[go: up one dir, main page]

TWI325695B - Phase-frequency detector capable of reducing dead-zone range - Google Patents

Phase-frequency detector capable of reducing dead-zone range Download PDF

Info

Publication number
TWI325695B
TWI325695B TW95143175A TW95143175A TWI325695B TW I325695 B TWI325695 B TW I325695B TW 95143175 A TW95143175 A TW 95143175A TW 95143175 A TW95143175 A TW 95143175A TW I325695 B TWI325695 B TW I325695B
Authority
TW
Taiwan
Prior art keywords
coupled
output
circuit
input
phase frequency
Prior art date
Application number
TW95143175A
Other languages
Chinese (zh)
Other versions
TW200744322A (en
Inventor
Sen You Liu
pi an Wu
Original Assignee
Via Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Via Tech Inc filed Critical Via Tech Inc
Publication of TW200744322A publication Critical patent/TW200744322A/en
Application granted granted Critical
Publication of TWI325695B publication Critical patent/TWI325695B/en

Links

Landscapes

  • Manipulation Of Pulses (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

1325695 - 九、發明說明: • 【發明所屬之技術領域】 本發明相關於一種相位頻率偵測器,尤指一種可降低死 區範圍之相位頻率偵測器。 【先前技術】 在先前技術的鎖相迴路(phase lock: loop,PLL)架構中, 主要是利用一相位頻率積測器(phase-frequency detector, • PFD)來分別檢測一輸入訊號與一反饋訊號間的相位及頻 率差異,依據相位頻率偵測器檢測的結果,藉由一電荷泵 (charge pump )、一迴路濾波器(loop filter)和一壓控震烫器 (voltage-controlled oscillator,VCO )來調整鎖相迴路電 路中的運作,直到反饋訊號之頻率及相位與輸入訊號相匹 配為jil。 請參考第1圖,其為先前技術中一鎖相迴路1 〇〇之功能 方塊圖。鎖相迴路100包含有一相位頻率偵測器U0、一 電祷泵120、一迴路濾波器Go、一壓控震盪器14〇,以及 一除頻器(frequency divider) 150。相位頻率偵測器110偵測 時脈訊號F1N和Fref之間頻率和相位的差異,並產生相對 應的輸出時脈訊號up &輸出時脈訊號D〇WN,以決定是 =需要向前或向後調整時脈訊號Fref之相位。接下來,電 何栗120依據輸出時脈訊號up及輸出時脈訊號來 1325695 ::產生相對應之控制電流訊號至迴路滤波器130,迴路遽波 •器"Ο再依據控制電流訊號產生相對應之控制電壓訊號至 -壓控震盈器14〇,最後壓控震盈器M0依據控制訊號 產生相對應之輸出時脈訊號‘τ。同時,輸出時脈訊號 亦會透過除頻器150回授至相位頻㈣測器110,除頻器 150依據輸出時脈訊號F〇-產生時脈訊號FREF,使得輸出 時脈訊號F0UT和時脈訊號Fref之頻率具有倍數關係。如 此’鎖相迴路100可透過此回授調整時脈訊號F啦之相 位’直到時脈訊號F|N和時脈訊號Fref之頻率及相位相匹 配為止。 心著南頻應用的增加,鎖相迴路的功能也需提昇。請 參考第2圖,其為先前技術令相位頻率積測器之輸出訊號 圖。在第2圖中,縱軸代表相位頻率偵測器之輸出訊號平 均值(亦即輸出時脈訊號U p及輪出時脈訊號d 〇娜平均值) 瞻之電虔準位VAVG,而橫轴代表時脈訊號‘和時脈訊號^ 之間的相位差△〇。在如第2圖中所示的為理想情形下相 位頻率偵測器之輸出訊號平均值的直流電壓準位乂桃和 相位差ΔΦ成正比。然而’相位頻率偵測器實際上運作時 .會產生兩種不理想的輸出區域:㈣(dead_zQne)和盲區 •⑽。死區發生在當時脈訊號fin和時脈訊號Fref 之間的相位差△Φ很小時,由於時脈訊號^和時脈訊號 FREF之訊號上升邊緣(risingedge)過於接近,使得輸出時脈 1325695 訊號UP及輸出時脈訊號D0WN沒有足夠 於相位差之準位,因此電荷㈣和迴路遽 所產生之㈣電壓訊號會較小,使的相位頻率_器益法 正確地調整時脈訊號f,n和時脈訊號^之間的相位差△ Φ。盲區發生在當時脈訊號Fin和時脈訊號?_之 位差ΔΦ為2;τ的倍數時’相位解制器之重置和下一 週期的訊號上升邊緣傳來的時間十分接近,使得相位頻率 ,無法正確判斷相位差Δφ之值。好的相位頻率谓測 器不但而要降低死區和盲區的範圍,亦希望使用較少的主 動元件,以減少鎖相迴路之雜訊。 清參考第3圖,其為先前技術中使用Rs觸發器 (flip-flop)之相位頻率偵測器3〇〇之功能方塊圖。相位頻率 谓測器300包含兩RS觸發器31〇、32〇和一及閘(and gate)33〇cRS 觸發器 31〇 及 320 為邊緣觸發(edge_trigger), • 當其R端和s端接受到之訊號在上升邊緣時,其Q端會產 生相對應的輸出。RS觸發器310及320之S端分別接收時 脈訊號F1N和時脈訊號Fref,RS觸發器31〇及32〇之r端 接收及閘330產生之重置訊號freset,RS觸發器310及320 、· 之Q多而分別產生相位頻率偵測器300之兩輸出時脈訊號up •和 DOWN。 凊參考第4圖’其為先前技術中之相位頻率偵測器3〇〇 1325695 種狀:=)示意圖。相靖 =:⑴輪出時脈訊號料輪出時脈訊號 邏輯電位m㈣位(邏輯g);(2)輸出時脈訊號w具低 == 訊號d_具高邏.輯電位(邏輯】):1325695 - IX. Description of the invention: • Technical field to which the invention pertains The invention relates to a phase frequency detector, and more particularly to a phase frequency detector capable of reducing the dead zone range. [Prior Art] In the prior art phase lock (loop, PLL) architecture, a phase-frequency detector (PFD) is mainly used to detect an input signal and a feedback signal, respectively. The phase and frequency difference between the two, according to the result of the phase frequency detector detection, by a charge pump, a loop filter and a voltage-controlled oscillator (VCO) To adjust the operation in the phase-locked loop circuit until the frequency and phase of the feedback signal match the input signal as jil. Please refer to FIG. 1 , which is a functional block diagram of a phase locked loop 1 先前 in the prior art. The phase locked loop 100 includes a phase frequency detector U0, an electric prayer pump 120, a loop filter Go, a voltage controlled oscillator 14A, and a frequency divider 150. The phase frequency detector 110 detects the difference in frequency and phase between the clock signals F1N and Fref, and generates a corresponding output clock signal up & output the clock signal D〇WN to determine whether it is necessary to forward or Adjust the phase of the clock signal Fref backwards. Next, the electric Heli 120 according to the output clock signal up and the output clock signal to 1325695:: generate corresponding control current signal to the loop filter 130, the circuit chopping device " then according to the control current signal generation phase Corresponding control voltage signal to - voltage controlled oscillator 14 〇, finally voltage controlled oscillator M0 generates corresponding output clock signal 'τ according to the control signal. At the same time, the output clock signal is also fed back to the phase frequency (four) detector 110 through the frequency divider 150. The frequency divider 150 generates the clock signal FREF according to the output clock signal F〇, so that the output clock signal F0UT and the clock are output. The frequency of the signal Fref has a multiple relationship. Thus, the phase-locked loop 100 can adjust the phase of the clock signal F through the feedback until the frequency and phase of the clock signal F|N and the clock signal Fref match. With the increase in the application of the south frequency, the function of the phase-locked loop needs to be improved. Please refer to Figure 2, which is the output signal diagram of the phase frequency accumulator of the prior art. In Fig. 2, the vertical axis represents the average value of the output signal of the phase frequency detector (that is, the output clock signal U p and the rounded pulse signal d 〇 平均值 average). The axis represents the phase difference Δ〇 between the clock signal 'and the clock signal ^. In the ideal case as shown in Fig. 2, the DC voltage level of the output signal average of the phase frequency detector is proportional to the phase difference ΔΦ. However, when the phase frequency detector actually operates, there are two undesirable output areas: (d) (dead_zQne) and dead zone (10). The dead zone occurs when the phase difference ΔΦ between the pulse signal fin and the clock signal Fref is small, because the rising edge of the signal of the clock signal and the clock signal FREF is too close, so that the output clock 1325695 signal is UP. And the output clock signal D0WN is not enough to the level difference, so the charge signal (4) and the voltage signal generated by the circuit 会 will be smaller, so that the phase frequency _ _ _ _ _ _ _ _ _ _ _ _ _ _ The phase difference Δ Φ between the pulse signals ^. The blind spot occurred at the time of the pulse signal Fin and the clock signal? The difference ΔΦ of _ is 2; when the multiple of τ is used, the reset of the phase resolver and the time of the rising edge of the signal of the next cycle are very close, so that the phase frequency cannot correctly determine the value of the phase difference Δφ. A good phase frequency detector not only reduces the range of dead zones and dead zones, but also uses fewer active components to reduce the noise of the phase-locked loop. Referring to Figure 3, it is a functional block diagram of a phase frequency detector 3 using a flip-flop in the prior art. The phase frequency prescaler 300 includes two RS flip-flops 31〇, 32〇 and an AND gate 33〇cRS flip-flops 31〇 and 320 for edge triggering (edge_trigger), • when its R terminal and s terminal are received When the signal is on the rising edge, its Q end will produce a corresponding output. The S terminals of the RS flip-flops 310 and 320 respectively receive the clock signal F1N and the clock signal Fref, the r-ends of the RS flip-flops 31 and 32, and the reset signals generated by the gate 330, the RS flip-flops 310 and 320, · The Q of the phase frequency detector 300 generates two output clock signals up and DOWN, respectively.凊 Refer to Fig. 4' which is a schematic diagram of the phase frequency detector 3〇〇 1325695 in the prior art: =).相靖=:(1) Turning out the clock signal to turn out the clock signal logic potential m (four) bit (logic g); (2) output clock signal w with low == signal d_ with high logic. series potential (logic) :

DcZl W具高邏輯電位,而輸出時脈訊號 DO WN具低邏輯電位。舍於 號_N皆且低雜雪二 ⑽和輸出時脈訊 F 白具低邏輯電位(邏輯〇),一旦_到時脈訊號 脈I號緣時’則會跳到另一狀態’也就是輸出時 ^ ^邏輯電位’而輸出時脈訊號加簡 =位,此物貞測到時脈訊號F之訊號上升邊緣時, 則會跳回原來的狀態,也就是輸出時脈訊號-UP和輸出時 ^號DOWN皆具低邏輯電位。當輸出時脈訊號夺 出時脈訊號DO職皆具低邏輯電位(邏輯〇),一旦_ ^訊號Fref之訊號上升邊緣時,則會跳到另一狀態,也 2輸出時脈訊號ϋΡ具低邏輯電位,而輸出時脈訊號 • OWN具高邏輯電位(邏輯丨),此時若偵測到時 =號上升邊緣時,則會跳回原來的狀態,也就是輸出時 脈讯號UP和輸出時脈訊號D〇WN皆具低邏輯電位。 、· α參考第5圖’其為先前技術中-相位頻貞測器5〇〇 .之電路圖。相位頻率偵測器包含兩脈衝產生器512和 切 ' 兩問鎖電路514和似、—重置控制電路训,以及 反向器51、52。相位頻率偵測器5〇〇之第一和第二輸入端 1325695 ; 分別接收時脈訊號f1n和時脈訊號fref,並於其第一和第 *"· 二輸出端分別產生輸出時脈訊號UP和輸出時脈訊號 DOWN。 閃鎖電路514和524各包含反向53、54和反向哭 55、56 ’反向器53之輸入端和輸出端分別麵接於和反向器 54之輸出端和輸入端,反向器55之輸入端和輸出端分別 耦接於和反向器56之輸出端和輸入端,如此閂鎖電路514 #和524在其輸出端能提供高邏輯電位或低邏輯電位(邏輯1 或邏輯0)。 . ·. _ 重置控制電路510包含兩P型金氧半電晶體(P-typeDcZl W has a high logic potential, while the output clock signal DO WN has a low logic potential. The number is _N and the low snow 2 (10) and the output pulse F white low logic potential (logic 〇), once _ to the clock signal I edge, 'will jump to another state' When outputting ^ ^ logic potential ' and outputting the clock signal plus Jane = bit, when the object detects the rising edge of the signal of the clock signal F, it will jump back to the original state, that is, output the clock signal - UP and output When the ^ number DOWN has a low logic potential. When the output clock signal is captured, the pulse signal DO has a low logic potential (logic 〇). Once the signal of the _ ^ signal Fref rises, it will jump to another state, and the output pulse signal will be low. Logic potential, and the output clock signal • OWN has a high logic potential (logic 丨). If the rising edge of the = sign is detected, it will jump back to the original state, that is, output the pulse signal UP and output. The clock signal D〇WN has a low logic potential. , α refers to Fig. 5' which is a circuit diagram of the prior art-phase frequency detector 5〇〇. The phase frequency detector includes two pulse generators 512 and a cut 'two-lock circuit 514 and a reset control circuit, and inverters 51, 52. The first and second input terminals 1325695 of the phase frequency detector 5 receive the clock signal f1n and the clock signal fref, respectively, and generate output clock signals at the first and the first " UP and output clock signal DOWN. The flash lock circuits 514 and 524 each include a reverse 53, 54 and a reverse cry 55, 56 'the input and output of the inverter 53 are respectively connected to the output and input of the inverter 54 respectively, the inverter The input and output of 55 are coupled to the output and input of inverter 56, respectively, such that latch circuits 514 # and 524 can provide a high logic potential or a low logic potential (logic 1 or logic 0) at their outputs. ). _ Reset control circuit 510 includes two P-type MOS transistors (P-type)

. · metal-oxide semiconductor transistor * PMOS transistor)TRESET、兩 N 型金氧半電晶體(N-type metal-oxide semiconductor transistor,’ NMOS transistor)Tlso、一 反及閘 (NAND gate)50,以及反向器57、58。當閂鎖電路$14和 524之輸出端具低邏輯電位時’電晶體Tiso會被關閉,使 得閂鎖電路514和524分別和脈衝產生器512和522電性 分離。反及閘50之兩輸入端分別透過反向器57和58耦接 至閂鎖電路514和524之輸出端,當閂鎖電路514和524 '之輸出端皆具低邏輯電位時’反及閘50會於其輸出端送出 一重置訊號FRESEt 以開啟(使短路)電晶體TrEset,如此閃鎖 電路514和524之輸出端會被重置而具有高邏輯電位。 1325695 . 脈衝產生器512和522各包含兩N型金氧半電晶體Metal-oxide semiconductor transistor * PMOS transistor) TRESET, N-type metal-oxide semiconductor transistor ('NMOS transistor) Tlso, NAND gate 50, and reverse 57, 58. When the outputs of latch circuits $14 and 524 have a low logic potential, transistor Tiso is turned off, causing latch circuits 514 and 524 to be electrically separated from pulse generators 512 and 522, respectively. The two input terminals of the anti-gate 50 are coupled to the outputs of the latch circuits 514 and 524 through inverters 57 and 58, respectively, and the gates of the latch circuits 514 and 524' have low logic potentials. 50 will send a reset signal FRESEt at its output to turn on (make short) the transistor TrEset, so that the outputs of the flash lock circuits 514 and 524 are reset to have a high logic potential. 1325695. Pulse generators 512 and 522 each comprise two N-type gold oxide semi-transistors

Tstart和TSTOP ’以及分別包含反向器59和60。脈衝產生 器512和522之電晶體Tstart的閘極分別搞接至相位頻率 偵測器500之第一和第二輸入端,而脈衝產生器512和522 之電晶體TST0P的閘極則分別透過反向器59和60搞接至相 位頻率偵測器500之第一和第二輸入端,可偵測時脈訊號 Fin和時脈訊號Fref。由於反向器59和60搞接於電晶體 • 丁start和Tstop之閘極之間,可提供訊號延遲以分別控制脈 衝產生器512和522所產生之時脈訊號。 先前技術中之相位頻率偵測器5〇〇藉由反向器來提供 訊號延遲以控制脈衝產生器所產生之時脈訊號:以達到如. 第4圖所不之二態運作。然而,每一反向器的内部特性不 盡相同’也可能因為製程因素造成其特性偏離預定值,使 _得相位頻率偵測器無法有效運作。 【發明内容】 本發明提供了另-種架構之可降低死區範圍之相位 重置控制電路、一第—脈衝產生 H輸人端所接收到之輸入訊 於其第與第二輸出端產生相對應之輸出訊號,該相 :頻率情測器包含一第一閃鎖電路、一第二閃鎖電路、一 器 第二脈衝產生器Tstart and TSTOP' and inverters 59 and 60, respectively. The gates of the transistors Tstart of the pulse generators 512 and 522 are respectively coupled to the first and second inputs of the phase frequency detector 500, and the gates of the transistors TST0P of the pulse generators 512 and 522 are respectively transmitted through the opposite The transmitters 59 and 60 are coupled to the first and second inputs of the phase frequency detector 500 to detect the clock signal Fin and the clock signal Fref. Since the inverters 59 and 60 are connected between the gates of the transistor and the gate of Tstop, a signal delay can be provided to control the clock signals generated by the pulse generators 512 and 522, respectively. The phase frequency detector 5 of the prior art provides a signal delay by an inverter to control the clock signal generated by the pulse generator: to achieve the two-state operation as shown in Fig. 4. However, the internal characteristics of each inverter are not the same', and the characteristics may deviate from the predetermined value due to process factors, so that the phase frequency detector cannot operate effectively. SUMMARY OF THE INVENTION The present invention provides a phase reset control circuit that can reduce the dead zone range of another architecture, and a first pulse generated by the first pulse output H input terminal is generated at the first and second output ends thereof. Corresponding output signal, the phase: the frequency detector comprises a first flash lock circuit, a second flash lock circuit, and a second pulse generator

lJZDO^J ;一第一反向電路、一第- _ ,及一第H 第-反向電路、-第-感測元件,以 • 第一感測70件0該第一閂鎖雷技夕笙一 位頻率偵測器之第一輸出端。該第二問鎖㈣之 =Γ:Τ貞測器之第二輸出端,置控制電路輕 写之第-矛第二閃鎖電路之第二端以及該相位頻率偵測 应第1出端’用來依據該相位頻率偵測器第-第分別產生相對應之訊號至該第-和 _ * 路之第二端。該第—脈衝產生器包含-第一輪lJZDO^J; a first reverse circuit, a first - _, and a Hth first-reverse circuit, a -th sense element, to • the first sense 70 pieces 0 the first latch lightning eve第一 The first output of a frequency detector. The second question lock (4) = Γ: the second output end of the detector, the second end of the second flash lock circuit of the first spear of the control circuit and the phase frequency detection should be the first end And correspondingly generating corresponding signals according to the phase frequency detector to the second end of the first and the _* paths respectively. The first pulse generator includes - the first round

入端’搞接於該相位頻率偵測器之第—輸人端卜第二J =’·以及-輸出端,耗接於該第—㈣電路之第二端; 二脈衝產生器包含—第—輸·人端,_於該相位頻率 偵測器之第二輪入诚.一货认 貝手 接於該第二關電路之第以及-輸出端,轉 ”貝电硌之第一端。該第-反向電路包含一輪 入端’搞接於該相位頻率请測器之第一輸入端;以及一輪. 出端,耗接於該第-脈衝產生器,之第二輸人端。該第二」 °電路13.輸入端,耗接於該相位頻率谓測器之第二輸 入端’·以及-輸出端,耦接於該第二脈衝產生器之第二輸, :端二該第-感測元件包含一第.一端,耦接於該第一脈衝 、生益之第二輸人端;—第二端,祕於該第—反向電路; 以及控制端’輕接於該第ϋ鎖電路之第二端。該第二 感測7L件包含一第―端’純於該第二脈衝產生器之第二 輸入端’·—第二端’輕接於該第二反向電路;以及一控制 端,耦接於該第二閂鎖電路之第二端。The input terminal is connected to the first phase of the phase frequency detector - the second terminal J = '· and the output terminal is consumed by the second end of the first (four) circuit; the second pulse generator includes - - The input terminal, _ in the second round of the phase frequency detector. The first hand is connected to the first and the output of the second circuit, and is turned to the first end of the battery. The first-inverting circuit includes a round-ended end that is connected to the first input end of the phase frequency detector; and a round. the output end is consumed by the first-pulse generator, and the second input end. The second input circuit is connected to the second input end of the phase frequency detector, and the output terminal is coupled to the second output of the second pulse generator. The sensing component includes a first end coupled to the first pulse and a second input end of the benefit; the second end is secretive to the first reverse circuit; and the control end is lightly coupled to the first The second end of the shackle circuit. The second sensing 7L component includes a first end 'being pure to the second input end of the second pulse generator'. The second end is lightly connected to the second reverse circuit; and a control end coupled At a second end of the second latch circuit.

12 1325695 -. 【實施方式】 - 本發明提供了另一種架構之可降低死區範圍之相位頻 率價測器’請參考第6圖,其為本發明中一相位頻率偵測 态600之電路圖。相位頻率偵測器6〇〇包含兩脈衝產生器 612和622、兩閂鎖電路614和624、兩反向電路616和626、 兩感測元件618和628,以及一重置控制電路61〇。相位頻 率價測1 600之第一和第二輸入端分別接收時脈訊號IN •和時脈訊號Fref,並於其第一和第二輸出端分別產生輸.出 時脈訊號UP和輸出時脈訊號down。 首先說明相位頻率偵測器600中各電路的詳細結構。在 相位頻率偵測器600中,反向電路616和626可為互補型 金屬氧化物半電晶體(complementary meta丨_〇xide semiconductor transistor ’ CMOS transist〇r)之結構,可分別 •由一 p型金氧半電晶體和一 N型金氧半電晶體來組成。在 反向電路616之中,其電晶體丁?和電晶體Tn之閘極互相 耦接以作為反向電路616之輸入端,反向電路616之輸入 端耦接至相位頻率偵測器6 〇 〇之第一輸入端以偵測時脈訊 ,號Fin,如此可依據時脈訊號Fin來開啟或關閉反向電路616 '之電晶體TP和電晶體丁n。此外,反向電路61 6之電晶體 • 丁Ρ和電晶體Τ Ν的源極皆耦接至預定電位(例如分別耦接至 一正電位和接地電位)’其汲極則透過感測元件618互相耦 1325695 、 接。同理,在反向電路626之中,其電晶體ΤΡ’和電晶體 ΤΝ’之閘極互相耦接以作為反向電路626之輸入端,反向電 路626之輸入端耦接至相位頻率偵測器600之第二輸入端 以 <貞測時脈訊號FreF ’如此可依據時脈訊號FreF來開啟或 關閉反向電路626之電晶體TP’和電晶體TN’。此外,反向 電路626之電晶體TP’和電晶體TN’的源極皆耦接至預定電 位(例如分別耦接至一正電位和接地電位),其汲極則透過 感測元件628互相耗接。反向電路616和626之輸出端分 • 別由第6圖中之”A”和”A’”來表示。12 1325695 -. [Embodiment] - The present invention provides another architecture for reducing the deadband range of phase frequency detectors. Please refer to FIG. 6, which is a circuit diagram of a phase frequency detection state 600 in the present invention. The phase frequency detector 6A includes two pulse generators 612 and 622, two latch circuits 614 and 624, two reverse circuits 616 and 626, two sensing elements 618 and 628, and a reset control circuit 61. The first and second input terminals of the phase frequency price measurement 1 600 receive the clock signal IN and the clock signal Fref, respectively, and generate the output clock signal UP and the output clock at the first and second outputs respectively. Signal down. First, the detailed structure of each circuit in the phase frequency detector 600 will be described. In the phase frequency detector 600, the reverse circuits 616 and 626 can be a complementary metal oxide semiconductor transistor (CMOS transist〇r) structure, which can be respectively • a p-type The gold oxide semi-transistor and an N-type gold oxide semi-transistor are composed. In the reverse circuit 616, its transistor D? The gate of the transistor Tn is coupled to the input terminal of the reverse circuit 616, and the input end of the reverse circuit 616 is coupled to the first input of the phase frequency detector 6 to detect the pulse. No. Fin, according to the clock signal Fin, the transistor TP and the transistor n of the reverse circuit 616' can be turned on or off. In addition, the transistors of the inverter circuit 61 and the transistors are coupled to a predetermined potential (eg, coupled to a positive potential and a ground potential, respectively), and the drain is transmitted through the sensing element 618. Connected to each other 1325695, connected. Similarly, in the reverse circuit 626, the gates of the transistor ΤΡ' and the transistor ΤΝ' are coupled to each other as an input terminal of the reverse circuit 626, and the input terminal of the reverse circuit 626 is coupled to the phase frequency Detector. The second input terminal of the detector 600 can turn on or off the transistor TP' and the transistor TN' of the inverting circuit 626 according to the clock signal FreF. In addition, the sources of the transistor TP' and the transistor TN' of the inverting circuit 626 are all coupled to a predetermined potential (eg, coupled to a positive potential and a ground potential, respectively), and the drains are mutually consumed by the sensing element 628. Pick up. The outputs of the inverting circuits 616 and 626 are denoted by "A" and "A'" in Fig. 6.

脈衝產生器612和622各包含兩N型金氧半電晶體。在 . 脈衝產生器612中,電晶體T START 之閘極為脈衝產生器612 之第一輸入端,耦接至相位頻率偵測器600之第一輸入端 以接收時脈訊號F1N ’而電晶體TstOP之蘭極為脈衝產生器 612之第二輸入端,耦接至反向電路616之輸出端A。同時, φ 電晶體 Tstart 之》及極和電晶體Tstop之源極互相耗接’而 電晶體Tstart之源極耦接至一預定電位(如接地電位)。電 晶體TST0P 之汲極為脈衝產生器612之輸.出端,由第6圖中 之’’B’”來表示。同理,在脈衝產生器622中,電晶體T START’ • 之閘極為脈衝產生器622之第一輸入端,耦接至相位頻率 ’ 偵測器600之第二輸入端以接收時脈訊號Fref,而電晶體 參 丁stop’之問極為脈衝產生杰622之第*一輸入端1搞接至反向 電路626之輸出端A’。同時,電晶體Tstart’之〉及極和電晶 1325695 • 體Tstop’之源極互相柄接,而電晶體Tstart’之源極麵接至 一預定電位(如接地電位)。電晶體TST0P’之汲極為脈衝產生 器622之輸出端,由第6圖中之”B’”來表示。 重置控制電路610包含兩重置電晶體T RESET 和 丁RESET、 一及閘68,以及一延遲電路66。重置電晶體Treset 和Treset’可為N型金氧半電晶體,其汲極分別耦接至相位 頻率偵測器600之第一和第二輸出端,可分別偵測輸出時 • 脈訊號UP和輸出時脈訊號DOWN,而其源極皆耦接至預 定電位(如接地電位)。及閘68之兩輸入端亦分別耦接至相 .位頻率偵測器600之第一和第二輸出端,可分別偵測输出 時脈訊號UP和輸出時脈訊號DOWN。延遲電路.66耦接於 兩重置電晶體之閘極和及閘68之輸出端之間,可包含由電 阻和電容組成之電阻電容延遲電路(RC delay circuit),或是 由複數個反向器串接而成。 ^ 閂鎖電路614和624之第一端分別耦接至脈衝產生器 612之輸出端B和脈衝產生器612之輸出端B’,而第二端 分別耦接至相位頻率偵測器600之第一和第二輸出端,閂 鎖電路614和624可依據其第一端和第二端所偵測到之電 / 位維持在預定操作狀態。在此實施例中,閂鎖電路614和 624各包含反向器61、62和反向器63、64,反向器61之 輸入端和輸出端分別麵接於反向器62之輸出端和輸入 1325695 - 端,反向器63之輸入端和輸出端分別耗接於反向器64之 * 脅 . 輸出端和輸入端,使得閂鎖電路614和624能維持在預定 操作狀態。例如,當閂鎖電路614和624維持在一第一操 作狀態時,其第一端具高邏輯電位,而其第二端具低邏輯 電位;當閂鎖電路614和624維持在一第二操作狀態時, 其第一端具低邏輯電位,而其第二端具高邏輯電位。 感測元件618和628各包含一電晶體TSENSE和一電晶體 鲁 TseNSE’ ’電晶體TresET和電晶體TSENSE ’可為P型金氧半電 晶體,其閘極分別耦接至脈衝產生器612之輸出端B和脈 衝產生器622之輸出端B’,源極分別耦接至脈衝產生器612 和622之第二輸出端,而汲極分別耦接至反向電路616和 626。 接下來說明相位頻率偵測器600的運作。在起始狀態 _ 時,相位頻率偵測器600之輸出時脈訊號UP和輸出時脈 訊號DOWN同時具低電位,而脈衝產生器612之輸出端B 和脈衝產生器622之輸出端B’皆具高電位。當時脈訊號Fin 被正向觸發至高電位時,反向電路616之電晶體TP為關 閉,而電晶體Τν會被導通’此時電晶體Tstart和電晶體 ·· TsTOP會同時被開啟,而電晶體TsENSE仍為關閉,因此脈衝 產生器612輸出端B之電位會透過導通之電晶體Tstart和 電晶體TST0P逐漸被拉低。當反向電路616之輸出端A和Pulse generators 612 and 622 each comprise two N-type MOS transistors. In the pulse generator 612, the gate of the transistor T START is the first input end of the pulse generator 612, and is coupled to the first input end of the phase frequency detector 600 to receive the clock signal F1N ' and the transistor TstOP The second input of the pulse generator 612 is coupled to the output A of the reverse circuit 616. At the same time, the source of the φ transistor Tstart and the source of the transistor Tstop are mutually connected, and the source of the transistor Tstart is coupled to a predetermined potential (such as a ground potential). The output of the transistor TST0P is the output terminal of the pulse generator 612, which is represented by the ''B'' in Fig. 6. Similarly, in the pulse generator 622, the transistor T START' • the gate is extremely pulsed. The first input end of the generator 622 is coupled to the second input end of the phase frequency detector 660 to receive the clock signal Fref, and the transistor sings the stop pulse to generate the first input of the 622 The terminal 1 is connected to the output terminal A' of the inverting circuit 626. At the same time, the source of the transistor Tstart' and the source and the source of the transistor 1325695 and the body Tstop' are connected to each other, and the source of the transistor Tstart' is connected. To a predetermined potential (such as ground potential), the transistor TST0P' is the output of the pulse generator 622, which is represented by "B'" in Fig. 6. The reset control circuit 610 includes two reset transistors T RESET and RESET, NAND gate 68, and a delay circuit 66. The reset transistors Treset and Treset' may be N-type MOS transistors, the drains of which are respectively coupled to the first of the phase frequency detectors 600. And the second output terminal can separately detect the output time pulse signal UP and output The pulse signal is DOWN, and the source is coupled to a predetermined potential (such as a ground potential). The two inputs of the gate 68 are also coupled to the first and second outputs of the phase frequency detector 600, respectively. The output clock signal UP and the output clock signal DOWN are respectively detected. The delay circuit .66 is coupled between the gates of the two reset transistors and the output of the gate 68, and may include a resistor and capacitor composed of a resistor and a capacitor. The RC delay circuit is connected in series by a plurality of inverters. The first ends of the latch circuits 614 and 624 are respectively coupled to the output terminal B of the pulse generator 612 and the pulse generator 612. The output terminal B' is coupled to the first and second output ends of the phase frequency detector 600, and the latch circuits 614 and 624 can detect the power according to the first end and the second end. The /bit is maintained in a predetermined operational state. In this embodiment, the latch circuits 614 and 624 each include inverters 61, 62 and inverters 63, 64, the input and output of which are respectively surfaced The output of the inverter 62 and the input 1325695 - terminal, the input and output of the inverter 63 are respectively consumed At the output and input of the inverter 64, the latch circuits 614 and 624 can be maintained in a predetermined operational state. For example, when the latch circuits 614 and 624 are maintained in a first operational state, their first The terminal has a high logic potential and the second terminal has a low logic potential; when the latch circuits 614 and 624 are maintained in a second operational state, the first terminal has a low logic potential and the second terminal has a high logic potential The sensing elements 618 and 628 each include a transistor TSENSE and a transistor Lu TseNSE' 'Optical TresET and a transistor TSENSE' may be P-type MOS transistors, the gates of which are coupled to the pulse generator 612, respectively. The output terminal B and the output terminal B' of the pulse generator 622 are respectively coupled to the second outputs of the pulse generators 612 and 622, and the drains are coupled to the reverse circuits 616 and 626, respectively. Next, the operation of the phase frequency detector 600 will be described. In the initial state _, the output clock signal UP and the output clock signal DOWN of the phase frequency detector 600 have a low potential at the same time, and the output terminal B of the pulse generator 612 and the output terminal B' of the pulse generator 622 are both With high potential. When the pulse signal Fin is positively triggered to a high potential, the transistor TP of the reverse circuit 616 is turned off, and the transistor Τν is turned on. At this time, the transistor Tstart and the transistor TsTOP are simultaneously turned on, and the transistor is turned on. The TsENSE is still off, so the potential at the output B of the pulse generator 612 is gradually pulled low through the conducting transistor Tstart and the transistor TST0P. When the output of the reverse circuit 616 is A and

16 1325695 - 脈衝產生器612之輸出端B之間的電位差大於電晶體 • TsENSEE之臨界電壓時,電晶體TsENSE會被開啟’此時反向 - 電路616輸出端A之電位透過導通之電晶體Tsense和電晶 體Tn逐漸被拉低 '進而關閉電晶體Tstop。此時脈衝產生 器612輸出端B之電位不再受到時脈訊號FIN的影響,閂 鎖電路614之第一端偵測到輸出端B之低電位後,會於其 第二端送出具高邏輯電位之輸出時脈訊號UP。同理,當時 脈訊號Fref被正向觸發至高電位時,反向電路626之電晶 鲁體Tp’為關閉’而電晶體Tn’會被導通’此時電晶體T START’ 和電晶體tST0P’會同時被開啟,而電晶體tsense’仍為關 閉,因此脈衝產生器622輸出端B’之電位會透過導通之電 晶體Tstart’和電晶體Tstop逐漸被拉低。當反向電路626 之輸出端A’和脈衝產生器622之輸出端B’之間的電位差大 於電晶體TsE'NSE’之臨界電壓時,電晶體TsENSE’會被開啟’ 此時反向電路62.6輸出端A’之電位透過導通之電晶體 · 鲁 Tsense’和電晶體.Tn’逐漸被拉低’進而關閉電晶體Tstop’。 此時脈衝產生器622輸出端B’之電位不再受到時脈訊號 Fref的影響,閂鎖電路624之第一端偵測到輸出端B’之低 電位後,會於其第二端送出具高邏輯電位之輸出時脈訊號 . DOWN。 . 當輸出時脈訊號UP和輸出時脈訊號DOWN同時具高 邏輯電位時,及閘68之輸出端會送出具高邏輯電位之重置 17 1325695 :: 訊號Freset,重置訊號FRESET透過延遲電路66傳至重置電 • 晶體Treset和Treset’之閘極。因此,重置電晶體丁R 和 Treset’會被導通,其汲極之電位會被拉低,輸出時脈=^號 UP和輸出時脈訊號D0WN也會被重置至低邏輯電位°。當 閂鎖電路614和624之第二端分別偵測到具低邏輯電位之 輸出時脈訊號up和輸出時脈訊號D0WN時,會於閂鎖電 路6丨4和624第一端分別送出具高邏輯電位之訊號,使得 脈衝產生器612之輸出端b和脈衝產生器622之輪出端b, _皆重回高電位。 請參考第7圖·,其為本發明脈衝產生器612和在運 作時之狀態圖。狀態71為脈衝產生器612和622之初始狀 態,此時輸出時脈訊號up和輸出時脈訊號d〇Wn同時具 低電位,而脈衝產生器.612之輸出端3和脈衝產生器Μ】 之輸出端B,皆具高窄位。在經過正向觸發後,時脈訊號“ •和時脈訊號皆具高電位,如狀態72所示。接著,電 晶體tstart、電晶體TsT〇p、電晶體丁S·,及電晶體丁_, 會被導通,而脈衝產生器612之輸出端B和脈衝產生器622 之輸出端B’皆會被拉低至低電位,如狀態73和74所示。 .田脈衝產生器612之輸出端b和脈衝產生器622之輸出端 ' B’具低電位時,電晶體tsense和Tsense,會被導通,而輸出 時脈訊號UP和輸出時脈訊號D〇WN會被拉高炱高電位, 刀別如狀態75和76所示。此外,當電晶體丁sense和Tsense, 1325695 - 導通後,電晶體τ STOP 及 Tstop ’會被關閉,如狀態77所示。 請參考第8圖,第8圖為本發明重置控制電路610在運 作時之狀態圖。狀態81為重置控制電路610之初始狀態, 此時輸出時脈訊號UP和輸出時脈訊號DOWN同時具高電 位。在偵測到具高電位之輸出時脈訊號UP和輸出時脈訊 號DOWN後,及閘68之輸出端具高電位,如狀態82所示。 接著,重置電晶體T RESET 和 丁RESET ’會被導通,而輸出時脈 _ 訊號UP和輸出時脈訊號DOWN皆會被拉低至低電位,如 狀態83和84所示。最後,當脈衝產生器612之輸出端B • 和脈衝產生器622之輸出端B’會被拉高至高電位,如狀態 85所示。此時相位頻率偵測器600會回到如第7圖之狀態 71所示之初始狀態。 . 在本發明之相位頻率偵測器600中,藉由感測元件618 _ 和628來偵測輸出端B和B’之電位,可準確控制關閉電晶 體 Tstop 和 Tstop ’的時間,使得脈衝產生器612和622能有 效地運作。同時,在本發明中,當輸出時脈訊號UP和輸 出時脈訊號DOWN同時具高電位時,及閘68重置訊號 Preset係透過延遲電路66送出’可使輸出時脈訊號UP和 ·· 輸出時脈訊號DOWN —定時間内維持在高電位,如此當相 位頻率偵測器600接收到下一週期時脈訊號Fref和時脈訊 號Fref,各元件能有足夠時間反應,降低相位頻率偵測器16 1325695 - When the potential difference between the output terminals B of the pulse generator 612 is greater than the threshold voltage of the transistor • TsENSEE, the transistor TsENSE will be turned on. [At this time, the potential of the output terminal A of the circuit 616 is transmitted through the conducting transistor Tsense. And the transistor Tn is gradually pulled low' to turn off the transistor Tstop. At this time, the potential of the output terminal B of the pulse generator 612 is no longer affected by the clock signal FIN. When the first end of the latch circuit 614 detects the low potential of the output terminal B, it will send a high logic at the second end. The output of the potential pulse signal is UP. Similarly, when the pulse signal Fref is positively triggered to a high potential, the electromorphic Tp' of the reverse circuit 626 is turned off and the transistor Tn' is turned on. At this time, the transistor T START' and the transistor tST0P' At the same time, the transistor tsense' is still turned off, so the potential of the output terminal B' of the pulse generator 622 is gradually pulled down through the turned-on transistor Tstart' and the transistor Tstop. When the potential difference between the output terminal A' of the inverting circuit 626 and the output terminal B' of the pulse generator 622 is greater than the threshold voltage of the transistor TsE'NSE', the transistor TsENSE' will be turned on. The potential of the output terminal A' is gradually pulled down by the conducting transistor · Lu Tsense' and the transistor .Tn' to turn off the transistor Tstop'. At this time, the potential of the output terminal B' of the pulse generator 622 is no longer affected by the clock signal Fref. After the first end of the latch circuit 624 detects the low potential of the output terminal B', it will send the device at the second end. High logic potential output clock signal. DOWN. When the output clock signal UP and the output clock signal DOWN have a high logic potential at the same time, the output of the gate 68 will send a reset with a high logic potential 17 1325695 :: signal Freset, reset signal FRESET through the delay circuit 66 Pass to the reset circuit • The gates of the crystal Treset and Treset'. Therefore, the reset transistor D and Treset' will be turned on, and the drain potential will be pulled low. The output clock = ^ UP and the output clock signal D0WN will also be reset to the low logic potential °. When the second end of the latch circuits 614 and 624 respectively detect the output pulse signal up and the output clock signal D0WN with a low logic potential, respectively, the first ends of the latch circuits 6丨4 and 624 are respectively sent out. The signal of the logic potential causes the output terminal b of the pulse generator 612 and the wheel terminals b, _ of the pulse generator 622 to return to a high potential. Please refer to Fig. 7 for a pulse generator 612 of the present invention and a state diagram during operation. State 71 is the initial state of pulse generators 612 and 622. At this time, the output clock signal up and the output clock signal d〇Wn simultaneously have a low potential, and the output of the pulse generator .612 and the pulse generator 之The output terminal B has a high and narrow position. After the positive trigger, the clock signal “• and the clock signal have a high potential, as shown in state 72. Then, the transistor tstart, the transistor TsT〇p, the transistor D·, and the transistor _ , will be turned on, and the output B of the pulse generator 612 and the output B' of the pulse generator 622 will be pulled low to low, as shown in states 73 and 74. The output of the pulse generator 612 b and the output of the pulse generator 622 'B' has a low potential, the transistors tsense and Tsense will be turned on, and the output clock signal UP and the output clock signal D〇WN will be pulled high, the knife Not shown in states 75 and 76. In addition, when the transistor Dense sense and Tsense, 1325695 - turn on, the transistors τ STOP and Tstop ' will be turned off, as shown in state 77. Please refer to Figure 8, Figure 8. The state diagram of the reset control circuit 610 is in operation. The state 81 is the initial state of the reset control circuit 610, and the output clock signal UP and the output clock signal DOWN have a high potential at the same time. High-potential output clock signal UP and output clock signal DOWN, and gate 68 The output has a high potential, as shown in state 82. Then, the reset transistors T RESET and D RESET ' will be turned on, and the output clock _ signal UP and the output clock signal DOWN will be pulled low to low. As shown in states 83 and 84. Finally, when the output B of the pulse generator 612 and the output B' of the pulse generator 622 are pulled high, as shown in state 85. The phase frequency detector at this time 600 will return to the initial state as shown in state 71 of Figure 7. In the phase frequency detector 600 of the present invention, the potentials of the output terminals B and B' are detected by sensing elements 618 _ and 628 The time for turning off the transistors Tstop and Tstop' can be accurately controlled, so that the pulse generators 612 and 622 can operate effectively. Meanwhile, in the present invention, when the output clock signal UP and the output clock signal DOWN are simultaneously at a high potential And the gate 68 reset signal Preset is sent through the delay circuit 66 to enable the output clock signal UP and the output clock signal DOWN to be maintained at a high potential for a certain period of time, so that when the phase frequency detector 600 receives the next One cycle clock signal Fref and time pulse No. Fref, each component can have enough time to react and reduce the phase frequency detector

19 < S 1325695 - 600之死區範圍。 ^上料僅為本發明之較佳實關,凡依本發往 專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍二 【圖式簡單說明】 第1圖為先前技術中-鎖相迴路之功能方塊圖。 第2圖為先前技術中相位頻4M貞測器之輸出訊號圖。 鲁第3圖為先前技術中使用RS觸發器之相位頻率制器之功 能方塊圖。 第4圖為先前技術中之相位頻率憤測器運作時之三態示意圖。 第5圖為先前技術中一相位頻率偵測器之電路圖。 $ 6圖為本發明中另—種架構之可降低死區範圍之相位頻 率偵測器之電路圖。 第7圖為本發明之脈衝產生器在運作時之狀態圖。 •第8圖為本發明之重置控制電路在運作時之狀態圖。 【主要元件符號說明 ] 100 鎖相迴路 120 電荷泵 130 迴路濾波器 140 壓控震盪器 150 除頻器 310 ' 320 RS觸發器 50 反及閘 68 ' 330 及閘 66 延遲電路 510 、 610 重置控制電路 2019 < S 1325695 - 600 dead zone range. ^Feeding is only a preferred embodiment of the present invention, and all changes and modifications made in accordance with the scope of the present patent should be covered by the scope of the present invention. [Simplified description of the drawing] FIG. 1 is a prior art - Functional block diagram of the phase-locked loop. Figure 2 is an output signal diagram of the phase frequency 4M detector in the prior art. Lu 3 is a functional block diagram of a phase frequency controller using an RS flip-flop in the prior art. Figure 4 is a three-state diagram of the operation of the phase frequency inversion sensor in the prior art. Figure 5 is a circuit diagram of a phase frequency detector in the prior art. The $6 diagram is a circuit diagram of another phase-frequency detector that reduces deadband in the architecture of the present invention. Figure 7 is a diagram showing the state of the pulse generator of the present invention in operation. • Figure 8 is a diagram showing the state of the reset control circuit of the present invention in operation. [Main component symbol description] 100 phase-locked loop 120 charge pump 130 loop filter 140 voltage-controlled oscillator 150 frequency divider 310 ' 320 RS flip-flop 50 reverse gate 68 ' 330 and gate 66 delay circuit 510 , 610 reset control Circuit 20

Tiso ' Tstart ' Tstop Tstop5 ' Treset* ' Tsense5 ' Tp’、TN’電晶體 1325695 * 616、626反向電路 ·. 51-60、61-64 110 、 300 、 500 、 600 512 、 522 、 612 、 622 514 、 524 、 614 、 624 618、628 感測元件 反向器 相位頻率偵測器 脈衝產生器 閂鎖電路Tiso ' Tstart ' Tstop Tstop5 ' Treset* ' Tsense5 ' Tp ', TN' transistor 1325695 * 616, 626 reverse circuit · 51-60, 61-64 110 , 300 , 500 , 600 512 , 522 , 612 , 622 514, 524, 614, 624 618, 628 sensing element inverter phase frequency detector pulse generator latch circuit

Treset、Tsense、Tp、Tn、Tstart’Treset, Tsense, Tp, Tn, Tstart’

21twenty one

Claims (1)

1325695 、申請專利範圍: 一種可降低死區範圍之相位頻率偵測器,依據其第一 與第二輸入端所接收到之輸入訊號,於其第一與苐二 輸出端產生相對應之輸出訊號,該相位頻率偵測器包 含: 。 之 -第-閃鎖電路’其第-端搞接至該相位頻率谓測器 第一輸出端; ° 之 -第二閃鎖電路’其第-端輕接至該相位頻率價測器 第二輸出端; β 一重置控制電路,耦接於該第一和第二閂鎖電路之第一 端以及該相位頻率偵測器之第一和第二輸出端,^ 來:依據該相位頻率偵測器第一與第二輪出端之電 位來分別產生相對應之訊號至該第一和第二銷 電路之第二端; ^ 一第一脈衝產生器,其包含: 輸 一第一輸入端,耦接於該相位頻率偵測器之第一 入端; 一第一·輸入端,以及 一輸出端,耦接於該第一閂鎖電路之第二端. 一第二脈衝產生器,其包含: ’ 一第一輸入端,耦接於該相位頻率偵測器 入端; 。〈弟二輸 一第二輸入端;以及 22 褕出端’耦接於該第 弟二端 —第一反向電路,其包含 —輸入端,耦接於該相位頻率偵測器之第一 端;以及 Μ -輸出端’耦接於該第一脈衝產生器之第二輸入端; 弟二反向電路,其包含· 一輸入端,耦接於該相位頻率偵測器之第二 端;以及 一刖 =出端’耦接於該第二脈衝產生器之第二輸入端; 弟一感測元件,其包含: 二-端,蝴.於該第—脈.衝產生器之第二輸入端; 第一端,耦接於該第一乓向電路;以及 "'控制端,耦接於該第一閂鎖電路之坌山 a ^ , ., u頌电峪之箄二端;以及 第一感測元件,其包含: 接於該第二脈衝產生器之第二輸入端; 第一知,耦接於該第二反向電路;以及 —控制端於該第二_電路之第二端。 ;月长項1所述之相位頻4M貞測器,其中: 該第一閂鎖電路係包含: 、 第第’其輸人端麵接於該第—閃鎖電路之 _ ^而輸出端耦接於該第一閂鎖電路之第 一端,以及 1325695 * • 一第二反向器,其輸入端耦接於該第一反向器之輸 出端,而輸出端耦接於該第一反向器之輸入 端;且 該第二閂鎖電路係包含: 一第三反向器,其輸入端耦接於該第二閂鎖電路之 第一端,而輸出端耦接於該第二閂鎖電路之第 二端;以及 ——第四反向器,其輸入端耦接於該第三反向器之輸 出端,而輸出端耦接於該第三反向器之輸入端。 3. • • 如請求項1所述之相位頻率偵測器,其中: 該第一脈衝產生器係包含: 一第一N型金氧半電晶體,其包含: 一閘極,耦接於該第一脈衝產生器之第一輸 入端;以及 一第二N型金氧半電晶體,其包含: 一閘極,耦接於該第一脈衝產生器之第二輸 入端; 一源極,耦接於該第一 N型金氧半電晶體之 汲極;以及 -r • 一汲極,耦接於該第一脈衝產生器之輸出 端;且 該第二脈衝產生器係包含: 24 ί 5 > 一第三N型金氧半電晶體,其包含: 輪 一閘極,耦接於該第二脈衝產生器之第 入端;以及 —第四N型金氧半電晶體,其包含: 之第二輸 一閘極,耦接於該第二脈衝產生器 入端; 之 一源極,耦接於該第三N型金氧半電晶 汲極;以及 一汲極,耦接於該第二脈衝產生器之輸出端。 4. %求項3所述之相位頻率㈣器,#中該第一和第 2型金氧半電晶:體另各包含—源極,城於接地電 如清求項1所述之相位頻率谓測器,其中: ,亥第:感測元件係包含—第—Ρ型金氧半電晶體,其包 含: 一閘極’耦接於該第-感測元件之控制端; 一源極’純於該第—感測元件之第—端;以及 -沒極,魄於該第—感測元件之第二端;且 “二感測兀件係包含一第二卩型金氧半電晶體,其包 含: -間極,域於該第二感測元件之控制端;1325695, the scope of patent application: a phase frequency detector capable of reducing the dead zone range, according to the input signals received by the first and second input terminals, corresponding output signals are generated at the first and second output ends thereof The phase frequency detector comprises: . The first-to-flash lock circuit has its first end connected to the first output of the phase frequency detector; ° - the second flash lock circuit 'the first end is lightly connected to the phase frequency detector second An output terminal; a reset control circuit coupled to the first end of the first and second latch circuits and the first and second output ends of the phase frequency detector, wherein: according to the phase frequency The potentials of the first and second rounds of the detector respectively generate corresponding signals to the second ends of the first and second pin circuits; ^ a first pulse generator comprising: a first input The first input terminal is coupled to the first input terminal, and the first input terminal is coupled to the second end of the first latch circuit. A second pulse generator is The method includes: 'a first input end coupled to the phase frequency detector input end; a second input terminal; and a second output terminal coupled to the second end of the second phase, the first reverse circuit includes an input terminal coupled to the first end of the phase frequency detector And the output terminal 'coupled to the second input end of the first pulse generator; the second reverse circuit includes an input coupled to the second end of the phase frequency detector; a 刖=output 'coupled to the second input of the second pulse generator; a sensing component, comprising: a second end, a second input of the first pulse generator a first end coupled to the first pong circuit; and a control terminal coupled to the second latch of the first latch circuit, and a second end; a sensing component, comprising: a second input terminal connected to the second pulse generator; first, coupled to the second reverse circuit; and - a control terminal at the second end of the second circuit . The phase frequency 4M detector according to the term 1 of the month, wherein: the first latch circuit comprises: a first 'the input end is connected to the first-flash lock circuit _ ^ and the output end is coupled Connected to the first end of the first latch circuit, and 1325695 * a second inverter, the input end of which is coupled to the output end of the first inverter, and the output end is coupled to the first reverse And the second latching circuit includes: a third inverter having an input end coupled to the first end of the second latch circuit, and an output end coupled to the second latch a second end of the lock circuit; and a fourth inverter, the input end of which is coupled to the output end of the third inverter, and the output end is coupled to the input end of the third inverter. 3. The phase frequency detector of claim 1, wherein: the first pulse generator comprises: a first N-type MOS transistor, comprising: a gate coupled to the a first input end of the first pulse generator; and a second N-type MOS transistor, comprising: a gate coupled to the second input end of the first pulse generator; a source, a coupling Connected to the drain of the first N-type MOS transistor; and -r • a drain coupled to the output of the first pulse generator; and the second pulse generator includes: 24 ί 5 > a third N-type MOS transistor, comprising: a wheel-gate coupled to the first end of the second pulse generator; and a fourth N-type MOS transistor comprising: The second input gate is coupled to the second pulse generator input end; one source is coupled to the third N-type gold-oxygen semi-electrode germanium; and a drain is coupled to the The output of the second pulse generator. 4. The phase frequency (four) device described in Item 3, the first and second type of gold oxide semi-electric crystals in #: the body each contains a source, and the phase is grounded as described in claim 1. a frequency detector, wherein: the Hedi: the sensing component comprises a -th-type MOS transistor, comprising: a gate coupled to the control terminal of the first sensing element; a source 'Pure the first - the first end of the sensing element; and - the dipole, the second end of the first sensing element; and "the second sensing element comprises a second type of gold oxide half a crystal comprising: - an interpole, the domain being at a control end of the second sensing element; 25 原極耦接於該第二感測元件之第一端;以及 汲椏,耦接於該第二感測元件之第二端。 如請求項1所述之相位鮮偵測器,其中該第一反向 電路與該第二反向電路各包含—互補型金屬氧化物半 電晶體架構之反向器。 其中該重置控制 如凊求項1所述之相位頻率偵測器 電路係包含: :及閘。:其第一與第二輸入端分別耦接至該相位_ 測器之第一和第二輸出端; 第一重置N型金氧半電晶體,其包含: 閘極,耦接至該反及閘之輸出端; -汲極,耦接至該第一問鎖電路之第一端;以及 一源極,耦接至一偏'壓;以及 第二重置N型金氧半電晶體,其包含·· 一閘極,耦接至該反及閘之輸出端; 一汲極,耦接至該第二閂鎖電路 a 一、E k , 吊一 % ;以及 一源極,耦接至一偏壓。 W<相位頻竿偵測命,其中該 重置Ν型金氧半電晶體之源極係㈣至接地電= 9. 如請求項7所、r 雪技X 、 迎之相位頻率偵測器’其中該重置控制 '^ ^ S延遲7°件’耦接於該第一和第二重置N 里金氧半電晶體之間極與該反及閘之輸出端之間。 10. 如請求項9所述之相位頻率债測器,其中該延遲元件 係包含由電阻和電容組成之電阻電容延遲電路。 11. 如請求項9所述之相位頻率偵測器,其中該延遲元件 係包含複數個串接之反向器。 ^ 、囷式 27The first pole is coupled to the first end of the second sensing component; and the second pole is coupled to the second end of the second sensing component. The phase fresh detector of claim 1, wherein the first reverse circuit and the second reverse circuit each comprise an inverter of a complementary metal oxide semiconductor structure. Wherein the reset control, such as the phase frequency detector circuit described in claim 1, includes: and a gate. The first and second input terminals are respectively coupled to the first and second output ends of the phase detector; the first reset N-type MOS transistor, comprising: a gate coupled to the opposite And a drain terminal coupled to the first end of the first interrogation circuit; and a source coupled to a bias voltage; and a second reset N-type MOS transistor, The gate includes a gate coupled to the output of the gate and a gate; a drain coupled to the second latch circuit a, E k , and a % of the suspension; and a source coupled to the A bias voltage. W<phase frequency detection, wherein the source of the Ν-type MOS transistor (4) to grounding = 9. As requested in item 7, r Xue X, Ying phase frequency detector' The reset control '^^S delay 7° piece' is coupled between the pole between the first and second reset N MOS transistors and the output of the NAND gate. 10. The phase frequency debt detector of claim 9, wherein the delay element comprises a resistor-capacitor delay circuit composed of a resistor and a capacitor. 11. The phase frequency detector of claim 9, wherein the delay element comprises a plurality of serially connected inverters. ^, 囷 27
TW95143175A 2006-05-16 2006-11-22 Phase-frequency detector capable of reducing dead-zone range TWI325695B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US74730306P 2006-05-16 2006-05-16

Publications (2)

Publication Number Publication Date
TW200744322A TW200744322A (en) 2007-12-01
TWI325695B true TWI325695B (en) 2010-06-01

Family

ID=38071700

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95143175A TWI325695B (en) 2006-05-16 2006-11-22 Phase-frequency detector capable of reducing dead-zone range

Country Status (2)

Country Link
CN (1) CN1960184B (en)
TW (1) TWI325695B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247215B (en) * 2008-03-24 2010-11-03 无锡圆芯微电子有限公司 Expansion technology for non-linear clock and data recovery circuit dynamic capturing and tracing range
CN102347761B (en) * 2010-07-27 2014-02-19 中兴通讯股份有限公司南京分公司 Dynamic delay, and phase-frequency detector (PFD) and phase lock loop adopting same
US8461890B1 (en) 2011-07-20 2013-06-11 United Microelectronics Corp. Phase and/or frequency detector, phase-locked loop and operation method for the phase-locked loop
CN103152035B (en) * 2013-03-27 2016-04-13 武汉大学 A kind of programmable delay multi-way control signals phase frequency detector for phase-locked loop

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661419A (en) * 1996-05-23 1997-08-26 Sun Microsystems, Inc. Dynamic phase-frequency detector circuit
US5963058A (en) * 1997-03-19 1999-10-05 Intel Corporation Phase frequency detector
US5977801A (en) * 1997-07-07 1999-11-02 International Business Machines Corporation Self-resetting phase/frequency detector with reduced dead zone
US5963059A (en) * 1997-12-19 1999-10-05 Advanced Micro Devices, Inc. Phase frequency detector having reduced blind spot
CN1301594C (en) * 2004-01-30 2007-02-21 威盛电子股份有限公司 Phase detector
KR100668360B1 (en) * 2004-11-09 2007-01-16 한국전자통신연구원 Phase frequency detector

Also Published As

Publication number Publication date
CN1960184A (en) 2007-05-09
TW200744322A (en) 2007-12-01
CN1960184B (en) 2010-04-14

Similar Documents

Publication Publication Date Title
Chen et al. Phase frequency detector with minimal blind zone for fast frequency acquisition
US9520864B2 (en) Delay structure for a memory interface
US9443572B2 (en) Programmable power for a memory interface
US7924108B2 (en) Oscillator amplifier with input clock detection and method therefor
CN213152021U (en) Monostable Circuits and Delay Cells
US9118308B1 (en) Duty cycle corrector
EP3591842B1 (en) Rc oscillator watchdog circuit
EP3549263B1 (en) Wide capture range reference-less frequency detector
JP2816508B2 (en) Power-on detection circuit
TW201937185A (en) Jitter monitoring circuit
TWI325695B (en) Phase-frequency detector capable of reducing dead-zone range
US7388408B2 (en) Phase-frequency detector capable of reducing dead zone
US7142024B2 (en) Power on reset circuit
US9401715B1 (en) Conditional pulse generator circuit for low power pulse triggered flip flop
JP2005252447A (en) Lock detection circuit and method
US10581416B2 (en) External and dual ramp clock synchronization
TW200414668A (en) Narrow control pulse phase frequency detector
CN104184441B (en) Clock data recovery circuit
KR100690991B1 (en) DRAM power-up circuit using internal power
US8299823B2 (en) Preventing metastability of a divide-by-two quadrature divider
JP2005039808A (en) Dll circuit
TWI273274B (en) Pulse generator and method thereof
JP2008252209A (en) Pll circuit
JP2013102282A (en) Semiconductor device
KR20130135588A (en) Power tracking circuit and semiconductor apparatus including the same