TWI678685B - Arthroscopic surgery simulation method and arthroscopic surgery simulation device - Google Patents
Arthroscopic surgery simulation method and arthroscopic surgery simulation device Download PDFInfo
- Publication number
- TWI678685B TWI678685B TW107115458A TW107115458A TWI678685B TW I678685 B TWI678685 B TW I678685B TW 107115458 A TW107115458 A TW 107115458A TW 107115458 A TW107115458 A TW 107115458A TW I678685 B TWI678685 B TW I678685B
- Authority
- TW
- Taiwan
- Prior art keywords
- volume
- triangles
- tissue
- arthroscopic surgery
- structures
- Prior art date
Links
Landscapes
- Processing Or Creating Images (AREA)
Abstract
本發明提出一種關節鏡手術模擬方法及關節鏡手術模擬系統。關節鏡手術模擬方法包括:接收組織資料並對組織資料進行容積初始化操作及邊界化操作以獲得容積資料,容積資料包括多個容積素,每個容積素具有距離層級;從觸覺裝置接收觸覺輸入以模擬切割裝置與容積素交叉;根據容積資料及觸覺輸入計算容積素的距離層級的變化;以及根據容積素的距離層級的變化將力道回饋到觸覺裝置。The invention provides an arthroscopic surgery simulation method and an arthroscopic surgery simulation system. Arthroscopic surgery simulation methods include: receiving tissue data and performing volume initialization operations and boundary operations on the tissue data to obtain volume data. The volume data includes a plurality of volume elements, each of which has a distance level; receiving tactile input from a haptic device to The simulation cutting device intersects the volume element; calculates the change in the distance level of the volume element according to the volume data and the haptic input; and feeds back the force to the haptic device according to the change in the distance level of the volume element.
Description
本發明是有關於一種關節鏡手術模擬方法及關節鏡手術模擬系統,且特別是有關於一種先在電腦程式環境下模擬以提高手術成功率的關節鏡手術模擬方法及關節鏡手術模擬系統。The invention relates to an arthroscopic surgery simulation method and an arthroscopic surgery simulation system, and in particular to an arthroscopic surgery simulation method and an arthroscopic surgery simulation system that are simulated under a computer program environment to improve the success rate of surgery.
計算機圖學的一個主要醫學應用為提供手術模擬。人體中最大的關節-膝關節的手術在所有關節中比重最高,且術式種類也多。膝關節手術主要可分兩類。第一類需打開膝蓋對構成膝關節的股骨、脛骨及髕骨進行手術。另一類為關節鏡手術,僅在膝關節打開細微傷口讓一個關節鏡進入觀察關節面組織,並同時由另一細微傷口讓手術工具進入進行關節修補、置換韌帶、切刮除半月板、刮平骨頭表面軟骨以緩和退化性關節炎等手術。然而,直接進行手術對醫療人員也是較大的挑戰,因此如何能在手術前進行模擬,以提高手術的成功率是本領域技術人員應致力的目標。A major medical application of computer graphics is to provide surgical simulation. The largest joint in the human body, knee surgery, has the highest proportion of all joints, and there are many types of operations. There are two main types of knee surgery. The first type requires surgery to open the knee to the femur, tibia, and sacrum. The other type is arthroscopy. Only a small wound is opened in the knee joint to allow an arthroscope to enter the articular surface tissue. At the same time, another small wound is used to enter surgical tools for joint repair, ligament replacement, meniscus removal, and scraping. Cartilage on the surface of bones to ease surgery such as degenerative arthritis. However, directly performing surgery is also a great challenge for medical personnel. Therefore, how to perform simulation before surgery to improve the success rate of surgery is a goal that those skilled in the art should strive for.
有鑑於此,本發明提供一種關節鏡手術模擬方法及關節鏡手術模擬系統,讓醫療人員可在手術前進行模擬以提高手術的成功率。In view of this, the present invention provides an arthroscopy surgery simulation method and an arthroscopy surgery simulation system, so that medical personnel can perform simulation before surgery to improve the success rate of surgery.
本發明提出一種關節鏡手術模擬方法,包括:接收組織資料並對組織資料進行容積初始化操作及邊界化操作以獲得容積資料,容積資料包括多個容積素,每個容積素具有距離層級;從觸覺(haptic)裝置接收觸覺輸入以模擬切割裝置與容積素交叉;根據容積資料及觸覺輸入計算容積素的距離層級的變化;以及根據容積素的距離層級的變化將力道回饋到觸覺裝置。The invention provides an arthroscopic surgery simulation method, which includes: receiving tissue data and performing volume initialization operations and boundary operations on the tissue data to obtain volume data. The volume data includes a plurality of volume elements, each of which has a distance level; (haptic) The device receives haptic input to simulate the intersection of the cutting device and the volumin; calculates the change in the distance level of the volumin based on the volume data and the haptic input; and feeds back force to the haptic device based on the change in the volumin's distance level.
在本發明的一實施例中,上述關節鏡手術模擬方法更包括:分派對應每個容積素的六對面碼(face-flag)的多個立方格(cube)結構,並重建或修改多個組織三角形且將組織三角形記錄於立方格結構中。In an embodiment of the present invention, the arthroscopic surgery simulation method further includes: assigning a plurality of cube structures of six face-flags corresponding to each volume element, and reconstructing or modifying a plurality of tissues Triangles and the organization triangles are recorded in a cubic lattice structure.
在本發明的一實施例中,上述關節鏡手術模擬方法更包括:透過繪圖管線(graphics pipeline)來描繪(render)組織三角形以產生三維影像。In an embodiment of the present invention, the arthroscopic surgery simulation method further includes: rendering a tissue triangle through a graphics pipeline to generate a three-dimensional image.
在本發明的一實施例中,上述關節鏡手術模擬方法更包括:從容積素的種子容積素,遍歷解剖結構的所有容積素,直到到達其他解剖結構、或解剖結構中屬於不同組織、或解剖刀切割表面的容積素的邊界面,來修改包括解剖結構及其他解剖結構的多個解剖結構。In an embodiment of the present invention, the arthroscopy surgery simulation method further includes: traversing all the volumin of the anatomical structure from the volumin seed volumin until reaching other anatomical structures, or belonging to different tissues or anatomy in the anatomical structure The knife cuts the boundary surface of the volume element to modify multiple anatomical structures including anatomical structures and other anatomical structures.
在本發明的一實施例中,上述關節鏡手術模擬方法更包括:遍歷解剖結構中的立方格結構,並藉由將立方格結構中的多個三角形乘上多個矩陣來轉換三角形以模擬解剖結構的轉換。In an embodiment of the present invention, the arthroscopic surgery simulation method further includes: traversing the cubic structure in the anatomical structure, and transforming triangles to simulate anatomy by multiplying multiple triangles in the cubic structure by multiple matrices. Structural transformation.
在本發明的一實施例中,上述關節鏡手術模擬方法更包括:將對應三角形的多個三角形頂點乘上兩個縮放(scaling)矩陣、轉譯(translation)矩陣及旋轉矩陣來獲得轉換後的三角形頂點。In an embodiment of the present invention, the arthroscopic surgery simulation method further includes: multiplying a plurality of triangle vertices of a corresponding triangle by two scaling matrices, a translation matrix, and a rotation matrix to obtain a transformed triangle. vertex.
本發明提出一種關節鏡手術模擬系統,包括:電子裝置及耦接到電子裝置的觸覺裝置。上述電子裝置接收組織資料並對組織資料進行容積初始化操作及邊界化操作以獲得容積資料,容積資料包括多個容積素,每個容積素具有距離層級;從觸覺裝置接收觸覺輸入以模擬切割裝置與容積素交叉;根據容積資料及觸覺輸入計算容積素的距離層級的變化;以及根據容積素的距離層級的變化將力道回饋到觸覺裝置。The invention provides an arthroscopic surgery simulation system, which includes an electronic device and a tactile device coupled to the electronic device. The aforementioned electronic device receives tissue data and performs volume initialization operations and boundary operations on the tissue data to obtain volume data. The volume data includes multiple volume elements, each of which has a distance level; receiving tactile input from the haptic device to simulate the cutting device and The volume element crosses; calculates the change in the distance level of the volume element according to the volume data and the haptic input; and feeds back the force to the haptic device according to the change in the distance level of the volume element.
在本發明的一實施例中,上述電子裝置分派對應每個容積素的六對面碼的多個立方格結構,並重建或修改多個組織三角形且將組織三角形記錄於立方格結構中。In an embodiment of the present invention, the electronic device assigns a plurality of cubic lattice structures corresponding to six pairs of face codes of each volume element, and reconstructs or modifies a plurality of organizational triangles and records the organizational triangles in the cubic lattice structure.
在本發明的一實施例中,上述電子裝置透過繪圖管線來描繪組織三角形以產生三維影像。In an embodiment of the present invention, the electronic device draws a tissue triangle through a drawing pipeline to generate a three-dimensional image.
在本發明的一實施例中,上述電子裝置從容積素的種子容積素,遍歷解剖結構的所有容積素,直到到達其他解剖結構、或解剖結構中屬於不同組織、或解剖刀切割表面的容積素的邊界面,來修改包括解剖結構及其他解剖結構的多個解剖結構。In an embodiment of the present invention, the electronic device traverses all the volumin of the anatomical structure from the volumin of the volumin seed until it reaches the other anatomical structure, or the volumin that belongs to different tissues in the anatomical structure or the cutting surface of the scalpel Boundary surface to modify multiple anatomical structures including anatomical structures and other anatomical structures.
在本發明的一實施例中,上述電子裝置遍歷解剖結構中的立方格結構,並藉由將立方格結構中的多個三角形乘上多個矩陣來轉換三角形以模擬解剖結構的轉換。In an embodiment of the present invention, the electronic device traverses the cubic structure in the anatomical structure, and transforms triangles by simulating the transformation of the anatomical structure by multiplying a plurality of triangles in the cubic structure by a plurality of matrices.
在本發明的一實施例中,上述電子裝置將對應三角形的多個三角形頂點乘上兩個縮放矩陣、轉譯矩陣及旋轉矩陣來獲得轉換後的三角形頂點。In an embodiment of the present invention, the electronic device multiplies a plurality of triangle vertices corresponding to a triangle by two scaling matrices, a translation matrix, and a rotation matrix to obtain transformed triangle vertices.
基於上述,本發明的關節鏡手術模擬方法及關節鏡手術模擬系統可接收組織資料以獲得容積資料,並從觸覺裝置接收觸覺輸入,再根據容積資料及該觸覺輸入計算容積資料的容積素的距離層級的變化,最後將一力道回饋到觸覺裝置。如此一來,即可模擬進行手術時的各種術式,進而避免實際手術時遇到的問題。Based on the above, the arthroscopic surgery simulation method and arthroscopic surgery simulation system of the present invention can receive tissue data to obtain volume data, and receive haptic input from a haptic device, and then calculate the volume factor distance of the volume data based on the volume data and the tactile input. The level changes, finally giving a force back to the haptic device. In this way, various surgical methods during the operation can be simulated, thereby avoiding problems encountered during the actual operation.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.
圖1為根據本發明一實施例的關節鏡手術模擬系統的系統架構的示意圖。 FIG. 1 is a schematic diagram of a system architecture of an arthroscopic surgery simulation system according to an embodiment of the present invention.
請參照圖1,本發明一實施例的關節鏡手術模擬系統包括電子裝置(未繪示於圖中)及耦接到電子裝置的觸覺裝置101。電子裝置可接收組織資料102,並輸出三維影像103,並執行其他部分步驟中的運算。組織資料102可包括斷層掃描(CT)資料、核磁共振(MRI)資料及移植物資料。電子裝置可包括處理器、繪圖卡及記憶體。觸覺裝置101可為地球魔術(Geomagic)公司的幽靈桌面(PHANToM Desktop)。觸覺裝置101的軟體可用一程式開發軟體(例如Visual C++)來實作,並可使用一函式庫(例如OpenGL函式庫)來描繪(render)三角化組織表面,並使用另一函式庫(例如 HDDIV函式庫)來獲得六維觸覺裝置資料(例如,觸覺裝置101的三維座標加上相對於上述三維座標的角度)。 Referring to FIG. 1, an arthroscopic surgery simulation system according to an embodiment of the present invention includes an electronic device (not shown in the figure) and a haptic device 101 coupled to the electronic device. The electronic device can receive the tissue data 102, output a three-dimensional image 103, and perform operations in other steps. Tissue data 102 may include tomography (CT) data, magnetic resonance (MRI) data, and graft data. The electronic device may include a processor, a graphics card, and a memory. The haptic device 101 may be a PHANToM Desktop of Geomagic. The software of the haptic device 101 can be implemented by a program development software (such as Visual C ++), and a function library (such as the OpenGL function library) can be used to render the triangulated tissue surface and use another function library (E.g HDDIV library) to obtain six-dimensional haptic device data (for example, the three-dimensional coordinates of the haptic device 101 plus the angle relative to the three-dimensional coordinates).
在容積初始化與邊緣化模組104中,關節鏡手術相關的組織(例如,骨頭、韌帶、半月板及軟骨)可透過三維介面自動邊界化或由手術人員手動邊界化。從核磁共振資料構成的容積中的每個容積素(voxel)會被分派組織碼及結構碼,分別代表一個容積素的組織類型及解剖結構。每個容積素還會被分派六對面碼(face-flag)及距離層級(distance level)來代表此容積素周圍的組織表面的拓樸變化或幾何變化。距離層級表示了沿著上述容積的座標系統的一些主要座標軸的方向,從容積素中心到組織表面的距離。容積素的寬度可被分割為256個區間(即,距離層級)以代表在具有每個觸覺步驟(1000Hz)中工具輸送率超過0.008mm的精細0.5mm的容積素寬度下的組織表面變化,如同典型的組織切割操作。同時,面碼可用以表示一個容積素的相鄰容積素屬於不同組織或不同解剖結構。藉由容積初始化與邊緣化模組104的運算,可產生擴展容積資料及動態立方格資料105。 In the volume initialization and marginalization module 104, tissues related to arthroscopic surgery (for example, bones, ligaments, menisci, and cartilage) can be automatically bordered through a three-dimensional interface or manually bordered by a surgeon. Each volume element (voxel) in the volume formed from the nuclear magnetic resonance data will be assigned a tissue code and a structure code, respectively representing the tissue type and anatomical structure of a volume element. Each volume element is also assigned six pairs of face-flags and distance levels to represent the topological changes or geometric changes of the tissue surface around this volume element. The distance level represents the distance from the center of the volume element to the surface of the tissue along the directions of some of the major coordinate axes of the volume coordinate system. The width of the volumin can be divided into 256 intervals (i.e., distance levels) to represent the tissue surface change at a fine 0.5mm volumin width with a tool delivery rate of more than 0.008mm in each tactile step (1000Hz), as Typical tissue cutting operation. At the same time, the face code can be used to indicate that the adjacent volumin of a volumin belongs to different tissues or different anatomical structures. The volume initialization and dynamic cube data 105 can be generated by the volume initialization and calculation of the marginalization module 104.
亮度表面重建模組106可分配對應容積素的面碼的動態立方格資料並重建或修改要被記錄在動態立方格結構中的組織三角形(或表面三角形107)。描繪(rendering)模組108可藉由切割模擬中的標準繪圖管線描繪所有的組織三角形來獲得即時(30Hz)的視覺回應,因為只有少數的動態立方格資料在上述視覺步驟中需要被修改、刪除或新增分配。藉由電腦輔助設計軟體(例如:AutoCAD)設計及輸出成灰階資料的人工膝蓋、骨頭、或移植韌帶也可以相同的擴展容積素及立方格資料結構來擴展。The brightness surface reconstruction module 106 may allocate dynamic cube data of the face code corresponding to the volume element and reconstruct or modify the tissue triangle (or surface triangle 107) to be recorded in the dynamic cube structure. The rendering module 108 can use the standard drawing pipeline in the cutting simulation to draw all tissue triangles to obtain real-time (30Hz) visual response, because only a few dynamic cube data need to be modified and deleted in the above visual steps. Or add assignments. Artificial knees, bones, or transplanted ligaments that are designed and exported into grayscale data by computer-aided design software (such as AutoCAD) can also be expanded with the same expanded volume element and cubic data structure.
觸覺輸入模組109可在每個觸覺步驟中接收觸覺輸入110。觸覺輸入110可包括六維資料與觸覺裝置101的虛擬工具形狀。六維資料包括觸覺裝置101的三軸位置P及三軸向量z。基於容積素的模擬模組111可使用觸覺輸入來模擬出移動的切割工具或手術刀與容積素交叉。即時(Real-time)的觸覺模擬切割可透過計算每個觸覺步驟中被移動工具所牽動的容積素的距離層級來計算。觸覺回饋模組112會根據觸覺模擬切割將計算出的力道回饋到觸覺裝置101使得外科醫生可感受到即時的切割。在基於容積素的模擬模組111中,解剖結構的刪除、分割及融合可透過從一個種子容積素(例如,圖2的種子S)遍歷(traverse)一解剖結構的所有容積素,直到到達其他解剖結構(例如,圖2的解剖結構B)、或解剖結構(例如,圖2的解剖結構A)中屬於不同組織、或解剖刀切割表面的容積素的邊界面來實作。上述從種子容積素遍歷解剖結構的所有容積素的方法又可稱為種子溢出演算法(Seed and flood algorithm)。The haptic input module 109 can receive the haptic input 110 in each haptic step. The haptic input 110 may include six-dimensional data and a virtual tool shape of the haptic device 101. The six-dimensional data includes a three-axis position P and a three-axis vector z of the haptic device 101. The volume element-based simulation module 111 can use a tactile input to simulate a moving cutting tool or scalpel crossing the volume element. Real-time haptic simulation cutting can be calculated by calculating the distance level of the volume element that is moved by the moving tool in each haptic step. The haptic feedback module 112 feeds back the calculated force to the haptic device 101 according to the haptic simulation cutting so that the surgeon can feel the instant cutting. In the volume element-based simulation module 111, the deletion, segmentation, and fusion of the anatomical structure can be performed by traverse all the volume elements of an anatomical structure from one seed volume factor (eg, the seed S of FIG. 2) until it reaches the other The anatomical structure (for example, anatomical structure B of FIG. 2), or the boundary surface of the volumin that belongs to different tissues or the cutting surface of the scalpel, is implemented. The above-mentioned method of traversing all the volumin of the anatomical structure from the seed volumin can also be referred to as a seed and flood algorithm.
基於立方格的模擬模組113也可使用種子溢出演算法來遍歷一個解剖結構中的所有立方格資料結構,並藉由將立方格中的三角形乘上多個矩陣來轉換立方格中的三角形,來模擬解剖結構的轉換(例如,轉譯、旋轉、改變大小或彎曲)。在上述三角形轉換過程中,可實作碰撞測試(將於下文中再進行詳細說明)來檢查解剖結構是否與其他解剖結構碰撞,並在解剖結構的轉換過程之後實作推移(push)模擬(將於下文中再進行詳細說明)。The cube-based simulation module 113 can also use a seed overflow algorithm to traverse all cube data structures in an anatomical structure, and transform the triangles in the cube by multiplying the triangles in the cube by multiple matrices. To simulate anatomical transformations (eg, translation, rotation, resizing, or bending). During the triangle conversion process described above, a collision test (to be described in more detail below) can be implemented to check whether the anatomical structure collides with other anatomical structures, and a push simulation is performed after the anatomical structure conversion process (will be (More details below).
以下將透過實施例來說明立方格架構及立方格架構的復位(reposition)及改變大小的模擬方法。In the following, the cube structure and the reset method of the cube structure and the simulation method of changing the size will be described through examples.
在一實施例中,動態立方格資料可包括索引號碼(index number)、四個三角形及表單號碼(list number)。索引號碼指示出立方格容積素的組織類型(例如,骨頭、半月板、軟骨、韌帶或空氣)及立方格分類。一個立方格的四個組織三角形可對應立方格分類來產生。上述三角形會儲存在立方格結構中接著儲存在繪圖管線中。表單號碼指示出繪圖管線中用來改善描繪速度的立方格三角形。當立方格容積素的距離層級或面碼改變時,表單號碼所指示的繪圖管線中的立方格三角形會被刪除,且會分派一個新的表單號碼來指示最新儲存於繪圖管線中的重造的組織三角形。In one embodiment, the dynamic cube data may include an index number, four triangles, and a list number. The index number indicates the tissue type of cube volume (for example, bone, meniscus, cartilage, ligament, or air) and cube classification. Four cubic triangles of a cube can be generated corresponding to the cube classification. The triangles are stored in the cube structure and then in the drawing pipeline. The form number indicates a cubic triangle in the drawing pipeline to improve drawing speed. When the distance level or face number of the cube volume element is changed, the cube triangle in the drawing pipeline indicated by the form number will be deleted, and a new form number will be assigned to indicate the newly recreated Organization triangle.
以下為種子溢出演算法的虛擬程式碼。The following is the virtual code of the seed overflow algorithm.
[種子溢出演算法] 重覆下列步驟直到種子堆疊(stack)為空堆疊。 步驟1:從種子堆疊中彈出(pop)一個種子容積素。(初始種子會在解剖結構中被指定)。 步驟2:從種子沿著容積座標系統的X軸方向再沿著-X軸方向來遍歷容積素直到具有邊界面的容積素,在每個遍歷的容積素的動態立方格結構中尋找組織頂點(vertices),並將每個頂點乘上矩陣Mv且將每個頂點關聯的法線表面(surface normal)乘上矩陣Mn。測試碰撞並更新結構的碰撞距離。 步驟3:在遍歷的X/-X擴張過程中增加Y、-Y、Z、-Z並尋找新種子來堆疊進入種子堆疊中。新種子是在目前容積素擴張中在其鄰居容積素之間沒有邊界面但在X或-X方向上具有邊界面的種子。 邊界面的定義為切割表面(相同組織的兩個容積素間的容積素面)、組織邊界(相同組織的容積素間的容積素面)或自然邊界(組織及空氣容積素間的容積素面)。[Seed Overflow Algorithm] Repeat the following steps until the seed stack is empty. Step 1: Pop a seed volumin from the seed stack. (The initial seed is specified in the anatomy). Step 2: Traverse the volume element from the seed along the X-axis direction of the volume coordinate system and then along the -X axis direction to the volume element with the boundary surface. Find the tissue vertices in the dynamic cubic lattice structure of each traversed volume element ( vertices) and multiply each vertex by the matrix Mv and multiply the normal surface associated with each vertex by the matrix Mn. Test the collision and update the collision distance of the structure. Step 3: During the traversal X / -X expansion process, add Y, -Y, Z, -Z and find new seeds to stack into the seed stack. The new seed is a seed that does not have a boundary surface between its neighbors, but has a boundary surface in the X or -X direction in the present volume expansion. The boundary surface is defined as the cutting surface (the volume element surface between two volume elements of the same tissue), the tissue boundary (the volume element surface between the volume elements of the same tissue), or the natural boundary (the volume element surface between the tissue and air volume elements).
種子溢出演算法顯示了從一種子容積素,遍歷一解剖結構的所有容積素,直到到達其他解剖結構、或該解剖結構中屬於不同組織、或一解剖刀切割表面的容積素的邊界面,如圖2所示。每個遍歷的三角型頂點V藉由乘上矩陣Mv來轉換。矩陣Mv為兩個縮放矩陣(Sw、Sv)、一轉譯矩陣(T)及一旋轉矩陣(R)所相乘的矩陣。例如:V’=MvP=RTSvSwV。而頂點的法線表面N會與矩陣Mn相乘。矩陣Mn為R、Sw、Sv相乘的矩陣。例如:N’=MnN=RSvSwN。N’與V’成為轉換後的遍歷頂點的位置及法線表面。由於解剖結構的所有立方格資料結構的組織頂點會在轉換後改變,繪圖管線中所有立方格結構的表單號碼所指示的三角形會被刪除,且新的表單號碼繪被分派以指出最新儲存在繪圖管線中的轉換後的組織三角形。圍繞立方體結構的邊界表面,例如解剖刀切割表面,也會由相同矩陣進行轉換,因此會在轉換後保持為邊界表面。The seed overflow algorithm shows that from one subvolume, it traverses all the volumins of an anatomical structure until it reaches the boundary surface of the volumin of other anatomical structures, or belonging to different tissues in the anatomical structure, or a scalpel cutting surface, such as Shown in Figure 2. Each traversed triangular vertex V is transformed by multiplying it by the matrix Mv. The matrix Mv is a matrix multiplied by two scaling matrices (Sw, Sv), a translation matrix (T), and a rotation matrix (R). For example: V '= MvP = RTSvSwV. The normal surface N of the vertex is multiplied by the matrix Mn. The matrix Mn is a matrix in which R, Sw, and Sv are multiplied. For example: N '= MnN = RSvSwN. N 'and V' become the position and normal surface of the traversal vertex after conversion. Because the vertices of all cube data structures of the anatomical structure will change after conversion, the triangle indicated by the form number of all cube structures in the drawing pipeline will be deleted, and the new form number drawing will be assigned to indicate the latest stored in the drawing The transformed tissue triangle in the pipeline. The boundary surface surrounding the cube structure, such as the scalpel cutting surface, will also be transformed by the same matrix, so it will remain the boundary surface after the transformation.
圖3A到圖3E為根據本發明一實施例的結構轉換示意圖。3A to 3E are schematic diagrams of structural transformation according to an embodiment of the present invention.
為了決定種子溢出演算法中的矩陣,圖3A到圖3C標出了兩組點對(pair of points)AB及A’B’。A與B為解剖結構上的指定點,且對應的點A’與B’為結構轉換後A與B的期望點。轉譯矩陣T藉由轉譯向量v來決定。v是從結構中的第一指定點A起始且結束於結構轉換後的第一指定點A’的向量。第一指定點A’同時也是旋轉中心。圖3C中的旋轉角度θ藉由兩個指定向量AB與A’B’的內積來決定。同時,旋轉軸藉由指定向量AB與A’B’的外積來決定。因此,旋轉矩陣R就可藉由旋轉中心、旋轉角度及旋轉軸來決定。Sw代表了沿著指定向量AB的縮放(例如,伸長或縮短)比例。此縮放比例是兩個指定向量AB與A’B’的長度的比值。然而,若解剖結構為硬(rigid)結構,則縮放比例會設定為1且第二指定點B’會調整成讓兩個指定向量AB與A’B’具有相同的長度。Sv代表了沿著垂直於指定向量的方向的縮放比例。Sv可設置為與Sw的比值相關,例如Sw的平方根的倒數,如此可節省解剖結構的操作容積。In order to determine the matrix in the seed overflow algorithm, Fig. 3A to Fig. 3C mark two pairs of points AB and A'B '. A and B are designated points on the anatomical structure, and the corresponding points A 'and B' are the expected points of A and B after the structural transformation. The translation matrix T is determined by the translation vector v. v is a vector starting from the first specified point A in the structure and ending at the first specified point A 'after the structure conversion. The first designated point A 'is also the center of rotation. The rotation angle θ in FIG. 3C is determined by the inner product of the two specified vectors AB and A'B '. At the same time, the rotation axis is determined by the outer product of the designated vectors AB and A'B '. Therefore, the rotation matrix R can be determined by the rotation center, the rotation angle, and the rotation axis. Sw represents a scaling (e.g., elongation or contraction) scale along a specified vector AB. This scaling is the ratio of the lengths of the two specified vectors AB to A'B '. However, if the anatomical structure is a rigid structure, the scaling ratio will be set to 1 and the second designated point B 'will be adjusted so that the two designated vectors AB and A'B' have the same length. Sv represents the scaling in a direction perpendicular to the specified vector. Sv can be set to be related to the ratio of Sw, such as the inverse of the square root of Sw, so that the operating volume of the anatomical structure can be saved.
在圖3A到圖3D中,兩組接續點可被指定來決定解剖結構中用於接續區段(section)的連接矩陣(concatenating matrix)。(A,B,C)為解剖結構上的指定點組(set of points),且對應的(A’,B’,C’)為結構轉換後(A,B,C)的期望點組。這兩組指定點決定了接續的對應點對,例如AB與A’B’,以及BC與B’C’。任一組指定點組的連接點(例如,B或B’)同時為其中一個點對(例如,AB或A’B’)的第二點及另一個點對(BC或B’C’)的第一點。用於轉換解剖結構各個區段的連接矩陣藉由對應的指定點對來決定,例如AB與A’B’,以及BC與B’C’。一個通過連接點B的連接平面可被指定或自動分派使其垂直於AB軸。連接平面會形成一個邊界來停止解剖結構的各部分的種子溢出,且連接平面會經由相同矩陣Mv來轉換成結構轉換後的邊界表面。In FIGS. 3A to 3D, two sets of concatenation points may be designated to determine a concatenating matrix for contiguous sections in an anatomical structure. (A, B, C) is the set of points on the anatomical structure, and the corresponding (A ', B', C ') is the desired point group after the structure conversion (A, B, C). These two sets of designated points determine the corresponding corresponding point pairs, such as AB and A'B ', and BC and B'C'. The connection point (for example, B or B ') of any given point group is the second point of one of the point pairs (for example, AB or A'B') and the other point pair (BC or B'C ') First point. The connection matrix used to transform each section of the anatomical structure is determined by corresponding designated point pairs, such as AB and A'B ', and BC and B'C'. A connection plane through connection point B can be specified or automatically assigned so that it is perpendicular to the AB axis. The connection plane will form a boundary to stop the seed overflow of each part of the anatomical structure, and the connection plane will be converted into the structurally transformed boundary surface via the same matrix Mv.
然而,在圖3D中,當一個區段(例如, A’B’)以不同於鄰居區段(例如,B’C’)的角度(例如,ω)進行旋轉時,就會發生結構彎曲。此結構彎曲可藉由提供不同的Sw(即,沿著指定軸的縮放矩陣)到彎曲區段(例如,A’B’)的表面節點來表示。Sw在彎曲區段A’B’的比值可基於連接平面與通過特定軸A’B’的彎曲平面在最外面的交叉I’及J’與接續特定點C’來計算。I與J是根據旋轉角度ω、旋轉中心B’及垂直於旋轉軸來旋轉I’及J’。由於I’或J’應該相對於I或J來縮短或伸長以連接彎曲區段A’B’及其鄰居區段B’C’,在I’及J’的縮放比例Sw分別被計算為1 - (II’ / A’B’) 與 1+ (JJ’ / A’B’ )。II’與JJ’分別等於sin(ω)* B’I與sin(ω)* B’J。任意表面節點的縮放比例Sw可藉由最外面的交叉I’或J’來計算,並且是取決於哪一個交叉比較接進其在彎曲平面上的投影K’或L’。沿著節點K’或L’的指定向量方向的伸長或縮短比例分別被計算為1 - (II’ / A’B’)(KK’ / I’B’)或1+ (JJ’ / A’B’)(LL’ / J’ B’)。KK’或LL’是從彎曲平面上的投影K’或L’到指定軸A’B’上的投影K或L的距離。Sv的在此節點的縮放比例可以被設定為與Sw的縮放比例相關。However, in FIG. 3D, when one segment (e.g., A'B ') is rotated at an angle (e.g., ω) different from that of a neighboring segment (e.g., B'C'), structural bending occurs. This structural bending can be represented by providing different Sw (i.e., a scaling matrix along a specified axis) to a surface node of a curved section (e.g., A'B '). The ratio of Sw in the bending section A'B 'can be calculated based on the outermost intersections I' and J 'of the connection plane and the bending plane passing through the specific axis A'B' and the connection specific point C '. I and J rotate I 'and J' based on the rotation angle ω, the rotation center B ', and perpendicular to the rotation axis. Since I 'or J' should be shortened or extended relative to I or J to connect the curved section A'B 'and its neighbor section B'C', the scaling ratios Sw at I 'and J' are calculated as 1 respectively -(II '/ A'B') and 1+ (JJ '/ A'B'). II 'and JJ' are equal to sin (ω) * B'I and sin (ω) * B'J, respectively. The scaling Sw of any surface node can be calculated by the outermost intersection I 'or J', and it depends on which intersection is compared to its projection K 'or L' on the curved plane. The elongation or contraction ratio along the specified vector direction of node K 'or L' is calculated as 1-(II '/ A'B') (KK '/ I'B') or 1+ (JJ '/ A' B ') (LL' / J 'B'). KK 'or LL' is the distance from the projection K 'or L' on the curved plane to the projection K or L on the specified axis A'B '. The scaling of Sv at this node can be set to be related to the scaling of Sw.
此外,在圖3E中,使用者可僅僅看到解剖結構上的表面並在表面上指定一個點E。然而此指定點E並不適用於以上描述的計算。系統可自動調整指定點到中間點A。A為E與F的中間點。F為向量PE與解剖結構最遠的交叉。P為上一個觸覺步驟的觸覺點。In addition, in FIG. 3E, the user can only see the surface on the anatomical structure and specify a point E on the surface. However, this designated point E is not suitable for the calculations described above. The system can automatically adjust the specified point to the intermediate point A. A is the midpoint between E and F. F is the farthest intersection of the vector PE and the anatomical structure. P is the tactile point of the previous tactile step.
以下將透過實施例來說明碰撞測試與推移模擬。In the following, collision tests and movement simulations will be explained through examples.
圖4為根據本發明一實施例關於碰撞與推移回應的結構轉換的示意圖。FIG. 4 is a schematic diagram of a structural transformation regarding a collision and a shift response according to an embodiment of the present invention.
在一實施例中,碰撞測試可實作來偵測轉換過程中一個轉換的解剖結構是否與其他結構發生碰撞。一個組織頂點V在轉換結構中的轉換路徑被分割為容積素寬度的多個線段,如圖4所示。此轉換路徑初始為結構轉譯的線段或結構轉動的弧線。系統會一個線段一個線段地檢查是否有線段的端點(E c)位於一個組織容積素中。若有線段的端點位於一個組織容積素中,則判斷發生碰撞且碰撞前所有線段(例如,線段E 1E 2、E 2E 3、…、E c-1E c)的寬度會加入此頂點V的碰撞距離中。若此距離(即,碰撞前所有線段的寬度)小於碰撞距離,此距離會在轉換結構中取代碰撞距離,如種子溢出演算法的步驟2。在處理轉換結構的所有頂點後,結構的碰撞距離顯示了轉換結構可移動而不發生碰撞的距離。 In one embodiment, a collision test may be implemented to detect whether a transformed anatomical structure collides with other structures during the transformation process. The transformation path of an organization vertex V in the transformation structure is divided into multiple line segments with a volume prime width, as shown in FIG. 4. This transformation path is initially a segment of a structure translation or an arc of a structure rotation. The system checks whether the end point (E c ) of the line segment is located in a tissue volume element line by line. If the end point of the line segment is located in a tissue volume element, the collision is judged and the width of all line segments (for example, line segments E 1 E 2 , E 2 E 3 , ..., E c-1 E c ) before the collision is added to this The collision distance of vertex V. If this distance (that is, the width of all line segments before the collision) is smaller than the collision distance, this distance will replace the collision distance in the transformation structure, as in step 2 of the seed overflow algorithm. After processing all vertices of the transformed structure, the collision distance of the structure shows the distance that the transformed structure can move without collision.
若轉換結構與骨頭發生碰撞,碰撞距離會作為新的轉譯距離或旋轉弧線且具有相同的轉譯向量方向或相同的旋轉中心及旋轉軸,以重新計算結構轉換的轉譯矩陣T或旋轉矩陣R。接下來,會分派一個大型觸覺回應以指出骨頭碰撞。若轉換結構與組織結構發生碰撞,推移模擬會在碰撞的結構上被實作。在推移模擬中,相同的轉譯向量或相同的旋轉向量及旋轉軸會被用以轉換碰撞的組織,但轉換距離或旋轉弧線會變成指定距離與碰撞距離的差(例如,E c到E n),如圖4所示。等比例於移動速度的觸覺回應也會被分派以指出碰撞結構的推移。 If the transformation structure collides with the bone, the collision distance will be used as the new translation distance or rotation arc with the same translation vector direction or the same rotation center and rotation axis to recalculate the translation matrix T or rotation matrix R of the structural transformation. Next, a large tactile response is dispatched to indicate a bone collision. If the transformation structure collides with the organizational structure, the shift simulation will be implemented on the collision structure. In translation simulation, the same translation vector or the same rotation vector and rotation axis will be used to transform the collision tissue, but the transformation distance or rotation arc will become the difference between the specified distance and the collision distance (for example, E c to E n ) ,As shown in Figure 4. Haptic responses proportional to the speed of movement will also be assigned to indicate the passage of the collision structure.
圖5A到圖5F為根據本發明一實施例的內側副韌帶(Medial Collateral Ligament,MCL)重建的模擬影像。5A to 5F are simulated images reconstructed by a medial collateral ligament (MCL) according to an embodiment of the present invention.
在圖5A到圖5F中,包括了骨頭501、半月板502、軟骨503、韌帶504及移植韌帶505。圖5A到圖5E為模擬手術前影像,而圖5F為模擬手術後影像。圖5A顯示了撕裂的副韌帶,與股骨分離且往下垂。圖5B顯示了輸入的移植韌帶505。圖5C顯示了移植韌帶505上的指定點ABCD與移植韌帶505上彎曲後的期望點A’B’C’D’。圖5D顯示了根據期望點彎曲的移植韌帶505。圖5E及圖5F顯示了彎曲的移植韌帶復位(reposition)在內側副韌帶原有的位置上。5A to 5F, bones 501, meniscus 502, cartilage 503, ligaments 504, and transplanted ligaments 505 are included. 5A to 5E are images before the simulated operation, and FIG. 5F is an image after the simulated operation. Figure 5A shows a torn collateral ligament, separated from the femur and sagging. Figure 5B shows the imported graft ligament 505. Fig. 5C shows a designated point ABCD on the graft ligament 505 and a desired point A'B'C'D 'after bending on the graft ligament 505. FIG. 5D shows the graft ligament 505 bent according to a desired point. 5E and 5F show that the curved graft ligament is repositioned in the original position of the medial collateral ligament.
圖6A到圖6I為根據本發明一實施例的十字韌帶(Cruciate Ligament)重建的模擬影像。FIG. 6A to FIG. 6I are simulation images reconstructed by a Cruciate Ligament according to an embodiment of the present invention.
在圖6A到圖6I中,包括了骨頭601、半月板602、軟骨603、韌帶604及移植韌帶605。圖6A到圖6D為後視圖。圖6E到圖6F為側視圖。圖6G到圖6I為前傾視圖。圖6A為原始影像。圖6B顯示了後十字韌帶被移除,並顯示了移植韌帶605上的特定點對AB及期望位置上用於復位韌帶的另一點對A’B’。圖6C顯示了移植韌帶605復位在後十字韌帶的原始位置上。圖6D顯示了移植韌帶605經由縮放而放大並復位在後十字韌帶的原始位置上。圖6E顯示了在股骨上的特定點CD及用於旋轉股骨的期望位置C’D’。圖6F顯示了旋轉的股骨。圖6G顯示了用於重建後十字韌帶的移植韌帶605。圖6H及圖6I顯示了移植韌帶605位於前十字韌帶的原始位置。In FIGS. 6A to 6I, bones 601, meniscus 602, cartilage 603, ligaments 604, and transplanted ligaments 605 are included. 6A to 6D are rear views. 6E to 6F are side views. 6G to 6I are forward tilted views. Figure 6A is the original image. Figure 6B shows the posterior cruciate ligament removed and shows a specific point pair AB on the graft ligament 605 and another point pair A'B 'at the desired location for resetting the ligament. Figure 6C shows the graft ligament 605 reset in the original position of the posterior cruciate ligament. FIG. 6D shows that the graft ligament 605 is zoomed in and reset to the original position of the posterior cruciate ligament. Figure 6E shows a particular point CD on the femur and the desired position C'D 'for rotating the femur. Figure 6F shows a rotated femur. Figure 6G shows a grafted ligament 605 for reconstruction of the posterior cruciate ligament. Figures 6H and 6I show the original position of the graft ligament 605 in the anterior cruciate ligament.
圖7A到圖7F為根據本發明一實施例的半月板撕裂切除的模擬影像。7A to 7F are simulation images of a torn meniscus resection according to an embodiment of the present invention.
在圖7A到圖7F中,包括了骨頭701、半月板702、軟骨703、韌帶704、非切割中工具706、切割中工具707。圖7A顯示了股骨上的特定點708及用於旋轉股骨的期望點709。圖7B顯示了中間半月板702有傾斜撕裂。圖7C及圖7D顯示了從右到左切割半月板702的內側邊緣。圖7E及圖7F顯示了毛邊(burr)向外移動並切割半月板702的撕裂。In FIGS. 7A to 7F, bones 701, meniscus 702, cartilage 703, ligaments 704, non-cutting tool 706, and cutting tool 707 are included. FIG. 7A shows a specific point 708 on the femur and a desired point 709 for rotating the femur. FIG. 7B shows the oblique tear of the middle meniscus 702. 7C and 7D show the inside edge of the meniscus 702 cut from right to left. Figures 7E and 7F show tearing of the burr moving outward and cutting the meniscus 702.
圖8A到圖8F為根據本發明一實施例的軟骨損傷刮除與軟骨自體移植(mosaicplasty)的模擬影像。8A to 8F are simulated images of cartilage injury scraping and cartilage autotransplantation (mosaicplasty) according to an embodiment of the present invention.
在圖8A到圖8F中,包括了骨頭801、半月板802、軟骨803、韌帶804及分離的軟骨碎片807。圖8A、圖8B及圖8F為後視圖。圖8C到圖8E為傾斜視圖。在圖8A及圖8B中,工具806在刮除軟骨損傷。圖8C顯示了軟骨碎片807(自體的)從關節軟骨中分離。圖8D顯示了復位軟骨碎片807的特定點808及再次復位軟骨碎片807的特定點809。圖8E顯示了軟骨碎片807復位到特定點809。圖8F顯示了軟骨碎片807復位到被刮除的軟骨表面上。In FIG. 8A to FIG. 8F, bone 801, meniscus 802, cartilage 803, ligament 804, and separated cartilage fragments 807 are included. 8A, 8B and 8F are rear views. 8C to 8E are oblique views. In Figures 8A and 8B, the tool 806 is scraping away the cartilage damage. Figure 8C shows the separation of cartilage fragments 807 (autologous) from articular cartilage. FIG. 8D shows a specific point 808 of resetting the cartilage fragment 807 and a specific point 809 of resetting the cartilage fragment 807 again. FIG. 8E shows the cartilage fragments 807 resetting to a specific point 809. Figure 8F shows the cartilage fragments 807 resetting onto the scraped cartilage surface.
綜上所述,本發明的關節鏡手術模擬方法及關節鏡手術模擬系統可接收組織資料以獲得容積資料,並從觸覺裝置接收觸覺輸入,再根據容積資料及該觸覺輸入計算容積資料的容積素的距離層級的變化,最後將一力道回饋到觸覺裝置。如此一來,即可模擬進行手術時的各種術式,進而避免實際手術時遇到的問題。In summary, the arthroscopic surgery simulation method and arthroscopic surgery simulation system of the present invention can receive tissue data to obtain volume data, and receive tactile input from a haptic device, and then calculate the volume factor of the volume data based on the volume data and the tactile input. The change in distance level finally gives a force back to the haptic device. In this way, various surgical methods during the operation can be simulated, thereby avoiding problems encountered during the actual operation.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.
101‧‧‧觸覺裝置101‧‧‧ Haptic Device
102‧‧‧組織資料102‧‧‧Organizational Information
103‧‧‧三維影像103‧‧‧ 3D image
104‧‧‧容積初始化與邊緣化模組104‧‧‧Volume Initialization and Marginalization Module
105‧‧‧擴展容積資料及動態立方格資料105‧‧‧Expanded volume data and dynamic cube data
106‧‧‧亮度表面重建模組106‧‧‧Brightness Surface Reconstruction Module
107‧‧‧表面三角形107‧‧‧ surface triangle
108‧‧‧描繪模組108‧‧‧Drawing Module
109‧‧‧觸覺輸入模組109‧‧‧haptic input module
110‧‧‧觸覺輸入110‧‧‧haptic input
111‧‧‧基於容積素的模擬模組111‧‧‧Volume element based simulation module
112‧‧‧觸覺回饋模組112‧‧‧Haptic feedback module
113‧‧‧基於立方格的模擬模組113‧‧‧ Based on cube simulation module
501、601、701、801‧‧‧骨頭501, 601, 701, 801‧‧‧ bones
502、602、702、802‧‧‧半月板502, 602, 702, 802‧‧‧ meniscus
503、603、703、803‧‧‧軟骨503, 603, 703, 803‧‧‧ cartilage
504、604、704、804‧‧‧韌帶504, 604, 704, 804‧‧‧ ligaments
505、605‧‧‧移植韌帶505, 605‧‧‧ transplanted ligaments
706‧‧‧非切割中工具706‧‧‧Non-cutting tools
707‧‧‧切割中工具707‧‧‧Cutting Tool
708‧‧‧股骨上的特定點708‧‧‧A specific point on the femur
709‧‧‧用於旋轉股骨的期望點709‧‧‧Expected point for rotating femur
806‧‧‧工具806‧‧‧Tools
807‧‧‧軟骨碎片807‧‧‧ cartilage fragments
808、809‧‧‧特定點808, 809‧‧‧‧Specific points
圖1為根據本發明一實施例的關節鏡手術模擬系統的系統架構的示意圖。 圖2為根據本發明一實施例的種子與解剖結構的示意圖。 圖3A到圖3E為根據本發明一實施例的結構轉換示意圖。 圖4為根據本發明一實施例關於碰撞與推移回應的結構轉換的示意圖。 FIG. 1 is a schematic diagram of a system architecture of an arthroscopic surgery simulation system according to an embodiment of the present invention. FIG. 2 is a schematic diagram of a seed and an anatomical structure according to an embodiment of the present invention. 3A to 3E are schematic diagrams of structural transformation according to an embodiment of the present invention. FIG. 4 is a schematic diagram of a structural transformation regarding a collision and a shift response according to an embodiment of the present invention.
圖5A到圖5F為根據本發明一實施例的內側副韌帶重建的模擬影像。 FIG. 5A to FIG. 5F are simulated images of the medial collateral ligament reconstruction according to an embodiment of the present invention.
圖6A到圖6I為根據本發明一實施例的十字韌帶重建的模擬影像。 6A to 6I are simulated images of cruciate ligament reconstruction according to an embodiment of the present invention.
圖7A到圖7F為根據本發明一實施例的半月板撕裂切除的模擬影像。 7A to 7F are simulation images of a torn meniscus resection according to an embodiment of the present invention.
圖8A到圖8F為根據本發明一實施例的軟骨損傷刮除與軟骨自體移植的模擬影像。 8A to 8F are simulation images of cartilage injury scraping and cartilage autograft according to an embodiment of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW107115458A TWI678685B (en) | 2018-05-07 | 2018-05-07 | Arthroscopic surgery simulation method and arthroscopic surgery simulation device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW107115458A TWI678685B (en) | 2018-05-07 | 2018-05-07 | Arthroscopic surgery simulation method and arthroscopic surgery simulation device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI678685B true TWI678685B (en) | 2019-12-01 |
| TW201947556A TW201947556A (en) | 2019-12-16 |
Family
ID=69582555
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW107115458A TWI678685B (en) | 2018-05-07 | 2018-05-07 | Arthroscopic surgery simulation method and arthroscopic surgery simulation device |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI678685B (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040002045A1 (en) * | 2002-06-26 | 2004-01-01 | Wellman Parris S. | Training model for endoscopic vessel harvesting |
| TW200412918A (en) * | 2002-10-07 | 2004-08-01 | Imaging Therapeutics Inc | Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces |
| CN203539346U (en) * | 2013-10-17 | 2014-04-16 | 苏州百慧华业精密仪器有限公司 | Electrocardio workstation capable of supporting wireless network and wireless printing |
| CN104361814A (en) * | 2014-11-28 | 2015-02-18 | 广东工业大学 | Knee arthroscopic surgery training device with force feedback |
| CN104685551A (en) * | 2012-09-12 | 2015-06-03 | 维塔医疗股份公司 | Mixed reality simulation method and system |
-
2018
- 2018-05-07 TW TW107115458A patent/TWI678685B/en active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040002045A1 (en) * | 2002-06-26 | 2004-01-01 | Wellman Parris S. | Training model for endoscopic vessel harvesting |
| TW200412918A (en) * | 2002-10-07 | 2004-08-01 | Imaging Therapeutics Inc | Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces |
| CN104685551A (en) * | 2012-09-12 | 2015-06-03 | 维塔医疗股份公司 | Mixed reality simulation method and system |
| CN203539346U (en) * | 2013-10-17 | 2014-04-16 | 苏州百慧华业精密仪器有限公司 | Electrocardio workstation capable of supporting wireless network and wireless printing |
| CN104361814A (en) * | 2014-11-28 | 2015-02-18 | 广东工业大学 | Knee arthroscopic surgery training device with force feedback |
Also Published As
| Publication number | Publication date |
|---|---|
| TW201947556A (en) | 2019-12-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Heng et al. | A virtual-reality training system for knee arthroscopic surgery | |
| Gibson et al. | Simulating arthroscopic knee surgery using volumetric object representations, real-time volume rendering and haptic feedback | |
| Montgomery et al. | Spring: A general framework for collaborative, real-time surgical simulation | |
| Pan et al. | Graphic and haptic simulation system for virtual laparoscopic rectum surgery | |
| JP2008251044A (en) | Graphic representation generation method in computer | |
| US7023433B2 (en) | Computer-implemented method for constructing and manipulating a three-dimensional model of an object volume, and voxels used therein | |
| Heng et al. | Application to Anatomic Visualization and Orthopaedics Training. | |
| De et al. | A meshless numerical technique for physically based real time medical simulations | |
| Bruyns et al. | Interactive cutting of 3D surface meshes | |
| De et al. | Physically realistic virtual surgery using the point-associated finite field (PAFF) approach | |
| Forest et al. | Removing tetrahedra from manifold tetrahedralisation: application to real-time surgical simulation | |
| Bruyns et al. | Generalized interactions using virtual tools within the spring framework: Cutting | |
| Al-Khlaifah et al. | A survey of modeling approaches for medical simulators | |
| Lim et al. | Soft tissue deformation and cutting simulation for the multimodal surgery training | |
| TWI678685B (en) | Arthroscopic surgery simulation method and arthroscopic surgery simulation device | |
| Peng et al. | Bone surgery simulation with virtual reality | |
| Niu et al. | Image processing, geometric modeling and data management for development of a virtual bone surgery system | |
| Wang et al. | vKASS: a surgical procedure simulation system for arthroscopic anterior cruciate ligament reconstruction | |
| Meehan et al. | Virtual 3D planning and guidance of mandibular distraction osteogenesis | |
| Neubauer et al. | Advanced virtual corrective osteotomy | |
| De et al. | Multimodal simulation of laparoscopic Heller myotomy using a meshless technique | |
| Lin et al. | Realistic visualization for surgery simulation using dynamic volume texture mapping and model deformation | |
| Bhasin et al. | Simulating surgical incisions without polygon subdivision | |
| Leu et al. | Virtual Bone Surgery | |
| Laycock et al. | The haptic rendering of polygonal models involving deformable tools |