TWI382359B - Apparatus and method for image processing - Google Patents
Apparatus and method for image processing Download PDFInfo
- Publication number
- TWI382359B TWI382359B TW097106735A TW97106735A TWI382359B TW I382359 B TWI382359 B TW I382359B TW 097106735 A TW097106735 A TW 097106735A TW 97106735 A TW97106735 A TW 97106735A TW I382359 B TWI382359 B TW I382359B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- sub
- brightness
- module
- image processing
- Prior art date
Links
- 238000000034 method Methods 0.000 title description 20
- 238000003672 processing method Methods 0.000 claims description 15
- 238000001514 detection method Methods 0.000 claims description 12
- 230000000694 effects Effects 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000003708 edge detection Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
Landscapes
- Image Processing (AREA)
- Image Analysis (AREA)
Description
本發明係與影像處理有關,並且特別地,本發明係關於一種藉由邊緣偵測將影像劃分成多個子影像,並對各個子影像中之像素進行處理以提昇影像清晰度的影像處理裝置及方法。The present invention relates to image processing, and in particular, the present invention relates to an image processing apparatus for dividing an image into a plurality of sub-images by edge detection, and processing pixels in each sub-image to enhance image sharpness and method.
近年來,由於與影像處理相關之科技不斷地進步,許多影像處理方法均被用來改善影像中原本具有之某些缺點,以提昇影像之品質。In recent years, as the technology related to image processing has been continuously improved, many image processing methods have been used to improve some of the shortcomings inherent in images to enhance the quality of images.
舉例而言,一種稱為二值化(binarization)之影像處理方法被用以將原本具有灰階之一影像轉化成只有黑色及白色分佈的二值化影像(binary image)。對於一般具有256級亮度值的影像而言,0級亮度值係對應於黑色,而255級亮度值則對應於白色。For example, an image processing method called binarization is used to convert an image originally having a grayscale into a binary image with only black and white distribution. For an image with a 256-level luminance value, the 0-level luminance value corresponds to black, and the 255-level luminance value corresponds to white.
二值化影像處理方法係運用機率統計之原理找出該影像中之最佳亮度門檻值(threshold),區分出分屬兩個不同群集之畫素。只要亮度值高於門檻值之畫素,均令其為白色(例如亮度值設為255),反之,若畫素之亮度值低於門檻值,便令其為黑色(例如亮度值設為0)。此步驟之目的為突顯物體形狀之對比,透過影像處理中的二值化方法,可讓物體與背景呈現黑白兩極之資訊,以利後續步驟之處理。The binarized image processing method uses the principle of probability statistics to find the optimal brightness threshold in the image, and distinguishes the pixels belonging to two different clusters. As long as the pixel whose brightness value is higher than the threshold value, make it white (for example, the brightness value is set to 255). Conversely, if the brightness value of the pixel is lower than the threshold value, make it black (for example, the brightness value is set to 0) ). The purpose of this step is to highlight the contrast of the shape of the object. Through the binarization method in the image processing, the object and the background can be presented with black and white information for the subsequent steps.
然而,根據目前所採用之二值化影像處理方法所得到之影像處理結果,其實際效果並不夠理想。尤其當背景圖案較複雜或其顏色為深色時,很有可能因為某個影像區域中的部分畫素亮度值低於門檻值,而整個影像區域全部被當成黑色,因而造成經二值化處理後之影像中,可能會有原本不應該出現的一大片黑色區域之現象產生。However, according to the image processing results obtained by the currently used binarized image processing method, the actual effect is not satisfactory. Especially when the background pattern is complicated or the color is dark, it is very likely that the partial pixel brightness value in a certain image area is lower than the threshold value, and the entire image area is regarded as black, thus causing binarization. In the latter image, there may be a large black area that should not have appeared.
因此,本發明之主要範疇在於提供一種影像處理裝置及方法,以解決上述問題。Accordingly, it is a primary object of the present invention to provide an image processing apparatus and method to solve the above problems.
本發明係關於一種藉由子影像邊緣之偵測將影像劃分成多個子影像,並且分別對於子影像中之每一個像素進行亮度調整之影像處理裝置及方法。The present invention relates to an image processing apparatus and method for dividing an image into a plurality of sub-images by detecting a sub-image edge, and performing brightness adjustment for each pixel in the sub-image.
根據本發明之一具體實施例係一種影像處理裝置。該影像處理裝置包含一偵測模組、一劃分模組、一計算模組、一判斷模組及一調整模組。該偵測模組係用以偵測一影像中之至少一個子影像邊界。該劃分模組係電連接至該偵測模組,並係用以根據該至少一個子影像邊界將該影像劃分成複數個子影像,每一個子影像分別包含複數個畫素且各自對應於一亮度門檻值。該計算模組電連接至該劃分模組,用以分析每一個子影像區域所包含之複數個畫素的亮度,計算每一個子影像區域對應之一亮度門檻值。該判斷模組係電連接至該劃分模組及該計算模組,並係用以判斷該等子影像中之一目標子影像所包含該等畫素之一畫素的一亮度是否大於對應於該目標子影像之該亮度門檻值。該調整模組係電連接至該判斷模組。若該判斷模組之判斷結果為是,該調整模組提高該畫素之該亮度。另一方面,若該判斷模組之判斷結果為否,該調整模組降低該畫素之該亮度。An image processing apparatus according to an embodiment of the present invention is an image processing apparatus. The image processing device includes a detection module, a division module, a calculation module, a determination module and an adjustment module. The detection module is configured to detect at least one sub-image boundary in an image. The dividing module is electrically connected to the detecting module, and is configured to divide the image into a plurality of sub-images according to the at least one sub-image boundary, each of the sub-images respectively comprising a plurality of pixels and each corresponding to a brightness Threshold value. The computing module is electrically connected to the dividing module, and is configured to analyze brightness of a plurality of pixels included in each sub-image area, and calculate a brightness threshold corresponding to each sub-image area. The determining module is electrically connected to the dividing module and the computing module, and is configured to determine whether a brightness of a pixel of the pixel included in one of the sub-images of the sub-images is greater than corresponding to The brightness threshold of the target sub-image. The adjustment module is electrically connected to the determination module. If the judgment result of the determination module is yes, the adjustment module increases the brightness of the pixel. On the other hand, if the determination result of the determination module is no, the adjustment module reduces the brightness of the pixel.
相較於先前技術,根據本發明之影像處理裝置及影像處理方法係藉由偵測子影像邊緣將影像劃分成多個子影像,並分別對於子影像中之每一個像素進行亮度調整。由於根據本發明之影像處理裝置及影像處理方法可更正確地劃分出不同的子影像,因此不僅可以有效地提昇二值化影像處理之效果,使處理後之影像更為清晰,同時亦能改善當影像之背景圖案較複雜或其顏色較深時,會有一大片異常的黑色區域之現象發生。Compared with the prior art, the image processing device and the image processing method according to the present invention divide the image into a plurality of sub-images by detecting the edge of the sub-image, and perform brightness adjustment for each pixel in the sub-image. Since the image processing apparatus and the image processing method according to the present invention can more accurately divide different sub-images, the effect of the binarized image processing can be effectively improved, and the processed image can be made clearer and improved. When the background pattern of the image is more complicated or the color is darker, there will be a large abnormal black area.
關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.
根據本發明之第一具體實施例為一種影像處理裝置。請參照圖一,圖一係繪示該影像處理裝置之功能方塊圖。如圖一所示,影像處理裝置10包含一偵測模組12、一劃分模組14、一計算模組15、一判斷模組16及一調整模組18。A first embodiment of the present invention is an image processing apparatus. Please refer to FIG. 1. FIG. 1 is a functional block diagram of the image processing apparatus. As shown in FIG. 1 , the image processing device 10 includes a detection module 12 , a division module 14 , a calculation module 15 , a determination module 16 , and an adjustment module 18 .
接下來,將分別就影像處理裝置10包含之各模組所具有之功能進行詳細之介紹。Next, the functions of the respective modules included in the image processing apparatus 10 will be described in detail.
偵測模組12係用以偵測一影像中之至少一個子影像邊界。在實際應用中,該影像可以是一名片、一卡片、一相片或一文件。在該影像上可能包含各種圖案及文字。至於上述所謂的子影像邊界,指的是在該影像中所顯示的各個圖案或文字的邊緣。The detection module 12 is configured to detect at least one sub-image boundary in an image. In practical applications, the image can be a business card, a card, a photo or a file. Various images and text may be included on the image. As for the so-called sub-image boundary described above, it refers to the edge of each pattern or text displayed in the image.
劃分模組14係電連接至偵測模組12,並係用以根據該至少一個子影像邊界將該影像劃分成複數個子影像區域,其中每一個子影像區域分別包含複數個畫素。因此,假設影像處理裝置10之偵測模組12所偵測到的子影像邊界共有五個,則劃分模組14即會根據此五個子影像邊界將該影像劃分成六個子影像區域。The partitioning module 14 is electrically connected to the detecting module 12, and is configured to divide the image into a plurality of sub-image regions according to the at least one sub-image boundary, wherein each of the sub-image regions respectively includes a plurality of pixels. Therefore, if there are five sub-image boundaries detected by the detection module 12 of the image processing device 10, the division module 14 divides the image into six sub-image regions according to the five sub-image boundaries.
計算模組15係電連接至劃分模組14,用以分析每一個子影像區域所包含之複數個畫素的亮度,以計算出每一個子影像區域對應之一亮度門檻值。The computing module 15 is electrically connected to the dividing module 14 for analyzing the brightness of the plurality of pixels included in each of the sub-image areas to calculate a brightness threshold corresponding to each of the sub-image areas.
舉例而言,如圖二所示,在影像20中,影像處理裝置10之偵測模組12可偵測到兩個子影像邊緣22及24。此時,劃分模組14即可根據這兩個子影像邊緣22及24將影像20劃分成三個子影像區域A、B及C。其中每一個子影像區域A、B及C均分別包含複數個畫素。然後,影像處理裝置10之計算模組15再針對每一個子影像區域之複數個畫素,分別計算出每一子影像區域所對應的一亮度門檻值。For example, as shown in FIG. 2, in the image 20, the detection module 12 of the image processing apparatus 10 can detect two sub-image edges 22 and 24. At this time, the dividing module 14 can divide the image 20 into three sub-image areas A, B and C according to the two sub-image edges 22 and 24. Each of the sub-image areas A, B, and C respectively includes a plurality of pixels. Then, the calculation module 15 of the image processing apparatus 10 calculates a brightness threshold corresponding to each sub-image area for each of the plurality of pixels of each sub-image area.
在上述之例子中,無論是子影像區域A、B或C,其子影像區域內並未包含其他的圖案或文字。請參照圖三,圖三係繪示另一個範例。如圖三所示,在影像30中,根據本發明之影像處理裝置10中的偵測模組12,除了可偵測到如同圖二所示之兩個子影像邊緣22及24外,還可偵測到另一個子影像邊緣26。此時,劃分模組14即可根據這三個子影像邊緣22、24及26,將影像20劃分成四個子影像區域A、B、C及D。In the above example, no other pattern or character is included in the sub-image area, regardless of the sub-image area A, B or C. Please refer to Figure 3, which shows another example. As shown in FIG. 3, in the image 30, the detecting module 12 in the image processing apparatus 10 according to the present invention can detect the two sub-image edges 22 and 24 as shown in FIG. Another sub-image edge 26 is detected. At this time, the dividing module 14 can divide the image 20 into four sub-image areas A, B, C and D according to the three sub-image edges 22, 24 and 26.
值得注意的是,由於子影像區域D實際上係包含於子影像區域B之範圍內,所以若未將子影像區域D單獨劃分出來,而直接利用子影像區域B進行傳統的二值化影像處理程序的話,最後所得到之結果影像很有可能會失真。It should be noted that since the sub-image area D is actually included in the sub-image area B, if the sub-image area D is not separately divided, the sub-image area B is directly used for conventional binarized image processing. In the case of the program, the resulting image is likely to be distorted.
因此,在本發明中,影像處理裝置10中的偵測模組12扮演著相當重要之角色,若偵測模組12能夠正確無誤地偵測出影像中包含之所有子影像邊緣,則劃分模組14即可根據這些偵測出的子影像邊緣,正確地將影像劃分成多個子影像區域。Therefore, in the present invention, the detection module 12 in the image processing apparatus 10 plays a very important role. If the detection module 12 can correctly detect all the sub-image edges included in the image, the division mode Group 14 can correctly divide the image into multiple sub-image areas based on the detected sub-image edges.
判斷模組16係電連接至劃分模組14及計算模組15,並係用以判斷該等子影像區域中之一目標子影像區域所包含該等畫素之一畫素的一亮度是否大於對應於該目標子影像區域之該亮度門檻值。The determining module 16 is electrically connected to the dividing module 14 and the computing module 15 and is configured to determine whether a brightness of one of the pixels of the target sub-image area in the sub-image areas is greater than Corresponding to the brightness threshold value of the target sub-image area.
也就是說,每一個子影像區域均分別具有一亮度門檻值,而判斷模組16將會分別判斷在某一目標子影像區域中,其所包含的每一個畫素之亮度是否大於該目標子影像區域之亮度門檻值。That is to say, each sub-image area has a brightness threshold value, and the determination module 16 will respectively determine whether the brightness of each pixel included in a target sub-image area is greater than the target sub-image. The brightness threshold of the image area.
至於該目標子影像區域所具有之該亮度門檻值,係運用機率統計之原理,例如使用習知的Otsu's方法,自該目標子影像區域所包含之所有畫素的亮度值中,選擇出最佳之一亮度門檻值。As for the brightness threshold value of the target sub-image area, the principle of probability statistics is used, for example, using the conventional Otsu's method, selecting the best among the brightness values of all the pixels included in the target sub-image area. One of the brightness threshold values.
調整模組18係電連接至判斷模組16,若判斷模組16之判斷結果為是,調整模組18提高該畫素之該亮度。另一方面,若判斷模組16之判斷結果為否,調整模組18降低該畫素之該亮度。The adjustment module 18 is electrically connected to the determination module 16. If the determination result of the determination module 16 is yes, the adjustment module 18 increases the brightness of the pixel. On the other hand, if the determination result of the determination module 16 is negative, the adjustment module 18 lowers the brightness of the pixel.
在實際應用中,由於不同的子影像區域分別具有不同的亮度門檻值,因此,影像處理裝置10針對某一目標子影像區域包含之畫素進行二值化影像處理時,對應於該目標子影像區域之該亮度門檻值,即為該目標子影像區域進行二值化處理所需之亮度門檻值。In practical applications, since the different sub-image regions respectively have different brightness threshold values, when the image processing device 10 performs binarized image processing on the pixels included in a certain target sub-image region, corresponding to the target sub-image The brightness threshold value of the area is the brightness threshold value required for binarization processing of the target sub-image area.
一般而言,若判斷模組16判斷該目標子影像中之某一畫素的亮度大於該子影像之亮度門檻值時,調整模組18即會將該畫素之亮度調整至白色(例如亮度值設為255)。另一方面,若判斷模組16判斷該目標子影像中之某一畫素的亮度小於該子影像之亮度門檻值時,調整模組18即會將該畫素之亮度調整至黑色(例如亮度值設為0)。但使用者亦可隨著其實際之需要設定第一亮度值及第二亮度值為任何亮度值,甚至可藉此形成某些特殊之影像效果,故並不以此例為限。Generally, if the determining module 16 determines that the brightness of a pixel in the target sub-image is greater than the brightness threshold of the sub-image, the adjustment module 18 adjusts the brightness of the pixel to white (for example, brightness). The value is set to 255). On the other hand, if the determining module 16 determines that the brightness of a pixel in the target sub-image is less than the brightness threshold of the sub-image, the adjustment module 18 adjusts the brightness of the pixel to black (for example, brightness). The value is set to 0). However, the user may set the first brightness value and the second brightness value to any brightness value according to their actual needs, and may even form some special image effects, and thus is not limited to this example.
根據本發明之第二具體實施例為一種影像處理方法。請參照圖四,圖四係繪示該影像處理方法之流程圖。A second embodiment of the present invention is an image processing method. Please refer to FIG. 4, which is a flow chart showing the image processing method.
如圖四所示,首先,該方法執行步驟S1,偵測一影像中之至少一個子影像邊界。在實際應用中,該影像可以是一名片、一卡片、一相片或一文件。在該影像上可能包含各種圖案及文字。至於上述所謂的子影像邊界,指的是在該影像中所顯示的各個圖案或文字的邊緣。As shown in FIG. 4, first, the method performs step S1 to detect at least one sub-image boundary in an image. In practical applications, the image can be a business card, a card, a photo or a file. Various images and text may be included on the image. As for the so-called sub-image boundary described above, it refers to the edge of each pattern or text displayed in the image.
接著,該方法執行步驟S2,根據該至少一個子影像邊界將該影像劃分成複數個子影像區域。其中每一個子影像區域分別包含複數個畫素。例如該方法若偵測到三個子影像邊界,則該方法即會根據此三個子影像邊界,將該影像劃分成四個子影像區域。Next, the method performs step S2, and divides the image into a plurality of sub-image regions according to the at least one sub-image boundary. Each of the sub-image areas respectively includes a plurality of pixels. For example, if the method detects three sub-image boundaries, the method divides the image into four sub-image areas according to the three sub-image boundaries.
之後,該方法執行步驟S3,根據每一個子影像區域所包含之複數個畫素計算每一個子影像區域對應之一亮度門檻值。Then, the method performs step S3, and calculates a brightness threshold corresponding to each sub-image area according to the plurality of pixels included in each sub-image area.
接著,該方法執行步驟S4,判斷該等子影像中之一目標子影像所包含之一畫素的一亮度是否大於對應於該目標子影像區域之該亮度門檻值。也就是說,每一個子影像區域均分別具有一亮度門檻值,而在步驟S4中,該方法將會分別判斷在某一目標子影像區域中,其所包含的每一個畫素之亮度是否大於該子影像區域之亮度門檻值。Then, the method performs step S4 to determine whether a brightness of one of the pixels included in one of the target sub-images is greater than the brightness threshold corresponding to the target sub-image area. That is to say, each sub-image area has a brightness threshold value, and in step S4, the method will respectively determine whether the brightness of each pixel included in a certain target sub-image area is greater than The brightness threshold of the sub-image area.
至於該目標子影像區域所具有之該亮度門檻值,係運用機率統計之原理,例如使用習知的Otsu's方法,自該目標子影像區域所包含之所有畫素的亮度中,選擇出最佳之一亮度門檻值。As for the brightness threshold value of the target sub-image area, the principle of probability statistics is used, for example, using the conventional Otsu's method, the best is selected from the brightness of all the pixels included in the target sub-image area. A brightness threshold.
接下來,根據步驟S4之判斷結果不同,該方法將會執行不同之步驟。若步驟S4之判斷結果為是,該方法執行S5,提高該畫素之該亮度。另一方面,若步驟S4之判斷結果為否,該方法執行S6,降低該畫素之該亮度。Next, according to the judgment result of step S4, the method will perform different steps. If the result of the determination in step S4 is YES, the method executes S5 to increase the brightness of the pixel. On the other hand, if the result of the determination in the step S4 is NO, the method executes S6 to lower the brightness of the pixel.
在實際應用中,若該方法執行步驟S4所得到之判斷結果為:該目標子影像區域中之某一畫素的亮度大於該子影像區域之亮度門檻值時,該畫素之亮度一般會被調整至白色(例如亮度值設為255)。另一方面,若該方法執行步驟S4所得到之判斷結果為:該子影像區域中之某一畫素的亮度小於該子影像區域之亮度門檻值時,該畫素之亮度一般會被調整至黑色(例如亮度值設為0)。然而,使用者亦可隨實際之需要設定第一亮度值及第二亮度值為任何亮度值,故並不以此例為限。In practical applications, if the method performs the step S4, the result of the determination is that if the brightness of a pixel in the target sub-image area is greater than the brightness threshold of the sub-image area, the brightness of the pixel is generally Adjust to white (for example, the brightness value is set to 255). On the other hand, if the method performs the step S4, the result of the determination is that when the brightness of a pixel in the sub-image area is smaller than the brightness threshold of the sub-image area, the brightness of the pixel is generally adjusted to Black (for example, the brightness value is set to 0). However, the user can also set the first brightness value and the second brightness value to any brightness value as needed, and thus is not limited by this example.
相較於先前技術,根據本發明之影像處理裝置及影像處理方法係藉由偵測子影像邊緣將影像劃分成多個子影像,並分別對於各子影像中之每一個像素進行亮度調整。由於根據本發明之影像處理裝置及影像處理方法可更正確地劃分出不同的子影像,因此不僅可以有效地提昇二值化影像處理之效果,使處理後之影像更為清晰,同時亦能改善當影像之背景圖案較複雜或其顏色較深時,會有一大片異常的黑色區域之現象發生。Compared with the prior art, the image processing apparatus and the image processing method according to the present invention divide the image into a plurality of sub-images by detecting the edge of the sub-image, and respectively perform brightness adjustment for each pixel in each sub-image. Since the image processing apparatus and the image processing method according to the present invention can more accurately divide different sub-images, the effect of the binarized image processing can be effectively improved, and the processed image can be made clearer and improved. When the background pattern of the image is more complicated or the color is darker, there will be a large abnormal black area.
藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。The features and spirit of the present invention will be more apparent from the detailed description of the preferred embodiments. On the contrary, the intention is to cover various modifications and equivalents within the scope of the invention as claimed.
S1~S6...流程步驟S1~S6. . . Process step
10...影像處理裝置10. . . Image processing device
12...偵測模組12. . . Detection module
14...劃分模組14. . . Partition module
15...計算模組15. . . Computing module
16...判斷模組16. . . Judging module
18...調整模組18. . . Adjustment module
20、30...影像20, 30. . . image
22、24、26...子影像邊緣22, 24, 26. . . Sub-image edge
A、B、C、D...子影像區域A, B, C, D. . . Sub-image area
圖一係繪示根據本發明之第一具體實施例之影像處理裝置的功能方塊圖。1 is a functional block diagram of an image processing apparatus according to a first embodiment of the present invention.
圖二及圖三係各自繪示一影像範例。Figure 2 and Figure 3 each show an example of an image.
圖四係繪示根據本發明之第二具體實施例之影像處理方法的流程圖。4 is a flow chart showing an image processing method according to a second embodiment of the present invention.
10...影像處理裝置10. . . Image processing device
12...偵測模組12. . . Detection module
14...劃分模組14. . . Partition module
15...計算模組15. . . Computing module
16...判斷模組16. . . Judging module
18...調整模組18. . . Adjustment module
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW097106735A TWI382359B (en) | 2008-02-27 | 2008-02-27 | Apparatus and method for image processing |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW097106735A TWI382359B (en) | 2008-02-27 | 2008-02-27 | Apparatus and method for image processing |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW200937347A TW200937347A (en) | 2009-09-01 |
| TWI382359B true TWI382359B (en) | 2013-01-11 |
Family
ID=44867037
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW097106735A TWI382359B (en) | 2008-02-27 | 2008-02-27 | Apparatus and method for image processing |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI382359B (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW366476B (en) * | 1998-08-01 | 1999-08-11 | Penpower Technology Ltd | Document image binarization by two-layer block extracting and background color determining |
| TW200802137A (en) * | 2006-06-16 | 2008-01-01 | Univ Nat Chiao Tung | Serial-type license plate recognition system |
-
2008
- 2008-02-27 TW TW097106735A patent/TWI382359B/en not_active IP Right Cessation
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW366476B (en) * | 1998-08-01 | 1999-08-11 | Penpower Technology Ltd | Document image binarization by two-layer block extracting and background color determining |
| TW200802137A (en) * | 2006-06-16 | 2008-01-01 | Univ Nat Chiao Tung | Serial-type license plate recognition system |
Non-Patent Citations (1)
| Title |
|---|
| 鄭凌軒, 碩士學位論文, 國立中山大學, 2005/06 郭融, 碩士學位論文, 逢甲大學, 2008/01/10 陳永健碩士論文,"適用於數位視訊中移動字幕之偵測、定位以及擷取之方法"。2005年7月 200937347 98/09/01 圖一係繪示根據本發明之第一具體實施例之影像處理裝置的功能方塊圖。 圖二及圖三係各自繪示一影像範例。 圖四係繪示根據本發明之第二具體實施例之影像處理方法的流程圖。 1.一種影像處理裝置,包含:一偵測模組,用以偵測一影像中之 * |
Also Published As
| Publication number | Publication date |
|---|---|
| TW200937347A (en) | 2009-09-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN109242853B (en) | An intelligent detection method for PCB defects based on image processing | |
| US7379594B2 (en) | Methods and systems for automatic detection of continuous-tone regions in document images | |
| CN105453153B (en) | Traffic lights detects | |
| CN102385753B (en) | An Adaptive Image Segmentation Method Based on Illumination Classification | |
| US8594411B2 (en) | Pathologic tissue image analyzing apparatus, pathologic tissue image analyzing method, and pathologic tissue image analyzing program | |
| CN109146878A (en) | A kind of method for detecting impurities based on image procossing | |
| US10438376B2 (en) | Image processing apparatus replacing color of portion in image into single color, image processing method, and storage medium | |
| CN110648330B (en) | Defect detection method for camera glass | |
| CN114937003B (en) | A multi-type defect detection system and method for glass panels | |
| CN108205671A (en) | Image processing method and device | |
| US20120320433A1 (en) | Image processing method, image processing device and scanner | |
| CN102509095B (en) | Number plate image preprocessing method | |
| CN104361335B (en) | A kind of processing method that black surround is automatically removed based on scan image | |
| CN114155573B (en) | Race identification method and device based on SE-ResNet network and computer storage medium | |
| CN108875759A (en) | A kind of image processing method, device and server | |
| CN105701491A (en) | Method for making fixed-format document image template and application thereof | |
| CN117934389A (en) | Image detection method and scanning quality detection method, apparatus and storage medium | |
| CN103500457A (en) | Method of color cast detection of video image | |
| CN105303190A (en) | Quality-reduced file image binarization method based on contrast enhancing method | |
| CN104156703A (en) | License plate location method and system based on color texture | |
| CN119540205A (en) | Method and system for inspecting residual film on IC substrate | |
| CN106951902B (en) | Image binarization processing method and device | |
| TWI498830B (en) | A method and system for license plate recognition under non-uniform illumination | |
| CN101291384B (en) | Method for separating image and text and enhancing text | |
| TWI382359B (en) | Apparatus and method for image processing |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MM4A | Annulment or lapse of patent due to non-payment of fees |