[go: up one dir, main page]

TWI843008B - Method and system for providing variable ramp-up control for an electric heater - Google Patents

Method and system for providing variable ramp-up control for an electric heater Download PDF

Info

Publication number
TWI843008B
TWI843008B TW110129836A TW110129836A TWI843008B TW I843008 B TWI843008 B TW I843008B TW 110129836 A TW110129836 A TW 110129836A TW 110129836 A TW110129836 A TW 110129836A TW I843008 B TWI843008 B TW I843008B
Authority
TW
Taiwan
Prior art keywords
modulation rate
zone
variable
temperature
heater
Prior art date
Application number
TW110129836A
Other languages
Chinese (zh)
Other versions
TW202224490A (en
Inventor
布列塔尼 菲利浦斯
史丹頓 H 布里特羅
凱文 皮塔賽恩斯基
Original Assignee
美商瓦特洛威電子製造公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商瓦特洛威電子製造公司 filed Critical 美商瓦特洛威電子製造公司
Publication of TW202224490A publication Critical patent/TW202224490A/en
Application granted granted Critical
Publication of TWI843008B publication Critical patent/TWI843008B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/026Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/005Circuits arrangements for indicating a predetermined temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/08Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
    • G01K3/14Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values in respect of space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16571Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing AC or DC current with one threshold, e.g. load current, over-current, surge current or fault current
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1902Control of temperature characterised by the use of electric means characterised by the use of a variable reference value
    • G05D23/1904Control of temperature characterised by the use of electric means characterised by the use of a variable reference value variable in time
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0233Industrial applications for semiconductors manufacturing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Automation & Control Theory (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Control Of Temperature (AREA)
  • Control Of Resistance Heating (AREA)
  • Control Of Electric Motors In General (AREA)
  • Surface Heating Bodies (AREA)
  • General Induction Heating (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Vending Machines For Individual Products (AREA)

Abstract

In one form, the present disclosure is directed toward a method for controlling temperature of a heater including a resistive heating element. The method includes applying power to the resistive heating element of the heater at a variable ramp rate to increase temperature of the heater to a desired temperature setpoint. The variable ramp rate is set to a desired ramp rate. The method further includes monitoring an electric current flowing through the resistive heating element of the heater, and reducing the variable ramp rate from the desired ramp rate to a permitted ramp rate in response to the electric current being greater than a lower limit of an electric current limit band. An upper limit of the electric current limit band is provided as a system current limit.

Description

用於提供針對電氣加熱器的可變調升控制之方法及系統Method and system for providing variable ramp control for electric heaters

本申請案主張2020年8月12日申請之美國臨時申請案63/064,523之優先權及利益。上述申請案之揭露內容係藉由參照併入本文。 This application claims priority to and the benefit of U.S. Provisional Application No. 63/064,523 filed on August 12, 2020. The disclosure of the above application is incorporated herein by reference.

發明領域 Invention Field

本揭露內容係有關於控制一加熱器之溫度。 This disclosure relates to controlling the temperature of a heater.

本節中的陳述僅提供與本揭露內容有關之背景資訊,且可不構成先前技術。 The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.

一熱系統大體上包括具有電阻式加熱元件的一加熱器,以及用以控制給予該加熱器以產生在一溫度設定點之熱的電力的一控制系統。在一範例應用中,一種半導體製程系統包括具有一台座加熱器的一熱系統,該台座加熱器包括具一陶瓷基體的一加熱板,以及界定一或多個加熱區域的一或多個電阻式加熱元件。該台座加熱器可被加熱至不同溫度設定點來施行各種程序,諸如加熱一半導體晶圓、一清洗循環,還有其他操作。 A thermal system generally includes a heater having a resistive heating element and a control system for controlling the power supplied to the heater to generate heat at a temperature set point. In one example application, a semiconductor processing system includes a thermal system having a pedestal heater including a heating plate having a ceramic substrate and one or more resistive heating elements defining one or more heating zones. The pedestal heater can be heated to different temperature set points to perform various processes, such as heating semiconductor wafers, a cleaning cycle, and other operations.

為了達到溫度設定點,控制系統通常以一標準調改率(例如,5℃/分鐘、10℃/分鐘,還有其他)來調升溫度。改變溫度設定點所花費的時間係通常使具有加熱器的一半導體腔室閒置,其係損失或無產力的製造時間。有關於調整一加熱器之溫度的這些及其他問題係本揭露內容所針對處理的。 To achieve a temperature set point, the control system typically increases the temperature at a standard ramp rate (e.g., 5°C/minute, 10°C/minute, and others). The time spent changing the temperature set point typically idles the semiconductor chamber with the heater, which is lost or unproductive manufacturing time. These and other issues related to adjusting the temperature of a heater are addressed by the present disclosure.

本節提供本揭露內容之一大致簡要說明,並非是其完整範疇或其所有特徵之全面揭露。 This section provides a brief overview of the content of this disclosure and is not a comprehensive disclosure of its full scope or all of its features.

在一形式中,本揭露內容係針對一種控制包括一電阻式加熱元件之一加熱器之溫度的方法,且該方法包括以一可變調改率對該加熱器的電阻式加熱元件施加電力,來將該加熱器之溫度增加至一所欲溫度設定點,其中該可變調改率係設定為一所欲調改率。該方法進一步包括監測流動通過該加熱器之電阻式加熱元件的一電流,以及響應於該電流係大於一電流限制帶的一下限,而將該可變調改率自該所欲調改率減少至一容許調改率,其中該電流限制帶的一上限係被設置為一系統電流限制。 In one form, the present disclosure is directed to a method of controlling the temperature of a heater including a resistive heating element, and the method includes applying electrical power to the resistive heating element of the heater at a variable modulation rate to increase the temperature of the heater to a desired temperature set point, wherein the variable modulation rate is set to a desired modulation rate. The method further includes monitoring a current flowing through the resistive heating element of the heater, and in response to the current being greater than a lower limit of a current limit band, reducing the variable modulation rate from the desired modulation rate to an allowable modulation rate, wherein an upper limit of the current limit band is set to a system current limit.

在一變化中,減少可變調改率係進一步包括基於一可變減少因數來判定所欲調改率的一減少量,其中該可變減少因數係隨著電阻式加熱元件的電流接近系統電流限制而增加,且以該減少量減少該可變調改率至容許調改率。 In one variation, reducing the variable modulation rate further includes determining a reduction amount of the desired modulation rate based on a variable reduction factor, wherein the variable reduction factor increases as the current of the resistive heating element approaches the system current limit, and reducing the variable modulation rate to an allowable modulation rate by the reduction amount.

在另一變化中,可變減少因數係基於電流對系統電流限制的鄰近度,來提供可變調改率的一按比例減少。 In another variation, the variable reduction factor provides a proportional reduction in the variable modulation rate based on the proximity of the current to the system current limit.

在又另一變化中,其中減少量係基於以下來判定:RedAmt=(DesiredRate * %減少 * RedFactor),其中的減少=1.0-((ZoneCurLim-MeasuredCurrent)/CurrentBand),其中:「RedAmt」為減少量,「DesiredRate」為所欲調改率,「RedFactor」為可變調改率在電流等於系統電流限制時被減少的量,「ZoneCurLim」為電阻式加熱元件的最大電流限制,「MeasuredCurrent」為所量測的電流,且「CurrentBand」為電流限制帶。 In yet another variation, the reduction is determined based on: RedAmt = (DesiredRate * %Reduction * RedFactor), where Reduction = 1.0-((ZoneCurLim-MeasuredCurrent)/CurrentBand), where: "RedAmt" is the reduction, "DesiredRate" is the desired modulation rate, "RedFactor" is the amount by which the variable modulation rate is reduced when the current is equal to the system current limit, "ZoneCurLim" is the maximum current limit of the resistive heating element, "MeasuredCurrent" is the measured current, and "CurrentBand" is the current limit band.

在一變化中,加熱器包括複數個電阻式加熱元件,其等界定複數個區域,其中該等複數個區域中之每一者係具有一經界定的可變調改率。 In one variation, the heater includes a plurality of resistive heating elements defining a plurality of zones, wherein each of the plurality of zones has a defined variable modulation rate.

在另一變化中,在複數個區域中之每一者處的電流係被監測,且響應於該等複數個區域中之至少一區域係具有大於電流限制帶之下限的一電流,可變調改率自所欲調改率被減少至容許調改率。 In another variation, the current at each of a plurality of regions is monitored, and in response to at least one of the plurality of regions having a current greater than a lower limit of the current limit band, the variable modulation rate is reduced from a desired modulation rate to an allowable modulation rate.

在又一變化中,方法進一步包括基於一可變減少因數來針對具有大於電流限制帶下限之電流的至少一區域判定一減少量,其中該可變減少因數係隨著該電流接近系統電流限制而增加,且基於該減少量來減少該等複數個區域中之每一者的可變調改率,以獲得該等複數個區域中之每一者的容許調改率。 In another variation, the method further includes determining a reduction amount for at least one region having a current greater than a lower limit of a current limit band based on a variable reduction factor, wherein the variable reduction factor increases as the current approaches a system current limit, and reducing a variable modulation rate for each of the plurality of regions based on the reduction amount to obtain an allowable modulation rate for each of the plurality of regions.

在一變化中,方法進一步包括:監測複數個區域中之每一者的一區域溫度;判定該等複數個區域中之一第一區域的一第一區域溫度與該等複數個區域中之一第二區域的一第二區域溫度之間的一差異是否大於一偏差臨界值;以及響應於該差異係大於該偏差臨界值,來調整該第一區域、該第二區域或其等之組合的可變調改率,其中該第一區域與該第二區域中之具有一較高區域溫度的一區域係設置為一熱區域,且該第一區域與該第二區域中之其他區域係為一冷區域。 In one variation, the method further includes: monitoring a zone temperature of each of a plurality of zones; determining whether a difference between a first zone temperature of a first zone of the plurality of zones and a second zone temperature of a second zone of the plurality of zones is greater than a deviation threshold; and adjusting a variable modulation rate of the first zone, the second zone, or a combination thereof in response to the difference being greater than the deviation threshold, wherein a zone of the first zone and the second zone having a higher zone temperature is set as a hot zone, and the other zone of the first zone and the second zone is a cold zone.

在另一變化中,為了調整可變調改率,熱區域的可變調改率係被減少、冷區域的可變調改率係被增加、或其等之一組合。 In another variation, to adjust the variable modulation rate, the variable modulation rate of the hot region is reduced, the variable modulation rate of the cold region is increased, or a combination thereof.

在又另一變化中,為了調整可變調改率,方法進一步包括將熱區域之可變調改率減少至零,來保持該熱區域的區域溫度直到差異不再大於偏差臨界值為止,以及響應於該差異係小於該偏差臨界值而增加該熱區域的可變調改率。 In yet another variation, to adjust the variable modulation rate, the method further includes reducing the variable modulation rate of the hot zone to zero, maintaining the zone temperature of the hot zone until the difference is no longer greater than a deviation threshold, and increasing the variable modulation rate of the hot zone in response to the difference being less than the deviation threshold.

在一變化中,方法進一步包括:將可變調改率設定為一滑動控制率,其中該滑動控制率係小於所欲調改率的調改率;以及響應於一滑動條件被滿足,來將該可變調改率增加至該所欲調改率,其中該滑動條件係包括經過一 預定時間、加熱器之溫度等於比所欲溫度設定點小的一滑動溫度設定點、或其等之一組合。 In one variation, the method further includes: setting the variable modulation rate to a sliding control rate, wherein the sliding control rate is a modulation rate less than the desired modulation rate; and increasing the variable modulation rate to the desired modulation rate in response to a sliding condition being satisfied, wherein the sliding condition includes a predetermined time, the temperature of the heater being equal to a sliding temperature set point less than the desired temperature set point, or a combination thereof.

在另一變化中,方法進一步包括判定加熱器之溫度是否在一溫度接近臨界值,其中該溫度接近臨界值係小於所欲溫度設定點,以及響應該加熱器之溫度係在該溫度接近臨界值,來將可變調改率減小至一接近調改率,其中該接近調改率係小於該所欲調改率。 In another variation, the method further includes determining whether the temperature of the heater is at a temperature approaching a critical value, wherein the temperature approaching the critical value is less than the desired temperature set point, and in response to the temperature of the heater being at the temperature approaching the critical value, reducing the variable modulation rate to an approaching modulation rate, wherein the approaching modulation rate is less than the desired modulation rate.

在一形式中,本揭露內容係針對一種用以控制對包括一電阻式加熱元件之一加熱器提供之電力的控制系統,且該控制系統包含一處理器及一非暫時性電腦可讀媒體,該非暫時性電腦可讀媒體係包括可由該處理器執行的指令,其中該等指令包括基於將該加熱器之溫度增加至一所欲溫度設定點的一可變調改率來判定將對該加熱器之電阻式加熱元件提供的電力量,其中該可變調改率係設定為一所欲調改率。該等指令進一步包括監測流動通過該加熱器之電阻式加熱元件的一電流,且響應於該電流係大於一電流限制帶的一下限,而將該可變調改率自該所欲調改率減少至一容許調改率,其中該電流限制帶的一上限係被設置為一系統電流限制。 In one form, the present disclosure is directed to a control system for controlling power supplied to a heater including a resistive heating element, and the control system includes a processor and a non-transitory computer-readable medium, the non-transitory computer-readable medium including instructions executable by the processor, wherein the instructions include determining the amount of power to be supplied to the resistive heating element of the heater based on a variable modulation rate that increases the temperature of the heater to a desired temperature set point, wherein the variable modulation rate is set to a desired modulation rate. The instructions further include monitoring a current flowing through the resistive heating element of the heater and, in response to the current being greater than a lower limit of a current limit band, reducing the variable modulation rate from the desired modulation rate to an allowable modulation rate, wherein an upper limit of the current limit band is set to a system current limit.

在一變化中,該等指令進一步包括基於一可變減少因數來判定所欲調改率的一減少量,其中該可變減少因數係隨著電阻式加熱元件的電流接近系統電流限制而增加;以及以該減少量減小可變調改率,以獲得容許調改率。 In one variation, the instructions further include determining a reduction amount of the desired modulation rate based on a variable reduction factor, wherein the variable reduction factor increases as the current of the resistive heating element approaches the system current limit; and reducing the variable modulation rate by the reduction amount to obtain an allowable modulation rate.

在另一變化中,可變減少因數係基於電流對系統電流限制的鄰近度,來提供可變調改率的一按比例減少。 In another variation, the variable reduction factor provides a proportional reduction in the variable modulation rate based on the proximity of the current to the system current limit.

在又另一變化中,加熱器包括複數個電阻式加熱元件,其等界定複數個區域,其中該等複數個區域中之每一者係具有一經界定的可變調改率。 In yet another variation, the heater includes a plurality of resistive heating elements defining a plurality of regions, wherein each of the plurality of regions has a defined variable modulation rate.

在一變化中,在複數個區域中之每一者處的電流係被監測,且響應於該等複數個區域中之至少一區域係具有大於電流限制帶之下限的一電流, 來將可變調改率自所欲調改率減少至容許調改率。 In one variation, the current at each of a plurality of regions is monitored, and in response to at least one of the plurality of regions having a current greater than a lower limit of the current limit band, the variable modulation rate is reduced from a desired modulation rate to an allowable modulation rate.

在另一變化中,指令進一步包括基於一可變減少因數來判定針對具有大於電流限制帶下限的電流之至少一區域的一減少量,其中該可變減少因數係隨著該電流接近系統電流限制而增加,且基於該減少量來減少該等複數個區域中之每一者的可變調改率,以獲得該等複數個區域中之每一者的容許調改率。 In another variation, the instructions further include determining a reduction amount for at least one region having a current greater than a lower limit of the current limit band based on a variable reduction factor, wherein the variable reduction factor increases as the current approaches the system current limit, and reducing the variable modulation rate of each of the plurality of regions based on the reduction amount to obtain an allowable modulation rate for each of the plurality of regions.

在又另一變化中,指令進一步包括:監測複數個區域中之每一者的一區域溫度;判定該等複數個區域中之一第一區域的一第一區域溫度與該等複數個區域中之一第二區域的一第二區域溫度之間的一差異是否大於一偏差臨界值;以及響應於該差異係大於該偏差臨界值,來調整該第一區域、該第二區域或其等之組合的可變調改率,其中該第一區域與該第二區域中之具有一較高區域溫度的一區域係設置為一熱區域,且該第一區域與該第二區域中之其他區域係為一冷區域。 In yet another variation, the instructions further include: monitoring a zone temperature of each of a plurality of zones; determining whether a difference between a first zone temperature of a first zone of the plurality of zones and a second zone temperature of a second zone of the plurality of zones is greater than a deviation threshold; and in response to the difference being greater than the deviation threshold, adjusting the variable modulation rate of the first zone, the second zone, or a combination thereof, wherein a zone of the first zone and the second zone having a higher zone temperature is set as a hot zone, and the other zone of the first zone and the second zone is a cold zone.

在一變化中,為了調整可變調改率,指令進一步包括減少熱區域的可變調改率、增加冷區域的可變調改率、或其等之一組合。 In one variation, to adjust the variable modulation rate, the instructions further include decreasing the variable modulation rate of the hot region, increasing the variable modulation rate of the cold region, or a combination thereof.

在另一變化中,指令進一步包括將熱區域之可變調改率減少至零,以保持該熱區域之區域溫度直至差異不再大於偏差臨界值為止;以及響應於該差異係小於該偏差臨界值,來增加該可變調改率。 In another variation, the instructions further include reducing the variable modulation rate of the thermal zone to zero to maintain the zone temperature of the thermal zone until the difference is no longer greater than the deviation threshold; and in response to the difference being less than the deviation threshold, increasing the variable modulation rate.

在又另一變化中,指令進一步包括:將可變調改率設定為一滑動控制率,其中該滑動控制率係小於所欲調改率的調改率;以及響應於一滑動條件被滿足,來將該可變調改率增加至該所欲調改率,其中該滑動條件係包括經過一預定時間、加熱器之溫度等於比所欲溫度設定點小的一滑動溫度設定點、或其等之一組合。 In yet another variation, the instructions further include: setting the variable modulation rate to a sliding control rate, wherein the sliding control rate is a modulation rate less than the desired modulation rate; and increasing the variable modulation rate to the desired modulation rate in response to a sliding condition being satisfied, wherein the sliding condition includes a predetermined time elapsed, the temperature of the heater being equal to a sliding temperature set point less than the desired temperature set point, or a combination thereof.

在一變化中,指令進一步包括判定加熱器之溫度是否在一溫度接 近臨界值,其中該溫度接近臨界值係小於所欲溫度設定點;以及響應於該加熱器之溫度係在該溫度接近臨界值,來將可變調改率減小至一接近調改率,其中該接近調改率係小於該所欲調改率。 In one variation, the instructions further include determining whether the temperature of the heater is at a temperature approaching a critical value, wherein the temperature approaching the critical value is less than the desired temperature set point; and in response to the temperature of the heater being at the temperature approaching the critical value, reducing the variable modulation rate to an approaching modulation rate, wherein the approaching modulation rate is less than the desired modulation rate.

進一步的適用範圍將根據本文所提供的說明而變得顯易可見。應理解,說明及特定範例係意圖僅供例示之目的,而不意圖限制本揭露內容之範疇。 Further scope of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for illustrative purposes only and are not intended to limit the scope of the present disclosure.

100:熱系統 100: Thermal system

102:台座加熱器,加熱器 102: Pedestal heater, heater

104:控制系統 104: Control system

106:控制器 106: Controller

108:電力轉換器系統 108: Power converter system

110:加熱板 110: Heating plate

111:基體 111: Matrix

112:支撐軸 112: Support shaft

114:加熱區域,區域,給定區域 114: Heating area, area, given area

115:端子 115: Terminal

117:運算裝置 117: Computing device

118:電源 118: Power supply

120:互鎖裝置 120: Interlock device

124:感測器電路 124: Sensor circuit

126:安培計 126:Ammeter

128:伏特計 128:Voltmeter

130:可變調改率溫度控制,VRRT控制 130: Variable rate temperature control, VRRT control

200:VRRT控制常式,常式 200: VRRT control routine, routine

202,204,206,208,210,212,302,304,306,308,310,312,314,402,404,406,408,410:步驟 202,204,206,208,210,212,302,304,306,308,310,312,314,402,404,406,408,410: Steps

300:可變調升控制,常式 300: Variable pitch control, routine

400:可變調降控制,常式 400: Variable pitch drop control, routine

為了使本揭露內容可被良好理解,現將以範例方式且參照隨附圖式說明其不同形式,其中:圖1例示根據本揭露內容的一熱系統,其具有一加熱器以及具有一可變調改率溫度控制的控制系統;圖2為根據本揭露內容之一範例性可變調改率溫度控制的一流程圖;圖3為圖2之一範例可變調升控制的一流程圖;圖4為圖2之一範例可變調降控制的一流程圖;圖5A為根據本揭露內容之一恆定調升控制的一圖形;圖5B為根據本揭露內容之一可變調升控制的一圖形;圖6為根據本揭露內容之一可變調升控制的一圖形;及圖7A及7B為根據本揭露內容之可變調降控制的圖形;圖8為根據本揭露內容之用以抑制區域漂移條件之一可變調降控制的一圖形;以及圖9為根據本揭露內容之用以緩和失控條件之可變調降控制的一圖形。 In order to make the present disclosure well understood, its different forms will now be described by way of example and with reference to the accompanying drawings, wherein: FIG. 1 illustrates a thermal system according to the present disclosure, which has a heater and a control system with a variable modulation rate temperature control; FIG. 2 is a flow chart of an exemplary variable modulation rate temperature control according to the present disclosure; FIG. 3 is a flow chart of an exemplary variable modulation rate control of FIG. 2; FIG. 4 is a flow chart of an exemplary variable modulation rate control of FIG. 2; FIG. 5A is A diagram of a constant up control according to the present disclosure; FIG. 5B is a diagram of a variable up control according to the present disclosure; FIG. 6 is a diagram of a variable up control according to the present disclosure; and FIG. 7A and 7B are diagrams of variable down control according to the present disclosure; FIG. 8 is a diagram of a variable down control for suppressing regional drift conditions according to the present disclosure; and FIG. 9 is a diagram of a variable down control for mitigating out-of-control conditions according to the present disclosure.

本文說明之圖式係僅供例示之目的,且不意欲以任何方式限制本 揭露內容之範疇。 The drawings described herein are for illustrative purposes only and are not intended to limit the scope of this disclosure in any way.

以下說明本質上僅為範例性,且並非意欲限制本揭露內容、應用或用途。應理解的是,在所有圖式中,對應參考數字指示類似或對應部件及特徵。 The following description is merely exemplary in nature and is not intended to limit the content, application or use of the present disclosure. It should be understood that in all figures, corresponding reference numbers indicate similar or corresponding parts and features.

參看圖1,一熱系統100係包括一台座加熱器102及一控制系統104,該控制系統104具有一控制器106及一電力轉換器系統108。在一形式中,該加熱器102包括一加熱板110及設置在該加熱板110之一底表面處的一支撐軸112。該加熱板110包括一基體111,以及嵌入至該基體111之一表面中或沿著其設置的複數個(亦即,「複數個」表示兩個或更多)電阻式加熱元件(未示出)。在一形式中,該基體111可由陶瓷或鋁製成。該等電阻式加熱元件係由該控制系統104獨立地控制,且界定複數個加熱區域114,如圖1中之點鏈線所例示。應易於理解的是,該等加熱區域114可採取不同的配置而仍在本揭露內容之範疇內。此外,該台座加熱器102可包括一或多個區域,且不應受限於一多區域加熱器。 Referring to FIG. 1 , a thermal system 100 includes a heater 102 and a control system 104 having a controller 106 and an electric power converter system 108. In one form, the heater 102 includes a heating plate 110 and a support shaft 112 disposed at a bottom surface of the heating plate 110. The heating plate 110 includes a substrate 111, and a plurality (i.e., "plurality" means two or more) of resistive heating elements (not shown) embedded in or disposed along a surface of the substrate 111. In one form, the substrate 111 may be made of ceramic or aluminum. The resistive heating elements are independently controlled by the control system 104 and define a plurality of heating zones 114, as illustrated by the dotted lines in FIG. 1 . It should be readily appreciated that the heating zones 114 may be configured differently and still be within the scope of the present disclosure. Additionally, the pedestal heater 102 may include one or more zones and should not be limited to a multi-zone heater.

在一形式中,加熱器102為一「雙線式」加熱器,其中電阻式加熱元件係作用為加熱器及溫度感測器,且僅用兩條引線線材可操作地連接至該電阻式加熱元件而不是四條。此等雙線式之性能係於例如美國專利第7,196,295號中揭露,該專利案係與本申請案共同讓與且係藉由參照全文併入本文。一般而言,在一雙線式系統中,該等電阻式加熱元件係由隨著變動溫度展現一變動電阻的一材料所界定,使得該電阻式加熱元件之一平均溫度係基於該電阻式加熱元件之電阻的一改變來判定。在一形式中,計算該電阻式加熱元件之電阻,係先藉由量測跨加熱元件之電壓及通過加熱元件之電流,且接著使用歐姆定律來判定電阻。使用一電阻溫度轉換資料(例如,一表格、一演算法,還有其他), 該電阻式加熱元件的一溫度且從而該區域114係被判定(亦即,一區域溫度)。該電阻式加熱元件可由一相對高電阻溫度係數(TCR)材料、一負TCR材料或換言之具有一非線性TCR之一材料來界定。 In one form, the heater 102 is a "two-wire" heater in which the resistive heating element functions as both a heater and a temperature sensor, and only two lead wires are operably connected to the resistive heating element instead of four. Such two-wire capabilities are disclosed, for example, in U.S. Patent No. 7,196,295, which is commonly assigned with the present application and is incorporated herein by reference in its entirety. Generally, in a two-wire system, the resistive heating elements are defined by a material that exhibits a variable resistance with varying temperature, such that an average temperature of the resistive heating element is determined based on a change in the resistance of the resistive heating element. In one form, the resistance of the resistive heating element is calculated by first measuring the voltage across the heating element and the current through the heating element, and then using Ohm's law to determine the resistance. Using a resistance-to-temperature conversion data (e.g., a table, an algorithm, etc.), a temperature of the resistive heating element and thereby the region 114 is determined (i.e., a region temperature). The resistive heating element may be defined by a relatively high temperature coefficient of resistance (TCR) material, a negative TCR material, or in other words, a material having a nonlinear TCR.

控制系統104係控制加熱器102的操作,且更特定地,係組配來獨立地控制給予區域114中之每一者的電力。在一形式中,該控制系統104係經由端子115電氣耦接至該等區域114,以使得每個區域114皆耦接至提供電力及感測溫度的兩端子。 The control system 104 controls the operation of the heater 102, and more particularly, is configured to independently control the power provided to each of the zones 114. In one form, the control system 104 is electrically coupled to the zones 114 via terminals 115 such that each zone 114 is coupled to two terminals that provide power and sense temperature.

在一形式中,控制系統104係可通訊式(例如,無線及/或有線通訊)耦接至一運算裝置117,其具有一或更多使用者介面,諸如一顯示器、一鍵盤、一滑鼠、一揚聲器、一觸控螢幕還有其他。使用該運算裝置117,一使用者可提供輸入或命令,諸如溫度設定點、電力設定點及/或令執行由控制系統104儲存之一測試或一程序的命令。 In one form, the control system 104 is communicatively (e.g., wirelessly and/or wiredly) coupled to a computing device 117 having one or more user interfaces, such as a display, a keyboard, a mouse, a speaker, a touch screen, and others. Using the computing device 117, a user can provide input or commands, such as temperature set points, power set points, and/or commands to execute a test or a program stored by the control system 104.

控制系統104係電氣耦接至一電源118,其透過一互鎖裝置120向電力轉換器系統108供應一輸入電壓(例如,240V、208V)。該互鎖裝置120控制在該電源118與該電力轉換器系統108之間流動的電力,且可由控制器106操作為一安全機構以切斷來自該電源118的電力。雖然在圖1中有例示,但該控制系統104可不包括該互鎖裝置120。 The control system 104 is electrically coupled to a power source 118, which supplies an input voltage (e.g., 240V, 208V) to the power converter system 108 through an interlock device 120. The interlock device 120 controls the power flowing between the power source 118 and the power converter system 108, and can be operated by the controller 106 as a safety mechanism to cut off the power from the power source 118. Although illustrated in FIG. 1, the control system 104 may not include the interlock device 120.

電力轉換器系統108可操作來調整該輸入電壓,且將一輸出電壓(VOUT)施加至加熱器102。在一形式中,電力轉換器系統108包括複數個電力轉換器(未示出),其可操作來對一區域114的電阻式加熱元件施加一可調整電力。此一電力轉換器系統的一範例,係於標題為「用於熱系統的電力轉換器」的美國專利第10,690,705號中說明,其與本申請案為共同擁有,且其內容係藉由參照全文併入本文。在此範例中,每個電力轉換器係包括一降壓轉換器,其可由控制器106操作來產生小於或等於用於一給定區域114之一或多個加熱元件之輸入 電壓的一所欲輸出電壓。據此,該電力轉換器系統108可操作來對該加熱器102的每個區域114提供一可定製的電力量(亦即,一所欲電力)。經組配來對該加熱器102提供可調整電力的其他電力轉換器系統亦可被使用,且不應受限於本文所提供的範例。舉例而言,電力轉換器系統可為用以對加熱器提供一隔離之電力輸出的一隔離式電力轉換器系統。此一電力轉換器系統的一範例,係於標題為「用於熱系統的隔離式電力轉換器」的美國專利第11,038,431號中說明,其與本申請案為共同擁有,且其內容係藉由參照全文併入本文。 The power converter system 108 is operable to regulate the input voltage and apply an output voltage (V OUT ) to the heater 102. In one form, the power converter system 108 includes a plurality of power converters (not shown) operable to apply an adjustable power to a resistive heating element of a region 114. An example of such a power converter system is described in U.S. Patent No. 10,690,705, entitled “Power Converter for Thermal Systems,” which is commonly owned by the present application and is incorporated herein by reference in its entirety. In this example, each power converter includes a buck converter that can be operated by the controller 106 to produce a desired output voltage that is less than or equal to the input voltage for one or more heating elements in a given zone 114. Accordingly, the power converter system 108 can be operated to provide a customizable amount of power (i.e., a desired power) to each zone 114 of the heater 102. Other power converter systems configured to provide adjustable power to the heater 102 can also be used and should not be limited to the examples provided herein. For example, the power converter system can be an isolated power converter system for providing an isolated power output to the heater. An example of such a power converter system is described in U.S. Patent No. 11,038,431, entitled "Isolated Power Converter for Thermal Systems," which is commonly owned with the present application and is incorporated herein by reference in its entirety.

藉由使用一雙線式加熱器,控制系統104包括感測器電路124來量測電阻式加熱元件的電氣特性(亦即,電壓及/或電流),其接著被用來判定該等區域114的表現特性,諸如電阻、溫度、電流、電壓、功率,以及其他合適的資訊。在一形式中,一給定的感測器電路124包括一安培計126及一伏特計128,用以各別地量測流動通過一給定區域114中之加熱元件的一電流及施加其上的一電壓。在另一形式中,該等電壓及/或電流量測可在零交點進行,如於美國專利第7,196,295號中所說明。 By using a two-wire heater, the control system 104 includes sensor circuits 124 to measure electrical characteristics (i.e., voltage and/or current) of the resistive heating element, which are then used to determine the performance characteristics of the regions 114, such as resistance, temperature, current, voltage, power, and other suitable information. In one form, a given sensor circuit 124 includes an ammeter 126 and a voltmeter 128 for respectively measuring a current flowing through and a voltage applied to the heating element in a given region 114. In another form, the voltage and/or current measurements may be made at zero crossings, as described in U.S. Patent No. 7,196,295.

代替或額外於一「雙線式加熱器」,熱系統100可包括用以量測加熱器102之特性(例如,電壓、電流、及/或溫度)的分立感測器,且提供各別資料至控制器106。舉例而言,在一形式中,至少一個伏特計及安培計可被設置來量測區域114的電氣特性(例如,電壓及電流),且至少一個溫度感測器可被設置來量測加熱器的一溫度及/或每一區域114的溫度。 Instead of or in addition to a "two-wire heater", the thermal system 100 may include discrete sensors for measuring characteristics of the heater 102 (e.g., voltage, current, and/or temperature) and providing respective data to the controller 106. For example, in one form, at least one voltmeter and ammeter may be configured to measure electrical characteristics of the zone 114 (e.g., voltage and current), and at least one temperature sensor may be configured to measure a temperature of the heater and/or the temperature of each zone 114.

在一形式中,控制器106包括一或多個微處理器及記憶體,其用於儲存由微處理器執行的電腦可讀指令。在一形式中,該控制器106係組配來施行一或多個控制程序,其中該控制器106判定待對區域114施加之所欲電力,諸如輸入電壓之100%、輸入電壓之90%等。範例控制程序係在美國專利第10,690,705號(參照上文),以及標題為「控制送至加熱器之電力的系統及方法」 的美國專利第10,908,195號中說明,其與本申請案為共同擁有,且其內容係藉由參照全文併入本文。在一形式中,該控制器106施行一閉路溫度控制,其中加熱器之溫度被控制至一溫度設定點。舉例而言,使用電阻式加熱元件之電阻及一校準電阻-溫度模型,該控制器106判定區域114之一溫度,且接著調整給予該等區域114的電力,以使該等區域114之溫度更靠近該溫度設定點。 In one form, the controller 106 includes one or more microprocessors and a memory for storing computer readable instructions executed by the microprocessor. In one form, the controller 106 is configured to implement one or more control programs, wherein the controller 106 determines the desired power to be applied to the zone 114, such as 100% of the input voltage, 90% of the input voltage, etc. Example control programs are described in U.S. Patent No. 10,690,705 (referenced above), and U.S. Patent No. 10,908,195 entitled "System and Method for Controlling Power Sent to a Heater", which are commonly owned with the present application and are incorporated herein by reference in their entirety. In one form, the controller 106 implements a closed loop temperature control in which the temperature of the heater is controlled to a temperature set point. For example, using the resistance of the resistive heating element and a calibrated resistance-temperature model, the controller 106 determines a temperature of the zones 114 and then adjusts the power supplied to the zones 114 to bring the temperature of the zones 114 closer to the temperature set point.

在一形式中,控制程序亦包括一可變調改率溫度(VRRT)控制130,其中加熱器102最初經歷一可變溫度調改率以達到一溫度設定點。一旦在該溫度設定點,控制器就提供一穩態閉路控制來將該加熱器102之溫度維持在該溫度設定點。在特定應用中,該加熱器102可針對一工業製程被控制至不同溫度設定點,且有時,溫度可能波動且自一第一溫度跑到比該第一溫度更低的一第二溫度。 In one form, the control process also includes a variable modulation rate temperature (VRRT) control 130, wherein the heater 102 initially undergoes a variable temperature modulation rate to reach a temperature set point. Once at the temperature set point, the controller provides a steady-state closed loop control to maintain the temperature of the heater 102 at the temperature set point. In certain applications, the heater 102 may be controlled to different temperature set points for an industrial process, and at times, the temperature may fluctuate and run from a first temperature to a second temperature that is lower than the first temperature.

在一形式中,VRRT控制130經組配成提供一可變調升控制來增加加熱器102的溫度,以及一可變調降控制來減少該加熱器102的溫度。儘管該VRRT控制130被設置成具有兩者,但該VRRT控制130可包括該可變調升控制及該可變調降控制中之一者,且不需要具有兩者。 In one form, the VRRT control 130 is configured to provide a variable ramp-up control to increase the temperature of the heater 102, and a variable ramp-down control to decrease the temperature of the heater 102. Although the VRRT control 130 is configured to have both, the VRRT control 130 may include one of the variable ramp-up control and the variable ramp-down control, and need not have both.

可變調升控制係組配來以一可變調升率對加熱器102的電阻式加熱元件提供電力,以將該加熱器102之溫度增加至溫度設定點。該可變調升率係基於提供至該加熱器102的電流、以及就多區域加熱器而言區域114之溫度來界定。更特定地,為了抑制對熱系統100之組件的損壞,諸如一電力開關、電力轉換器、佈線、及/或保險絲、還有其他,施加至該加熱器102的電流係被控制在低於一系統電流限制,該系統電流限制可為一區域電流限制及/或加熱器電流限制。舉例而言,對於該等區域114,送至每一區域114的電流係被監測,且就每一區域114控制在低於作為系統電流限制的一區域電流限制。在一形式 中,對於一多區域加熱器,在一區域處之電流係可影響其他區域處之電流。亦即,為了提供同調調改,當一單個區域接近該系統電流限制時,該可變調升控制係以相同減少率調整(例如,減小)所有區的可變調升率。對一溫度設定點而言,該可變調升控制係界定一系統電流限制(亦即,該加熱器及/或該等區域之最大允許電流);以及一所欲調改率,其係為該可變調升率的一最大所欲調改率。 The variable ramp-up control is configured to provide power to the resistive heating element of the heater 102 at a variable ramp-up rate to increase the temperature of the heater 102 to a temperature set point. The variable ramp-up rate is defined based on the current provided to the heater 102 and, in the case of a multi-zone heater, the temperature of the zone 114. More specifically, to inhibit damage to components of the thermal system 100, such as a power switch, power converter, wiring, and/or fuses, among others, the current applied to the heater 102 is controlled to be below a system current limit, which may be a zone current limit and/or a heater current limit. For example, for the zones 114, the current delivered to each zone 114 is monitored and controlled for each zone 114 to be below a zone current limit that is a system current limit. In one form, for a multi-zone heater, the current at one zone can affect the current at other zones. That is, to provide coherent modulation, as a single zone approaches the system current limit, the variable ramp control adjusts (e.g., decreases) the variable ramp rate of all zones at the same decreasing rate. For a temperature set point, the variable ramp control defines a system current limit (i.e., the maximum allowable current of the heater and/or the zones); and a desired modulation rate, which is a maximum desired modulation rate of the variable ramp rate.

為了提供一多區域加熱器的一同調溫度輪廓,可變調升控制係監測且控制該等區域114的溫度,以使得在任何兩個區域114(例如,一第一區域與一第二區域)之間的溫度差異係小於一偏差臨界值(一區域對區域之漂移/偏差)。更特定地,調改係由一移動設定點(亦即,一溫度調改設定點(TempRampSP))操控,其係以一速率設定點(RateSP,亦即,一可變調改率)來移動。亦即,在一形式中,該速率設定點為每分鐘℃,且係為該TempRampSP變化的速率。該TempRampSP為在其移動時控制器106使用例如比例-積分-微分(PID)控制而保持一量測溫度到達的一絕對溫度。該量測溫度可被稱為一程序值(PV)。由於該TempRampSP不斷地移動直到其達到溫度設定點為止,所以該程序值應亦移動。在一形式中,在PID中之積分時間常數係響應性以建立匹配該速率設定點的功率。在一形式中,若任何一區域之程序變數係偏離其他區域114之程序變數,則可變調升控制係調整一或多個區域的RateSP以提供加熱器102之一同調溫度控制。在一形式中,該可變調升控制係可減小偏離其他區域之區域的RateSP,以提供同調溫度輪廓。在另一形式中,可變調升控制係可增加其他區域的RateSP,以提高那些區域114之表現而同時監測該等區域114之電流。 To provide a co-regulated temperature profile for a multi-zone heater, the variable ramp control monitors and controls the temperature of the zones 114 so that the temperature difference between any two zones 114 (e.g., a first zone and a second zone) is less than a deviation threshold (a zone-to-zone drift/deviation). More specifically, the regulation is controlled by a moving set point (i.e., a temperature regulation set point (TempRampSP)) that moves at a rate set point (RateSP, i.e., a variable modulation rate). That is, in one form, the rate set point is °C per minute and is the rate at which the TempRampSP changes. The TempRampSP is an absolute temperature that the controller 106 maintains a measured temperature to reach as it moves using, for example, proportional-integral-derivative (PID) control. The measured temperature may be referred to as a process value (PV). Since the TempRampSP is continually moving until it reaches the temperature set point, the process value should also move. In one form, the integral time constant in the PID is responsive to establish power to match the rate set point. In one form, if the process variable of any one zone deviates from the process variable of the other zones 114, the variable ramp control adjusts the RateSP of one or more zones to provide a synchronized temperature control of the heater 102. In one form, the variable ramp control may reduce the RateSP of the zone that deviates from the other zones to provide a synchronized temperature profile. In another form, the variable ramp control may increase the RateSP of other zones to improve the performance of those zones 114 while monitoring the current of the zones 114.

針對可變調升控制,表1提供使用來基於電流及溫度而控制調改率的控制變數:

Figure 110129836-A0305-02-0014-14
For variable ramp control, Table 1 provides the control variables used to control the ramp rate based on current and temperature:
Figure 110129836-A0305-02-0014-14

在一形式中,為了基於電流來控制調改率,可變調升率控制係基於一區域的一量測電流及給加熱器的總電流,來設定該區域的可變調改率。特別的是,該可變調改率被設定為僅夠高到足以留停在系統電流限制(例如,區域電流限制及/或加熱器電流限制)之下。該可變調改率最初設定為所欲調改率,且若該區域電流限制係在該電流限制帶內,則基於一計算減小量來將該可變調改率自該所欲調改率減少至一容許調改率。除了接近區域電流限制之區域以外,其他區域之可變調改率係以相同減少量被減少來提供同調電流控制。減少量係取決於該量測電流對系統電流限制的接近程度,以使得在該量測電流與系 統電流限制之間的差異愈小,則減少量愈高。 In one form, to control the modulation rate based on current, a variable modulation rate control sets the variable modulation rate for a zone based on a measured current in the zone and the total current to the heater. In particular, the variable modulation rate is set just high enough to stay below the system current limit (e.g., the zone current limit and/or the heater current limit). The variable modulation rate is initially set to a desired modulation rate, and if the zone current limit is within the current limit band, the variable modulation rate is reduced from the desired modulation rate to an allowable modulation rate based on a calculated reduction amount. Except for the zone near the zone current limit, the variable modulation rate of the other zones is reduced by the same reduction amount to provide coherent current control. The amount of reduction depends on how close the measured current is to the system current limit, so that the smaller the difference between the measured current and the system current limit, the higher the reduction.

更特定地,可變調升控制係界定針對電流限制帶之一按比例減少量,其係基於減少因數的百分比以及量測電流與諸如區域電流限制的系統電流限制之間的差異。亦即,一範例應用,該按比例減少係基於電流對系統電流限制的鄰近度。舉例而言,減少量係使用方程式1及2來判定,其中「%減少」係被設置為一可變減少因數,其隨著一區域之電阻式加熱元件的所量測電流接近區域電流限制而增加。 More specifically, the variable ramp-up control defines a proportional reduction amount for a current limit band based on a percentage of a reduction factor and the difference between a measured current and a system current limit such as a regional current limit. That is, in one example application, the proportional reduction is based on the proximity of the current to the system current limit. For example, the reduction amount is determined using equations 1 and 2, where "% reduction" is set to a variable reduction factor that increases as the measured current of a resistive heating element in a region approaches the regional current limit.

方程式1.....RedAmt=(DesiredRate * %減少 * RedFactor) Equation 1.....RedAmt=(DesiredRate * %Reduction * RedFactor)

方程式2.....%減少=1.0-((ZoneCurLim-MeasuredCurrent)/CurrentBand) Equation 2.....% reduction = 1.0-((ZoneCurLim-MeasuredCurrent)/CurrentBand)

如方程式2所提供,可變減少因數經組配來提供一按比例減少,以使得若量測電流係低於電流限制帶,則減少參數為0%;若量測電流係在電流帶之內,則為0-100%之間;若量測電流係等於系統電流限制,則為100%;以及若量測電流係大於系統電流限制,則為大於100%,以提供比減少因數還要更多的減少。在一形式中,若該量測電流係高於區域電流限制,則可變調改率繼續減小至諸如1℃/分鐘或其他合適之值的一標稱率,以防止停機。 As provided in Equation 2, the variable reduction factor is configured to provide a proportional reduction such that if the measured current is below the current limit band, the reduction factor is 0%; if the measured current is within the current band, it is between 0-100%; if the measured current is equal to the system current limit, it is 100%; and if the measured current is greater than the system current limit, it is greater than 100% to provide a greater reduction than the reduction factor. In one form, if the measured current is above the regional current limit, the variable modulation rate continues to be reduced to a nominal rate such as 1°C/minute or other suitable value to prevent shutdown.

在一形式中,為了基於溫度來控制調改率,可變調升控制係量測每一區域的溫度,且初始地將一區域之溫度調改設定點設定為一各別的量測溫度值來抑制溫度跳躍。從此點,該溫度將開始朝向該溫度設定點增加。該等區域之溫度係被常規地量測,且若一區域之溫度開始偏離其他區域(亦即,太高或太低),則調整該可變溫度調升率來提供同調溫度。在一形式中,可變調升控制係減少最靠近溫度設定點(亦即,熱區域)之區域的調改率,以允許其他區域(亦即,冷區域)能夠追上該熱區域之溫度調改設定點。該減少量係被選擇來提供一響應性減少,但不會太激進以便於減少加熱操作。舉例而言,對於每一偏差度數,調改率可被減小5-15%。在另一形式中,當監測給予加熱器及區域之電流 時,可變調升控制係增加冷區域之調改率,以允許冷區域能夠追上該熱區域之溫度調改設定點。舉例而言,冷區域之調改率能以設定的增量(例如,1℃/分鐘、2℃/分鐘、0.5℃/分鐘之增加)來被增加。在此提高方法中,可變調升控制亦可減少該熱區域之調改率,或者保持該熱區域之溫度為目前溫度調改設定點直到其他區域係在或靠近該熱區域之量測溫度為止。 In one form, to control the rate of change based on temperature, the variable ramp control measures the temperature of each zone and initially sets the temperature change set point for a zone to a respective measured temperature value to suppress temperature jumps. From this point, the temperature will begin to increase toward the temperature set point. The temperatures of the zones are measured regularly, and if the temperature of a zone begins to deviate from the other zones (i.e., too high or too low), the variable temperature ramp rate is adjusted to provide a uniform temperature. In one form, the variable ramp control reduces the rate of change for the zone closest to the temperature set point (i.e., the hot zone) to allow the other zones (i.e., the cold zone) to catch up to the temperature change set point of the hot zone. The amount of reduction is selected to provide a responsive reduction, but not so radical as to reduce heating operations. For example, for each degree of deviation, the modulation rate may be reduced by 5-15%. In another form, while monitoring the current supplied to the heater and the zones, the variable ramp-up control increases the modulation rate of the cold zone to allow the cold zone to catch up to the temperature adjustment set point of the hot zone. For example, the modulation rate of the cold zone may be increased in set increments (e.g., 1°C/minute, 2°C/minute, 0.5°C/minute increments). In this enhancement method, the variable ramp-up control may also reduce the modulation rate of the hot zone, or maintain the temperature of the hot zone at the current temperature adjustment set point until the other zones are at or near the measured temperature of the hot zone.

在一形式中,在控制之開始時,可變調升控制係可提供用以控制調改率改變之速度的一滑動控制;以及當正在接近溫度設定點時減少或抑制在溫度上之一突波的一接近控制。更特定地,該調改率係被設定為一滑動控制率,其為比所欲調改率顯著更低的一調改率(例如,滑動控制率=1.0℃/分鐘)。在一形式中,該調改率係以該滑動控制率被維持直到滿足一滑動條件為止,其中該滑動條件可包括,例如一預定時間及/或一所欲溫度調改設定點(亦即,一滑動溫度設定點)被達到。在其後,可變調改率係被增加至該所欲調改率。在一形式中,該滑動控制率係總是在該調改率改變時被施加,以操控該調改率的加速。 In one form, at the start of control, the variable ramp-up control may provide a sliding control for controlling the speed of the modulation rate change; and an approach control to reduce or suppress a surge in temperature when approaching a temperature set point. More specifically, the modulation rate is set to a sliding control rate that is a modulation rate significantly lower than the desired modulation rate (e.g., sliding control rate = 1.0°C/minute). In one form, the modulation rate is maintained at the sliding control rate until a sliding condition is met, wherein the sliding condition may include, for example, a predetermined time and/or a desired temperature modulation set point (i.e., a sliding temperature set point) is reached. Thereafter, the variable modulation rate is increased to the desired modulation rate. In one form, the sliding control rate is always applied when the modulation rate changes to control the acceleration of the modulation rate.

該接近控制係組配來在量測溫度離最終溫度設定點有一界定之距離/範圍(亦即,一溫度接近臨界值)時,將調改率減少至一接近調改率。該調改率係被減少以允許加熱器能夠達到溫度設定點而不會過衝該溫度設定點。在一形式中,該接近控制係在接近該溫度設定點(例如,在調升或調降期間)時被施加,以讓積分時間趨近一合適於溫度設定點的一值。舉例而言,若因數為1.0,則減少係自溫度設定點以調改率度數開始。據此,10℃/分鐘的一減少係自溫度設定點開始減少10℃。 The approach control is configured to reduce the modulation rate to an approach modulation rate when the measured temperature is a defined distance/range from the final temperature set point (i.e., a temperature approaches a critical value). The modulation rate is reduced to allow the heater to reach the temperature set point without overshooting the temperature set point. In one form, the approach control is applied when approaching the temperature set point (e.g., during ramp-up or ramp-down) to allow the integration time to approach a value appropriate for the temperature set point. For example, if the factor is 1.0, the reduction is from the temperature set point by the modulation rate degree. Accordingly, a reduction of 10°C/minute is a 10°C reduction from the temperature set point.

可變調降控制係組配來提供將加熱器冷卻至小於量測溫度之一溫度設定點的一同調冷卻。對於半導體製程而言,加熱器冷卻之速率可能是腔室的一函數,且該速率可在溫度減小及/或在該腔室的壁被加熱時減小。對於一多 區域加熱器而言,當電力被移除或顯著減少時,該加熱器之不同區域可能以不同速率冷卻。為了減少該等區域之間的溫度差異,可變調降控制係經組配來使可變調改率處在或高於自然下降速率(亦即,沒有電力下之減少率)。 Variable droop control is configured to provide a coordinated cooling of the heater to a temperature set point less than the measured temperature. For semiconductor processes, the rate at which the heater cools may be a function of the chamber, and the rate may decrease as the temperature decreases and/or as the walls of the chamber are heated. For a multi-zone heater, different zones of the heater may cool at different rates when power is removed or significantly reduced. To reduce the temperature differences between the zones, variable droop control is configured to cause the variable rate to be at or above the natural droop rate (i.e., the rate of decrease without power).

在一形式中,可變調降控制係以一冷卻可變調改率來減小該等區域之溫度,以使得該溫度設定點以一界定的速率連續被減小。舉例而言,在一形式中,該冷卻可變調改率首先被設定為所欲冷卻調改率,諸如10℃/分鐘,且監測該等區域之溫度,以在冷卻期間維持加熱器的一同調熱輪廓。 In one form, the variable ramp down control reduces the temperature of the zones with a cooling variable ramp rate such that the temperature set point is continuously reduced at a defined rate. For example, in one form, the cooling variable ramp rate is first set to a desired cooling ramp rate, such as 10°C/minute, and the temperatures of the zones are monitored to maintain a uniform thermal profile of the heater during the cooling period.

為了提供同調熱輪廓,可變調降控制係判定以下失控的條件中之一或多者是否存在:一區域對區域漂移、一調改設定點偏差、及/或區域浮動條件。若偵測到一失控條件,則該可變調降控制施行一訂正動作。 To provide a coherent thermal profile, the variable derating control determines if one or more of the following runaway conditions exist: a region-to-region drift, a setpoint deviation, and/or a region float condition. If a runaway condition is detected, the variable derating control applies a corrective action.

針對區域對區域漂移,可變調降控制係判定一區域是否正比其他區域更快或更慢地冷卻。具體而言,在一形式中,該可變調降控制係判定一標的區域的一溫度是否在其他區域的一區域偏差臨界值內。為了減少偏差且提供一同調調降,若該標的區域正從一或更多其他區域偏離,則調整所有區域之可變調改率,作為訂正動作。 For zone-to-zone drift, variable derating control determines if one zone is cooling faster or slower than other zones. Specifically, in one form, the variable derating control determines if a temperature of a target zone is within a zone deviation threshold of other zones. To reduce deviation and provide consistent derating, if the target zone is deviating from one or more other zones, the variable derating rates of all zones are adjusted as a corrective action.

針對調改設定點偏差,可變調降控制係判定一區域在調降時是否落後溫度調改設定點太遠。具體而言,在調降期間,該溫度調改設定點係根據可變調改率連續地減少著。若標的區域之溫度在落後中(亦即,冷卻得不夠快),則調改率被調整,以使得該標的區域之溫度繼續減小,同時允許該標的區域能夠追上該溫度調改設定點。在形式中,為了偵測一調改設定點偏差,該可變調降控制係判定該標的區域之溫度是否偏離該溫度調改設定點達一大於或等於一設定點偏差臨界值(亦即,一偏差臨界值)的值。若是,則偵測到一調改設定點偏差條件。 In response to a modification set point deviation, the variable derating control determines whether a zone has fallen too far behind a temperature modification set point during derating. Specifically, during derating, the temperature modification set point is continuously decreased according to a variable modulation rate. If the temperature of the target zone is lagging (i.e., not cooling fast enough), the modulation rate is adjusted so that the temperature of the target zone continues to decrease while allowing the target zone to catch up with the temperature modification set point. In form, to detect a modification set point deviation, the variable derating control determines whether the temperature of the target zone has deviated from the temperature modification set point by a value greater than or equal to a set point deviation threshold value (i.e., a deviation threshold value). If so, a set point deviation condition has been detected.

為了緩和一區域對區域漂移及/或一調改設定點偏差,可變調降 控制係將可變調改率減少至小於所欲調改率之值的一值(例如,自10℃/分鐘至5℃/分鐘),作為訂正動作。在一形式中,該可變調降控制係基於該區域對其他區域的溫度及/或溫度調改設定點之間的偏差量,來判定減少量(亦即,一調改冷卻減少量(RCoolRedAmt))。舉例而言,在一形式中,該減少量係使用方程式3-5來判定,其中:PVH為熱區域之量測溫度;PVL為冷區域之量測溫度;WeightPara1為差量(delta)量測溫度的一加權參數,且被提供作為每偏差度數的減少量(例如,10%/℃);以及WeightPara2為在冷區域與溫度調改設定點之間的差異的一加權參數,且被提供作為每偏差度數的減少量(例如,5%/℃)。一旦經判定,調改冷卻減少量便施加至該等區域中之每一區域。 To mitigate a zone-to-zone drift and/or a modified set point deviation, the variable derating control reduces the variable modulation rate to a value less than the desired modulation rate value (e.g., from 10°C/min to 5°C/min) as a corrective action. In one form, the variable derating control determines the reduction amount (i.e., a modified cooling reduction amount (RCoolRedAmt)) based on the deviation between the temperature of the zone and/or the temperature modified set points of other zones. For example, in one form, the reduction is determined using equations 3-5, where: PVH is the measured temperature of the hot zone; PVL is the measured temperature of the cold zone; WeightPara1 is a weighting parameter for the delta measured temperature and is provided as a reduction per degree of deviation (e.g., 10%/°C); and WeightPara2 is a weighting parameter for the difference between the cold zone and the temperature adjustment set point and is provided as a reduction per degree of deviation (e.g., 5%/°C). Once determined, the adjustment cooling reduction is applied to each of the zones.

方程式3.....RCoolRedAmt=區域偏差減少+設定點偏差減少 Equation 3.....RCoolRedAmt=Regional Deviation Reduction+Setpoint Deviation Reduction

方程式4....區域偏差減少=|(PVH-PVL)|*WeightPara1 Equation 4....Regional deviation reduction = |(PVH-PVL)|*WeightPara1

方程式5.....設定點偏差減少=|(PVL-TempRampSP)|*WeightPara2 Equation 5.....Set point deviation reduction = |(PVL-TempRampSP)|*WeightPara2

在一變化中,調改冷卻減少量係基於區域偏差減少或設定點偏差減少(亦即,設定點偏差量)中之一者。舉例而言,若僅有一區域對區域漂移,則接著該設定點偏差減少可能非為必要。替代地,若存在有該等偏差條件兩者,則可變調降控制係可先基於該區域偏差減少來減少區域對區域漂移的偏差,且直到該等區域之間的偏差係在一臨界值內為止。在其後,使用如方程式3中所提供之區域偏差減少及設定點偏差減少兩者,來判定調改冷卻減少量。應容易理解,本文中所提供之數值僅用於解釋目的且可為任何合適的值。 In one variation, the amount of the modified cooling reduction is based on one of a region deviation reduction or a set point deviation reduction (i.e., a set point deviation amount). For example, if there is only one region-to-region drift, then a reduction in the set point deviation may not be necessary. Alternatively, if both of the deviation conditions exist, the variable derating control may first reduce the deviation of the region-to-region drift based on the region deviation reduction, and until the deviation between the regions is within a critical value. Thereafter, the amount of the modified cooling reduction is determined using both the region deviation reduction and the set point deviation reduction as provided in Equation 3. It should be readily understood that the values provided herein are for explanation purposes only and may be any suitable values.

在另一形式中,若至少一區域之溫度開始偏離其他區域,則冷區域之溫度調改設定點係被設定為熱區域之量測溫度。亦即,可變調降控制係增加給予具有較低溫度之區域的電力,以增加該區域的溫度達具有較高溫度之區域的溫度。據此,可變調降控制係使該等區域之溫度在一起或在一偏差臨界值(例如,±5℃)內,其可使在區域接近該溫度設定點之前的溫度調改設定點曲線 變平坦。 In another form, if the temperature of at least one zone begins to deviate from the other zones, the temperature adjustment set point of the cold zone is set to the measured temperature of the hot zone. That is, the variable derating control increases the power given to the zone with the lower temperature to increase the temperature of the zone to the temperature of the zone with the higher temperature. Accordingly, the variable derating control brings the temperatures of the zones together or within a deviation threshold (e.g., ±5°C), which can flatten the temperature adjustment set point curve before the zone approaches the temperature set point.

在區域浮動條件下,可變調降控制係判定一區域是否浮動中或游動中。更特定地,隨著給予區域的電力減小,可能難以準確地量測程序值(例如,溫度),且在一些情況下,該電力可能低到使得該區域可能為不可控的(例如,電力係處於一最小電力位準/輸出,其係大於零伏特但不足以控制該區域)。亦即,該區域之溫度可能開始偏離溫度調改設定點,且若有多個區域,則該區域之溫度可能開始偏離另一區域。為了在該區域浮動條件期間控制調降,可變調降控制係組配來增加給予經受浮動條件之該區域的電力達一標稱電力輸出(例如,2%電力、5%電力),其係大於該最小電力位準(亦即,最小電力輸出)以獲得該區域之控制而同時仍減小該區域之溫度。在一形式中,電力係藉由減少可變調改設定點而增加,直到電力再次以該標稱電力輸出被施加為止。施加至該區域以抑制該區域浮動條件的該標稱電力輸出係可基於測試來界定,且可恰好高於最小電力位準(例如,標稱電力輸出係高於5V)。 In a zone floating condition, variable droop control determines whether a zone is floating or swimming. More specifically, as power to a zone decreases, it may be difficult to accurately measure a process value (e.g., temperature), and in some cases, the power may be so low that the zone may be uncontrollable (e.g., the power is at a minimum power level/output that is greater than zero volts but insufficient to control the zone). That is, the temperature of the zone may begin to deviate from the temperature adjustment set point, and if there are multiple zones, the temperature of the zone may begin to deviate from another zone. To control derating during the zone floating condition, a variable derating control is configured to increase power to the zone experiencing the floating condition to a nominal power output (e.g., 2% power, 5% power) that is greater than the minimum power level (i.e., minimum power output) to obtain control of the zone while still reducing the temperature of the zone. In one form, power is increased by decreasing the variable modulation set point until power is again applied at the nominal power output. The nominal power output applied to the zone to suppress the zone floating condition may be defined based on testing and may be just above the minimum power level (e.g., nominal power output is above 5V).

若偵測到失控條件中之一者以上,則減少量係為所偵測之偏差條件之減少量的一加權組合。在一形式中,經指派用於每一偏差條件之權重係可基於加熱器處於冷卻程序中的哪一階段。亦即,通常地,比起區域對區域漂移,調改設定點偏差係發生在該加熱器之一冷卻的較早期,該區域對區域漂移可在該加熱器變得更冷時發生。據此,當該加熱器正首次開始冷卻時,與該調改設定點偏差相關聯的減少量係被指派了比與該區域對區域漂移相關聯的減少量更高的一權重。在某時間之後及/或在該加熱器之溫度達到大於所欲溫度設定點的一所選擇溫度設定點之後,可變調降控制係可對與該區域對區域漂移相關聯的減少量指派比該調改設定點偏差更高的一權重。在較冷溫度時,給予該加熱器的電力可不再需要,因此可施加一最小電力量來抑制區域浮動條件,其可優先於該區域對區域漂移及該調改設定點偏差。據此,加權因數係可基於該加 熱器在冷卻時的階段及該加熱器自身(亦即,該加熱器的響應性)來被指派。 If more than one of the out of control conditions is detected, the reduction is a weighted combination of the reductions for the detected deviation conditions. In one form, the weight assigned to each deviation condition may be based on which stage in the cool down sequence the heater is in. That is, typically, a regulation set point deviation occurs earlier in a cool down of the heater than a zone to zone drift, which may occur as the heater gets cooler. Accordingly, when the heater is first beginning to cool down, the reduction associated with the regulation set point deviation is assigned a higher weight than the reduction associated with the zone to zone drift. After a certain time and/or after the temperature of the heater reaches a selected temperature set point greater than the desired temperature set point, the variable derating control may assign a higher weight to the reduction associated with the zone-to-zone drift than to the modified set point deviation. At colder temperatures, power to the heater may no longer be required, so a minimum amount of power may be applied to suppress zone floating conditions, which may take precedence over the zone-to-zone drift and the modified set point deviation. Accordingly, weighting factors may be assigned based on the stage of the heater in cooling and the heater itself (i.e., the responsiveness of the heater).

應輕易理解,可變調降控制係可組配來監測一或多個失控條件,且不需要監測全部。舉例而言,對於單個區域加熱器而言,區域對區域漂移不需要。 It should be readily appreciated that variable droop control can be configured to monitor one or more out-of-control conditions and need not monitor all. For example, for a single zone heater, zone-to-zone drift is not required.

參看圖2,一範例VRRT控制常式200係被提供,且由控制系統施行來將加熱器的溫度控制到一或多個溫度設定點。在步驟202,該控制系統從例如係提供該加熱器之溫度設定點及持續時間的一界定狀態模式獲取加熱器之溫度設定點。在步驟204,判定該溫度設定點是否小於該加熱器之目前溫度。若該溫度設定點係較高,則在步驟206,該控制系統施行可變調升控制。另一方面,若該溫度係較低,則在步驟208,該控制系統施行可變調降控制。一旦達到該溫度設定點,在步驟210,控制系統返回到常式200、使用一溫度控制模型(例如,一PID控制)維持溫度在該溫度設定點,且在步驟212,判定是否有一新的溫度設定點。若有一新的溫度設定點,則該控制系統返回至步驟202。在一形式中,該溫度設定點可包括當加熱器接著被關閉時的一標稱設定點。 2, an example VRRT control routine 200 is provided and implemented by a control system to control the temperature of a heater to one or more temperature set points. In step 202, the control system obtains a temperature set point for the heater from, for example, a defined state mode that provides the temperature set point and duration of the heater. In step 204, a determination is made as to whether the temperature set point is less than the current temperature of the heater. If the temperature set point is higher, then in step 206, the control system implements variable ramp-up control. On the other hand, if the temperature is lower, then in step 208, the control system implements variable ramp-down control. Once the temperature set point is reached, at step 210, the control system returns to routine 200, uses a temperature control model (e.g., a PID control) to maintain the temperature at the temperature set point, and at step 212, determines whether there is a new temperature set point. If there is a new temperature set point, the control system returns to step 202. In one form, the temperature set point may include a nominal set point when the heater is then turned off.

參看圖3,一範例可變調升控制300係被提供。在步驟302,控制系統係將可變調改率設定為基於溫度設定點及/或系統電流限制所界定的一所欲調改率,且對加熱器提供電力以達成該所欲調改率。在步驟304,該控制系統係監測流動通過多個區域之電阻式加熱元件的電流及每一區域的溫度。在步驟306,該控制系統係判定每一區域之量測電流是否小於電流限制帶。若是,則該控制系統繼續進行至步驟310。若否,則在步驟308,該控制系統係判定減少因數,且基於該減少因數來減少每一區域之可變調改率。特別地,使用上文所說明之設計方法,該控制系統係判定互相關聯於該量測電流對該系統電流限制之接近程度的減少因數,且以用以獲得一容許調改率的減少量來減少該可變調改率,該容許調改率係作為每一區域之可變調改率。在步驟310,該控制系統 判定鄰近區域之溫度是否在一偏差臨界值內以維持加熱器之一同調溫度輪廓。若該等溫度係在該偏差臨界值內,則該控制系統繼續進行至步驟314。若至少一區域在偏差中,則在步驟312,該控制系統就具有較高溫度之區域減少其可變調改率,如上文所提供。或者,該控制系統可經組配來提高給予其他區域的電力,同時監測該等區域之電流。在步驟314,該控制系統判定該等區域是否係在該溫度設定點。若否,則該控制系統返回至步驟304。若該等區域係在該溫度設定點,則該控制系統返回至圖2的常式200。 Referring to FIG. 3 , an example variable ramp control 300 is provided. In step 302, the control system sets the variable ramp rate to a desired ramp rate defined based on a temperature set point and/or system current limit, and provides power to the heater to achieve the desired ramp rate. In step 304, the control system monitors the current flowing through the resistive heating element through multiple zones and the temperature of each zone. In step 306, the control system determines whether the measured current of each zone is less than the current limit band. If so, the control system proceeds to step 310. If not, in step 308, the control system determines a reduction factor and reduces the variable ramp rate of each zone based on the reduction factor. In particular, using the design method described above, the control system determines a reduction factor that is correlated to the proximity of the measured current to the system current limit and reduces the variable modulation rate by a reduction amount to obtain an allowable modulation rate, which is used as the variable modulation rate for each zone. In step 310, the control system determines whether the temperature of the adjacent zones is within a deviation threshold to maintain a coherent temperature profile of the heater. If the temperatures are within the deviation threshold, the control system continues to step 314. If at least one zone is in deviation, then in step 312, the control system reduces its variable modulation rate for the zone with the higher temperature, as provided above. Alternatively, the control system may be configured to increase power to other zones while monitoring the current in those zones. In step 314, the control system determines whether the zones are at the temperature set point. If not, the control system returns to step 304. If the zones are at the temperature set point, the control system returns to routine 200 of FIG. 2.

參看圖4,一範例可變調降控制400係被提供。在步驟402,控制系統將可變調改率設定為一冷卻調改率(例如,一第二可變調改率),且基於該冷卻調改率來控制區域。在步驟404,該控制系統監測每一區域之溫度,且在步驟406,該控制系統判定在該等區域之間的一溫度差異是否在一偏差臨界值內以在加熱器冷卻至溫度設定點時提供同調溫度輪廓。舉例而言,該控制系統判定在鄰近區域之間的溫度差異是否大於該偏差臨界值。若該等溫度差異係在該偏差臨界值內,則該控制系統繼續進行至步驟410。若至少一區域在偏差中,則在步驟408,該控制系統將具有較低溫度之區域(亦即,冷區域)的溫度調改設定點設定為具有較高溫度之區域(熱區域)的量測溫度,且因此,增加給予該冷區域之電力以達成新的溫度調改設定點。在步驟410,該控制系統判定該等區域是否在該溫度設定點。若否,則該控制系統返回至步驟404。若加熱器在該溫度設定點,則該控制系統返回至圖2的常式200。 4 , an example variable modulation reduction control 400 is provided. At step 402, the control system sets the variable modulation rate to a cooling modulation rate (e.g., a second variable modulation rate) and controls the zones based on the cooling modulation rate. At step 404, the control system monitors the temperature of each zone, and at step 406, the control system determines whether a temperature difference between the zones is within a deviation threshold to provide a coherent temperature profile when the heater cools to the temperature set point. For example, the control system determines whether the temperature difference between adjacent zones is greater than the deviation threshold. If the temperature differences are within the deviation threshold, the control system proceeds to step 410. If at least one zone is in deviation, then in step 408, the control system sets the temperature adjustment set point of the zone with the lower temperature (i.e., the cold zone) to the measured temperature of the zone with the higher temperature (the hot zone), and therefore, increases the power supplied to the cold zone to achieve the new temperature adjustment set point. In step 410, the control system determines whether the zones are at the temperature set point. If not, the control system returns to step 404. If the heater is at the temperature set point, the control system returns to routine 200 of FIG. 2.

應易於理解的是,常式200、300及400能以各種合適方式組配且不應限於本文所說明之步驟。舉例而言,若加熱器為一單個區域加熱器,則控制系統可跳過有關於提供在常式300中之同調溫度輪廓的步驟,且可省略可變調降常式。在另一範例中,VRRT控制亦包括一滑動速度控制及/或一接近控制,以分別提供平滑轉變給所欲調改率及給溫度設定點。在又另一範例中,針 對可變調降控制,代替掉設定一冷卻調改率,該控制係關斷送至加熱器的電力且監測該等區域之溫度以緩和可能的偏差溫度。 It should be readily appreciated that routines 200, 300, and 400 can be configured in a variety of suitable ways and should not be limited to the steps described herein. For example, if the heater is a single zone heater, the control system may skip the steps associated with providing a coherent temperature profile in routine 300, and the variable derating routine may be omitted. In another example, the VRRT control also includes a sliding speed control and/or a proximity control to provide a smooth transition to a desired modulation rate and to a temperature set point, respectively. In yet another example, for the variable derating control, instead of setting a cooling modulation rate, the control shuts off power to the heater and monitors the temperatures of the zones to mitigate possible temperature deviations.

圖5A至9例示本揭露內容之VRRT控制的性質。具體而言,圖5A例示一調升操作,其中調改率為恆定的(例如,20℃/分鐘),且圖5B例示使用本揭露內容之VRRT控制的一調升操作。在兩者中,電流係維持在30A之下,但圖5A之恆定調升率係比圖5B之VRRT控制花費更長時間來達到600℃。對於該VRRT控制,調改率以28℃/分鐘開始,且隨著電流接近30A而減少。亦即,一旦所量測電流係在一電流限制帶(例如,25-30A)內,該調改率便減小以控制施加至加熱器之電流,同時允許該加熱器能夠達到溫度設定點。 Figures 5A to 9 illustrate the nature of VRRT control of the present disclosure. Specifically, Figure 5A illustrates a ramp-up operation in which the ramp rate is constant (e.g., 20°C/min), and Figure 5B illustrates a ramp-up operation using VRRT control of the present disclosure. In both, the current is maintained below 30A, but the constant ramp rate of Figure 5A takes longer to reach 600°C than the VRRT control of Figure 5B. For the VRRT control, the ramp rate starts at 28°C/min and decreases as the current approaches 30A. That is, once the measured current is within a current limit band (e.g., 25-30A), the ramp rate is reduced to control the current applied to the heater while allowing the heater to reach the temperature set point.

圖6為例示調升控制的一圖形,其中調改率係受控制,從一滑動速度(GlideSpeed)到所欲調改率,且接著在量測溫度接近溫度設定點時,到一接近控制率(ApproachControl)。RampSP係指調改設定點,RampingSP1係指第一調改設定點,且實際RateSP1(ActualRateSP1)係指第一實際的速率設定點。 FIG6 is a diagram illustrating ramp control, where the ramp rate is controlled from a sliding speed (GlideSpeed) to a desired ramp rate, and then to an approach control rate (ApproachControl) when the measured temperature approaches the temperature set point. RampSP refers to the ramp set point, RampingSP1 refers to the first ramp set point, and ActualRateSP1 refers to the first actual rate set point.

圖7A及7B為分別例示不具有可變調降控制及具有可變調降控制之一兩區域加熱器之冷卻的圖形。如圖7A中所例示,該等區域溫度開始偏離彼此,其可導致熱應力,而在圖7B中,加熱器藉由處理該等偏差溫度而具有一同調溫度輪廓。FilamentTemp1及FilamentTemp2分別係指第一電阻式加熱元件及第二電阻式加熱元件於該兩區域加熱器之第一區域及第二區域處的第一及第二細絲溫度。RequestedHtrVolts1及RequestedHtrVolts2分別係指要求的第一加熱器電壓及要求的第二加熱器電壓。 Figures 7A and 7B are graphs illustrating cooling of a two-zone heater without variable droop control and with variable droop control, respectively. As illustrated in Figure 7A, the zone temperatures begin to deviate from each other, which can cause thermal stress, while in Figure 7B, the heater has a co-regulating temperature profile by handling the deviating temperatures. FilamentTemp1 and FilamentTemp2 refer to the first and second filament temperatures of the first resistive heating element and the second resistive heating element at the first and second zones of the two-zone heater, respectively. RequestedHtrVolts1 and RequestedHtrVolts2 refer to the requested first heater voltage and the requested second heater voltage, respectively.

圖8例示VRRT控制之可變調降控制,其中以稍微高於最小量之一位準(例如,提供5%電力)對具有兩區域之該加熱器提供電力,以抑制區域浮動條件。藉由對該加熱器提供一少量的電力,該加熱器之溫度係被連續監測且仍減小至溫度設定點。RampingSP1係指第一調改設定點,瓦數1(Wattage1)係指 傳遞至第一區域的電力,瓦數2(Wattage2)係指傳遞至第二區域的電力,且PidEffort1為PID控制迴路的總輸出,其具有0至100%的可用電力之間的一值(以「%」提供)。 FIG8 illustrates a variable ramp down control of VRRT control, where the heater with two zones is powered at a level slightly above the minimum amount (e.g., 5% power is provided) to suppress zone floating conditions. By providing a small amount of power to the heater, the temperature of the heater is continuously monitored and still reduced to the temperature set point. RampingSP1 refers to the first ramp set point, Wattage1 refers to the power delivered to the first zone, Wattage2 refers to the power delivered to the second zone, and PidEffort1 is the total output of the PID control loop, which has a value between 0 and 100% of the available power (provided in "%).

圖9例示可變調降控制,其中失控條件係藉由控制調改率及/或電力而被減少或抑制,如上所述。在該圖中,表示加熱器溫度的細絲溫度(FilamentTemp1)及溫度調改設定點(亦即,圖9中之調改設定點(RampingSP1))在調降期間係實質相同。在該圖中,最適調改程序變化減少(OptiRamp PV減少1(OptiRamp PV Reduction 1))係為由於不同區域偏差過多所致的減少量;最適調改達底減少(OptiRamp底減少1(OptiRamp Bottom Reduction 1))係為由於電力過低(浮動)所致的減少量;最適調改淨設定點增益(OptiRamp淨RampSP增益1(OptiRamp Net RampSP Gain 1))係為三個訂正動作之加權和(例如,該淨增益係所欲調改SP上0.0至1.0間之乘數,用以減少調改率,其中1.0係不減少且0.5係50%減少);以及最適調改設定點減少(OptiRamp SP減少1(OptiRamp SP Reduction 1)),其最初因為區域可能偏離調改SP而可能有突波。 FIG9 illustrates variable ramp down control, where runaway conditions are reduced or suppressed by controlling ramp rate and/or power, as described above. In the figure, the filament temperature (FilamentTemp1) representing the heater temperature and the temperature ramp set point (i.e., the ramp set point (RampingSP1) in FIG9) are substantially the same during ramp down. In the figure, the optimal adjustment process variation reduction (OptiRamp PV Reduction 1) is the reduction due to excessive deviation in different regions; the optimal adjustment bottom reduction (OptiRamp Bottom Reduction 1) is the reduction due to too low power (floating); the optimal adjustment net set point gain (OptiRamp Net RampSP Gain 1) is the weighted sum of the three correction actions (for example, the net gain is a multiplier between 0.0 and 1.0 on the desired adjustment SP to reduce the adjustment rate, where 1.0 is no reduction and 0.5 is a 50% reduction); and the optimal adjustment set point reduction (OptiRamp SP Reduction 1) is the weighted sum of the three correction actions (for example, the net gain is a multiplier between 0.0 and 1.0 on the desired adjustment SP to reduce the adjustment rate, where 1.0 is no reduction and 0.5 is a 50% reduction); 1)), initially there may be a spike because the region may deviate from the SP modulation.

在本文中使用時,用語偏差臨界值大體上擷取各種界定比較一量測值(例如,區域溫度、加熱器溫度)與另一值(例如,一溫度設定點、另一區域的一溫度等)之間的差異之各種可能的臨界值。在一形式中,利用來監測在可變調升控制及可變調降控制中之區域對區域漂移/偏差的偏差臨界值係可為相同或不同臨界值。在一形式中,針對可變調降控制,用於區域對區域漂移及調改設定點偏差的偏差臨界值係可相同或可不同。另外,偏差臨界值可被設置為一獨個的絕對值(例如,5℃)或被設置為一範圍(例如,±5℃)。偏差臨界值之實際值係基於特定應用,且因此不限於本文所提供之任何特定數值。 As used herein, the term deviation threshold generally captures a variety of possible thresholds that define the difference between a measured value (e.g., zone temperature, heater temperature) and another value (e.g., a temperature set point, a temperature of another zone, etc.). In one form, the deviation threshold utilized to monitor zone-to-zone drift/deviation in variable ramp-up control and variable ramp-down control may be the same or different thresholds. In one form, for variable ramp-down control, the deviation thresholds for zone-to-zone drift and set point deviation may be the same or different. Additionally, the deviation threshold may be set as a single absolute value (e.g., 5°C) or as a range (e.g., ±5°C). The actual value of the deviation threshold is application specific and is therefore not limited to any specific value provided herein.

除非本文另外明確指出,否則在說明本揭露內容之範圍上,指示機械/熱性質、組成百分比、尺寸及/或容差或其他特性之所有數值,將被理解 為經用詞「約」或「大約」修改。此修改出於各種原因係為所欲的,包括:工業實踐;材料、製造、及裝配容差;以及測試能力。 Unless otherwise expressly stated herein, all numerical values indicating mechanical/thermal properties, composition percentages, dimensions and/or tolerances or other characteristics within the scope of the present disclosure are to be understood as modified by the word "about" or "approximately". Such modifications are desirable for a variety of reasons, including: industrial practice; material, manufacturing, and assembly tolerances; and testing capabilities.

A、B、及C中至少一者這個短語於本文中使用時,應該使用一非排他性邏輯「或」解釋為表示一邏輯(A或B或C),並且不應該被解釋為表示「至少一A、至少一B、以及至少一C」。 The phrase at least one of A, B, and C, when used herein, should be interpreted using a non-exclusive logical "or" to mean a logical (A or B or C), and should not be interpreted to mean "at least one A, at least one B, and at least one C".

在本申請案中,用語「控制器」可被用語「電路」替換。用語「控制器」可指、可為其一部分或可包括有:一特定應用積體電路(ASIC);一數位、類比或混合類比/數位式之分立電路;一數位、類比或混合類比/數位式之積體電路;一組合邏輯電路;一現場可規劃閘陣列(FPGA);一處理器電路(共享、專用或群組),其施行程式碼;一記憶體電路(共享、專用或群組),其儲存由該處理器電路施行之程式碼;提供所述功能性之其他合適的硬體組件;或以上各者中一些或全部之組合,諸如在一單晶片系統中。 In this application, the term "controller" may be replaced by the term "circuit". The term "controller" may refer to, be a part of, or may include: an application specific integrated circuit (ASIC); a digital, analog, or hybrid analog/digital discrete circuit; a digital, analog, or hybrid analog/digital integrated circuit; a combination logic circuit; a field programmable gate array (FPGA); a processor circuit (shared, dedicated, or grouped) that executes program code; a memory circuit (shared, dedicated, or grouped) that stores program code executed by the processor circuit; other suitable hardware components that provide the functionality described; or a combination of some or all of the above, such as in a single-chip system.

用語代碼可包括軟體、韌體及/或微碼,且可指程式、常式、功能、類別、資料結構,及/或物件。用語記憶體電路係用語電腦可讀取媒體的一子集。如本文所使用,用語電腦可讀媒體不涵蓋透過一媒體(諸如在一載波上)傳播之暫時性電氣或電磁信號;因此用語電腦可讀媒體可視為有形且非暫時性的。 The term code may include software, firmware, and/or microcode, and may refer to programs, routines, functions, classes, data structures, and/or objects. The term memory circuit is a subset of the term computer-readable medium. As used herein, the term computer-readable medium does not encompass transient electrical or electromagnetic signals propagated through a medium (such as on a carrier wave); thus, the term computer-readable medium may be considered tangible and non-transitory.

本揭露內容之說明本質上僅為範例性,因此,未脫離本揭露實質內容之變化係意欲落入本揭露內容之範圍內。此等變化不可視為脫離本揭露內容之精神及範圍。 The descriptions of this disclosure are merely exemplary in nature, and therefore, variations that do not depart from the substance of this disclosure are intended to fall within the scope of this disclosure. Such variations should not be considered as departing from the spirit and scope of this disclosure.

200:VRRT控制常式,常式 200: VRRT control routine, routine

202,204,206,208,210,212:步驟 202,204,206,208,210,212: Steps

Claims (23)

一種控制一加熱器之溫度的方法,該加熱器包括一電阻式加熱元件,該方法包含:以一可變調改率對該加熱器之該電阻式加熱元件施加電力,以增加該加熱器之溫度至一所欲溫度設定點,其中該可變調改率係被設定為一所欲調改率;監測流動通過該加熱器之該電阻式加熱元件的一電流;以及響應於該電流係大於一電流限制帶的一下限,基於一可變減少因數來將該可變調改率自該所欲調改率減少至一容許調改率,其中該電流限制帶的一上限係被設置為一系統電流限制。 A method of controlling the temperature of a heater, the heater including a resistive heating element, the method comprising: applying electrical power to the resistive heating element of the heater at a variable modulation rate to increase the temperature of the heater to a desired temperature set point, wherein the variable modulation rate is set to a desired modulation rate; monitoring a current flowing through the resistive heating element of the heater; and in response to the current being greater than a lower limit of a current limit band, reducing the variable modulation rate from the desired modulation rate to an allowable modulation rate based on a variable reduction factor, wherein an upper limit of the current limit band is set to a system current limit. 如請求項1之方法,其中減少該可變調改率進一步包含:基於該可變減少因數來判定該所欲調改率的一減少量,其中該可變減少因數係隨著該電阻式加熱元件之該電流接近該系統電流限制而增加;以及以該減少量將該可變調改率減小至該容許調改率。 The method of claim 1, wherein reducing the variable modulation rate further comprises: determining a reduction amount of the desired modulation rate based on the variable reduction factor, wherein the variable reduction factor increases as the current of the resistive heating element approaches the system current limit; and reducing the variable modulation rate to the allowable modulation rate by the reduction amount. 如請求項2之方法,其中該可變減少因數係基於該電流對該系統電流限制的鄰近度來提供該可變調改率的一按比例減少。 The method of claim 2, wherein the variable reduction factor provides a proportional reduction in the variable modulation rate based on the proximity of the current to the system current limit. 如請求項2之方法,其中該減少量係基於以下判定:RedAmt=(DesiredRate * %減少 * RedFactor)方程式2.....%減少=1.0-((ZoneCurLim-MeasuredCurrent)/CurrentBand)其中:「RedAmt」為該減少量,「DesiredRate」為該所欲調改率,「RedFactor」為該可變調改率在該電流等於該系統電流限制時被減少的量,「ZoneCurLim」為該電阻式加熱元件的最大電流限制,其中測得的電 流等於該系統電流限制,「MeasuredCurrent」為所量測的該電流,以及「CurrentBand」為該電流限制帶。 The method of claim 2, wherein the reduction is determined based on the following: RedAmt = (DesiredRate * %Reduction * RedFactor) Equation 2.....%Reduction = 1.0-((ZoneCurLim-MeasuredCurrent)/CurrentBand) Where: "RedAmt" is the reduction, "DesiredRate" is the desired modulation rate, "RedFactor" is the amount by which the variable modulation rate is reduced when the current is equal to the system current limit, "ZoneCurLim" is the maximum current limit of the resistive heating element, wherein the measured current is equal to the system current limit, "MeasuredCurrent" is the measured current, and "CurrentBand" is the current limit band. 如請求項1之方法,其中該加熱器包括複數個電阻式加熱元件,其等界定複數個區域,其中該等複數個區域中之每一者係具有一界定可變調改率。 The method of claim 1, wherein the heater comprises a plurality of resistive heating elements defining a plurality of regions, wherein each of the plurality of regions has a defined variable modulation rate. 如請求項5之方法,其中:在該等複數個區域中之每一者處的該電流係被監測,且響應於該等複數個區域中之至少一區域係具有大於該電流限制帶之該下限的電流,該可變調改率係自該所欲調改率減少至該容許調改率。 The method of claim 5, wherein: the current at each of the plurality of regions is monitored, and in response to at least one of the plurality of regions having a current greater than the lower limit of the current limit band, the variable modulation rate is reduced from the desired modulation rate to the allowable modulation rate. 如請求項6之方法,其進一步包含:基於該可變減少因數來針對具有大於該電流限制帶之該下限之電流的該至少一區域判定一減少量,其中該可變減少因數係隨著該電流接近該系統電流限制而增加;以及基於該減少量來減少該等複數個區域中之每一者的該可變調改率,以獲得該等複數個區域中之每一者的該容許調改率。 The method of claim 6 further comprises: determining a reduction amount for the at least one region having a current greater than the lower limit of the current limit band based on the variable reduction factor, wherein the variable reduction factor increases as the current approaches the system current limit; and reducing the variable modulation rate of each of the plurality of regions based on the reduction amount to obtain the allowable modulation rate of each of the plurality of regions. 如請求項5之方法,其進一步包含:監測該等複數個區域中之每一者的一區域溫度;判定該等複數個區域中之一第一區域的一第一區域溫度與該等複數個區域中之一第二區域的一第二區域溫度之間的一差異是否大於一偏差臨界值;以及響應於該差異係大於該偏差臨界值,調整該第一區域、該第二區域或其等之組合的該可變調改率,其中該第一區域與該第二區域中之具有一較高區域溫度的一區域係被設置為一熱區域,且該第一區域與該第二區域中之另一區域係為一冷區域。 The method of claim 5 further comprises: monitoring a zone temperature of each of the plurality of zones; determining whether a difference between a first zone temperature of a first zone of the plurality of zones and a second zone temperature of a second zone of the plurality of zones is greater than a deviation threshold; and in response to the difference being greater than the deviation threshold, adjusting the variable modulation rate of the first zone, the second zone, or a combination thereof, wherein a zone of the first zone and the second zone having a higher zone temperature is set as a hot zone, and another zone of the first zone and the second zone is a cold zone. 如請求項8之方法,其中為了調整該可變調改率,該方法進一步包含:減少該熱區域之該可變調改率;增加該冷區域之該可變調改率,或其等之一組合。 As in the method of claim 8, in order to adjust the variable modulation rate, the method further comprises: reducing the variable modulation rate of the hot area; increasing the variable modulation rate of the cold area, or a combination thereof. 如請求項8之方法,其中為了調整該可變調改率,該方法進一步包括:將該熱區域之該可變調改率減少至零,來保持該熱區域之該區域溫度直到該差異不再大於該偏差臨界值;以及響應於該差異係小於該偏差臨界值而增加該熱區域之該可變調改率。 The method of claim 8, wherein in order to adjust the variable modulation rate, the method further comprises: reducing the variable modulation rate of the hot zone to zero to maintain the zone temperature of the hot zone until the difference is no longer greater than the deviation threshold; and increasing the variable modulation rate of the hot zone in response to the difference being less than the deviation threshold. 如請求項1之方法,其進一步包含:將該可變調改率設定為一滑動控制率,其中該滑動控制率係小於該所欲調改率者;以及響應於一滑動條件被滿足,將該可變調改率增加至該所欲調改率,其中該滑動條件係包括:經過一預定時間、該加熱器之該溫度等於比該所欲溫度設定點更小的一滑動溫度設定點,或其等之一組合。 The method of claim 1 further comprises: setting the variable modulation rate to a sliding control rate, wherein the sliding control rate is less than the desired modulation rate; and increasing the variable modulation rate to the desired modulation rate in response to a sliding condition being satisfied, wherein the sliding condition comprises: after a predetermined time, the temperature of the heater is equal to a sliding temperature set point that is less than the desired temperature set point, or a combination thereof. 如請求項1之方法,其進一步包含:判定該加熱器之該溫度是否在一溫度接近臨界值,其中該溫度接近臨界值係小於該所欲溫度設定點;以及響應於該加熱器之該溫度係在該溫度接近臨界值,將該可變調改率減小至一接近調改率,其中該接近調改率係小於該所欲調改率。 The method of claim 1 further comprises: determining whether the temperature of the heater is at a temperature approaching a critical value, wherein the temperature approaching the critical value is less than the desired temperature set point; and in response to the temperature of the heater being at the temperature approaching the critical value, reducing the variable modulation rate to a near modulation rate, wherein the near modulation rate is less than the desired modulation rate. 一種用以控制給予一加熱器之電力的控制系統,該加熱器包括一電阻式加熱元件,該控制系統包含:一處理器;以及 一非暫時性電腦可讀媒體,其包括可由該處理器執行的指令,其中該等指令係包括:基於一可變調改率來判定將提供給該加熱器之該電阻式加熱元件的電力量,以將該加熱器之溫度增加至一所欲溫度設定點,其中該可變調改率係設定為一所欲調改率;監測流動通過該加熱器之該電阻式加熱元件的一電流;以及響應於該電流係大於一電流限制帶的一下限,基於一可變減少因數來將該可變調改率自該所欲調改率減少至一容許調改率,其中該電流限制帶的一上限係被設置為一系統電流限制。 A control system for controlling power supplied to a heater, the heater including a resistive heating element, the control system comprising: a processor; and a non-transitory computer-readable medium including instructions executable by the processor, wherein the instructions include: determining the amount of power to be supplied to the resistive heating element of the heater based on a variable modulation rate to increase the temperature of the heater to a desired temperature set point, wherein the variable modulation rate is set to a desired modulation rate; monitoring a current flowing through the resistive heating element of the heater; and in response to the current being greater than a lower limit of a current limit band, reducing the variable modulation rate from the desired modulation rate to an allowable modulation rate based on a variable reduction factor, wherein an upper limit of the current limit band is set to a system current limit. 如請求項13之控制系統,其中該等指令進一步包括:基於該可變減少因數來判定該所欲調改率的一減少量,其中該可變減少因數係隨著該電阻式加熱元件之該電流接近該系統電流限制而增加;以及以該減少量減小該可變調改率以獲得該容許調改率。 The control system of claim 13, wherein the instructions further include: determining a reduction amount of the desired modulation rate based on the variable reduction factor, wherein the variable reduction factor increases as the current of the resistive heating element approaches the system current limit; and reducing the variable modulation rate by the reduction amount to obtain the allowable modulation rate. 如請求項14之控制系統,其中該可變減少因數係基於該電流對該系統電流限制的鄰近度來提供該可變調改率之一按比例減少。 A control system as claimed in claim 14, wherein the variable reduction factor provides a proportional reduction in one of the variable modulation rates based on the proximity of the current to the system current limit. 如請求項13之控制系統,其中該加熱器包括複數個電阻式加熱元件,其等界定複數個區域,其中該等複數個區域中之每一者係具有一界定可變調改率。 A control system as claimed in claim 13, wherein the heater comprises a plurality of resistive heating elements defining a plurality of regions, wherein each of the plurality of regions has a defined variable modulation rate. 如請求項16之控制系統,其中:在該等複數個區域中之每一者處的該電流係被監測,且響應於該等複數個區域中之至少一區域係具有大於該電流限制帶之該下限的電流,該可變調改率係自該所欲調改率減少至該容許調改率。 The control system of claim 16, wherein: the current at each of the plurality of regions is monitored, and in response to at least one of the plurality of regions having a current greater than the lower limit of the current limit band, the variable modulation rate is reduced from the desired modulation rate to the allowable modulation rate. 如請求項17之控制系統,其中該等指令進一步包括:基於該可變減少因數來針對具有大於該電流限制帶之該下限之電流的該至 少一區域判定一減少量,其中該可變減少因數係隨著該電流接近該系統電流限制而增加;以及基於該減少量來減少該等複數個區域中之每一者的該可變調改率,以獲得該等複數個區域中之每一者的該容許調改率。 The control system of claim 17, wherein the instructions further include: determining a reduction amount for the at least one region having a current greater than the lower limit of the current limit band based on the variable reduction factor, wherein the variable reduction factor increases as the current approaches the system current limit; and reducing the variable modulation rate of each of the plurality of regions based on the reduction amount to obtain the allowable modulation rate of each of the plurality of regions. 如請求項17之控制系統,其中該等指令進一步包括:監測該等複數個區域中之每一者的一區域溫度;判定該等複數個區域中之一第一區域的一第一區域溫度與該等複數個區域中之一第二區域的一第二區域溫度之間的一差異是否大於一偏差臨界值;以及響應於該差異係大於該偏差臨界值,調整該第一區域、該第二區域或其等之組合的該可變調改率,其中該第一區域與該第二區域中之具有一較高區域溫度的一區域係被設置為一熱區域,且該第一區域與該第二區域中之另一區域係為一冷區域。 The control system of claim 17, wherein the instructions further include: monitoring a zone temperature of each of the plurality of zones; determining whether a difference between a first zone temperature of a first zone of the plurality of zones and a second zone temperature of a second zone of the plurality of zones is greater than a deviation threshold; and in response to the difference being greater than the deviation threshold, adjusting the variable modulation rate of the first zone, the second zone, or a combination thereof, wherein a zone of the first zone and the second zone having a higher zone temperature is set as a hot zone, and another zone of the first zone and the second zone is a cold zone. 如請求項19之控制系統,其中為了調整該可變調改率,該等指令進一步包括:減少該熱區域之該可變調改率;增加該冷區域之該可變調改率;或其等之一組合。 As in claim 19, the control system, wherein in order to adjust the variable modulation rate, the instructions further include: reducing the variable modulation rate of the hot zone; increasing the variable modulation rate of the cold zone; or a combination thereof. 如請求項19之控制系統,其中該等指令進一步包括:將該熱區域之該可變調改率減少至零,來保持該熱區域之該區域溫度直到該差異不再大於該偏差臨界值;以及響應於該差異係小於該偏差臨界值而增加該可變調改率。 The control system of claim 19, wherein the instructions further include: reducing the variable modulation rate of the hot zone to zero to maintain the zone temperature of the hot zone until the difference is no longer greater than the deviation threshold; and increasing the variable modulation rate in response to the difference being less than the deviation threshold. 如請求項13之控制系統,其中該等指令進一步包括:將該可變調改率設定為一滑動控制率,其中該滑動控制率係小於該所欲調改率者;以及 響應於一滑動條件被滿足,將該可變調改率增加至該所欲調改率,其中該滑動條件係包括:經過一預定時間、該加熱器之該溫度等於比該所欲溫度設定點小的一滑動溫度設定點,或其等之一組合。 The control system of claim 13, wherein the instructions further include: setting the variable modulation rate to a sliding control rate, wherein the sliding control rate is less than the desired modulation rate; and In response to a sliding condition being satisfied, increasing the variable modulation rate to the desired modulation rate, wherein the sliding condition includes: after a predetermined time, the temperature of the heater is equal to a sliding temperature set point less than the desired temperature set point, or a combination thereof. 如請求項13之控制系統,其中該等指令進一步包括:判定該加熱器之該溫度是否在一溫度接近臨界值,其中該溫度接近臨界值係小於該所欲溫度設定點;以及響應於該加熱器之該溫度係在該溫度接近臨界值,將該可變調改率減小至一接近調改率,其中該接近調改率係小於該所欲調改率。 The control system of claim 13, wherein the instructions further include: determining whether the temperature of the heater is at a temperature approaching a critical value, wherein the temperature approaching the critical value is less than the desired temperature set point; and in response to the temperature of the heater being at the temperature approaching the critical value, reducing the variable modulation rate to a near modulation rate, wherein the near modulation rate is less than the desired modulation rate.
TW110129836A 2020-08-12 2021-08-12 Method and system for providing variable ramp-up control for an electric heater TWI843008B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063064523P 2020-08-12 2020-08-12
US63/064,523 2020-08-12

Publications (2)

Publication Number Publication Date
TW202224490A TW202224490A (en) 2022-06-16
TWI843008B true TWI843008B (en) 2024-05-21

Family

ID=77655648

Family Applications (3)

Application Number Title Priority Date Filing Date
TW110129836A TWI843008B (en) 2020-08-12 2021-08-12 Method and system for providing variable ramp-up control for an electric heater
TW113115279A TW202442029A (en) 2020-08-12 2021-08-12 Method and system for providing variable ramp-up control for an electric heater
TW110129837A TWI809475B (en) 2020-08-12 2021-08-12 Method and system for providing variable ramp-down control for an electric heater

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW113115279A TW202442029A (en) 2020-08-12 2021-08-12 Method and system for providing variable ramp-up control for an electric heater
TW110129837A TWI809475B (en) 2020-08-12 2021-08-12 Method and system for providing variable ramp-down control for an electric heater

Country Status (7)

Country Link
US (3) US12225635B2 (en)
EP (2) EP4197287A1 (en)
JP (2) JP2023537389A (en)
KR (2) KR20230050425A (en)
IL (2) IL300443A (en)
TW (3) TWI843008B (en)
WO (2) WO2022036088A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115826643B (en) * 2022-12-22 2025-06-24 深圳市阳邦兴业智能科技有限公司 Temperature control method for electric oven with temperature self-checking function
US11828796B1 (en) 2023-05-02 2023-11-28 AEM Holdings Ltd. Integrated heater and temperature measurement
US12085609B1 (en) 2023-08-23 2024-09-10 Aem Singapore Pte. Ltd. Thermal control wafer with integrated heating-sensing elements
US12013432B1 (en) 2023-08-23 2024-06-18 Aem Singapore Pte. Ltd. Thermal control wafer with integrated heating-sensing elements
US12000885B1 (en) * 2023-12-20 2024-06-04 Aem Singapore Pte. Ltd. Multiplexed thermal control wafer and coldplate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030168442A1 (en) * 2001-03-08 2003-09-11 Cole Porter System and method to control radial delta temperature
US20170363663A1 (en) * 2016-06-15 2017-12-21 Watlow Electric Manufacturing Company Power converter for a thermal system
WO2019112652A1 (en) * 2017-06-15 2019-06-13 Watlow Electric Manufacturing Company System and method for controlling power to a heater
TW202027195A (en) * 2018-09-24 2020-07-16 美商蘭姆研究公司 Multiplexed high tcr based ampoule heaters

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596401B2 (en) * 1976-08-31 1984-02-10 株式会社島津製作所 program control device
JPS58197523A (en) * 1982-05-13 1983-11-17 Toyota Central Res & Dev Lab Inc Temperature regulator
JP2759116B2 (en) 1989-12-25 1998-05-28 東京エレクトロン株式会社 Heat treatment method and heat treatment apparatus
JPH09320739A (en) * 1996-06-03 1997-12-12 Nippon Avionics Co Ltd Pulse heat power supply
US5968587A (en) 1996-11-13 1999-10-19 Applied Materials, Inc. Systems and methods for controlling the temperature of a vapor deposition apparatus
US6444037B1 (en) * 1996-11-13 2002-09-03 Applied Materials, Inc. Chamber liner for high temperature processing chamber
US6152070A (en) 1996-11-18 2000-11-28 Applied Materials, Inc. Tandem process chamber
US6616767B2 (en) 1997-02-12 2003-09-09 Applied Materials, Inc. High temperature ceramic heater assembly with RF capability
US5968586A (en) 1997-10-09 1999-10-19 Wisconsin Alumni Research Foundation Production of κ-casein macropeptide for nutraceutical uses
EP1093664A4 (en) 1998-05-11 2003-07-09 Semitool Inc Temperature control system for a thermal reactor
US6469283B1 (en) * 1999-03-04 2002-10-22 Applied Materials, Inc. Method and apparatus for reducing thermal gradients within a substrate support
US6423949B1 (en) * 1999-05-19 2002-07-23 Applied Materials, Inc. Multi-zone resistive heater
JP2001085339A (en) * 1999-09-14 2001-03-30 Toshiba Mach Co Ltd Temperature control method
US6259072B1 (en) 1999-11-09 2001-07-10 Axcelis Technologies, Inc. Zone controlled radiant heating system utilizing focused reflector
DE60133206T2 (en) * 2000-07-25 2009-03-12 Tokyo Electron Ltd. METHOD FOR DETERMINING PARAMETERS OF THERMAL TREATMENT
TW522292B (en) 2001-02-06 2003-03-01 Asml Us Inc Inertial temperature control system and method
US7257464B2 (en) * 2002-08-21 2007-08-14 Watlow Electric Manufacturing Co. Variable wattage control system
JP4033809B2 (en) * 2003-06-16 2008-01-16 東京エレクトロン株式会社 Heat treatment apparatus and heat treatment method
TWI229402B (en) * 2003-06-27 2005-03-11 Macronix Int Co Ltd Method and apparatus for preventing furnace from temperature and gas excursion
JP4009861B2 (en) * 2003-09-10 2007-11-21 オムロン株式会社 Temperature control method, temperature controller and heat treatment apparatus
US7196295B2 (en) 2003-11-21 2007-03-27 Watlow Electric Manufacturing Company Two-wire layered heater system
US9275887B2 (en) 2006-07-20 2016-03-01 Applied Materials, Inc. Substrate processing with rapid temperature gradient control
JP5474317B2 (en) * 2008-06-05 2014-04-16 株式会社日立国際電気 Semiconductor device manufacturing method and substrate processing apparatus
US8254767B2 (en) * 2008-08-29 2012-08-28 Applied Materials, Inc. Method and apparatus for extended temperature pyrometry
US10163668B2 (en) * 2011-08-30 2018-12-25 Watlow Electric Manufacturing Company Thermal dynamic response sensing systems for heaters
JP2014029570A (en) * 2012-07-31 2014-02-13 Hitachi Kokusai Electric Inc Temperature control method and thermal treatment apparatus
US10061331B2 (en) * 2015-01-22 2018-08-28 Qualcomm Incorporated Systems and methods for detecting thermal runaway
WO2017151967A1 (en) * 2016-03-02 2017-09-08 Watlow Electric Manufacturing Company Dual-purpose heater and fluid flow measurement system
US11038431B2 (en) 2016-06-15 2021-06-15 Watlow Electric Manufacturing Company Isolated power converter for a thermal system
US10908195B2 (en) 2016-06-15 2021-02-02 Watlow Electric Manufacturing Company System and method for controlling power to a heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030168442A1 (en) * 2001-03-08 2003-09-11 Cole Porter System and method to control radial delta temperature
US20170363663A1 (en) * 2016-06-15 2017-12-21 Watlow Electric Manufacturing Company Power converter for a thermal system
WO2019112652A1 (en) * 2017-06-15 2019-06-13 Watlow Electric Manufacturing Company System and method for controlling power to a heater
TW202027195A (en) * 2018-09-24 2020-07-16 美商蘭姆研究公司 Multiplexed high tcr based ampoule heaters

Also Published As

Publication number Publication date
TW202224491A (en) 2022-06-16
US20220053609A1 (en) 2022-02-17
KR20230050425A (en) 2023-04-14
US12225635B2 (en) 2025-02-11
TW202442029A (en) 2024-10-16
TWI809475B (en) 2023-07-21
EP4197286A1 (en) 2023-06-21
JP2023537389A (en) 2023-08-31
IL300442A (en) 2023-04-01
EP4197287A1 (en) 2023-06-21
US12369228B2 (en) 2025-07-22
JP7690019B2 (en) 2025-06-09
US20250089130A1 (en) 2025-03-13
JP2023537942A (en) 2023-09-06
IL300443A (en) 2023-04-01
TW202224490A (en) 2022-06-16
US20220050485A1 (en) 2022-02-17
KR20230050426A (en) 2023-04-14
WO2022036091A1 (en) 2022-02-17
WO2022036088A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
TWI843008B (en) Method and system for providing variable ramp-up control for an electric heater
JP7143226B2 (en) Power converter for thermal system
TWI850533B (en) Dynamic calibration of a control system controlling a heater
US10908195B2 (en) System and method for controlling power to a heater
TWI790533B (en) System and method for controlling power to a heater
EP1093664A1 (en) Temperature control system for a thermal reactor
US20160138185A1 (en) Method of manufacturing silicon carbide single crystal
JP3929699B2 (en) Requirements prediction control system for high efficiency ultrapure fluid heater
TWI806147B (en) Method and system for controlling an electric heater using control on energy
CN117865441A (en) A platinum bowl precise heating control method, device and system
CN115576370A (en) Temperature control method and device for fanless closed air chamber