TWI641828B - Method of characterizing structures of interest on semiconductor wafer and semiconductor metrology system - Google Patents
Method of characterizing structures of interest on semiconductor wafer and semiconductor metrology system Download PDFInfo
- Publication number
- TWI641828B TWI641828B TW103126977A TW103126977A TWI641828B TW I641828 B TWI641828 B TW I641828B TW 103126977 A TW103126977 A TW 103126977A TW 103126977 A TW103126977 A TW 103126977A TW I641828 B TWI641828 B TW I641828B
- Authority
- TW
- Taiwan
- Prior art keywords
- spectral
- difference
- specific structure
- defect
- signal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 89
- 239000004065 semiconductor Substances 0.000 title claims abstract description 22
- 230000003595 spectral effect Effects 0.000 claims abstract description 99
- 230000007547 defect Effects 0.000 claims description 57
- 238000001228 spectrum Methods 0.000 claims description 33
- 238000012549 training Methods 0.000 claims description 26
- 230000006870 function Effects 0.000 claims description 24
- 230000002950 deficient Effects 0.000 claims description 15
- 238000005286 illumination Methods 0.000 claims description 12
- 239000010409 thin film Substances 0.000 claims description 9
- 229920002120 photoresistant polymer Polymers 0.000 claims description 8
- 238000013139 quantization Methods 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 4
- 238000005303 weighing Methods 0.000 claims description 4
- 238000011002 quantification Methods 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 abstract description 8
- 238000005259 measurement Methods 0.000 description 63
- 238000002408 directed self-assembly Methods 0.000 description 59
- 235000012431 wafers Nutrition 0.000 description 33
- 230000003287 optical effect Effects 0.000 description 25
- 239000000463 material Substances 0.000 description 17
- 229920001577 copolymer Polymers 0.000 description 15
- 238000000513 principal component analysis Methods 0.000 description 15
- 238000004422 calculation algorithm Methods 0.000 description 14
- 229920001400 block copolymer Polymers 0.000 description 12
- 239000010408 film Substances 0.000 description 12
- 230000000737 periodic effect Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 238000000137 annealing Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 7
- 238000012880 independent component analysis Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000013400 design of experiment Methods 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 238000000605 extraction Methods 0.000 description 5
- 238000001459 lithography Methods 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000003491 array Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000000572 ellipsometry Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 238000004886 process control Methods 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000004630 atomic force microscopy Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 201000007902 Primary cutaneous amyloidosis Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000004298 light response Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 208000014670 posterior cortical atrophy Diseases 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 238000000391 spectroscopic ellipsometry Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/956—Inspecting patterns on the surface of objects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9501—Semiconductor wafers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
Landscapes
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本發明揭示用於特徵化一半導體晶圓上複數個所關注結構之裝置及方法。自一度量衡系統之一或多個感測器,依複數個方位角,自一特定所關注結構量測複數個光譜信號。基於針對該等方位角而獲得之該光譜信號來判定一光譜差值。基於分析該光譜差值來判定及報告該特定所關注結構之一品質指示。 The invention discloses a device and method for characterizing a plurality of structures of interest on a semiconductor wafer. A plurality of spectral signals are measured from one or more sensors of a metrology system according to a plurality of azimuth angles from a specific structure of interest. A spectral difference is determined based on the spectral signals obtained for the azimuths. Based on the analysis of the spectral differences, a quality indicator of the particular structure of interest is determined and reported.
Description
本申請案主張2013年8月6日提交之Thaddeus Gerard Dziura等人之先前申請案美國臨時申請案第61/862,801號及2014年2月21日提交之Thaddeus Dziura等人之美國臨時申請案第61/943,098號之權利,該等案之全文出於全部目的以引用之方式併入本文中。 This application claims a previous application by Thaddeus Gerard Dziura et al. Filed on August 6, 2013, U.S. Provisional Application No. 61 / 862,801 and U.S. Provisional Application No. 61 by Thaddeus Dziura, et. / 943,098, the entire text of these cases is incorporated herein by reference for all purposes.
本發明大體上係關於用於半導體晶圓之特徵之方法及系統,且更具體而言,係關於一半導體晶圓上之印刷圖案之品質之特徵。 The present invention relates generally to methods and systems for the characteristics of semiconductor wafers, and more specifically to the characteristics of the quality of printed patterns on a semiconductor wafer.
一段時間以來用於積體電路製造中之光微影或光學微影系統已普及。已證明此等系統在精確製造及形成產品中之非常小細節方面極有效。在一些光微影系統中,藉由經由一光束或輻射束(例如UV或紫外光)而轉印一圖案而在一基板上描寫一電路影像。例如,微影系統可包含一光源或輻射源,光源或輻射源投射一電路影像穿過一光罩而且至塗佈有對輻照敏感之一材料(例如光阻)之一矽晶圓上。所暴露之光阻劑通常形成一圖案,該圖案在顯影之後在隨後處理步驟(如(例如)沈積及/或蝕刻)期間遮蔽晶圓之層。 Light lithography or optical lithography systems used in integrated circuit manufacturing have been popular for some time. These systems have proven extremely effective in precisely manufacturing and forming very small details in products. In some light lithography systems, a circuit image is written on a substrate by transferring a pattern through a light beam or a radiation beam (such as UV or ultraviolet light). For example, a lithography system may include a light source or radiation source that projects a circuit image through a photomask and onto a silicon wafer coated with a material (eg, photoresist) that is sensitive to radiation. The exposed photoresist typically forms a pattern that, after development, masks the layers of the wafer during subsequent processing steps such as, for example, deposition and / or etching.
在一度量衡技術中,可藉由收集一半導體晶圓上之各位置處之 臨界尺寸掃描電子顯微鏡(critical dimension scanning electron microscope,CD-SEM)影像及檢測各影像之圖案品質,而判定晶圓上之印刷圖案(諸如週期光柵)之品質之特徵。此技術係耗費時間的(例如若干小時),且關於光柵品質之判斷通常可係稍微主觀的。CD-SEM量測亦未能提供關於子表面缺陷結構之資訊。 In a metrology technique, it is possible to collect A critical dimension scanning electron microscope (CD-SEM) image and the pattern quality of each image are detected to determine the characteristics of the quality of the printed pattern (such as a periodic grating) on the wafer. This technique is time consuming (for example, several hours), and the judgment of the quality of the grating can usually be slightly subjective. CD-SEM measurements also failed to provide information on subsurface defect structures.
鑒於上文,用於印刷圖案之特徵之經改良之裝置及技術係所期望的。 In view of the above, improved devices and techniques for the characteristics of printed patterns are desirable.
下文呈現本發明之一簡化概要以提供本發明之某些實施例之一基本瞭解。此概要不係本發明之一廣泛概述,且不識別本發明之關鍵/臨界元件或描繪本發明之範疇。其之唯一目的係依一簡化形式而提出文中所揭示之一些概念,作為稍後提出之更詳細描述之一序言。 The following presents a simplified summary of the invention to provide a basic understanding of some embodiments of the invention. This summary is not an extensive overview of the invention and does not identify key / critical elements of the invention or delineate the scope of the invention. Its sole purpose is to present some concepts disclosed in the text in a simplified form as a prelude to the more detailed description that is presented later.
在一實施例中,揭示一種特徵化一半導體晶圓上之複數個所關注結構之方法。自一度量衡系統之一或多個感測器依複數個方位角自一特定所關注結構量測複數個光譜信號。基於針對方位角而獲得之光譜信號而判定一光譜差值。基於分析光譜差值而判定及報告特定所關注結構之一品質指示。 In one embodiment, a method for characterizing a plurality of structures of interest on a semiconductor wafer is disclosed. A plurality of spectral signals are measured from one or more sensors of a metrology system based on a plurality of azimuth angles from a particular structure of interest. A spectral difference is determined based on the spectral signals obtained for the azimuth. Determine and report a quality indicator of a particular structure of interest based on analyzing the spectral differences.
在一特定實施例中,在不使用一模型或自特定所關注結構提取定量特徵之情況下執行判定此特定結構之品質指示。在另一態樣中,光譜差值係經由複數個波長依多個方位角之光譜信號之間之複數個差值之一平均差值。在一進一步態樣中,光譜差值係在依複數個波長範圍之一特定者依多個方位角之光譜信號之間之複數個差值之一最高者。在又一態樣中,特定結構係一光柵結構。在此實施例中,針對一無缺陷光柵結構之方位角而判定理論或經量測之光譜差值,且依理論光譜差值而正規化平均差值以判定一缺陷數量。 In a specific embodiment, determining a quality indication of a specific structure is performed without using a model or extracting quantitative features from the specific structure of interest. In another aspect, the spectral difference is an average difference between a plurality of differences between a plurality of wavelengths and a plurality of azimuth-spectral spectral signals. In a further aspect, the spectral difference value is the highest one of the plurality of difference values between the spectral signals of a plurality of azimuth angles specified by one of the plurality of wavelength ranges. In another aspect, the specific structure is a grating structure. In this embodiment, the theoretical or measured spectral difference is determined for the azimuth of a defect-free grating structure, and the average difference is normalized according to the theoretical spectral difference to determine a number of defects.
在另一實施方案中,量測光譜包含:藉由使用二維光束輪廓反 射計來產生一微分模型。在一進一步態樣中,判定一影像與具有一殘餘誤差之一徑向對稱影像之最佳擬合之間之一微分模型。接著,基於此微分模型而判定光譜差值是否指示一薄膜或有缺陷結構。 In another embodiment, measuring the spectrum comprises: Radiometer to generate a differential model. In a further aspect, a differential model is determined between the best fit between an image and a radially symmetric image with a residual error. Then, based on the differential model, it is determined whether the spectral difference value indicates a thin film or a defective structure.
在另一態樣中,自導向式自組裝(directed self-assembly,DSA)結構、下層非導向式自組裝(non-DSA)結構及圖案化光阻結構選擇目標。在另一實施例中,使用一CD-SEM工具來收集量化圖案缺陷之參考資料。自具有已知圖案缺陷之一訓練集之圖案結構依方位角而獲得光譜信號。判定依不同方位角而量測之光譜信號與一殘餘誤差之間之一第一關係函數,且此第一關係式係基於自訓練集依方位角而獲得之光譜信號。基於參考資料而判定一殘餘誤差與圖案缺陷之一量化之間之一第二關係函數。將依方位角自特定所關注結構量測之光譜信號輸入至第二關係函數,以判定針對此特定結構之圖案缺陷之一量化。在一進一步態樣中,第一關係函數及第二關係函數係基於應用於針對訓練集及特定結構之光譜信號及殘餘誤差之一資料簡化技術的。 In another aspect, a self-directed self-assembly (DSA) structure, an underlying non-DSA structure, and a patterned photoresist structure are selected as targets. In another embodiment, a CD-SEM tool is used to collect reference material for quantifying pattern defects. Spectral signals are obtained from the azimuth of the pattern structure of a training set with one of the known pattern defects. A first relationship function between a spectral signal measured according to different azimuth angles and a residual error is determined, and the first relational expression is based on the spectral signal obtained from the azimuth angle based on the self-training set. A second relation function between a residual error and a quantization of a pattern defect is determined based on the reference data. Spectral signals measured from a particular structure of interest according to the azimuth angle are input to a second relationship function to determine a quantification of one of the pattern defects for this particular structure. In a further aspect, the first relational function and the second relational function are based on a data reduction technique applied to one of the spectral signals and residual errors for the training set and the specific structure.
在另一方法實施例中,在一度量衡系統之一或多個感測器處,自薄膜或經設計為跨量測位點均勻之一結構之一量測位點之複數個鄰近位置量測複數個光譜信號。判定光譜信號之一平均(average)信號或中值(mean)信號。自平均信號或中值信號判定在各位置處光譜信號之各者之一標準偏差。在不使用一模型或自薄膜或結構提取一定量特徵之情況下,基於分析針對薄膜及結構之各位置之標準偏差而而判定及報告此位置之一品質指示。 In another method embodiment, at one or more sensors of a metrology system, measurement is performed from a plurality of adjacent positions of a thin film or one of the structures designed to be uniform across the measurement points. A plurality of spectral signals. Determine whether one of the spectral signals is an average signal or a mean signal. One of the standard deviations of each of the spectral signals at each position is determined from the average signal or the median signal. Without using a model or extracting a certain amount of features from a film or structure, a quality indicator for that location is determined and reported based on analysis of the standard deviation for each location of the film and structure.
在一替代實施例中,本發明關於一種用於檢測或量測一樣本之系統。此系統包括用於產生照明之照明器及用於依複數個方位角而導引照明朝向一特定結構之照明光學器件。該系統亦包含用於回應於照明而自特定結構依方位角之將複數個光譜信號導引至一感測器之收集光學器件。該系統進一步包含經組態用於執行上文所描述之操作之任 何者之一處理器及記憶體。在一特定實施方案中,該系統係依一橢圓偏光計之形式,且包含用於在照明中產生一偏光狀態之一偏光狀態產生器及用於分析光信號之一偏光狀態之一偏光狀態分析器。在其他實施例中,該系統係依一分光橢圓偏光計、穆勒矩陣分光橢圓偏光計、分光反射計、分光散射計、光束輪廓反射計或光束輪廓橢圓偏光計之形式。 In an alternative embodiment, the invention relates to a system for detecting or measuring a sample. The system includes an illuminator for generating illumination and illumination optics for directing the illumination toward a specific structure according to a plurality of azimuth angles. The system also includes a collection optic for directing a plurality of spectral signals from a specific structure to a sensor in response to illumination in an azimuth. The system further includes any task configured to perform the operations described above. Which one of the processor and memory. In a specific embodiment, the system is in the form of an elliptical polarimeter, and includes a polarization state generator for generating a polarization state in lighting and a polarization state analysis for analyzing a polarization state of an optical signal. Device. In other embodiments, the system is in the form of a spectroscopic ellipsometer, a Muller matrix spectroscopic ellipsometer, a spectroscope, a spectroscatterometer, a beam profile reflectometer, or a beam profile ellipsometer.
參考圖式在下文進一步描述本發明之此等及其他態樣。 These and other aspects of the invention are further described below with reference to the drawings.
2‧‧‧分光橢圓偏光計(SE) 2‧‧‧ Spectroscopic Ellipsometer (SE)
4‧‧‧樣本 4‧‧‧ samples
10‧‧‧光束輪廓 10‧‧‧ Beam Profile
12‧‧‧光束輪廓反射計 12‧‧‧ Beam Profile Reflectometer
14‧‧‧寬帶反射分光計 14‧‧‧Broadband Reflection Spectrometer
16‧‧‧深紫外線反射分光計 16‧‧‧Deep Ultraviolet Reflectance Spectrometer
18‧‧‧寬帶分光橢圓偏光計(SE) 18‧‧‧Broadband Spectroscopic Ellipsometer (SE)
28‧‧‧光學元件 28‧‧‧ Optics
29‧‧‧光學元件 29‧‧‧optical element
30‧‧‧光學元件 30‧‧‧ Optics
32‧‧‧光學元件 32‧‧‧optical element
33‧‧‧光學元件 33‧‧‧ Optics
34‧‧‧光學元件 34‧‧‧ Optics
36‧‧‧光學元件 36‧‧‧ Optics
38‧‧‧光學元件 38‧‧‧ Optics
40‧‧‧光學元件 40‧‧‧ Optics
42‧‧‧光學元件 42‧‧‧ Optics
44‧‧‧光學元件 44‧‧‧ Optics
46‧‧‧光學元件 46‧‧‧ Optics
48‧‧‧處理器系統 48‧‧‧ processor system
50‧‧‧光學元件 50‧‧‧ Optical Elements
52‧‧‧光學元件 52‧‧‧Optics
54‧‧‧光學元件 54‧‧‧ Optics
56‧‧‧光學元件 56‧‧‧ Optics
60‧‧‧光學元件 60‧‧‧Optics
62‧‧‧光學元件 62‧‧‧optical element
64‧‧‧光學元件 64‧‧‧ Optics
66‧‧‧光學元件 66‧‧‧Optical Elements
70‧‧‧光學元件 70‧‧‧optical element
72‧‧‧光學元件 72‧‧‧ Optics
74‧‧‧光學元件 74‧‧‧optical element
76‧‧‧光學元件 76‧‧‧ Optics
78‧‧‧光學元件 78‧‧‧optical element
80‧‧‧光學元件 80‧‧‧ Optical Elements
82‧‧‧光學元件 82‧‧‧optical element
84‧‧‧光學元件 84‧‧‧ Optics
86‧‧‧光學元件 86‧‧‧Optical Element
92‧‧‧光學元件 92‧‧‧Optical Element
94‧‧‧光學元件 94‧‧‧optical element
96‧‧‧光學元件 96‧‧‧ Optics
98‧‧‧光學元件/旋轉補償器 98‧‧‧Optics / Rotation Compensator
100‧‧‧光學元件 100‧‧‧ Optics
102‧‧‧光學元件 102‧‧‧optical element
104‧‧‧光學元件 104‧‧‧optical element
104a‧‧‧嵌段共聚合物材料 104a‧‧‧block copolymer material
104b‧‧‧嵌段共聚合物材料 104b‧‧‧ block copolymer material
104c‧‧‧嵌段共聚合物材料 104c‧‧‧block copolymer material
104d‧‧‧嵌段共聚合物材料 104d‧‧‧block copolymer material
122‧‧‧導引圖案 122‧‧‧Guide pattern
202‧‧‧影像 202‧‧‧Image
204‧‧‧影像 204‧‧‧Image
206‧‧‧DSA線間距圖案/缺陷光柵/缺陷DSA圖案 206‧‧‧DSA line spacing pattern / defective grating / defective DSA pattern
208a‧‧‧下伏化學圖案/下伏導引基板圖案 208a‧‧‧Underlying chemical pattern / Underlying guide substrate pattern
208b‧‧‧下伏化學圖案/下伏導引基板圖案 208b‧ Underlying chemical pattern / Underlying guide substrate pattern
210a‧‧‧不完整線 210a‧‧‧Incomplete line
210b‧‧‧不完整線 210b‧‧‧Incomplete line
210c‧‧‧不完整線 210c‧‧‧Incomplete line
210d‧‧‧不完整線 210d‧‧‧Incomplete line
210e‧‧‧不完整線 210e‧‧‧Incomplete line
210f‧‧‧不完整線 210f‧‧‧Incomplete line
210g‧‧‧不完整線 210g‧‧‧Incomplete line
210h‧‧‧不完整線 210h‧‧‧Incomplete line
210i‧‧‧不完整線 210i‧‧‧Incomplete line
210j‧‧‧不完整線 210j‧‧‧Incomplete line
210k‧‧‧不完整線 210k‧‧‧Incomplete line
210l‧‧‧不完整線 210l‧‧‧Incomplete line
212a‧‧‧缺陷橋接部分 212a‧‧‧Defective bridging part
212b‧‧‧線 212b‧‧‧line
212c‧‧‧線 212c‧‧‧line
212d‧‧‧線 212d‧‧‧line
212e‧‧‧線 212e‧‧‧line
212f‧‧‧線 212f‧‧‧line
212g‧‧‧缺陷橋接部分 212g‧‧‧Defective bridging part
212h‧‧‧線 212h‧‧‧line
212i‧‧‧線 212i‧‧‧line
220‧‧‧無缺陷DSA線間距圖案/無缺陷DSA圖案 220‧‧‧Defectless DSA Line Pitch Pattern / Defectless DSA Pattern
222a‧‧‧第二共聚合物組件線 222a‧‧‧Second Copolymer Component Line
222b‧‧‧第二共聚合物組件線 222b‧‧‧Second Copolymer Component Line
224a‧‧‧第二共聚合物組件線 224a‧‧‧Second Copolymer Component Line
224b‧‧‧第二共聚合物組件線 224b‧‧‧Second Copolymer Component Line
224c‧‧‧第二共聚合物組件線 224c‧‧‧Second Copolymer Component Line
224d‧‧‧第二共聚合物組件線 224d‧‧‧Second Copolymer Component Line
226a‧‧‧第一共聚合物組件線 226a‧‧‧First Copolymer Component Line
226b‧‧‧第一共聚合物組件線 226b‧‧‧First Copolymer Component Line
228a‧‧‧最佳寬度基板部分 228a‧‧‧Best width substrate part
228b‧‧‧最佳寬度基板部分 228b‧‧‧Best width substrate part
302a‧‧‧DSA圖案 302a‧‧‧DSA pattern
302b‧‧‧DSA圖案 302b‧‧‧DSA pattern
302c‧‧‧DSA圖案 302c‧‧‧DSA pattern
304a‧‧‧柱狀結構 304a‧‧‧column structure
304b‧‧‧柱狀結構 304b‧‧‧Column Structure
304c‧‧‧柱狀結構 304c‧‧‧Column Structure
304d‧‧‧柱狀結構 304d‧‧‧Column Structure
306‧‧‧頂表面CD-SEM影像 306‧‧‧Top surface CD-SEM image
306a‧‧‧柱狀影像部分 306a‧‧‧Column image part
306b‧‧‧柱狀影像部分 306b‧‧‧Column image part
306c‧‧‧柱狀影像部分 306c‧‧‧Column image part
308‧‧‧經橋接之柱狀結構 308‧‧‧Bridged columnar structure
310‧‧‧經橋接之更低部分 310‧‧‧Bridge lower
314a‧‧‧斷開之更高柱狀部分 314a‧‧‧ disconnected higher columnar part
314b‧‧‧斷開之更高柱狀部分 314b‧‧‧ disconnected higher columnar part
314c‧‧‧斷開之更高柱狀部分 314c‧‧‧ disconnected higher columnar part
602‧‧‧晶圓 602‧‧‧wafer
700‧‧‧程序 700‧‧‧ procedure
702‧‧‧操作 702‧‧‧ operation
704‧‧‧操作 704‧‧‧operation
706‧‧‧操作 706‧‧‧operation
708‧‧‧操作 708‧‧‧Operation
709‧‧‧操作 709‧‧‧operation
710‧‧‧操作 710‧‧‧operation
712‧‧‧操作 712‧‧‧operation
714‧‧‧操作 714‧‧‧operation
800‧‧‧方法 800‧‧‧ Method
802‧‧‧操作 802‧‧‧ operation
804‧‧‧操作 804‧‧‧Operation
806‧‧‧操作 806‧‧‧ Operation
808‧‧‧操作 808‧‧‧Operation
1100‧‧‧方法 1100‧‧‧Method
1101‧‧‧操作 1101‧‧‧Operation
1102‧‧‧操作 1102‧‧‧Operation
1104‧‧‧操作 1104‧‧‧Operation
1106‧‧‧操作 1106‧‧‧Operation
1108‧‧‧操作 1108‧‧‧Operation
1110‧‧‧操作 1110‧‧‧ Operation
1112‧‧‧操作 1112‧‧‧ Operation
1114‧‧‧操作 1114‧‧‧ Operation
圖1A至圖1D係實施一導引圖案之一實例DSA程序之圖式,在一退火程序期間在導引圖案上之一嵌段共聚合物材料變得愈來愈自我排序。 1A to 1D are diagrams of an example DSA procedure for implementing a guide pattern. During a annealing process, a block copolymer material on the guide pattern becomes more and more self-ordered.
圖2係一DSA線間距圖案及一無缺陷DSA線間距圖案中之一橋接缺陷。 FIG. 2 is a bridge defect between a DSA line pitch pattern and a defect-free DSA line pitch pattern.
圖3包含三個廣泛變動之DSA圖案及其等之所得俯視圖CD-SEM影像之圖式。 Figure 3 contains three widely varying DSA patterns and their resulting top-view CD-SEM images.
圖4A展示針對一α信號之橢圓偏光計光譜,其中已知光柵品質良好。 FIG. 4A shows an ellipsometry spectrum for an alpha signal, where the known grating quality is good.
圖4B展示針對一β信號之一類似組光譜,其中已知光柵品質良好。 Figure 4B shows a similar set of spectra for a beta signal, where the known grating quality is good.
圖5展示針對α之一類似組光譜,其中已知光柵品質不良。 Figure 5 shows a similar set of spectra for one of the alphas, where the grating is known to be of poor quality.
圖6展示根據一晶圓上之位置而描繪之光譜差值(△)。 FIG. 6 shows the spectral difference (Δ) plotted according to the position on a wafer.
圖7係繪示根據本發明之一實施例之用於判定一晶圓圖案之一品質特徵之一程序之一流程圖。 FIG. 7 is a flowchart illustrating a procedure for determining a quality feature of a wafer pattern according to an embodiment of the present invention.
圖8係描述根據本發明之一替代實施例之使用一量測位點中之多個量測來指示一半導體晶圓上之品質之另一方法之一流程圖。 8 is a flowchart illustrating another method for indicating quality on a semiconductor wafer using a plurality of measurements in a measurement site according to an alternative embodiment of the present invention.
圖9係根據本發明之一實例實施方案之一單一量測位點之複數個 鄰近量測位置之一圖式。 FIG. 9 shows a plurality of single measurement sites according to an example embodiment of the present invention. One of the adjacent measurement locations.
圖10A及圖10B展示根據本發明之一實例實施方案之分別針對低品質晶圓及高品質晶圓之二維光束輪廓反射計(two-dimensional beam profile reflectometry,2DBPR)信號殘餘項。 FIGS. 10A and 10B show two-dimensional beam profile reflectometry (2DBPR) signal residuals for low-quality wafers and high-quality wafers according to an example embodiment of the present invention.
圖11繪示根據本發明之一替代實施例之藉由使用微分模型而評估DSA光柵品質之一方法。 FIG. 11 illustrates a method for evaluating the quality of a DSA grating by using a differential model according to an alternative embodiment of the present invention.
圖12繪示根據本發明之一實施例之一實例度量衡系統。 FIG. 12 illustrates an example weighing and weighing system according to an embodiment of the present invention.
在以下描述中,闡述許多特定細節以提供本發明之一透徹理解。可在沒有此等特定細節之一些或全部的情況下,實施本發明。在其他實例中,並未詳細描述已知程序操作以不必要地使得本發明模糊。儘管將結合特定實施例來描述本發明,然應瞭解,吾人不意欲將本發明限於實施例。 In the following description, numerous specific details are set forth to provide a thorough understanding of the present invention. The invention may be practiced without some or all of these specific details. In other instances, well-known program operations have not been described in detail to unnecessarily obscure the present invention. Although the invention will be described in conjunction with specific embodiments, it should be understood that we do not intend to limit the invention to the embodiments.
序言 Preface
當前諸多群組利用導向式自組裝(DSA)作為針對先進節點之一圖案化技術。圖1A至圖1D係利用一導引圖案122之一DSA程序之圖式,在一退火程序期間,於導引圖案122上之一嵌段共聚合物材料變得愈來愈自我排序。如所示,嵌段共聚合物材料104a最初相對於圖1A中之導引圖案122係無序。在一第一退火持續時間之後,一略微較經排序之嵌段共聚合物材料104b形成於導引圖案122上,如圖1B中所示。 在更多退火之後,一更經排序之嵌段共聚合物材料104c形成於圖1C中之導引圖案122上。最終,在圖1D中之一特定退火持續時間期間,一經排序之嵌段共聚合物材料104d形成於導引圖案122上。接著,共聚合物組件之一者可經蝕刻(未展示),以自剩餘共聚合物材料獲得一精細光柵結構。 Many groups currently use guided self-assembly (DSA) as one of the patterning technologies for advanced nodes. 1A to 1D are diagrams using a DSA procedure of a guide pattern 122. During an annealing process, a block copolymer material on the guide pattern 122 becomes more and more self-ordered. As shown, the block copolymer material 104a is initially disordered relative to the guide pattern 122 in FIG. 1A. After a first annealing duration, a slightly more ordered block copolymer material 104b is formed on the guide pattern 122, as shown in FIG. 1B. After more annealing, a more ordered block copolymer material 104c is formed on the guide pattern 122 in FIG. 1C. Finally, an ordered block copolymer material 104d is formed on the guide pattern 122 during a specific annealing duration in FIG. 1D. Then, one of the copolymer components can be etched (not shown) to obtain a fine grating structure from the remaining copolymer material.
在被稱作「化學磊晶術」之主要類型之DSA程序之一者中,光柵 製造的品質敏感地隨導引圖案尺寸參數以及材料的化學性質而變化。 此等光柵中之缺陷可採取隨機排序結構(尤其是無序區域)及在另一者下方之一DSA材料之子表面橋接的形式。圖2係一DSA線間距圖案206及一無缺陷DSA線間距圖案220中之一橋接缺陷。具體而言,DSA線間距圖案206形成於具有非最佳寬度之一下伏化學圖案208a及208b上。歸因於次佳下伏導引基板圖案208a及208b,DSA圖案係無序的。 例如,缺陷光柵206包含經圖案化成不完整線210a、210b、210i及210j以及210c、210d、210e、210f、210g、210h、210k及210l之第一共聚合物組件材料。第二共聚合物組件形成缺陷橋接部分212a及212g以及線212b、212c、212d、212e、212f、212h及212i。 In one of the main types of DSA procedures called "chemical epitaxy", the grating The quality of manufacturing is sensitive to the dimensional parameters of the guide pattern and the chemistry of the material. Defects in these gratings can take the form of randomly ordered structures (especially disordered regions) and sub-surface bridges of one of the DSA materials below the other. FIG. 2 illustrates bridging defects between a DSA line pitch pattern 206 and a defect-free DSA line pitch pattern 220. Specifically, the DSA line pitch pattern 206 is formed on the underlying chemical patterns 208a and 208b having one of the non-optimal widths. Due to the second-best underlying guide substrate patterns 208a and 208b, the DSA pattern is disordered. For example, the defect grating 206 includes a first co-polymer component material patterned into incomplete lines 210a, 210b, 210i, and 210j and 210c, 210d, 210e, 210f, 210g, 210h, 210k, and 210l. The second co-polymer component forms defective bridge portions 212a and 212g and lines 212b, 212c, 212d, 212e, 212f, 212h, and 212i.
相比而言,DSA圖案220係無缺陷的。第二共聚合物組件線222a及222b形成於最佳寬度基板部分228a及228b上方。額外第二共聚合物組件線(224a至224d)以及第一共聚合物組件線(例如226a及226b)亦形成於此等基板部分228a及228b之間。當用一CD-SEM來成像無缺陷DSA圖案220及缺陷DSA圖案206兩者之頂表面時,所得影像202及204實質上係相同的。因此,DSA圖案206之下伏橋接缺陷未被偵測。 In contrast, the DSA pattern 220 is defect-free. Second co-polymer module lines 222a and 222b are formed over the optimal width substrate portions 228a and 228b. Additional second co-polymer component lines (224a to 224d) and first co-polymer component lines (eg, 226a and 226b) are also formed between these substrate portions 228a and 228b. When a CD-SEM is used to image the top surfaces of both the non-defective DSA pattern 220 and the defective DSA pattern 206, the resulting images 202 and 204 are substantially the same. Therefore, the underlying bridge defect of the DSA pattern 206 is not detected.
圖3包含三個廣泛變動之DSA圖案302a、302b及302c之圖式。具體而言,DSA圖案302a由三個柱狀結構304a、304b及304c形成。DSA圖案302b由經橋接之柱狀結構308形成,而DSA圖案302c由經橋接之更低部分310及斷開之更高柱狀部分314a、314b及314c形成。全部三個結構302a至302c導致相同頂表面CD-SEM影像306具有三個柱狀影像部分306a、306b及306c。 Figure 3 contains three widely varying DSA patterns 302a, 302b, and 302c. Specifically, the DSA pattern 302a is formed of three columnar structures 304a, 304b, and 304c. The DSA pattern 302b is formed of a bridged columnar structure 308, and the DSA pattern 302c is formed of a bridged lower portion 310 and disconnected higher columnar portions 314a, 314b, and 314c. All three structures 302a to 302c result in the same top surface CD-SEM image 306 having three columnar image portions 306a, 306b, and 306c.
在子表面缺陷之情況下,在不修改典型量測條件及可能損害器件之情況下,CD-SEM工具對缺陷視而不見。一些人相信缺乏此等子基板缺陷之偵測造成對大量製造之一嚴重阻礙。 In the case of subsurface defects, the CD-SEM tool ignores the defects without modifying the typical measurement conditions and possible damage to the device. Some people believe that the lack of detection of these sub-substrate defects is a serious obstacle to mass production.
對當前開發DSA程序之部分之一目標係判定何處形成一良好形成 及不良形成之光柵,及何處形成一無序之薄膜形。此區別可取決於用於圖案化DSA薄膜堆疊物之底部處之導引層之微影工具暴露及劑量。 層之光回應中之方位角不對稱性可用於量化是否形成一良好排序之光柵。 One of the goals of part of the current DSA development process is to determine where a well-formed And poorly formed gratings, and where to form a disordered thin film shape. This difference may depend on the lithographic tool exposure and dose used to pattern the guide layer at the bottom of the DSA film stack. The azimuthal asymmetry in the layer's light response can be used to quantify whether a well-ordered grating is formed.
特徵化圖案之實例實施例: 本發明之某些實施例包含針對光譜資料收集之裝置及方法以及用於在不需要任何模型化之情況下特徵化一半導體晶圓上之所關注結構之品質之信號處理。特徵化品質可包含關於一所關注結構是否自良好或不良品質之一指示。此等技術允許基於分析原始光譜信號而跨一整個晶圓而特徵化程序良率之一更簡單及更快速構件。在某些實施例中,此等技術(特定言之)可應用於週期結構(繞射光柵)及光阻或導向式自組裝(DSA)結構之品質之特徵化。除了光柵結構,可針對品質而分析其他類型之所關注晶圓結構。實例包含薄膜、週期及非週期結構等等。 Example embodiments of characteristic patterns: Certain embodiments of the present invention include devices and methods for spectral data collection and signal processing for characterizing the quality of a structure of interest on a semiconductor wafer without requiring any modeling. Characterizing the quality may include an indication as to whether a structure of interest is of good or bad quality. These techniques allow one of the simpler and faster components to characterize procedural yields across an entire wafer based on the analysis of raw spectral signals. In some embodiments, these techniques (in particular) can be applied to characterize the quality of periodic structures (diffraction gratings) and photoresist or guided self-assembly (DSA) structures. In addition to grating structures, other types of wafer structures of interest can be analyzed for quality. Examples include thin films, periodic and non-periodic structures, and more.
在某些實施例中,依多個方位角而進行光譜量測。在另一實例中,自鄰近量測位置獲得多個光譜信號。 In some embodiments, the spectral measurements are performed at multiple azimuth angles. In another example, multiple spectral signals are obtained from nearby measurement locations.
自量測位點所獲取之光譜信號可包含可彼此減去或彼此比較之任何成對之相同信號類型。實例信號包含(但不限於)任何類型之散射量測、分光、橢圓偏光計及/或反射計信號,該等信號包含:Ψ、△、Rs(s偏光之複雜反射率)、Rp(p偏光之複雜反射率)、Rs(|rs|2)、Rp(|rp|2)、R(非偏光反射率)、α(分光「α」信號)、β(分光「β」信號)及此等參數之函數(諸如tan(Ψ)、cos(△)、((Rs-Rp)/(Rs+Rp))、穆勒矩陣元件(Mij)等等)。該等信號可替代地或另外隨著入射角、偵測交、偏光、入射之方位角、偵測方位角、角分佈、相位或波長或此等參數之一者以上之一組合之變化而被量測。該等信號亦可為信號(諸如複數個上文所描述之橢圓偏光計及或反射計信號類型之任何者之一平均 值)之一組合之一特徵。其他實施例可使用其中可依一單一波長(而不是多個波長)而獲得信號之至少一者之單色或雷射光源。照明波長可為任何範圍,自X射線波長開始且至遠紅外波長。 The spectral signals obtained from the measurement sites can include any pair of the same signal type that can be subtracted from or compared to each other. Example signals include, but are not limited to, any type of scattering measurement, spectroscopic, ellipsometry, and / or reflectometer signals. These signals include: Ψ, △, Rs (complex reflectivity of s-polarized light), Rp (p-polarized light) Complex reflectivity), Rs (| r s | 2 ), Rp (| r p | 2 ), R (non-polarized reflectance), α (spectral "α" signal), β (spectral "β" signal), and Functions of these parameters (such as tan (Ψ), cos (△), ((Rs-Rp) / (Rs + Rp)), Mueller matrix elements (M ij ), etc.). These signals may alternatively or additionally be changed as a function of incident angle, detected intersection, polarized light, incident azimuth, detected azimuth, angular distribution, phase or wavelength, or a combination of more than one of these parameters. Measure. The signals may also be a feature of a combination of signals, such as an average of any of a plurality of ellipsometer and or reflectometer signal types described above. Other embodiments may use a monochromatic or laser light source in which at least one of the signals can be obtained at a single wavelength (instead of multiple wavelengths). The illumination wavelength can be in any range, starting from the X-ray wavelength and reaching the far-infrared wavelength.
接著,可直接分析兩個(或兩個以上)光譜信號之間之差值(或標準偏差),以判定在不使用一模型及不提取任何特徵參數(諸如臨界尺寸(critical dimension,CD)或薄膜厚度)之情況下,量測位點是否具有一良好或不良品質。即,量測位點之一品質指示器僅可基於兩個或兩個以上經量測之光譜信號之間之差值。 Then, the difference (or standard deviation) between two (or more) spectral signals can be directly analyzed to determine whether a model is not used and no feature parameters such as critical dimension (CD) or Film thickness), measure whether the site has a good or bad quality. That is, the quality indicator of one of the measurement sites can only be based on the difference between two or more measured spectral signals.
在一光柵目標實例中,可大體上計算光譜之間之差值,且亦可在跨晶圓之各種位置處判定此差值。在其中光譜差值在一相對感測中更高之位置處,一良好形成之光柵存在之概率更高,其中光柵結構不良或甚至為無序之位置處,光學量測將不偵測任何強方位角不對稱性,且依不同方位方向之量測之間之光譜差值將為零或接近零。 In a raster target example, the difference between the spectra can be roughly calculated, and the difference can also be determined at various locations across the wafer. At a position where the spectral difference is higher in a relative sensing, a well-formed grating is more likely to exist. Where the grating structure is poor or even out of order, optical measurement will not detect any strong The azimuth is asymmetric, and the spectral difference between measurements in different azimuth directions will be zero or near zero.
圖4A展示依兩個方位角在一相同位置中量測之(α)信號之橢圓偏光計光譜,其中已知光柵品質良好。同樣地,圖4B展示針對一(β)信號之一類似組光譜,其中已知光柵品質良好。藉由依兩個方位角之經量測之光譜之間之分離而證明一高品質光柵之存在。相比而言,圖5展示針對(α)之一組光譜,其中已知光柵品質不良。藉由缺乏依針對信號依兩個方位角之兩個經量測之光譜之間之分離而證明一不良品質光柵之存在。儘管針對一已知不良品質光柵而僅展示(α)信號,然將針對(β)信號而發生類似結果。 FIG. 4A shows an ellipsometry spectrum of the (α) signal measured at two azimuth angles in the same position, and the known grating quality is good. Similarly, FIG. 4B shows a similar set of spectra for a (β) signal, where the grating is known to be of good quality. The existence of a high-quality grating is demonstrated by the separation between the measured spectra from two azimuth angles. In contrast, Figure 5 shows a set of spectra for (α) where the gratings are known to be of poor quality. The existence of a poor quality grating is demonstrated by the lack of separation between the two measured spectra of the signals at two azimuth angles. Although only the (α) signal is shown for a known poor quality grating, similar results will occur for the (β) signal.
圖6展示針對具有自左向右之一程序變動之一晶圓之隨著一晶圓602上之位置之變化而描繪之光譜差值(delta)。具有方位之間之較高光譜差值之區域與針對晶圓而量測之良率圖密切相關。例如,一些等高線面積經展示為具有大於0.060、在0.050至0.60之間、在0.050至0.040之間、在0.040至0.030之間等等之delta(或信號之間之差值)。此 等差值亦可指示光柵品質。 FIG. 6 shows the spectral delta for a wafer with a program change from left to right as the position on a wafer 602 changes. Regions with higher spectral differences between orientations are closely related to the yield map measured for the wafer. For example, some contour areas are shown as having a delta (or difference between signals) greater than 0.060, between 0.050 and 0.60, between 0.050 and 0.040, between 0.040 and 0.030, and so on. this Equal differences can also indicate the quality of the grating.
圖7係繪示根據本發明之一實施例之用於判定針對一晶圓圖案之一品質特徵之一程序之一流程圖。在操作702中,最初可自相同量測位點依多個方位角而收集光譜資料。一般而言,兩個或兩個以上方位角可包含任何適合角,諸如針對對於光柵或圖案缺陷之增大之靈敏度而彼此正交之角(儘管未要求)。例如,可依垂直及平行於光柵方向之方向而獲得光譜量測。 FIG. 7 is a flowchart illustrating a procedure for determining a quality feature for a wafer pattern according to an embodiment of the present invention. In operation 702, initially, spectral data may be collected from the same measurement location at multiple azimuth angles. In general, two or more azimuths may include any suitable angle, such as angles that are orthogonal to one another (although not required) for increased sensitivity to grating or pattern defects. For example, spectral measurements can be obtained in directions perpendicular to and parallel to the direction of the grating.
量測可包含任何適合光譜輻射信號,諸如散射量測、反射計或橢圓偏光計信號(包含文中所描述之實例)。可基於對所關注結構之信號靈敏度而選擇所獲取之信號之類型。例如,某些波長可對某些特定結構尺寸更敏感。所關注結構可包含任何經圖案化或週期結構,包含2維光柵及3維光柵、點陣列等等。 The measurement may include any suitable spectral radiation signal, such as a scattering measurement, a reflectometer, or an ellipsometer signal (including the examples described herein). The type of acquired signal can be selected based on the signal sensitivity to the structure of interest. For example, certain wavelengths may be more sensitive to certain structure dimensions. The structure of interest may include any patterned or periodic structure, including 2D and 3D gratings, point arrays, and so on.
在獲取光譜之後,接著,可在操作704中判定一光譜差值。若僅存在針對特定所關注結構而收集之兩個光譜,則可僅僅減去光譜信號以獲得一差值信號。若存在兩個以上光譜,則可使用任何數目個技術來獲得一差值信號。若存在兩個以上方位角,則可減去針對各成對之方位角之光譜。在一實施例中,針對各成對之正交角而獲得差值。若亦依多個波長範圍而獲得針對各方位角之光譜,則在操作706中,可視情況選擇對應於波長範圍之一特定者之最高光譜差值。在另一實例中,差值信號(例如依不同波長)可經減少至一單一差值。在所繪示之實例中,在操作708中,可判定光譜差值絕對值之波長平均值。即,針對不同波長之差值信號之平均值可經判定以獲得一平均差值信號。 After acquiring the spectrum, a spectrum difference may then be determined in operation 704. If there are only two spectra collected for a particular structure of interest, then only the spectral signal can be subtracted to obtain a difference signal. If more than two spectra exist, any number of techniques can be used to obtain a difference signal. If there are more than two azimuths, the spectrum for each pair of azimuths can be subtracted. In one embodiment, the difference is obtained for each pair of orthogonal angles. If the spectrum for each azimuth angle is also obtained according to multiple wavelength ranges, then in operation 706, the highest spectral difference value corresponding to a specific one of the wavelength ranges may be selected as appropriate. In another example, the difference signal (eg, at different wavelengths) may be reduced to a single difference. In the illustrated example, in operation 708, a wavelength average value of the absolute value of the spectral difference value may be determined. That is, the average value of the difference signals for different wavelengths can be determined to obtain an average difference signal.
可基於任何適合差值臨限值或百分比值而界定品質指示,例如與平均差值相比較。例如,高於一預定義臨限值之差值信號可導致一「良好」品質指示,否則,低於或等於預定義臨限值之差值信號可導致一「不良」品質指示。針對圖6中所示之實例,可將臨限值設定為 大於0.06之△作為一良好品質光柵之指示。 The quality indication may be defined based on any suitable difference threshold or percentage value, such as compared to an average difference. For example, a difference signal above a predefined threshold may result in a "good" quality indication, otherwise a difference signal below or equal to a predefined threshold may result in a "bad" quality indication. For the example shown in Figure 6, the threshold can be set to A Δ greater than 0.06 is an indication of a good quality grating.
依一良好完美光柵形式之一圖案(例如)趨於在依不同方位角量測之光譜信號中產生一大差值。隨著一光柵結構變得更有缺陷,經量測之信號差值變小且類似於一均勻薄膜回應,此依不同方位角具有一零差值。即,介於相關聯於一完美光柵之一最大差值與零之間之一差值指示針對一光柵或圖案結構之缺陷。 A pattern in the form of a good perfect grating (for example) tends to produce a large difference in the spectral signals measured at different azimuths. As a grating structure becomes more defective, the measured signal difference becomes smaller and resembles a uniform film response, which has a zero difference according to different azimuths. That is, a difference between a maximum difference and zero associated with a perfect grating indicates a defect for a grating or pattern structure.
接著,在操作709中,可基於光譜差值而判定及報告圖案之一品質指示。品質指示可視情況而基於光譜差值之波長平均值(自操作708)或基於針對一所選波長之最高光譜差值(自操作706)。接著,可結束程序或針對多個目標而重複該程序。 Then, in operation 709, a quality indication of one of the patterns may be determined and reported based on the spectral difference value. The quality indication may be based on the average wavelength of the spectral differences (from operation 708) or the highest spectral difference for a selected wavelength (from operation 706), as appropriate. The procedure can then be ended or repeated for multiple targets.
接著,上文所描述之品質判定程序之後接著一校準程序。可視情況執行一校準程序以針對被視為具有不良品質之一所關注結構而量化缺陷。在所繪示之實施例中,在操作710中,亦可視情況判定理論光譜對一完美光柵之差值。在操作712中,依理論光譜差值而正規化(或校準)經量測之光譜差值。接著,在操作714中,可基於正規化光譜差值而判定及報告一缺陷數量。類似於品質判定,缺陷數量可視情況基於多個光譜量測差值之波長平均值(自操作708)或基於針對一所選波長之最高光譜差值(自操作706)。在執行校準以量化缺陷之後,亦可針對多個光譜差值而重複程序700或可結束程序。 Then, the quality determination procedure described above is followed by a calibration procedure. Optionally, a calibration procedure is performed to quantify defects for a structure of interest that is considered to be one of the poor qualities. In the illustrated embodiment, in operation 710, the difference between the theoretical spectrum and a perfect grating may also be determined as appropriate. In operation 712, the measured spectral difference is normalized (or calibrated) according to the theoretical spectral difference. Then, in operation 714, a number of defects may be determined and reported based on the normalized spectral difference. Similar to the quality determination, the number of defects may be optionally based on a wavelength average of multiple spectral measurement differences (from operation 708) or based on the highest spectral difference for a selected wavelength (from operation 706). After performing calibration to quantify the defect, the procedure 700 may also be repeated for multiple spectral differences or the procedure may be ended.
可針對其而基於光譜信號比較來判定品質之其他量測結構係薄膜。圖8係描述根據本發明之一替代實施例之使用一量測位點中之多個量測來指示一半導體晶圓上之品質之另一方法800之一流程圖。圖9係根據本發明之一實例實施方案之一單一量測位點之複數個鄰近量測位置之一圖式。最初,在操作802中,可在一相同量測位點之多個鄰近位置處獲得光譜量測。自其獲得量測之鄰近位置良好地彼此鄰近而不重疊實際量測區域。 Other measurement structural films for which quality can be determined based on comparison of spectral signals. FIG. 8 is a flowchart illustrating another method 800 for indicating quality on a semiconductor wafer using multiple measurements in a measurement site according to an alternative embodiment of the present invention. FIG. 9 is a diagram of a plurality of adjacent measurement locations of a single measurement site according to an example embodiment of the present invention. Initially, in operation 802, a spectral measurement may be obtained at a plurality of adjacent locations of a same measurement site. Adjacent locations from which measurements were obtained are well adjacent to each other without overlapping the actual measurement area.
可在操作804中判定針對全部(或一部分)所獲得之光譜量測之一平均信號或中值信號。在操作806中自平均值或中值判定量測之各者之一標準偏差。針對各量測位置,在操作808中,可在此量測位置處基於相對應標準偏差而判定及報告一品質指示。可針對跨晶圓之多個位置而重複上述步驟以產生晶圓品質圖。亦可使用一校準程序來擴展此程序以量化缺陷,如文中進一步所描述。 An average signal or a median signal for all (or a portion of) the obtained spectral measurements may be determined in operation 804. One of each of the measurements is determined from the average or median standard deviation in operation 806. For each measurement position, in operation 808, a quality indicator may be determined and reported based on the corresponding standard deviation at this measurement position. The above steps can be repeated for multiple locations across the wafer to generate a wafer quality map. A calibration procedure can also be used to extend this procedure to quantify defects, as described further herein.
針對圖8之技術之一量測位點可包含任何適合的一或多個所關注結構(諸如一光柵或薄膜結構),預期該等結構均勻。例如,將預期填充整個量測位點之一光柵在跨量測位點區域之不同量測位置處均勻,除非此光柵有缺陷。同樣地,將預期填充量測位點之一薄膜具有跨量測位點之一相同厚度(及均勻性),且導致此量測位點中之不同量測位置處之相同光譜信號。在該兩個實例中存在更多缺陷;將存在更大光譜差值。因此,此技術可應用於正常結構,該等結構可包含薄膜、2維及3維光柵、點(或任何其他類型)陣列、週期結構等等。 One measurement site for the technique of FIG. 8 may include any suitable structure or structures of interest, such as a grating or thin film structure, and it is expected that the structures are uniform. For example, one grating that is expected to fill the entire measurement site is uniform at different measurement locations across the region of the measurement site, unless the grating is defective. Likewise, it is expected that a thin film filling the measurement site will have the same thickness (and uniformity) across one of the measurement sites and result in the same spectral signal at different measurement locations in the measurement site. There are more defects in these two examples; there will be larger spectral differences. Therefore, this technique can be applied to normal structures, which can include thin films, 2D and 3D gratings, dot (or any other type) arrays, periodic structures, and so on.
圖10A及10B展示針對較低品質晶圓(圖10A)及較高品質晶圓(圖10B)之二維光束輪廓反射計(2DBPR)信號殘餘項(或差值信號)。儘管圖10A及10B中之實例使用角解析信號,然亦可針對波長解析光譜而應用相同方法。本發明之某些技術可被視為「無模型」,此係由於未進行關於經量測之半導體圖案之假定。另外,無需藉由比較模型結果而自經量測之光譜提取所關注結構之定量值(諸如CD)。 Figures 10A and 10B show two-dimensional beam profile reflectometer (2DBPR) signal residuals (or difference signals) for lower quality wafers (Figure 10A) and higher quality wafers (Figure 10B). Although the examples in FIGS. 10A and 10B use angle-resolved signals, the same method can be applied to wavelength-resolved spectra. Certain techniques of the present invention can be considered "model-free" because assumptions about measured semiconductor patterns are not made. In addition, there is no need to extract quantitative values (such as CDs) of the structure of interest from the measured spectra by comparing model results.
可藉由訓練用於已知品質結構(例如已知不良及良好光柵)之技術而擴展本發明之某些無模型實施例。基於機器學習方法(諸如神經網路)之一演算法可被用於基於一訓練集之已知結構而使經量測之光譜信號與一測試結構(諸如DSA圖案)中之預先程式化之變動相關。即,具有一訓練集之預定義或已知變動可經量測以獲得光譜信號,從而判定用於使光譜信號與特徵或程序變動相關之一模型。在完成機器學習 操作之後,可自使用此模型自具有未知特性之所關注結構獲得之光譜信號提取特徵及程序相關參數。 Certain model-less embodiments of the invention can be extended by training techniques for known quality structures, such as known bad and good gratings. An algorithm based on machine learning methods (such as neural networks) can be used to make pre-programmed changes in measured spectral signals and a test structure (such as a DSA pattern) based on a known structure of a training set Related. That is, a predefined or known variation with a training set can be measured to obtain a spectral signal, thereby determining a model for correlating the spectral signal with a characteristic or program variation. After completing machine learning After the operation, features and program-related parameters can be extracted from the spectral signals obtained from the structure of interest with unknown characteristics using this model.
在進一步實施例中,各種程序參數被改動。為了說明,當在相同晶圓內或不同晶圓上導引圖案間距變動時,DSA圖案之尺寸性質受影響。替代地,變動嵌段共聚合物層之厚度可為實驗設計(design of experiments,DOE)訓練集之一部分。程序參數變動(諸如退火溫度)可被用作產生一DOE訓練集之另一方式,例如在不同退火溫度下處理不同晶圓。 In a further embodiment, various program parameters are modified. To illustrate, when the guide pattern pitch varies within the same wafer or on different wafers, the dimensional properties of the DSA pattern are affected. Alternatively, varying the thickness of the block copolymer layer may be part of a design of experiments (DOE) training set. Program parameter variations (such as annealing temperature) can be used as another way to generate a DOE training set, such as processing different wafers at different annealing temperatures.
在產生一DOE訓練集之後,可量測使用不同程序條件來製造之目標,以獲得光譜(諸如依兩個方位角自一單一量測位點之特定信號類型或自多個量測位點之一特定信號類型),接著,處理該等光譜作為訓練演算法之一部分。為判定針對訓練集之尺寸參數(諸如輪廓特性(底部或頂部CD、側壁角等等)),可由可為破壞性的一參考度量衡(例如橫截面穿透式電子顯微鏡(transmission electron microscopy,TEM))或由原子力顯微鏡術(atomic force microscopy,AFM)或CD-SEM來特徵化來自訓練集之此等目標。已知特徵參數可僅包含關於不良或良好品質之指示,而不是特定度量值。 After a DOE training set is generated, targets manufactured using different program conditions can be measured to obtain a spectrum (such as a specific signal type from a single measurement site at two azimuth angles or from A specific signal type), and then processing the spectra as part of a training algorithm. To determine dimensional parameters (such as contour characteristics (bottom or top CD, sidewall angles, etc.) for the training set), a reference metrology that can be destructive (e.g., transmission electron microscopy (TEM)) ) Or by atomic force microscopy (AFM) or CD-SEM to characterize these targets from the training set. Known characteristic parameters may only include an indication of poor or good quality, rather than a specific metric value.
亦可(例如)藉由訓練而特徵化對理想或所要DSA圖案之偏差,以使經量測之信號與光譜內或光譜外(或良好品質相比於不良品質)DSA圖案相關。例如,使用橋接之一DSA結構可在將不藉由理想圖案產生之角解析信號或橫向極化信號中產生非對稱訊符。此等信號之不對稱位準及角度或光譜內容可與經量測之區域中之橋接缺陷(或其他缺陷類型)之密度相關。取決於此等結構產生之光譜(例如依兩個方位角或自多個量測位點之此等光譜),藉由使用一訓練方法,可訓練一特徵提取器程序以分析光譜內相比於光譜外圖案。接著,來自未知結構之光譜可被輸入至經訓練之特徵提取器。特徵提取器輸出可被用於調整 程序參數,以補償隨著時間的推移發生於DSA圖案化中之程序漂移,如在一先進程序控制(advanced process control,APC)系統中。 Deviations from the ideal or desired DSA pattern can also be characterized, for example, by training, so that the measured signal is related to the intra- or extra-spectral (or good quality compared to poor quality) DSA pattern. For example, using one of the bridged DSA structures can produce asymmetrical signals in corner-resolved or laterally polarized signals that would not be produced by an ideal pattern. The asymmetric level and angle or spectral content of these signals can be related to the density of bridging defects (or other defect types) in the measured area. Depending on the spectra generated by these structures (e.g., these spectra from two azimuth angles or from multiple measurement sites), by using a training method, a feature extractor program can be trained to analyze within the spectrum compared to Out-of-spectrum pattern. Spectra from unknown structures can then be input to a trained feature extractor. Feature extractor output can be used for tuning Program parameters to compensate for process drift that occurs in DSA patterning over time, such as in an advanced process control (APC) system.
在一開發使用情況下,與生產使用情況相反,嵌段共聚合物之化學性質亦可經變動以達成最佳圖案化尺寸或粗糙度性質。可使用上文所描述之訓練方法之任何者來在一DOE(實驗設計)集中變動及特徵化此等性質。 In a development and use case, contrary to the production use case, the chemical properties of the block copolymer can also be changed to achieve the best patterned size or roughness properties. Any of the training methods described above can be used to centrally vary and characterize these properties in a DOE (Design of Experiments).
在一繪示性實例中,可在如圖11中所描述之一微分模型中實施圖7之方法。例如,可針對關於一90°方位角(Az90)之一零度方位角(Az0)來判定一微分模型:Az0=f(Az90)+err,其中f( )係使Az90信號最佳擬合於Az0信號之一函數,且err表示Az90與Az0信號之間之殘餘誤差。可判定針對整個晶圓之一最小及最大殘餘誤差。當Az0信號及Az90信號非常相似時,接著,此殘餘誤差將較小(minErr),在隨機雜訊之位準處。此較小minErr對應於不良形成之DSA結構。相比而言,較大err(maxErr)對應於良好形成之DSA結構。minErr與maxErr之間的誤差可用於評估DSA光柵的相對品質。 In an illustrative example, the method of FIG. 7 may be implemented in a differential model as described in FIG. 11. For example, a differential model can be determined for a zero-degree azimuth (Az0) about a 90 ° azimuth (Az90): Az0 = f (Az90) + err, where f () makes the Az90 signal best fit to A function of the Az0 signal, and err represents the residual error between the Az90 and Az0 signals. One of the minimum and maximum residual errors for the entire wafer can be determined. When the Az0 and Az90 signals are very similar, then this residual error will be smaller (minErr), at the level of random noise. This smaller minErr corresponds to a poorly formed DSA structure. In contrast, a larger err (maxErr) corresponds to a well-formed DSA structure. The error between minErr and maxErr can be used to evaluate the relative quality of DSA gratings.
圖11繪示根據本發明之一替代實施例之藉由使用一微分模型來評估DSA光柵品質之一方法1100。最初,在操作1101中,可使用CD-SEM或其他度量衡工具,自參考DSA結構收集針對DSA缺陷之參考資料。即,CD-SEM可用於分類如具有一不良或良好品質(或有缺陷或無缺陷)及不同數目個缺陷的複數個DSA參考結構。此參考資料包含針對已知DSA結構及其等之對應光譜資料的品質指示及/或缺陷計數。 光譜參考資料將包含如針對以下訓練集而收集之相同類型的信號。 FIG. 11 illustrates a method 1100 for evaluating the quality of a DSA grating by using a differential model according to an alternative embodiment of the present invention. Initially, in operation 1101, a CD-SEM or other metrology tool may be used to collect references to DSA defects from a reference DSA structure. That is, CD-SEM can be used to classify a plurality of DSA reference structures such as having a poor or good quality (or defective or non-defective) and a different number of defects. This reference contains quality indications and / or defect counts for known DSA structures and their corresponding spectral data. The spectral reference will contain the same type of signal as collected for the training set below.
在操作1102中,可自源於一訓練集之複數個DSA結構之各者收集依0及90°方位角兩者的光譜信號。儘管繪示性實例描述正交方位角,然可使用其他角度。然而,方位對係處於不同角度位置處。可收集任何類型之光譜信號(諸如分光資料)。訓練集DSA結構將含有不同數目 個缺陷。 In operation 1102, spectral signals at both 0 and 90 ° azimuth angles may be collected from each of a plurality of DSA structures originating from a training set. Although the illustrative examples describe orthogonal azimuths, other angles may be used. However, the azimuth pairs are at different angular positions. Any type of spectral signal (such as spectroscopic data) can be collected. The training set DSA structure will contain different numbers Defects.
接著,在操作1104中,可對依0及90°方位角兩者之來自訓練集的光譜資料執行主分量分析(principal component analysis,PCA)。可實施任何適合特徵提取技術(除了PCA),以便自具有最佳資訊之光譜信號對提取一特徵,同時減小資料集。其他實例自動化特徵提取技術包含獨立分量分析(independent component analysis,ICA)、局部線性嵌入(local linear embedding,LLE)演算法等等。 Then, in operation 1104, a principal component analysis (PCA) may be performed on the spectral data from the training set at both azimuth angles of 0 and 90 °. Any suitable feature extraction technique (except PCA) can be implemented to extract a feature from a pair of spectral signals with the best information while reducing the data set. Other examples of automated feature extraction techniques include independent component analysis (ICA), local linear embedding (LLE) algorithms, and so on.
可在操作1106中判定針對兩個方位角而執行之PCA之間之一關係。一般而言,該關係將表示使來自兩個方位角之PCA資料最佳相關之一函數。接著,可在操作1108中判定殘餘資料。殘餘資料大體上係使來自兩個方位角之PCA資料相關之最佳擬合函數之間的差值。接著,在操作1110中,可對殘餘資料及可被選擇之PCA殘餘資料之一或若干主分量(例如第一主分量PC1)執行PCA。 A relationship between the PCAs performed for the two azimuths may be determined in operation 1106. In general, this relationship will represent a function that best correlates PCA data from two azimuths. Residual data may then be determined in operation 1108. The residual data is generally the difference between the best-fit functions that correlate the PCA data from the two azimuths. Then, in operation 1110, a PCA may be performed on one or several principal components (such as the first principal component PC1) of the residual data and the PCA residual data that may be selected.
接著,可在操作1112中判定PC1殘餘資料與參考資料之間之一關係。例如,可針對自具有已知缺陷品質(例如不良或良好品質及/或諸多缺陷)之已知DSA圖案獲得之參考資料而比較PC1殘餘資料與PC1資料,且接著,可判定使PC1與品質相關之一模型。接著,在操作1114中,可基於自收集自一未知DSA之光譜所判定之PC1殘餘資料與品質之間之關係而判定此未知DSA圖案之DSA圖案品質。 Then, a relationship between the PC1 residual data and the reference data may be determined in operation 1112. For example, the PC1 residual data can be compared with the PC1 data for reference data obtained from a known DSA pattern with known defect qualities (such as poor or good quality and / or many defects), and then, it can be determined that PC1 is related to quality One model. Then, in operation 1114, the DSA pattern quality of the unknown DSA pattern may be determined based on the relationship between the PC1 residual data and the quality determined from the spectrum collected from an unknown DSA.
儘管在使用得自於一PCA變換之第一主分量方面描述以下實例實施例以便提取關於一品質參數之資訊,然而其他實施例可利用其他特徵提取結果或技術。例如,可使用如經由PCA而判定之第一主分量及第二主分量。可基於應用之特定需求而選擇任何數目個主分量。在又一實例中,可使用自另一特徵提取工具(諸如ICA或LLE)之輸出。 Although the following example embodiments are described in terms of using a first principal component derived from a PCA transformation to extract information about a quality parameter, other embodiments may utilize other feature extraction results or techniques. For example, the first principal component and the second principal component may be used as determined via the PCA. Any number of principal components can be selected based on the specific needs of the application. In yet another example, the output from another feature extraction tool such as ICA or LLE can be used.
在一PCA實施例中,所提取之特徵對應於信號資料集至一不同座標系統之一變換及經變換之資料集沿其而具有最多變動之此新的座標 系統之一特定維數(或方向或投影方向)之選擇,此提供關於特徵品質之最多資訊。第一主分量對應於經發現具有最多變動之PCA變換之資料集之一經變換之方向或維數。第二主分量具有第二多變動等等。 In a PCA embodiment, the extracted features correspond to this new coordinate along which the signal data set is transformed to a different coordinate system and the transformed data set has the most changes. Selection of a specific dimension (or direction or projection direction) of the system, which provides the most information about the quality of the feature. The first principal component corresponds to the transformed direction or dimension of one of the PCA transformed data sets found to have the most variation. The second principal component has a second most variation and so on.
一般而言,上述方法可經校準以判定定量特徵及/或程序參數值。例如,可採用CD-SEM量測之多個點以建立缺陷之數目與誤差之間之關係: 缺陷數目=Cal(err)或 缺陷數目=Cal(Az0-f(Az90)),其中Cal( )係由CD-SEM參考量測位點獲得之校準函數。 In general, the methods described above can be calibrated to determine quantitative characteristics and / or program parameter values. For example, multiple points measured by CD-SEM can be used to establish the relationship between the number of defects and errors: Number of defects = Cal (err) or Number of defects = Cal (Az0-f (Az90)), where Cal () is a calibration function obtained from a CD-SEM reference measurement site.
用於產生微分模型之信號可為由PCA、獨立分量分析(ICA)、局部線性嵌入(LLE)或其他特徵提取方法獲得之原始信號(例如α、β)或原始信號之分量。 The signal used to generate the differential model may be an original signal (such as α, β) or a component of the original signal obtained by PCA, Independent Component Analysis (ICA), Local Linear Embedding (LLE), or other feature extraction methods.
在另一繪示性模型實例中,由量測而產生一2DBPR微分模型。 一2DBPR影像係徑向對稱的(當經量測之樣本類似於薄膜時)或非徑向對稱的(當樣本具有一些週期結構時)。使用此特徵,一徑向對稱表面可與2DBPR影像相配。 In another illustrative model example, a 2DBPR differential model is generated from the measurement. A 2DBPR image is radially symmetrical (when the sample being measured is similar to a thin film) or non-radially symmetrical (when the sample has some periodic structure). Using this feature, a radially symmetrical surface can be matched with 2DBPR images.
Img=f(Img)+err,其中f( )係最佳擬合影像之徑向對稱函數,且「err」係對應於不對稱部分之殘餘誤差。一不對稱部分可意指影像至少部分不是徑向對稱且係一有缺陷薄膜。 Img = f (Img) + err, where f () is the radial symmetry function of the best-fit image, and "err" is the residual error corresponding to the asymmetric part. An asymmetric portion can mean that the image is at least partially not radially symmetric and is a defective film.
依如在非2DBPR情況下之類似方式,殘餘誤差可被用於評估缺陷之位準,且在校準之情況下,可判定缺陷之數目。如在非2DBPR情況下,可使用2DBPR影像之分量,而不是原始信號。在兩種情況下,標準偏差、最大值、中值或誤差之分佈可被用作DSA光柵品質之一度量。 In a similar way as in the case of non-2DBPR, the residual error can be used to evaluate the level of defects, and in the case of calibration, the number of defects can be determined. For non-2DBPR situations, the components of the 2DBPR image can be used instead of the original signal. In both cases, the standard deviation, maximum, median, or error distribution can be used as a measure of DSA grating quality.
在另一繪示性模型中,一種技術可包含當應用於多個目標時隔離下層變動(解除相關)之影響。可使用一DSA目標及不具有DSA層但 具有相同下層之一目標。以下情況可被用於下層解除相關: 1.使用兩個或兩個以上目標之組合信號來提取顯著分量,及 2.使用針對殘餘項之微分模型:殘餘項=Sdsa-f(Sul),其中Sdsa係來自DSA目標之信號,且Sul係來自下層目標之信號,且f( )係使Sul最佳擬合於Sdsa之函數。 In another illustrative model, one technique may include isolating the effects of lower-level changes (de-correlation) when applied to multiple targets. A DSA target can be used as well as one that does not have a DSA layer but has the same underlying layer. The following cases can be used for lower-level decorrelation: 1. Use a combined signal of two or more targets to extract significant components, and 2. Use a differential model for the residual term: residual term = S dsa -f (S ul ) Where S dsa is a signal from a DSA target, and S ul is a signal from a lower target, and f () is a function that best fits S ul to S dsa .
在應用下層解除相關之後,上文所描述之DSA微分模型之任何者可被應用於DSA缺陷量測。 After applying the underlying de-correlation, any of the DSA differential models described above can be applied to DSA defect measurement.
本發明之某些技術可實現用於特徵化光阻或DSA圖案之圖案品質之一顯著時間節省,且減少開發及最佳化圖案化程序之成本。 Certain techniques of the present invention can achieve significant time savings in pattern quality for characterizing photoresist or DSA patterns, and reduce the cost of developing and optimizing the patterning process.
硬體及/或軟體之任何適合組合可被用於實施上文所描述之技術之任何者。在一般實例中,一度量衡工具可包括照明一目標之一照明系統、擷取藉由與一目標、器件或特徵之照明系統之相互作用(或其之不足)而提供之相關資訊之一收集系統及分析使用一或多個演算法來收集之資訊之一處理系統。度量衡工具可大體上被用於量測關於與各種半導體製程相關聯之結構及材料特性(例如材料組合物、結構之尺寸特性及薄膜(諸如薄膜厚度)及/或結構之臨界尺寸、疊對等等)之各種輻射信號。此等量測可被用於促進半導體晶粒之製造中之程序控制及/或良率效率。 Any suitable combination of hardware and / or software can be used to implement any of the techniques described above. In a general example, a weights and measures tool may include a lighting system that illuminates a target, a collection system that captures related information provided by interaction (or lack thereof) with a lighting system of a target, device or feature A system that analyzes and analyzes information collected using one or more algorithms. Metrology tools can generally be used to measure structure and material characteristics (e.g., material composition, dimensional characteristics of structures, and film (such as film thickness) and / or critical dimensions of structures, overlays, etc.) associated with various semiconductor processes. Etc.) of various radiation signals. These measurements can be used to facilitate process control and / or yield efficiency in the fabrication of semiconductor die.
度量衡工具可包括可結合本發明之某些實施例使用之一或多個硬體組態。此等硬體組態之實例包含(但不限於)以下:分光橢圓偏光計(spectroscopic ellipsometer,SE)、使用多角度照明之SE、SE量測穆勒矩陣元件(例如使用旋轉補償器)、單一波長橢圓偏光計、光束輪廓橢圓偏光計(角解析橢圓偏光計)、光束輪廓反射計(角解析反射計)、寬帶反射分光計(分光反射計)、單一波長反射計、角解析反射計、成像系統及散射計(例如光斑分析器)。 A metrology tool may include one or more hardware configurations that may be used in conjunction with certain embodiments of the invention. Examples of these hardware configurations include (but are not limited to) the following: spectroscopic ellipsometer (SE), SE using multi-angle lighting, SE measurement Muller matrix elements (e.g. using a rotation compensator), single Wavelength Ellipsometer, Beam Profile Ellipsometer (Angular Resolution Ellipsometer), Beam Profile Reflectometer (Angular Resolution Reflectometer), Broadband Reflectance Spectrometer (Spectral Reflectometer), Single Wavelength Reflectometer, Angular Resolution Reflectometer, Imaging Systems and scatterometers (such as speckle analyzers).
可將硬體組態分成離散操作系統。另一方面,可將一或多個硬 體組態組合成一單一工具。在美國專利第7,933,026號中進一步繪示及描述此將多個硬體組態組合成一單一工具之一實例,該案之全文出於全部目的以引用之方式併入本文中。圖12展示(例如)一例示性度量衡工具之一示意圖,該度量衡工具包括:a)一寬帶SE(例如18);b)使用旋轉補償器(例如98)之一SE(例如2);c)一光束輪廓橢圓偏光計(例如10);d)一光束輪廓反射計(例如12);e)一寬帶反射分光計(例如14);及f)一深紫外線反射分光計(例如16)。另外,在此等系統中通常存在許多光學元件(例如92、72、94、70、96、74、76、80、78、98、100、102、104、32/33、42、84、60、62、64、66、30、82、29、28、44、50、52、54、56、46、34、36、38、40及86),包含特定透鏡、準直器、鏡、四分之一波片、偏光器、偵測器、相機、孔徑及/或光源。用於光學系統之波長可自約120奈米變動至3微米。針對光學系統之方位角亦可變動。針對非橢圓偏光計系統,所收集之信號可為偏光解析的或非偏振的。 The hardware configuration can be divided into discrete operating systems. On the other hand, one or more hard The body configuration is combined into a single tool. An example of combining multiple hardware configurations into a single tool is further illustrated and described in U.S. Patent No. 7,933,026, the entirety of which is incorporated herein by reference for all purposes. FIG. 12 shows, for example, a schematic diagram of an exemplary metrology tool including: a) a broadband SE (e.g. 18); b) using a SE (e.g. 2) of a rotation compensator (e.g. 98); c) A beam profile ellipsometer (e.g. 10); d) a beam profile reflectometer (e.g. 12); e) a broadband reflection spectrometer (e.g. 14); and f) a deep ultraviolet reflectance spectrometer (e.g. 16). In addition, many optical elements (such as 92, 72, 94, 70, 96, 74, 76, 80, 78, 98, 100, 102, 104, 32/33, 42, 84, 60, 62, 64, 66, 30, 82, 29, 28, 44, 50, 52, 54, 56, 46, 34, 36, 38, 40, and 86), including specific lenses, collimators, mirrors, quarters A wave plate, polarizer, detector, camera, aperture and / or light source. The wavelength used in optical systems can vary from about 120 nanometers to 3 microns. The azimuth angle for the optical system can also be changed. For non-elliptical polarimeter systems, the collected signals can be polarized resolved or unpolarized.
圖12提供整合於相同工具上之多個度量衡頭之一圖解說明。然而,在諸多情況下,多個度量衡工具用於一單一或多個度量衡目標上之量測。在Zangooie等人之名稱為「Multiple tool and structure analysis」之美國專利第7,478,019號中進一步描述多個工具度量衡之若干實施例,該案之全文出於全部目的以引用之方式併入本文中。 Figure 12 provides a diagrammatic illustration of one of a number of metrology heads integrated on the same tool. However, in many cases, multiple metrology tools are used for measurements on a single or multiple metrology targets. Several embodiments of multiple tool metrology are further described in US Patent No. 7,478,019, "Multiple tool and structure analysis" by Zangooie et al., The entirety of which is incorporated herein by reference for all purposes.
某些硬體組態之照明系統可包含一或多個光源。一或多個光源可產生僅具有一波長之光(例如單色光)、具有諸多離散波長之光(例如多色光)、具有多個波長之光(例如寬帶光)及/或連續或在波長之間跳躍而掃掠遍及波長之光(例如可調諧光源或掃掠光源)。適合光源之實例係:一白色光源、一紫外線(UV)雷射、一弧光燈或一無電極燈、一雷射維持電漿(laser sustained plasma,LSP)源(例如可自馬薩諸賽州Woburn市Energetiq Technology,Inc.商業上購得之源)、一中超源(諸如 一寬帶雷射源)(例如可自新澤西州Morganville市NKT Photonics Inc.商業上購得之源)或更短波長源(諸如x射線源、極紫外線源或其之一些組合)。光源亦可經組態以提供具有足夠亮度之光,在一些情況下,其可為大於約1W/(nm cm2 Sr)之一亮度。度量衡系統亦可包含針對光源之一快速回饋用於穩定其之功率及波長。可經由自由空間傳播而遞送或在一些情況下經由任何類型之光纖或光導而遞送光源之輸出。 Some hardware-based lighting systems can include one or more light sources. One or more light sources can produce light with only one wavelength (e.g., monochromatic light), light with many discrete wavelengths (e.g., polychromatic light), light with multiple wavelengths (e.g., broadband light), and / or continuous or at wavelengths Jump between and sweep light across wavelengths (such as a tunable light source or a swept light source). Examples of suitable light sources are: a white light source, an ultraviolet (UV) laser, an arc lamp or an electrodeless lamp, a laser sustained plasma (LSP) source (e.g., available from Massachusetts) A source commercially available from Enburntiq Technology, Inc. of Woburn), a super source (such as a broadband laser source) (e.g., a source commercially available from NKT Photonics Inc., Morganville, New Jersey), or a shorter wavelength source (Such as an x-ray source, an extreme ultraviolet source, or some combination thereof). The light source may also be configured to provide light with sufficient brightness, in some cases it may be a brightness greater than about 1 W / (nm cm 2 Sr). The metrology system can also include fast feedback to one of the light sources to stabilize its power and wavelength. The output of the light source may be delivered via free space propagation or in some cases via any type of fiber optic or light guide.
繼而,一或多個偵測器或分光計經組態以經由一收集光學元件而接收經反射或以其它方式自樣本4之表面散射之照明。適合感測器包含電荷耦合器件(charged coupled devices,CCD)、CCD陣列、時間延遲積分(time delay integration,TDI)感測器、TDI感測器陣列、光倍增管(photomultiplier tubes,PMT)及其他感測器。可將經量測之光譜或所偵測之信號資料(隨著位置、波長、偏振、方位角等等之變化)自各偵測器傳送至處理器系統48以用於分析。 In turn, one or more detectors or spectrometers are configured to receive illumination that is reflected or otherwise scattered from the surface of the sample 4 via a collection optical element. Suitable sensors include charged coupled devices (CCD), CCD arrays, time delay integration (TDI) sensors, TDI sensor arrays, photomultiplier tubes (PMT), and others Sensor. The measured spectrum or detected signal data (as a function of position, wavelength, polarization, azimuth, etc.) can be transmitted from each detector to the processor system 48 for analysis.
應認識到,可由一單一處理器系統48或(替代地)一多處理器系統48來執行貫穿本發明所描述之各種步驟。再者,圖12之系統之不同子系統(諸如分光橢圓偏光計)可包含適合於執行文中所描述之步驟之至少一部分之一電腦系統。因此,上述描述不應被理解為限制本發明,而僅係一說明。此外,一或多個處理器系統48可經組態以執行文中所描述之方法實施例之任何者之任何其他步驟。 It should be recognized that the various steps described throughout this disclosure may be performed by a single processor system 48 or (alternatively) a multi-processor system 48. Furthermore, different subsystems of the system of FIG. 12 (such as a spectroscopic ellipsometer) may include a computer system adapted to perform at least a portion of the steps described herein. Therefore, the foregoing description should not be construed as limiting the invention, but merely as an illustration. In addition, one or more processor systems 48 may be configured to perform any other steps of any of the method embodiments described herein.
另外,處理器系統48可依技術中已知的任何方式而通信地耦合至一偵測器系統。例如,一或多個處理器系統48可經耦合至與偵測器系統相關聯之運算系統。在另一實例中,可由耦合至處理器系統48之一單一電腦系統直接控制偵測器系統。 In addition, the processor system 48 may be communicatively coupled to a detector system in any manner known in the art. For example, one or more processor systems 48 may be coupled to a computing system associated with a detector system. In another example, the detector system may be directly controlled by a single computer system coupled to the processor system 48.
度量衡系統之處理器系統48可經組態以由可包含有線及/或無線部分之一傳輸媒體而自系統之子系統接收及/或獲取資料或資訊。依此方式,傳輸媒體可用作處理器系統48與圖12之系統之其他子系統之 間之一資料連結。 The processor system 48 of the metrology system may be configured to receive and / or obtain data or information from a subsystem of the system by a transmission medium that may include one of a wired and / or wireless portion. In this manner, the transmission medium can be used as the processor system 48 and other subsystems of the system of FIG. 12. Data link.
整合式度量衡系統之處理器系統48可經組態以由可包含有線及/或無線部分之一傳輸媒體而自其他系統接收及/或獲取資料或資訊(例如量測光譜、差值信號、統計結果、參考或校準資料、訓練資料、模型、所提取之特徵或變換結果、經變換之資料集、曲線擬合、定性及定量結果等等)。依此方式,傳輸媒體可用作處理器系統48與其他系統(例如記憶體機載度量衡系統、外部記憶體、參考量測源或其他外部系統)之間之一資料連結。例如,處理器系統48可經組態以經由一資料連結而自一儲存媒體(例如內部或外部記憶體)接收量測資料。例如,使用偵測系統所獲得之光譜結果可被儲存於一永久或半永久記憶體器件(例如內部或外部記憶體)中。就此而言,可自機載記憶體或自一外部記憶體系統匯入光譜結果。再者,處理器系統48可經由一傳輸媒體而將資料發送至其他系統。例如,由處理器系統48判定之定性及/或定量結果可被傳達及儲存於一外部記憶體中。就此而言,可將量測結果匯出至另一系統。 The processor system 48 of the integrated metrology system may be configured to receive and / or obtain data or information from other systems (e.g., measuring spectra, differential signals, statistics) by a transmission medium that may include one of a wired and / or wireless portion. Results, reference or calibration data, training data, models, extracted features or transformation results, transformed data sets, curve fitting, qualitative and quantitative results, etc.). In this manner, the transmission medium can be used as a data link between the processor system 48 and other systems, such as a memory onboard metrology system, external memory, reference measurement sources, or other external systems. For example, the processor system 48 may be configured to receive measurement data from a storage medium (such as internal or external memory) via a data link. For example, the spectral results obtained using the detection system can be stored in a permanent or semi-permanent memory device (such as internal or external memory). In this regard, spectral results can be imported from on-board memory or from an external memory system. Furthermore, the processor system 48 can send data to other systems via a transmission medium. For example, the qualitative and / or quantitative results determined by the processor system 48 may be communicated and stored in an external memory. In this regard, the measurement results can be exported to another system.
處理器系統48可包含(但不限於)一個人電腦系統、主機電腦系統、工作站、影像電腦、平行處理器或技術中已知的任何其他器件。 一般而言,術語「處理器系統」可被廣泛定義為包含具有一或多個處理器之任何器件,該等器件執行自一記憶體媒體之指令。可經由一傳輸媒體(諸如一導線、纜線或無線傳輸連結)而傳輸程式指令實施方法(諸如文中所描述之該等方法)。可將程式指令儲存於一電腦可讀媒體(例如記憶體)中。例示性電腦可讀媒體包含唯讀記憶體、一隨機存取記憶體、一磁碟或光碟或一磁帶。 The processor system 48 may include, but is not limited to, a personal computer system, a host computer system, a workstation, an imaging computer, a parallel processor, or any other device known in the art. In general, the term "processor system" can be broadly defined to include any device having one or more processors that execute instructions from a memory medium. The program instruction implementation method (such as the methods described herein) may be transmitted via a transmission medium (such as a wire, cable, or wireless transmission link). The program instructions may be stored in a computer-readable medium, such as a memory. Exemplary computer-readable media include read-only memory, a random access memory, a magnetic or optical disk, or a magnetic tape.
度量衡工具可經設計以進行與半導體製造相關之諸多不同類型之量測。用於判定品質及/或定量值之本發明之某些實施例可利用此等量測。用於判定特定目標特徵之額外度量衡技術亦可與上文所描述 之品質判定技術組合。例如,在某些實施例中,工具可量測光譜且判定一或多個目標之特性,諸如品質及缺陷數量值、臨界尺寸、疊對、側壁角、薄膜厚度、程序相關之參數(例如焦點及或劑量)。目標可包含本質上係週期性的之某些所關注區域,諸如例如一記憶體晶粒中之光柵。目標可包含多個層(或薄膜),其等之厚度可由度量衡工具量測。目標可包含放置(或已存在)於半導體晶圓上之目標設計用以搭配(例如)使用對準及/或疊對對位操作使用。某些目標可定位於半導體晶圓上之各種位置處。例如,目標可定位於切割道內(例如晶粒之間)及/或定位於晶粒本身中。在某些實施例中,由美國專利第7,478,019中所描述之相同或多個度量衡工具(在相同時間或在不同時間)量測多個目標。可組合來自此等量測之資料。來自度量衡工具之資料可被用於半導體製程中(例如)以前饋、後饋及/或側向回饋校正程序(例如微影、蝕刻),且因此可生產一完成程序控制解決方案。 Metrology tools can be designed to perform many different types of measurements related to semiconductor manufacturing. Certain embodiments of the invention for determining quality and / or quantitative values may utilize such measurements. Additional metrology techniques for determining specific target characteristics can also be used as described above. Quality judgment technology combination. For example, in some embodiments, the tool can measure the spectrum and determine characteristics of one or more targets, such as quality and number of defects, critical dimensions, overlaps, sidewall angles, film thickness, process-related parameters (e.g., focus And or dose). A target may include certain areas of interest that are periodic in nature, such as, for example, a grating in a memory die. The target may include multiple layers (or films), the thickness of which may be measured by a metrology tool. Targets may include target designs placed (or already present) on a semiconductor wafer for use with, for example, alignment and / or stack-up alignment operations. Some targets can be positioned at various locations on a semiconductor wafer. For example, the target may be positioned within the scribe line (eg, between grains) and / or in the grain itself. In some embodiments, multiple targets are measured by the same or more metrology tools (at the same time or at different times) as described in US Patent No. 7,478,019. Data from these measurements can be combined. Data from metrology tools can be used in semiconductor processes (for example) feedforward, feedforward, and / or lateral feedback correction procedures (such as lithography, etching), and thus a complete process control solution can be produced.
隨著半導體器件圖案尺寸持續縮小,通常需要更小度量衡目標。此外,量測精確度及與實際器件特性之匹配增加對似器件之目標以及晶粒中及(甚至)器件上量測之需要。已提出各種度量衡實施方案以達成此目標。例如,基於主要反射光學器件之對焦光束橢圓偏光計係其等之一者且在Piwonka-Corle等人之專利(美國專利第5,608,526號「Focused beam spectroscopic ellipsometry method and system」)中被描述。切趾器可被用於減輕導致超過由幾何光學器件界定之大小之照明電之傳播之光繞射之影響。在Norton之「Apodizing filter system useful for reducing spot size in optical measurements and other applications」之美國專利第5,859,424號中描述切趾器之使用。使用同時多個入射角照明之高數值孔徑工具之使用係達成較小目標能力之另一方式。例如,在Opsal等人之「Critical dimension analysis with simultaneous multiple angle of incidence measurements」之美國專利第 6,429,943號中描述此技術。 As semiconductor device pattern sizes continue to shrink, smaller weighting targets are often required. In addition, measurement accuracy and matching with actual device characteristics increase the need for device-like targets and measurements in the die and (even) on the device. Various metrology implementations have been proposed to achieve this goal. For example, focused beam ellipsometers based on primary reflecting optics are one of them and are described in Piwonka-Corle et al. (US Patent No. 5,608,526 "Focused beam spectroscopic ellipsometry method and system"). Apodizers can be used to mitigate the effects of light diffraction that cause propagation of illuminating electricity beyond the size defined by geometric optics. The use of an apodizer is described in Norton, "Apodizing filter system useful for reducing spot size in optical measurements and other applications", US Patent No. 5,859,424. The use of high numerical aperture tools that use simultaneous illumination at multiple incident angles is another way to achieve smaller target capabilities. For example, in the US Patent No. "Critical dimension analysis with simultaneous multiple angle of incidence measurements" of Opsal et al. This technique is described in No. 6,429,943.
其他量測實例可包含量測半導體堆疊物之一或多層之組合物、量測晶圓上(或內)之某些缺陷及量測暴露於晶圓下之光微影輻射量。 在一些情況下,度量衡工具及演算法可經組態用於量測非週期性的目標,見(例如)P.Jiang等人之「The Finite Element Method for Full Wave Electromagnetic Simulations in CD Metrology Using Scatterometry」(申請中美國專利第61/830536號,K-T發明第4063頁)或A.Kuznetsov等人之「Method of electromagnetic modeling of finite structures and finite illumination for metrology and inspection」(申請中美國專利第61/761146號或KT發明第4082頁)。 Other measurement examples may include measuring a composition of one or more layers of a semiconductor stack, measuring certain defects on (or within) a wafer, and measuring the amount of light lithography radiation exposed under the wafer. In some cases, metrology tools and algorithms can be configured to measure non-periodic targets, see, for example, "The Finite Element Method for Full Wave Electromagnetic Simulations in CD Metrology Using Scatterometry" by P. Jiang et al. (U.S. Patent No. 61/830536, KT Invention, page 4063) or "Method of electromagnetic modeling of finite structures and finite illumination for metrology and inspection" by A. Kuznetsov et al. (U.S. Patent No. 61/761146, under application Or KT invention p. 4082).
所關注參數之量測亦可涉及諸多演算法。例如,與樣本之入射光束之光學相互作用可使用電磁(electro-magnetic,EM)解答器而被模型化,且使用此等演算法作為嚴格耦合波分析(rigorous coupled wave analysis,RCWA)、有限元素法(finite element method,FEM)、動差法、表面積分法、體積積分法、時域有限差分法(finite-difference time-domain,FDTD)及其他。通常可使用一幾何引擎或(在一些情況下)程序模型化引擎或兩者之一組合來模型化所關注目標。在A.Kuznetsov等人之「Method for integrated use of model-based metrology and a process model」(申請中美國專利第61/738760號,第4025頁)中描述程序模型化之使用。例如,可在加州Milpitas市KLA-Tencor之AcuShape軟體產品中實施一幾何引擎。 The measurement of the parameters of interest can also involve many algorithms. For example, the optical interaction with the incident beam of a sample can be modeled using an electromagnetic (EM) solver, and these algorithms can be used as rigid coupled wave analysis (RCWA), finite elements Method (finite element method, FEM), dynamic difference method, surface integration method, volume integration method, finite-difference time-domain (FDTD) and others. A geometric engine or (in some cases) a procedural modeling engine or a combination of both can be used to model the target of interest. The use of program modeling is described in "Method for integrated use of model-based metrology and a process model" by A. Kuznetsov et al. (U.S. Patent No. 61/738760, page 4025). For example, a geometry engine can be implemented in the AcuShape software product from KLA-Tencor, Milpitas, California.
可藉由諸多資料擬合及最佳化技術與科技而分析所收集之資料,包含:程式庫、快速降階模型;迴歸;機器學習演算法(諸如神經網路、支援向量機器(support-vector machines,SVM));尺寸減小演算法(諸如例如主分量分析(principal component analysis,PCA)、獨立分量分析(independent component analysis,ICA)、局部線性嵌入(local- linear embedding,LLE);稀疏表示(諸如Fourier或小波變換);卡爾曼濾波器;促進自相同或不同工具類型之匹配之演算法,及其他者。 The collected data can be analyzed through many data fitting and optimization techniques and technologies, including: libraries, fast order reduction models; regression; machine learning algorithms (such as neural networks, support-vector machines (support-vector machines (SVM)); size reduction algorithms (such as, for example, principal component analysis (PCA), independent component analysis (ICA), local-linear embedding (local- linear embedding (LLE); sparse representations (such as Fourier or wavelet transforms); Kalman filters; algorithms that facilitate matching from the same or different tool types, and others.
亦可藉由不包含模型化、最佳化及/或擬合之演算法來分析所收集之資料,例如臨時專利申請案第61/745981號,該案之全文以引用之方式併入本文中,且如文中所描述。 The collected data can also be analyzed by algorithms that do not include modeling, optimization, and / or fitting, such as provisional patent application No. 61/745981, the full text of which is incorporated herein by reference. , And as described in the text.
通常在使用使用一或多個方法(諸如運算硬體之設計及實施方案、平行化、運算之分佈、負載平衡、多服務支援、動態負載最佳化等等)之情況下來針對度量衡應用而最佳化計算演算法。可在韌體、軟體、現場可程式化閘陣列(field-programmable gate array,FPGA)、可程式化光學組件等等中執行演算法之不同實施方案。 It is usually best for metrology applications using one or more methods (such as the design and implementation of computing hardware, parallelization, distribution of computing, load balancing, multi-service support, dynamic load optimization, etc.) Optimize the calculation algorithm. Different implementations of the algorithm can be performed in firmware, software, field-programmable gate array (FPGA), programmable optical components, etc.
資料分析及擬合步驟可被用於繼續以下目標之一者:品質之量測、缺陷數目、CD、側壁角(side wall angle,SWA)、形狀、應力、組成物、薄膜、帶隙、電性質、對焦/劑量、疊對、產生程序參數(例如光阻狀態、分壓、溫度、對焦模型)及/或其之任何組合;度量衡系統之模型化及/或設計;及模型化、設計、及/或度量衡目標之最佳化。 The data analysis and fitting steps can be used to continue one of the following goals: measurement of quality, number of defects, CD, side wall angle (SWA), shape, stress, composition, film, band gap, electrical Nature, focus / dose, superimposition, generation of program parameters (such as photoresist state, partial pressure, temperature, focus model) and / or any combination thereof; modeling and / or design of metrology systems; and modeling, design, And / or optimization of measurement objectives.
此處呈現之本發明之某些實施例大體上解決半導體度量衡之領域及程序控制,且不限於硬體、演算法/軟體實施方案及架構,且使用上文所概括之案例。 Certain embodiments of the invention presented here generally address the field of semiconductor metrology and program control, and are not limited to hardware, algorithm / software implementations and architectures, and use the cases outlined above.
儘管已出於清晰瞭解之目的而在一些細節上描述以上發明,然將明白可在隨附申請專利範圍之範疇內實施某些改變及修改。應注意,存在實施本發明之程序、系統及裝置之諸多替代方式。據此,本實施例待被視為繪示性的且非限制性的,且本發明不限於文中給出之細節。 Although the above invention has been described in some detail for purposes of clarity, it will be understood that certain changes and modifications may be practiced within the scope of the accompanying patent application. It should be noted that there are many alternative ways of implementing the procedures, systems, and devices of the present invention. Accordingly, this embodiment is to be considered as illustrative and not restrictive, and the invention is not limited to the details given herein.
Claims (20)
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361862801P | 2013-08-06 | 2013-08-06 | |
| US61/862,801 | 2013-08-06 | ||
| US201461943098P | 2014-02-21 | 2014-02-21 | |
| US61/943,098 | 2014-02-21 | ||
| US14/449,646 | 2014-08-01 | ||
| US14/449,646 US10502694B2 (en) | 2013-08-06 | 2014-08-01 | Methods and apparatus for patterned wafer characterization |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW201510518A TW201510518A (en) | 2015-03-16 |
| TWI641828B true TWI641828B (en) | 2018-11-21 |
Family
ID=52449340
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW103126977A TWI641828B (en) | 2013-08-06 | 2014-08-06 | Method of characterizing structures of interest on semiconductor wafer and semiconductor metrology system |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US10502694B2 (en) |
| KR (1) | KR102317060B1 (en) |
| CN (1) | CN105612601B (en) |
| TW (1) | TWI641828B (en) |
| WO (1) | WO2015021026A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI851876B (en) * | 2020-02-10 | 2024-08-11 | 環球晶圓股份有限公司 | Systems and methods for enhanced wafer manufacturing |
Families Citing this family (42)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10955359B2 (en) * | 2013-11-12 | 2021-03-23 | International Business Machines Corporation | Method for quantification of process non uniformity using model-based metrology |
| WO2015090774A1 (en) * | 2013-12-17 | 2015-06-25 | Asml Netherlands B.V. | Yield estimation and control |
| US10132684B1 (en) | 2014-12-18 | 2018-11-20 | J.A. Woolam Co., Inc. | Reflectometer, spectrophometer, ellipsometer and polarimeter system with a super continuum laser-source of a beam of electromagnetism and improved detector system |
| US11675208B1 (en) | 2014-12-18 | 2023-06-13 | J.A. Woollam Co., Inc. | Reflectometer, spectrophotometer, ellipsometer and polarimeter system with a super continuum laser source of a beam of electromagnetism, and improved detector system |
| US11035729B1 (en) | 2014-12-18 | 2021-06-15 | J.A. Woqllam Co., Inc. | Reflectometer, spectrophotometer, ellipsometer and polarimeter system with a super continuum laser source of a beam of electromagnetism, and improved detector system |
| US10422739B1 (en) | 2014-12-18 | 2019-09-24 | J.A. Woollam Co., Inc. | Reflectometer, spectrophotometer, ellipsometer and polarimeter systems with a super continuum laser source of a beam of electromagnetism, and improved detector system |
| US10410398B2 (en) * | 2015-02-20 | 2019-09-10 | Qualcomm Incorporated | Systems and methods for reducing memory bandwidth using low quality tiles |
| US10380728B2 (en) | 2015-08-31 | 2019-08-13 | Kla-Tencor Corporation | Model-based metrology using images |
| US11580375B2 (en) | 2015-12-31 | 2023-02-14 | Kla-Tencor Corp. | Accelerated training of a machine learning based model for semiconductor applications |
| JP6941103B2 (en) * | 2015-12-31 | 2021-09-29 | ケーエルエー コーポレイション | Accelerated training of machine learning-based models for semiconductor applications |
| GB201601960D0 (en) * | 2016-02-03 | 2016-03-16 | Glaxosmithkline Biolog Sa | Novel device |
| US11580398B2 (en) | 2016-10-14 | 2023-02-14 | KLA-Tenor Corp. | Diagnostic systems and methods for deep learning models configured for semiconductor applications |
| US10712145B2 (en) * | 2016-10-20 | 2020-07-14 | Kla-Tencor Corporation | Hybrid metrology for patterned wafer characterization |
| KR102488912B1 (en) * | 2017-07-12 | 2023-01-17 | 에이에스엠엘 네델란즈 비.브이. | Defect Prediction |
| US11248905B2 (en) * | 2017-08-16 | 2022-02-15 | Kla-Tencor Corporation | Machine learning in metrology measurements |
| US10714366B2 (en) * | 2018-04-12 | 2020-07-14 | Kla-Tencor Corp. | Shape metric based scoring of wafer locations |
| US10697900B2 (en) * | 2018-06-19 | 2020-06-30 | Kla-Tencor Corporation | Correlating SEM and optical images for wafer noise nuisance identification |
| EP3637186A1 (en) * | 2018-10-09 | 2020-04-15 | ASML Netherlands B.V. | Method of calibrating a plurality of metrology apparatuses, method of determining a parameter of interest, and metrology apparatus |
| EP3650940A1 (en) | 2018-11-09 | 2020-05-13 | ASML Netherlands B.V. | A method in the manufacturing process of a device, a non-transitory computer-readable medium and a system configured to perform the method |
| KR102638267B1 (en) | 2018-12-03 | 2024-02-21 | 삼성전자주식회사 | Semiconductor wafer fault analysis system and operation method thereof |
| US11060846B2 (en) * | 2018-12-19 | 2021-07-13 | Kla Corporation | Scatterometry based methods and systems for measurement of strain in semiconductor structures |
| US11231362B1 (en) * | 2018-12-20 | 2022-01-25 | Kla Corporation | Multi-environment polarized infrared reflectometer for semiconductor metrology |
| KR102689649B1 (en) * | 2019-09-17 | 2024-07-30 | 삼성전자주식회사 | Apparatus of wafer inspection |
| US11520321B2 (en) | 2019-12-02 | 2022-12-06 | Kla Corporation | Measurement recipe optimization based on probabilistic domain knowledge and physical realization |
| US11610297B2 (en) | 2019-12-02 | 2023-03-21 | Kla Corporation | Tomography based semiconductor measurements using simplified models |
| WO2021140515A1 (en) * | 2020-01-07 | 2021-07-15 | Nova Measuring Instruments Ltd. | Detecting outliers and anomalies for ocd metrology machine learning |
| US11143604B1 (en) | 2020-04-06 | 2021-10-12 | Kla Corporation | Soft x-ray optics with improved filtering |
| US11530913B2 (en) | 2020-09-24 | 2022-12-20 | Kla Corporation | Methods and systems for determining quality of semiconductor measurements |
| US11604420B2 (en) | 2021-05-03 | 2023-03-14 | Kla Corporation | Self-calibrating overlay metrology |
| US12209854B2 (en) | 2021-06-18 | 2025-01-28 | Kla Corporation | Methods and systems for measurement of tilt and overlay of a structure |
| US11604063B2 (en) | 2021-06-24 | 2023-03-14 | Kla Corporation | Self-calibrated overlay metrology using a skew training sample |
| US12085515B2 (en) | 2021-08-25 | 2024-09-10 | Kla Corporation | Methods and systems for selecting wafer locations to characterize cross-wafer variations based on high-throughput measurement signals |
| US12111355B2 (en) | 2021-11-22 | 2024-10-08 | Onto Innovation Inc. | Semiconductor substrate yield prediction based on spectra data from multiple substrate dies |
| US12360062B1 (en) | 2021-12-29 | 2025-07-15 | Kla Corporation | Methods and systems for regularizing the optimization of application specific semiconductor measurement system parameter settings |
| US12019030B2 (en) | 2022-01-18 | 2024-06-25 | Kla Corporation | Methods and systems for targeted monitoring of semiconductor measurement quality |
| US12181271B2 (en) * | 2022-02-17 | 2024-12-31 | Kla Corporation | Estimating in-die overlay with tool induced shift correction |
| US20230417682A1 (en) * | 2022-06-23 | 2023-12-28 | Onto Innovation Inc. | Metrology solutions for complex structures of interest |
| US20240280484A1 (en) * | 2023-02-16 | 2024-08-22 | Kla Corporation | Angle resolved reflectometry for thick films and high aspect ratio structures |
| US12379668B2 (en) | 2023-04-19 | 2025-08-05 | Kla Corporation | Methods and systems for measurement of semiconductor structures with multi-pass statistical optimization |
| US12380367B2 (en) | 2023-06-30 | 2025-08-05 | Kla Corporation | Metrology in the presence of CMOS under array (CuA) structures utilizing machine learning and physical modeling |
| US12372882B2 (en) | 2023-06-30 | 2025-07-29 | Kla Corporation | Metrology in the presence of CMOS under array (CUA) structures utilizing an effective medium model with classification of CUA structures |
| CN117590702B (en) * | 2023-11-09 | 2025-01-07 | 华中科技大学 | A device and method for in-situ high-speed measurement of dynamic morphology during photoresist exposure |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006504092A (en) * | 2002-10-28 | 2006-02-02 | テヴエト プロセス コントロール テクノロジーズ リミテッド | Method and apparatus for thickness analysis of complex layer structures |
| TW200849416A (en) * | 2007-02-23 | 2008-12-16 | Applied Materials Inc | Using spectra to determine polishing endpoints |
| CN101707180A (en) * | 2002-05-22 | 2010-05-12 | 应用材料股份有限公司 | System and method for process variation monitor |
| US20110128512A1 (en) * | 2008-02-27 | 2011-06-02 | Asml Netherlands B.V. | Inspection Method and Apparatus, Lithographic Apparatus, Lithographic Processing Cell and Device Manufacturing Method |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002079760A2 (en) | 2001-03-30 | 2002-10-10 | Therma-Wave, Inc. | Polarimetric scatterometer for critical dimension measurements of periodic structures |
| FR2854407B1 (en) * | 2003-05-02 | 2006-08-25 | Eads Launch Vehicles | HIGH-TENACITY MATERIAL BASED ON A VINYL RESIN AND / OR AN EPOXY RESIN, PROCESS FOR PRODUCING THE SAME, COMPOSITE MATERIAL COMPRISING THE SAME AND USES THEREOF |
| US7224471B2 (en) | 2003-10-28 | 2007-05-29 | Timbre Technologies, Inc. | Azimuthal scanning of a structure formed on a semiconductor wafer |
| US7463369B2 (en) | 2006-03-29 | 2008-12-09 | Kla-Tencor Technologies Corp. | Systems and methods for measuring one or more characteristics of patterned features on a specimen |
| US7916284B2 (en) | 2006-07-18 | 2011-03-29 | Asml Netherlands B.V. | Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method |
| US7417750B2 (en) | 2006-11-07 | 2008-08-26 | Tokyo Electron Limited | Consecutive measurement of structures formed on a semiconductor wafer using an angle-resolved spectroscopic scatterometer |
| US20080129986A1 (en) | 2006-11-30 | 2008-06-05 | Phillip Walsh | Method and apparatus for optically measuring periodic structures using orthogonal azimuthal sample orientations |
| US7656519B2 (en) * | 2007-08-30 | 2010-02-02 | Kla-Tencor Corporation | Wafer edge inspection |
| US20090073448A1 (en) * | 2007-09-18 | 2009-03-19 | Asml Netherlands B.V. | Method of measuring the overlay error, an inspection apparatus and a lithographic apparatus |
| US7889318B2 (en) * | 2007-09-19 | 2011-02-15 | Asml Netherlands B.V. | Methods of characterizing similarity between measurements on entities, computer programs product and data carrier |
| EP2128701A1 (en) * | 2008-05-30 | 2009-12-02 | ASML Netherlands BV | Method of determining defects in a substrate and apparatus for exposing a substrate in a lithographic process |
| JP5469839B2 (en) * | 2008-09-30 | 2014-04-16 | 株式会社日立ハイテクノロジーズ | Device surface defect inspection apparatus and method |
| US9052604B2 (en) * | 2008-11-06 | 2015-06-09 | Micron Technology, Inc. | Photolithography systems and associated alignment correction methods |
| WO2011003113A1 (en) * | 2009-07-03 | 2011-01-06 | Tactus Technology | User interface enhancement system |
| JP5419837B2 (en) * | 2010-09-28 | 2014-02-19 | 株式会社日立ハイテクノロジーズ | Inspection apparatus, inspection method and program |
| US20120287435A1 (en) * | 2011-05-12 | 2012-11-15 | Jmar Llc | Automatic dilution for multiple angle light scattering (mals) instrument |
| US8570531B2 (en) * | 2011-12-11 | 2013-10-29 | Tokyo Electron Limited | Method of regenerating diffraction signals for optical metrology systems |
| US9809898B2 (en) * | 2013-06-26 | 2017-11-07 | Lam Research Corporation | Electroplating and post-electrofill systems with integrated process edge imaging and metrology systems |
-
2014
- 2014-08-01 US US14/449,646 patent/US10502694B2/en active Active
- 2014-08-05 WO PCT/US2014/049743 patent/WO2015021026A1/en active Application Filing
- 2014-08-05 KR KR1020167005761A patent/KR102317060B1/en active Active
- 2014-08-05 CN CN201480054194.1A patent/CN105612601B/en active Active
- 2014-08-06 TW TW103126977A patent/TWI641828B/en active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101707180A (en) * | 2002-05-22 | 2010-05-12 | 应用材料股份有限公司 | System and method for process variation monitor |
| JP2006504092A (en) * | 2002-10-28 | 2006-02-02 | テヴエト プロセス コントロール テクノロジーズ リミテッド | Method and apparatus for thickness analysis of complex layer structures |
| TW200849416A (en) * | 2007-02-23 | 2008-12-16 | Applied Materials Inc | Using spectra to determine polishing endpoints |
| US20110128512A1 (en) * | 2008-02-27 | 2011-06-02 | Asml Netherlands B.V. | Inspection Method and Apparatus, Lithographic Apparatus, Lithographic Processing Cell and Device Manufacturing Method |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI851876B (en) * | 2020-02-10 | 2024-08-11 | 環球晶圓股份有限公司 | Systems and methods for enhanced wafer manufacturing |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2015021026A1 (en) | 2015-02-12 |
| US10502694B2 (en) | 2019-12-10 |
| KR102317060B1 (en) | 2021-10-22 |
| CN105612601B (en) | 2019-05-07 |
| TW201510518A (en) | 2015-03-16 |
| CN105612601A (en) | 2016-05-25 |
| US20150046121A1 (en) | 2015-02-12 |
| KR20160041973A (en) | 2016-04-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI641828B (en) | Method of characterizing structures of interest on semiconductor wafer and semiconductor metrology system | |
| TWI649628B (en) | Differential methods and apparatus for metrology of semiconductor targets | |
| US10101674B2 (en) | Methods and apparatus for determining focus | |
| US9412673B2 (en) | Multi-model metrology | |
| KR102137848B1 (en) | Measurement recipe optimization based on spectral sensitivity and process variation | |
| US10705434B2 (en) | Verification metrology target and their design | |
| CN108463877B (en) | System and method for extended infrared spectroscopic ellipsometry | |
| US7483133B2 (en) | Multiple angle of incidence spectroscopic scatterometer system | |
| JP2015509591A (en) | Optical measurement using a target with a magnetic field enhancement element | |
| US20230109008A1 (en) | Spectroscopic Reflectometry And Ellipsometry Measurements With Electroreflectance Modulation | |
| CN120418609A (en) | Measuring of nanosheet surface roughness and profile |