1360945 九、發明說明 【發明所屬之技術領域】 本發明有關於電子元件的運送用托盤,用以運送具有 複數個引線端之電子元件,以及使用此來製造電子元件的 方法。 【先前技術】 已知有一種運送帶,作爲運送用托盤的例子之一,其 具有工件設定部分用以識別電子元件的位置,將之固定以 圍繞電子部分,且連續地配置至其運送帶;此工件設定部 分在具有複數個引線之電子元件.的轉動方向上設有定位部 分;以及,其設置用以由黏著帶穩固地固定。 再者,根據壓電振動器的運送用托盤之例子(以作爲 運送用托盤的另一例子),設有引線端之氣密端的一末端 係由組裝至運送用托盤之彈簧固定。具有固定之外引線的 運送用托盤經由一加熱步驟、真空步驟以及接合步驟、頻 率調整以及密封操作或其他實施而加以運送和對準。 然而,近幾年,電子元件的各種特性、準確度和可靠 度已隨著電子元件的縮小尺寸而愈顯重要,而習知運送用 托盤具有各種問題。這些問題將以如第3 1圖所示在一方 向上具有複數個引線端之壓電振動器6的製造過程而作爲 —例子,於下述加以說明。 1.多數製造壓電振動器的步驟需要設有引線端之氣密 端1的對準,使得需要改進各個步驟所需的對準準確度以 1360945 * 及滿足所需準確度。 2. 在壓電振動器製造步驟和加熱步驟中,需要藉由待 用於運送用托盤的材料之抗熱性而使得由膨脹線性係數的 差所導致托盤對準誤差變小,且需要使加熱步驟中運送用 托盤或其他製造夾具之間的膨脹線性係數之差變小。 3. 在用於密封金屬製圓柱形底部管狀體之密封管5的 加熱真空室中之步驟,需要避免在真空室中產生由於氣體 之產生所導致的負面影響。 4. 經由複數個用於製造壓電振動器之步驟,需要滿足 抗磨損性,其可以抵抗能重複地執行之製造設備間的對準 操作和運送。 針對製造壓電振動器而言,上述的運送帶具有以下的 問題。 1. 位置準確度:工件設定部分的尺寸係定義爲分別大 於壓電振動器6的長度和寬度約10至100 μπι的量度。然 而,作爲限制工件設定部分的尺寸準確度之起因,引線框 的處理準確度、工件設定部分的撓曲工作準確度以及壓電 振動器6的外部準確度係値得考量的。再者,加入這些複 數個處理公差,工件設定部分的量度必須較大,使得所需 的高準確度得以滿足。 2. 轉動準確度:朝工件設定部分壓製外引線3,壓電 振動器6的位置在轉動方向上被調整。然而,成對的外引 線3彼此自氣密端1突伸的一位置上的距離係爲遠小於壓 電振動器6的外直徑,使得壓電振動器自身並不轉動,係 -6- 1360945 基於當外引線部分3組裝在工件設定部分上且其位置可能 不調整時,成對的外引線3彼此僅由於其自身重量或從下 部部分吸收所產生之力量。再者,外引線3係藉由約數十 克的負載而塑形,使得由於外部力量之外引線3的位置準 確度之調整可以導致外引線3的變形。 3. 處理預先工作的應用:在完成壓電振動器6的步驟 之後,移除操作係在下一步驟中執行,且運送帶的運轉已 完成。使用運送帶的步驟被限制至一且運送帶的應用亦被 限制。 4. 加熱真空步驟的應用:在具有加熱真空室的步驟中 ,黏著帶用來固定壓電振動器6。因此,黏著帶的材料被 限制至一,其並不產生外氣體,且當使用運送帶時存有一 問題。 5 .運送帶上的量測:運送帶的材料係爲金屬,例如: 磷青銅,且金屬板設有由壓製機器或其他的彎曲工件。由 於外引線3係組裝在彎曲之工件設定部分上,量測電子性 質或其他的步驟中需要施加絕緣。 另一方面,在如第32圖所示壓電振動器51的習知運 送用托盤中,外引線3的一端藉由固定用片簧52而固定 ,上述固定用片簧52係黏附至托盤;該托盤經由加熱步 驟和真空室中的步驟而對準;以及接合步驟,執行頻率的 調整和密封操作或其他。此包含以下問題。 1.由於各個外引線3係由上部板和下部板上的固定用 片簧52加以夾住,壓電振動器之對準準確度係依據待夾 1360945 住並用以界定外引線3之位置的夾具之準確度而定。 2. 由於各個外引線3係由上部板和下部板上的固定用 片簧52加以夾住,運送用托盤51的形狀係製成複雜形狀 以支承固定用片簧52,且運送用托盤51係由塑形或其他 的模造法而加以製造》因此,外引線3的位置依據模造之 準確度而定。 3. 由於運送用托盤係由塑形或其他的模造法而加以製 造,存有一問題即爲氣體之產生導致的加熱真空室中所造 成的負面影響。 如上所述,材料輸送設備並不需要另一步驟之對準準 確度,然而,習知運送用托盤並不足夠用於針對藉由使得 位置準確度和轉動準確度較高之使用於複數個處理步驟, 且此包含一問題即爲複數個處理步驟中運送用托盤之功能 的滿足。 【發明內容】 本發明已針對前述問題而考量,且爲了要確保具有在 一方向上之複數個引線端的電子元件之各種特性、準確度 和可靠度,本發明的目的之一在於提供一種對應於高準確 度對準、加熱與真空的一電子元件之運送用托盤,其係爲 製程步驟中各種電子特性之機械加工步驟、加熱步驟和量 測步驟所需,以及提供一種使用此來製造電子元件的方法 〇 爲了要達成上述目的,下述機構爲可用的。 -8- 1360945 在第一發明中,當運送時對準具有在一方向上之複數 個引線端的電子元件之該運送用托盤中,該運送用托盤係 形成爲一矩形薄板的形狀,其在長邊的一邊上具有複數個 切口部分;至少二切口部分係製造爲一對:該切口部分的 寬度約與該電子元件之引線端的直徑相同;以及該對切口 部分之間隔大於該電子元件的寬度。 根據第一發明的組態,該運送用托盤係形成爲一矩形 薄板的形狀,其在長邊的一邊上具有複數個切口部分,以 及至少二切口部分係製造爲一對。藉由將電子元件夾住於 切口部分之間,該切口部分的寬度約與該引線端的直徑相 同,該電子元件被紮住且支承,以避免該電子元件自運送 用托盤移動。' 根據在運送用托盤之一邊上形成複數個切口部分之方 法,該切口部分可以藉由例如使用一般高精確度處理機器 (其可以獲得數微米的機械加工準確度,例如:切割機或 切片機)而輕易地形成。藉由將一方向上的複數個引線端 夾置在切口部分間,以高度準確度來滿足引線端對準所需 的對準準確度是可行的。 該對切口部分之間隔大於該電子元件的寬度,使得藉 由在具有大寬度之位置上調整引線端的轉動角度和其位置 而改進電子元件的轉動角度之準確度是可行的。 接著,由於運送用托盤係形成爲簡單形狀(亦即矩形 薄板),分開的電子元件可以立即共同地且無困難地移動 ’且運送用托盤的附接與拆離可以輕易地達成,且運送用 -9- 1360945 托盤的對準可以輕易地達成且輕易地穩定化。因此,此運 送用托盤適於自動化。再者,藉由從切口部分移除引線端 ,各個運送用托盤可以輕易地互換且可以重覆使用。 在第一發明的組態中之第二發明中,運送用托盤之矩 形薄板的厚度尺寸大於該電子元件的引線端之直徑;以及 該運送用托盤之矩形薄板的厚度尺寸不大於該引線端之直 徑的兩倍。 根據第二發明的組態,運送用托盤之矩形薄板的厚度 尺寸大於該電子元件的引線端之直徑,其具有矩形薄板的 所需強度,且其不大於引線端的直徑之兩倍。因此,厚度 尺寸及引線端的直徑之間的差,對著電子元件之對向方向 的厚度各自不大於引線端直徑之一半。藉此,第二發明適 於需要機械加工作業的製造過程,上述機械加工作業在 電子元件的厚度對向方向上之尺寸約與引線端之直徑相同 0 在第一或第二發明的組態中之第三發明中,該運送用 托盤之矩形薄板的至少一邊角位置之外部形狀係與其他邊_ 角位置的外部形狀不同》 根據第三發明的組態,該運送用托盤之矩形薄板的至 少一邊角位置之外部形狀係與其他邊角位置的外部形狀不 同,使得在對準操作中且在待重複製造之製造設備間運送 電子元件的複數個步驟中,以及針對重複地再使用運送用 托盤之例子而言,確認托盤的方向和姿態是可行的。 在第一至第三發明的任一組態中之第四發明中,對準 -10- 1360945 該電子元件的該運送用托盤之材料係爲陶瓷。 根據第四發明的組態,由於該托盤之材料爲陶瓷,在 複數個切口部分間保持絕緣並維持複數個切口部分的位置 準確度是可行的,且該托盤可用於需要絕緣的步驟。再者 ,由於該托盤係由陶瓷製程,托盤亦較佳用於需要抗熱性 的步驟(其具有數個加熱步驟),以及亦需要抗磨損性之 長時間壓電振動器製造步驟,其可以耐受對準操作且在重 複地執行之製造設備間運送。 在第一至第四發明中之組態的第五發明中,對準該電 子元件的該運送用托盤之材料係爲氧化鉻系統的陶瓷。 根據第五發明的組態,托盤之材料係爲氧化锆系統的 陶瓷,使得藉由減低該托盤和在加熱步驟中的其他製造夾 具之間的線性係數之差,而使線性係數之差所導致之托盤 對準誤差能夠最小是可行的。因此,此托盤較佳用於需要 與在加熱步驟中之製造夾具之相對對準準確度之步驟中。 再者,此托盤係抵抗彎折和碰撞強度的,且其具有良 好表面平滑度。因此,電子元件之自動運送和自動供給的 穩定度可以獲得,且當對準時的穩定度是極佳的,且此托 盤較佳用於小型運送用托盤。 第六發明係爲根據第一至第五發明中的任一發明之使 用運送用托盤來製造電子元件之方法,該電子元件的引線 端形成在該運送用托盤上,該托盤係夾住該電子元件的引 線端。 根據第六發明的方法,藉由在具有高度準確度之運送 -11 - 1360945 用托盤上形成具有改進之電子元件的位置和轉動角度的準 確度之引線端,引線端的形成準確度和穩定度可以獲得。 第六發明中的方法中之第七發明係爲製造電子元件之 方法,其中藉由將一接點端接觸至由該運送用托盤夾住之 該電子元件的複數個引線端而實行一電子測試。 根據第七發明的方法,在電子元件製造步驟中之複數 個引線端的對準係以高度準確度而實行,且本方法較佳用 於同時且共同地量測數個各種電子特性或其他之例子中, 且每一單元的量測係在短時間內實行。 第六發明之方法中之第八發明係爲製造電子元件的方 法,其中由該運送用托盤夾住之該電子元件的複數個引線 端疊置於待接合至該引線端之外部的複數個電極端上,形 成的引線端之位置與準確度被轉寫以使得將該電極端接合 至該引線端。 根據第八發明的方法,藉由由該運送用托盤夾住之該 電子元件的複數個引線端疊置於待接合至該引線端之外部 的複數個電極端上,且將電極端接合至引線端並將形成的 引線端之位置和準確度轉寫,分開的電子元件可以立即共 同地且無困難地運送並移動,且在具有高度準確度之運送 用托盤上的引線端之對準度可以輕易地達成且以高度準確 度而輕易地穩定化。因此,本方法適於自動化。 如上所述,根據本發明,提供一種電子元件之運送用 托盤以確保對應於高準確度的對準、加熱與真空(係爲機 械加工步驟所需)之電子元件的各種特性、準確度及可靠 -12- 1360945 度是可行的,以及具有在一方向上的複數個引線端之電子 元件的製造方法中之各種電子特性的量測步驟,並提供一 種使用此來製造電子元件之方法。 【實施方式】 本發明的實施例將參考圖式而於下述說明。 第一實施例 第1圖係爲流程圖,其簡要地顯示根據本發明第一實 施例的表面組裝型壓電振動器製造方法。爲了要理解此實 施例,下述步驟將說明如下: 1. 壓電振動器準備步驟: 石英片係以壓電材料藉由切割與拋光而形成。將每一 石英片作爲壓電振動器所需的一電極膜係形成在其前表面 與後表面上,以形成一壓電振動片。壓電振動片接合至每 一氣密端而氣密端係黏附至用於壓電振動片的輸送托盤。 輸送托盤係準備用於各自密封於密封管之完成的壓電振動 片。 2. 引線框準備步驟: 準備形成有電極端的引線框,該引線框待接合至壓電 振動器的外引線。 -13- 1360945 3. 將外引線接合至電極端之步驟: 每一壓電振動器的外引線接合至形成有電極端的引線 框。 4. 樹脂膜造步驟: 引線框上的每一壓電振動器使用預設材料的樹脂加以 膜造,以形成表面組裝型壓電振動器。 5. 電極端部分切割步驟: 每一電極端部分插入至溝槽內,且在電極上執行焊錫 。每一電極端部分接著自該引線框切割移離,而留下虛設 端。 6 ·電子測試步驟: 電子接點端與引線框上的每一表面組裝型壓電振動器 相接觸’其與用於電子測試的引線框電性分離》 藉由這些步驟,每一表面組裝型壓電振動器成爲一產 品。 表面組裝型壓電振動器製造方法將於下述針對每一上 述準備步驟而進一步敘述。 壓電振動器準備步驟 第2至5圖顯示槪要透視圖,以說明根據此實施例用 於壓電振動器的輸送托盤之例子,其係用於組裝氣密端。 -14 - 1360945 第2圖係爲槪要透視圖,其顯示整體輸送托盤。第3圖爲 局部放大透視圖,以說明第2圖的輸送托盤之細節。第4 圖係爲局部放大透視圖,其顯示支承在該輸送托盤之矩形 薄板上的氣密端的狀態。第5圖係爲槪要透視圖,其顯示 支承在該輸送托盤上的整體氣密端之狀態。 第6圖亦爲槪要透視圖,以說明壓電振動片配置夾具 與輸送托盤的對準。第7圖係爲槪要透視圖’以說明根據 本發明一實施方式的電子量測。第8圖係爲槪要整體透視 圖,其顯示根據本發明支承在輸送托盤上之壓電振動器的 整體群組。 在壓電振動器製造步驟中,用於壓電振動器(具有黏 附至其上的氣密端1之外引線3)的輸送托盤用於作爲氣 密端1之對準與輸送機構。 如第2圖所示,根據本發明用於壓電振動器的輸送托 盤10約爲矩形薄板之形狀,且具有沿著其長邊的複數個 切口。如第3圖所示,配置成對的至少二切口。切口 11 的寬度A大致等於外引線3的直徑B。切口 11的間隔C 大於氣密端1的外直徑 複數個切口 11使用通用精確處理機器’例如:提供 處理準確度約爲數微米的切割機’以沿著輸送托盤U的 —端而形成。每對外引線3插入至切口以達支承目的’並 藉此達成用於根據本發明之步驟所需之輸送托盤10的高 準確形狀,及複數個切口 11與外引線3的高準確位置。 如第4圖所示,每一外引線3具有略小於每一複數個 1360945 切口 11的寬度之寬度,且被插入至該切口並由例如壓製 適配法或黏附法加以支承。 在此實施例中,輸送托盤10之形狀準確度、用於切 口 11的寬度準確度以及用於切口 11的累加間距準確度係 在5 μιη之內。如第3圖所示之切口 11的寬度A大致等於 外引線3的直徑B。前者之寬度爲0.16 mm,且後者之寬 度爲0.18 mm。一對切口 11之間隔C係爲1.5 mm。氣密 端1的外直徑D係爲1. 1 mm。內引線2之間的間隙E係 爲0.3 mm。一對切口 11的間隔C大於氣密端1的外直徑 D且五倍於內引線2之間的間隙E (即0.3 mm)。此導致 內引線2之轉動角度的準確度被控制爲外引線3之轉動角 度的1/5 。 此確保氣密端1之外引線3與內引線2的位置係相當 精確在輸送托盤1〇中。該準確度係爲由精確處理機器所 提供的高度準確度。 輸送托盤10係由陶瓷材料形成,其可以保持複數個 切口 11之位置準確度以及複數個切口 11之間的電性絕緣 ,因此達成根據此實施例的內引線2之電性分離。該材料 較佳用於量測步驟,用以藉由施加壓電振動片4之驅動電 壓以獲得一預設頻率。 如第5圖所示,輸送托盤10可以輕易地一次完整運 送並移動黏附至其上的個別氣密端1。矩形薄板之簡單形 狀亦有助於輸送托盤10的移除。輸送托盤10易於定位且 易於穩定化並適於根據此實施例的接合步驟之自動化。輸 -16· 1360945 送托盤ίο亦爲抗磨損的,其足以抵抗製造單元間重複之 對準操作與傳送。輸送托盤10可以在加熱期間使用且可 用於真空中。輸送托盤10亦較佳用於製造壓電振動器( 以供用於壓電振動器之輸送托盤10)中複數個步驟。. 如第4圖所示,外引線3具有指向外部的中央部分3a 。外引線3係形成爲具有切口 11之間隔的寬度且插入至 一切口。外引線的轉動角度與托盤中複數個溝槽之高位置 準確度允許外引線形成爲具有一所需彎折。此達成接合步 驟所需中央部分之準確位置。 如上所述,在氣密端1內部的內引線2以高準確度黏 附至如第5圖所示用於壓電振動器之輸送托盤10»如第6 圖所示,輸送托盤10(具有準確地黏附至其上的內引線2 ),以配置夾具12(具有配置於其上的壓電振動片4)加 以對準。內引線2與壓電振動片4相接觸。在加熱後,壓 電振動片4接合至內引線2。 在頻率調整以獲得上述預設頻率的步驟中,用於壓電 振動器(具有黏附至其上的外引線3)的輸送托盤1〇通過 一加熱爐。如第7圖所示,輸送托盤10接著被置放在一 真空室中設有量測端1 3於其上的量測方塊1 4上,且量測 方塊14與壓電振動器的氣密端之外引線3相接觸。驅動 電壓施加至壓電振動片4以重複地獲得用於頻率調整之預 設頻率。密封管5藉由壓製適配法覆蓋至每一氣密端。密 封管5的外直徑係爲1.2 mm。因此,壓電振動片4係氣 密地密封以使在內部形成一真空。如第8圖所示,在壓電 -17- 1360945 振動器準備步驟中,此提供黏附至輸送托盤ίο的完成之 壓電振動器6。 引線框準備步驟 第9至13圖係爲槪要透視圖,其顯示根據此實施例 的表面組裝型壓電振動器之引線框。該引線框具有形成於 其上的電極端與虛設端,其中用於壓電振動器6之外引線 3待接合至其上,以及用以說明該引線框的槪要透視圖。 第14圖係爲槪要透視圖,其顯示具有根據此實施例而由 樹脂模造的表面組裝型壓電振動器之引線框。第1 5圖係 爲槪要透視圖,以說明將外引線接合至引線框之步驟。第 1 6圖係爲槪要透視圖,用以說明根據此實施例的電子測試 之實施方式。 引線框(重要元件之一)係與將於稍後敘述的各個步 驟相當密切關連的,該些步驟包含:將外引線接合至電極 端之步驟、樹脂模造步驟、電極端部分的切割步驟以及電 子測試步驟。引線框準備步驟將於下述詳細說明。 第9圖係爲槪要透視圖,其顯示用於根據本發明之表 面組裝型壓電振動器之引線框20。 在第9圖中,參考數字22說明一側框。成對的側框 22係配置在引線框20上。定位孔21用以運送與定位引線 框20。引線框20在引線框20的縱向方向上具有一或多個 定位孔21。在成對的側框22之間存有分段長條23。分段 長條23在成對的側框22之間橋接,並構成引線框20的 -18· 1360945 架構。定位孔21設於每一成對的分段長條23之間。 第10圖係爲第9圖的引線框之平面視圖。在第10圖 中,框區域26係爲成對的側框22以及在成對的側框22 間橋接的分段長條23所分隔之區域。由側框22與分段長 條23所分隔之框區域26中,存有以預設間隔配置之複數 個第一引線部分24。第一引線部分24自分段長條23延伸 。配置有第一引線部分24的每一間隔略大於表面組裝型 壓電振動器(將於稍後說明)之外部寬度。在相同的框區 域26中,複數個第二引線部分25如同複數個第一引線部 分24以相同之間隔配置。第二引線部分25面向第一引線 部分24且自分段長條23延伸。複數個第一引線部分24 與複數個第二引線部分25皆配置在引線框20上。複數個 第一引線部分24與複數個第二引線部分25在引線框20 的縱向方向上彼此相面向。 根據此實施例的引線框20藉由壓製操作而形成厚度 約爲0.15 mm (舉例而言)的平坦材料之側框22、第一與 第二引線部分24和25,以及在各個元件上執行預設的接 合操作。平坦材料係由導電性材料所製成,例如:含鐵合 金。 由側框22與分段長條23所分隔之框區域26中,僅 配置如第10圖所示的第一與第二引線部分24和25,而不 具有用於個別引線部分的框。框區域26係爲佔據一大區 域的區域,且達成框區域26內最大空間是可行的。 第11圖係爲第10圖的A部分之放大透視圖。在第 -19- 1360945 11圖中,自分段長條23延伸的複數個第一引線部分24 有彼此相連接的相鄰尖部。在結果之尖部連接的中央部 上形成有第一突伸部27。第一突伸部27具有進一步形 的垂直部。第一引線部分24的尖部與位於尖部連接之 央部分上的第一突伸部27經歷後續製程步驟且作爲稍 敘述之用於表面組裝型壓電振動器的虛設端。 自分段長條23延伸的複數個第二引線部分25各自 有形成爲面向第一突伸部27的第二突伸部28。不像複 個第一引線部分24,複數個第二引線部分25各自具有 開形成之相鄰第二突伸部28。第二突伸部28具有進一 形成且如曲柄般彎折的垂直部與水平部。分開形成的相 第二突伸部28經歷後續製程步驟且作爲稍後敘述之用 表面組裝型壓電振動器31的電極端33。 根據此實施例的引線框20將於下述參考第12圖加 說明。第12圖係爲第10圖之引線框20的Β部分之放 透視圖。 如第12圖所示,在具有引線部分間的框區域26之 線框20的縱向方向上,第一引線部分24面向第二引線 分25。在連接第一引線部分24與第二引線部分25的中 之中心線上,複數個貫孔29係各自對應於第一引線部 24與第二引線部分25而形成。貫孔29係設於引線框 之縱向方向上。貫孔29亦設於分段長條23與第一引線 分24錯置處以及分段長條23與第二引線部分25錯置 具 分 成 中 後 具 數 分 步 鄰 於 以 大 引 部 心 分 20 部 處 -20- 1360945 由於具有至少較小於貫孔29之直徑的寬度之 後續電極端部分之切割步驟中以貫孔29作爲端點 割而,複數個貫孔29依前述而預先設置。 假如具有閉合端的一隙縫被切割,切割工具在 上易受一局部負載,其影響切割工具的使用壽命且 連續之隙縫切割操作變爲困難。因此,假如隙縫在 20中的第一引線部分24之尖部的中央部分間被切 置貫孔29。此使得連續切割隙縫且沒有切割工具上 負載是可行的。當說明後續的電極端部分之切割步 隙縫切割操作將於稍後再次地說明。 因此,表面組裝型壓電振動器31典型地具有 長度的1/3至1/5的寬度。如第14圖所示,表面組 電振動器31在引線框20的縱向方向上被導向並橫 框20的寬度而配置。因此,表面組裝型壓電振動署 以高密度地配置在引線框20上的矩陣。 在將電極端33接合至用於根據此實施例的表 型壓電振動器之引線框20上的外引線3之步驟中 1 5圖所示且將於稍後說明,外引線3配置在如引糸 上之電極端33相同的位置。因此,藉由一單對準 托盤1 〇以作爲輸送托盤,複數個外引線3以高密 地對準。外引線3配置在接合電極端33上且被轉 接合之用。因此’外引線3可以高密度且穩定的方 步地接合至引線框20上的電極端33。 在用於根據此實施例之表面組裝型壓電振動器 隙縫在 而被切 閉合端 使達成 引線框 割,設 的局部 驟時, 小於其 裝型壓 越引線 "1可 面組裝 ,如第 良框20 之輸送 度同步 移以供 式而同 的引線 -21 - 1360945 框20之樹脂模造步驟中,如第14圖所示且將於稍後說明 ,腔室藉由一平坦表面而彼此連接。因此’相鄰腔室在側 框22的縱向方向上被導向,且第一與第二引線部分24和 25在側框22的方向上被導向。表面組裝型壓電振動器因 此而以較佳空間效能方式而配置。一滑槽配置在分段長條 23上且包含朝第一引線部分與第二引線部分之間設置的注 入模造部。因此,具有最小長度之線設於每一腔室,且腔 室以最大密度而在具有一最小組態的分段長條23上設置 ,而沒有耗費的框。具有提供最大樹脂使用率的建造之模 鑄件亦在引線框20上設置。 第一與第二引線部分24和25的縱向方向以及腔室係 在側框22的方向上,且壓電振動器配置在分段長條23的 方向上。當習知於側框22的縱向方向上發生模鑄件中央 不對準時,此允許於表面組裝型壓電振動器之不對準非敏 感度方向上所發生的模鑄件中央不對準。在引線框20上 切割第一與第二引線部分的步驟中,倘若可以消除用於表 面組裝型壓電振動器之中央不對準所導致的樹脂碎屑,則 可以提供樹脂模造。 用於根據此實施例的表面組裝型壓電振動器之引線框 20,藉由以貫孔29作爲電極端33部分之切割步驟(將於 稍後說明)中的端點而設置的隙縫30以避免在引線框20 上的Μ曲。這是因爲具有位於其上的一隙縫切口之表面的 擴張被該隙縫30所吸收。 在用於根據此實施例之表面組裝型壓電振動器的引線 -22- 1360945 框20之電子測試步驟中,將於稍後參考第16圖加以說明 ,每一表面組裝型壓電振動器具有雙向端:一端作爲電極 端33且另一端係爲電性完全分離的虛設端32。在整個引 線框20上的高密度矩陣中,表面組裝型壓電振動器可以 配置在具有一最小組態的分段長條23上而沒有耗費的框 〇 如上所述,藉由上述的方法,用於表面組裝型壓電振 動器之引線框20使得符合用以將外引線3接合至電極端 33的步驟中所需的位置準確度、消除樹脂模造步驟中的樹 脂碎屑、藉較高腔室密度而不需複雜的樹脂模造以維持模 造準確度、在切割步驟中消除引線框變形以及在電子測試 步驟中的電子測試量測引線框上之表面組裝型壓電振動器 是可行的。 將外引線與電極端接合的步驟 第15圖爲一般性槪要透視圖,用以說明根據此實施 例的接合步驟。第17與18圖分別爲槪要橫剖面圖與槪要 透視圖,用以說明如第1 5圖所示將外引線3與引線框20 接合之步驟。第19圖係爲槪要透視圖,用以說明依據第 一實施例將外引線3與托盤10分開的步驟。第20圖係爲 槪要透視圖,用以說明根據第一實施例在接合步驟中已完 成的形狀。 如前述引線框準備步驟中,當引線框20的組態被槪 括時,複數個第一引線部分24與複數個第二引線部分25 -23- 1360945 設置在如第12圖所示的框區域26中。第一引線部分24 以適當間隔自分段長條23延伸。第二引線部分25面向第 一引線部分且以相同間隔延伸。第一引線部分24具有相 鄰引線部分,其連接以在中央部分上形成第一突伸部27。 第二引線部分25具有分爲二部分的一尖部,以形成第二 突伸部28。第一突伸部27具有一垂直部,其形成以在隙 縫30切割之後(如第13圖所示且將於稍後說明)部分作 爲用於表面組裝型壓電振動器31的虛設端32。在第二引 線部分25的尖部上之第二突伸部28,其分爲二部分,係 如曲柄般彎折且具有一垂直部與一水平部。第二突伸部28 經歷後續製程步驟且作爲用於表面組裝型壓電振動器31 的電極端33。分段長條23在矩形薄板(作爲輸送托盤10 且作爲配置用於樹脂模造中之滑槽的使用)之寬度上具有 一邊界。與習知引線框相較之下,引線框20相對而言具 有一高強度高剛度而直至如後敘述的隙縫被切割。虛設端 32與電極端33的形狀與位置準確度仍維持。 如第17圖所示,虛設端32具有水平延伸的一部分 32a以及自該部分32a垂直延伸的一部分32b。面向虛設 端32的電極端33具有自引線框20的分段長條23水平延 伸的一部分33a、自水平延伸之該部分33a垂直延伸的一 部分33b,以及自垂直延伸的該部分33b之上端水平延伸 的一部分33c。水平延伸的該部分33a與32a設置作爲下 部電極端33a與32a,其係當樹脂模造之後待連接至安裝 基板上的一外部電極)》 -24- 1360945 在接合步驟中,壓電振動器6配置在框區域26,其係 爲用於表面組裝型壓電振動器31配置在引線框20上的一 空間。壓電振動器6適當地對準且外引線3置於引線框20 上的上部電極端33c上。外引線3與上部電極端33c接著 容納於下部接合電極36。外引線3與上部電極端33c在上 部電極37與下部電極36之間支承且施加電壓以供接合步 驟。 如第1 5圖所示,複數個定位孔21以固定間隔設於引 線框20上的側框22上。引線框20的定位接腳(圖未示 )係設置以使用固定間隔提升在引線框20的定位夾具。 接腳對應至引線框20上的複數個定位孔21。引線框20藉 由將定位接腳插入至引線框20的複數個定位孔21而與側 框22對準。 壓電振動器6接著設置在用於表面組裝型壓電振動器 31配置在引線框20上的框區域26。 爲了理解起見,在用於各自地移動習知壓電振動器6 的方法中,對準用於外引線3的轉動角度、用於與外引線 3之電子連續性的接合點3a以及用於外引線3的一切口末 端的位置是困難的。因此,需要上述三個點的正確對準。 換言之,習知技術存有一些不方便性,即三項對準無 法適當地達成以及無法執行接合。此三項對準包含成對的 二外引線3相對於成對的二上部電極端33c之轉動角度差 ;在上部電極端33c的中央部分、上部電極端33c的接合 點以及彎折的外引線3之間的中央部分3a所需之對準; -25- 1360945 上部電極端3 3c與壓電振動器6的輪廓之間的外引線3之 末端的對準。 在此實施例中,外引線3藉由使用輸送托盤10作爲 對準機構的方法而與引線框20對準,上述輸送托盤10確 保用於壓電振動器6之外引線3的轉動角度以及位置準確 度。 如第15圖所示,用於輸送托盤10的對準基準係設於 引線框20的定位夾具,以安排輸送托盤10與引線框20 的位置。用於輸送托盤10的對準基準係與引線框20上的 定位接腳(圖未示)相同。輸送托盤10上的基準係藉由 使輸送托盤10與輸送托盤10上的定位基準相接觸,而與 引線框20上的相同基準對準。 爲了支承目的,具有插入至其中的外引線3之輸送托 盤10,符合前述壓電振動器準備步驟中所述之適當對準所 需的輸送托盤10之形狀準確度與位置準確度。換言之, 1. 輸送托盤10的形狀準確度係與先前所述精確處理 機器所得的準確度之等級相同,因此確保用於氣密端1的 外引線3之位置準確度。 2. 自第3圖所示的氣密端1突伸之內引線2的間隙E 係小於用於壓電振動器6的氣密端1之外直徑D。與此相 比之下,配置以支承外引線3之切口 1 1的間隔C如前所 述大於氣密端1的外直徑。因此,用於外引線3的轉動角 度以及中央部分3a的位置被調整。 3. 與外引線3相接觸的引線框20具有較高的剛度以 -26· 1360945 對抗變形且爲高度準確的。因此,對準準確度藉由將定位 導引接腳與其他插入至複數個定位孔21以定位引線框20 而獲得。在將外引線3接合至電極端33的步驟中,符合 用以穩固地在外引線3與電極端33之間接合所需的條件 ΰ 4.再者,虛設端32與電極端33以如同壓電振動器6 的方向配置。因此,易於將輸送托盤10與引線框20對準 ,且輸送托盤10較適合用於使用一轉換工具與其他的機 器處理。 如上所述,輸送托盤10可以用於三項對準,其包含 用於外引線3的轉動角度、外引線3之中央部分3a (例如 :用於與外引線3電子連續性的接合點),以及用於外引 線3的端點切割之末端。 可以採用用於將外引線3和壓電振動器6與引線框20 適當地對準的機構,而不需習知用於使用對應至壓電振動 器的圓柱狀側之輻射狀表面的方法之機構。再者,外引線 3的端可藉所需的位置準確度而操縱,其幫助減低表面組 裝型壓電振動器31的縱向方向。 如第15圖所示之用於壓電振動器6的外引線3配置 在輸送托盤10的相同方式,電極端33配置在引線框20 上。因此,由引線框20與輸送托盤10所確保的穩定位置 準確度可被轉移,且接合準備以準確度與穩定情勢而確保 達成。 在上述情形之下,下部接合電極36與用於和壓電振 -27- 1360945 動器6外部的外引線3形成電子連續性之上部電極端33c 之底部相接觸,如第Π與18圖所示。藉由從外引線3上 方而壓製上部接合電極37與下部接合電極36間的一部分 ,以及施加電壓至上部接合電極37與下部接合電極36, 而將外引線3接合至上部電極端33c ^ 如第19圖所示,在外引線3與電極端33接合之後, 外引線3的接合部分以及輸送托盤10間的一部分使用用 於切割目的之雷射單元3 8而以雷射光束3 9照射,用以將 壓電振動器6與輸送托盤10相分離,其已藉由引線框20 與輸送托盤10的接合而倂入至輸送托盤10。 用於壓電振動器6的外引線3適當地與引線框20對 準,且接合至引線框20。藉由將引線框20作爲基準的外 引線3之切割部分接著以用於切割目的之雷射光束39照 射。如第20圖所示,壓電振動器6與輸送托盤10相分離 。外引線3的切割部分在壓電振動器6的縱向尺寸上無偏 差,或在用於含有偏差之外引線3的切割準確度上無偏差 ,且外引線3的端可藉所需位置華確度處理。 將壓電振動器6與引線框20適當地對準之能力亦允 許確實的電性連接以及繞著壓電振動器6之樹脂模造部分 的適當形成》 如上所述,藉由上述的方法,用於成對的二外引線3 相對於上部電極端33c之轉動角度藉由矩形薄板中的複數 個切口 Π而調整。用於外引線3的所需位置準確度係符 合,且用於外引線3的轉動角度以及矩形薄板中的複數個 -28- 1360945 切口 11.可藉高位置準確度而獲得。外引線3可以因此彎 折至所需形狀’並以所需接合點之對準。電極端33以如 同外引線3配置在矩形薄板上的方式而配置在引線框20 上。此允許位置準確度得以確保(其係由引線框20與矩 形薄板而確保)及穩定,因此而提供穩定之接合。壓電振 動器6可以藉由用於切割之雷射光束39 (係以引線框20 作爲基準)照射壓電振動器6而與輸送托盤10相分離。 因此,外引線3的端可藉所需位置準確度處理。 樹脂模造步驟 藉由用於樹脂模造的上模鑄件40與下模鑄件4 1之間 的壓電振動器6,如第2 1圖所示,該些模鑄件係封閉且模 造材料被灌入以形成樹脂模造部分42。以下將敘述如第 22圖所示,從高密度的模鑄型中之樹脂而模造壓電振動器 6至引線框20上之步驟》 第21圖係爲一槪要橫剖面圖,其顯示根據此實施例 用於表面組裝型壓電振動器31的樹脂模造結構。第22圖 係爲槪要透視圖,其顯示根據此實施例由樹脂模造表面組 裝型壓電振動器3 1至引線框20上。第23圖係爲槪要平 面圖,其說明根據此實施例的樹脂模造結構。 在根據此實施例的樹脂模造步驟中,接合至如第20 圖所示之引線框20上的電極端33與虛設端32之壓電振 動器6被置放在如第21圖所示的上模鑄件4 0與下模鑄件 41之間’且該些模鑄件被封閉以形成如第22圖所示之樹 -29- 1360945 脂模造部分42。 在用於根據此實施例的樹脂模造步驟之引線框20中 ,用於表面組裝型壓電振動器31之配置且側框22與由一 分段長條23所分隔之框區域26不具有強化框與其他,其 將對應至習知引線框60中的分段長條62。根據此實施例 的樹脂模造步驟可以因此而成爲一樹脂模造步驟,其中複 數個表面組裝型壓電振動器31配置在單一平坦表面上。 換言之,如第21圖所示,用於樹脂模造的上模鑄件 40之腔室42藉由單一平坦表面44而彼此連接。各個腔室 用以形成圍繞表面組裝型壓電振動器31的一周圍區域。 在引線框20上,用於虛設端32與電極端33的引線部分 之縱向方向以及該些腔室朝向側框22,而壓電振動器係以 分段長條的方向配置。上模鑄件40(其中腔室42係經由 單一平坦表面44而彼此連接)係位於引線框20上之用於 表面組裝型壓電振動器31之配置的框區域26(係由側框 22與分段長條23分隔)之間。因此,此導致如第22圖所 示之將樹脂模造的表面組裝型壓電振動器31形成在引線 框20上。 用於虛設端32與電極端33的引線部分之縱向方向以 及該些腔室朝向側框,而壓電振動器係以分段長條的方向 配置。在樹脂模造步驟中用於供給模造樹脂的滑槽45因 此係以引線框20的縱向方向之直角而配置,如第23圖所 示。滑槽4 5亦配置在分段長條2 3的中間,以將樹脂供給 至位於滑槽二側上的表面組裝型壓電振動器31,如第24 -30- 1360945 圖所示。注入模造部46配置在滑槽45的相向側其中一側 上的表面組裝型壓電振動器31之電極端33側。注入模造 部46亦配置在電極端33的另一側上的虛設端32側。 用於供給模造樹脂的滑槽45係以引線框20的縱向方 向之直角而配置,藉此導致表面組裝型壓電振動器31配 置於滑槽45的相向側上。 在第23圖中,表面組裝型壓電振動器31的第一左邊 行20被視爲第一行,第一行右邊上的一行被視爲第二行 ,而第二行右邊上的一行被視爲第三行。如第24圖所示 ,注入模造部46係設於用於表面組裝型壓電振動器31的 奇數線之虛設端3 2側上,以及用於偶數線之電極端3 3側 上。假如由虛設端3 2側與電極端3 3側所引起的方向係由 表面組裝型壓電振動器31的來回方向加以界定,注入模 造部46對於表面組裝型壓電振動器31的奇數線和偶數線 係在不同的來回方向上。 在引線框20上,未有用於強化圍繞表面組裝型壓電 振動器31的周圍區域43附近的習知引線框之框條。因此 ’用於樹脂模造的上模鑄件40或下模鑄件41不需置放在 用於支承習知分段長條62與引線端之框63的兩旁。因此 ’滑槽4 5係以良好空間效能配置,且表面組裝型壓電振 動器31可藉高密度與高腔室而配置在框區域26中,因此 允許模造的準確度得以維持。 表面組裝型壓電振動器31將參考第25圖而敘述如下 -31 - 1360945 第25圖係爲一放大平面圖,其顯示第23圖之樹脂模 造的表面組裝型壓電振動器31。符號L說明一長度。符 號Μ說明一寬度。符號N係爲相鄰表面組裝型壓電振動 器31的尺寸。符號Ρ說明一間距。在此實施例中’表面 組裝型壓電振動器31具有6_9 mm的長度L以及1.4 mm 的寬度Μ。表面組裝型壓電振動器31之間的間距是2.0 mm。因此,符號Ν爲0.6 mm。在樹脂模造之前’表面組 裝型壓電振動器31之間的尺寸N係爲0.6 mm ’其小於寬 度Μ 0.8 mm且小於壓電振動器6的密封管5之外直徑。 表面組裝型壓電振動器31的高度(圖未示)係爲1.4 mm 。如上所述,表面組裝型壓電振盪器31具有一寬度Μ’ 其約爲長度L的1 /5。間距Ρ儘可能地小且表面組裝型壓 電振動器31係以高密度配置在引線框20上的框區域26 中〇 用於樹脂模造的下模鑄件4 1和引線框20之間的不對 準可以輕易地在表面組裝型壓電振動器31的縱向方向上 顯現。上述不對準係由用於樹脂模造的下模鑄件41和引 線框20之間的線性膨脹係數之差而產生。 係發生顯現在側框的縱向方向上之中央不對準,以在 表面組裝型壓電振動器之不對準非敏感縱向方向上顯現。 對於表面組裝型壓電振動器31的輪廓,待切割之電極端 33的末端50係如第32圖所示之傾斜面般成型,其可以防 止切割衝壓機免於與模造樹脂相接觸。因此,在表面組裝 型壓電振動器31之中央不對準所導致之虛設端32和電極 -32- 1360945 端33的切割步驟中之引線切割所導致的樹脂碎屑可以被 消除。 在根據此實施例的樹脂模造結構中,表面組裝型壓電 振動器31典型地具有一寬度Μ,其小於其長度L之1/3 至1/5。每一表面組裝型壓電振動器具有二向端:一端作 爲電極端33且另一端作爲電性完全分離的虛設端32。在 整個引線框20上的高密度矩陣中,表面組裝型壓電振動 器可以配置在具有一最小組態的分段長條2 3上而沒有耗 費的框。此爲較佳的用於在電子測試步驟中,將最大可能 數量的電性接點端與壓電振動器相接觸。 如上所述,藉由上述的方法,係提供用於表面組裝型 壓電振動器31的樹脂模造結構,使之可能同步地量測與 快速地一起測試(爲了低成本)複數個表面組裝型壓電振 動器31之多數振動器,而在引線端部分的切割步驟中沒 有依據模造材料而定的樹脂碎屑(係由樹脂模造步驟所產 生)’且不使更高腔室密度的樹脂模造複雜化。 電極端部分切割步驟 樹脂模造步驟之後緊接著爲電極端部分切割步驟。電 極端部分切割步驟將回頭參考第12和13圖而敘述如下。 如第12圖所示,貫孔29設於一中央線上,該中央線 連接依據此實施例的引線框20中的第一引線部分24的中 央以及第二引線部分25的中央。在電極端部分切割步驟 中’首先隙縫對應貫孔29的數量而被切割,各個隙縫在 -33- 1360945 藉由貫孔29作爲一端點的框區域26中係爲開啓的。 第13圖係爲一平面圖,其顯示引線框20中的複數個 隙縫30切口。在第13圖中,表面組裝型壓電振動器31 的輪廓已配置並固定如虛線所示’以清楚地顯示引線框20 的形狀。 如第1 3圖所示,隙縫3 0的寬度至少小於表面組裝型 壓電振動器31配置並固定時的間隔’且小於貫孔29的直 徑。 假如隙縫3 0藉以封閉端而切割,封閉端上的切割工 具受到一局部負載,其影響切割工具的使用壽命且使的連 續隙縫切割操作變得困難。然而,在引線框20中設有貫 孔29。因此,即使當隙縫30係由第一引線部分24的末端 之中央部分而切割至貫孔29,切割工具不受到局部負載且 隙縫切割可持續。同樣地,當隙縫3 0係由第二引線部分 25的末端之中央部分而切割至貫孔29,切割工具不受到 局部負載且隙縫切割可持續。 由於具有V形狀橫剖面的缺口凹槽47可以在虛設端 32與電極端33(如第13圖所示,其待位於由分段長條23 所支承的第一和第二引線部分24、25之末端上)之背表 面中被切割,而隙縫被切割。缺口凹槽47被切割以減低 稍後的切割導致負載。當缺口凹槽47被切割時若無隙縫 30,則引線框20上的之缺口凹槽47所處的表面可擴張, 因此導致缺口凹槽47被切割之表面的翹曲。 隙縫30係由第一引線部分24的中央部分而切割至引 -34- 1360945 線框20上的貫孔29。當缺口凹槽47被切割時,所產生的 引線框20之變形因此而被吸收爲薄細的第一和第二引線 部分24、25之局部變形,因此在整個引線框20上避免缺 口凹槽47被切割之表面的翹曲是可行的。 如第13圖所示,假如缺口凹槽47被切割時其中相鄰 第一和第二引線部分24、25的尖部彼此連接,具有凹槽 切口的表面(其中該些尖部彼此連接)被擴張,在凹槽切 割表面側上的引線框20之寬度發生撓曲,其被視爲凹槽 切割的有害效應。假如該引線框20被輸送並藉一機器對 準,引線框20中的任何撓曲使得適當地進行後續之步驟 是可行的。 因此,隙縫如第1 3圖所示被切割,使得缺口凹槽47 切割表面(其中尖部係彼此連接)之任何擴張係由隙縫所 吸收,以避免引線框20的寬度之撓曲。基於上述原因, 隙縫30係在缺口凹槽47被切割之前而在電極端部分切割 步驟中加以切割。 如第13圖所示,缺口凹槽47接著在下部電極端33b 以及隙縫被切割處之間而被切割。在缺口凹槽47切割之 後,執行焊錫操作。 在焊錫之後,電極端33接著藉由留在引線框20上的 虛設端3 2而由引線框2 0切離。如第2 5圖所示,切割完 成以在對應至引線框20表面上之缺口凹槽47的一位置中 形成一端切口部分50,且使得電極端33與引線框20電性 分離。 -35- 1360945 在對應至缺口凹槽47之位置中藉留在引線框20上的 虛設端32而由引線框20切割電極端33亦允許在引線框 20上的電子測試,其將於稍後說明。 電子測試步驟 第26圖係爲槪要透視圖,用以說明根據此實施例的 電子測試之一例子。第27圖係爲部分放大透視圖以說明 第26圖。需注意的是,在第26和27圖中的引線框20上 未顯示在後續之步驟中切割之隙縫30 如第9圖所示,在引線框準備步驟中,在引線框20 上,表面組裝型壓電振動器31典型地具有一寬度,其小 於其長度之1/3至1/5。每一表面組裝型壓電振動器具有 二向端:一端作爲電極端33且另一端作爲電性完全分離 的虛設端32。在整個引線框20上的高密度矩陣中,表面 組裝型壓電振動器可以配置在具有一最小組態的分段長條 23上而沒有耗費的框。最大可能數量之電子接點端35可 以與壓電振動器相接觸。 如第15圖所示,在用以接合外引線3和電極端33之 步驟中’電極端33係以由引線框20與輸送托盤10所確 保之穩定位置準確度,而配置在引線框20上且外引線3 配置在輸送托盤10上,因此提供穩定的接合。 如第2 1圖所示,在樹脂模造步驟中,係提供具有表 面組裝型壓電振動器31之配置的樹脂模造結構以允許與 更多電子接點端35與表面組裝型壓電振動器相接觸,且 •36- 1360945 同步地量測與快速地一起測試更多表面組裝型壓電振動器 31,其係以對於相鄰表面組裝型壓電振動器31之更高腔 室密度且不是樹脂模造之模鑄件40複雜化。 使用如上所述的製程步驟,使得更多電子接點端35 與形成在引線框20上的複數個表面組裝型壓電振動器3! 一起相接觸是可行的。因此,在測試操作上,更多表面組 裝型壓電振動器31可以同步地且快速地一起量測,其中 由於用以確保性能特性和量測準確度之更多量測項目,時 間係照慣例地耗費。所產生的節省時間可以被分派至用於 量測準確度確保之性能特性量測項目的量測。 如第25圖所示,電極切口部分50藉由分隔成列之複 數個表面組裝行壓電振動器電極端33(如第16圖所示其 係以高密度而在引線框20上樹脂膜造)而形成。由於表 面組裝型壓電振動器31藉由與引線框20上的電極切口部 分50電性分離而形成之電極切口部分50,電子測試量測 區塊34上的電子接點端35與表面組裝型壓電振動器相接 觸,如第26和27圖所示。 驅動電壓接著施加至電子接點端3 5,以導致表面組裝 型壓電振動器振盪。電子測試係在形成於引線框20上的 表面組裝型壓電振動器3 1上加以執行。換言之,表面組 裝型壓電振動器31被電子測試,以藉由施加預設電流至 引線框20上電性分離的各個電極端33而區別可接受的電 極與不可接受的電極。 根據測試結果,識別標記藉由雷射標記器而印在表面 -37- 1360945 組裝型壓電振動器31的輪廓上。這些標記區分爲各種類 型,例如負載容量、序列等效靜態容量及頻率偏差。 表面組裝型壓電振動器31可以各種類型加以識別, 例如:負載容量、序列等效靜態容量及頻率偏差》 個別的表面組裝型壓電振動器31接著在用以將表面 組裝型壓電振動器31組裝在帶上或其他的步驟中,可以 比電子測試中的量測較快速地處理。就使用者應用而言, 例如:電子測試步驟中的高準確度,各種特性亦可以快速 地處理。 針對電子接點端35與表面組裝型壓電振動器31 —起 相接觸,一位準的振盪驅動電壓與用於每個其他表面組裝 型壓電振動器31的另一電壓交替,用以交替地量測每個 其他表面組裝型壓電振動器31。 如上所述的交替量測使得藉由電子接點端3 5與表面 組裝型壓電振動器31相接觸,而測試複數個表面組裝型 壓電振動器31的多數振動器是可行的。此消除重複地將 電子接點端35與表面組裝型壓電振動器31的各個振動器 (係以短間距而配置在引線框20上)之需要。 更多表面組裝型壓電振動器之量測允許用以量測表面 組裝型壓電振動器31的時間上之大幅縮減。量測時間的 縮減使得所產生的節省時間得以分派至用於確保量測準確 度的性能特性量測項目之量測,因此使得製造表面組裝型 壓電振動器31且各個振動器具有確保的可靠度與品質是 可行的。 -38- 1360945 在量測結束之後,虛設端32被切割以獲得個別之分 離的表面組裝型壓電振動器31。各個表面組裝型壓電振動 器31係根據其上用於裝運之識別標記而紮住,其中標記 係分類爲各種類型,例如負載容量、序列等效靜態容量及 頻率偏差。 如上所述,表面組裝型壓電振動器具有二向端且典型 地具有一寬度,其小於其長度之1/3至1/5。在引線框上 ,表面組裝型壓電振動器配置在高密度矩陣中的分段長條 23上。最大可能數量之電子接點端35可以與壓電振動器 相接觸。藉由各個振動器的快速測試,這些表面組裝型壓 電振動器係同步地一起量測。 複數個表面組裝型壓電振動器31係以高密度配置。 藉由將電子接點端與表面組裝型壓電振動器相接觸,且不 需重複的電子接點端之接觸和不需相鄰振動器的頻率上之 影響,而使多數表面組裝型壓電振動器同步地測試。所產 生的節省時間得以分派至用於確保量測準確度的性能特性 量測項目之量測,因此允許可靠度與品質的改進。 第二實施例 根據本發明的第二實施例將參考第28圖而敘述如下 。第28圖係爲槪要圖式,其顯示根據本發明第二實施例 的音叉型石英晶體振盪器之組態的例子。音叉型石英晶體 振盪器90使用上述的表面組裝型壓電振動器31作爲振動 片且連接至積體電路。 -39- 1360945 在第28圖中,表面組裝型壓電振動器31係以預設位 置而設置在基板92上,且用於振盪器的積體電路(以參 考符號93表示)係設於相鄰於表面組裝型壓電振動器31 。亦組裝電子部分94,例如:電容器。這些部件藉由一導 線圖案(圖未示)而電性連接一起。由於石英晶體的壓電 特性,表面組裝型壓電振動器31的振動片之機械振動轉 換至電子訊號並被輸入至積體電路93。在積體電路93中 ,執行訊號處理且頻率訊號被輸出。該電路作爲一振盪器 。各個這些組件係以樹脂(圖未示)加以膜造。積體電路 93的適當選擇提供一功能,以控制單一功能振盪器、其他 感興趣的系統與外部系統的操作時間,且提供使用者時間 與曰曆資訊。 使用藉由根據本發明的方法所製造之表面組裝型壓電 振動器31,使得進一步縮減在振盪器中具有最大容量之振 動器的尺寸,且因此縮減振盪器的尺寸。對於一長週期時 間,可靠度亦可以維持》 第三實施例 本發明的第三實施例將敘述如下。第三實施例係爲使 用藉由根據本發明的方法所製造之表面組裝型壓電振動器 31的電子單元之例子,其中振動器係連接至計時部分。作 爲一電子單元的例子,由一行動電話代表的可攜式資訊單 元之較佳實施例將參考圖式而敘述如下。第29圖係爲方 塊圖,其功能地顯示根據本發明的可攜式資訊單元之組態 -40- 1360945 可攜式資訊單元100係爲藉由相關技術所製造的手錶 之發展和改進版本。可攜式資訊單元在外觀上係小於手錶 。可攜式資訊單元具有一液晶顯示器以取代時間板,其可 以顯示其螢幕上的目前時間。當可攜式資訊單元用作一通 訊單元,可攜式資訊單元自手腕移除。具有喇叭和麥克風 各自倂入至其內部的帶部分,可以用於和相關技術所製造 的一行動電話相通訊。相較於習知的行動電話,可攜式資 訊單元是相當小與輕量的。 在第29圖中,參考符號101敘述電源供應部分以供 應電源給稍後敘述之各個功能部分,其特別爲由鋰離子二 次電池所提供的部分。控制部分1 02、時間保持部分1 〇3 、通訊部分104、電壓偵測部分1〇5、和顯示部分107係 平行地連接至控制部分102,其將於稍後敘述。電源由電 源供應部分101而饋送至各個這些功能部分。 控制部分1 02控制各個功能部分,其將於稍後敘述, 用以控制整個系統,例如:音訊資料發送和接收,以及目 前時間量測與顯示。控制部分1 02係特別由預先寫入至 ROM的程式、讀取和執行該程式的CPu、用作CPU的工 作區域之RAM以及其他所提供。 時間保持部分103包含具有內建振盪器電路、暫存器 電戶、計數器電路和介面電路以及如第24圖或25圖所示 的表面組裝型壓電振動器31之積體電路。由於石英晶體 的壓電特性,表面組裝型壓電振動器31的機械振動被轉 -41 - 1360945 換至電子訊號並被輸入至由電晶體和電容器所組成的振盪 電路。振盪電路的輸出係爲二進位的且由暫存器電路和計 數器電路所計數。訊號經由介面電路而自控制部分發送且 接收,且目前時間和目前日期或日曆資訊顯示在顯示部分 107 上。 通訊部分104具有和習知技術之行動電話相類似的功 能。通訊部分104包含無線發送部分104a、音訊處理部分 l〇4b、放大部分104c、音訊輸入輸出部分104d、進入聲 音產生部分l〇4e、切換部分104f、呼叫控制記憶體104g 和電話號碼輸入部分l〇4h。 無線發送部分1 〇4a經由天線發送各種資料至基台以 及自基台接收各種資料。音訊處理部分l〇4b將由無線發 送部分104a或稍後敘述的放大部分104c所輸入的音訊訊 號編碼/解碼。放大部分l〇4c將由音訊處理部分l〇4b或 稍後敘述的音訊輸入輸出部分l〇4d所輸入的訊號放大至 —預設位準。尤其地,音訊輸入輸出部分104d係爲喇叭 或麥克風,且其將鈴聲音調或所接收的聲音放大,或收集 喇叭的聲音。 進入聲音產生部分104e產生一進入聲音以回應來自 基台的呼叫。當存有進入呼叫,切換部分104f將連接至 音訊處理部分l〇4b的放大部分104c切換至進入聲音產生 部分104e,使得所產生的進入聲音經由放大部分l〇4c而 輸出至音訊輸入輸出部分104d。 呼叫控制記憶體104g儲存與通訊進入和發出所有控 -42- 1360945 制相關之程式。再者’電話號碼輸入部分l〇4h特別地包 含自〇至9的號碼鍵和一些其他鍵,且輸入一呼叫接收者 的電話號碼和其他。 假如由電源供應部分101所施加至各個功能部分(包 含控制部分1 〇 2 )的電壓低於一預設値,電壓偵測部分 105偵測一電壓降且接著通知控制部分102。該預設値係 爲預設的値以作爲通訊部分104之穩定操作所需的最小電 壓,且舉例而言,其係爲3V或約3V的電壓。假如接獲 由電壓偵測部分105的電壓降通知,控制部分102禁止音 訊發生部分l〇4a、音訊處理部分104b、切換部分l〇4f以 及進入聲音產生部分1〇4e的操作。尤其地,將大功率消 耗之無線發送部分l〇4a的操作停止是必要的。同時,顯 示部分107顯示一訊息,其大意爲由於電池中的剩餘電源 之缺乏而通訊部分104已變爲不可得的。 通訊部分1 〇4的操作經由電壓偵測部分1 05和控制部 分102的合作而被禁止。亦可以藉由顯示部分107而顯示 訊息之大意。 在本發明的實施例中,與通訊部分之功能相關的電源 供應部分係較佳地設有選擇性中斷的電源中斷部分106, 藉此使得通訊部分的功能之停止係爲可行的。 文字訊息可用於顯示顯示一訊息’其大意爲通訊部分 104已變爲不可得的。可以使用更爲顯著的方法,例如: 藉由X標示一電話圖像在顯示部分1〇7上。 在可攜式資訊單元中’使用藉由根據本發明的方法所 -43- 1360945 製造之表面組裝型壓電振動器31使得進一步縮減可 電子單元之尺寸是可行的’因此使得將可攜式電子單 —長週期的時間下保持爲可靠的是可行的。 第四實施例 第30圖係爲槪要圖,其顯示根據本發明的第四實 例以電波鐘錶作爲電子單元之電路方塊。電波鐘錶200 示連接至電波鐘錶的濾波器部分之二表面組裝型壓電振 器3 1之例子》 電波鐘錶2 00係爲設有作爲接收和將一標準波(其 含時間資訊)自動地修正一精確時間以及顯示正確時間 鐘錶。在日本有二發送站(播送站),用以發生標準波 其一爲福島縣(40 KHz)且另一爲佐賀縣(60 KHz)。 或60 KHz的長波具有沿著地球表面傳播的特性且具有 離子層和地球表面之傳播反射的特性。因此長波具有一 傳播範圍且來自上述二發送站的長波共同覆蓋整個國土 在第30圖中,天線201接收40或60 KHz的長標 電子波。長標準電子波係爲40或60 KHz的載波,其經 藉稱爲時間碼之時間資訊的AM調制。 所接收的長標準電子波藉由放大器2 02放大且藉由 波器部分205濾波且同步化,該濾波器部分包含各自具 相同的共振頻率作爲二載波頻率之表面組裝型壓電振動 31a和31b。具有一預設頻率的濾波訊號藉由波偵測和 流電路206所偵測和解調制。時間碼係取自波形形成電 式 在 施 頚 動 包 的 40 對 廣 〇 準 歷 濾 有 器 整 路 -44 - (1360945 207且由CPU 208計數。CPU 208接著讀取資訊,例如: 目前年份、累加日期、一週日期和時間。讀取的資訊被反 映至RTC 2 09且精確時間資訊被顯示。 由於載波具有40 KHz或60 KHz的頻率,具有一組 態且狀似音叉的振動器較佳地用於組成濾波器部分的表面 組裝型壓電振動器31a和31b,藉由60 KHz作爲一例子 ,設置具有全長約2.8 mm和寬約爲〇_5 mm的基體之音叉 型石英晶體振動片是可行的 藉由根據本發明的方法所製造之表面組裝型壓電振動 器31連接至電波鐘錶的濾波器部分,藉此使得進一步減 低電波鐘錶的尺寸是可行的。再者,此允許電波鐘錶的濾 波器功能在一長週期的時間之操作仍保持良好準確度。 【圖式簡單說明】 第1圖係爲流程圖’其顯示根據本發明第一實施例的 表面組裝型壓電振動器製造方法; 第2圖係爲槪要透視圖,以說明用於根據本發明第一 實施例的表面組裝型壓電振動器之輸送托盤; 第3圖爲槪要透視圖,以說明第2圖的用於壓電振動 器之輸送托盤的細節; 第4圖係爲槪要放大透視圖,其顯示支承在根據第一 實施例的輸送托盤之矩形薄板上的氣密端; 第5圖係爲槪要透視圖,其顯示支承在根據第一實施 例的輸送托盤上的氣密端; -45- 1360945 第6圖亦爲槪要透視圖,以說明壓電振動片配置夾具 與輸送托盤的對準; 第7圖係爲槪要透視圖,以說明根據第一實施例的電 子量測之實施方式: 第8圖係爲槪要整體透視圖,其顯示根據第一實施例 的支承在輸送托盤上之壓電振動器; 第9圖係爲槪要視圖,其顯示用於根據第一實施例之 表面組裝型壓電振動器之引線框: 第10圖係爲第9圖的引線框之平面視圖; 第11圖係爲第10圖之引線框的A部分之放大透視圖 t 第12圖係爲第10圖之引線框的B部分之放大平面圖 > 第13圖係爲第10圖之引線框的B部分之放大平面圖 > 第1 4圖係爲槪要視圖,其顯示根據第一實施例的表 面組裝型壓電振動器由樹脂模造至引線框上的一狀態; 第1 5圖係爲槪要透視圖,以說明將外引線接合至引 線框之步驟; 第1 6圖係爲槪要透視圖’以說明根據第一實施例的 電子測試之實施方式。 第1 7圖係爲槪要橫剖面圖,以說明根據第一實施例 的接合步驟;_ 第1 8圖係爲槪要橫剖面圖’以說明根據第—實施例 -46 - 1360945 的接合步驟; 第19圖係爲槪要透視圖,以說明依據第一實施例將 外引線與托盤分開的步驟; 第20圖係爲槪要透視圖,以說明根據第一實施例在 接合步驟中已完成的形狀; 第21圖係爲槪要橫剖面圖,其顯示根據第—實施例 用於表面組裝型壓電振動器的樹脂模造結構; 第22圖係爲槪要透視圖,其顯示由樹脂模造至引線 框上的根據第一實施例之表面組裝型壓電振動器; 第23圖係爲槪要平面圖,以說明根據第一實施例的 樹脂模造結構: 第24圖係爲槪要平面圖,以說明第23圖的樹脂模造 結構; 第2 5圖係爲槪要透視圖,以說明根據第一實施例的 引線框之切口部分; 第2 6圖係爲槪要透視圖,以說明根據第一實施例的 電子測試; 第2 7圖係爲槪要放大透視圖,以說明第2 6圖; 第28圖係爲槪要圖式,其顯示根據本發明第二實施 例的音叉型石英晶體振盪器之組態的例子; 第29圖係爲槪要圖式,其顯示根據本發明第三實施 例的可攜式資訊單元之方塊圖的例子; 第30圖係爲槪要圖式,其顯示根據本發明第四實施 例的電波鐘錶之方塊圖的例子: -47- 1360945 第31圖係爲槪要透視圖,以說明壓電振動器; 第32圖係爲透視圖,其顯示用於壓電振動器的習知 托盤。 【主要元件符號說明】 1 :氣密端 10 :輸送托盤 100 :可攜式資訊單元 1 0 1 :電源供應部分 102 :控制部分 103 :時間保持部分 104 :通訊部分 l〇4a :無線發送部分 l〇4b :音訊處理部分 l〇4c :放大部分 104d:音訊輸入輸出部分 l〇4e:進入聲音產生部分 l〇4f :切換部分 104g :呼叫控制記億體 l〇4h:電話號碼輸入部分 105 :電壓偵測部分 106 :電源供應中斷部分 107 :顯示部分 1 1 :切口 -48- 1360945 1 2 :配置夾具 1 3 :量測端 1 4 :量測方塊 2 :內引線 20 :引線框 200 :電波鐘錶 201 :天線 202 :放大器 205 :濾波器部分 206 :波偵測和整流電路 207:波形形成電路BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tray for transporting electronic components for transporting electronic components having a plurality of lead terminals, and a method of manufacturing the electronic components using the same. [Prior Art] There is known a transport belt as one of the examples of the transport tray having a workpiece setting portion for recognizing the position of the electronic component, fixing it to surround the electronic portion, and continuously arranging to its transport belt; This workpiece setting part is in an electronic component with a plurality of leads. A positioning portion is provided in the direction of rotation; and is provided to be firmly fixed by the adhesive tape. Further, according to the example of the transporting tray of the piezoelectric vibrator (as another example of the transport tray), one end of the airtight end provided with the lead end is fixed by a spring assembled to the transport tray. The shipping tray having the fixed outer leads is transported and aligned via a heating step, a vacuum step, and a bonding step, frequency adjustment, and sealing operation or other implementation. However, in recent years, various characteristics, accuracy, and reliability of electronic components have become more and more important as the size of electronic components has been reduced, and conventional shipping trays have various problems. These problems will be described below as an example of the manufacturing process of the piezoelectric vibrator 6 having a plurality of lead terminals in one direction as shown in Fig. 31. 1. Most of the steps in fabricating a piezoelectric vibrator require the alignment of the airtight end 1 of the lead end, necessitating an improvement in the alignment accuracy required for each step to 1360945* and to meet the required accuracy. 2. In the piezoelectric vibrator manufacturing step and the heating step, it is necessary to make the tray alignment error small by the difference in the expansion linear coefficient by the heat resistance of the material to be used for the transport tray, and it is necessary to transport the heating step. The difference in the linear coefficient of expansion between the trays or other manufacturing jigs becomes smaller. 3. In the step of heating the vacuum chamber of the sealing tube 5 for sealing the cylindrical bottom tubular body of metal, it is necessary to avoid the occurrence of a negative influence in the vacuum chamber due to the generation of gas. 4. Through a plurality of steps for manufacturing a piezoelectric vibrator, it is necessary to satisfy wear resistance, which is resistant to alignment operations and transportation between manufacturing apparatuses which can be repeatedly performed. The above-described conveyor belt has the following problems in the manufacture of a piezoelectric vibrator. 1. Position Accuracy: The size of the workpiece setting portion is defined as a measure larger than the length and width of the piezoelectric vibrator 6 by about 10 to 100 μπι, respectively. However, as a cause of limiting the dimensional accuracy of the workpiece setting portion, the processing accuracy of the lead frame, the deflection operation accuracy of the workpiece setting portion, and the external accuracy of the piezoelectric vibrator 6 are considered. Furthermore, by incorporating these multiple processing tolerances, the measurement of the workpiece setting portion must be large, so that the required high accuracy is satisfied. 2. Rotation accuracy: The outer lead 3 is pressed toward the workpiece setting portion, and the position of the piezoelectric vibrator 6 is adjusted in the rotational direction. However, the distance between the pair of outer leads 3 at a position protruding from the airtight end 1 is much smaller than the outer diameter of the piezoelectric vibrator 6, so that the piezoelectric vibrator itself does not rotate, the system is -6- 1360945 Based on the fact that when the outer lead portion 3 is assembled on the workpiece setting portion and its position may not be adjusted, the pair of outer leads 3 are only mutually absorbed by their own weight or from the lower portion. Further, the outer lead 3 is shaped by a load of about several tens of grams, so that the adjustment of the positional accuracy of the lead 3 due to the external force can cause deformation of the outer lead 3. 3. Processing the pre-working application: After the step of completing the piezoelectric vibrator 6, the removal operation is performed in the next step, and the operation of the conveyor belt is completed. The use of the conveyor belt is limited to one and the application of the conveyor belt is also limited. 4. Application of the heating vacuum step: In the step of heating the vacuum chamber, an adhesive tape is used to fix the piezoelectric vibrator 6. Therefore, the material of the adhesive tape is limited to one, which does not generate an external gas, and there is a problem when the conveyor belt is used. 5 . Measurement on the conveyor belt: The material of the conveyor belt is metal, such as: phosphor bronze, and the metal plate is provided with a pressing machine or other curved workpiece. Since the outer lead 3 is assembled on the curved workpiece setting portion, it is necessary to apply insulation in measuring electronic properties or other steps. On the other hand, in the conventional transport tray of the piezoelectric vibrator 51 shown in Fig. 32, one end of the outer lead 3 is fixed by the fixing leaf spring 52, and the fixing leaf spring 52 is adhered to the tray; The tray is aligned via a heating step and a step in the vacuum chamber; and a joining step, performing frequency adjustment and sealing operations or the like. This contains the following questions. 1. Since the respective outer leads 3 are sandwiched by the fixing leaf springs 52 of the upper and lower plates, the alignment accuracy of the piezoelectric vibrator is accurate according to the jig to be clamped 1360945 and used to define the position of the outer leads 3. Depending on the degree. 2. Since the outer lead wires 3 are sandwiched by the fixing leaf springs 52 of the upper and lower plates, the shape of the transport tray 51 is complicated to support the fixing leaf spring 52, and the transport tray 51 is plastic. It is manufactured by a shape or other molding method. Therefore, the position of the outer lead 3 depends on the accuracy of the molding. 3. Since the transport tray is manufactured by molding or other molding, there is a problem that is a negative effect in the heating vacuum chamber caused by the generation of gas. As described above, the material conveying apparatus does not require the alignment accuracy of another step, however, the conventional shipping tray is not sufficient for use in a plurality of processing by making the positional accuracy and the rotation accuracy high. The step, and this includes a problem that satisfies the function of the transport tray in a plurality of processing steps. SUMMARY OF THE INVENTION The present invention has been made in view of the foregoing problems, and in order to ensure various characteristics, accuracy, and reliability of electronic components having a plurality of lead terminals in one direction, one of the objects of the present invention is to provide a corresponding high An electronic component transport tray for accuracy alignment, heating, and vacuum, which is required for the mechanical processing steps, heating steps, and measurement steps of various electronic characteristics in the process steps, and provides a method of manufacturing electronic components using the same. Method 下述 In order to achieve the above objectives, the following institutions are available. -8- 1360945 In the first invention, in the transport tray which is aligned with the electronic components having a plurality of lead ends in one direction, the transport tray is formed in the shape of a rectangular thin plate which is on the long side One side has a plurality of slit portions; at least two slit portions are formed as a pair: the slit portion has a width approximately the same as a diameter of a lead end of the electronic component; and the pair of slit portions are spaced apart from each other by a width of the electronic component. According to the configuration of the first invention, the transport tray is formed in the shape of a rectangular thin plate having a plurality of slit portions on one side of the long sides, and at least two slit portions are formed as a pair. By sandwiching the electronic component between the slit portions, the slit portion has a width approximately the same as the diameter of the lead terminal, and the electronic component is tied and supported to prevent the electronic component from moving from the transport tray. 'According to the method of forming a plurality of slit portions on one side of the transport tray, the slit portion can be processed by, for example, using a generally high precision machine (which can obtain a machining precision of several micrometers, for example, a cutter or a slicer) ) is easily formed. It is possible to satisfy the alignment accuracy required for the alignment of the lead terminals with high accuracy by sandwiching a plurality of lead terminals in one side between the slit portions. The spacing of the pair of slit portions is larger than the width of the electronic component, so that it is possible to improve the accuracy of the rotation angle of the electronic component by adjusting the rotation angle of the lead terminal and its position at a position having a large width. Then, since the transport tray is formed into a simple shape (that is, a rectangular thin plate), the separate electronic components can be moved immediately and without difficulty, and the attachment and detachment of the transport tray can be easily achieved, and the transport can be easily carried out. -9- 1360945 The alignment of the tray can be easily achieved and easily stabilized. Therefore, this transport tray is suitable for automation. Furthermore, by removing the lead ends from the slit portions, the respective transport trays can be easily interchanged and can be reused. In a second invention of the configuration of the first invention, the thickness of the rectangular thin plate of the transport tray is larger than the diameter of the lead end of the electronic component; and the thickness of the rectangular thin plate of the transport tray is not larger than the lead end Double the diameter. According to the configuration of the second invention, the rectangular sheet of the transport tray has a thickness larger than the diameter of the lead end of the electronic component, and has a desired strength of the rectangular thin plate and is not more than twice the diameter of the lead end. Therefore, the difference between the thickness dimension and the diameter of the lead terminal, the thickness in the opposing direction of the electronic component is not more than one half of the diameter of the lead terminal. Thereby, the second invention is suitable for a manufacturing process requiring a machining operation in which the dimension in the opposite direction of the thickness of the electronic component is approximately the same as the diameter of the lead terminal. 0 In the configuration of the first or second invention According to a third aspect of the invention, the outer shape of at least one corner position of the rectangular thin plate of the transport tray is different from the outer shape of the other side corner position. According to the configuration of the third invention, at least the rectangular thin plate of the transport tray is The outer shape of the corner position is different from the outer shape of the other corner positions, so that in the alignment operation and in the plurality of steps of transporting the electronic components between the manufacturing equipment to be repeatedly manufactured, and the repeated use of the transport tray For example, it is possible to confirm the orientation and posture of the tray. In a fourth invention of any one of the first to third inventions, the material of the transport tray for aligning -10- 1360945 is ceramic. According to the configuration of the fourth invention, since the material of the tray is ceramic, it is possible to maintain insulation between the plurality of slit portions and maintain the positional accuracy of the plurality of slit portions, and the tray can be used for the step requiring insulation. Furthermore, since the tray is made of a ceramic process, the tray is also preferably used for a step requiring heat resistance (which has several heating steps), and a long-time piezoelectric vibrator manufacturing step that also requires abrasion resistance, which can withstand Aligned and shipped between manufacturing equipment that is repeatedly executed. In the fifth invention of the configuration of the first to fourth inventions, the material of the transport tray aligned with the electronic component is a ceramic of a chromium oxide system. According to the configuration of the fifth invention, the material of the tray is ceramic of the zirconia system, so that the difference in linear coefficient is caused by the difference in linear coefficient between the tray and other manufacturing jigs in the heating step It is possible to minimize the misalignment of the tray. Therefore, the tray is preferably used in the step of requiring relative alignment accuracy with the manufacturing jig in the heating step. Furthermore, the tray is resistant to bending and impact strength and has good surface smoothness. Therefore, the stability of automatic conveyance and automatic supply of electronic components can be obtained, and the stability at the time of alignment is excellent, and this tray is preferably used for a small transport tray. The sixth invention is the method of manufacturing an electronic component using a transport tray according to any one of the first to fifth inventions, wherein a lead end of the electronic component is formed on the transport tray, the tray clamps the electronic The lead end of the component. According to the method of the sixth invention, the formation accuracy and stability of the lead end can be formed by forming the lead end with the accuracy of the position and the rotation angle of the improved electronic component on the pallet of the highly accurate transport -11 - 1360945. obtain. A seventh invention of the method of the sixth invention is a method of manufacturing an electronic component, wherein an electronic test is performed by contacting a contact end to a plurality of lead terminals of the electronic component sandwiched by the transport tray . According to the method of the seventh invention, the alignment of the plurality of lead terminals in the electronic component manufacturing step is performed with high accuracy, and the method is preferably used for simultaneously and collectively measuring a plurality of various electronic characteristics or other examples. Medium, and the measurement of each unit is implemented in a short time. An eighth invention of the method of the sixth invention is a method of manufacturing an electronic component, wherein a plurality of lead ends of the electronic component sandwiched by the transport tray are stacked on a plurality of wires to be bonded to the outside of the lead terminal Extremely, the position and accuracy of the formed lead ends are transposed so that the electrode ends are bonded to the lead ends. According to the method of the eighth invention, the plurality of lead ends of the electronic component sandwiched by the transport tray are stacked on a plurality of electrode terminals to be bonded to the outside of the lead terminal, and the electrode terminals are bonded to the leads The end and the position and accuracy of the formed lead ends are transferred, the separate electronic components can be transported and moved immediately and without difficulty, and the alignment of the lead ends on the highly accurate transport tray can be It is easily achieved and easily stabilized with high accuracy. Therefore, the method is suitable for automation. As described above, according to the present invention, there is provided a tray for transporting electronic components to ensure various characteristics, accuracy, and reliability of electronic components corresponding to high-accuracy alignment, heating, and vacuum (required for machining steps). -12- 1360945 degrees is feasible, and a measuring step of various electronic characteristics in a method of manufacturing an electronic component having a plurality of lead terminals in one direction, and a method of manufacturing an electronic component using the same. [Embodiment] Embodiments of the present invention will be described below with reference to the drawings. [First Embodiment] Fig. 1 is a flow chart schematically showing a method of manufacturing a surface-mounted piezoelectric vibrator according to a first embodiment of the present invention. In order to understand this embodiment, the following steps will be explained as follows: 1. Piezoelectric vibrator preparation step: The quartz sheet is formed by cutting and polishing a piezoelectric material. Each of the quartz plates was formed as an electrode film system required for the piezoelectric vibrator on the front and rear surfaces thereof to form a piezoelectric vibrating piece. The piezoelectric vibrating piece is bonded to each of the airtight ends and the airtight end is adhered to the transport tray for the piezoelectric vibrating piece. The transport tray is prepared for the piezoelectric vibrating piece each sealed to the completion of the sealed tube. 2. Lead frame preparation step: A lead frame formed with an electrode terminal to be bonded to the outer lead of the piezoelectric vibrator is prepared. -13- 1360945 3. The step of bonding the outer leads to the electrode ends: The outer leads of each of the piezoelectric vibrators are joined to the lead frames formed with the electrode ends. 4. Resin film forming step: Each of the piezoelectric vibrators on the lead frame is formed by using a resin of a predetermined material to form a surface-mounted piezoelectric vibrator. 5. Electrode end portion cutting step: Each electrode end portion is inserted into the groove, and solder is performed on the electrode. Each electrode end portion is then cut away from the lead frame leaving a dummy end. 6 · Electronic test procedure: The electronic contact end is in contact with each surface-assembled piezoelectric vibrator on the lead frame 'which is electrically separated from the lead frame for electronic test'. With these steps, each surface-mounting type The piezoelectric vibrator becomes a product. The surface mount type piezoelectric vibrator manufacturing method will be further described below for each of the above preparation steps. Piezoelectric Vibrator Preparation Steps Figs. 2 to 5 show a perspective view for explaining an example of a transport tray for a piezoelectric vibrator according to this embodiment, which is used for assembling a gastight end. -14 - 1360945 Figure 2 is a perspective view showing the overall transport tray. Figure 3 is a partially enlarged perspective view showing the details of the transport tray of Figure 2. Fig. 4 is a partially enlarged perspective view showing the state of the airtight end supported on the rectangular thin plate of the transport tray. Figure 5 is a schematic perspective view showing the state of the integral airtight end supported on the transport tray. Fig. 6 is also a perspective view for explaining the alignment of the piezoelectric vibrating piece arranging jig with the transport tray. Figure 7 is a schematic perspective view to illustrate electronic measurement in accordance with an embodiment of the present invention. Figure 8 is a schematic perspective view showing an overall group of piezoelectric vibrators supported on a transport tray in accordance with the present invention. In the piezoelectric vibrator manufacturing step, a transfer tray for a piezoelectric vibrator (having a lead 3 outside the hermetic end 1 adhered thereto) is used as an alignment and transport mechanism of the hermetic end 1. As shown in Fig. 2, the transport tray 10 for a piezoelectric vibrator according to the present invention has a shape of a rectangular thin plate and has a plurality of slits along its long side. As shown in Fig. 3, at least two slits are arranged in pairs. The width A of the slit 11 is substantially equal to the diameter B of the outer lead 3. The gap C of the slit 11 is larger than the outer diameter of the gastight end 1 . The plurality of slits 11 are formed using a general precision processing machine 'e.g., providing a cutter having a processing accuracy of about several micrometers' to be formed along the end of the transport tray U. Each outer lead 3 is inserted into the slit for support purposes' and thereby achieves a highly accurate shape of the transport tray 10 required for the steps according to the present invention, and a high accurate position of the plurality of slits 11 and outer leads 3. As shown in Fig. 4, each outer lead 3 has a width slightly smaller than the width of each of the plurality of 1360945 slits 11, and is inserted into the slit and supported by, for example, press fitting or adhesion. In this embodiment, the shape accuracy of the transport tray 10, the width accuracy for the slit 11, and the accumulating pitch accuracy for the slit 11 are within 5 μηη. The width A of the slit 11 as shown in Fig. 3 is substantially equal to the diameter B of the outer lead 3. The width of the former is 0. 16 mm, and the width of the latter is 0. 18 mm. The interval C between a pair of slits 11 is 1. 5 mm. The outer diameter D of the airtight end 1 is 1. 1 mm. The gap E between the inner leads 2 is 0. 3 mm. The interval C between the pair of slits 11 is larger than the outer diameter D of the airtight end 1 and five times the gap E between the inner leads 2 (ie, 0. 3 mm). This causes the accuracy of the rotation angle of the inner lead 2 to be controlled to 1/5 of the rotation angle of the outer lead 3. This ensures that the position of the lead 3 and the inner lead 2 outside the hermetic end 1 is quite accurate in the transport tray 1〇. This accuracy is a high degree of accuracy provided by the precision processing machine. The transport tray 10 is formed of a ceramic material which maintains the positional accuracy of the plurality of slits 11 and the electrical insulation between the plurality of slits 11, thereby achieving electrical separation of the inner leads 2 according to this embodiment. This material is preferably used in the measuring step for applying a driving voltage of the piezoelectric vibrating piece 4 to obtain a predetermined frequency. As shown in Fig. 5, the transport tray 10 can be easily transported completely and moved at a time to the individual airtight ends 1 adhered thereto. The simple shape of the rectangular sheet also contributes to the removal of the transport tray 10. The transport tray 10 is easy to position and easy to stabilize and is suitable for automation of the joining steps according to this embodiment. The -16· 1360945 delivery tray ίο is also resistant to wear and is resistant to repeated alignment and transfer between manufacturing units. The transport tray 10 can be used during heating and can be used in a vacuum. The transport tray 10 is also preferably used in a plurality of steps in the manufacture of a piezoelectric vibrator for use in a transport tray 10 for a piezoelectric vibrator. . As shown in Fig. 4, the outer lead 3 has a central portion 3a directed to the outside. The outer leads 3 are formed to have a width of the interval of the slits 11 and are inserted into a slit. The angle of rotation of the outer leads and the high position of the plurality of grooves in the tray allow for the outer leads to be formed to have a desired bend. This achieves the exact position of the central portion required for the joining step. As described above, the inner lead 2 inside the hermetic end 1 is adhered with high accuracy to the transport tray 10 for the piezoelectric vibrator as shown in Fig. 5» as shown in Fig. 6, the transport tray 10 (with accurate The inner leads 2) adhered thereto are aligned to arrange the jig 12 (having the piezoelectric vibrating reed 4 disposed thereon). The inner lead 2 is in contact with the piezoelectric vibrating reed 4. After heating, the piezoelectric vibrating reed 4 is bonded to the inner leads 2. In the step of frequency adjustment to obtain the above-described preset frequency, the transport tray 1 for the piezoelectric vibrator (having the outer lead 3 adhered thereto) passes through a heating furnace. As shown in Fig. 7, the transport tray 10 is then placed in a vacuum chamber with a measuring block 14 on which the measuring end 13 is placed, and the measuring block 14 is hermetically sealed with the piezoelectric vibrator. The leads 3 are in contact with each other. A driving voltage is applied to the piezoelectric vibrating reed 4 to repeatedly obtain a preset frequency for frequency adjustment. The sealing tube 5 is covered to each airtight end by a press fitting method. The outer diameter of the sealed tube 5 is 1. 2 mm. Therefore, the piezoelectric vibrating reed 4 is hermetically sealed to form a vacuum inside. As shown in Fig. 8, in the piezoelectric -17-1360945 vibrator preparation step, this provides the completed piezoelectric vibrator 6 adhered to the transport tray ίο. Lead Frame Preparation Steps Figs. 9 to 13 are perspective views showing a lead frame of the surface mount type piezoelectric vibrator according to this embodiment. The lead frame has an electrode end and a dummy end formed thereon, wherein the lead 3 for the piezoelectric vibrator 6 is to be bonded thereto, and a schematic perspective view for explaining the lead frame. Fig. 14 is a perspective view showing a lead frame having a surface-mounted piezoelectric vibrator molded by a resin according to this embodiment. Figure 15 is a perspective view to illustrate the step of bonding the outer leads to the lead frame. Fig. 16 is a perspective view for explaining an embodiment of an electronic test according to this embodiment. The lead frame (one of the important elements) is closely related to each step which will be described later, and includes the steps of bonding the outer lead to the electrode end, the resin molding step, the cutting step of the electrode end portion, and the electron Test steps. The lead frame preparation steps will be described in detail below. Fig. 9 is a perspective view showing a lead frame 20 for a surface-mounted piezoelectric vibrator according to the present invention. In Fig. 9, reference numeral 22 illustrates a side frame. The pair of side frames 22 are disposed on the lead frame 20. The positioning holes 21 are used to transport and position the lead frame 20. The lead frame 20 has one or more positioning holes 21 in the longitudinal direction of the lead frame 20. A segmented strip 23 is present between the pair of side frames 22. The segmented strips 23 are bridged between the pair of side frames 22 and form the -18·1360945 architecture of the lead frame 20. A positioning hole 21 is provided between each pair of segmented strips 23. Figure 10 is a plan view of the lead frame of Figure 9. In Fig. 10, the frame area 26 is a region in which the pair of side frames 22 and the segmented strips 23 bridged between the pair of side frames 22 are separated. In the frame area 26 partitioned by the side frame 22 and the segment strip 23, a plurality of first lead portions 24 arranged at predetermined intervals are stored. The first lead portion 24 extends from the segmented strip 23. Each of the intervals in which the first lead portion 24 is disposed is slightly larger than the outer width of the surface mount type piezoelectric vibrator (to be described later). In the same frame area 26, the plurality of second lead portions 25 are arranged at the same interval as the plurality of first lead portions 24. The second lead portion 25 faces the first lead portion 24 and extends from the segmented strip 23. A plurality of first lead portions 24 and a plurality of second lead portions 25 are disposed on the lead frame 20. The plurality of first lead portions 24 and the plurality of second lead portions 25 face each other in the longitudinal direction of the lead frame 20. The lead frame 20 according to this embodiment is formed to have a thickness of about 0 by a pressing operation. A 15 mm (for example) planar material side frame 22, first and second lead portions 24 and 25, and a predetermined bonding operation are performed on the respective elements. The flat material is made of a conductive material such as an iron-containing alloy. Of the frame regions 26 partitioned by the side frames 22 and the segmented strips 23, only the first and second lead portions 24 and 25 as shown in Fig. 10 are disposed without the frame for the individual lead portions. The frame area 26 is an area occupying a large area, and it is feasible to reach the maximum space in the frame area 26. Figure 11 is an enlarged perspective view of a portion A of Figure 10. In the Fig. -19-1360945 11, the plurality of first lead portions 24 extending from the segmented strips 23 have adjacent tips that are connected to each other. A first projection 27 is formed on the central portion of the result of the tip connection. The first projection 27 has a further shaped vertical portion. The tip of the first lead portion 24 and the first projection 27 on the central portion of the tip connection undergo a subsequent process step and serve as a dummy end for the surface mount type piezoelectric vibrator. The plurality of second lead portions 25 extending from the segmented strips 23 each have a second projecting portion 28 formed to face the first projecting portion 27. Unlike the plurality of first lead portions 24, the plurality of second lead portions 25 each have an adjacent second projecting portion 28 formed open. The second projection 28 has a vertical portion and a horizontal portion which are formed in a curved shape and bent like a crank. The separately formed phase second projections 28 are subjected to a subsequent process step and used as the electrode terminal 33 of the surface-mounted piezoelectric vibrator 31 to be described later. The lead frame 20 according to this embodiment will be described below with reference to Fig. 12. Fig. 12 is a perspective view showing the dam portion of the lead frame 20 of Fig. 10. As shown in Fig. 12, the first lead portion 24 faces the second lead portion 25 in the longitudinal direction of the wire frame 20 having the frame portion 26 between the lead portions. On the center line connecting the first lead portion 24 and the second lead portion 25, a plurality of through holes 29 are formed corresponding to the first lead portion 24 and the second lead portion 25, respectively. The through holes 29 are provided in the longitudinal direction of the lead frame. The through hole 29 is also disposed at the position where the segmented strip 23 and the first lead portion 24 are offset, and the segmented strip 23 and the second lead portion 25 are misplaced and divided into a plurality of steps and are separated by a large lead. 20 -20 - 1360945 Since the cutting step of the subsequent electrode end portion having a width smaller than the diameter of the through hole 29 is cut with the through hole 29 as an end point, the plurality of through holes 29 are previously set as described above. If a slit having a closed end is cut, the cutting tool is susceptible to a partial load on it, which affects the life of the cutting tool and the continuous slit cutting operation becomes difficult. Therefore, if the slit is cut between the central portions of the tips of the first lead portions 24 in 20, the through holes 29 are cut. This makes it possible to continuously cut the slit without load on the cutting tool. The slit step cutting operation for explaining the subsequent electrode end portion will be explained again later. Therefore, the surface mount type piezoelectric vibrator 31 typically has a width of 1/3 to 1/5 of the length. As shown in Fig. 14, the surface acoustic vibrator 31 is guided in the longitudinal direction of the lead frame 20 and arranged in the width of the horizontal frame 20. Therefore, the surface-mounted piezoelectric vibration unit is arranged in a matrix on the lead frame 20 at a high density. In the step of bonding the electrode terminal 33 to the outer lead 3 on the lead frame 20 for the phenotype piezoelectric vibrator according to this embodiment, as shown in FIG. 5 and which will be described later, the outer lead 3 is disposed in, for example, The electrode terminals 33 on the lead are in the same position. Therefore, the plurality of outer leads 3 are aligned with high density by a single alignment tray 1 as a transport tray. The outer lead 3 is disposed on the bonding electrode terminal 33 and is used for the transfer bonding. Therefore, the outer lead 3 can be joined to the electrode terminal 33 on the lead frame 20 in a high density and stable manner. In the case where the surface-mounted piezoelectric vibrator slit used in the embodiment is cut at the closed end to achieve the lead frame cutting, the partial step is set smaller than the mounting pressure-leading lead "1 can be assembled, as in the first The conveyance of the good frame 20 is synchronously shifted by the same type of lead - 21 - 1360945. In the resin molding step of the frame 20, as shown in Fig. 14 and will be described later, the chambers are connected to each other by a flat surface. . Therefore, the adjacent chambers are guided in the longitudinal direction of the side frame 22, and the first and second lead portions 24 and 25 are guided in the direction of the side frames 22. The surface mount type piezoelectric vibrator is thus configured in a better space efficiency manner. A chute is disposed on the segmented strip 23 and includes an injection molding portion disposed between the first lead portion and the second lead portion. Therefore, a line having the smallest length is provided in each chamber, and the chamber is disposed at a maximum density on the segment strip 23 having a minimum configuration without a costly frame. A molded casting having a maximum resin utilization rate is also provided on the lead frame 20. The longitudinal direction of the first and second lead portions 24 and 25 and the chamber are in the direction of the side frame 22, and the piezoelectric vibrator is disposed in the direction of the segmented strip 23. When it is known that the center misalignment of the molded article occurs in the longitudinal direction of the side frame 22, this allows misalignment of the center of the molded article which occurs in the misalignment non-sensitivity direction of the surface-mounted piezoelectric vibrator. In the step of cutting the first and second lead portions on the lead frame 20, resin molding can be provided in spite of eliminating resin debris caused by central misalignment of the surface-mounted piezoelectric vibrator. The lead frame 20 for the surface-mounted piezoelectric vibrator according to this embodiment is provided by the slit 30 provided with the through hole 29 as an end point in the cutting step (to be described later) of the electrode end 33 portion. Avoid distortion on the lead frame 20. This is because the expansion of the surface having a slit slit located thereon is absorbed by the slit 30. In the electronic test step of the lead -22-1360945 frame 20 for the surface-mounted piezoelectric vibrator according to this embodiment, which will be described later with reference to FIG. 16, each of the surface-mounted piezoelectric vibrators has The bidirectional end: one end serves as the electrode end 33 and the other end is a dummy end 32 that is electrically separated completely. In the high-density matrix on the entire lead frame 20, the surface-mounted piezoelectric vibrator can be disposed on the segment strip 23 having a minimum configuration without costing the frame, as described above, by the above method, The lead frame 20 for the surface-mount type piezoelectric vibrator makes it conform to the positional accuracy required in the step of bonding the outer lead 3 to the electrode terminal 33, eliminates resin debris in the resin molding step, and borrows a higher chamber A surface-mounted piezoelectric vibrator of density without the need for complicated resin molding to maintain molding accuracy, eliminate lead frame deformation during the cutting step, and electronic test measurement lead frame in the electronic test step is feasible. Step of Bonding the Outer Lead to the Electrode End Fig. 15 is a general perspective view for explaining the joining step according to this embodiment. 17 and 18 are a cross-sectional view and a perspective view, respectively, for explaining the steps of joining the outer lead 3 and the lead frame 20 as shown in Fig. 15. Fig. 19 is a perspective view for explaining a step of separating the outer lead 3 from the tray 10 in accordance with the first embodiment. Fig. 20 is a perspective view for explaining the shape which has been completed in the joining step according to the first embodiment. In the lead frame preparation step described above, when the configuration of the lead frame 20 is included, the plurality of first lead portions 24 and the plurality of second lead portions 25 -23 - 1360945 are disposed in the frame region as shown in FIG. 26 in. The first lead portions 24 extend from the segmented strips 23 at appropriate intervals. The second lead portion 25 faces the first lead portion and extends at the same interval. The first lead portion 24 has adjacent lead portions that are joined to form a first projection 27 on the central portion. The second lead portion 25 has a tip portion divided into two portions to form a second projecting portion 28. The first projecting portion 27 has a vertical portion which is formed to partially serve as the dummy end 32 for the surface-mounted piezoelectric vibrator 31 after the slit 30 is cut (as shown in Fig. 13 and will be described later). The second projection 28 on the tip of the second lead portion 25 is divided into two portions which are bent like a crank and have a vertical portion and a horizontal portion. The second protrusion 28 is subjected to a subsequent process step and serves as the electrode terminal 33 for the surface-mounted piezoelectric vibrator 31. The segmented strip 23 has a border on the width of the rectangular sheet (as the transport tray 10 and used as a chute configured for resin molding). In contrast to the conventional lead frame, the lead frame 20 has a relatively high strength and high rigidity until the slit as described later is cut. The shape and positional accuracy of the dummy end 32 and the electrode end 33 are maintained. As shown in Fig. 17, the dummy end 32 has a horizontally extending portion 32a and a portion 32b extending vertically from the portion 32a. The electrode end 33 facing the dummy end 32 has a portion 33a extending horizontally from the segmented strip 23 of the lead frame 20, a portion 33b extending vertically from the horizontally extending portion 33a, and a horizontal extension from the upper end of the portion 33b extending vertically Part of 33c. The horizontally extending portions 33a and 32a are provided as lower electrode ends 33a and 32a which are to be connected to an external electrode on the mounting substrate after resin molding) - 24 - 1360945 In the bonding step, the piezoelectric vibrator 6 is configured In the frame region 26, it is a space in which the surface-mounted piezoelectric vibrator 31 is disposed on the lead frame 20. The piezoelectric vibrator 6 is properly aligned and the outer lead 3 is placed on the upper electrode end 33c on the lead frame 20. The outer lead 3 and the upper electrode end 33c are then accommodated in the lower joint electrode 36. The outer lead 3 and the upper electrode end 33c are supported between the upper electrode 37 and the lower electrode 36 and a voltage is applied for the bonding step. As shown in Fig. 15, a plurality of positioning holes 21 are provided on the side frame 22 of the lead frame 20 at regular intervals. The positioning pins (not shown) of the lead frame 20 are arranged to lift the positioning jig of the lead frame 20 using a fixed interval. The pins correspond to a plurality of positioning holes 21 on the lead frame 20. The lead frame 20 is aligned with the side frame 22 by inserting the positioning pins into the plurality of positioning holes 21 of the lead frame 20. The piezoelectric vibrator 6 is then disposed in a frame region 26 for the surface mount type piezoelectric vibrator 31 to be disposed on the lead frame 20. For the sake of understanding, in the method for moving the conventional piezoelectric vibrator 6 individually, the angle of rotation for the outer lead 3, the joint 3a for electron continuity with the outer lead 3, and the outer portion are aligned. The position of the end of each of the leads 3 is difficult. Therefore, the correct alignment of the above three points is required. In other words, the prior art has some inconveniences, that is, the three alignments cannot be properly achieved and the joint cannot be performed. The three alignments include a difference in the rotational angle of the pair of outer leads 3 with respect to the pair of upper electrode ends 33c; a joint at the central portion of the upper electrode end 33c, the upper electrode end 33c, and the bent outer lead Alignment of the central portion 3a between 3; -25-1360945 Alignment of the upper electrode end 3 3c with the end of the outer lead 3 between the contours of the piezoelectric vibrator 6. In this embodiment, the outer lead 3 is aligned with the lead frame 20 by a method of using the transport tray 10 as an alignment mechanism, which ensures the angle of rotation and position of the lead 3 for the piezoelectric vibrator 6 outside. Accuracy. As shown in Fig. 15, the alignment reference for the transport tray 10 is provided to the positioning jig of the lead frame 20 to arrange the position of the transport tray 10 and the lead frame 20. The alignment reference for the transport tray 10 is the same as the positioning pins (not shown) on the lead frame 20. The reference on the transport tray 10 is aligned with the same reference on the lead frame 20 by contacting the transport tray 10 with the positioning reference on the transport tray 10. For the purpose of support, the transport tray 10 having the outer leads 3 inserted therein conforms to the shape accuracy and positional accuracy of the transport tray 10 required for proper alignment as described in the aforementioned piezoelectric vibrator preparation step. In other words, 1. The shape accuracy of the transport tray 10 is the same as that obtained by the precision processing machine described earlier, thus ensuring the positional accuracy of the outer lead 3 for the airtight end 1. 2. The gap E of the inner lead 2 protruding from the hermetic end 1 shown in Fig. 3 is smaller than the outer diameter D of the hermetic end 1 for the piezoelectric vibrator 6. In contrast, the interval C of the slit 1 1 configured to support the outer lead 3 is larger than the outer diameter of the hermetic end 1 as described above. Therefore, the angle of rotation for the outer lead 3 and the position of the central portion 3a are adjusted. 3. The lead frame 20 in contact with the outer lead 3 has a high rigidity to resist deformation and is highly accurate at -26·1360945. Therefore, the alignment accuracy is obtained by inserting the positioning guide pins and others into the plurality of positioning holes 21 to position the lead frame 20. In the step of bonding the outer lead 3 to the electrode terminal 33, the conditions required for firmly bonding between the outer lead 3 and the electrode end 33 are met. Further, the dummy end 32 and the electrode end 33 are arranged in the same direction as the piezoelectric vibrator 6. Therefore, it is easy to align the transport tray 10 with the lead frame 20, and the transport tray 10 is more suitable for processing with other machines using a conversion tool. As described above, the transport tray 10 can be used for three alignments including a rotation angle for the outer lead 3, a central portion 3a of the outer lead 3 (for example, a joint for electronic continuity with the outer lead 3), And the end of the end cut for the outer lead 3. A mechanism for appropriately aligning the outer lead 3 and the piezoelectric vibrator 6 with the lead frame 20 can be employed without a conventional method for using a radial surface corresponding to the cylindrical side of the piezoelectric vibrator. mechanism. Furthermore, the end of the outer lead 3 can be manipulated with the required positional accuracy, which helps to reduce the longitudinal direction of the surface-mounted piezoelectric vibrator 31. The outer lead 3 for the piezoelectric vibrator 6 shown in Fig. 15 is disposed in the same manner as the transport tray 10, and the electrode end 33 is disposed on the lead frame 20. Therefore, the accuracy of the stable position secured by the lead frame 20 and the transport tray 10 can be shifted, and the joint preparation is ensured with accuracy and stability. Under the above circumstances, the lower bonding electrode 36 is in contact with the bottom portion of the upper electrode terminal 33c for forming the electron continuity with the outer lead 3 outside the piezoelectric vibration -27-1360945, as shown in Figs. Show. The outer lead 3 is bonded to the upper electrode end 33c by pressing a portion between the upper bonding electrode 37 and the lower bonding electrode 36 from above the outer lead 3, and applying a voltage to the upper bonding electrode 37 and the lower bonding electrode 36. 19, after the outer lead 3 is joined to the electrode end 33, the joint portion of the outer lead 3 and a portion between the transport trays 10 are irradiated with a laser beam 39 using a laser unit 38 for cutting purposes. The piezoelectric vibrator 6 is separated from the transport tray 10, and has been inserted into the transport tray 10 by the engagement of the lead frame 20 with the transport tray 10. The outer lead 3 for the piezoelectric vibrator 6 is properly aligned with the lead frame 20 and bonded to the lead frame 20. The cut portion of the outer lead 3 by using the lead frame 20 as a reference is then irradiated with a laser beam 39 for cutting purposes. As shown in Fig. 20, the piezoelectric vibrator 6 is separated from the transport tray 10. The cut portion of the outer lead 3 has no deviation in the longitudinal dimension of the piezoelectric vibrator 6, or there is no deviation in the cutting accuracy for the lead 3 for containing the deviation, and the end of the outer lead 3 can be borrowed at the desired position. deal with. The ability to properly align the piezoelectric vibrator 6 with the lead frame 20 also allows for a reliable electrical connection and proper formation of the resin molded portion around the piezoelectric vibrator 6 as described above, by the above method, The angle of rotation of the pair of outer leads 3 with respect to the upper electrode end 33c is adjusted by a plurality of slit turns in the rectangular sheet. The required positional accuracy for the outer leads 3 is compatible and is used for the angle of rotation of the outer leads 3 and the plurality of -28- 1360945 cuts in the rectangular sheet. Can be obtained with high position accuracy. The outer leads 3 can thus be bent to the desired shape' and aligned with the desired joint. The electrode terminal 33 is disposed on the lead frame 20 in such a manner that the outer lead 3 is disposed on a rectangular thin plate. This allows positional accuracy to be ensured (which is ensured by the lead frame 20 and the rectangular sheet) and is stable, thus providing a stable joint. The piezoelectric vibrator 6 can be separated from the transport tray 10 by irradiating the piezoelectric vibrator 6 with a laser beam 39 for cutting (with the lead frame 20 as a reference). Therefore, the end of the outer lead 3 can be handled with the required positional accuracy. The resin molding step is performed by the piezoelectric vibrator 6 between the upper mold casting 40 and the lower mold casting 41 for resin molding, as shown in Fig. 2, the moldings are closed and the molding material is poured thereinto. A resin molded portion 42 is formed. Hereinafter, the step of molding the piezoelectric vibrator 6 to the lead frame 20 from the resin in the high-density molding type as shown in Fig. 22 will be described as a cross-sectional view, which is shown in accordance with This embodiment is used for the resin molding structure of the surface mount type piezoelectric vibrator 31. Fig. 22 is a perspective view showing the surface-mounted piezoelectric vibrator 31 from the resin molded body to the lead frame 20 according to this embodiment. Fig. 23 is a plan view showing a resin molding structure according to this embodiment. In the resin molding step according to this embodiment, the piezoelectric vibrator 6 bonded to the electrode terminal 33 and the dummy terminal 32 on the lead frame 20 as shown in Fig. 20 is placed as shown in Fig. 21. The molded part 40 and the lower mold casting 41 are 'and the molded parts are closed to form a tree -29-1360945 grease molded portion 42 as shown in Fig. 22. In the lead frame 20 for the resin molding step according to this embodiment, the configuration of the surface-mounted piezoelectric vibrator 31 is used and the side frame 22 is not reinforced with the frame region 26 partitioned by a segmented strip 23. The frame and others will correspond to the segmented strips 62 in the conventional leadframe 60. The resin molding step according to this embodiment can thus be a resin molding step in which a plurality of surface-mount type piezoelectric vibrators 31 are disposed on a single flat surface. In other words, as shown in Fig. 21, the chambers 42 of the upper mold castings 40 for resin molding are connected to each other by a single flat surface 44. Each chamber is used to form a surrounding area surrounding the surface-mounted piezoelectric vibrator 31. On the lead frame 20, the longitudinal direction of the lead portions for the dummy ends 32 and the electrode terminals 33 and the chambers face the side frames 22, and the piezoelectric vibrators are arranged in the direction of the segment strips. The upper die casting 40 (wherein the chambers 42 are connected to each other via a single flat surface 44) is a frame region 26 for the configuration of the surface mount type piezoelectric vibrator 31 on the lead frame 20 (by the side frame 22 and the minute) The segment strips are separated by 23). Therefore, this results in the formation of the resin-molded surface-mounted piezoelectric vibrator 31 on the lead frame 20 as shown in Fig. 22. The longitudinal direction of the lead portions for the dummy ends 32 and the electrode terminals 33 and the chambers face the side frames, and the piezoelectric vibrators are arranged in the direction of the segmented strips. The chute 45 for supplying the molded resin in the resin molding step is thus disposed at a right angle to the longitudinal direction of the lead frame 20 as shown in Fig. 23. The chute 45 is also disposed in the middle of the segmented strips 2 3 to supply the resin to the surface-mounted piezoelectric vibrator 31 on both sides of the chute, as shown in Figs. 24-30-1360945. The injection molding portion 46 is disposed on the electrode terminal 33 side of the surface mount type piezoelectric vibrator 31 on one side of the opposite side of the chute 45. The injection molding portion 46 is also disposed on the side of the dummy end 32 on the other side of the electrode terminal 33. The chute 45 for supplying the molded resin is disposed at a right angle to the longitudinal direction of the lead frame 20, whereby the surface-mounted piezoelectric vibrator 31 is disposed on the opposite side of the chute 45. In Fig. 23, the first left line 20 of the surface-mounted piezoelectric vibrator 31 is regarded as the first line, the line on the right side of the first line is regarded as the second line, and the line on the right side of the second line is Think of the third line. As shown in Fig. 24, the injection molding portion 46 is provided on the dummy end 3 2 side of the odd-numbered line for the surface-mounted piezoelectric vibrator 31, and on the electrode terminal 3 3 side of the even-numbered line. If the direction caused by the dummy end 3 2 side and the electrode end 3 3 side is defined by the back and forth direction of the surface mount type piezoelectric vibrator 31, the odd number line of the injection molding portion 46 for the surface mount type piezoelectric vibrator 31 The even lines are in different back and forth directions. On the lead frame 20, there is no frame strip for reinforcing the conventional lead frame around the peripheral region 43 of the surface-mounted piezoelectric vibrator 31. Therefore, the upper mold casting 40 or the lower mold casting 41 for resin molding need not be placed on both sides of the frame 63 for supporting the conventional segmented strip 62 and the lead end. Therefore, the chute 45 is configured with good space efficiency, and the surface-mounted piezoelectric vibrator 31 can be disposed in the frame region 26 by high density and high chamber, thus allowing the accuracy of molding to be maintained. The surface-mounted piezoelectric vibrator 31 will be described with reference to Fig. 25 - 31 - 1360945. Fig. 25 is an enlarged plan view showing the resin-molded surface-mounted piezoelectric vibrator 31 of Fig. 23. The symbol L indicates a length. The symbol Μ indicates a width. The symbol N is the size of the adjacent surface-mounted piezoelectric vibrator 31. The symbol Ρ describes a spacing. In this embodiment, the 'surface-mounted piezoelectric vibrator 31 has a length L of 6_9 mm and 1. Width of 4 mm Μ. The spacing between the surface-mounted piezoelectric vibrators 31 is 2. 0 mm. Therefore, the symbol Ν is 0. 6 mm. The size N between the surface-mounted piezoelectric vibrators 31 before the resin molding is 0. 6 mm ' is less than the width Μ 0. 8 mm and smaller than the outer diameter of the sealing tube 5 of the piezoelectric vibrator 6. The height of the surface-mounted piezoelectric vibrator 31 (not shown) is 1. 4 mm. As described above, the surface-mounted piezoelectric oscillator 31 has a width Μ' which is approximately 1 /5 of the length L. The pitch Ρ is as small as possible and the surface-mounted piezoelectric vibrator 31 is disposed at a high density in the frame region 26 of the lead frame 20, and the misalignment between the lower mold casting 41 and the lead frame 20 for resin molding is performed. It can be easily exhibited in the longitudinal direction of the surface-mounted piezoelectric vibrator 31. The above misalignment is caused by the difference in linear expansion coefficients between the lower mold casting 41 and the lead frame 20 for resin molding. A central misalignment occurs in the longitudinal direction of the side frame to appear in the misalignment non-sensitive longitudinal direction of the surface mount type piezoelectric vibrator. With respect to the outline of the surface-mounted piezoelectric vibrator 31, the end 50 of the electrode end 33 to be cut is formed like the inclined surface shown in Fig. 32, which can prevent the cutting press from coming into contact with the molded resin. Therefore, the resin chips caused by the lead cutting in the cutting step of the dummy end 32 and the electrode -32 - 1360945 end 33 caused by the misalignment of the center of the surface-mounted piezoelectric vibrator 31 can be eliminated. In the resin molded structure according to this embodiment, the surface-mounted piezoelectric vibrator 31 typically has a width Μ which is less than 1/3 to 1/5 of its length L. Each of the surface-mounted piezoelectric vibrators has two ends: one end serves as the electrode end 33 and the other end serves as a dummy end 32 which is electrically separated completely. In the high density matrix on the entire lead frame 20, the surface mount type piezoelectric vibrator can be disposed on a segment strip 2 having a minimum configuration without costing the frame. This is preferred for contacting the largest possible number of electrical contacts with the piezoelectric vibrator during the electronic test step. As described above, by the above method, the resin molding structure for the surface-mount type piezoelectric vibrator 31 is provided, making it possible to simultaneously measure and quickly test (for low cost) a plurality of surface-mount type pressures. A plurality of vibrators of the electric vibrator 31, and there is no resin crumb (generated by the resin molding step) depending on the molding material in the cutting step of the lead end portion' and does not complicate the resin molding of a higher chamber density. . Electrode end portion cutting step The resin molding step is followed by an electrode end portion cutting step. The electrical extreme portion cutting step will be described below with reference to Figures 12 and 13 as follows. As shown in Fig. 12, the through hole 29 is provided on a center line which is connected to the center of the first lead portion 24 and the center of the second lead portion 25 in the lead frame 20 according to this embodiment. In the electrode end portion cutting step, the first slit is cut corresponding to the number of the through holes 29, and each slit is opened in the frame region 26 where the through hole 29 is an end point at -33 to 1360945. Figure 13 is a plan view showing a plurality of slits 30 in the lead frame 20. In Fig. 13, the outline of the surface-mounted piezoelectric vibrator 31 has been arranged and fixed as shown by a broken line to clearly show the shape of the lead frame 20. As shown in Fig. 1, the width of the slit 30 is at least smaller than the interval ' when the surface-mounted piezoelectric vibrator 31 is disposed and fixed, and is smaller than the diameter of the through-hole 29. If the slit 30 is cut by the closed end, the cutting tool on the closed end is subjected to a partial load which affects the service life of the cutting tool and makes continuous slit cutting operations difficult. However, a through hole 29 is provided in the lead frame 20. Therefore, even when the slit 30 is cut to the through hole 29 by the central portion of the end of the first lead portion 24, the cutting tool is not subjected to the local load and the slit cutting can be continued. Similarly, when the slit 30 is cut to the through hole 29 by the central portion of the end of the second lead portion 25, the cutting tool is not subjected to local load and the slit cutting can be continued. Since the notched groove 47 having a V-shaped cross section may be at the dummy end 32 and the electrode end 33 (as shown in Fig. 13, it is to be located at the first and second lead portions 24, 25 supported by the segmented strip 23) The back surface of the end is cut and the slit is cut. The notch groove 47 is cut to reduce the load caused by the later cutting. When the notch groove 47 is cut without the slit 30, the surface on which the notch groove 47 of the lead frame 20 is located can be expanded, thereby causing the notch groove 47 to be warped by the cut surface. The slit 30 is cut by the central portion of the first lead portion 24 to the through hole 29 on the wire frame 20 of the lead-34- 1360945. When the notch groove 47 is cut, the resulting deformation of the lead frame 20 is thereby absorbed as a local deformation of the thin first and second lead portions 24, 25, thereby avoiding the notch groove on the entire lead frame 20. The warpage of the 47 cut surface is feasible. As shown in Fig. 13, if the notches are cut while the tips of the adjacent first and second lead portions 24, 25 are connected to each other, the surface having the groove cuts (where the tips are connected to each other) is The expansion, the width of the lead frame 20 on the side of the groove cutting surface is deflected, which is regarded as a detrimental effect of the groove cutting. If the leadframe 20 is transported and aligned by a machine, any deflection in the leadframe 20 makes it possible to perform the subsequent steps as appropriate. Therefore, the slit is cut as shown in Fig. 3 such that any expansion of the cut surface of the notch groove 47 in which the tips are connected to each other is absorbed by the slit to avoid deflection of the width of the lead frame 20. For the above reasons, the slit 30 is cut in the electrode end portion cutting step before the notch groove 47 is cut. As shown in Fig. 13, the notch groove 47 is then cut between the lower electrode end 33b and the slit being cut. After the notch groove 47 is cut, a soldering operation is performed. After soldering, the electrode terminal 33 is then detached from the lead frame 20 by the dummy end 3 2 remaining on the lead frame 20. As shown in Fig. 25, the cutting is completed to form the one end slit portion 50 in a position corresponding to the notch groove 47 on the surface of the lead frame 20, and the electrode end 33 is electrically separated from the lead frame 20. -35- 1360945 The cutting of the electrode end 33 by the lead frame 20 in the position corresponding to the notch recess 47 and the dummy end 32 on the lead frame 20 also allows for an electronic test on the lead frame 20, which will be later Description. Electronic Test Steps Fig. 26 is a perspective view for explaining an example of an electronic test according to this embodiment. Figure 27 is a partially enlarged perspective view to illustrate Figure 26. It should be noted that the slits 30 cut in the subsequent steps are not shown on the lead frame 20 in FIGS. 26 and 27, as shown in FIG. 9, in the lead frame preparation step, on the lead frame 20, surface assembly The piezoelectric vibrator 31 typically has a width which is less than 1/3 to 1/5 of its length. Each of the surface-mounted piezoelectric vibrators has a di-directional end: one end serves as the electrode end 33 and the other end serves as a dummy end 32 which is electrically separated completely. In the high density matrix on the entire lead frame 20, the surface mount type piezoelectric vibrator can be disposed on a segmented strip 23 having a minimum configuration without costing the frame. The largest possible number of electronic contact terminals 35 can be in contact with the piezoelectric vibrator. As shown in FIG. 15, in the step of bonding the outer lead 3 and the electrode end 33, the 'electrode end 33 is disposed on the lead frame 20 with the stable positional accuracy ensured by the lead frame 20 and the transport tray 10. And the outer lead 3 is disposed on the transport tray 10, thus providing a stable joint. As shown in Fig. 2, in the resin molding step, a resin molding structure having a configuration of the surface-assembled piezoelectric vibrator 31 is provided to allow a more electronic contact end 35 and a surface-mounted piezoelectric vibrator. Contact, and • 36-1360945 Simultaneously measure and quickly test more surface-mount type piezoelectric vibrators 31 with higher chamber density for adjacent surface-assembled piezoelectric vibrators 31 and not resin molded The die casting 40 is complicated. It is possible to bring more electronic contact terminals 35 into contact with a plurality of surface-mounted piezoelectric vibrators 3! formed on the lead frame 20 using the process steps as described above. Therefore, in the test operation, more surface-mount type piezoelectric vibrators 31 can be measured together synchronously and quickly, wherein time is prescribed by the measurement items for ensuring performance characteristics and measurement accuracy. Land consumption. The resulting savings can be assigned to measurements of the performance characteristics measurement items used to measure accuracy. As shown in Fig. 25, the electrode slit portion 50 assembles the piezoelectric vibrator electrode end 33 by a plurality of surfaces partitioned in a row (as shown in Fig. 16, which is made of a resin film on the lead frame 20 at a high density) ) formed. Since the surface-mounted piezoelectric vibrator 31 is formed by the electrode slit portion 50 electrically separated from the electrode slit portion 50 on the lead frame 20, the electronic contact terminal 35 on the electronic test measurement block 34 is surface-mounted. The piezoelectric vibrators are in contact as shown in Figures 26 and 27. The driving voltage is then applied to the electronic contact terminal 35 to cause the surface-mounted piezoelectric vibrator to oscillate. The electronic test is performed on the surface mount type piezoelectric vibrator 3 1 formed on the lead frame 20. In other words, the surface-mounted piezoelectric vibrator 31 is electronically tested to distinguish between an acceptable electrode and an unacceptable electrode by applying a predetermined current to the respective electrode terminals 33 electrically separated on the lead frame 20. According to the test result, the identification mark is printed on the contour of the surface-37- 1360945 assembled piezoelectric vibrator 31 by the laser marker. These markers are divided into various types such as load capacity, sequence equivalent static capacity, and frequency deviation. The surface-mounted piezoelectric vibrator 31 can be identified in various types, for example, load capacity, sequence equivalent static capacity, and frequency deviation. Individual surface-mount type piezoelectric vibrators 31 are then used to mount surface-mounted piezoelectric vibrators 31 assembly on the belt or other steps can be processed faster than measurements in electronic tests. For user applications, such as high accuracy in electronic test steps, various features can be processed quickly. The electronic contact terminal 35 is brought into contact with the surface-mounted piezoelectric vibrator 31, and the one-order oscillating driving voltage is alternated with another voltage for each of the other surface-mounted piezoelectric vibrators 31 for alternate Each of the other surface mount type piezoelectric vibrators 31 is measured. The alternate measurement as described above makes it possible to test a plurality of vibrators of the plurality of surface-mounted piezoelectric vibrators 31 by the electronic contact terminals 35 being in contact with the surface-assembled piezoelectric vibrator 31. This eliminates the need to repeatedly place the electronic contact end 35 and the respective vibrators of the surface-mounted piezoelectric vibrator 31 (disposed on the lead frame 20 at a short pitch). The measurement of the more surface-mounted piezoelectric vibrator allows the measurement of the surface-assembled piezoelectric vibrator 31 to be greatly reduced in time. The reduction of the measurement time allows the generated saving time to be assigned to the measurement of the performance characteristic measurement item for ensuring the measurement accuracy, thus making the surface-mounted piezoelectric vibrator 31 and the respective vibrators ensure reliable Degree and quality are feasible. -38 - 1360945 After the end of the measurement, the dummy end 32 is cut to obtain an individual separated surface-mounted piezoelectric vibrator 31. Each of the surface-mounted piezoelectric vibrators 31 is tied according to an identification mark thereon for shipping, wherein the marks are classified into various types such as load capacity, sequence equivalent static capacity, and frequency deviation. As described above, the surface-mounted piezoelectric vibrator has a di-directional end and typically has a width which is less than 1/3 to 1/5 of its length. On the lead frame, the surface mount type piezoelectric vibrator is disposed on the segment strip 23 in the high density matrix. The largest possible number of electronic contact terminals 35 can be in contact with the piezoelectric vibrator. These surface-assembled piezoelectric vibrators are simultaneously measured together by rapid testing of the respective vibrators. A plurality of surface mount type piezoelectric vibrators 31 are arranged at a high density. Most surface-mount piezoelectrics are made by contacting the electronic contact end with a surface-mounted piezoelectric vibrator without the need for repeated contact of the electronic contact ends and without affecting the frequency of adjacent vibrators The vibrator is tested synchronously. The time savings generated can be assigned to the measurement of the performance characteristics measurement items used to ensure measurement accuracy, thus allowing for improved reliability and quality. Second Embodiment A second embodiment according to the present invention will be described below with reference to Fig. 28. Fig. 28 is a schematic diagram showing an example of the configuration of a tuning fork type quartz crystal oscillator according to a second embodiment of the present invention. The tuning-fork type quartz crystal oscillator 90 uses the above-described surface-mounted piezoelectric vibrator 31 as a vibrating piece and is connected to an integrated circuit. -39- 1360945 In Fig. 28, the surface-mounted piezoelectric vibrator 31 is disposed on the substrate 92 at a predetermined position, and an integrated circuit for the oscillator (indicated by reference numeral 93) is provided in the phase It is adjacent to the surface mount type piezoelectric vibrator 31. Electronic portion 94 is also assembled, such as a capacitor. These components are electrically connected together by a wire pattern (not shown). Due to the piezoelectric characteristics of the quartz crystal, the mechanical vibration of the vibrating piece of the surface-assembled piezoelectric vibrator 31 is converted to an electronic signal and input to the integrated circuit 93. In the integrated circuit 93, signal processing is performed and a frequency signal is output. This circuit acts as an oscillator. Each of these components is formed of a resin (not shown). The proper selection of integrated circuit 93 provides a function to control the operating time of a single function oscillator, other systems of interest, and external systems, and to provide user time and calendar information. With the surface-mounted piezoelectric vibrator 31 manufactured by the method according to the present invention, the size of the vibrator having the maximum capacity in the oscillator is further reduced, and thus the size of the oscillator is reduced. The reliability can also be maintained for a long period of time. Third Embodiment A third embodiment of the present invention will be described below. The third embodiment is an example of an electronic unit using the surface-mounted piezoelectric vibrator 31 manufactured by the method according to the present invention, wherein the vibrator is connected to the timing portion. As an example of an electronic unit, a preferred embodiment of a portable information unit represented by a mobile telephone will be described below with reference to the drawings. Figure 29 is a block diagram functionally showing the configuration of the portable information unit in accordance with the present invention - 40-1360945 The portable information unit 100 is a development and an improved version of the watch manufactured by the related art. The portable information unit is smaller in appearance than the watch. The portable information unit has a liquid crystal display instead of a time panel that can display the current time on its screen. When the portable information unit is used as a communication unit, the portable information unit is removed from the wrist. A belt portion having a horn and a microphone each incorporated into the interior thereof can be used for communication with a mobile phone manufactured by the related art. Portable communication units are relatively small and lightweight compared to conventional mobile phones. In Fig. 29, reference numeral 101 describes a power supply portion for supplying power to respective functional portions to be described later, which is particularly a portion provided by a lithium ion secondary battery. The control section 102, the time holding section 1 〇3, the communication section 104, the voltage detecting section 1〇5, and the display section 107 are connected in parallel to the control section 102, which will be described later. The power source is fed to the respective functional sections by the power supply section 101. The control section 102 controls various functional sections, which will be described later, for controlling the entire system, such as audio data transmission and reception, and current time measurement and display. The control section 102 is specifically provided by a program written in advance to the ROM, a CPu that reads and executes the program, a RAM that serves as a work area of the CPU, and the like. The time holding portion 103 includes an integrated circuit having a built-in oscillator circuit, a register memory, a counter circuit, and an interface circuit, and a surface-mounted piezoelectric vibrator 31 as shown in Fig. 24 or 25. Due to the piezoelectric characteristics of the quartz crystal, the mechanical vibration of the surface-assembled piezoelectric vibrator 31 is changed to an electronic signal by the transfer - 41360540 and is input to an oscillation circuit composed of a transistor and a capacitor. The output of the oscillating circuit is binary and is counted by the register circuit and the counter circuit. The signal is transmitted and received from the control section via the interface circuit, and the current time and current date or calendar information are displayed on the display section 107. The communication section 104 has functions similar to those of the prior art mobile phones. The communication section 104 includes a wireless transmitting section 104a, an audio processing section 104b, an amplifying section 104c, an audio inputting section 104d, an incoming sound generating section 104e, a switching section 104f, a call control memory 104g, and a telephone number input section. 4h. The wireless transmitting section 1 〇 4a transmits various materials to the base station via the antenna and receives various materials from the base station. The audio processing section 104b encodes/decodes the audio signal input by the wireless transmitting section 104a or the amplifying section 104c described later. The amplifying portion 104c amplifies the signal input from the audio processing portion 104b or the audio input/output portion l4d described later to a preset level. In particular, the audio input/output portion 104d is a horn or a microphone, and it amplifies the ring tone or the received sound, or collects the sound of the horn. The incoming sound generating portion 104e generates an incoming sound in response to a call from the base station. When there is an incoming call, the switching portion 104f switches the amplified portion 104c connected to the audio processing portion 104b to the incoming sound generating portion 104e, so that the generated incoming sound is output to the audio input and output portion 104d via the amplifying portion 104c. . The call control memory 104g stores programs associated with the communication entry and issue of all control systems. Further, the 'telephone number input section l〇4h specifically includes a number key from the 〇 to 9 and some other keys, and inputs a call recipient's telephone number and the like. If the voltage applied to the respective functional portions (including the control portion 1 〇 2) by the power supply portion 101 is lower than a predetermined threshold, the voltage detecting portion 105 detects a voltage drop and then notifies the control portion 102. The preset 値 is preset to be the minimum voltage required for stable operation of the communication portion 104, and is, for example, a voltage of 3V or about 3V. If the voltage drop notification by the voltage detecting portion 105 is received, the control portion 102 prohibits the operation of the audio generating portion 104a, the audio processing portion 104b, the switching portion l4f, and the sound generating portion 1?4e. In particular, it is necessary to stop the operation of the high power consumption wireless transmitting portion 104a. At the same time, the display portion 107 displays a message to the effect that the communication portion 104 has become unreachable due to the lack of remaining power in the battery. The operation of the communication section 1 〇 4 is prohibited by the cooperation of the voltage detecting section 105 and the control section 102. It is also possible to display the meaning of the message by the display portion 107. In the embodiment of the present invention, the power supply portion associated with the function of the communication portion is preferably provided with a selectively interrupted power interruption portion 106, whereby the stop of the function of the communication portion is made feasible. The text message can be used to display a message "to the effect that the communication portion 104 has become unavailable. A more significant method can be used, for example: by X to indicate a telephone image on the display portion 1〇7. It is feasible to further reduce the size of the electronic unit by using the surface-mounted piezoelectric vibrator 31 manufactured by the method according to the invention - 43 - 1360945 in the portable information unit - thus making the portable electronic It is feasible to remain reliable for single-long cycle times. [Fourth Embodiment] Fig. 30 is a schematic diagram showing a circuit block in which a radio timepiece is used as an electronic unit in accordance with a fourth embodiment of the present invention. The radio-controlled timepiece 200 shows an example of a two-surface-mounted piezoelectric vibrator 3 1 connected to a filter portion of a radio-controlled timepiece. The radio-controlled timepiece 2 00 is provided to receive and automatically correct a standard wave (which contains time information). A precise time and display the correct time clock. In Japan, there are two sending stations (broadcasting stations) for standard waves. One is Fukushima (40 KHz) and the other is Saga (60 KHz). Or a long wave of 60 KHz has the property of propagating along the surface of the earth and has the characteristics of propagating reflection of the ion layer and the earth's surface. Therefore, the long wave has a propagation range and the long waves from the above two transmitting stations collectively cover the entire country. In Fig. 30, the antenna 201 receives a long-numbered electronic wave of 40 or 60 KHz. The long standard electronic wave system is a carrier of 40 or 60 KHz, which is AM modulated by time information called time code. The received long standard electron wave is amplified by an amplifier 02 and filtered and synchronized by a waver portion 205 including surface-mounted piezoelectric vibrations 31a and 31b each having the same resonance frequency as a two-carrier frequency. . The filtered signal having a predetermined frequency is detected and demodulated by the wave detection and stream circuit 206. The time code is taken from the waveform forming electric form of the 40 pairs of the 〇 〇 滤 - - 44 - (1360945 207 and counted by the CPU 208. The CPU 208 then reads the information, for example: the current year, Accumulate date, week date and time. The read information is reflected to RTC 2 09 and the precise time information is displayed. Since the carrier has a frequency of 40 KHz or 60 KHz, the vibrator with a configuration and like a tuning fork is preferably The surface-mounted piezoelectric vibrators 31a and 31b constituting the filter portion are set to have a total length of about 2. A tuning fork type quartz crystal vibrating piece of 8 mm and a base having a width of about 〇5 mm is feasible. The surface-mounted piezoelectric vibrator 31 manufactured by the method according to the present invention is connected to the filter portion of the radio timepiece. This makes it possible to further reduce the size of the radio timepiece. Furthermore, this allows the filter function of the radio timepiece to maintain good accuracy over a long period of time. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing a method of manufacturing a surface-mounted piezoelectric vibrator according to a first embodiment of the present invention; FIG. 2 is a schematic perspective view for explaining The transport tray of the surface-mounted piezoelectric vibrator of the first embodiment of the invention; FIG. 3 is a perspective view for explaining the details of the transport tray for the piezoelectric vibrator of FIG. 2; To enlarge the perspective view, which shows the airtight end supported on the rectangular sheet of the transport tray according to the first embodiment; Fig. 5 is a perspective view showing the support on the transport tray according to the first embodiment. Airtight end; -45- 1360945 Fig. 6 is also a perspective view for explaining the alignment of the piezoelectric vibrating piece arranging jig and the transport tray; Fig. 7 is a perspective view for explaining the first embodiment according to the first embodiment Embodiment of electronic measurement: FIG. 8 is a schematic perspective view showing a piezoelectric vibrator supported on a transport tray according to the first embodiment; FIG. 9 is a schematic view for display Surface assembly according to the first embodiment The lead frame of the piezoelectric vibrator: Fig. 10 is a plan view of the lead frame of Fig. 9; Fig. 11 is an enlarged perspective view of the A portion of the lead frame of Fig. 10, Fig. 12 is the tenth figure An enlarged plan view of the B portion of the lead frame> Fig. 13 is an enlarged plan view of a portion B of the lead frame of Fig. 10> Fig. 14 is a schematic view showing the surface assembly according to the first embodiment The piezoelectric vibrator is molded from a resin to a state on the lead frame; Fig. 15 is a perspective view for explaining the step of bonding the outer lead to the lead frame; Fig. 16 is a schematic perspective view To explain an embodiment of the electronic test according to the first embodiment. Figure 17 is a schematic cross-sectional view for explaining the joining step according to the first embodiment; - Figure 18 is a schematic cross-sectional view 'to illustrate the joining step according to the first embodiment -46 - 1360945 Figure 19 is a perspective view for explaining a step of separating the outer lead from the tray according to the first embodiment; Fig. 20 is a schematic perspective view for explaining completion in the joining step according to the first embodiment; 21 is a cross-sectional view showing a resin molding structure for a surface-mount type piezoelectric vibrator according to the first embodiment; and FIG. 22 is a schematic perspective view showing a resin molding The surface-mounted piezoelectric vibrator according to the first embodiment on the lead frame; Fig. 23 is a plan view schematically showing the resin molding structure according to the first embodiment: Fig. 24 is a schematic plan view, The resin molding structure of Fig. 23 is explained; Fig. 25 is a perspective view for explaining a slit portion of the lead frame according to the first embodiment; and Fig. 26 is a schematic perspective view for explaining Electronic test of the embodiment; 2 7 The figure is a magnified perspective view to illustrate a twenty-sixth figure; the figure 28 is a schematic diagram showing an example of the configuration of the tuning fork type quartz crystal oscillator according to the second embodiment of the present invention; The drawing is a schematic diagram showing an example of a block diagram of a portable information unit according to a third embodiment of the present invention; and FIG. 30 is a schematic diagram showing a radio wave according to a fourth embodiment of the present invention. Example of a block diagram of a timepiece: -47- 1360945 Fig. 31 is a perspective view for explaining a piezoelectric vibrator; Fig. 32 is a perspective view showing a conventional tray for a piezoelectric vibrator. [Description of main component symbols] 1: Airtight end 10: Transport tray 100: Portable information unit 1 0 1 : Power supply section 102: Control section 103: Time hold section 104: Communication section l4a: Wireless transmission section l 〇4b: audio processing section l〇4c: amplifying section 104d: audio input/output section l〇4e: entering sound generating section l〇4f: switching section 104g: call control recording body l〇4h: telephone number input section 105: voltage Detection portion 106: power supply interruption portion 107: display portion 1 1 : slit -48 - 1360945 1 2 : configuration jig 1 3 : measurement end 1 4 : measurement block 2 : inner lead 20 : lead frame 200 : radio timepiece 201: Antenna 202: Amplifier 205: Filter section 206: Wave detection and rectification circuit 207: Waveform forming circuit
208 : CPU208 : CPU
209 : RTC 2 1 :定位孔 22 :側框 23 :分段長條 24 :第一引線部分 25 :第二引線部分 27:第一突伸部分 2 8 :第二突伸部分 29 :貫孔 3 :外引線 3 0 :隙縫 31:表面組裝型壓電振動器 -49- 1360945 31a:表面組裝型壓電振動器 32 :虛設端 32a :部分 32b :部分 3 3 :電極端 33a :部分 33b :下部電極端 33c :上部電極端 3 4 :電子測試量測方塊 3 5 :電子接點端 3 6 :下部接合電極 37:上部接合電極 3 8 :雷射單元 3 9 :雷射光束 3a :中央部分 4 :壓電振動片 4a :壓電振動片 40 :上模鑄件 4 1 :下模鑄件 42 :樹脂模造部分 43 :周圍區域 44 :單一平坦表面 4 5 :滑槽 46 :注入模造部 -50- 1360945 47 :缺口凹槽 5 :密封管 50 :端切口部分 6 :壓電振動器 60 :引線框 6 2 :分段長條 63 :框 90 :音叉型石英晶體振盪器 92 :基板 93 :積體電路 94 :電子部分 -51 -209 : RTC 2 1 : positioning hole 22 : side frame 23 : segmented strip 24 : first lead portion 25 : second lead portion 27 : first protruding portion 2 8 : second protruding portion 29 : through hole 3 : Outer lead 3 0 : slot 31 : Surface mount type piezoelectric vibrator - 49 - 1360945 31a: Surface mount type piezoelectric vibrator 32 : dummy end 32a : part 32b : part 3 3 : electrode end 33a : part 33b : lower part Electrode end 33c: upper electrode end 3 4 : electronic test measurement block 3 5 : electronic contact end 3 6 : lower bonding electrode 37: upper bonding electrode 3 8 : laser unit 3 9 : laser beam 3a : central portion 4 : Piezoelectric vibrating piece 4a : Piezoelectric vibrating piece 40 : Upper die casting 4 1 : Lower die casting 42 : Resin molded portion 43 : Peripheral area 44 : Single flat surface 4 5 : Chute 46 : Injection molding part - 50 - 1360945 47: notch groove 5: sealing tube 50: end slit portion 6: piezoelectric vibrator 60: lead frame 6 2: segmented strip 63: frame 90: tuning fork type quartz crystal oscillator 92: substrate 93: integrated circuit 94: Electronic part -51 -