liquid crystal layer 5 and passing through the polarizer 6 leaves the liquid crystal layer 5 as an elliptical polarized light. It is related to the molecular axis of the liquid crystal molecules and has a length of 45 degrees clockwise. Or a shorter axis. Elliptical polarized light can be converted into linearly polarized light by providing a phase compensation element. It is made of a λ / 4 wave plate with a retardation value of about 140 nanometers set on its slower axis, and the direction of the slower axis is the same as the exit The longer axis of the elliptical polarized light of the liquid crystal layer 5, that is, the molecular axis of the liquid crystal molecules is 45 degrees clockwise, and then the polarizer 9 is positioned so that its transmission axis is perpendicular to the polarized light of the linearly polarized light leaving the phase compensation element 10. Axis. The polarization axis angle of the linearly polarized light rays leaving the phase compensation element 10 is determined by the polarization state of the elliptical polarized light rays incident on the phase compensation element 10. In this example, when the retardation value of the phase compensation element 7 is about 10 5 In the case of nanometers, the polarization axis of the linearly polarized light rays leaving the phase compensation element 10 is about 10 degrees clockwise with respect to the molecular axis of the liquid crystal molecules. According to this, the paper size of -48- applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 482917 A7 _____B7 __ V. Description of the invention (46) The transmission axis of the polarizer 9 is related to the liquid crystal molecules When the molecular axis is 10 degrees clockwise, a satisfactory black display can be obtained through the area. When the retardation value of the phase compensation element 7 is about 95 nanometers, the polarization axis of the linearly polarized light rays leaving the phase compensation element 10 is a molecular axis related to the liquid crystal molecules which is 97 degrees clockwise. According to this, by setting the transmission axis of the polarizer 9 to be about 7 degrees clockwise with respect to the molecular axis of the liquid crystal molecules, a satisfactory black display can be obtained in the transmission region. An LCD device shown in Fig. 3 including a horizontally aligned liquid crystal layer 5 will be described. The liquid crystal layer 5 is made of a material obtained from Merck & Co., Inc., and has Ne = 1.5328, No = 1.472, and ^ 1 ^ = 0.0606. The thickness of the liquid crystal layer 5 is about 5.2 microns. The alignment layer is positioned anti-parallel, and the axes of the polarizers 6, 9 and the phase compensation element are set to a voltage of about 1 applied to the liquid crystal layer 5 for white display. 8 volts, and the voltage applied to the liquid crystal layer 5 for black display is about 5.3 volts. The transmission axis of the polarizer 6 is set to be about 15 ° clockwise with respect to the molecular axis of the liquid crystal molecules. The phase compensation element 1 1 is made of a λ / 2 wave plate having a retardation value of about no nanometer, and the phase compensation element 1 Position it so that its slower axis is about 30 degrees clockwise relative to the molecular axis of the liquid crystal molecules. In addition, the phase compensation element 7 is positioned so that its relatively slower axis is about 90 degrees clockwise with respect to the molecular axis of the liquid crystal molecules. The order of positioning is the polarizer 6, the phase compensation element 11, and the phase compensation element 7. Considering the retardation caused by the liquid crystal layer 5 in the reflection area in the black display, two types of phase compensation elements with retardation values of about 105 and 95 nm can be used. This retardation value is different from the λ / 4 condition (about -49 -This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) 482917 A7 B7 V. Description of the invention (47) 137.5 nm) By using a phase compensation element with λ / 4-α retardation value , A satisfactory contrast can be achieved in the reflection zone. The retardation axis of the phase compensation elements 10 and 12 and the transmission axis of the polarizer 9 are set in consideration of the retardation caused by the liquid crystal layer 5 in the transmission region in the black display. The order of positioning is the phase compensation element 10, phase The compensation element 12 and the polarizer 9 are incident on the liquid crystal layer 5 in the black state and the linearly polarized light passing through the polarizer 6 leaves the liquid crystal layer 5 to become an elliptical polarized light, and is incident on the liquid crystal layer 5 and passes through the black state. The linearly polarized light of the polarizer 6 leaves the liquid crystal layer 5 with an elliptical polarized light, which is related to the molecular axis of the liquid crystal molecules and has a longer or shorter axis clockwise 45 degrees. Elliptical polarized light can be converted into linearly polarized light by providing a phase compensation element 10 made of a λ / 4 wave plate with a retardation value of about 140 nanometers set on its slower axis, and the direction of the slower axis is the same as the exit The longer axis of the elliptical polarized light of the liquid crystal layer 5, that is, the molecular axis of the liquid crystal molecules is clockwise 45 degrees. Then, a phase compensation element 12 made of a λ / 2 wave plate with a retardation value of about 270 nm is positioned so that its retardation axis is about 114 degrees clockwise with respect to the molecular axis of the liquid crystal molecules. The polarizer 9 is then positioned so that its transmission axis is perpendicular to the polarization axis of the linearly polarized light leaving the phase compensation element 12. The polarization axis angle of the linearly polarized light leaving the phase compensation element 12 depends on the polarization state of the elliptical polarized light incident on the phase compensation element 10. In this example, when the retardation value of the phase compensation element 7 is about 10 At 5 nanometers, the polarization axis of the linearly polarized light leaving the phase compensation element 10 is about 度 0 ° clockwise relative to the molecular axis of the liquid crystal molecules. Departure phase -50- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 public attack) 482917 A7 ______ B7_ V. Description of the invention (48) The polarization axis of the linearly polarized light of the compensation element 12 is related to the liquid crystal The molecular axis of the molecules is approximately 128 degrees clockwise. According to this, by setting the transmission axis of the polarizer 9 to be 38 ° clockwise with respect to the molecular axis of the liquid crystal molecules, a satisfactory value can be obtained in the transmission region. Displayed in black. When the retardation value of the phase compensation element 7 is about 95 nm, the polarization axis of the linearly polarized light leaving the phase compensation element is about 97 degrees clockwise with respect to the molecular axis of the liquid crystal molecules. The polarization axis of the linearly polarized light leaving the phase compensation element 12 is related to the molecular axis of the liquid crystal molecules and is about 12 $ degrees clockwise. Accordingly, by setting the transmission axis of the polarizer 9 as the molecule related to the liquid crystal molecules The axis is about 35 degrees clockwise, and a satisfactory black display can be obtained in the transmission area. In the case where the liquid crystal layer has a residual retardation value α in a reflection mode and a residual retardation value in a transmission mode, a phase compensation element having a retardation value of λ / 4-α can be used instead of the λ / 4 wave plate 7, and A phase compensation element having a λ / 4- (/ 3-α) retardation value can replace the λ / 4 wave plate 10. In a transmission mode that uses light to pass through a region having a transmission function, such as a region that passes through an electrode, when the liquid crystal molecules are aligned on the substrate in the vertical direction, a phase compensation element with a retardation of λ / 4-(/ 3-α) That is, the light leaving the liquid crystal layer is set to be oval polarized light, as in the reflection mode. The elliptical polarized light with this phase difference is incident on a phase compensation element having a retardation value of ^ / 4-α. Therefore, when passing through a phase compensation element having a retardation value of t / 4-α, the light gradually Straight polarized light is perpendicular to the transmission axis of the polarizer 6, and a black display with extremely small light leakage can be obtained accordingly. It can be understood that, even when the remaining retardation value in the liquid crystal layer is aligned vertically -51-This paper size applies the Chinese National Standard (CNS) A4 specification (210 χ 297 mm)

不::略不汁時’高對比之顯示仍可藉由提供-相對相位 補#疋件而在反射模式中取得,以考量於阻滞。 (範例4) 本發月第四範例中t_LCD裝置將參考圖2說明如下,其 ㈣於第-範例中之^件採用相同之參考編號。 、 一基材2二包括-反射電極3(如圖2之反射、極區所示),係 由-有w反射率之材料製成,例如銘或忽,及一透過電 極8 (如圖2之透過電極區所示),係由高透過率材料製成, 如ITO。基材1包括一逆電極4(如圖2之透過電極所示), -由呈現負誘電率異方性液晶材料製成之液晶層5係設於反 射電極3 /透過電極8與逆電極4之間。 配列層(圖中未示)係提供於與液晶層5接觸之反射電極3/ 透過電極8及逆電極4之表面上,配列層用於配列液晶層5中 之液晶分子(圖中未示),以垂直於基材丨、2之表面。在提 供配列層之後,至少其中一配列層進行配列處理,例如利 用摩擦。配列方向可由光學元件或電極形狀定義,以替代 摩擦。 由於配列處理,液晶層5中之液晶分子相關於垂直方向而 對於基材1、2之表面呈大約〇 1至5度之傾斜角。 反射電極3係用於施加一電壓至液晶層5,但是反射電極3 僅可做為一反射板,而非做為一施加電壓之電極。在此情 況下’例如透過電極8可延伸至反射電極3上,以做為一電 極而施加一電壓至反射區中之液晶層5。 此處所用之液晶材料具有一折射指數異方性Ne(相關於異 -52-本紙張尺度適用中國_家標準(CNS) A4規格(210 X 297公釐) 482917 A7 B7 五、發明説明 常光線之折射指數)=1 ·5546及N〇 (相關於平常光線之折射指 數)= 1.4773 〇 一又/ 4波板7設於基材1之表面上且相對立於逆電極4。— λ/4波板10設於基材2表面上且相對於反射電極3與透過電 極8。λ /4波板1 0之一較延緩軸線係設定為垂直於;l /4波板 7之較延緩軸線。 一偏光器6設於λ/4波板7之一表面上且相對立於基材1 , 一偏光器9設於又/ 4波板10之一表面上且相對立於基材2 , 偏光器6之一透過軸線係設定為相關於λ /4波板7之較延、緩 軸線而傾斜4 5度角,偏光器9之一透過軸線則設定為相關於 λ /4波板1 0之較延緩軸線而傾斜45度角。久/4波板7、1〇 之較延緩軸線相互垂直,且偏光器6、9之透過軸線相互垂 直,因此,當相位補償元件7之較延緩軸線相關於偏光器6 之透過軸線之角度為+45度時,相位補償元件10之較延緩 轴線相關於偏光器9之透過軸線上角度亦為+ 4 5度;當相位 補償元件7之較延緩軸線相關於偏光器6之透過轴線之角度 為-4 5度時,相位補償元件1 0之較延緩軸線相關於偏光器9 之透過軸線之角度亦為-45度。 圖8 Α係第四範例中一主動陣列基材(基材2 )平面圖,而圖 8 B為沿圖8 A之8 B - 8 B *線所取之主動降列基材截面圖。 如圖8 A、8 B所示,主動陣列基材包括一閘線2 1、一資料 線22、一驅動元件23、一汲極24、一儲存電容電極25、一 閘絕緣層2 6、一絕緣基材2 7、一接觸孔2 8、一層間絕緣層 29、一反射像素電極(反射電極區)30(對應於圖2中之反射 -53- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)No: The display of ‘high contrast’ when it ’s slightly inconsistent can still be obtained in reflection mode by providing the -relative phase compensation # file to consider blocking. (Example 4) The t_LCD device in the fourth example of this month will be explained with reference to FIG. 2 below, and the same reference numbers are used for the parts in the first example. A substrate 22 includes a reflective electrode 3 (shown in the reflective and polar regions of FIG. 2), which is made of a material with w reflectivity, such as Ming or Hu, and a transmissive electrode 8 (see FIG. 2) (As shown in the transmissive electrode area), is made of a high transmittance material, such as ITO. The substrate 1 includes a counter electrode 4 (shown as the transmissive electrode in FIG. 2), a liquid crystal layer 5 made of a liquid crystal material exhibiting anisotropy of a negative electrical conductivity is provided on the reflective electrode 3 / the transmissive electrode 8 and the counter electrode 4 between. The alignment layer (not shown) is provided on the surface of the reflective electrode 3 / transmissive electrode 8 and the counter electrode 4 in contact with the liquid crystal layer 5. The alignment layer is used to align liquid crystal molecules in the liquid crystal layer 5 (not shown). So as to be perpendicular to the surface of the substrate 丨, 2. After the arrangement layer is provided, at least one of the arrangement layers is subjected to an arrangement treatment, for example, using friction. Arrangement direction can be defined by optical element or electrode shape instead of friction. Due to the alignment treatment, the liquid crystal molecules in the liquid crystal layer 5 are related to the vertical direction and have an inclination angle of about 0.01 to 5 degrees with respect to the surfaces of the substrates 1 and 2. The reflective electrode 3 is used to apply a voltage to the liquid crystal layer 5, but the reflective electrode 3 can only be used as a reflective plate, not as an electrode for applying a voltage. In this case, 'for example, the transmission electrode 8 may be extended to the reflection electrode 3 as an electrode to apply a voltage to the liquid crystal layer 5 in the reflection region. The liquid crystal material used here has a refractive index anisotropy Ne (corresponding to iso-52- this paper size applies to China_Home Standard (CNS) A4 specification (210 X 297 mm) 482917 A7 B7 V. Description of the invention Refractive index) = 1.5546 and No (refractive index related to ordinary light) = 1.4773. One wave / 7 wave plate 7 is provided on the surface of the substrate 1 and is opposed to the counter electrode 4. — The λ / 4 wave plate 10 is provided on the surface of the substrate 2 and is opposite to the reflection electrode 3 and the transmission electrode 8. One of the slower axes of the λ / 4 wave plate 10 is set to be perpendicular to; the slower axis of the 1/4 wave plate 7 is set. A polarizer 6 is disposed on one surface of the λ / 4 wave plate 7 and is opposite to the substrate 1, a polarizer 9 is disposed on one surface of the / 4 wave plate 10 and is opposite to the substrate 2, a polarizer One of the transmission axes of 6 is set to be relative to the λ / 4 wave plate 7, and is inclined at an angle of 45 degrees, and one of the transmission axes of the polarizer 9 is set to be related to the λ / 4 wave plate 1 0. Slow the axis and tilt it at an angle of 45 degrees. The longer retardation axes of the long / 4 wave plates 7 and 10 are perpendicular to each other, and the transmission axes of the polarizers 6 and 9 are perpendicular to each other. Therefore, when the retardation axis of the phase compensation element 7 is related to the transmission axis of the polarizer 6, At +45 degrees, the relatively retarded axis of the phase compensation element 10 is related to the angle on the transmission axis of the polarizer 9 is + 45 degrees; when the relatively retarded axis of the phase compensation element 7 is related to the transmission axis of the polarizer 6 When the angle is -45 degrees, the angle of the retarded axis of the phase compensation element 10 relative to the transmission axis of the polarizer 9 is also -45 degrees. FIG. 8A is a plan view of an active array substrate (substrate 2) in the fourth example, and FIG. 8B is a cross-sectional view of the active degraded substrate taken along line 8B-8B * in FIG. 8A. As shown in FIGS. 8A and 8B, the active array substrate includes a gate line 21, a data line 22, a driving element 23, a drain 24, a storage capacitor electrode 25, a gate insulation layer 26, a Insulating substrate 2 7, a contact hole 2 8, an interlayer insulating layer 29, a reflective pixel electrode (reflective electrode area) 30 (corresponding to the reflection in Figure 2-53- This paper size applies to Chinese National Standard (CNS) A4 Specifications (210X 297 mm)

482917 A7 _ B7五、發明説明(51 ) 電極3 )、及一透過像素電極(透過電極區)3丨(對應於圖2中 之透過電極8 )。 儲存電容電極2 5係通電至汲極2 4,且疊覆於閘線2丨而令 閘絕緣層2 6設於其間,因此,儲存電容電極2 5、絕緣層 2 6、及閘線2 1構成一儲存電容。 接觸孔2 8設於層間絕緣層2 9中,用於連接透過像素電極 3 1與儲存電容電極25。 主動陣列基材包括一反射像素電極3 〇,用於反射外部光 線,及一透過像素電極31,用於容許來自背光之光線在某 一像素區中透過通過。 在圖8B中’反射電極30具有一平坦表面,但是亦可具有 一波形表面以改善反射率。在此範例中,一像素電極包括 反射像素電極30及透過像素電極31,另者,一半透過與半 反射電極亦可使用。 請參閱圖14A、14B、15A ' 15B,其將說明第四範例中 LCD裝置之透過與反射模式中之光透過率與反射率。 圖14A、14B揭示使用反射電極之反射模式,圖14A揭示 當無電壓施加過垂直配列液晶層時之黑色顯示,及圖1 4 B揭 示當一電壓施加過垂直配列液晶層時之白色顯示。圖 15A、15B揭示使用透過電極之透過模式,圖15A揭示當無 電壓施加過垂直配列液晶層時之黑色顯示,及圖1 5 B揭示當 一電壓施加過垂直配列液晶層時之白色顯示。 參閱圖1 4 A,反射模式中之黑色顯示將說明之。 入射於偏光器6上之光線透過通過偏光器6而成為直線偏 -54· 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)~ ^482917 A7 _ B7 V. Description of the invention (51) Electrode 3) and a transmissive pixel electrode (transmissive electrode area) 3 (corresponding to the transmissive electrode 8 in FIG. 2). The storage capacitor electrode 2 5 is energized to the drain electrode 2 4 and is superposed on the gate wire 2 丨 so that the gate insulating layer 2 6 is disposed therebetween. Therefore, the storage capacitor electrode 2 5, the insulating layer 2 6, and the gate wire 2 1 Forms a storage capacitor. The contact hole 28 is provided in the interlayer insulating layer 29 and is used to connect the transmission pixel electrode 31 and the storage capacitor electrode 25. The active matrix substrate includes a reflective pixel electrode 30 for reflecting external light, and a transmissive pixel electrode 31 for allowing light from the backlight to pass through in a certain pixel region. In Fig. 8B, the 'reflection electrode 30 has a flat surface, but may also have a wave-shaped surface to improve the reflectance. In this example, a pixel electrode includes a reflective pixel electrode 30 and a transmissive pixel electrode 31. In addition, semi-transmissive and semi-reflective electrodes can also be used. Please refer to FIGS. 14A, 14B, 15A ′ 15B, which will explain the light transmittance and reflectance in the transmission and reflection modes of the LCD device in the fourth example. Figs. 14A and 14B show reflection modes using reflective electrodes, Fig. 14A shows a black display when no voltage is applied across the vertically aligned liquid crystal layers, and Fig. 14B shows a white display when a voltage is applied across the vertically aligned liquid crystal layers. 15A and 15B show a transmission mode using a transmissive electrode, FIG. 15A shows a black display when no voltage is applied across the vertically aligned liquid crystal layer, and FIG. 15B shows a white display when a voltage is applied across the vertically aligned liquid crystal layer. Referring to Figure 1 4A, the black display in the reflection mode will explain it. The light incident on the polarizer 6 is linearly polarized by passing through the polarizer 6 -54 · This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) ~ ^

裝 * ¥ 訂Pack * ¥ order

482917 A7 B7 五、發明説明(52 ) 光光線,且平行於偏光器6之透過軸線,然後入射於λ/4波 板7上。 λ /4波板7係排列使偏光器6之透過軸線與λ /4波板7之較 延緩軸線呈4 5度角,因此,透過通過λ /4波板7之光線漸成 為圓形偏光光線。 當無電壓施加於液晶層5時,用於液晶層5中而具有負謗 電率異方性之液晶分子即大致垂直於基材丨、2之表面,據 此’液晶層5對入射光之折射指數異方性係極小。易言之, 藉由光線透過通過液晶層5所致相位差大致為零。 據此’來自λ /4波板7之圓形偏光光線透過通過液晶層 5,而幾乎呈圓形偏光,且由基材2中之反射電極3反射。 由反射電極3所反射之圓形偏光光線漸成具有一相反轉向 之圓形偏光光線,且透過通過又/4波板7成為直線偏光光線 且垂直於已自偏光器6入射於Λ/4波板7上之光線。 來自λ/4波板7之直線偏光光線係垂直於偏光器6之透過 軸線,此光線由偏光器6吸收而不透過。 在此情況下即得以進行黑色顯示。 參閱圖14Β,反射模式中之白色顯示將說明如下。 直到光線透過通過λ/4波板7成為圓形偏光光線為止之過 程係相同於上者,故不予以贅述。 當一電壓施加於液晶層5時,液晶分子係相關於基材1、2 之表面而傾斜成水平,據此,自;^ /4波板7入射於液晶層5 上之圓形偏光光線藉由液晶分子之雙折射而成橢圓形偏光 光線。光線隨後由反射電極3反射,而在透過通過λ /4波板 -55- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐〉482917 A7 B7 V. Description of the invention (52) The light rays are parallel to the transmission axis of the polarizer 6, and then incident on the λ / 4 wave plate 7. The λ / 4 wave plate 7 is arranged so that the transmission axis of the polarizer 6 is at a 45 degree angle with the slower axis of the λ / 4 wave plate 7. Therefore, the light passing through the λ / 4 wave plate 7 gradually becomes circularly polarized light. . When no voltage is applied to the liquid crystal layer 5, the liquid crystal molecules with negative anisotropy of anisotropy used in the liquid crystal layer 5 are approximately perpendicular to the surface of the substrate 丨, 2. According to this, the The refractive index anisotropy is extremely small. In other words, the phase difference caused by the transmission of light through the liquid crystal layer 5 is substantially zero. Accordingly, the circularly polarized light from the λ / 4 wave plate 7 passes through the liquid crystal layer 5 and is almost circularly polarized, and is reflected by the reflective electrode 3 in the substrate 2. The circularly polarized light reflected by the reflective electrode 3 gradually becomes a circularly polarized light with an opposite direction, and passes through the / 4 wave plate 7 to become a linearly polarized light and is incident on the Λ / 4 wave perpendicular to the polarizer 6 Light on board 7. The linearly polarized light from the λ / 4 wave plate 7 is perpendicular to the transmission axis of the polarizer 6, and this light is absorbed by the polarizer 6 without being transmitted. In this case, black display is enabled. Referring to FIG. 14B, the white display in the reflection mode will be explained as follows. The process until the light passes through the λ / 4 wave plate 7 and becomes circularly polarized light is the same as the above, so it will not be described in detail. When a voltage is applied to the liquid crystal layer 5, the liquid crystal molecules are inclined horizontally in relation to the surfaces of the substrates 1 and 2, and accordingly, the circularly polarized light rays incident on the liquid crystal layer 5 from the wave plate 7 Elliptical polarized light from the birefringence of liquid crystal molecules. The light is then reflected by the reflective electrode 3, and passes through the λ / 4 wave plate -55- This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm>

装 訂Binding

482917 A7 B7 五、發明説明(53 ) 7後,光線並非成為垂直於偏光器6透過軸線之直線偏光光 線。因此,光線透過通過偏光器6。 藉由控制施加於液晶層5之電壓,由反射電極3反射後通 過偏光器6之光線量即可調整,因此,灰階顯示得以提供。 當一電壓由反射電極3及逆電極4施加於液晶層5以改變液 晶分子方向,而使液晶層5所致之相位差滿足於1 / 4波長條 件時,當光線透過通過液晶層5而到達反射電極3時來自λ /4波板7之圓形偏光光線即漸成直線偏光光線,且垂直於偏 光器6之透過軸線。光線再次透過通過液晶層5成圓形偏光 光線及隨後透過通過λ / 4波板7成為直線偏光光線,且平行 於偏光器6之透過軸線,在此情況下,透過通過偏光器6之 光線量為最大值。 圖1 4 Β揭示具有液晶層阻滯條件之情形,由反射電極3所 反射之一最大光線量係透過通過偏光器6,易言之,反射電 極3上之光線係直線偏光光線,且垂直於偏光器6之透過軸 如上所述,當無電壓施加過液晶層5時,黑色顯示即因液 晶層5大致上無雙折射而可取得;及當一電壓施加過液晶層 5時,可藉由依據電壓以改變光線透過率而取得灰階顯示。 參閱圖15Α,透過模式中之黑色顯示將說明如下。 由一光源(圖中未示)放射之光線係入射於偏光器9上,成 為直線偏光光線且平行於偏光器9之透過軸線。 λ /4波板1 0係排列成使其較緩慢之光學軸線相關於偏光 器9之透過軸線而傾斜45度角,因此,透過通過λ/4波板 -56 - 本紙張尺度適財S S家料(CNS) Α视格(21G X 297公釐)' 482917 A7 ______B7 7、發明説明(54~^ 1 0之光線漸成圓形偏光光線。 當無電壓施加於液晶層5時,用於液晶層5中而具有負誘 電率異方性之液晶分子即大致垂直於基材1、2之表面,據 此,液晶層5對入射光之折射指數異方性係極小。易言之, 藉由光線透過通過液晶層5所致之相位差大致為零。 據此,來自λ / 4波板1 〇之圓形偏光光線透過通過液晶層 5,而保持圓形偏光且入射於λ/4波板7上。 λ /4波板1 0之較延緩軸線與λ /4波板7之較延緩軸線係相 互平行,因此,入射於;1/4波板7上之圓形偏光光線成為直 線偏光光線,且垂直於偏光器9之透過軸線及入射於偏光器 6上。 來自λ / 4波板7之直線偏光光線係垂直於偏光器6之透過 軸線,且由偏光器6吸收而不透過。 依此情形,黑色顯示即待以進行。 參閱圖15Β,透過模式中之白色顯示將說明如下。 直到光線透過通過;L /4波板1 0為止之過程係相同於圖 1 5 Α所示者,故不予以贅述。 當一電壓施加於液晶層5時,液晶分子係相關於基材1、2 之表面傾斜成水平,據此,自;1/4波板10入射於液晶層5上 之圓形偏光光線藉由液晶分子之雙折射而成橢圓形偏光光 線。而在透過通過;1/4波板7後,光線並非成為垂直於偏光 器6透過軸線之直線偏光光線,因此,光線透過通過偏光器 6 〇 藉由控制施加過液晶層5之電壓,入射於偏光器6上之光 本纸張尺度通用中國國家搮準&lt;CNS) A4規格(210 X 297公釐) 482917 A7 B7發明説明(55 ) 一 線量可加以調整,以利提供灰階顯示。 當一電壓施加過液晶層5使液晶層5所致之相位差滿足於 1 / 2波長條件時,來自λ / 4波板1 0之圓形偏光光線漸成直線 偏光光線,且在液晶層5之一半厚度處垂直於偏光器6之透 過軸線,隨後當其完全透過通過液晶層5時漸成為圓形偏光 光線。 由於來自液晶層5之圓形偏光光線在透過通過;1/4波板7 時漸成平行於偏光器6之透過軸線之直線偏光光線,因此入 射於偏光器6上之大部份光線皆透過通過。在此情形下,透 過通過偏光器6之光線量為最大值。 圖1 5 Β揭示具有液晶層阻滯條件之倩形,透過通過偏光器 9之一最大光線量係透過通過偏光器6。 如上所述,當無電壓施加過液晶層5時,即可取得黑色顯 示;而當一電壓施加過液晶層5時,灰階顯示可藉由依據電 壓改變光透過率而取得。 圖1 6揭示第四範例中當;L /4波板7、1 〇之較延緩軸線相互 垂直時,以及當λ /4波板7、1 0之較延緩軸線相互平行時, 光線透過率與波長之間關係,以利比較。 在第四範例中,由於;ί / 4波板7、1 〇之較延緩抽線相互垂 直,因此,一相位補償元件之折射指數異方性之波長依存 關係即由另一相位補償元件之折射指數異方性之波長依存 關係抵銷’因此一前述之相位差滿足於4Q〇至奈米波長 全區中(可見光),以利改善黑色顯示之暗度。 反射模式中亮色顯示之最大反射率時由液晶層5所致之相 -58 - 本紙張尺度適用+ ® g家標準&lt;CNS) &amp;4规格(21() x挪公爱)~一 ’ -----482917 A7 B7 V. Description of the invention (53) After 7, the light does not become a linearly polarized light line perpendicular to the transmission axis of the polarizer 6. Therefore, light passes through the polarizer 6. By controlling the voltage applied to the liquid crystal layer 5, the amount of light that passes through the polarizer 6 after being reflected by the reflective electrode 3 can be adjusted, and therefore, a gray scale display can be provided. When a voltage is applied to the liquid crystal layer 5 from the reflective electrode 3 and the counter electrode 4 to change the direction of the liquid crystal molecules, so that the phase difference caused by the liquid crystal layer 5 satisfies the 1/4 wavelength condition, when light passes through the liquid crystal layer 5 and reaches The circularly polarized light from the λ / 4 wave plate 7 at the time of the reflective electrode 3 becomes linearly polarized light, and is perpendicular to the transmission axis of the polarizer 6. The light passes through the liquid crystal layer 5 again into circularly polarized light and then passes through the λ / 4 wave plate 7 to become linearly polarized light, and is parallel to the transmission axis of the polarizer 6. In this case, the amount of light transmitted through the polarizer 6 Is the maximum. Figure 1 4B reveals the situation with the liquid crystal layer retarding condition. One of the maximum amount of light reflected by the reflective electrode 3 is transmitted through the polarizer 6. In other words, the light on the reflective electrode 3 is linearly polarized light and is perpendicular to The transmission axis of the polarizer 6 is as described above. When no voltage is applied to the liquid crystal layer 5, black display is obtained because the liquid crystal layer 5 is substantially birefringent; and when a voltage is applied to the liquid crystal layer 5, it can be obtained based on The voltage changes the light transmittance to obtain a grayscale display. Referring to FIG. 15A, the black display in the transmission mode will be explained as follows. The light emitted from a light source (not shown) is incident on the polarizer 9 and becomes a linearly polarized light parallel to the transmission axis of the polarizer 9. The λ / 4 wave plate 10 is arranged so that its slower optical axis is inclined at a 45-degree angle in relation to the transmission axis of the polarizer 9. Therefore, the transmission through the λ / 4 wave plate -56- (CNS) Α Grid (21G X 297 mm) '482917 A7 ______B7 7. Description of the invention (54 ~ ^ 1 0 The light gradually becomes circularly polarized light. When no voltage is applied to the liquid crystal layer 5, it is used for liquid crystal The liquid crystal molecules with negative anisotropy anisotropy in layer 5 are approximately perpendicular to the surfaces of substrates 1 and 2. According to this, the refractive index anisotropy of the liquid crystal layer 5 with respect to incident light is extremely small. In other words, by The phase difference caused by the light passing through the liquid crystal layer 5 is approximately zero. Accordingly, the circularly polarized light from the λ / 4 wave plate 10 passes through the liquid crystal layer 5 while maintaining the circularly polarized light and incident on the λ / 4 wave plate. 7. The slower axis of the λ / 4 wave plate 10 and the slower axis of the λ / 4 wave plate 7 are parallel to each other. Therefore, the circularly polarized light on the 1/4 wave plate 7 becomes linearly polarized light. And is perpendicular to the transmission axis of the polarizer 9 and incident on the polarizer 6. The linearly polarized light rays from the λ / 4 wave plate 7 are vertical The transmission axis of the polarizer 6 is absorbed by the polarizer 6 but not transmitted. In this case, the black display is pending. Referring to FIG. 15B, the white display in the transmission mode will be described below. Until the light passes through; L / The process up to 4 wave plate 10 is the same as that shown in Figure 15A, so it will not be repeated. When a voltage is applied to the liquid crystal layer 5, the surface of the liquid crystal molecules related to the substrates 1 and 2 is inclined horizontally. According to this, the circularly polarized light incident from the 1/4 wave plate 10 on the liquid crystal layer 5 is elliptically polarized by the birefringence of the liquid crystal molecules. After passing through the 1/4 wave plate 7, the light It does not become a linearly polarized light perpendicular to the transmission axis of the polarizer 6. Therefore, the light passes through the polarizer 6 and the voltage applied to the polarizer 6 is controlled by controlling the voltage applied to the liquid crystal layer 5. The paper size is common in China. Standard &lt; CNS) A4 specification (210 X 297 mm) 482917 A7 B7 Invention description (55) The line size can be adjusted to provide grayscale display. When a voltage is applied to the liquid crystal layer 5 so that the phase difference caused by the liquid crystal layer 5 satisfies the 1/2 wavelength condition, the circularly polarized light from the λ / 4 wave plate 10 gradually becomes linearly polarized light, and in the liquid crystal layer 5 One and a half thicknesses are perpendicular to the transmission axis of the polarizer 6, and then gradually become circularly polarized light when it is completely transmitted through the liquid crystal layer 5. Since the circularly polarized light from the liquid crystal layer 5 passes through; when the quarter-wave plate 7 gradually becomes a linearly polarized light parallel to the transmission axis of the polarizer 6, most of the light incident on the polarizer 6 is transmitted. by. In this case, the amount of light passing through the polarizer 6 is the maximum. FIG. 15B shows a phantom shape with a liquid crystal layer blocking condition. One of the maximum light rays transmitted through the polarizer 9 is transmitted through the polarizer 6. As described above, when no voltage is applied to the liquid crystal layer 5, a black display can be obtained; and when a voltage is applied to the liquid crystal layer 5, a gray scale display can be obtained by changing the light transmittance according to the voltage. Figure 16 reveals that in the fourth example, when the slower axes of the L / 4 wave plates 7, 10 are perpendicular to each other, and when the slower axes of the λ / 4 wave plates 7, 10 are parallel to each other, the light transmittance and The relationship between wavelengths for comparison. In the fourth example, because the slower drawing lines of ί / 4 wave plate 7, 10 are perpendicular to each other, the wavelength dependence of the refractive index anisotropy of one phase compensation element is refracted by another phase compensation element The wavelength dependence of the exponential anisotropy is offset by 'so one of the aforementioned phase differences is satisfied in the whole region of 4Q0 to the wavelength of the nanometer (visible light), in order to improve the darkness of the black display. The maximum reflectance of the bright color display in the reflection mode is caused by the liquid crystal layer 5 -58-This paper size is applicable to the standard of the G &lt; CNS) &amp; 4 specifications (21 () x Norwegian public love) ~ a ' -----

裝 訂Binding

482917 五、發明説明(56 A7 B7482917 V. Description of the invention (56 A7 B7

位差為人/4,而透過模式中亮色顯示之最大反射率時由夜 晶層5所致之相位差為;I /2,由此可知,當反射區中之液晶 層厚度與透過區中之液晶層厚度相等時,用於反射模式之 λ / 4與用於透過模式之λ / 4之相位差無法同時達成。 在顯示係藉由改變反射區中液晶層相位差為〇至λ /4之情 況中,一令人滿意之光線使用因素無法取得於透過模式 中,因為透過區中之液晶層相位差亦僅自〇變至久/4。 在反射模式及透過模式中之令人滿意光線使用因素可藉由 自反射區中之液晶層厚度改變為透過區中之厚度而取得, 或藉由施加不同之電壓至反射區中之液晶層及透過區中之 液晶層而取得。在透過區中液晶層厚度為反射區中液晶層 厚度二倍之情況下,用於反射模式之λ/4與用於透過模式 之又/ 2之液晶層相位差即可同時達成。透過模式所用之厚 度不需為反射模式所用厚度之二倍,光線使用因素藉由令 透過模式所用厚度大於反射模式所用厚度即可增大。 7 構成λ/4波板7、10之雙折射材料相關於平常光線與異常 光線之折射指數係強烈地取決於波長,因此,在一特定厚 度處 &lt; 波長中所累積之相位延遲亦取決於波長,只有當入 射光線具有單一特定波長時,λ/4之相位延遲可完全^供 於入射光之直線偏光光線面。據此,在又相位延遲因為 構成λ/4波板7、10之雙折射材料之折射指數異方性之波長 ,存關係而未取得之區域中,_部份光線即透過通過偏光 器而不由偏光器6吸收,結果,黑色顯示之暗度改變。 在第四fe例中,Λ /4波板7、i Q之較延緩軸線係設定為相互 -59-The parallax is human / 4, and the phase difference caused by the night crystal layer 5 when the maximum reflectance of the bright color display in the transmission mode is; I / 2. It can be seen that when the thickness of the liquid crystal layer in the reflection region and the transmission region When the thicknesses of the liquid crystal layers are equal, the phase difference between λ / 4 for reflection mode and λ / 4 for transmission mode cannot be achieved at the same time. In the case where the display is by changing the phase difference of the liquid crystal layer in the reflection region from 0 to λ / 4, a satisfactory light use factor cannot be obtained in the transmission mode, because the phase difference of the liquid crystal layer in the transmission region is only 〇to long / 4. Satisfactory light usage factors in reflection mode and transmission mode can be obtained by changing the thickness of the liquid crystal layer in the reflection area to the thickness in the transmission area, or by applying different voltages to the liquid crystal layer in the reflection area and Obtained through the liquid crystal layer in the zone. In the case where the thickness of the liquid crystal layer in the transmission region is twice the thickness of the liquid crystal layer in the reflection region, the retardation of λ / 4 for the reflection mode and the liquid crystal layer for the transmission mode / 2 can be achieved simultaneously. The thickness used in the transmission mode need not be twice the thickness used in the reflection mode. The light usage factor can be increased by making the thickness used in the transmission mode greater than the thickness used in the reflection mode. 7 The refractive index of birefringent materials constituting λ / 4 wave plates 7, 10 is related to the refractive index of ordinary light and abnormal light, which strongly depends on the wavelength. Therefore, the phase delay accumulated in a specific thickness &lt; Wavelength. Only when the incident light has a single specific wavelength, the phase retardation of λ / 4 can be completely applied to the linearly polarized light plane of the incident light. According to this, in a region where phase retardation is not obtained because of the wavelength of the refractive index anisotropy of the birefringent materials constituting the λ / 4 wave plates 7, 10, _ part of the light passes through the polarizer and does not help. The polarizer 6 absorbs, and as a result, the darkness of the black display changes. In the fourth fe example, the retarded axes of the Λ / 4 wave plate 7, i Q are set to each other -59-

裝 訂Binding

A7 B7A7 B7

) 五、發明説明(57 垂直,且偏光器6、9之透過軸線設定為相互垂直,由於此 一結構,在透過模式中,;I / 4波板1 0之折射指數異方性之 波長依存關係即由;I / 4波板7之折射指數異方性之波長依存 關係抵銷。因此,λ /4條件滿足於400至700奈米全範圍 中,以利改善黑色顯示之暗度。 當另一相位補償元件提供於偏光器6與液晶層5之間以及 偏光器9與液晶層5之間之至少其中一者時,令人滿意之顯 示可在一寬廣視角中取得。 在第四範例中,液晶層5呈垂直方向配列,且在基材附近 之液晶分子相關於基材垂直方向而具有一特定傾斜角度情 形下’延緩值在無電壓施加時並非无全為零。藉由提供一 相位補償元件替代λ / 4波板7以補償阻滯,因此可取得較佳 之黑色顯示。 在反射模式中液晶層具有一剩餘延緩值α情形中,一具有 λ / 4 - α延緩值之相位補償元件可提供以替代又/ 4波板7。 在反射模式中,藉由液晶層之剩餘阻滯而分歧於圓形偏光 光線之橢圓形偏光光線係入射於液晶層上,橢圓形偏光光 線在透過通過液晶層而到達反射電極時即漸成為圓形偏光 光線。由於反射之故,光線逐漸成為具有相反轉向之圓形 偏光光線,而當透過通過及離開液晶層時,光線即從圓形 偏光光線變成橢圓形偏光光線,橢圓形偏光光線在此點處 具有偏離於入射時間9 0度之相位。當透過通過相位補償元 件時,橢圓形偏光光線漸成直線偏光光線,且垂直於偏光 器6之透過軸線。 -60- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 482917 A7 __ B7 五、發明説明(5~)~&quot; --- 在主要反射模式之顯示進行時,例如當反射像素電極大於 透過像素電極時,用於透過模式中顯示之λ/4波板Μ可保 留之。 可會解的疋,即使當垂直配列液晶層中之剩餘阻滯並非 可忽略不計時,高對比顯示仍可藉由提供一相位補償元件 而取得於反射模式中,以考量於阻滞。 在液晶層於反射模式中具有剩餘延緩值α及在透過模式中 具有剩餘延緩值沒之情況中,一具有λ/4·α延緩值之相位 補償元件可用於替代λ/4波板7 ,而一具有λ/4_(θ·α)延 緩值之相位補償元件可替代λ /4波板丨〇。 在利用光線透過通過一具有透過功能區域如透過電極區者 之透過模式中’當液晶分子在垂直方向配列於基材時,一 具有λ / 4 -(石-α )延緩值之相位補償元件即設定以使離開液 晶層之光線呈橢圓形偏光光線,如同反射模式中之狀態。 具有此一相位差之橢圓形偏光光線係入射於具有〜 λ/4-α延緩值之相位補償元件上,因此,當透過通過具有 λ/4-α延緩值之相位補償元件時,光線漸成直線偏光光線 且垂直於偏光器6之透過軸線,據此可取得極小光漏損之黑 色顯示。 可以瞭解的是,即使當垂直配列液晶層中之剩餘之延緩值 不可忽略不計時,鬲對比之顯示仍可藉由提供一相位補償 元件而在反射模式中取得,以考量於阻滯。 第四範例中之LCD裝置使用一垂直配列液晶層,但是使 用一水平配列液晶層而依相同原理亦可達成顯示,在此一 -61 - 本纸張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 482917 A7 B7 五、發明説明(59 ) 情況下’當施加較高電壓時則液晶層所致之阻滞即減低。 惟’當施加一電壓·時大部份液晶分子除了基材附近者外皆 垂直於基材狀態下,基材附近内之液晶分子會因電場而難 以移動,據此,剩餘阻滯即因基材附近内之諸液晶分子而 發生。可以瞭解的是,當使用水平配列液晶層時,在黑色 顯示期間則發生光學漏損,且相較於使用垂直配列液晶層 時可因剩餘阻滞之影響而減低對比。為了以水平配列液晶 層取彳于相同於垂直配列液晶層之黑色顯示品質,基材附近 内之液晶分子需配列以相互作用於液晶分子所致之剩餘阻 滯,或另需提供一相位補償元件。 (範例5) 本發明第五範例中之一LCD裝置將參考圖17說明如下。 一基材2包括一反射電極3(如圖17之反射電極區所示), 係由具有一高反射率之材料製成,例如鋁或妲,及一透過 電極8(如圖17之透過電極區所示),係由高透過率材料製 成,如ITO。一基材1包括一逆電極4(如圖17之透過電極所 示)’ 一由呈現負誘電率異方性液晶材料製成之液晶層5係 設於反射電極3 /透過電極8與逆電極4之間。 配列層(圖中未示)係提供於與液晶層5接觸之反射電極3 / 透過電極8及逆電極4之表面上,配列層用於配列液晶層5中 之液晶分子(圖中未示),以垂直於基材丨、2之表面。在提 供配列層之後,至少其中一配列層進行配列處理,例如利 用摩擦。配列方向可由光學元件或電極形狀定義,以替代 摩檫。 -62- 本紙張尺度適用中國國家標準&lt;CNS) A4規格(210 X 297公釐)) V. Description of the invention (57 vertical, and the transmission axes of the polarizers 6, 9 are set to be perpendicular to each other. Due to this structure, in the transmission mode, the wavelength dependence of the refractive index anisotropy of the I / 4 wave plate 10 The relationship is offset by the wavelength dependence of the refractive index anisotropy of the I / 4 wave plate 7. Therefore, the λ / 4 condition is satisfied in the full range of 400 to 700 nanometers in order to improve the darkness of the black display. When When another phase compensation element is provided between at least one of the polarizer 6 and the liquid crystal layer 5 and between the polarizer 9 and the liquid crystal layer 5, satisfactory display can be obtained in a wide viewing angle. In the fourth example In the case where the liquid crystal layer 5 is aligned in a vertical direction, and the liquid crystal molecules near the substrate have a specific tilt angle in relation to the vertical direction of the substrate, the retardation value is not all zero when no voltage is applied. By providing a The phase compensation element replaces the λ / 4 wave plate 7 to compensate for retardation, so that a better black display can be obtained. In the reflection mode, the liquid crystal layer has a residual retardation value α, and a phase compensation having a retardation value of λ / 4-α Components can be lifted To replace the / 4 wave plate 7. In the reflection mode, the elliptical polarized light that is divergent from the circular polarized light by the remaining retardation of the liquid crystal layer is incident on the liquid crystal layer, and the elliptical polarized light is transmitted through the liquid crystal layer. When it reaches the reflective electrode, it gradually becomes circularly polarized light. Due to the reflection, the light gradually becomes a circularly polarized light with the opposite direction. When passing through and leaving the liquid crystal layer, the light changes from circularly polarized light to oval. Polarized light, elliptical polarized light has a phase that is 90 degrees away from the incident time at this point. When passing through the phase compensation element, the elliptical polarized light gradually becomes linearly polarized light and is perpendicular to the transmission axis of the polarizer 6. -60- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 482917 A7 __ B7 V. Description of the invention (5 ~) ~ &quot; --- During the display of the main reflection mode, for example When the reflective pixel electrode is larger than the transmissive pixel electrode, the λ / 4 wave plate M used for the display in the transmission mode can be retained. It can be solved even when vertically aligned in the liquid crystal layer. Residual retardation is not negligible. High-contrast displays can still be obtained in reflection mode by providing a phase compensation element to consider the retardation. The liquid crystal layer has a residual retardation value α in the reflection mode and a transmission mode. In the case where there is no residual retardation value, a phase compensation element having a retardation value of λ / 4 · α can be used instead of the λ / 4 wave plate 7, and a phase compensation element having a retardation value of λ / 4_ (θ · α) Can replace the λ / 4 wave plate. In the transmission mode that uses light to pass through a region with a transmission function, such as the electrode region, when the liquid crystal molecules are aligned in the vertical direction on the substrate, a -α) The phase compensation element of the retardation value is set so that the light leaving the liquid crystal layer is an elliptical polarized light, as in the state in the reflection mode. The elliptical polarized light having this phase difference is incident on a phase compensation element having a retardation value of ~ λ / 4-α. Therefore, when passing through a phase compensation element having a retardation value of λ / 4-α, the light gradually becomes The linearly polarized light is perpendicular to the transmission axis of the polarizer 6, thereby obtaining a black display with extremely small light leakage. It can be understood that even when the remaining retardation value in the vertically aligned liquid crystal layer cannot be ignored, the contrast display can still be obtained in the reflection mode by providing a phase compensation element to consider the retardation. The LCD device in the fourth example uses a vertically aligned liquid crystal layer, but a horizontally aligned liquid crystal layer can be used to achieve display according to the same principle. Here -61-This paper size applies the Chinese National Standard (CNS) A4 specification ( 210 X 297 mm) 482917 A7 B7 V. Description of the invention (59) In the case of '59, when a higher voltage is applied, the retardation caused by the liquid crystal layer is reduced. However, when a voltage is applied, most of the liquid crystal molecules are perpendicular to the substrate except the vicinity of the substrate. The liquid crystal molecules in the vicinity of the substrate will be difficult to move due to the electric field. Based on this, the remaining retardation is caused by the base. This occurs due to liquid crystal molecules in the vicinity of the material. It can be understood that when a horizontally aligned liquid crystal layer is used, optical leakage occurs during a black display period, and the contrast can be reduced due to the effect of residual retardation compared to when a vertically aligned liquid crystal layer is used. In order to obtain the same black display quality as the horizontally aligned liquid crystal layer with the horizontally aligned liquid crystal layer, the liquid crystal molecules in the vicinity of the substrate need to be aligned to interact with the remaining retardation caused by the liquid crystal molecules, or a phase compensation element must be provided. . (Example 5) An LCD device in a fifth example of the present invention will be explained with reference to FIG. 17 as follows. A substrate 2 includes a reflective electrode 3 (shown in the reflective electrode region of FIG. 17), which is made of a material having a high reflectivity, such as aluminum or osmium, and a transmissive electrode 8 (such as the transmissive electrode of FIG. 17). Area), made of a high-transmittance material, such as ITO. A substrate 1 includes a counter electrode 4 (shown as a transmissive electrode in FIG. 17). A liquid crystal layer 5 made of a liquid crystal material exhibiting anisotropy of a negative electrical conductivity is provided on the reflective electrode 3 / transmitting electrode 8 and the counter electrode. Between 4. The alignment layer (not shown) is provided on the surface of the reflective electrode 3 / transmissive electrode 8 and the counter electrode 4 which are in contact with the liquid crystal layer 5. The alignment layer is used to align liquid crystal molecules in the liquid crystal layer 5 (not shown). So as to be perpendicular to the surface of the substrate 丨, 2. After the arrangement layer is provided, at least one of the arrangement layers is subjected to an arrangement treatment, for example, using friction. The alignment direction can be defined by the shape of the optical element or the electrode, instead of a capricorn. -62- This paper size applies to Chinese National Standards &lt; CNS) A4 (210 X 297 mm)

Order

•4 482917 A7 __________B7 五、發明説明(60~) ~ 一 ' -- 由於配列處理,液晶層5中之液晶分子相關於垂直方向而 對於基材1、2之表面呈大約〇.丨至5度之傾斜角。 反射電極3係用於施加一電壓至液晶層5,但是反射電極3 僅可做為一反射板,而非做為一施加電壓之電極。在此情 況下,例如透過電極8可延伸至反射電極3上,以做為一電 極而施加一電壓至反射區中之液晶層5。 此處所用之液晶材料具有一折射指數異方性N e (相關於異 常光線之折射指數)= 1.5546及No(相關於平常光線之折射指 數)= 1.4773 〇 一 λ/4波板7設於基材1之表面上且相對立於逆電極4。一 λ/4波板10設於基材2表面上且相對於反射電極3與透過電 極8。又/4波板10之一較延緩軸線係設定為垂直於λ/4波板 7之較延緩軸線。 一;I /2波板1 1設於;I /4波板7之表面上且相對立於基材 1,一;I /2波板1 2設於;I /4波板1 〇之表面上且相對立於基 材2,λ / 2波板1 1之一較延緩軸線設定為相關於λ / 4波板7 呈傾斜60度,又/2波板12之一較延緩軸線設定為垂直於入 /2波板1 1之較延緩軸線。 一偏光器6設於λ/2波板11之一表面上且相對立於基材 1,一偏光器9設於λ/2波板12之一表面上且相對立於基材 2,偏光器6之一透過軸線係設定為相關於又/4波板7之較延 緩軸線而傾斜7 5度角,依此方向以介置λ / 2波板1 1之較延 緩軸線,及相關於λ / 2波板l· 1之較延緩軸線而設定為傾斜 1 5度。偏光器9之一透過軸線則設定為相關於人/ 4波板1 0 -63- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 482917 A7 B7 五、發明説明(61 ) 之較延緩軸線而傾斜7 5度,依此方向以介置λ /2波板1 2之 較延緩軸線,及相關於;I /2波板1 2之較延緩軸線而設定為 傾斜15度。偏光器6之透過軸線設定為垂直於偏光器9之透 過軸線。 圖8 Α係第二範例中一主動陣列基材(基材2 )平面圖,而圖 8 B為沿圖8 A之8 B - 8 B、線所取之主動陣列基材截面圖。 如圖8 A、8 B所示,主動陣列基材包括一閘線2 1、一資料 線22、一驅動元件23、一沒極24、一儲存電容電極25、一 閘絕緣層2 6、一絕緣基材2 7、一接觸孔2 8、一層間絕緣層 29、一反射像素電極(反射電極區)3〇(對應於圖17中之反 射電極3)、及一透過像素電極(透過電極區)31(對應於圖17 中之透過電極8 )。 儲存電谷電極25係通電至沒極24,且疊覆於閘線21而令 閘絕緣層2 6設於其間,因此,儲存電容電極2 5、絕緣層 2 6、及閘線2 1構成一儲存電容。 接觸孔2 8設於層間絕緣層2 9中,用於連接透過像素電極 31與儲存電容電極25。 主動陣列基材包括一反射像素電極3 〇,用於反射外部光 線,及一透過像素電極3 1,用於容許來自背光之光線在某 一像素區中透過通過。 在圖8B中,反射電極30具有一平坦表面,但是亦可具有 一波形表面以改善反射率。在此範例中,一像素電極包括 反射像素電極30及透過像素電極31,另者,一半透過與半 反射電極亦可使用。 -64 -• 4 482917 A7 __________B7 V. Description of the invention (60 ~) ~ 1 '-Due to the alignment process, the liquid crystal molecules in the liquid crystal layer 5 are related to the vertical direction and the surface of the substrates 1 and 2 is about 〇. 丨 to 5 degrees Of the tilt angle. The reflective electrode 3 is used to apply a voltage to the liquid crystal layer 5, but the reflective electrode 3 can only be used as a reflective plate, not as an electrode for applying a voltage. In this case, for example, the transmissive electrode 8 may be extended to the reflective electrode 3 as an electrode to apply a voltage to the liquid crystal layer 5 in the reflective region. The liquid crystal material used here has a refractive index anisotropy Ne (refractive index related to abnormal light) = 1.5546 and No (refractive index related to ordinary light) = 1.4773. A λ / 4 wave plate 7 is provided on the basis The surface of the material 1 is opposed to the counter electrode 4. A λ / 4 wave plate 10 is provided on the surface of the substrate 2 and is opposite to the reflective electrode 3 and the transmissive electrode 8. One of the slower axes of the / 4 wave plate 10 is set to be perpendicular to the slower axis of the λ / 4 wave plate 7. 1; I / 2 wave plate 1 1 is provided on the surface of I / 4 wave plate 7 and is opposite to the substrate 1, 1; I / 2 wave plate 12 is provided on the surface of I / 4 wave plate 1 0 Relative to the substrate 2, one of the λ / 2 wave plates 1 1 is set to be slower relative to the λ / 4 wave plate 7 and is inclined at 60 degrees, and one of the / 2 wave plates 12 is set to be more vertical than the slow axis. The slower axis of the 1/2 wave plate 1 1. A polarizer 6 is disposed on one surface of the λ / 2 wave plate 11 and is opposed to the substrate 1, and a polarizer 9 is disposed on one surface of the λ / 2 wave plate 12 and is opposed to the substrate 2, a polarizer One of the transmission axes of 6 is set to be related to the slower axis of the / 4 wave plate 7 and is inclined at an angle of 75 degrees, according to this direction to interpose the slower axis of the λ / 2 wave plate 1 1 and related to λ / The two-wave plate l · 1 is set to be inclined at 15 degrees with a slower axis. The transmission axis of one of the polarizers 9 is set to be related to the human / 4 wave plate 1 0 -63- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 482917 A7 B7 V. Description of the invention (61 ) Is slanted by 75 degrees relative to the slower axis, according to this direction, the slower axis of λ / 2 wave plate 12 is set, and related; the slower axis of I / 2 wave plate 12 is set to be 15 degrees . The transmission axis of the polarizer 6 is set to be perpendicular to the transmission axis of the polarizer 9. FIG. 8A is a plan view of an active array substrate (substrate 2) in the second example, and FIG. 8B is a cross-sectional view of the active array substrate taken along lines 8B-8B of FIG. 8A. As shown in FIGS. 8A and 8B, the active array substrate includes a gate line 21, a data line 22, a driving element 23, a pole 24, a storage capacitor electrode 25, a gate insulation layer 26, a Insulating substrate 27, a contact hole 28, an interlayer insulating layer 29, a reflective pixel electrode (reflective electrode region) 30 (corresponding to the reflective electrode 3 in FIG. 17), and a transmissive pixel electrode (transmissive electrode region) ) 31 (corresponding to the transmissive electrode 8 in FIG. 17). The storage valley electrode 25 is energized to the electrode 24, and is superposed on the gate wire 21 so that the gate insulating layer 26 is disposed therebetween. Therefore, the storage capacitor electrode 25, the insulating layer 26, and the gate wire 21 constitute one Storage capacitor. The contact hole 28 is provided in the interlayer insulating layer 29, and is used to connect the transmission pixel electrode 31 and the storage capacitor electrode 25. The active matrix substrate includes a reflective pixel electrode 30 for reflecting external light, and a transmissive pixel electrode 31 for allowing light from the backlight to pass through in a certain pixel region. In Fig. 8B, the reflective electrode 30 has a flat surface, but it may also have a waved surface to improve the reflectivity. In this example, a pixel electrode includes a reflective pixel electrode 30 and a transmissive pixel electrode 31. In addition, semi-transmissive and semi-reflective electrodes can also be used. -64-

482917 A7 _ B7 五、發明説明(62~) &quot;&quot; 請參閱圖1 8 A、1 8 B、1 8 C、1 8 D,其將說明第五範例中 LCD裝置之透過與反射模式中之光透過率與反射率。 圖18A、18B揭示使用反射電極之反射模式,圖IgA揭示 當無電壓施加過垂直配列液晶層時之黑色顯示,及圖1 8 B揭 示當一電壓:施加過垂直配列液晶層時之白色顯示。圖1 8 C、 18D揭示使用透過電極之透過模式,圖18C揭示當無電壓施 加過垂直配列液晶層時之黑色顯示,及圖丨8 〇揭示當一電 壓施加過垂直配列液晶層時之白色顯示。 參閱圖1 8 A,反射模式中之黑色顯示將說明之。 入射於偏光器6之光線透過通過偏光器6而成為直線偏光 光線,且平行於偏光器6之透過軸線,然後入射於;^ / 2波板 1 1上。 λ /2波板1 1係排列使偏光器6之透過軸線與A /2波板1 1之 較延緩軸線呈1 5度角,因此,透過通過;[/2波板1 1之光線 漸成為直線偏光光線,且相關於偏光器6之透過軸線而呈傾 斜3 0度,依此方向以介置λ /2波板1 1之較延緩軸線,然後 光線入射於λ / 4波板7上。 λ / 4波板7係排列使其較延緩軸線相關於偏光器6之透過 軸線而傾斜7 5度,依此方向以介置又/ 2波板1 1之較延緩軸 線。易言之,λ /4波板7之較延緩軸線係設定相關於來自λ /2波板11之直線偏光光線方向呈45度,因此透過通過λ/4 波板7之光線係呈圓形偏光光線。 當供電壓施加於液晶層5時,用於液晶層5中而具有負誘 笔率異方性之液晶分子即大致垂直於基材1、2之表面,據 -65- 本紙浪尺度適用中國國家標準(CNS) Α4規格(210X297公爱) 482917 A7 _ B7 _ 五、發明説明(63 ) 此,液晶層5對入射光之折射指數異方性係極小。易言之, 藉由光線透過通過液晶層5所致相位差大致為零。 據此,來自;I /4波板7之圓形偏光光線透過通過液晶層 5,而幾乎呈圓形偏光,且由基材2中之反射電極3反射。 由反射電極3所反射之圓形偏光光線漸成具有一相反轉向 之圓形偏光光線,且透過通過λ /4波板7成為直線偏光光線 垂直於已自偏光器6入射於;I /4波板7上之光線,因此光線 入射於λ /2波板1 1上。 來自λ/2波板11之直線偏光光線係垂直於偏光器6之透過 軸線,此光線由偏光器6吸收而不透過。 在此情況下即得以進行黑色顯示。 參閱圖1 8 Β,反射模式中之白色顯示將說明如下。 直到光線透過通過;L/4波板7成為圓形偏光光線為止之過 程係相同於上者,故不予以贅述。 當一電壓施加於液晶層5時,液晶分子係相關於基材1、2 之表面而傾斜成水平,據此,自λ / 4波板7入射於液晶層5 上之圓形偏光光線藉由液晶分子之雙折射而成橢圓形偏光 光線。光線隨後由反射電極3反射,且進一步由液晶層5中 之液θ曰分子雙折射所影響。而在透過通過a/#波板7及又/ 2 波板1 1後,光線並非成為垂直於偏光器6透過軸線之直線偏 光光線,因此,光線透過通過偏光器6。 藉由控制施加於液晶層5之電壓,由反射電極3反射後通 過偏光器6之光線量即可調整,因此,灰階顯示得以提供。 當一電壓由反射電極3及逆電極4施加於液晶層5以改變液 -66- i紙張尺度適用中國國家標準(CNS) ^格(210 χ 297公釐)—-- 482917 A7 __ B7 五、發明説明(64^' 晶分子方向,而使液晶層5所致之相位差滿足於1 / 4波長條 件時,當光線透過通過液晶層5而到達反射電極3時來自入 / 4波板7之圓形偏光光線即漸成直線偏光光線,且垂直於偏 光器6之透過軸線。光線再次透過通過液晶層5成圓形偏光 光線及隨後透過通過λ/4波板7與λ/2波板11成為直線偏光 光線,且平行於偏光器6之透過軸線,在此情況下,透過通 過偏光器6之光線量為最大值。 裝 圖1 8 Β揭示具有液晶層阻滯條件之情形,由反射電極3所 反射之一最大光線量係透過通過偏光器6,易言之,反射電 極3上之光線係直線偏光光線,且垂直於偏光器6之透過軸 線。 如上所述,當無電壓施加過液晶層5時,黑色顯示即因液 晶層5大致上無雙折射而可取得;及當一電壓施加過液晶層 5時,可藉由依據電壓以改變光線透過率而取得灰階顯示。 參閱圖1 8 C,透過模式中之黑色顯示將說明如下。482917 A7 _ B7 V. Description of the invention (62 ~) &quot; &quot; Please refer to Fig. 18 A, 1 8 B, 1 8 C, 1 8 D, which will explain the transmission and reflection modes of the LCD device in the fifth example. Light transmittance and reflectance. Figures 18A and 18B show the reflection mode using reflective electrodes, Figure IgA shows the black display when no voltage is applied across the vertically aligned liquid crystal layer, and Figure 18B shows the white display when a voltage: the vertically aligned liquid crystal layer is applied. Figures 18C and 18D reveal the transmission mode using a transmissive electrode, Figure 18C reveals the black display when no voltage is applied across the vertically aligned liquid crystal layer, and Figure 8 shows the white display when a voltage is applied across the vertically aligned liquid crystal layer. . Refer to Figure 18 A. The black display in the reflection mode will illustrate this. The light incident on the polarizer 6 passes through the polarizer 6 to become linearly polarized light, and is parallel to the transmission axis of the polarizer 6 and then incident on the ^ / 2 wave plate 1 1. λ / 2 wave plate 1 1 is arranged so that the transmission axis of polarizer 6 and the slower axis of A / 2 wave plate 1 1 are at an angle of 15 degrees, so it passes through; [/ 2 wave plate 1 1 light gradually becomes The linearly polarized light is inclined by 30 degrees in relation to the transmission axis of the polarizer 6, and the slower axis of the λ / 2 wave plate 1 1 is interposed in this direction, and then the light is incident on the λ / 4 wave plate 7. The λ / 4 wave plate 7 is arranged so that its slower axis is inclined by 75 degrees in relation to the transmission axis of the polarizer 6. In this direction, the slower axis of the 1/2 wave plate 1 1 is interposed. In other words, the relatively slow axis setting of the λ / 4 wave plate 7 is related to the direction of the linearly polarized light rays from the λ / 2 wave plate 11 at 45 degrees, so the light passing through the λ / 4 wave plate 7 is circularly polarized. Light. When the supply voltage is applied to the liquid crystal layer 5, the liquid crystal molecules with negative penetrating rate anisotropy used in the liquid crystal layer 5 are approximately perpendicular to the surfaces of the substrates 1 and 2. According to -65- Standard (CNS) A4 specification (210X297 public love) 482917 A7 _ B7 _ V. Description of the invention (63) Therefore, the refractive index anisotropy of the liquid crystal layer 5 to incident light is extremely small. In other words, the phase difference caused by the transmission of light through the liquid crystal layer 5 is substantially zero. Accordingly, the circularly polarized light from the I / 4 wave plate 7 passes through the liquid crystal layer 5 and is almost circularly polarized, and is reflected by the reflective electrode 3 in the substrate 2. The circularly polarized light reflected by the reflective electrode 3 gradually becomes a circularly polarized light with an opposite direction, and passes through the λ / 4 wave plate 7 to become linearly polarized light. The light is incident perpendicular to the polarizer 6; I / 4 wave The light on the plate 7 is therefore incident on the λ / 2 wave plate 1 1. The linearly polarized light from the λ / 2 wave plate 11 is perpendicular to the transmission axis of the polarizer 6, and this light is absorbed by the polarizer 6 without being transmitted. In this case, black display is enabled. Referring to FIG. 18B, the white display in the reflection mode will be explained as follows. The process until the light passes through; the L / 4 wave plate 7 becomes circularly polarized light is the same as the above, so it will not be described in detail. When a voltage is applied to the liquid crystal layer 5, the liquid crystal molecules are tilted horizontally in relation to the surfaces of the substrates 1, 2. According to this, the circularly polarized light incident from the λ / 4 wave plate 7 on the liquid crystal layer 5 passes through Liquid crystal molecules are birefringent into elliptical polarized light. The light is then reflected by the reflective electrode 3, and is further affected by the liquid? After passing through the a / # wave plate 7 and the / 2 wave plate 1 1, the light does not become a linearly polarized light perpendicular to the transmission axis of the polarizer 6. Therefore, the light passes through the polarizer 6. By controlling the voltage applied to the liquid crystal layer 5, the amount of light that passes through the polarizer 6 after being reflected by the reflective electrode 3 can be adjusted, and therefore, a gray scale display can be provided. When a voltage is applied to the liquid crystal layer 5 from the reflective electrode 3 and the counter electrode 4 to change the liquid-66-i paper size, the Chinese National Standard (CNS) ^ grid (210 χ 297 mm)-482917 A7 __ B7 V. Description of the invention (When the crystal molecules are oriented in the direction of 64 ^ ', and the phase difference caused by the liquid crystal layer 5 satisfies the 1/4 wavelength condition, when light passes through the liquid crystal layer 5 and reaches the reflective electrode 3, the light comes from the / 4 wave plate 7 The circularly polarized light gradually becomes linearly polarized light and is perpendicular to the transmission axis of the polarizer 6. The light again passes through the liquid crystal layer 5 to become circularly polarized light and then passes through the λ / 4 wave plate 7 and the λ / 2 wave plate 11 It becomes linearly polarized light and is parallel to the transmission axis of the polarizer 6. In this case, the amount of light transmitted through the polarizer 6 is the maximum. Figure 1 8B reveals the condition of the liquid crystal layer blocking condition. One of the maximum amount of light reflected by 3 is transmitted through the polarizer 6, in other words, the light on the reflective electrode 3 is linearly polarized light and is perpendicular to the transmission axis of the polarizer 6. As mentioned above, when no voltage is applied over the liquid crystal At layer 5, black display is due to liquid crystal 5 can be obtained substantially without birefringence; and when a voltage is applied to the liquid crystal layer 5, a gray-scale display can be obtained by changing the light transmittance according to the voltage. See FIG. 18C. The black display in the transmission mode will explain as follows.

線 由一光源(圖中未示)放射之光線係入射於偏光器9上,成 為直線偏光光線且平行於偏光器之透過軸線,因此,光線 入射於λ /2波板12上。 λ /2波板1 2係排列成使其較緩慢之光學軸線相關於偏光 器9之透過軸線而傾斜15度角,且進一步垂直於又/2波板 1 1之較延緩軸線,因此,透過通過λ /2波板1 2之光線相關 於偏光器9之透過軸線而呈傾斜3 0度之直線偏光光線,依此 方向以介置λ /2波板1 2之較延緩軸線,然後光線入射於;I / 4波板1 〇上。 -67- 本紙張尺度適用中國國家標準(CNS&gt; Α4規格(210X 297公釐) 482917 A7 _ B7 五、發明説明(65~^ ^ ^ λ / 4波板1 〇係排列使其較延緩軸線相關於偏光器9之透過 軸線而呈傾斜7 5度,依此方向以介置λ / 2波板1 2之較延緩 軸線,易言之,λ / 4波板1 〇之較延緩軸線係設定為相關於 來自λ/2波板12之直線偏光光線偏光方向而呈45度,因此 透過通過;I / 4波板1 0之光線係因圓形偏光光線。 當無電壓施加於液晶層5時,用於液晶層5中而具有負謗 電率異方性之液晶分子即大致垂直於基材丨、2之表面,據 此,液晶層5對入射光之折射指數異方性係極小。易言之, 藉由光線透過通過液晶層5所致之相位差大致為零。 據此,來自λ /4波板1〇之圓形偏光光線透過通過液晶層 5,而保持圓形偏光且入射於;^/4波板7上。 λ /4波板1 〇之較延緩軸線與又/4波板7之較延緩軸線係相 互平行,因此,入射於;1/4波板7上之圓形偏光光線成為直 線偏光光線,且垂直於偏光器9之透過軸線及入射於λ / 2波 板1 1上。 透過通過λ / 2波板1 1之直線偏光光線係垂直於偏光器6之 透過軸線,且由偏光器6吸收而不透過。 依此情形,黑色顯示即待以進行。 參閱圖18D,透過模式中之白色顯示將說明如下。 直到光線透過通過λ /4波板1 0成為圓形偏光光線為止之 過程係相同於上者,故不予以贅述。 當一電壓施加於液晶層5時,液晶分子係相關於基材1、2 之表面而傾斜成水平,據此,自λ/4波板1〇入射於液晶層5 上之圓形偏光光線藉由液晶分子之雙折射而成橢圓形偏光 -68- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 482917 A7 _______ B7 _ 五、發明説明(66 ) 光線。透過通過λ / 4波板7及λ / 2波板1 1後,光線並非成為 垂直於偏光器6透過軸線之直線偏光光線,因此,光線透過 通過偏光器6。 藉由控制施加過液晶層5之電壓,入射於偏光器6上之光 線量可加以調整,以利提供灰階顯示。 當一電壓施加過液晶層5使液晶層5所致之相位差滿足於 1 / 2波長條件時,來自又/ 4波板1 〇之圓形偏光光線漸成直線 偏光光線’且在液晶層5之一半厚度處垂直於偏光器6之透 過軸線’隨後當其完全透過通過液晶層5時漸成為圓形偏光 光線。 由於來自液晶層5之圓形偏光光線在透過通過λ/4波板7 及人/ 2波板11時漸成平行於偏光器6之透過軸線之直線偏光 光線,因此入射於偏光器6上之大部份光線皆透過通過。在 此情形下,透過通過偏光器6之光線量為最大值。 圖1 8 D揭示具有液晶層阻滞條件之情形,透過通過偏光器 9之一最大光線量係透過通過偏光器6。 如上所述’當無電壓》施加過液晶層5時,即可取得雾色顯 示’因為液晶層5大致上無雙折射;而當一電壓施加過液晶 層5時,灰階顯示可藉由依據電壓改變光透過率而取得。 反射模式中亮色顯示之最大反射率時由液晶層5所致之相 位差為λ/4,而透過模式中亮色顯示之最大反射率時由液 晶層5所致之相位差為λ/2,由此可知,當反射區中之液晶 層厚度與透過區中之液晶層厚度相等時,用於反射模式之 λ/4與用於透過模式之又/ 4之相位差無法同時達成。 -69- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) ---- 482917 A7 __B7 五、發明説明(67~^ 在顯示係藉由改變反射區中液晶層相位差為〇至几/4之情 況中,一令人滿意之光線使用因素無法取得於透過模气 中’因為透過區中之液晶層相位差亦僅自〇變至久/ 4。 在反射模式及透過模式中之令人滿意光線使用/因素可藉由 自反射區之液晶層厚度改變為透過區中之厚度而取得,气 藉由施加不同之電壓至反射區中之液晶層及透過區中之液 晶層而取得。在透過區中液晶層厚度為反射區中液晶層厚 度二倍之情況下,用於反射模式之λ /4與用於透過模式之 λ /2之液晶層相位差即可同時達成。透過模式所用之厚度 不需為反射模式所用厚度之二倍,光線使用因素藉由令透 過模式所用厚度大於反射模式所用厚度即可增大,且不超 過二倍。 在第五範例中,又/ 4波板1 〇之較延緩軸線係設定為垂直 於几/ 4波板7之較延緩軸線,而又/ 2波板1 2之較延緩軸線設 足為垂直於1/2波板11之較延緩軸線,及偏光器6之透過軸 線没定為垂直於偏光器9之透過軸線,但是本發明並不限於 此设定方式。當透過通過偏光器9且無液晶層5所致阻滯之 直線偏光光線入射於偏光器6上,而如同透過模式中垂直於 偏光器6之透過軸線時,黑色顯示即可取得。 較特別的是,只要以下條件能滿足,則黑色顯示即可取得 而在液晶層5中無雙折射,且灰階顯示可藉由依據電壓以改 變光線透過率而取得,即使無以上之設定方式:偏光器6之 透過軸線與λ/2波板Η之較延竣軸線所形成之角度為r i, 偏光器6之透過軸線與λ /4波板7之較延緩軸線所形成之角 -70- 本紙張尺度適用中國®家標準(CNS) Α4規格(210 X 297公釐) A7 B7 五、發明説明(68 ) 度為2 r 1+45度;偏光器9之透過軸線與;1/2波板12之較延 緩轴線所形成之角度為T2,偏光器9之透過軸線與λ/4波 板10之較延緩軸線所形成之角度為2 72 + 45度;及透過通 過偏光為而無液晶層5阻滯之直線偏光光線入射於偏光器6 上’如同透過模式中垂直於偏光器6之透過軸線。 構成λ / 4波板7、1 〇與λ / 2波板11、12之雙折射材料相關 於平常光線與異常光線之折射指數係強烈地取決於波長, 因此,在一特定厚度處之波長中所累積之相位延遲亦取決 於波長’只有當入射光線具有單一特定波長時,又/ 4之相 位延遲可完全提供於入射光之直線偏光光線面。據此,在 λ/4相位延遲因為構成λ/4波板7、10與λ/2波板11、12之 雙折射材料之折射指數異方性之波長依存關係而未取得之區 域中’一部份光線即透過通過偏光器6,而不由偏光器6吸 收’結果,黑色顯示之暗度改變。在第五範例中,又/4波 板7係結合於久/ 2波板1 1及又/ 4波板1 〇結合於久/ 2波板 1 2 ’由於此一結構,在透過模式中,;1 /4波板丨〇之折射指數 異方性之波長依存關係即由又/ 4波板7之折射指數異方性之 波長依存關係抵銷。因此,λ / 4條件滿足於一較寬廣之波 長範圍中,以利改善黑色顯示之暗度。 毋庸贅言,黑色顯示之暗度可改善而不需設定λ / 4波板 1 0之較延緩軸線垂直於^ / 4波板7之較延緩轴線,及不需設 定久/ 2波板1 2之較延緩軸線垂直於;[/ 2波板1 1之較延緩軸 線。 在此範例中,γ 1 = r 2 = 1 5度,但是r 1及r 2值可依所需 -71 - 本紙張尺度適用中國國家標準&lt;CNS) A4規格(210 X 297公釐) 482917 A7 B7 五、發明説明(69 之暗度改變,A /2波板12可省略以改善成本效益,雖然黑 色顯示中之暗度會在透過模式中衰退。惟,在此情況下, λ /4波板1 〇之較延緩軸線與偏光器9之透過軸線所形成之角 度需設定為使透過通過偏光器9而在液晶層5中無阻滯之直 線偏光光線係入射於偏光器6上,且如透過模式中垂直於偏 光器6之透過軸線。 在又/ 4波板1 〇之較延緩軸線設定垂直於又/ 4波板7之較延 緩軸線、λ /2波板12之較延緩軸線設定垂直於Λ /2波板1 1 之較延緩軸線、及偏光器6之透過軸線垂直於偏光器9之透 過軸線情況中,則以下效果即可取得於透過模式中。;^ /4 波板10之折射指數異方性之波長依存關係係由;1/4波板7之 &lt;r斤射^曰數異方性之波長依存關係抵銷,而又/ 2波板1 2之折 射指數異方性之波長依存關係則由λ /2波板1 1之折射指數 異方性之波長依存關係抵銷,因而改善黑色顯示之暗度。 當另一相位補償元件提供於偏光器6與液晶層5之間以及 偏光器9與液晶層5之間之至少其中一者時,令人滿意之顯 示可在一寬廣視角中取得。 在第五範例中,液晶層5呈垂直方向配列,且在基材附近 之液晶分子相關於基材垂直方向而具有一特定傾斜角度情 形下’延緩值在無電壓施加時並非完全為零。在反射模式 中,當延緩值α仍留存時,一相位補償元件可提供於偏光 器6與液晶層5之間以及偏光器9與液晶層5之間之至少其中 一者,以利補償阻滯及使延緩值趨於零,因而取得較佳之 黑色顯不。 -72- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Line Light emitted from a light source (not shown) is incident on the polarizer 9 and becomes linearly polarized light parallel to the transmission axis of the polarizer. Therefore, the light is incident on the λ / 2 wave plate 12. The λ / 2 wave plate 1 2 is arranged so that its slower optical axis is inclined at an angle of 15 degrees in relation to the transmission axis of the polarizer 9 and further perpendicular to the slower axis of the / 2 wave plate 1 1. The light passing through the λ / 2 wave plate 12 is linearly polarized light inclined at 30 degrees in relation to the transmission axis of the polarizer 9, and in this direction, the slower axis of the λ / 2 wave plate 12 is interposed, and then the light is incident. On; I / 4 wave plate 10. -67- This paper size applies the Chinese national standard (CNS &gt; A4 size (210X 297mm) 482917 A7 _ B7 V. Description of the invention (65 ~ ^ ^ ^ λ / 4 wave plate 1 0 series is arranged to make it slower related to the axis The transmission axis of the polarizer 9 is inclined at 75 degrees, and the slower axis of λ / 2 wave plate 12 is interposed in this direction. In other words, the slower axis of λ / 4 wave plate 1 0 is set as The polarization direction of the linearly polarized light from the λ / 2 wave plate 12 is 45 degrees, so it passes through; the light of the I / 4 wave plate 10 is circularly polarized light. When no voltage is applied to the liquid crystal layer 5, The liquid crystal molecules with negative conductivity anisotropy used in the liquid crystal layer 5 are approximately perpendicular to the surfaces of the substrates 1 and 2. According to this, the refractive index anisotropy of the liquid crystal layer 5 to incident light is extremely small. In other words, the phase difference caused by the light passing through the liquid crystal layer 5 is substantially zero. According to this, the circularly polarized light from the λ / 4 wave plate 10 passes through the liquid crystal layer 5 while maintaining the circularly polarized light and incident on it; ^ / 4 wave plate 7. The slower axis of λ / 4 wave plate 10 and the slower axis of / 4 wave plate 7 are flat to each other. Therefore, the circularly polarized light incident on the 1/4 wave plate 7 becomes linearly polarized light, and is perpendicular to the transmission axis of the polarizer 9 and incident on the λ / 2 wave plate 1 1. The transmission passes through the λ / 2 wave The linearly polarized light of the plate 11 is perpendicular to the transmission axis of the polarizer 6 and is absorbed but not transmitted by the polarizer 6. In this case, the black display is pending. Referring to FIG. 18D, the white display in the transmission mode will be explained The process until the light passes through the λ / 4 wave plate 10 to become circularly polarized light is the same as the above, so it will not be repeated. When a voltage is applied to the liquid crystal layer 5, the liquid crystal molecules are related to the substrate 1. 2 and 2 are inclined horizontally, according to which, circularly polarized light incident from the λ / 4 wave plate 10 on the liquid crystal layer 5 is elliptical polarized light by birefringence of liquid crystal molecules -68- This paper is applicable to this paper China National Standard (CNS) A4 specification (210 X 297 mm) 482917 A7 _______ B7 _ V. Description of the invention (66) Light. After passing through the λ / 4 wave plate 7 and λ / 2 wave plate 1 1, the light does not become Linearly polarized light perpendicular to the transmission axis of the polarizer 6 Therefore, light passes through the polarizer 6. By controlling the voltage applied to the liquid crystal layer 5, the amount of light incident on the polarizer 6 can be adjusted to provide a grayscale display. When a voltage is applied to the liquid crystal layer 5, the liquid crystal is When the phase difference caused by the layer 5 satisfies the 1/2 wavelength condition, the circularly polarized light from the / 4 wave plate 10 gradually becomes linearly polarized light 'and is perpendicular to the polarizer 6 at a half thickness of the liquid crystal layer 5 The transmission axis' subsequently becomes a circularly polarized light when it is completely transmitted through the liquid crystal layer 5. Since the circularly polarized light from the liquid crystal layer 5 passes through the λ / 4 wave plate 7 and the human / 2 wave plate 11 and becomes a linearly polarized light parallel to the transmission axis of the polarizer 6, it is incident on the polarizer 6 Most of the light passes through. In this case, the amount of light transmitted through the polarizer 6 is the maximum. Fig. 18D reveals a case where the liquid crystal layer has a blocking condition. One of the maximum light rays transmitted through the polarizer 9 is transmitted through the polarizer 6. As described above, "When no voltage" is applied to the liquid crystal layer 5, a haze display can be obtained because the liquid crystal layer 5 is substantially free of birefringence; and when a voltage is applied to the liquid crystal layer 5, the grayscale display can be determined by the voltage. Obtained by changing the light transmittance. The phase difference caused by the liquid crystal layer 5 at the maximum reflectance of the bright color display in the reflection mode is λ / 4, and the phase difference caused by the liquid crystal layer 5 at the maximum reflectance of the bright color display in the transmission mode is λ / 2. It can be seen that when the thickness of the liquid crystal layer in the reflection region is equal to the thickness of the liquid crystal layer in the transmission region, the phase difference of λ / 4 for the reflection mode and // 4 for the transmission mode cannot be achieved at the same time. -69- This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) ---- 482917 A7 __B7 V. Description of the invention (67 ~ ^ In the display system, the phase difference of the liquid crystal layer in the reflection area is changed In the case of 0 to several / 4, a satisfactory light use factor cannot be obtained in the transmission mode gas because the phase difference of the liquid crystal layer in the transmission region also changes from 0 to long / 4. In reflection mode and transmission The satisfactory light usage / factor in the mode can be obtained by changing the thickness of the liquid crystal layer in the self-reflecting region to the thickness in the transmitting region, and the gas by applying different voltages to the liquid crystal layer in the reflective region and the liquid crystal in the transmitting region. When the thickness of the liquid crystal layer in the transmission region is twice the thickness of the liquid crystal layer in the reflection region, the phase difference between λ / 4 for the reflection mode and λ / 2 for the transmission mode can be achieved at the same time. The thickness used in the transmission mode need not be twice the thickness used in the reflection mode, and the light usage factor can be increased by making the thickness used in the transmission mode greater than the thickness used in the reflection mode, and not more than doubled. In the fifth example, again / 4 wave plate 1 The slower axis is set perpendicular to the slower axis of the 1/4 wave plate 7, and the slower axis of the / 2 wave plate 12 is set to be the slower axis perpendicular to the 1/2 wave plate 11 and the polarized light. The transmission axis of the polarizer 6 is not set to be perpendicular to the transmission axis of the polarizer 9, but the present invention is not limited to this setting method. When the linearly polarized light passing through the polarizer 9 without the liquid crystal layer 5 is blocked enters the polarized light The black display can be obtained when it is perpendicular to the transmission axis of the polarizer 6 in the transmission mode. More specifically, as long as the following conditions are satisfied, the black display can be obtained without birefringence in the liquid crystal layer 5. And the gray scale display can be obtained by changing the light transmittance according to the voltage, even if there is no above setting method: the angle formed by the transmission axis of the polarizer 6 and the relatively extended axis of the λ / 2 wave plate Η is ri, Angle formed by the transmission axis of the polarizer 6 and the slower axis of the λ / 4 wave plate 7 -70- This paper size applies to China® Home Standard (CNS) A4 specification (210 X 297 mm) A7 B7 V. Description of the invention (68) Degree is 2 r 1 + 45 degrees; polarizer 9 is transparent The axis and the angle formed by the slower axis of the 1/2 wave plate 12 is T2, and the angle formed by the transmission axis of the polarizer 9 and the slower axis of the λ / 4 wave plate 10 is 2 72 + 45 degrees; and The linearly polarized light transmitted through the polarized light without the liquid crystal layer 5 blocking it is incident on the polarizer 6 'as in the transmission mode perpendicular to the transmission axis of the polarizer 6. The λ / 4 wave plate 7, 10 and λ / 2 wave are formed. The refractive indices of the birefringent materials of plates 11 and 12 related to ordinary light and abnormal light are strongly dependent on the wavelength. Therefore, the phase delay accumulated in the wavelength at a specific thickness also depends on the wavelength. 'Only when the incident light has At a single specific wavelength, the phase retardation of / 4 can be completely provided on the linearly polarized light plane of the incident light. According to this, in a region where the λ / 4 phase delay is not obtained because of the wavelength dependence of the refractive index anisotropy of the birefringent materials constituting the λ / 4 wave plates 7, 10 and λ / 2 wave plates 11, 12 ', Part of the light is transmitted through the polarizer 6 without being absorbed by the polarizer 6. As a result, the darkness of the black display changes. In the fifth example, You / 4 wave plate 7 is combined with Jiu / 2 wave plate 1 1 and You / 4 wave plate 1 0 is combined with Jiu / 2 wave plate 1 2 'Because of this structure, in the transmission mode, The wavelength dependence of the refractive index anisotropy of the 1/4 wave plate 丨 〇 is offset by the wavelength dependence of the refractive index anisotropy of the 1/4 wave plate 7. Therefore, the λ / 4 condition is satisfied in a wide range of wavelengths to improve the darkness of the black display. Needless to say, the darkness of the black display can be improved without setting the slower axis of the λ / 4 wave plate 1 0 perpendicular to the slower axis of the ^ / 4 wave plate 7 and the long / 2 wave plate 1 2 The slower axis is perpendicular to the [/ 2 wave plate 1 1 slower axis. In this example, γ 1 = r 2 = 15 degrees, but the values of r 1 and r 2 can be as required -71-This paper size applies the Chinese National Standard &lt; CNS) A4 size (210 X 297 mm) 482917 A7 B7 V. Description of the invention (69 darkness changes, A / 2 wave plate 12 can be omitted to improve cost-effectiveness, although the darkness in black display will decline in the transmission mode. However, in this case, λ / 4 The angle formed by the slower axis of the wave plate 10 and the transmission axis of the polarizer 9 needs to be set so that the linearly polarized light transmitted through the polarizer 9 without blocking in the liquid crystal layer 5 is incident on the polarizer 6, and For example, in the transmission mode, it is perpendicular to the transmission axis of the polarizer 6. The slower axis of the / 4 wave plate 10 is set perpendicular to the slower axis of the / 4 wave plate 7, and the slower axis of the λ / 2 wave plate 12 is set. In the case where the slower axis perpendicular to the Λ / 2 wave plate 1 1 and the transmission axis of the polarizer 6 are perpendicular to the transmission axis of the polarizer 9, the following effects can be obtained in the transmission mode; ^ / 4 wave plate 10 The dependence of the refractive index anisotropy on the wavelength is determined by the &lt; r 射 射 of the 1/4 wave plate 7 The wavelength dependence is offset, and the wavelength dependence of the refractive index anisotropy of the / 2 wave plate 12 is offset by the wavelength dependence of the refractive index anisotropy of the λ / 2 wave plate 1 1, thereby improving the black display. When another phase compensation element is provided between at least one of the polarizer 6 and the liquid crystal layer 5 and between the polarizer 9 and the liquid crystal layer 5, a satisfactory display can be obtained in a wide viewing angle In the fifth example, the liquid crystal layer 5 is aligned in a vertical direction, and the liquid crystal molecules in the vicinity of the substrate have a specific tilt angle in relation to the vertical direction of the substrate, and the retardation value is not completely zero when no voltage is applied. In the reflection mode, when the retardation value α is still retained, a phase compensation element may be provided between at least one of the polarizer 6 and the liquid crystal layer 5 and between the polarizer 9 and the liquid crystal layer 5 to compensate for retardation. And the retardation value tends to zero, thus achieving a better black display. -72- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

裝 訂Binding

B7 五、發明説明(7〇 ) 在垂直配歹,m晶層於反射模式中I有一剩餘延緩值“形 中,一具t久/4- α延緩值之相位補償元件可提供以替代又 / 4波板7。 ,在反射模式中,藉由液晶層之剩餘阻滯而分歧於圓形偏光 光線(橢圓形偏光光線係人射於液晶層上,橢圓形偏光光 線在透過通過液晶層而到達反射電極時即漸成為圓形偏光 光線。由於反射之故,光線逐漸成為具有相反轉向之圓形 偏光光線,而當透過通過及離開液晶層時,光線即從圓形 偏光光線變成橢圓形偏光光線,橢圓形偏光光線在此點處 具有偏離於入射時間9 〇度之相位。當透過通過相位補償元 件時,橢圓形偏光光線漸成直線偏光光線,且垂直於偏光 器6之透過軸線。 在主要反射模式之顯示進行時,例如當反射像素電極大於 透過像素電極時,用於透過模式中顯示之λ/4波板1〇可保 留之。 可以瞭解的是,即使當垂直配列液晶層中之剩餘阻滯並非 可忽略不計時,高對比顯示仍可藉由提供一相位補償元件 而取得於反射模式中,以考量於阻滯。 在液晶層於反射模式中具有剩餘延緩值α及在透過模式中 具有剩餘延緩值/3之情況中,一具有λ / 4 - α延緩值之相位 補償元件可用於替代λ /4波板7,而一具有λ /4-( /3 - α )延 緩值之相位補償元件可替代λ /4波板1 0。 在利用光線透過通過一具有透過功能區域如透過電極區者 之透過模式中,當液晶分子在垂直方向配列於基材時,一 -73- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 482917 A7 B7B7 V. Description of the invention (70) In the vertical configuration, the m crystal layer has a residual retardation value in the reflection mode. In the shape, a phase compensation element with a long delay time of 4-α can be provided instead of / 4 wave plate 7. In the reflection mode, the remaining retardation of the liquid crystal layer divides into circularly polarized light (elliptical polarized light is incident on the liquid crystal layer, and the elliptical polarized light passes through the liquid crystal layer to reach The reflective electrode gradually becomes circularly polarized light. Due to the reflection, the light gradually becomes a circularly polarized light with the opposite direction. When passing through and leaving the liquid crystal layer, the light changes from circularly polarized light to elliptical polarized light. At this point, the elliptical polarized light has a phase that is 90 degrees away from the incident time. When passing through the phase compensation element, the elliptical polarized light gradually becomes linearly polarized light and is perpendicular to the transmission axis of the polarizer 6. In the main When the reflection mode display is performed, for example, when the reflective pixel electrode is larger than the transmissive pixel electrode, the λ / 4 wave plate 10 used for the display in the transmissive mode can be retained. It can be understood The thing is, even when the remaining retardation in the vertically aligned liquid crystal layer is not negligible, high contrast display can still be obtained in reflection mode by providing a phase compensation element to take into account the retardation. In the case of a mode having a residual retardation value α and a transmission mode having a residual retardation value / 3, a phase compensation element having a retardation value of λ / 4-α can be used instead of the λ / 4 wave plate 7, and one having a retardation value of λ / 4 A phase compensation element with a 4-(/ 3-α) retardation value can replace a λ / 4 wave plate 10. In a transmission mode that uses light to pass through a region having a transmission function, such as a region through an electrode, when the liquid crystal molecules are in the vertical direction When listed on the substrate, a -73- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 482917 A7 B7

具有又/4·(/3-α)延缓值之相位補償元件即設定以使離開液 晶層之光線呈橢圓形偏光光線,如同反射模式中之狀能。 具有此一相位差之橢圓形偏光光線係入射於具有 〜 λ/4-α延緩值之相位補償元件上,因此,當透過通過具有 λ /4 - α延緩值之相位補償元件時,光線漸成直線偏光光線 且垂直於偏光器6之透過軸線,據此可取得極小光漏損之累 色顯示。 可以瞭解的是,即使當垂直配列液晶層中之剩餘之延緩值 不可忽略不計時,高對比之顯示仍可藉由提供一相對相位 補償元件而在反射模式中取得,以考量於阻滯。 第五範例中之LCD裝置使用一垂直配列液晶層,但是使 用一水平配列液晶層而依相同原理亦可達成顯示,在此一 情況下,當施加較高電壓時則液晶層所致之阻滯即減低。 惟,當施加一電壓時大部份液晶分子除了基材附近者外皆 垂直於基材狀態下,基材附近内之液晶分子會因電場而難 以移動,據此,剩餘阻滯即因基材附近内之諸液晶分子而 發生。可以瞭解的是,當使用水平配列液晶層時,在黑色 顯示期間則發生光學漏損,且相較於使用垂直配列液晶層 時可因剩餘阻滯之影響而減低對比。為了以水平配列液晶 層取得相同於垂直配列液晶層之黑色顯示品質,基材附近 内之液晶分子需配列以相互作用於液晶分子所致之剩餘阻 滯’或另需提供一相位補償元件。 圖19揭示當λ /4波板7、10之較延緩軸線相互平行且入/2 波板1 1、1 2之較延緩軸線相互平行時,以及當λ /4波板 -74- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 482917 A7A phase compensation element having a retardation value of / 4 · (/ 3-α) is set so that the light leaving the liquid crystal layer is an elliptical polarized light, as in the reflection mode. The elliptical polarized light having this phase difference is incident on a phase compensation element having a retardation value of ~ λ / 4-α. Therefore, when passing through a phase compensation element having a retardation value of λ / 4-α, the light gradually becomes The linearly polarized light is perpendicular to the transmission axis of the polarizer 6, so that an accumulative display with extremely small light leakage can be obtained. It can be understood that even when the remaining retardation value in the vertically aligned liquid crystal layer cannot be ignored, high-contrast display can still be obtained in the reflection mode by providing a relative phase compensation element to consider the retardation. The LCD device in the fifth example uses a vertically aligned liquid crystal layer, but a horizontally aligned liquid crystal layer can be used to achieve display according to the same principle. In this case, when a higher voltage is applied, the blocking caused by the liquid crystal layer That is reduced. However, when most of the liquid crystal molecules are perpendicular to the substrate except the vicinity of the substrate when a voltage is applied, the liquid crystal molecules in the vicinity of the substrate will be difficult to move due to the electric field. Based on this, the remaining retardation is caused by the substrate. This occurs in the vicinity of liquid crystal molecules. It can be understood that when a horizontally aligned liquid crystal layer is used, optical leakage occurs during a black display period, and the contrast can be reduced due to the effect of residual retardation compared to when a vertically aligned liquid crystal layer is used. In order to achieve the same black display quality as a horizontally aligned liquid crystal layer with a horizontally aligned liquid crystal layer, liquid crystal molecules in the vicinity of the substrate need to be aligned to interact with the remaining retardation caused by the liquid crystal molecules' or a phase compensation element must be provided. Figure 19 reveals that when the slower axes of the λ / 4 wave plates 7, 10 are parallel to each other and the slower axes of the / 2 wave plates 1 1, 12 are parallel to each other, and when the λ / 4 wave plates -74- Applicable to China National Standard (CNS) A4 specification (210 X 297 mm) 482917 A7

7、10之較延緩軸線相互平行且無;1/2波板做為補償時,在 透過模式中黑色顯示之光線透過率與波長之間關係。 如圖19所示,大致上無光學漏損之黑色顯示可藉由提供 λ / 2波板1 1、1 2而取得。 圖20揭示當;1/4波板7、1〇之較延緩軸線相互平行且λ/2 波板11、12之較延緩軸線相互平行如第五範例所述者時, 以及當λ/4波板7、1〇之較延緩軸線相互垂直且波板 11、12相互垂直做為補償時,在透過模式中黑色顯示之光 線波長與透過率之間關係。 如圖2 0所示,大致上無光學漏損之黑色顯示可藉由設定 λ / 4波板7、1 0之較延緩軸線相互垂直及設定又/ 2波板 1 1、1 2之較延緩軸線相互垂直而取得。 (實例2) 如上所述,依據本發明之第一實例所示,其可取得一提供 令人滿意顯示品質之透過與反射型LCD裝置,在可用透過 模式與反射模式操作之LCD裝置中,利用一半透過與半反 射層之LCD裝置(如圖8C)係劣於具有一反射區之lcd裝 置,後者可在一反射模式與一透過區中進行顯示,以利於 以下點中之一透過模式(如圖8 A)内進行顯示。 使用一藉由金屬顆粒沉積於一極小厚度而製成之半透過與 半反射層時’金屬顆粒需具有一較大之吸收係數,據此, 入射光線之内部吸收較大,且入射光線之一較大百分比係 經吸收或散射,而不用於顯示,因此,光線使用因素較低 (例如在一模組中有5 5 °/〇入射光線未用於顯示)。 -75- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)The slower axes of 7, 10 are parallel to each other and there is no relationship; when the 1/2 wave plate is used for compensation, the relationship between the light transmittance and the wavelength of the black display in the transmission mode. As shown in FIG. 19, a black display with substantially no optical leakage can be obtained by providing λ / 2 wave plates 1 1 and 12. Figure 20 reveals that when the slower axes of 1/4 wave plates 7, 10 are parallel to each other and the slower axes of λ / 2 wave plates 11, 12 are parallel to each other as described in the fifth example, and When the retardation axes of the plates 7 and 10 are perpendicular to each other and the wave plates 11 and 12 are perpendicular to each other as compensation, the relationship between the light wavelength and the transmittance displayed in black in the transmission mode. As shown in Figure 20, the black display with almost no optical leakage can be set by setting the slower axes of the λ / 4 wave plates 7, 10 to be perpendicular to each other and setting the slower of the 2 wave plates 1 1, 12 The axes are taken perpendicular to each other. (Example 2) As described above, according to the first example of the present invention, it is possible to obtain a transmissive and reflective LCD device that provides satisfactory display quality. In LCD devices that can operate in transmissive and reflective modes, use LCD devices with semi-transmissive and semi-reflective layers (as shown in Figure 8C) are inferior to LCD devices with a reflective area, which can display in a reflective mode and a transmissive area to facilitate one of the following transmission modes (such as Figure 8 A). When using a semi-transmissive and semi-reflective layer made by depositing metal particles in a very small thickness, the metal particles need to have a large absorption coefficient. Accordingly, the internal absorption of incident light is large, and one of the incident light A large percentage is absorbed or scattered and is not used for display, so the light usage factor is low (for example, 5 5 ° / 〇 incident light in a module is not used for display). -75- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

發明説明 S使用一具有微細孔與凹穴(可稱之為「開孔」)之半透過 與半反射層時,層之結構複雜且需要一精確之製造設計, Q此其難以控制層之厚度成為均勻,易言之,電子特徵 與光學特徵之重製率並未能令人滿意,因此,其難以控 LCD裝置之顯示品質。 在第二實例中,其將說明LCD裝置具有一透過區以於透 過模式中進行顯示及一.反射區以於反射模式中進行顯示, 以及說明電極之結構特徵。併合使用第二實例中之電極結 構及第一實例中之相位補償元件時,顯示品質即可進一步 增強。 一具有一透過區與一反射區之L C D裝置係採用較少損失 之環境光線或照明光線,且相較於一使用半面鏡之L c d裝 置而具有一明顯較高之光線使用因素。一第一導電層例以 透明之導電材料製成,例如IT 0或二氧化錫(Sn02),一第 一導每層係以銘、鎢、絡或其合金製成,由於第一、二導 電層可由一般反射型LCD裝置與透過型LCD裝置所用之材 料製成’因此L C D裝置提供極穩定之顯示特徵與穩定性, 且較易於製造。 再者’第二實例中之LCD裝置可解決習知透過型LCD裝 置之問題’即當環境光線呈明亮時會因表面反射而降低功 能;其亦可解決習知反射型L c D裝置之問題,即當環境光 線呈黑暗時會因降低之亮度而未能取得令人滿意之顯示。 在提供一充份功率之情況下,背光可使用做為習知之透過 型L C D裝置,因此,充份之顯示即可取得,無關於環境光 -76- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 482917 A7 B7 ) 五、發明説明(74 線之強度,且不需令環境光線使用因素中之擴散如同習知 反射型L C D裝置中做精準控制。使用時,由一像素區所提 供具有一較高透過率之第一導電層及具有一較高反射率之 第二導電層係互補地用於顯示,因此,不論環境光線強度 如何,清楚之影像得以顯示。 當採用於一電池驅動式數位相機或攝影機之反光鏡内時 (監視幕)’第二實例中之LCD裝置可提供適當之明亮影 像’其係藉由調整背光之亮度而易於觀看,無關於環境光 線強度。 特別是當用於晴天之戶外時,由習知透過型L c D裝置所 才疋供之影像甚至在背光之亮度增鬲時仍具有低對比,但是 藉由切斷背光以減少功率消耗及在反射模式中使用本發明 之LCD裝置,或者藉由降低背光之亮度及使用本發明lcd 裝置之透過模式與反射模式,則此影像之品質即得以改 喜。當監視幕接收到日光時,L C D裝置可依相同於晴天戶 外之情形而使用之,當物體自室内之一黑暗角落顯現時, 背光可打開以使用透過模式之L C D裝置。 當採用於一汽車用導航裝置之監視時,第二實例中之 LCD裝置可提供易於觀看之適當亮度影像,習知之汽車用 監視幕使用一背光較個人電腦或類似物者所用背光為高之 亮度,以利處理入射於螢幕上之外部光線,惟,習知之汽 車用監視幕仍具有低對比之問題。反之,具有此高亮度之 背光並不適用於在夜間或隨道内之顯示,第二實例中之 LCD裝置在藉由使用反射模式與透過模式而明亮時可提供 -77- 本紙張尺度適用中國國家標準(CNS) A4规格(210 X 297公釐) 482917 五、發明説明( A7 B7Description of the Invention When using a semi-transmissive and semi-reflective layer with fine holes and cavities (can be referred to as "openings"), the structure of the layer is complex and an accurate manufacturing design is required. It is difficult to control the thickness of the layer It becomes uniform, in other words, the reproduction rate of electronic characteristics and optical characteristics is not satisfactory. Therefore, it is difficult to control the display quality of LCD devices. In the second example, it will be explained that the LCD device has a transmission area for displaying in the transmission mode and a reflection area for displaying in the reflection mode, and the structural features of the electrodes. When the electrode structure in the second example is combined with the phase compensation element in the first example, the display quality can be further enhanced. An L C D device with a transmission area and a reflection area uses less loss of ambient light or illumination light, and has a significantly higher light use factor than an L c d device using a half mirror. A first conductive layer is made of a transparent conductive material, such as IT 0 or tin dioxide (Sn02). Each layer of the first conductive layer is made of Ming, tungsten, tungsten or its alloy. The layer may be made of materials used for general reflective LCD devices and transmissive LCD devices. Therefore, LCD devices provide extremely stable display characteristics and stability, and are easier to manufacture. Furthermore, the LCD device in the second example can solve the problem of the conventional transmission type LCD device, that is, when the ambient light is bright, the function is reduced due to surface reflection; it can also solve the problem of the conventional reflection type L c D device. That is, when the ambient light is dark, a satisfactory display cannot be obtained due to the reduced brightness. In the case of providing a sufficient power, the backlight can be used as a conventional transmissive LCD device. Therefore, sufficient display can be obtained, regardless of the ambient light. -76- This paper standard applies Chinese National Standard (CNS) A4 Specifications (210 X 297 mm) 482917 A7 B7) V. Description of the invention (74 line strength without the need to make the diffusion of ambient light use factors as precise control as in conventional reflective LCD devices. When using, by a The first conductive layer with a higher transmittance and the second conductive layer with a higher reflectance provided by the pixel area are used for display complementarily, so clear images can be displayed regardless of the ambient light intensity. When used When inside a battery-powered digital camera or camcorder's mirror (monitor screen) 'The LCD device in the second example can provide appropriate bright images' which is easy to view by adjusting the brightness of the backlight, regardless of the ambient light . Especially when used outdoors on a sunny day, the image provided by the conventional transmission type L c D device has a low contrast even when the brightness of the backlight is increased, but by Turn off the backlight to reduce power consumption and use the LCD device of the present invention in the reflection mode, or by reducing the brightness of the backlight and using the transmission mode and reflection mode of the LCD device of the present invention, the quality of this image can be changed. When monitoring When the screen receives daylight, the LCD device can be used in the same way as when it is outdoors on a sunny day. When an object appears from a dark corner of the room, the backlight can be turned on to use the LCD device in the transmission mode. When used in a car navigation device When monitoring, the LCD device in the second example can provide an image with appropriate brightness for easy viewing. The conventional automotive monitor uses a backlight with a higher brightness than the backlight used by a personal computer or the like to facilitate processing incident on the screen. The external light, however, the conventional automotive monitor screen still has the problem of low contrast. On the contrary, the backlight with this high brightness is not suitable for display at night or in the road. The LCD device in the second example is used by Available in reflection mode and transmission mode when bright -77- This paper size applies to China National Standard (CNS) A4 (210 X 2 97 mm) 482917 V. Description of the invention (A7 B7

令人滿意足顯示,不需設足背光之亮度呈高值。在黑暗 中,易於看見之顯示係利用僅約5〇至1〇〇 cd/m2之亮度^ 供。 人疋 在第二實例之一LCD裝置中,一像素電極包括一具有較 高光線透過率之第一導電層及一具有較高光線反射率之^ 二導電層,且相互導通。因此,用於在透過模式中進行顯 示之一透過區及用於反射模式中進行顯示之一反射區二= 皆包括於一像素區内。 第一、二導電層係設於分隔層且其間介置一絕緣層,液晶 層(厚度可藉由改變透過區(用於第一導電層)及反射區(用 於第二導電層)之間之絕緣層厚度而調整之,依此,在二區 域中之光學特徵可相互匹配。在製程期間,具有不同電位 之二層係令絕緣層介置於其間,因此,用於製成圖型以形 成電極之顯影劑或做為電解質之電阻移除劑不致引起電腐 蝕,據此,可取得一極為穩定之LCD裝置。 當一層像素電極(例如底層之IT 〇與頂層之鋁)之間無絕緣 層時’ IT 0層與鋁層之電壓係顯著不同,再者,薄膜具有許 多械細開孔’據此,用於製出圖案或做為電阻移除劑之顯 影劑有如一電解質,而易導致電腐蝕,因此,ιτο層經過沖 洗而造成像素瑕疵、線斷接、及液晶層污染。由於本發明 之絕緣層設於二層之間,因此絕緣層有如一防護層,以防 止液體侵入而造成電腐蝕。 即使當構成像素電極之二層係具有易電腐蝕之關係時,二 層仍可經由一第三導電層互接以緩和此二層之性質,因 -78 - 本紙張尺度適用t國ϋ家標準(CNS) A4規格(21G X 297公爱)&quot;&quot;&quot;' 一 ― &quot; --------Satisfactory enough display, without the need to set a sufficient backlight brightness is high. In the dark, an easily visible display is provided with a brightness of only about 50 to 100 cd / m2. Human beings In one LCD device of the second example, a pixel electrode includes a first conductive layer having a high light transmittance and a second conductive layer having a high light reflectance, and are conductive with each other. Therefore, a transmission area for display in the transmission mode and a reflection area for display in the reflection mode are both included in a pixel area. The first and second conductive layers are provided in the separation layer with an insulating layer interposed therebetween. The thickness of the liquid crystal layer (the thickness can be changed between the transmission area (for the first conductive layer) and the reflection area (for the second conductive layer). The thickness of the insulating layer is adjusted according to this, and the optical characteristics in the two regions can be matched with each other. During the manufacturing process, the two layers with different potentials interpose the insulating layer in between, so it is used to make patterns to The developer that forms the electrode or the resist remover that acts as the electrolyte does not cause electrical corrosion, and therefore, an extremely stable LCD device can be obtained. When there is no insulation between a layer of pixel electrodes (such as IT 0 on the bottom layer and aluminum on the top layer) In the layer, the voltage system of the IT 0 layer is significantly different from that of the aluminum layer. Moreover, the film has many mechanical fine openings. Based on this, the developer used for patterning or as a resistance remover is like an electrolyte, and is easy to use. As a result of electrical corrosion, the ιτο layer is washed to cause pixel defects, wire disconnection, and contamination of the liquid crystal layer. Since the insulating layer of the present invention is provided between two layers, the insulating layer acts as a protective layer to prevent liquid intrusion Causes electrical corrosion. Even when the two layers constituting the pixel electrode have a relationship of being prone to electrical corrosion, the two layers can still be interconnected via a third conductive layer to alleviate the properties of these two layers, because -78-This paper is applicable to t National Standard (CNS) A4 Specification (21G X 297 Public Love) &quot; &quot; &quot; 'One-&quot; --------

裝 訂Binding

482917 A7 B7 &quot;X&quot;、發明説明(76 ) 此,由於電腐I虫與其他破壞L C D裝置穩定性之麻煩原因所 致之非充份連接即可避免。 在第一、二、三導電層其中一者係以閘線或源線材料之一 部份構成情況下,製程可因而簡化。 供弟一導電層製成於其上之絕緣層表面上可製成波狀,在 此情況下,入射光線係反射及散射,造成較寬廣之視角, 因此可取得白色顯示而不需使用另一散射板。 依據一種製成本發明LCD裝置之方法所示,習知乙(:1)裝 置中所需使用一半面鏡之複雜製造條件即可不必,用於習 知透過型LCD裝置及反射型裝置之大致電極材料、線路材 料及製造條件則可採用,因此製造上較容易且複製率可令 人滿意。即使當構成像素電極之二層具有易導致電腐蝕之 關係時,二層仍可經由一設於其間之一絕緣層或一第三導 電層以相互連接,因此該二層可製成不直接接觸或接觸於 做為電之液體’因而可防止電腐蚀,因此Lcd裝置 享有一高穩定度且可高效率地製造。 在去除絕緣層自一與第一、二導電層接觸之接觸區之步驟 以及去除絕緣層於第一導電層之一部份上之步驟同時於一 步驟中進行,步驟數量即可減少而仍保持L c D裝置之穩定 性。 (範例6) 本發明第六範例中之一 L C D裝置將說明之。 圖2 1係第六範例中對應於一像素區之[c D裝置之一主動 陣列基材平面圖’圖2 2係沿圖2 1之2 2 - 2 2,線所取之L C D裝 -79- 本紙張β適财S ®家標準(cAs) A4祕(2ι〇χ 297公釐)--- 482917 A7 B7 五、發明説明(77 ) 置截面圖。 如圖21、22所示,其提供複數閘線53及複數源線59&amp; , 以利在一由玻璃或塑膠材料製成之透明絕緣板(圖中未示)上 相互垂直’一 TFT 57係設於閘線5 3與源線5 9 a之各相交處 附近,TFT 57之一汲極5 9c係連接至合併做為一像素電極之 一反射電極6 1與一透過電極5 8 a。一具有像素電極做為其頂 層之L C D裝置之一部份則具有一較高光線透過率之區域 T(透過區),以及一自LCD裝置上方視之而呈較高光線反射 率之區域R(反射區)。 雖然圖中未示’但疋一用於配列液晶分子之配列層係提供 於圖2 1所TF之主動陣列基材上。 第穴及以下範例中之L C D裝置包括上述主動陣列基材及 一含有一透過電極與一配列層之逆基材,必要時亦可提供 一濾色件、一相位補償元件或一偏光器。 區域T呈長方形且位於像素電極中央,在截面圖中,區域 T包括由高光線反射率材料製成之複數層,及亦包括做為頂 層之透過電極58a,以連接於TFT 57之汲極59c。區域R包 固於區域T且包括做為頂層之反射電極6 1,反射電極6 1係 以銘或高光線反射率之合金製成,且連接於丁FT 57之汲 極5 9 c。由於此一結構,區域R可反射入射光線,而具有一 波形表面之反射電極6 1將入射光線散射至一適當之方向範 圍。 在第六範例中用於L C D裝置之一液晶材料為客-主型液晶 材料ZLI 2327(由Merck &amp; Co·,公司製造),其含有一黑色色 -80- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 482917 A7 B7 五、發明説明(78 ) 素且亦含有0.5%比率之光學性活性物質S-811 (由Merck &amp; Co.,公司製造)。. 如圖2 2所示,TFT 5 7包括一閘絕緣層5 4、一半導體層 55、半導體接觸層56a、56b、一源極59b、汲極59c、及 供上述元件依序設置於上之閘極5 2,閘極5 2係自各閘線5 3 分枝(如圖2 1)。 汲極5 9 c係連接於區域T中像素電極一部份之透過電極 5 8 a、在區域R中,一層間絕緣層6 0及反射電極6 1係依序設 於透過電極5 8 a上,反射電極6 1經由層間絕緣層6 〇中所設 之一接觸孔63而導通於透過電極58a,反射電極61與透過 電極5 8 a構成像素電極,以施加一電壓至液晶材料,透過電 極58a與反射電極61並非直接相互連接,而是透過一由鈦製 成之導電金屬層62。 透過電極5 8 a係當反射電極6 1以製圖成型時(一種製造 LCD裝置之方法將詳述於後)可覆蓋以層間絕緣層6〇,據 此,IT 0與鋁導致電腐蝕,藉以防止線中斷等麻煩。在層間 絕緣層6 0以一較小厚度設於透過電極5 8 a上而完全覆蓋透過 電極58a之情況下,電腐蝕即可避免在LcD裝置製成後發生 於I Τ Ο與鋁之間。482917 A7 B7 &quot; X &quot;, description of the invention (76) Therefore, inadequate connections due to electro-corrosive worms and other troublesome factors that disrupt the stability of the LC device can be avoided. In the case where one of the first, second and third conductive layers is constituted by a part of a gate line or a source line material, the manufacturing process can be simplified. A conductive layer made on the surface of the insulating layer can be made wavy. In this case, the incident light is reflected and scattered, resulting in a wider viewing angle. Therefore, a white display can be obtained without using another. Diffuser. According to a method for manufacturing the LCD device of the present invention, the complicated manufacturing conditions of using half mirrors in the conventional B (: 1) device are not necessary, and it is used for the approximate electrodes of the conventional transmissive LCD device and reflective device. Materials, circuit materials, and manufacturing conditions can be used, so it is easier to manufacture and the replication rate is satisfactory. Even when the two layers constituting the pixel electrode have a relationship that is prone to cause electrical corrosion, the two layers can still be connected to each other through an insulating layer or a third conductive layer provided therebetween, so the two layers can be made without direct contact. Or it can be in contact with a liquid that is used as electricity, thereby preventing electric corrosion, so the LCD device enjoys a high stability and can be manufactured efficiently. The steps of removing the contact area of the insulating layer from the first and second conductive layers and the step of removing the insulating layer on a part of the first conductive layer are performed in one step at the same time, and the number of steps can be reduced and maintained. L c D device stability. (Example 6) An LCD device according to a sixth example of the present invention will be described. Fig. 2 is a plan view of an active array substrate corresponding to a pixel area in the sixth example. [Fig. 2 is an LCD device taken along the line 2-2-2 2 of Fig. 2 -79- This paper β Sekai S ® Home Standard (cAs) A4 secret (2ιχχ 297 mm)-482917 A7 B7 V. Description of the invention (77) Sectional view. As shown in FIGS. 21 and 22, it provides a plurality of gate lines 53 and a plurality of source lines 59 &amp; so as to facilitate a TFT 57 series perpendicular to each other on a transparent insulating plate (not shown) made of glass or plastic material. Located near the intersections of the gate line 5 3 and the source line 5 9 a, one of the drain electrodes 5 9c of the TFT 57 is connected to a reflective electrode 61 and a transmissive electrode 5 8 a which are combined as a pixel electrode. A part of an LCD device having a pixel electrode as its top layer has a region T (transmitting region) having a higher light transmittance, and a region R (having a higher light reflectance as viewed from above the LCD device) Reflection area). Although not shown in the figure, one alignment layer for aligning liquid crystal molecules is provided on the active matrix substrate of TF shown in FIG. The LCD device in the second hole and the following examples includes the above-mentioned active array substrate and an inverse substrate including a transmissive electrode and an alignment layer, and a color filter, a phase compensation element, or a polarizer may be provided when necessary. The region T is rectangular and is located in the center of the pixel electrode. In a cross-sectional view, the region T includes a plurality of layers made of a material having a high light reflectivity, and also includes a transmission electrode 58a as a top layer to be connected to the drain electrode 59c of the TFT 57. . The area R is fixed in the area T and includes a reflective electrode 6 1 as a top layer. The reflective electrode 61 1 is made of an alloy with high light reflectivity and is connected to the drain electrode 5 9 c of DFT 57. Due to this structure, the region R can reflect incident light, and the reflective electrode 61 having a wave-shaped surface scatters the incident light to a proper direction range. One of the liquid crystal materials used for LCD devices in the sixth example is a guest-host type liquid crystal material ZLI 2327 (manufactured by Merck & Co., Inc.), which contains a black color -80. CNS) A4 specification (210 X 297 mm) 482917 A7 B7 5. Description of the invention (78) The optical active material S-811 (manufactured by Merck &amp; Co., Ltd.) also contains 0.5% ratio. As shown in FIG. 22, the TFT 57 includes a gate insulating layer 54, a semiconductor layer 55, semiconductor contact layers 56a, 56b, a source 59b, a drain 59c, and the above-mentioned components are sequentially disposed thereon. The gate 5 2 is branched from each of the gate lines 5 3 (see Fig. 2 1). The drain electrode 5 9 c is a transmission electrode 5 8 a connected to a part of the pixel electrode in the region T. In the region R, an interlayer insulating layer 60 and a reflective electrode 61 are sequentially disposed on the transmission electrode 5 8 a. The reflective electrode 61 is electrically connected to the transmissive electrode 58a through a contact hole 63 provided in the interlayer insulating layer 60. The reflective electrode 61 and the transmissive electrode 58a constitute a pixel electrode to apply a voltage to the liquid crystal material. The transmissive electrode 58a The reflective electrode 61 is not directly connected to each other, but passes through a conductive metal layer 62 made of titanium. The transmissive electrode 5 8 a can be covered with an interlayer insulating layer 60 when the reflective electrode 61 is formed in a drawing (a method for manufacturing an LCD device will be described later). According to this, IT 0 and aluminum cause electrical corrosion to prevent Trouble such as line interruption. In the case where the interlayer insulating layer 60 is provided on the transmissive electrode 58a with a small thickness and completely covers the transmissive electrode 58a, the electric corrosion can be prevented from occurring between ITO and aluminum after the LcD device is manufactured.

在此範例中,金屬層6 2由鈦製成,但是只要金屬層6 2係 由銘以外之導電材料製成則即可取得相同效果,例如络、 麵、赵、或鎮。另者,反射電極6 1係一含銘之合金製成, 其添加入一電位較鋁為高之金屬材料,例如鎢、鎳、麵、 訊或锆,以替代形成金屬層62。再者,在此情況下,LcD -81 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 482917In this example, the metal layer 62 is made of titanium, but as long as the metal layer 62 is made of a conductive material other than Ming, the same effect can be achieved, such as mesh, surface, zhao, or town. In addition, the reflective electrode 61 is made of an alloy containing an inscription, and a metal material with a higher potential than aluminum is added, such as tungsten, nickel, surface, or zirconium, instead of forming the metal layer 62. Furthermore, in this case, LcD -81-this paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 482917

裝置生成後I τ 0與|g之間之電腐钱即可避免,例如電腐飯藉 由添加^约5·0重量百分比之鎢至銘而得以有效防止。 在此範例中用於製造乙〇:〇裝置之一種方法將參考圖23八 至23Ε而說明之。 以如圖2 3 Α所示,一導電性薄膜係設於絕緣板5 1上且利用 光石版印刷而製圖成一預定形狀,藉以形成閘極5 2及閘線 (圖中未7F )。在此範例中,絕緣板5丨由玻璃板5 1製成,而 閘極5 2與閘線由妲製成,絕緣層5丨可由塑膠或類似物製 成’以替代玻璃,且閘極5 2與閘線可由其他導電性材料製 成,例如銘、絡、鈿、鶏、銅或鈥。 其次’如圖23B所示,氮化矽(SiNx)之閘絕緣層54、a· Si半導體層55、及一p-摻雜n、a_Si層等用於半導體接觸 層5 6 a、5 6 b者係依序由c V D製成,且隨後利用光石板印刷 製圖。 然後’一導電層製成及利用光石版印刷製圖成預定形狀, 藉此製成源線5 9 a、源極5 9 b及汲極5 9 c。在此範例中導電 層係由含鉻之材料製成,但是亦可由其他導電性材料製 成,例如鋁、鉬、鈕、鎢、銅或鈦。 如圖23C所示,隨後製成一光線透過導電層,且利用光石 版印刷製圖,藉以製成透過電極5 8 a,透過電極在此範例中 係以ITO製成。 隨後製成一金屬層且利用光石版印刷製圖,藉以製成金屬 層62 ’金屬層62用於連接隨後製成之透過電極58a及反射 電極6 1。在此範例中金屬層6 2係以鈦製成,但是鈦以外之 -82- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 482917 A7 _______ B7 五、發明説明(8〇—·) — &quot; 其他導電性材料亦可,例如路、銦、赵或鸫。 隨後利用源極5 9b及汲極5 9c做為遮光件以蝕刻P-摻雜 π -a-Si ’藉此製成半導體接觸層56&amp;、56b,依此即完成 丁FT 57。 源極5 9 b及汲極5 9 c可疊覆於透過電極5 8 a。 其次,如圖2 3 D所示,製成層間絕緣層6 0,層間絕緣層 6 0利用光石版印刷製圖以製成接觸孔6 3及去除區域τ中之 一部份層間絕緣層6 〇,同時在區域R中之層間絕緣層6 〇之 一表面(即欲製成反射電極6丨於其上者)製成波狀。 藉由去除區域T中之部份層間絕緣層6 〇,區域τ之透過性 即得以改善,惟,層間絕緣層6〇不完全去除,其仍留有一 定厚度,可在反射電極61製成圖案時防止電腐蝕,易言 之’液晶分子之方位狀態在各像素區内大致皆相同。 區域R中之層間絕緣層6 〇表面由上視之似呈具有複數之圓 潤突起04 ’在截面圖中,層間絕緣層6〇之表面積緩緩地變 動。當反射電極6 1設於此一波形表面時,入射光線可有效 地由反射電極61之波形表面反射,且以一適當之方向範圍 散射’波形表面之形狀可依所需之顯示特徵做最佳之判 斷。若不需散射光線,則表面即不需呈波形。 層間絕緣層60在此範例中係由單一有機樹脂層(厚度2.5微 米)製成’但是亦可由不同材料之複數疊層製成,此範例中 之單一較厚有機樹脂層優點在於當反射電極疊覆於TFT 57 時可避免產生一振動式電容,因此,顯示品質得以改善且 數值孔徑上昇’ 一較厚有機樹脂層亦有助於波形表面之生 -83- 本紙張尺度適用中國國豕標準(CNS) A4規格(210 X 297公董〉 482917 A7 B7After the device is generated, electric corrosion money between I τ 0 and | g can be avoided, for example, electric corrosion rice can be effectively prevented by adding ^ about 5.0 weight percent of tungsten to the Ming. A method for manufacturing a 0:00 device in this example will be described with reference to FIGS. 23A to 23E. As shown in FIG. 2A, a conductive thin film is provided on the insulating plate 51 and is drawn into a predetermined shape using light lithography to form a gate electrode 52 and a gate line (not shown in FIG. 7F). In this example, the insulating plate 5 丨 is made of a glass plate 51, and the gate electrode 5 2 and the gate wire are made of 妲, and the insulating layer 5 丨 can be made of plastic or the like 'instead of glass, and the gate electrode 5 2 and the brake wire can be made of other conductive materials, such as Ming, Luo, 钿, 鶏, copper or “. Next, as shown in FIG. 23B, a silicon nitride (SiNx) gate insulating layer 54, an a · Si semiconductor layer 55, and a p-doped n, a_Si layer are used for the semiconductor contact layers 5 6 a, 5 6 b They were sequentially made from c VD, and then printed with light slate printing. Then, a conductive layer is made and patterned into a predetermined shape using light lithography, thereby making source lines 5 9 a, source electrodes 5 9 b, and drain electrodes 5 9 c. In this example, the conductive layer is made of a chromium-containing material, but it can also be made of other conductive materials, such as aluminum, molybdenum, buttons, tungsten, copper, or titanium. As shown in FIG. 23C, a light-transmitting conductive layer is then made, and the photolithography is used to make a drawing to form a transmission electrode 5 8a. In this example, the transmission electrode is made of ITO. A metal layer is then made and patterned using light lithography, whereby a metal layer 62 is made. The metal layer 62 is used to connect the transmissive electrode 58a and the reflective electrode 61, which are then made. In this example, the metal layer 62 is made of titanium, but other than -82- This paper size applies Chinese National Standard (CNS) A4 specifications (210X 297 mm) 482917 A7 _______ B7 V. Description of the invention (8〇 — ·) — &Quot; Other conductive materials are also possible, such as road, indium, zhao or thorium. Subsequently, the source electrode 5 9b and the drain electrode 5 9c are used as light-shielding members to etch P-doped π-a-Si 'to form semiconductor contact layers 56 &amp;, 56b, and the FT 57 is completed. The source electrode 5 9 b and the drain electrode 5 9 c may be stacked on the transmission electrode 5 8 a. Next, as shown in FIG. 2D, an interlayer insulating layer 60 is made, and the interlayer insulating layer 60 is patterned by light lithography to make a contact hole 63 and a part of the interlayer insulating layer 6 in the removal region τ. At the same time, one surface of the interlayer insulating layer 60 in the region R (that is, the one on which the reflective electrode 6 is to be formed) is made wavy. By removing a part of the interlayer insulating layer 60 in the region T, the permeability of the region τ is improved. However, the interlayer insulating layer 60 is not completely removed, and it still has a certain thickness, which can be patterned on the reflective electrode 61. It is easy to prevent electrical corrosion at all times, which means that the orientation state of the liquid crystal molecules is almost the same in each pixel region. The surface of the interlayer insulating layer 60 in the region R has a plurality of rounded protrusions 04 'as seen from above. In the cross-sectional view, the surface area of the interlayer insulating layer 60 gradually changes. When the reflective electrode 61 is provided on this wave-shaped surface, the incident light can be effectively reflected by the wave-shaped surface of the reflective electrode 61 and scattered in an appropriate direction range. The shape of the wave-shaped surface can be optimized according to the required display characteristics Judgment. If the light is not scattered, the surface need not be undulating. The interlayer insulating layer 60 is made of a single organic resin layer (2.5 micron thickness) in this example, but it can also be made of multiple layers of different materials. The single thick organic resin layer in this example has the advantage that when the reflective electrode is stacked When covering TFT 57, a vibration-type capacitor can be avoided. Therefore, the display quality is improved and the numerical aperture is increased. A thicker organic resin layer can also help the surface of the wave shape. CNS) A4 size (210 X 297 public directors) 482917 A7 B7

五、發明説明(81 I成’例如氮化 其另可為較薄, 另者,層間絕緣層6 〇可由一般之無機層製成, 矽SiNx-,此一層有利於取得一高絕緣值,並 但是缺點在於難以生成波形表面。當其因為所需之顯示特 被而不1¾製成波形表面時,則以此一層較理木目。 如圖23E所示,一鋁層製成且製成圖案,藉以製成反射電 極61於區域R中,反射電極61經過接觸孔63與金屬層= 導通於TFT 57之透過電極58a與汲極59c。此例中,^射電 極61由鋁製成,但是亦可由其他含鋁合金或具有高光線反 射率之導電材料製成。 因此,圖2 1、2 2所示之主動陣列基材即完成。 雖然圖中未示,但是一配列層係設於主動陣列基材之頂部 上,備有配列層之主動陣列基材係併合以一包括透過電極 且備有一配列層之逆基材。一液晶材料注入二基材之間之 間隙,即完成第六範例中之L c D裝置,必要時β濾色件或一 相位補償元件可添加之。 如上所述,用於此範例LCD裝置中之液晶材料為客-主型 液晶材料ZLI 2327(由Merck &amp; Co·,公司製造),其含有黑色 色素亦含有0.5%之光學活性物8_811(由1^^^&amp;(:〇.,公司 製造)。 在此範例中,令人滿意之顯示特徵可藉由設定面積比率對 區域T比為4 0 : 6 0而取得,面積比應不限於此,其可依據 區域T、R之透過率與反射率以及使用lcd裝置而做適度改 變。在此範例中,僅有一區域T設於像素區之中央。可提供 本紙浪尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 482917 A7 ___B7 五、發明説明(82~) ~ 複數個區域T,且區域T可為任意其他形狀。 在第二實例之LCD裝置中,一像素電極包括一具有較高 光線透過率且位於中央之區域T,以及一具有較高光線反射 率且圍設於區域T周側之區域R。由於此一結構,l C D裝置 相較於使用半面鏡之習知L C D裝置,而可較少損失地利用 環境光線及照明光線。此外,第二實例中之L C D裝置可解 決習知透過型L C D裝置之問題,即當環境光線明亮時會因 表面反射而使可見度降低;及亦解決習知反射型L c D裝置 之問題’即當環境光線昏暗時會因亮度降低而未能取得令 人滿意之顯示。易言之,第二實例中之LCD裝置提供令人 滿意之顯示,而無關於環境光線強度,且不需要如習知反 射型L C D裝置般精確控制反射特徵中之擴散所致之光線使 用因素中之擴散。 此範例中L C D裝置可利用習知透過型l c D裝置與反射型 L C D裝置中所用之一般電極與線材及條件製造,習知l c d 裝置使用一半面鏡之複雜條件則不需要,據此,本範例中 之LCD裝置較易於製造且有令人滿意之複製率。此外,習 知L C D裝置使用一半面鏡而難以取得之顯示特徵則變得易 於達成。 (範例7) 本發明第七範例中之一 L C D裝置將說明之。 圖2 4係第七範例中對應於一像素區之LC D裝置之一主動 陣列基材平面圖,圖2 5係沿圖2 4之2 5 - 2 5,線所取之L· C D裝 置截面圖。 -85 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公董) 482917 五、發明説明(83 第七範例中之L C D裝置不同於第六範例中之L C D裝置處 在作為像素電極一部份之反射電極61及TFT 57之間電力連 接之相關結構,及相關於此結構之製造方法。 裝 如圖24、25所示,TFT 57之汲極59c連接於透過電極 5 8 a,透過電極5 8 a做為一部份之像素電極,以利施加一電 壓至區域T中之液晶材料。在區域R中,層間絕緣層6 0及反 射電極6 1係設於透過電極5 8 a上。反射電極6 1直接穿過接 觸孔6 3而接於汲極5 9 c。反射電極6 1亦做為像素電極之一 部份。如第六範例所示,由IT 0製成之透過電極5 8 a並非直 接接於由鋁製成之反射電極6 1 ;由於此一結構,TFT 57則 可確實導通於諸材料,而無不必要之電腐姓可能性,即使 在區域R中使用環境光線之高反射率及區域T中使用來自背 光之南透過性。 在此範例中,ITO與鋁之電腐蝕得以避免,本發明可有效 地應用於易導致電腐蝕之不同材料任意組合上。 文後將說明圖2 4、2 5所示之主動陣列基材。 直到半導體層5 5及欲做為半導體層56a、56b之一層製成 為止之過程皆相同於第六範例中所示者。 隨後一導電層利用光石版印刷製成圖案,藉以形成源線 59a、源極59b、汲極59c及一連接金屬層,在此範例 ^《導電層由一含鉻材料製成,但是亦可由其他導電材料 氣成’例如銘、I目、短、鎢、銅或欽。 隨後製成透過電極58a以利局部疊覆於連接金屬層59d, 另者’連接金屬層59d可局部疊覆於透過電極…,在此範 86 本紙張尺度適财s㈣標準_)威格(⑽χ撕公爱τ 482917 A7 —_______ B7 五、發明説明(84 ) 例中之透過電極58a亦由IT〇製成。 源線5 9 a、源極5 9 b、及汲極5 9 c及連接金屬層5 9 d可製成 於透過電極58a上。 P过後層間絕緣層6 〇以相同於第六範例所示方式製成,且 利用光石版印刷製圖形成接觸孔6 3及去除區域T中之一部份 層間絕緣層6 0,隨後製成反射電極6 1。在此範例中,反射 電極6 1亦以鋁製成。 可以瞭解的是,在此範例中*IT〇製成之透過電極58 3並 非直接接於由銘製成之反射電極6 1 ’由於此一結構,因為 IΤ 0與鋁之間電腐蝕所生之故障即可避免在接觸部份發生, 因而改善了穩定性,由相同於源極5 9 b者之材料製成之金屬 層62則可較易製成。 (範例8) 在第八範例中,用於製造第七範例所示L C D裝置之另一 方法將參考圖26A至26C說明之。 圖20A至20C對應於圖25,其係截面圖,用以說明一種 製造第七範例所示L C D裝置之方法。 直到層間絕緣層60製成為止之製程係依第七範例中所述 者進行。 如圖2 6 A所示,隨後一部份層間絕緣層6 〇利用光石版印 刷去除,藉以製成接觸孔6 3,在同一步驟中,區域R中之層 間絕緣層6 0表面製成波形,使入射光由表面散射,不同於 第七範例的是,區域T中之一部份層間絕緣層6 0並未去除。 在層間絕緣層6 0之表面上,製成一鋁層或一含鋁合金 -87- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)V. Description of the invention (81%) For example, nitride can be thinner. In addition, the interlayer insulation layer 60 can be made of a general inorganic layer, silicon SiNx-. This layer is beneficial to obtain a high insulation value, and However, the disadvantage is that it is difficult to generate a wavy surface. When it is not made into a wavy surface because of the required display characteristics, it is a more logical layer. As shown in Figure 23E, an aluminum layer is made and patterned. Thereby, the reflective electrode 61 is formed in the region R, the reflective electrode 61 passes through the contact hole 63 and the metal layer = the transmission electrode 58a and the drain electrode 59c which are connected to the TFT 57. In this example, the radiation electrode 61 is made of aluminum, but also Can be made of other aluminum alloys or conductive materials with high light reflectance. Therefore, the active array substrate shown in Figures 2 and 22 is completed. Although not shown in the figure, a collocation layer is provided in the active array On the top of the substrate, an active array substrate provided with a aligning layer is combined with a reverse substrate including a transmissive electrode and a aligning layer. A liquid crystal material is injected into the gap between the two substrates to complete the sixth example. L c D device, β color filter if necessary Or a phase compensation element can be added. As mentioned above, the liquid crystal material used in this example LCD device is a guest-host type liquid crystal material ZLI 2327 (manufactured by Merck &amp; Co., Inc.), which contains black pigment and also contains 0.5% of optically active material 8_811 (manufactured by 1 ^^^ &:;, manufactured by the company). In this example, satisfactory display characteristics can be achieved by setting the area ratio to the area T ratio of 40: 6 Obtained from 0, the area ratio should not be limited to this, and it can be appropriately changed according to the transmittance and reflectance of the regions T and R, and the use of the LCD device. In this example, only one region T is located in the center of the pixel region. Provide the paper wave scale applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 482917 A7 ___B7 V. Description of the invention (82 ~) ~ Multiple areas T, and the area T can be any other shape. In the second example In the LCD device, a pixel electrode includes an area T having a high light transmittance and being located in the center, and an area R having a high light reflectance and being surrounded by the periphery of the area T. Due to this structure, a CD Device compared to using half mirror The LCD device can use ambient light and illumination light with less loss. In addition, the LCD device in the second example can solve the problem of the conventional transmission type LCD device, that is, when the ambient light is bright, the visibility is reduced due to surface reflection. ; And also solve the problem of the conventional reflective L c D device 'that is, when the ambient light is dim, the satisfactory display cannot be obtained due to the decrease in brightness. In other words, the LCD device in the second example provides satisfactory Display without regard to the intensity of ambient light, and does not require the precise control of diffusion in light usage factors due to diffusion in reflective features, as in conventional reflective LCD devices. In this example, the LCD device can be manufactured by using the common electrodes and wires and conditions used in conventional transmissive LCD devices and reflective LCD devices. The complicated conditions of using half mirrors in conventional LCD devices are not required. Based on this, this example The LCD device is easier to manufacture and has a satisfactory reproduction rate. In addition, the display characteristics of the conventional LCD device, which are difficult to obtain using a half mirror, are easily achieved. (Example 7) An LCD device according to a seventh example of the present invention will be described. Fig. 2 is a plan view of an active array substrate of an LC D device corresponding to a pixel region in the seventh example. Fig. 2 is a cross-sectional view of the L · CD device taken along the line 2 5-2 5 of Fig. 2 . -85-This paper size applies to China National Standard (CNS) A4 specification (210X297 public director) 482917 V. Description of the invention (83 The LCD device in the seventh example is different from the LCD device in the sixth example as a pixel electrode The related structure of the power connection between the reflective electrode 61 and the TFT 57 and the manufacturing method related to this structure. As shown in Figures 24 and 25, the drain 59c of the TFT 57 is connected to the transmission electrode 5 8 a, and the transmission electrode 5 8 a is used as a part of the pixel electrode to facilitate the application of a voltage to the liquid crystal material in the region T. In the region R, the interlayer insulating layer 60 and the reflective electrode 61 are provided on the transmissive electrode 5 8 a. The reflective electrode 61 passes directly through the contact hole 6 3 and is connected to the drain electrode 5 9 c. The reflective electrode 61 is also part of the pixel electrode. As shown in the sixth example, the transmissive electrode 5 made of IT 0 8 a is not directly connected to the reflective electrode 6 1 made of aluminum; due to this structure, the TFT 57 can be surely connected to the materials without unnecessary possibility of electrical corrosion, even if ambient light is used in the area R High reflectance and south transmittance from backlight used in area T In this example, electrical corrosion of ITO and aluminum is avoided, and the present invention can be effectively applied to any combination of different materials that are prone to cause electrical corrosion. The active array substrate shown in FIGS. 2 and 25 will be described later. The process up to the fabrication of the semiconductor layer 55 and one of the semiconductor layers 56a and 56b is the same as that shown in the sixth example. Then a conductive layer is patterned using light lithography to form source lines 59a, Source electrode 59b, drain electrode 59c, and a connection metal layer. In this example, the conductive layer is made of a chromium-containing material, but it can also be formed of other conductive materials. For example, Ming, I, Short, Tungsten, Copper, or Qin Then, the transmission electrode 58a is made to partially overlap the connection metal layer 59d, and the 'connection metal layer 59d may be partially overlapped to the transmission electrode ... In this example, the paper size of the paper is suitable for the standard _) Weige ( ⑽χ 撕 公 爱 τ 482917 A7 —_______ B7 V. Description of the invention (84) The transmission electrode 58a in the example is also made of IT0. Source line 5 9 a, source 5 9 b, and drain 5 9 c and connection The metal layer 5 9 d may be formed on the transmissive electrode 58 a. After P passes between the layers The edge layer 60 is made in the same manner as shown in the sixth example, and the contact hole 63 is formed by light lithography and a part of the interlayer insulating layer 60 in the area T is removed, and then the reflective electrode 61 is made. In this example, the reflective electrode 61 is also made of aluminum. It can be understood that, in this example, the transmissive electrode 58 3 made of * IT0 is not directly connected to the reflective electrode 6 1 ′ made of inscription. A structure, because the failure caused by the electrical corrosion between ITO and aluminum can be avoided in the contact part, thereby improving the stability, and the metal layer 62 made of the same material as the source 5 9 b can be Easier to make. (Example 8) In the eighth example, another method for manufacturing the LCD device shown in the seventh example will be described with reference to Figs. 26A to 26C. Figs. 20A to 20C correspond to Fig. 25 and are sectional views for explaining a method of manufacturing the LCD device shown in the seventh example. The process until the interlayer insulating layer 60 is completed is performed as described in the seventh example. As shown in FIG. 2A, a part of the interlayer insulating layer 60 is subsequently removed by light lithography to make contact holes 63. In the same step, the surface of the interlayer insulating layer 60 in the region R is corrugated. The incident light is scattered by the surface. Unlike the seventh example, a part of the interlayer insulating layer 60 in the region T is not removed. On the surface of the interlayer insulation layer 60, an aluminum layer or an aluminum alloy is made. -87- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm).

装一 訂Pack one

482917 A7 _____B7 五、發明説明(85 ) '~'~&quot; 層,層間絕緣層60在此範例中係由一單一有機樹脂層構 成,但疋亦可由複數足不同材料層製成,層間絕緣層6 〇之 表面不需呈波形。 如圖26B所示,隨㈣層利用光石版印刷製圖,藉以製成 反射電極6 1。 其次,如圖26C所示,層間絕緣層6〇在一部份或全部之 區域T中去除。 依此方式,圖2 4、2 5所示之主動陣列基材即可完成。 具有此一主動陣列基材之一;1(:1:&gt;裝置可同時在透過模式 與反射模式中操作,由鋁製成之反射電極61與由IT〇製成 之透過電極5 8a在LCD裝置完成後並未直接相互連接,因而 不致造成電腐蝕。因此,由腐蝕所致之故障得以避免,故 可改善L C D裝置之穩定性,製程期間亦可防止電腐蝕,因 為在反射電極6 1製圖成型時透過電極5 8 a並未曝露於蝕刻 劑。 (範例9) 本發明第九範例中一 L C D裝置將說明之。 第九範例中之LCD裝置不同於第七、八範例中之lCd裝 置處在於製成透過電極58a與汲極59c之順序,以及製成接 觸孔6 3之步驟。 圖2 7 A至2 7 C係對應於圖2 5,其以截面圖說明一種製造 第九範例所示L C D裝置之方法。 直到一欲製成半導體接觸孔56a、56b之層製成為止之製 程係如第六、七範例所示者進行。 -88- 本紙張尺度適财@时標準(CNS) A4規格(⑽χ 297公爱) 482917 A7 ___ B7 _五、發明説明(86^' 如圖2 7 A所示,一光線透過導電層係利用光石版印刷製成 圖案’藉以製成透過電極5 8 a,在此範例中,透過電極5 8 a 係以I T 0製成。 隨後一導電層利用光石版印刷製成圖案,藉以構成源線 59a、源極59b、汲極59。、連接金屬層59d、及一用於區 域T之金屬層5 9 e,源極5 9 b係分支自源線5 9 a,汲極5 9 c、 連接金屬層59d及用於區域T之金屬層59e則相互導通。在 此範例中,導電層係以一含la材料製成,但是亦可由其他 導電材料製成,例如銘、絡、鉬、鏑^、銅或鈥。 隨後利用源極5 9 b及汲極5 9 c做為遮光件以進行独刻,藉 以製成半導體導電層56a、56b,因此完成TFT 57。 其後,製成層間絕緣層6 0,接觸孔6 3、亦製成以及區域 T中一部份之層間絕緣層6 0利用光石版印刷去除,在同一步 驟中,區域R中之層間絕緣層6 0表面製成波形以利散射入射 光線。在表面上,一鋁層或一含鋁合金層製成。在此範例 中之層間絕緣層6 0係由一單一有機樹脂層製成,但是亦可 由複數不同材料製成,層間絕緣層60之表面不需呈波形。 如圖2 7 B所示,鋁或含鋁合金層係利用光石版印刷製成, 藉此製成反射電極61。 如圖2 7 C所示,隨後區域T中之層5 9 e係由光石版印刷局 部或全部地去除,或以反射電極6 1做為一遮光件而加以|虫 刻。另者,層5 9 e可用蝕刻而反射電極6 1利用蝕刻製圖。 如上所述,在此範例中由鋁製成之反射電極6 1並非直接 接於由ITO製成之透過電極58a,據此,當LCD裝置完成後 -89- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)482917 A7 _____B7 V. Description of the invention (85) '~' ~ &quot; layer, interlayer insulation layer 60 in this example is composed of a single organic resin layer, but 疋 can also be made of multiple layers of different materials, interlayer insulation layer The surface of 60 does not need to be waved. As shown in Fig. 26B, the reflective layer 61 is formed by patterning with a lithographic printing layer along with the base layer. Next, as shown in FIG. 26C, the interlayer insulating layer 60 is removed in a part or all of the region T. In this way, the active array substrate shown in Figs. 2, 4, and 5 can be completed. With one of this active array substrate; 1 (: 1: &gt; device can operate in both transmission mode and reflection mode at the same time, the reflective electrode 61 made of aluminum and the transparent electrode 5 8a made of IT〇 are in LCD After the devices are completed, they are not directly connected to each other, which will not cause electrical corrosion. Therefore, the failure caused by corrosion can be avoided, so the stability of the LCD device can be improved, and electrical corrosion can be prevented during the manufacturing process, because the reflective electrode 6 1 is drawn The transmissive electrode 5 8 a was not exposed to the etchant during molding. (Example 9) An LCD device in the ninth example of the present invention will be described. The LCD device in the ninth example is different from the lCd device in the seventh and eighth examples. It is in the order of making the transmissive electrode 58a and the drain electrode 59c, and the steps of making the contact hole 63. Figs. 2A to 27C correspond to Fig. 25, which illustrates a ninth example of manufacturing in a sectional view. The method of LCD device. The process until a layer to be formed into semiconductor contact holes 56a, 56b is performed as shown in the sixth and seventh examples. -88- This paper is suitable for financial standards @ 时 标准 (CNS) A4 Specifications (⑽χ 297 公 爱) 482917 A7 __ _ B7 _V. Description of the invention (86 ^ 'As shown in Figure 2 7 A, a light transmitted through the conductive layer is patterned using light lithography to make a transmissive electrode 5 8 a. In this example, the transmissive electrode 5 8 a is made of IT 0. A conductive layer is subsequently patterned using light lithography to form a source line 59a, a source 59b, a drain 59. A connection metal layer 59d, and a metal layer for area T 5 9 e, the source electrode 5 9 b is branched from the source line 5 9 a, the drain electrode 5 9 c, the connection metal layer 59d and the metal layer 59e for the region T are connected to each other. In this example, the conductive layer is formed by It is made of a material containing la, but it can also be made of other conductive materials, such as Ming, Luo, molybdenum, copper, copper or “. Then the source 5 9 b and the drain 5 9 c are used as light-shielding members for independent At this time, the semiconductor conductive layers 56a and 56b are made, so that the TFT 57 is completed. Thereafter, an interlayer insulating layer 60, a contact hole 63, and a part of the interlayer insulating layer 60 in the region T are used. Light lithography is removed. In the same step, the surface of the interlayer insulation layer 60 in the region R is made into a waveform to facilitate scattering of incident light. On the surface, an aluminum layer or an aluminum alloy-containing layer is made. In this example, the interlayer insulating layer 60 is made of a single organic resin layer, but it can also be made of a plurality of different materials. The interlayer insulating layer 60 The surface does not need to be wave-shaped. As shown in FIG. 2B, the aluminum or aluminum alloy-containing layer is made by light lithography to form a reflective electrode 61. As shown in FIG. The layer 5 9 e is partially or completely removed by light lithography, or the reflection electrode 61 is used as a light-shielding member and worm-etched. Alternatively, the layer 5 9 e can be etched and the reflective electrode 61 can be patterned by etching. As mentioned above, in this example, the reflective electrode 61 made of aluminum is not directly connected to the transmissive electrode 58a made of ITO. According to this, when the LCD device is completed -89- ) A4 size (210 X 297 mm)

Order

k 482917 A7 B7 五、發明説明(87 ) 可避免銘與I T 0之間之電腐蝕,並可避免電腐蝕所致之故 障,因而改吾了穩定性。再者,製程期間亦可防止電腐 蝕,因為透過電極5 8 a在反射電極6 1製圖時並未曝露於蝕刻 劑。 (範例1 〇) 本發明第十範例中之一 L C D裝置將說明之。 第十範例中之L C D裝置不同於第七、八範例所示[c 〇裝 置之處在於透過電極5以與11^ 57之結構以及製成接觸孔 63之步驟。 圖28A至28C係對應於圖25,其以截面圖說明一種製造 第十範例所示L C D裝置之方法。 直到一欲製成半導體接觸層56a、56b之層製成為止之製 程係如弟T?、七範例所示者進行。 如圖28A所示,一光線透過導電層與一金屬層係依序製 成,金屬層利用光石版印刷製圖,藉此製成源線5 9 &amp;之上半 部、源極59b之上半部、汲極59(:之上半部、連接金屬層 :&gt;9d、及做為區域τ之金屬層59e,隨後光線透過導電層製 成圖案且相同於源線59a、源極59b上半部 '汲極59〇上半 部、連接金屬層59d、及金屬層59e之圖案,由此製成源線 下半部、源極58b下半部、汲極58c下半部、及透過電極 58a。 由上述可知,源線、源極及汲極具有雙層式結構,即使當 斷接或任意其他故障發生於該二層之—者時,一正常訊號 即傳送通過另一層,以利取得正常之顯示。 -90-k 482917 A7 B7 V. Description of the invention (87) The electrical corrosion between the inscription and I T 0 can be avoided, and the failure caused by the electrical corrosion can be avoided, thus improving the stability. Furthermore, electrical corrosion can also be prevented during the manufacturing process because the transmissive electrode 5 8 a is not exposed to the etchant when the reflective electrode 61 is patterned. (Example 1) An LCD device of the tenth example of the present invention will be described. The LC device in the tenth example is different from that shown in the seventh and eighth examples. [C0] The device is configured to pass through the electrode 5 with a structure of 11 ^ 57 and a step of forming a contact hole 63. Figs. 28A to 28C correspond to Fig. 25 and illustrate a method of manufacturing the LC D device shown in the tenth example in a sectional view. The process until a layer to be formed into the semiconductor contact layers 56a, 56b is performed as shown in the example T7, the seventh example. As shown in FIG. 28A, a light is sequentially transmitted through a conductive layer and a metal layer, and the metal layer is patterned by light lithography, thereby forming the upper half of the source line 5 9 &amp; and the upper half of the source 59b. Part, drain 59 (: upper half, connection metal layer:> 9d, and metal layer 59e as area τ, and then light is patterned through the conductive layer and is the same as source line 59a and source 59b upper half Pattern of the upper half of the drain 59, the connection metal layer 59d, and the metal layer 59e, thereby forming the lower half of the source line, the lower half of the source 58b, the lower half of the drain 58c, and the transmissive electrode 58a. From the above, it can be known that the source line, source, and drain have a double-layer structure. Even when a disconnection or any other fault occurs in one of the two layers, a normal signal is transmitted through the other layer in order to obtain normality. Display. -90-

A7 B7 五、發明説明(88 ) 在此範例中,光線透過導電層係*IT〇製成而由金屬層由 一含Μ材料製成,光線透過導電層可依序自金屬層姓刻, 以利用一分離之遮光件以於金屬層之遮光件去除後蝕刻 之。 其次’姓刻係利用源極5 9 b / 5 8 b及汲極5 9 c / 5 8 c做為遮光 件而進行之,藉以製成半導體接觸層56a、5 6b,由此完成 TFT 57 〇 其後’製成層間絕緣層6 0,接觸孔63、亦製成以及區域 T中一部份之層間絕緣層6 〇利用光石版印刷去除,在同一步 驟中’區域R中之層間絕緣層60表面製成波狀以利散射入射 光線。在表面上,一鋁層或一含銘合金層製成。在此範例 中之層間絕緣層60係由一單一有機樹脂層製成,但是亦可 由複數不同材料層製成,層間絕緣層60之表面不需呈波 形。 如圖2 8 B所示,鋁或含鋁合金層係利用光石版印刷製成, 藉此製成反射電極6 1。 如圖2 8 C所示,隨後區域τ中之層5 9 e係由光石版印刷局 部或全部地去除,或以反射電極6 1做為一遮光件而加以蝕 刻。另者,層5 9 e可用蝕刻而反射電極6 1利用蝕刻製圖。 如上所述,在此範例中由鋁製成之反射電極6丨並非直接 接於由ITO製成之透過電極58a,據此,當LCD裝置完成後 可避免鋁與I Τ Ο之間之電腐蝕,並可避免電腐蝕所致之故 障,因而改善了穩定性。再者,製程期間亦可防止電腐 蝕,因為透過電極5 8 a在反射電極6 1製圖時並未曝露於蝕刻 -91 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) A7 B7 五、發明説明(89 ) ^此外由於像素電極(透過電極5 8 a)係與其他線及電極 在同一步驟中製成,因此製造方法得以簡化。 、在此範例中,像素電極(透過電極58a)係以相同於源線及 汲極之步驟製成,但是亦可在相同於閘線及閘極之步驟中 製成。為了替代透過電極5 8 a,反射電極可以相同於其他線 *與電極之步驟製成。 (範例1 1) 本發明第十一範例中之一 LCD裝置將說明之,同時說明 一終端段結構及其製法。A7 B7 V. Description of the invention (88) In this example, the light is transmitted through the conductive layer system * IT〇 and the metal layer is made of an M-containing material. The light through the conductive layer can be carved from the metal layer name in order. A separate light shielding member is used to etch the metal layer after the light shielding member is removed. Secondly, the surname engraving is performed by using the source electrode 5 9 b / 5 8 b and the drain electrode 5 9 c / 5 8 c as light shielding members, thereby forming semiconductor contact layers 56a, 5 6b, thereby completing the TFT 57. Thereafter, the interlayer insulating layer 60, the contact hole 63, and a part of the interlayer insulating layer 60 in the region T are also made, and removed by light lithography. In the same step, the interlayer insulating layer 60 in the region R is removed. The surface is made wavy to facilitate scattering of incident light. On the surface, a layer of aluminum or an alloy containing an alloy is made. In this example, the interlayer insulating layer 60 is made of a single organic resin layer, but it can also be made of a plurality of different material layers. The surface of the interlayer insulating layer 60 need not be wavy. As shown in FIG. 2B, the aluminum or aluminum alloy-containing layer is made by light lithography, thereby forming the reflective electrode 61. As shown in FIG. 2C, the layer 5 9e in the subsequent region τ is partially or completely removed by the light lithographic printing, or the reflective electrode 61 is etched as a light shielding member. Alternatively, the layer 5 9 e can be etched and the reflective electrode 61 can be patterned by etching. As mentioned above, in this example, the reflective electrode 6 made of aluminum is not directly connected to the transmissive electrode 58a made of ITO. According to this, when the LCD device is completed, electrical corrosion between aluminum and ITO can be avoided. And can avoid the failure caused by electric corrosion, thus improving the stability. In addition, electrical corrosion can be prevented during the manufacturing process, because the transmission electrode 5 8 a is not exposed to etching when the reflective electrode 6 1 is drawn -91-This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) ) A7 B7 V. Description of the invention (89) ^ In addition, since the pixel electrode (transmitting electrode 5 8 a) is made in the same step as other wires and electrodes, the manufacturing method is simplified. In this example, the pixel electrode (transmitting electrode 58a) is made in the same steps as the source line and the drain, but it can also be made in the same steps as the gate line and the gate. In order to replace the transmissive electrode 5 8 a, the reflective electrode may be made in the same steps as other wires * and electrodes. (Example 1 1) An LCD device in an eleventh example of the present invention will be described, and a terminal segment structure and a manufacturing method thereof will be described.

第十一範例中之LCD裝置不同於第六至十範例所示LCD 裝置之處在於透過電極5 8 a係在相同於閘極與閘線之步驟中 提供。 圖29A至29C係以截面圖說明一種製造第十一範例中 L C D裝置之方法,特別是L C D裝置之主動陣列基材及終端 段。圖2 9 A對應於圖2 5,其揭示L C D裝置之一顯示段結 構’圖3 0係第十一範例中之L C D裝置平面圖,圖2 9 B係沿 圖30之29B-29B’線所取之LCD裝置截面圖,其揭示一閘 終端段之終端結構,圖2 9 C係沿圖3 0之2 9 C - 2 9 C ’線所取之 L C D裝置截面圖,其揭示一源終端段之終端結構。 如圖2 9 A所示,TFT 5 7係設於絕緣板5 1上,透過電極5 8 a 則設在相同於TFT 57閘極5 2與閘線(圖中未示)之層中。汲 極5 9 c係經過層間絕緣層6 0中之接觸孔6 3以連接於反射電 極6 1,且亦經過閘絕緣層5 4中所設之一接觸孔6 3以連接於 透過電極5 8 a。 -92- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 482917 A7 ________ B7 五、發明説明(9Q ) 根據此一結構’在透過電極5 8a製成後但是在反射電極61 完全製成於與透過電極58a相同之像素區内前,至少透過電 極5 8 a係覆以閘、纟巴緣層5 4,因此,由於電極5 8 a與6 1之間之 電位差所致之電腐姓生成即可避免。 在圖29B、29C所示之閘與源終端段中,與透過電極58a 製成於相同層之一閘線(7 〇、5 3 )及一源線7丨亦覆以閘絕緣 層5 4及層間絕緣層6 0,據此,閘線(7 〇、5 3 )與源線7 1皆覆 以絕緣層’直到反射電極6丨完全形成於層間絕緣層6 1上為 止’因此可避免不同材料製成之閘線7 〇 + 5 3 /源線7丨與反射 電極6 1之間電腐蝕。 請參閱圖31A至3 1E及32A至32C,一種用於製造第十一 範例中L C D裝置之方法將相關於顯示段而說明之。 如圖3 1 A所示,一光線透過導電層利用光石版印刷而製圖 於絕緣板5 1上,藉以製成透過電極5 8 a,在此範例中,絕緣 板係由玻璃製成,而透過電極58&amp;由1丁0製成。 隨後閘極5 2與閘線(圖中未示)利用製成一層於絕緣板5 i 上及以光石版印刷將該層製出圖案而形成,閘極5 2與閘線 在此範例中係以一含Is材料製成,但是亦可由其他導電材 料製成,例如鋁、鉻、鉬、鎢、銅或鈦。 閘極5 2與閘線可在透過電極5 8 a之前製成。 如圖3 1B所示,隨後氮化矽(SiNx)之閘絕緣層54、a-So 之半導體層55、及用於半導體接觸層56a、56b之一 P摻雜 n + -a-So層依序以CVD製成,以及以光石版印刷製圖。 接觸孔6 3係設於閘絕緣層5 4中,以令隨後製成之透過電 -93- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 482917 A7 B7 五、發明説明(91 ~~~ 極5 8 a及汲極5 9 c相互導通。 在閘終端(如圖2 9 B )上及在閘與源終端段中之源終端(如 圖2 9 C )上之閘絕緣層5 4可在相同步驟中去除。 其次,如圖3 1 C所示,一導電層製成及以光石版印刷製 圖’藉以製成源線5 9 a、源極5 9 b及汲極5 9 c,在此範例中 之導電層係由一含络材料製成,但是亦可由其他導電材料 製成,例如銘、鉬、is、鎮、銅或鈥。 隨後使用源極5 9 b與汲極5 9 c以進行蝕刻,藉此製成半導 體接觸層56a、56b,由此完成TFT 57。 如圖31B所示,層間絕緣層60製成且接觸孔63利用光石 版印刷而I成於層間、纟巴緣層6 〇内,區域τ中之一部份層間絕 緣層60並未在此步驟中去除,但是在反射電極61製成後去 除。 如圖3 1 E所示,層間絕緣層60之表面利用光石版印刷而 製成波形。 層間絕緣層60在此範例中係由一單層有機樹脂材料製 成,但是亦可由複數層不同材料製成,層間絕緣層6 〇之表 面不需呈波形。 如圖32A所示,隨後一具有較高反射率之導電層形成於層 間絕緣層6 0之表面上。 ^ 如圖32B所示,導電層利用光石版印刷製圖,藉以製成反 射電極6 1,反射電極6 1至少不形成於區域τ中。 如圖3 2 C所示,隨後在區域T中之層間絕緣層6 〇部份係去 除之,而區域τ中之一部份閘絕緣層54亦去除,絕緣層 -94-The LCD device in the eleventh example is different from the LCD devices shown in the sixth to tenth examples in that the transmission electrode 5 8 a is provided in the same steps as the gate and the gate line. 29A to 29C are cross-sectional views illustrating a method for manufacturing an LCD device in the eleventh example, particularly an active array substrate and a terminal section of the LCD device. FIG. 2A corresponds to FIG. 25, which reveals the structure of one display segment of the LCD device. FIG. 30 is a plan view of the LCD device in the eleventh example, and FIG. 2B is taken along line 29B-29B of FIG. 30. A cross-sectional view of an LCD device, which reveals the terminal structure of a gate terminal section. Figure 2 9C is a cross-sectional view of an LCD device taken along the line 2 9 C-2 9 C 'in Figure 30, which reveals a source terminal section. Terminal structure. As shown in FIG. 2A, the TFT 57 is disposed on the insulating plate 51, and the transmission electrode 5 8a is disposed in the same layer as the TFT 57 gate 52 and the gate line (not shown). The drain electrode 5 9 c is connected to the reflective electrode 6 1 through the contact hole 6 3 in the interlayer insulating layer 60 and also connected to the transmission electrode 5 8 through one of the contact holes 6 3 provided in the gate insulating layer 5 4. a. -92- This paper size applies Chinese National Standard (CNS) A4 (210 X 297 mm) 482917 A7 ________ B7 V. Description of the invention (9Q) According to this structure 'after the transmission electrode 5 8a is made but at the reflective electrode 61 is completely made in the same pixel area as the transmissive electrode 58a, at least the transmissive electrode 5 8 a is covered with a gate and sloping edge layer 5 4. Therefore, due to the potential difference between the electrodes 5 8 a and 61 1 The generation of electro-corrupted surnames can be avoided. In the gate and source terminal sections shown in FIGS. 29B and 29C, one gate line (70, 5 3) and one source line 7 丨 are made on the same layer as the transmission electrode 58a, and are also covered with a gate insulation layer 5 4 and The interlayer insulating layer 60, according to which, the gate lines (70, 53) and the source line 71 are covered with an insulating layer 'until the reflective electrode 6 丨 is completely formed on the interlayer insulating layer 61', so different materials can be avoided The fabricated gate line 7 0+ 5 3 / source line 7 丨 and the reflective electrode 61 are electrically corroded. Please refer to FIGS. 31A to 31E and 32A to 32C. A method for manufacturing the LCD device in the eleventh example will be described in relation to the display section. As shown in FIG. 3A, a light is transmitted through the conductive layer and is patterned on the insulating plate 51 using light lithography to form a transmitting electrode 5 8a. In this example, the insulating plate is made of glass and transmitted. The electrode 58 is made of 1 to 0. The gate 5 2 and the gate line (not shown) are formed by forming a layer on the insulating plate 5 i and patterning the layer with a light lithographic printing. The gate 5 2 and the gate line are in this example. Made of an Is-containing material, but can also be made of other conductive materials, such as aluminum, chromium, molybdenum, tungsten, copper or titanium. The gate electrode 5 2 and the gate wire can be made before passing through the electrode 5 8 a. As shown in FIG. 3B, the gate insulating layer 54 of silicon nitride (SiNx), the semiconductor layer 55 of a-So, and the P-doped n + -a-So layer for one of the semiconductor contact layers 56a and 56b depend on The sequence is made by CVD, and the drawing is made by light lithography. The contact hole 6 3 is provided in the gate insulating layer 5 4 so that the subsequent transmission of electricity -93- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 482917 A7 B7 V. Invention Explanation (91 ~~~ The pole 5 8 a and the drain electrode 5 9 c are connected to each other. On the gate terminal (as shown in Figure 2 9 B) and on the source terminal (see Figure 2 9 C) in the gate and source terminal section. The gate insulation layer 54 can be removed in the same step. Secondly, as shown in FIG. 3C, a conductive layer is made and printed with a light lithography to make source lines 5 9 a, source electrodes 5 9 b, and drains. Electrode 5 9 c, the conductive layer in this example is made of a complex material, but it can also be made of other conductive materials, such as Ming, Mo, Is, Town, Copper or “. Source 5 9 b And the drain electrode 5 9 c to be etched, thereby forming semiconductor contact layers 56a and 56b, thereby completing the TFT 57. As shown in FIG. 31B, the interlayer insulating layer 60 is made and the contact holes 63 are formed by light lithography. A part of the interlayer insulating layer 60 in the region τ in the interlayer and the sloping edge layer 60 is not removed in this step, but is removed after the reflective electrode 61 is made. As shown in 3 1 E, the surface of the interlayer insulating layer 60 is made into a wave shape by light lithography. In this example, the interlayer insulating layer 60 is made of a single layer of organic resin material, but it can also be made of multiple layers of different materials. The surface of the interlayer insulating layer 60 does not need to have a waveform. As shown in FIG. 32A, a conductive layer having a higher reflectivity is then formed on the surface of the interlayer insulating layer 60. ^ As shown in FIG. 32B, the conductive layer uses light stone Printing and drawing are used to make the reflective electrode 61, and the reflective electrode 61 is not formed at least in the area τ. As shown in FIG. A part of the gate insulating layer 54 in the region τ is also removed, and the insulating layer -94-

482917 A7 B7 五、發明説明(92 54、60二者最好自區域τ去除,因為其會不必要地導致一 電壓降,使得無足夠電壓送到液晶材料,特別是當一電壓 由相互導通之透過電極5 8 a及反射電極6 1施加通過液晶材料 時’區域T中之絕緣層即於施加過區域τ與區域R中液晶材 料之電壓之間造成一差異。 依此’圖2 9 A所示之主動陣列基材即完成。 一配列層製成於主動陣列基材上,且在必要時對配列層施 加配列處理,然後主動陣列基材併合於一逆電極。一液晶 材料注入基材間之間隙内,因而完成第十一範例中之L c d 裝置。 參閱圖3 3 A至3 3 F,一種用於製成閘終端段之方法將說明 之,閘終端段可在相同於顯示段之步騾中製成。 如圖3 3 A所示’做為閘線底層7 〇之一光線透過導電層係 形成於絕緣板5 1上,在同一步驟中,透過電極5 8 a (如圖 3 la)係製成於顯示段中,閘線之一頂層53則製成於底層7〇 上’因此’閘線之底層7 〇及頂層5 3係相互導通(對應於圖 3 1 A之步驟)。 如圖3 3 B所示,閘絕緣層5 4係製成於閘線及閘終端上(對 應於圖3 1 B之步驟),閘終端上之一部份閘絕緣層5 4在此步 驟中並未去除,而在稍後去除。 隨後TFT 57在顯示段中完成(如圖3 i c)。 如圖3 3 C所示,層間絕緣層6 〇係製成於閘絕緣層5 4上(對 應於圖3 1 D之步驟)。 如圖3 3 D所示,一使用於反射電極6 i之導電層係製成於 -95- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 482917 A7 _______Β7 五、發明説明(93~^ &quot; 層間絕緣層6 0上(對應於圖3 2 A之步驟)。 如圖3 3 E所示,導電層係經製圖以形成反射電極6丨(如圖 32B)於顯示段中,據此,閘終端段中之一部份導電層即去 除之。 如圖33F所示,設於閘終端上之一部份閘絕緣層54及一部 份層間絕緣層6 0係去除之,在同一步驟中,區域τ中之部份 閘絕緣層54及層間絕緣層6〇係在顯示段中去除(如圖 32C)。 如上所述,在閘終端段中以及在顯示段中,終端及閘線係 覆以閘絕緣層54與層間絕緣層60 ,直到反射電極61完全製 成,因此,不同材料製成之閘終端/閘線及反射電極61之間 之電腐蝕即得以避免。 源終端段(如圖29C)可用相同於顯示段中之步驟方式製 成,因而避免電腐I虫。 在顯示段中,若閘極5 2與閘線在透過電極5 8 a之前製成, 則可有效避免電腐蝕。圖3 4 A揭示依此方式製成之閘終端 截面圖,而圖34B揭示依此方式製成之源終端截面圖,閘線 與源一者皆具有由一閘或源材料與一透過材料製成之雙層 式結構。 在此結構中,閘與源線係覆以至少一閘絕緣層,直到反射 電極完全製成,因而可有效避免電腐蝕。 (範例1 2) 在圖3 1 C所示之步驟後,圖3 5 a至3 5 C中之步驟可交替使 用,在此方法中可有效避免電腐蝕。 -96- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 482917 A7 _______B7 五、發明説明(94 ) ^~' '' 如圖3 5 A所示,層間絕緣層6 〇製成且接觸孔6 3利用光石 版印刷而製成於層間絕緣層6 〇中,在同一步驟中,區域τ中 之一部份層間絕緣層6 0去除之,層間絕緣層6 〇之表面製成 波形。 其次如圖3 5B所示,一導電層製成於層間絕緣層6〇表面 如圖3 5 C所示,導電層製出圖案以利去除其位於區域τ中 之部份,藉此製成反射電極6 1。 依據此一方法,透過電極5 8 a係覆以閘絕緣電極5 4,直到 反射電極61完全製成,因此,以不同材料製成之反射電極 6 1與透過電極5 8 a之間之電腐姓可有效地避免。惟,透過電 極5 8a在此方法中僅以閘絕緣層54覆蓋,據此,圖31A至 3 1 E及3 2 A至3 2 C所述之方法係較有效於防止電腐蝕。 由於區域T中之部份層間絕緣層6 〇係在相同於製成接觸孔 63之步驟中去除,相較於圖31A至31E及32A至32C之方法 則其可減少步驟數量。 (範例1 3 ) 以下說明一種依據本發明而在一透過與反射型Lcd裝置 中用於匹配反射區與透過區中光電特徵之電極結構,有二 種方法可匹配反射區及透過區之光電特徵(即電壓-亮度特 徵),依據其中一種方法,反射區中之液晶層厚度係自透過 區中之液晶厚度變化,依據另一種方法,不同之電壓值施 加過反射區與透過區中之液晶層。 第方法係參考圖3 6說明,圖3 6簡示本發明l c d裝置之 -97- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 482917 A7 —- _B7五、發明説明(95 ) 一像素區截面圖,LCD裝置包含一含有一濾、色層與一透過 電極(逆電極)之逆基材、含有一反射區9〇R與一透過區9〇T 之另一基材 '及一介設於二基材之間之液晶層。透明之電 極係設於液晶層之附近,而濾色層則相關於液晶層而設於 透明電極外側,反射區9 0 R與透過區9 Ο T皆設於液晶層附 近’毋需多言,濾色件可省略之。 反射區90R包括一透過電極78(如ITO)、一反射層79(如 銘)、及一透明之層間絕緣層8 〇 (如聚合樹脂)設於反射層7 9 上’透過區90T包括透過電極78。反射區90R中之液晶層 厚度dr及透過區90T中之液晶厚度dt藉由改變各區中之層間 絕緣層8 0厚度,而可獨立地調整。 用於在透過區中顯示之光線係透過一次通過厚度dt之液晶 層’而用於在反射區中顯示之光線則透過二次通過厚度d Γ 之液晶層。為了將反射區中液晶層所致之阻滯匹配於透過 區中液晶層所致之阻滯,厚度dt及dr最好設定為dt = 2 dr之 關係’惟,為了在反射區中顯示,以虛線表示入射於反射 層7 9上之光線亦採用,因此,d t &gt; 2 d r之關係為較佳。 第二種方法將參考圖37A、37B、38A、38B說明之,圖 3 7 A係本發明L CD裝置之一像素區截面圖,圖3 7 B係一圖 表,說明圖37A所示之LCD裝置之光電特徵。 如圖37A所示,LCD裝置包括一含有一透過電極(逆電極) 之逆基材、含有一反射區90R與一透過區9〇τ之另一基材、 及一介設於基材之間之液晶層,逆電極係設於液晶層附 近,且反射區9 0 R與透過區9 Ο T設於液晶層附近。 -98- ^紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) &quot; &quot; 4482917 A7 B7 V. Description of the invention (92 54 and 60 are best removed from the region τ, because it will cause a voltage drop unnecessarily, so that no sufficient voltage is sent to the liquid crystal material, especially when a voltage is turned on by each other When the transmissive electrode 5 8 a and the reflective electrode 61 are applied through the liquid crystal material, the insulating layer in the region T causes a difference between the applied voltage of the region τ and the liquid crystal material in the region R. Accordingly, FIG. 2 9A The active array substrate shown is completed. A aligning layer is made on the active array substrate, and when necessary, the aligning layer is arranged, and then the active array substrate is merged with a counter electrode. A liquid crystal material is injected between the substrates. Within the gap, the L cd device in the eleventh example is completed. See Figures 3 A to 3 3 F. A method for making the gate terminal section will be explained. The gate terminal section can be the same as the display section. As shown in Fig. 3 3A, as one of the bottom layer of the gate wire 70, one of the light passes through the conductive layer and is formed on the insulating plate 51. In the same step, the electrode 5 8a (see Fig. 3) la) is made in the display section, one of the brake lines The layer 53 is made on the bottom layer 70, so the bottom layer 70 of the gate line and the top layer 5 3 are electrically connected to each other (corresponding to the step in FIG. 3A). As shown in FIG. 3B, the gate insulation layer 5 4 It is made on the gate line and the gate terminal (corresponding to the step of Fig. 3 1B), a part of the gate insulation layer 5 4 on the gate terminal is not removed in this step, but is removed later. TFT 57 Completed in the display section (as shown in Fig. 3 ic). As shown in Fig. 3 3C, the interlayer insulating layer 60 is made on the gate insulating layer 54 (corresponding to the step of Fig. 3 1D). As shown in Fig. 3 3 As shown in D, a conductive layer used for the reflective electrode 6 i is made at -95- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 482917 A7 _______ Β7 V. Description of the invention (93 ~ ^ &quot; On the interlayer insulation layer 60 (corresponding to the step of Figure 3 2 A). As shown in Figure 3 3 E, the conductive layer is drawn to form a reflective electrode 6 (Figure 32B) in the display section, according to As a result, a part of the conductive layer in the gate terminal section is removed. As shown in FIG. 33F, a part of the gate insulating layer 54 and a part of the interlayer insulating layer 60 provided on the gate terminal are removed. In addition, in the same step, part of the gate insulating layer 54 and the interlayer insulating layer 60 in the region τ are removed in the display section (as shown in FIG. 32C). As described above, in the gate terminal section and in the display section The terminals and gate lines are covered with gate insulation layer 54 and interlayer insulation layer 60 until the reflective electrode 61 is completely made. Therefore, electrical corrosion between gate terminals / gate lines and reflective electrode 61 made of different materials can be avoided The source terminal segment (as shown in Figure 29C) can be made in the same way as in the display segment, thus avoiding electric rot. In the display section, if the gate electrode 5 2 and the gate wire are made before passing through the electrode 5 8 a, electrical corrosion can be effectively avoided. Figure 3 4 A reveals a cross-sectional view of a gate terminal made in this way, and Figure 34B reveals a cross-sectional view of a source terminal made in this way. Both the gate line and the source have a gate or source material and a transmission material. Into a double-layer structure. In this structure, the gate and the source line are covered with at least one gate insulation layer until the reflective electrode is completely made, so that electric corrosion can be effectively avoided. (Example 1 2) After the steps shown in FIG. 3 1 C, the steps in FIGS. 3 5 a to 3 5 C can be used alternately, and electrical corrosion can be effectively avoided in this method. -96- This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) 482917 A7 _______B7 V. Description of the invention (94) ^ ~ '' 'As shown in Figure 3 5 A, the interlayer insulation layer 6 〇 The contact hole 63 is made in the interlayer insulating layer 60 using light lithography. In the same step, a part of the interlayer insulating layer 60 in the region τ is removed, and the surface of the interlayer insulating layer 60 is made. Into a waveform. Secondly, as shown in FIG. 3B, a conductive layer is formed on the surface of the interlayer insulating layer 60. As shown in FIG. 3C, the conductive layer is patterned to facilitate the removal of its portion in the region τ, thereby forming a reflection. Electrode 6 1. According to this method, the transmission electrode 5 8 a is covered with the gate insulation electrode 5 4 until the reflection electrode 61 is completely made. Therefore, the electric corrosion between the reflection electrode 61 and the transmission electrode 5 8 a made of different materials is performed. Last names can be effectively avoided. However, in this method, the electrode 5 8a is covered only by the gate insulating layer 54. According to this, the methods described in FIGS. 31A to 3 1 E and 3 2 A to 3 2 C are more effective in preventing electrical corrosion. Since a part of the interlayer insulating layer 60 in the region T is removed in the same step as that of forming the contact hole 63, it can reduce the number of steps compared to the methods of FIGS. 31A to 31E and 32A to 32C. (Example 1 3) The following describes an electrode structure for matching the photoelectric characteristics in the reflection region and the transmission region in a transmissive and reflective LCD device according to the present invention. There are two methods for matching the photoelectric characteristics in the reflection region and the transmission region. (Ie, voltage-brightness characteristics). According to one of the methods, the thickness of the liquid crystal layer in the reflection area is changed from the thickness of the liquid crystal in the transmission area. According to another method, different voltage values are applied to the liquid crystal layer in the reflection area and the transmission area. . The method is explained with reference to FIG. 36, which schematically illustrates the LCD device of the present invention. -97- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 482917 A7 —- _B7 V. Description of the invention (95) A cross-sectional view of a pixel region. An LCD device includes an inverse substrate including a filter, a color layer, and a transmissive electrode (reverse electrode), and another substrate including a reflective region 90R and a transmissive region 90T. Material 'and a liquid crystal layer interposed between two substrates. The transparent electrode is located near the liquid crystal layer, and the color filter layer is located outside the transparent electrode in relation to the liquid crystal layer. The reflection region 9 0 R and the transmission region 9 0 T are located near the liquid crystal layer. Needless to say, The color filter can be omitted. The reflection region 90R includes a transmission electrode 78 (such as ITO), a reflection layer 79 (such as Ming), and a transparent interlayer insulating layer 8 (such as a polymer resin) provided on the reflection layer 79. The transmission region 90T includes a transmission electrode 78. The liquid crystal layer thickness dr in the reflection region 90R and the liquid crystal thickness dt in the transmission region 90T can be independently adjusted by changing the thickness of the interlayer insulating layer 80 in each region. The light used for display in the transmissive region is transmitted through the liquid crystal layer of thickness dt once and the light used for display in the reflective region is transmitted through the liquid crystal layer of thickness d Γ. In order to match the retardation caused by the liquid crystal layer in the reflection region with the retardation caused by the liquid crystal layer in the transmission region, the thickness dt and dr should preferably be set to the relationship of dt = 2 dr. However, for display in the reflection region, The dotted line indicates that the light incident on the reflective layer 79 is also used, so the relationship of dt &gt; 2 dr is better. The second method will be described with reference to FIGS. 37A, 37B, 38A, and 38B. FIG. 37A is a cross-sectional view of a pixel region of the L CD device of the present invention, and FIG. 37B is a diagram illustrating the LCD device shown in FIG. 37A. Of photoelectric characteristics. As shown in FIG. 37A, the LCD device includes a reverse substrate including a transmissive electrode (reverse electrode), another substrate including a reflective region 90R and a transmissive region 90t, and a substrate interposed between the substrates. In the liquid crystal layer, the counter electrode is disposed near the liquid crystal layer, and the reflection region 90 R and the transmission region 9 0 T are disposed near the liquid crystal layer. -98- ^ Paper size applies to China National Standard (CNS) A4 (210X297 mm) &quot; &quot; 4

裝 訂Binding

k 482917 A7 ___B7 _ 五、發明説明(96 ) 反射區90R包含一透過電極88(如ITO)、一反射電極(如 銘)、及一透明之層間絕緣層1 〇〇 (如聚合樹脂)設於透過層 8 8上,由於反射電極8 9之厚度小於液晶層之厚度,液晶層 之厚度大致相同於反射區9 0 R與透過區9 0 T中,據此,液晶 層所致之阻滯在反射區9 0 R與透過區9 0 T之間有所不同,結 果反射區90R與透過區90T中之光電特徵係如圖37B般不 同。 此現象將參考圖38A、38B說明之,圖38A簡示LCD裝置 之一像素區截面圖,其不同於圖37A所示LCD裝置之處在 於後者並不包含一層間絕緣層,圖3 8 B係一圖表,說明圖 38A所示LCD裝置之光電特徵。在圖38A所示之LCD裝置 中,液晶層厚度在反射區9 0 R與透過區9 0 T中皆大致相同, 一相同電壓值係在反射區90R與透過區90T中由一透過電極 8 8 a與一反射電極8 9 a施加過液晶層,據此,由液晶層所致 I阻滞係明顯地在反射區9 0 R與透過區9 0 T之間有所不同。 因此,光電特徵在反射模式與透過模式中顯著地不同。 反之,在圖37 A所示之LCD裝置中,電壓係利用透過區 9 0T中之透過電極88經過層間絕緣層1〇〇而施加過液晶層, 層間絕緣層100將電容分離,即使當相同之電壓值由一驅動 電路(圖中未示)供給至透過電極88及反射電極89,施加於 透過區90T中之電壓係小於施加於反射區90R中之電壓。因 此,如圖3 7 B所示,透過模式中之電壓-亮度曲線係朝向較 高電壓變動,及較接近於反射模式中之電壓-亮度曲線,由 此可知,反射模式與透過模式中之電壓-亮度特徵可藉由調 -99- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) -------^ -- 482917 A7 B7 五、發明説明(97 ) 整厚度及/或層間絕緣層100之介電常數而相互匹配。 在透過區與反射區中之液晶層厚度可做調整之結構亦可施 加於圖2 2所示之電極結構。 其他修改方式在不脫離本發明精神範疇下仍可由習於此技 者達成,據此,申請範圍不意侷限於前文說明中,而應做 廣泛之解釋。 -100- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)k 482917 A7 ___B7 _ 5. Description of the invention (96) The reflective region 90R includes a transmission electrode 88 (such as ITO), a reflective electrode (such as Ming), and a transparent interlayer insulation layer 100 (such as a polymer resin) provided on On the transmission layer 88, since the thickness of the reflective electrode 89 is smaller than the thickness of the liquid crystal layer, the thickness of the liquid crystal layer is approximately the same as that in the reflection region 9 0 R and the transmission region 9 0 T. According to this, the retardation caused by the liquid crystal layer is in The reflection region 90 R is different from the transmission region 90 T. As a result, the photoelectric characteristics in the reflection region 90R and the transmission region 90T are different as shown in FIG. 37B. This phenomenon will be described with reference to FIGS. 38A and 38B. FIG. 38A is a schematic cross-sectional view of a pixel region of an LCD device, which is different from the LCD device shown in FIG. 37A in that the latter does not include an interlayer insulating layer. A diagram illustrating the photoelectric characteristics of the LCD device shown in FIG. 38A. In the LCD device shown in FIG. 38A, the thickness of the liquid crystal layer is approximately the same in the reflection region 90R and the transmission region 90T. A same voltage value is formed by a transmission electrode 88 in the reflection region 90R and the transmission region 90T. a and a reflective electrode 8 9 a are applied to the liquid crystal layer, and accordingly, the I retardation caused by the liquid crystal layer is significantly different between the reflective region 9 0 R and the transmissive region 9 0 T. Therefore, the photoelectric characteristics are significantly different in the reflection mode and the transmission mode. In contrast, in the LCD device shown in FIG. 37A, the voltage is applied to the liquid crystal layer through the interlayer insulating layer 100 through the transmissive electrode 88 in the transmissive region 90T, and the interlayer insulating layer 100 separates the capacitance, even when the same The voltage value is supplied to the transmissive electrode 88 and the reflective electrode 89 from a driving circuit (not shown). The voltage applied to the transmissive region 90T is smaller than the voltage applied to the reflective region 90R. Therefore, as shown in Figure 3 7B, the voltage-brightness curve in the transmission mode changes toward higher voltages, and is closer to the voltage-brightness curve in the reflection mode. From this, it can be seen that the voltage in the reflection mode and the transmission mode -Brightness characteristics can be adjusted by -99- This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) ------- ^-482917 A7 B7 V. Description of the invention (97) The thickness and / or the dielectric constant of the interlayer insulating layer 100 are matched to each other. A structure in which the thickness of the liquid crystal layer in the transmission region and the reflection region can be adjusted can also be applied to the electrode structure shown in FIG. 22. Other modifications can be made by those skilled in the art without departing from the spirit of the invention. According to this, the scope of the application is not intended to be limited to the foregoing description, but should be explained extensively. -100- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

Claims (1)

482917 A8 B8 C8 D8482917 A8 B8 C8 D8 々、申請專利範圍 1. 一種液晶顯示裝置,包含: 一第一基材; 一第二基材; 一液晶層,係介設於第一基材與第二基材之間; 一第一偏光器,設於與液晶層呈相對立側之第一基材 之一表面上;范围 、 Scope of patent application 1. A liquid crystal display device comprising: a first substrate; a second substrate; a liquid crystal layer interposed between the first substrate and the second substrate; a first polarized light A device disposed on a surface of a first substrate opposite to the liquid crystal layer; 一第二偏光器,設於與液晶層呈相對立側之第二基材 之一表面上; 一第一相位補償元件,設於第一偏光器與液晶層之 間;及 一第二相位補償元件,設於第二偏光器與液晶層之 間; 其中複數像素區係提供用於顯示; 第一基材包括至少一透過電極,且第二基材包括一反 射電極區及一透過電極區,以對應於各像素區。 2. 如申請專利範圍第1項之液晶顯示裝置,其中複數像素 區各具有一反射區以利用反射光線進行顯示及一透過區 以利用透過光線進行顯示,且反射電極區定義反射區及 透過電極區定義透過區。 3. 如申請專利範圍第1項之液晶顯示裝置,其中當液晶層 中之液晶分子之一分子軸線相關於第一、二基材之表面 而大致呈垂直時,則液晶層具有零延緩值,且第一相位 補償元件與第二相位補償元件各具有一延緩值而滿足於 λ /4條件。 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 482917 A8 B8A second polarizer disposed on a surface of a second substrate opposite to the liquid crystal layer; a first phase compensation element disposed between the first polarizer and the liquid crystal layer; and a second phase compensation An element disposed between the second polarizer and the liquid crystal layer; wherein a plurality of pixel regions are provided for display; the first substrate includes at least one transmissive electrode, and the second substrate includes a reflective electrode region and a transmissive electrode region, To correspond to each pixel area. 2. For example, the liquid crystal display device of the first patent application range, wherein each of the plurality of pixel areas has a reflection area for displaying with reflected light and a transmission area for displaying with transmitted light, and the reflection electrode area defines the reflection area and the transmission electrode. A zone defines a pass-through zone. 3. If the liquid crystal display device of the first patent application scope, wherein when one molecular axis of the liquid crystal molecules in the liquid crystal layer is substantially perpendicular to the surfaces of the first and second substrates, the liquid crystal layer has a zero retardation value, In addition, the first phase compensation element and the second phase compensation element each have a delay value and satisfy the λ / 4 condition. This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 482917 A8 B8 4. :申請專利範圍第2項之液晶顯示裝置,其中當液晶層 中〇夜晶分子之-分子騎相關於第―、二基材之表面 而幾乎呈垂直時,則液晶層具有—α延緩值,且第—相 位補償元件具有-延緩值而滿足於λ/4·α條件。 5. 如申請專利範圍第2項之液晶顯示裝置,其中當液晶層 中又液晶分子之一分子軸線相關於第一、二基材之表面 而幾乎呈垂直時,則液晶層具有一 α延緩值,且第一相 位補償元件具有一延緩值而滿足於λ/4_α條件,而第二 相位補償元件具有一延緩值以滿足於又/4_(々_ “)條 件。 # 6·如申請專利範圍第丨項之液晶顯示裝置,其中第一相位 補償元件及第二相位補償元件係各由一 λ/4波板製成, 第一偏光器之一透過軸線與第一相位補償元件形成一大 約4 5度角’且第二偏光器之一透過軸線與第二相位補償 元件形成一大約4 5度角。 7.如申請專利範圍第2項之液晶顯示裝置,其中第二相位 補償元件係由一 λ / 4波板製成,且第二相位補償元件之 一較延緩軸線匹配於透過通過液晶層及入射於第二相位 補償元件上之橢圓形偏光光線之一較長軸線或一較短轴 線其中一者,以利將橢圓形偏光光線轉變成直線偏光光 線,及第二偏光器之一透過軸線係垂直於直線偏光光線 之一偏光轴線。 8· —種液晶顯示裝置,包含: 一第一基材,包含一透過電極; -2- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) A BCD 482917 六、申請專利範圍 一第二基材,包含一反射電極; 一液晶層,係介設於第一基材與第二基材之間,且包 含液晶分子,係呈現負誘電率異方性及當無電壓施加時 大致在垂直方向配列於第一基材與第二基材之表面; 一偏光器,設於與液晶層相對立之第一基材之一表 面;及 一 λ /4波板,設於偏光器與液晶層之間; 其中λ /4波板之一較延緩軸線與偏光器之一透過軸線 形成一大約4 5度角。 9. 如申請專利範圍第8項之液晶顯示裝置,進一步包含一 相位補償元件設於反射電極與偏光器之間。 10. —種液晶顯示裝置,包含: 一第一基材; 一第二基材; 一液晶層,係介設於第一基材與第二基材之間,且包 含液晶分子,係呈現負誘電率異方性及當無電壓施加時 大致在垂直方向配列於第一基材與第二基材之表面; 一第一偏光器,設於與液晶層呈相對立側之第一基材 之一表面上; 一第二偏光器,設於與液晶層呈相對立側之第二基材 之一表面上; 一第一;I /4波板,設於第一偏光器與液晶層之間;及 一第二;I /4波板,設於第二偏光器與液晶層之間; 其中複數像素區係提供用於顯示; -3- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)4 .: The liquid crystal display device of the second scope of the application for a patent, wherein the liquid crystal layer has -α retardation when the -molecular molecules in the liquid crystal layer are almost perpendicular to the surfaces of the first and second substrates. And the first phase compensation element has a retardation value and satisfies the λ / 4 · α condition. 5. If the liquid crystal display device of the second patent application range, wherein when the molecular axis of one of the liquid crystal molecules in the liquid crystal layer is almost perpendicular to the surfaces of the first and second substrates, the liquid crystal layer has an alpha retardation value. And the first phase compensation element has a retardation value to satisfy the λ / 4_α condition, and the second phase compensation element has a retardation value to satisfy the / 4_ (々_ ") condition. # 6 · 如 petition for patent application The liquid crystal display device of item 丨, wherein the first phase compensation element and the second phase compensation element are each made of a λ / 4 wave plate, and one of the first polarizers forms an approximately 4 5 through the axis with the first phase compensation element. 'Degree angle' and one of the second polarizers forms an angle of about 45 degrees with the second phase compensation element through the axis. 7. The liquid crystal display device according to item 2 of the patent application scope, wherein the second phase compensation element consists of a λ / 4 wave plate, and one of the slower axes of the second phase compensation element matches a longer axis or a shorter axis of the elliptical polarized light passing through the liquid crystal layer and incident on the second phase compensation element. One of them is to convert elliptical polarized light into linearly polarized light, and a transmission axis of one of the second polarizers is perpendicular to a polarized axis of linearly polarized light. 8 · —A liquid crystal display device including: A substrate, including a transmissive electrode; -2- This paper size applies to Chinese National Standard (CNS) A4 specification (210 X 297 mm) A BCD 482917 6. Application for a patent A second substrate, including a reflective electrode; A liquid crystal layer is interposed between the first substrate and the second substrate, and contains liquid crystal molecules. The liquid crystal layer exhibits negative anisotropy and is arranged in a vertical direction between the first substrate and the substrate when no voltage is applied. The surface of the second substrate; a polarizer provided on a surface of the first substrate opposite to the liquid crystal layer; and a λ / 4 wave plate provided between the polarizer and the liquid crystal layer; wherein λ / 4 wave One of the plates forms an angle of about 45 degrees with the retarded axis and one of the polarizers through the axis. 9. For example, the liquid crystal display device of the patent application No. 8 further includes a phase compensation element disposed between the reflective electrode and the polarizer. 10. — — A liquid crystal display device includes: a first substrate; a second substrate; and a liquid crystal layer interposed between the first substrate and the second substrate, and including liquid crystal molecules, which exhibit a negative induction of anisotropy. And is arranged on the surface of the first substrate and the second substrate in a vertical direction when no voltage is applied; a first polarizer is disposed on one surface of the first substrate opposite to the liquid crystal layer; A second polarizer disposed on a surface of a second substrate opposite to the liquid crystal layer; a first; an I / 4 wave plate disposed between the first polarizer and the liquid crystal layer; and a first Two; I / 4 wave plate, located between the second polarizer and the liquid crystal layer; where a plurality of pixel areas are provided for display; -3- This paper size applies to China National Standard (CNS) A4 specifications (210 X 297 male) (Centimeter) C8 D8 六、申請專利範圍 第一基材包括至少-透過電極,且第二基材包括-反 射區二-透過電極區’以對應於各像素區,及 乐一及第二Λ/4波板之較延緩軸線係在同一方向,且 與第一、二偏光器之各透過軸線形成一大約45度角。 1L,中請專利範圍第1〇項之液晶顯示裝置,其中複數像素 區各/、有反射區以利用反射光線進行顯示及一透過區 以利用透過光線進行顯示,且反射電極區定義反射區及 透過電極區定義透過區。 12. 如申請專利範圍第1〇項之液晶顯示裝置,進一步包含至 少一相位補償元件設於第一偏光器與第二偏光器之間。 13. 如申請專利範圍第1〇項之液晶顯示裝置,其中液晶層進 一步包含一偏光迴轉摻雜物。 14. 如申請專利範圍第13項之液晶顯示裝置,其中液晶層具 有一大約9 0度之扭轉方向。 15. 如申請專利範圍第!項之液晶顯示裝置,其中第一偏光 器與第二偏光器具有相互垂直之透過軸線,且第一相位 補償元件與第二相位補償元件具有相互垂直之較延緩軸 線。 16·如申請專利範圍第i項之液晶顯示裝置,其中第一相位 補償元件將來自第一偏光器之直線偏光光線轉變成圓形 偏光光線,且第二相位補償元件將來自第二偏光器之直 線偏光光線轉變成圓形偏光光線,液晶顯示裝置進一步 包含一第三相位補償元件設於第一偏光器與液晶層之 間,用於補償第一相位補償元件之折射指數異方性之波 -4- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 482917 A8C8 D8 VI. Patent application scope The first substrate includes at least -transmissive electrode, and the second substrate includes -reflection area -transmission electrode area 'to correspond to each pixel area, and Leyi and the second Λ / 4 wave plate The slower axis is in the same direction, and forms an angle of about 45 degrees with each transmission axis of the first and second polarizers. 1L, the liquid crystal display device with the patent scope item 10, wherein each of the plurality of pixel areas has a reflective area for display using reflected light and a transmission area for display using transmitted light, and the reflective electrode area defines the reflective area and The transmission electrode area defines a transmission area. 12. For example, the liquid crystal display device of the scope of application for patent No. 10, further comprising at least one phase compensation element disposed between the first polarizer and the second polarizer. 13. The liquid crystal display device as claimed in claim 10, wherein the liquid crystal layer further includes a polarization-rotating dopant. 14. The liquid crystal display device as claimed in claim 13, wherein the liquid crystal layer has a twist direction of about 90 degrees. 15. Such as the scope of patent application! In the liquid crystal display device of the item, the first polarizer and the second polarizer have transmission axes perpendicular to each other, and the first phase compensation element and the second phase compensation element have relatively slow axis lines that are perpendicular to each other. 16. The liquid crystal display device according to item i of the application, wherein the first phase compensating element converts linearly polarized light from the first polarizer into circularly polarized light, and the second phase compensating element is from the second polarizer. The linearly polarized light is converted into circularly polarized light. The liquid crystal display device further includes a third phase compensation element disposed between the first polarizer and the liquid crystal layer to compensate for the wave of the anisotropy of the refractive index of the first phase compensation element. 4- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 482917 A8 長依存關係。 17.如申請專利範圍第16項之液晶顯示裝置,其中第三相位 補f元件係一 λ/2波板,且當第一偏光器之一透過軸線 2第三相位補償元件之一較延緩軸線形成一 ^ 1角時, 第一偏光器之透過軸線即與第一相位補償元件之一較延 緩軸線形成一 2 τ* 1 + 4 5度角。 18·如申請專利範園第16項之液晶顯示裝置,進—步包含一 第位補償元件設於第二偏光器與液晶層之間,;於 補償第二相位補償元件之折射指數異方性之波長依存關 係。 19.如申請專利範圍第18項之液晶顯示裝置,其中第四相位 補償元件係-λ/2波板,且當第二偏光器之—透過軸線 與第四相位補償元件之一較延緩軸線形成—^ 2角時, 第二偏光器之透過軸線即與第二相位補償元件之一較延 緩軸線形成一 2 7 2 + 45度角。 又 20·如申請專利範圍第丨8項之液晶顯示裝置,其中第一偏光 器之透過軸線係垂直於第二偏光器之透過軸線,第一相 位補償元件之一較延緩軸線垂直於第二相位補償元件之 較延緩軸線,及第三相位補償元件之一較延緩軸線垂直 於弟四相位補償元件之較延緩軸線。 21· —種液晶顯示裝置,包含: 一第一基材; 一弟一基材,及 一液晶層,係介設於第一基材與第二基材之間; -5- 本紙張尺度通用中國國家標準(CNS) Α4規格(210 X 297公釐)Long dependence. 17. The liquid crystal display device according to claim 16 in which the third phase compensation f element is a λ / 2 wave plate, and when one of the first polarizers passes through the axis 2 and one of the third phase compensation elements slows down the axis When an angle of ^ 1 is formed, the transmission axis of the first polarizer forms a 2 τ * 1 + 4 5 degree angle with a slower axis of one of the first phase compensation elements. 18. · If the liquid crystal display device of the patent application No. 16 is applied, it further includes a first-position compensation element disposed between the second polarizer and the liquid crystal layer, and the refractive index anisotropy of the second phase compensation element is compensated. Wavelength dependence. 19. The liquid crystal display device as claimed in claim 18, wherein the fourth phase compensation element is a -λ / 2 wave plate, and when the transmission axis of the second polarizer and one of the fourth phase compensation elements are delayed, the axis is formed. — 2 angles, the transmission axis of the second polarizer forms a 2 7 2 + 45 degree angle with the slower axis of one of the second phase compensation elements. 20. For example, the liquid crystal display device of the eighth aspect of the patent application, wherein the transmission axis of the first polarizer is perpendicular to the transmission axis of the second polarizer, and one of the first phase compensation elements is perpendicular to the second phase. The slower axis of the compensation element, and the slower axis of one of the third phase compensation elements is perpendicular to the slower axis of the fourth phase compensation element. 21 · —A liquid crystal display device comprising: a first substrate; a substrate and a liquid crystal layer interposed between the first substrate and the second substrate; China National Standard (CNS) Α4 specification (210 X 297 mm) 裝· πLoading · π A8 B8 C8A8 B8 C8 其中複數像素區係提供用於顯示,複數像素區各具有 反射區以利用反射光線進行顯示及一透過區以利用透 過光線進行顯示, 第一基材包含一逆電極設於液晶層附近, 第二基材係在液晶層附近包含複數閘線、垂直於複數 閘線之複數源線、設於複數問線與複數源線相交點附近 I杈數切換元件、具有一高光線透過效率之一第一導電 層及具有一高光線反射效率之一第二導電層,第一導電 層與第二導電層連接於各切換元件,且相互連接及設於 各像素區内。 22·如申請專利範圍第2 1項之液晶顯示裝置,進一步包含一 絕緣層設於第一導電層與第二導電層之間。 23. 如申請專利範圍第2丨項之液晶顯示裝置,其中第二基材 進一f包含一第三導電層,且第一導電層及第二導^層 經由弟二導電層而相互連接。 24. 如申請專利範圍第2 3項之液晶顯示裝置,其中第一導電 層、第二導電層及第三導電層之其中一者係由一相同於 構成複數閘極或複數源極之其中一材料所構成。 25. 如申請專利範圍第22項之液晶顯示裝置,其中絕緣層具 有一波形表面設於第二導電層下方。 ” 26· —種用於製造一液晶顯示裝置之方法,包厶 一第一基材; 一第二基材; 一液晶層,係介設於第一基材與第二基材之間; -6 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)The plurality of pixel areas are provided for display. Each of the plurality of pixel areas has a reflection area for displaying by reflected light and a transmission area for displaying using transmitted light. The first substrate includes a counter electrode disposed near the liquid crystal layer. The base material includes a plurality of gate lines near the liquid crystal layer, a plurality of source lines perpendicular to the plurality of gate lines, an I-number switching element located near the intersection of the plurality of question lines and the plurality of source lines, and has a high light transmission efficiency. The conductive layer and a second conductive layer having a high light reflection efficiency. The first conductive layer and the second conductive layer are connected to each switching element, are connected to each other and are disposed in each pixel region. 22. The liquid crystal display device of claim 21, further comprising an insulating layer disposed between the first conductive layer and the second conductive layer. 23. For the liquid crystal display device according to the second patent application, wherein the second substrate further comprises a third conductive layer, and the first conductive layer and the second conductive layer are connected to each other through the second conductive layer. 24. For the liquid crystal display device of the scope of application for item No. 23, one of the first conductive layer, the second conductive layer and the third conductive layer is the same as one of a plurality of gates or a plurality of source electrodes. Made of materials. 25. The liquid crystal display device as claimed in claim 22, wherein the insulating layer has a wave-shaped surface provided below the second conductive layer. "26 · —A method for manufacturing a liquid crystal display device, including a first substrate; a second substrate; a liquid crystal layer interposed between the first substrate and the second substrate;- 6 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 琴·Qin · A B c D 482917A B c D 482917 ,、中複數像素區係提供用於顯示,複數像素區各具有 一反射區以利用反射光線進行顯示及一透過區以利用透 過光線進行顯示, 第一基材包含一逆電極設於液晶層附近, 第一基材係在液晶層附近包含複數閘線、垂直於複數 閘線之複數源線、設於複數閘線與複數源線相交點附近 之複數切換元件、具有一高光線透過效率之一第一導電 層、具有一高光線反射效率之一第二導電層,第一導電 層與第二導電層連接於各切換元件,且相互連接及設於 各像素區内,及一絕緣層設於第一導電層與第二導電層 之間,該方法包含以下步驟: 製成第一導電層於一板件上; 製成絕緣層至少於第一導電層上; 製成第二導電層於絕緣層上;及 將製成於第一導電層上之第二導電層局部地去除。 2 7 ·如申請專利範圍第2 6項用於製造一液晶顯示裝置之方 法,進一步包含以下步驟: 製成一第三導電層於一連接區上,即於至少第一導電 層上,以利經過第三導電層而相互連接第一導電層與第 二導電層; 製成絕緣層;及 土 V在連接區上局部地去除絕緣層,以利連接第一導 電層與第二導電層。 2 8 ·如申請專利範圍第2 6項用於製造一液晶顯示裝置之方 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)The middle and plural pixel areas are provided for display. Each of the plurality of pixel areas has a reflective area for displaying with reflected light and a transmission area for displaying with transmitted light. The first substrate includes a counter electrode disposed near the liquid crystal layer. The first substrate includes a plurality of gate lines near the liquid crystal layer, a plurality of source lines perpendicular to the plurality of gate lines, a plurality of switching elements disposed near the intersection of the plurality of gate lines and the plurality of source lines, and has one of high light transmission efficiency. A first conductive layer and a second conductive layer having a high light reflection efficiency. The first conductive layer and the second conductive layer are connected to each switching element, are connected to each other and are disposed in each pixel region, and an insulating layer is disposed on Between the first conductive layer and the second conductive layer, the method includes the following steps: making a first conductive layer on a board; making an insulating layer at least on the first conductive layer; making a second conductive layer on the insulation Layer; and partially removing a second conductive layer formed on the first conductive layer. 2 7 · The method for manufacturing a liquid crystal display device according to item 26 of the patent application, further comprising the following steps: forming a third conductive layer on a connection area, that is, on at least the first conductive layer, so as to facilitate The first conductive layer and the second conductive layer are connected to each other through the third conductive layer; an insulating layer is made; and the insulating layer is partially removed on the connection area to facilitate the connection between the first conductive layer and the second conductive layer. 2 8 · If item 26 of the scope of patent application is used to manufacture a liquid crystal display device, the paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 482917 A BCD 六、申請專利範圍 法,其中局部去除絕緣層之步驟包含在第一導電層之一 區域上去除絕緣層之步驟。 29. —種液晶顯示裝置,包含: 液晶層, 於液晶層之兩面各自設置之偏光調變元件及相位差補 償元件;及 進行顯示之多數個像素領域;其特徵為: 上述液晶層之一面上,於上述多數個像素領域各自設 置反射電極領域及透過電極領域, 於面對反射電極領域之第1液晶層及面對透過電極領域 之第2液晶層上,當觀察者方向之阻滯實質上為零時, 自第1及第2液晶層往觀察者方向發射之光的偏光方向係 設定為與觀察者側之偏光調變元件之透過軸正交。 -8- 本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐)482917 A BCD VI. Patent application method, wherein the step of partially removing the insulating layer includes the step of removing the insulating layer on an area of the first conductive layer. 29. A liquid crystal display device comprising: a liquid crystal layer, a polarization modulation element and a phase difference compensation element respectively provided on both sides of the liquid crystal layer; and a plurality of pixel fields for displaying; characterized in that: one surface of the liquid crystal layer In each of the above-mentioned pixel fields, a reflective electrode field and a transmissive electrode field are respectively provided. On the first liquid crystal layer facing the reflective electrode field and the second liquid crystal layer facing the transmissive electrode field, the retardation in the direction of the observer is substantially When it is zero, the polarization direction of light emitted from the first and second liquid crystal layers toward the observer is set to be orthogonal to the transmission axis of the polarization modulation element on the observer side. -8- This paper size applies to China National Standard (CNS) A4 (210 x 297 mm)
TW87121724A 1997-12-26 1998-12-28 Liquid crystal display device TW482917B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP35904797 1997-12-26
JP5312398 1998-03-05
JP14241298 1998-05-25
JP19846498A JP3410665B2 (en) 1997-12-26 1998-07-14 Liquid crystal display
JP19845998A JP3410663B2 (en) 1998-07-14 1998-07-14 Liquid crystal display

Publications (1)

Publication Number Publication Date
TW482917B true TW482917B (en) 2002-04-11

Family

ID=27523062

Family Applications (1)

Application Number Title Priority Date Filing Date
TW87121724A TW482917B (en) 1997-12-26 1998-12-28 Liquid crystal display device

Country Status (1)

Country Link
TW (1) TW482917B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396907B (en) * 2005-07-11 2013-05-21 Fujifilm Corp Phase difference compensation element, and liquid crystal device and projective display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396907B (en) * 2005-07-11 2013-05-21 Fujifilm Corp Phase difference compensation element, and liquid crystal device and projective display device

Similar Documents

Publication Publication Date Title
US7535528B2 (en) Liquid crystal display device
US7417700B2 (en) Optical sheet assembly and liquid crystal display apparatus having the same
US6570634B2 (en) Transflective color LCD device
JP3410666B2 (en) Liquid crystal display
US6961104B2 (en) Transflective liquid crystal display device and fabricating method thereof
US6778238B2 (en) Reflective liquid crystal display device using a cholesteric liquid crystal color filter
TW574564B (en) Liquid crystal display device and electronic apparatus
JP2001305520A (en) Liquid crystal display device and method of manufacturing the same
CN100433115C (en) Liquid crystal display device effective in preventing color irregularity
KR100283275B1 (en) Liquid crystal display device
JP3410665B2 (en) Liquid crystal display
US7663716B2 (en) Liquid crystal display device and electronic apparatus
TW482917B (en) Liquid crystal display device
JP3619506B2 (en) Liquid crystal display
JP3655903B2 (en) Liquid crystal display
JP3655911B2 (en) Liquid crystal display
JP3619518B2 (en) Liquid crystal display
JP2003114428A (en) Liquid crystal display

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees