[go: up one dir, main page]

TWI871420B - 安裝基板檢查裝置及檢查裝置 - Google Patents

安裝基板檢查裝置及檢查裝置 Download PDF

Info

Publication number
TWI871420B
TWI871420B TW110102101A TW110102101A TWI871420B TW I871420 B TWI871420 B TW I871420B TW 110102101 A TW110102101 A TW 110102101A TW 110102101 A TW110102101 A TW 110102101A TW I871420 B TWI871420 B TW I871420B
Authority
TW
Taiwan
Prior art keywords
inspection object
rgb
concentric circle
tilt angle
inspection
Prior art date
Application number
TW110102101A
Other languages
English (en)
Other versions
TW202223338A (zh
Inventor
新井健史
松久保貴裕
Original Assignee
日商山葉發動機股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商山葉發動機股份有限公司 filed Critical 日商山葉發動機股份有限公司
Publication of TW202223338A publication Critical patent/TW202223338A/zh
Application granted granted Critical
Publication of TWI871420B publication Critical patent/TWI871420B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8845Multiple wavelengths of illumination or detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8858Flaw counting

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本發明之安裝基板檢查裝置具備:同心圓照明部,其對檢查對象照射呈同心圓狀配置有紅色(R)、綠色(G)及藍色(B)之RGB同心圓光;以及控制部,其進行以下控制,即,基於攝像部對照射了RGB同心圓光之檢查對象之拍攝結果,獲取檢查對象之傾斜角度,並且基於所獲取之檢查對象之傾斜角度,對檢查對象之狀態進行檢查。

Description

安裝基板檢查裝置及檢查裝置
本發明係關於一種安裝基板檢查裝置及檢查裝置,尤其是關於一種具備拍攝檢查對象之攝像部之安裝基板檢查裝置及檢查裝置。
先前,已知有具備拍攝檢查對象之攝像部之檢查裝置。此種裝置例如揭示於日本專利第5866573號公報中。
上述日本專利第5866573號公報中,揭示有一種檢查系統(檢查裝置),其具備對檢查對象照射檢查光之檢查用照明裝置、及拍攝檢查對象之攝像裝置。該檢查系統構成為,利用由檢查用照明裝置形成之檢查光之照射立體角、與由攝像裝置形成之觀察立體角之包含關係,獲取檢查對象之傾斜角度。具體而言,該檢查系統構成為利用以下情況來獲取檢查對象之傾斜角度,即,包含在觀察立體角內之照射立體角會根據檢查對象之傾斜角度變化,從而觀察立體角內之光量會變化。即,該檢查系統構成為基於明暗資訊來獲取檢查對象之傾斜角度。
然而,於上述日本專利第5866573號公報所記載的檢查系統中,存在如下不良情況:由於基於明暗資訊來獲取檢查對象之傾斜角度,故而於檢查對象之反射率變化而使光量變化之情形時,會錯誤地將檢查對象之反射率變化所引起之光量變化視為傾斜角度之變化而獲取。於該情形時,無法高精度地獲取檢查對象之傾斜角度,因此存在無法基於傾斜角度,高精度地對檢查對象之狀態進行檢查之問題。
本發明係為了解決如上所述之問題而完成者,本發明之一個目的在於提供一種能夠基於傾斜角度,高精度地對檢查對象之狀態進行檢查之安裝基板檢查裝置及檢查裝置。
本發明之第1態樣之安裝基板檢查裝置具備:攝像部,其對包含安裝有零件之安裝基板的檢查對象進行拍攝;同心圓照明部,其對檢查對象照射呈同心圓狀配置有紅色(R)、綠色(G)及藍色(B)之RGB同心圓光;以及控制部,其進行以下控制,即,基於攝像部對照射了RGB同心圓光之檢查對象的拍攝結果,獲取檢查對象之傾斜角度,並且基於所獲取之檢查對象之傾斜角度,對檢查對象之狀態進行檢查。再者,所謂RGB係由「Red(紅色)」、「Green(綠色)」及「Blue(藍色)」之首字母拼成。
本發明之第1態樣之安裝基板檢查裝置中,如上所述般設置有:攝像部,其對包含安裝有零件之安裝基板的檢查對象進行拍攝;同心圓照明部,其對檢查對象照射呈同心圓狀配置有紅色(R)、綠色(G)及藍色(B)之RGB同心圓光;以及控制部,其進行以下控制,即,基於攝像部對照射了RGB同心圓光之檢查對象的拍攝結果,獲取檢查對象之傾斜角度,並且基於所獲取之檢查對象之傾斜角度,對檢查對象之狀態進行檢查。藉此,可利用拍攝結果中之RGB各顏色之明度會根據檢查對象之傾斜角度而變化這一情況,獲取檢查對象之傾斜角度。此處,於檢查對象之反射率發生變化之情形時,RGB各顏色之明度(亮度)發生變化,但RGB各顏色之明度之變化狀態(情況)保持不變。因此,藉由利用拍攝結果中之RGB各顏色之明度會根據檢查對象之傾斜角度而變化這一情況,獲取檢查對象之傾斜角度,與基於單色之明暗資訊獲取檢查對象之傾斜角度之情形時不同,無論檢查對象之反射率如何變化,均可高精度地獲取檢查對象之傾斜角度。其結果,可基於傾斜角度,高精度地對檢查對象之狀態進行檢查。
上述第1態樣之安裝基板檢查裝置中,較佳為,控制部構成為基於拍攝結果中之檢查對象之紅色、綠色及藍色之比率即RGB比率,獲取檢查對象之傾斜角度。若以此方式構成,則可基於不受檢查對象之反射率變化影響之RGB比率,更高精度地獲取檢查對象之傾斜角度,故而可基於傾斜角度,更高精度地對檢查對象之狀態進行檢查。
於該情形時,較佳為,控制部構成為基於檢查對象之RGB比率、及將預先獲取之RGB比率換算成傾斜角度之換算資訊,獲取檢查對象之傾斜角度。若以此方式構成,則僅藉由利用將RGB比率換算成傾斜角度之換算資訊,將檢查對象之RGB比率換算成傾斜角度,便可簡單且確實地獲取檢查對象之傾斜角度。
上述第1態樣之安裝基板檢查裝置中,較佳為,同心圓照明部包含呈同心圓狀配置之紅色光源、綠色光源及藍色光源,或者包含白色光源、及配置於與白色光源對向之位置之RGB同心圓彩色濾光片。若以此方式構成,則於同心圓照明部包含呈同心圓狀配置之紅色光源、綠色光源及藍色光源之情形時,可容易地獲得呈同心圓狀配置有紅色、綠色及藍色之RGB同心圓光。又,於包含白色光源、及配置於與白色光源對向之位置之RGB同心圓彩色濾光片之情形時,與個別地設置RGB各顏色之光源之情形時不同,無需為了抑制混色而將光源彼此隔開之構造,因此可簡化同心圓照明部之構造。
上述第1態樣之安裝基板檢查裝置中,較佳為,同心圓照明部構成為照射RGB同心圓光,該RGB同心圓光包含RGB三種顏色各1圈,且於同心圓最外側包含與RGB中之位於同心圓中心之顏色相同之顏色。若以此方式構成,則藉由使RGB同心圓光於同心圓最外側包含與RGB中之位於同心圓中心之顏色相同之顏色,而即便於檢查對象之傾斜角度測定範圍之最後階段(即,於檢查對象之傾斜角度較大之情形時),亦可基於複數種顏色之明度變化,高精度地獲取檢查對象之傾斜角度。
上述第1態樣之安裝基板檢查裝置中,較佳為,控制部構成為進行以下控制,即,基於檢查對象之傾斜角度,檢測傾斜角度之變化點作為裂縫。若以此方式構成,則當產生了裂縫時,通常裂縫兩側之傾斜角度不同,因此傾斜角度之變化點對應於裂縫,利用此種情況,可高精度地檢測檢查對象之裂縫。此處,雖存在檢測圖像之暗部作為裂縫之方法,但於檢測圖像之暗部作為裂縫此種情形時,存在因裂縫之寬度較窄(例如未達1像素)時於圖像中無法識別裂縫,而無法檢測出裂縫之情形。另一方面,於本構成中,檢測傾斜角度之變化點作為裂縫,故而與檢測圖像之暗部作為裂縫此種情形時不同,即便於裂縫之寬度較窄於圖像中無法識別裂縫作為暗部之情形時,亦可高精度地檢測裂縫。
於該情形時,較佳為,零件包含半導體晶圓晶片,且控制部構成為進行以下控制,即,基於檢查對象之傾斜角度,檢測半導體晶圓晶片之裂縫。若以此方式構成,則於容易產生裂縫之半導體晶圓晶片中,可高精度地檢測裂縫。
上述第1態樣之安裝基板檢查裝置中,較佳為,控制部構成為進行以下控制,即,基於檢查對象之傾斜角度,檢測安裝基板上之零件隆起。若以此方式構成,則可基於高精度地獲取之檢查對象之傾斜角度,高精度地檢測安裝基板上之零件隆起。
上述第1態樣之安裝基板檢查裝置中,較佳為,進而具備能夠計測檢查對象之高度資訊之三維計測部,且控制部構成為進行以下控制,即,根據檢查對象之傾斜角度與檢查對象之高度資訊,對檢查對象之狀態進行檢查,上述檢查對象之傾斜角度係基於攝像部對照射了RGB同心圓光之檢查對象的拍攝結果所得,上述檢查對象之高度資訊係藉由三維計測部所得。若以此方式構成,則不僅可根據基於攝像部對照射了RGB同心圓光之檢查對象之拍攝結果所得的檢查對象之傾斜角度,還可根據藉由三維計測部所得之檢查對象之高度資訊,更高精度地對檢查對象之狀態進行檢查。
上述第1態樣之安裝基板檢查裝置中,較佳為,攝像部具有拍攝用透鏡,同心圓照明部構成為使用拍攝用透鏡,對檢查對象照射RGB同心圓光。若以此方式構成,則可有效地利用既有之拍攝用透鏡,對檢查對象照射RGB同心圓光,而無需於同心圓照明部中個別地獨立設置照明用透鏡。其結果,可簡化攝像部及同心圓照明部之構造,並且可節省攝像部及同心圓照明部之配置空間。
於該情形時,較佳為,拍攝用透鏡係於攝像部中配置於最靠近檢查對象側之位置之物鏡。若以此方式構成,則可有效地利用作為物鏡之拍攝用透鏡,對檢查對象照射RGB同心圓光。
上述第1態樣之安裝基板檢查裝置中,較佳為,控制部構成為,基於攝像部對照射了RGB同心圓光之檢查對象的拍攝結果、與從照射了白色光之檢查對象之拍攝結果獲取的檢查對象之色相資訊,獲取檢查對象之傾斜角度。若以此方式構成,則可考慮具有色相之面與不具有色相之面中RGB反射特性不同、以及具有色相之面中每個色相之RGB反射特性亦不同,而更高精度地獲取檢查對象之傾斜角度。
本發明之第2態樣之檢查裝置具備:攝像部,其拍攝檢查對象;同心圓照明部,其對檢查對象照射呈同心圓狀配置有紅色(R)、綠色(G)及藍色(B)之RGB同心圓光;以及控制部,其進行以下控制,即,基於攝像部對照射了RGB同心圓光之檢查對象的拍攝結果,獲取檢查對象之傾斜角度,並且基於所獲取之檢查對象之傾斜角度,對檢查對象之狀態進行檢查。
本發明之第2態樣之檢查裝置中,如上所述般設置有:攝像部,其拍攝檢查對象;同心圓照明部,其對檢查對象照射呈同心圓狀配置有紅色(R)、綠色(G)及藍色(B)之RGB同心圓光;以及控制部,其進行以下控制,即,基於攝像部對照射了RGB同心圓光之檢查對象的拍攝結果,獲取檢查對象之傾斜角度,並且基於所獲取之檢查對象之傾斜角度,對檢查對象之狀態進行檢查。藉此,與上述第1態樣之安裝基板檢查裝置同樣地,可提供一種能夠基於傾斜角度,高精度地對檢查對象之狀態進行檢查之檢查裝置。
以下,基於圖式說明實現本發明的實施方式。
[第1實施方式] (安裝基板檢查裝置之構成) 參照圖1說明本發明之實施方式之安裝基板檢查裝置100之構成。再者,安裝基板檢查裝置100係申請專利範圍中之「檢查裝置」之一例。
如圖1所示,安裝基板檢查裝置100係對作為檢查對象P1(拍攝對象)之印刷基板等安裝基板P進行拍攝,並對安裝基板P及安裝基板P上之零件E進行各種檢查之外觀檢查裝置。安裝基板檢查裝置100構成基板生產線之一部分,基板生產線係用以將IC、電晶體、電容器、電阻及半導體晶圓晶片等零件E(電子零件)安裝於安裝基板P來製造電路基板。再者,安裝基板檢查裝置100係本發明之「檢查裝置」之一例。
作為基板製造工藝之概要,首先,於形成有配線圖案之安裝基板P上,利用焊料印刷裝置(未圖示)以特定之圖案進行焊料(焊料膏)之印刷(塗佈)(焊料印刷步驟)。繼而,於印刷焊料後之安裝基板P上,利用零件安裝裝置(未圖示)搭載(安裝)零件E(安裝步驟),藉此將零件E之端子部配置於焊料上。其後,將安裝結束後之安裝基板P搬送至回焊爐(未圖示)中進行焊料之熔融及硬化(冷卻)(回焊步驟),藉此,零件E之端子部被焊接至安裝基板P之配線。藉此,零件E以電性連接於配線之狀態固定於安裝基板P上,從而完成基板製造。
安裝基板檢查裝置100例如用於安裝步驟後之零件E之安裝狀態之檢查、或回焊步驟後之零件E之安裝狀態之檢查等。因此,安裝基板檢查裝置100於基板生產線中設置有1個或複數個。關於零件E之安裝狀態,進行如下等檢查:零件E之種類及朝向(極性)是否精確;零件E之相對於設計安裝位置之位置偏移量是否處於容許範圍內;端子部之焊接狀態是否正常;安裝基板P上之零件E是否產生隆起;以及零件E是否產生了裂縫(破裂)。又,作為各步驟間之共通之檢查內容,亦進行污物或其他附著物等異物之檢測。
安裝基板檢查裝置100具備:基板搬送輸送器10,其用以搬送安裝基板P;頭移動機構20,其能夠於基板搬送輸送器10之上方,沿XY方向(水平方向)及Z方向(上下方向)移動;攝像頭部30,其由頭移動機構20保持;以及控制裝置40,其進行安裝基板檢查裝置100之控制。再者,控制裝置40係申請專利範圍中之「控制部」之一例。
基板搬送輸送器10構成為能夠將安裝基板P沿X方向搬送,並且使安裝基板P於特定之檢查位置停止並保持在該位置。又,基板搬送輸送器10構成為能夠將已結束檢查之安裝基板P從特定之檢查位置沿X方向搬送,並將安裝基板P從安裝基板檢查裝置100搬出。
頭移動機構20設置於基板搬送輸送器10之上方(Z1方向),例如由使用滾珠螺桿軸及伺服馬達之正交三軸(XYZ軸)機器人構成。頭移動機構20具備用以進行該等X軸、Y軸及Z軸之驅動之X軸馬達21、Y軸馬達22及Z軸馬達23。藉由該等X軸馬達21、Y軸馬達22及Z軸馬達23,頭移動機構20構成為能夠使攝像頭部30於基板搬送輸送器10(安裝基板P)之上方(Z1方向),沿XY方向(水平方向)及Z方向(上下方向)移動。
攝像頭部30構成為測定(獲取)安裝基板P(檢查對象P1)之二維資訊(二維圖像)及三維資訊(三維圖像)。攝像頭部30具備攝像部31、同心圓照明部32、作為二維計測部之二維照明部33以及三維計測部34。
攝像部31係拍攝配置於檢查位置之安裝基板P(檢查對象P1)之相機。攝像部31構成為於同心圓照明部32、二維照明部33或三維計測部34之光照射下,拍攝安裝基板P(檢查對象P1)。又,攝像部31之光軸配置於與水平方向之基準面垂直之方向上。亦即,攝像部31構成為從大致垂直上方之位置拍攝安裝基板P(檢查對象P1)之上表面,獲取安裝基板P(檢查對象P1)之二維圖像。
同心圓照明部32構成為對安裝基板P(檢查對象P1)照射呈同心圓狀配置有紅色(R)、綠色(G)及藍色(B)之RGB同心圓光。關於同心圓照明部32之詳細構成將於下文敍述。
二維照明部33包含圓頂照明部33a與低角度照明部33b。圓頂照明部33a具有圓頂狀(半球殼狀)之反射部51、及設置於反射部51之內表面側之複數個光源部52。於圓頂照明部33a之照明光之照射下,能夠獲取安裝基板P(檢查對象P1)之無影拍攝圖像。低角度照明部33b具有環狀之安裝部53、及呈環狀設置於安裝部53之內表面側之複數個光源部54。於低角度照明部33b之照明光之照射下,能夠獲取安裝基板P(檢查對象P1)之邊緣清晰之拍攝圖像。光源部52及54例如為白色LED(Light Emitting Diode,發光二極體)。
三維計測部34構成為能夠計測包含安裝基板P(檢查對象P1)之高度資訊之三維資訊。三維計測部34例如為能夠藉由使用雷射光之光切斷法計測三維資訊之雷射計測部、或能夠藉由使用條紋圖案光之相位偏移法計測三維資訊之相位照明部。基於光切斷法之雷射光或相位偏移法之條紋圖案光之拍攝結果,能夠獲取包含安裝基板P(檢查對象P1)之高度資訊之三維資訊。
控制裝置40包含控制部41、記憶部42、圖像處理部43、攝像控制部44、照明控制部45及馬達控制部46。
控制部41包含執行邏輯運算之CPU(Central Processing Unit,中央處理單元)、記憶有控制CPU之程式等之ROM(Read Only Memory,唯讀記憶體)及於裝置之動作中暫時記憶各種資料之RAM(Random Access Memory,隨機存取記憶體)等。控制部41構成為,按照記憶於ROM中之程式、或儲存於記憶部42中之軟體(程式),經由圖像處理部43、攝像控制部44、照明控制部45及馬達控制部46,控制安裝基板檢查裝置100之各部。而且,控制部41控制攝像頭部30,以對安裝基板P進行各種外觀檢查。
記憶部42包含能夠進行各種資料之記憶與利用控制部41之讀出之非揮發性記憶裝置。記憶部42中,記憶有由攝像部31拍攝到之拍攝圖像資料、以及規定了要安裝於安裝基板P上之零件E之設計位置資訊的基板資料等。圖像處理部43構成為,對由攝像部31拍攝到之拍攝圖像進行圖像處理,以產生適於識別(圖像識別)安裝基板P及安裝基板P上之零件E等之圖像資料。
攝像控制部44構成為,基於從控制部41輸出之控制信號,於特定之時點從攝像部31讀出拍攝信號,並且將所讀出之拍攝信號輸出至圖像處理部43。照明控制部45構成為,基於從控制部41輸出之控制信號,於特定之時點使同心圓照明部32及二維照明部33點亮。馬達控制部46構成為,基於從控制部41輸出之控制信號,控制安裝基板檢查裝置100之各伺服馬達(頭移動機構20之X軸馬達21、Y軸馬達22及Z軸馬達23、以及用以驅動基板搬送輸送器10之馬達(未圖示)等)之驅動。又,馬達控制部46構成為,基於來自各伺服馬達之編碼器(未圖示)之信號,獲取攝像頭部30及安裝基板P等之位置。
(攝像部及同心圓照明部之構成) 如圖2所示,攝像部31具有物鏡(前透鏡(front lens))31a、成像透鏡31b及攝像元件31c。物鏡31a係於攝像部31中配置於最靠近檢查對象P1側(物體側)之位置之透鏡。又,物鏡31a係作為遠心透鏡而設置,此種遠心透鏡係於攝像元件31c側(圖像側),通過物鏡31a之光之主光線與物鏡31a之光軸大致平行。成像透鏡31b構成為使通過物鏡31a之光線成像。物鏡31a及成像透鏡31b設置於鏡筒31d內。攝像元件31c例如包含CMOS(Complementary Metal-Oxide Semiconductor,互補金氧半導體)影像感測器,構成為接收通過物鏡31a及成像透鏡31b之光線,並將其轉換成電信號。攝像部31具有遠心光學系統。
同心圓照明部32具有同心圓光源部32a、照射透鏡32b及半反射鏡32c。同心圓光源部32a構成為發出呈同心圓狀配置有紅色、綠色及藍色之RGB同心圓光。RGB同心圓光包含大致圓形狀之第1色光、以包圍大致圓形狀之第1色光之外周的方式配置之大致環狀之第2色光、以及以包圍大致環狀之第2色光之外周的方式配置之大致環狀之第3色光。第1色光、第2色光及第3色光係從中心側朝向外周側依序配置。再者,RGB同心圓光中之紅色、綠色及藍色之配置順序並無特別限制,於第1~第4實施方式中,為方便起見,對從中心側朝向外周側依序配置有紅色、綠色及藍色之例進行說明。
參照圖3(A)(B),說明同心圓光源部32a之第1構成例。如圖3(A)(B)所示,第1構成例之同心圓光源部32a包含呈同心圓狀配置之紅色光源61、綠色光源62及藍色光源63。紅色光源61配置於最中心側,構成為發出大致圓形狀之紅色光。紅色光源61包含複數個(圖3(B)中為4個)紅色LED。綠色光源62配置於中間位置,構成為發出大致環狀之綠色光。綠色光源62包含複數個(圖3(B)中為16個)綠色LED。藍色光源63配置於最外周側,構成為發出大致環狀之藍色光。藍色光源63包含複數個(圖3(B)中為32個)藍色LED。
又,第1構成例之同心圓光源部32a中,於各色光源(61、62、63)之光出射方向之前方設置有擴散板64,並且於各色光源(61、62、63)之間設置有間隔板65。擴散板64構成為使從光源(61、62、63)出射之光擴散。間隔板65係為了防止相鄰光源之光(顏色)混合,而以將相鄰光源之間區隔開之方式配置。藉由該等構成,第1構成例之同心圓光源部32a構成為能夠發出RGB同心圓光。
參照圖4(A)(B),說明同心圓光源部32a之第2構成例。如圖4(A)(B)所示,第2構成例之同心圓光源部32a包含白色光源71、及配置於與白色光源71對向之位置之RGB同心圓彩色濾光片72。白色光源71構成為發出大致圓形狀之白色光。白色光源71包含複數個(圖4(B)中為17個)白色LED。同心圓彩色濾光片72包含呈同心圓狀配置之紅色濾光片72a、綠色濾光片72b及藍色濾光片72c。紅色濾光片72a配置於最中心側,構成為選擇性地使紅色光透過。紅色濾光片72a具有大致圓形狀,構成為使大致圓形狀之紅色光透過。紅色濾光片72a例如由紅色之賽璐凡(cellophane)構成。綠色濾光片72b配置於中間位置,構成為選擇性地使綠色光透過。綠色濾光片72b具有大致環形狀,構成為使大致環狀之綠色光透過。綠色濾光片72b例如由綠色之賽璐凡構成。藍色濾光片72c配置於最外周側,構成為選擇性地使藍色光透過。藍色濾光片72c具有大致環形狀,構成為使大致環狀之藍色光透過。藍色濾光片72c例如由藍色之賽璐凡構成。
又,第2構成例之同心圓光源部32a中,於白色光源71與同心圓彩色濾光片72之間設置有擴散板73。擴散板73構成為使從白色光源71出射之光擴散。藉由該等構成,第2構成例之同心圓光源部32a構成為能夠發出RGB同心圓光。
如圖2所示,照射透鏡32b設置於同心圓光源部32a與檢查對象P1之間,構成為從同心圓光源部32a照射RGB同心圓光。照射透鏡32b係作為遠心透鏡而設置,此種遠心透鏡係於檢查對象P1側(物體側),通過照射透鏡32b之光(來自同心圓光源部32a之RGB同心圓光)之主光線與照射透鏡32b之光軸大致平行。對檢查對象P1照射主光線與照射透鏡32b之光軸大致平行之RGB同心圓光。又,同心圓光源部32a配置於與照射透鏡32b隔開和照射透鏡32b之焦點距離相應之程度之位置,以對檢查對象P1照射主光線與照射透鏡32b之光軸大致平行之RGB同心圓光。
半反射鏡32c設置於照射透鏡32b與檢查對象P1之間,構成為被照射通過照射透鏡32b之RGB同心圓光。半反射鏡32c構成為藉由使RGB同心圓光反射,而改變RGB同心圓光之前進方向,藉此對檢查對象P1照射RGB同心圓光。又,半反射鏡32c構成為藉由使經檢查對象P1反射之RGB同心圓光透過,而由攝像部31之攝像元件31c接收光。同心圓照明部32具有遠心光學系統,並且作為對檢查對象P1照射與攝像部31之光軸大致同軸之光(RGB同心圓光)之同軸照明發揮功能。又,以RGB同心圓光之直徑之中心(同心圓光源部32a之直徑之中心)、照射透鏡32b之光軸及攝像部31之攝像透鏡(物鏡31a、成像透鏡31b)之光軸大致一致之方式對準。
藉由該等構成,如圖5所示,同心圓照明部32構成為對檢查對象P1之檢查面之各點,照射主光線與照射透鏡32b之光軸大致平行之RGB同心圓光。又,同心圓照明部32構成為對檢查對象P1未傾斜時之檢查對象P1之檢查面(大致水平之檢查面),照射主光線大致垂直之RGB同心圓光。再者,於圖5中,為了更容易理解,省略了半反射鏡32c之圖示。
此處,本實施方式中,安裝基板檢查裝置100之控制裝置40構成為進行以下控制:基於攝像部31對藉由同心圓照明部32照射了RGB同心圓光之檢查對象P1之拍攝結果,獲取檢查對象P1之傾斜角度,並且基於所獲取之檢查對象P1之傾斜角度,對檢查對象P1之狀態進行檢查。
(傾斜角度之獲取原理) 參照圖6及圖7,說明利用RGB同心圓光獲取傾斜角度之原理。
圖6表示由攝像部31形成之觀察立體角O、與由同心圓照明部32形成之照射立體角I之包含關係。此處,所謂觀察立體角O,表示攝像部31對檢查對象P1之檢查面之各點之拍攝範圍(受光範圍),可表示為以檢查面之各點為頂點之錐體。又,所謂照射立體角I,表示照射光(RGB同心圓光)對檢查對象P1之檢查面之各點之照射範圍,可表示為以檢查面之各點為頂點之錐體。又,照射光之反射光亦可利用與照射光相同之照射立體角I表示。所謂由攝像部31接收光(拍攝),係指照射立體角I之反射光中之包含於觀察立體角O之部分(與觀察立體角O重疊之部分)。
此處,當檢查對象P1之檢查面未傾斜時(檢查面水平時),若照射光於檢查對象P1之檢查面上正反射,則反射光(正反射光)與照射光一致。另一方面,當檢查對象P1之檢查面以傾斜角度θb傾斜時,若照射光於檢查對象P1之檢查面正反射,則反射光(正反射光)向相對於檢查對象P1之檢查面之法線與照射光對稱之方向(從照射光以傾斜角度2θb傾斜後之方向)反射。於該情形時,觀察立體角O與反射光之照射立體角I之包含關係發生變化。藉此,由攝像部31接收(拍攝)到之RGB各顏色之明度發生變化。
圖7係表示與檢查對象P1之檢查面之傾斜角度對應之RGB各顏色之明度變化的曲線圖。圖7之曲線圖中,縱軸表示明度(256灰階),橫軸表示檢查對象P1之檢查面之傾斜角度。根據圖7之曲線圖可得出,RGB各顏色之明度根據檢查對象P1之檢查面之傾斜角度而連續變化。具體而言,當檢查對象P1之檢查面之傾斜角度較小時,紅色(R)之比率大於綠色(G)及藍色(B)。其後,隨著檢查對象P1之檢查面之傾斜角度變為中等程度,紅色(R)之比率逐漸變小,同時綠色(G)之比率逐漸變大。其後,隨著檢查對象P1之檢查面之傾斜角度進一步變大,綠色(G)之比率逐漸變小,同時藍色(B)之比率逐漸變大。
因此,能夠利用攝像部31之拍攝結果中之RGB各顏色之明度變化,獲取檢查對象P1之檢查面之傾斜角度。具體而言,能夠利用攝像部31之拍攝結果中之RGB之比率變化,獲取檢查對象P1之檢查面之傾斜角度。
(立體角之設計例) 其次,參照圖8(A)~(C),說明觀察立體角O與照射立體角I之設計例。
如圖8(A)所示,觀察立體角O之值可利用以下之式(1)及(2)求出。 NA=M/2Fe        ・・・(1) θw=arcsin(NA)       ・・・(2) 此處, NA:攝像透鏡(物鏡)之物體側數值孔徑 M:攝像元件之拍攝倍率 Fe:攝像透鏡(物鏡)之實效F數值 θw:觀察立體角之值。
例如,當拍攝倍率M為0.45,執行F數值Fe為14.7時,數值孔徑NA為約0.015306(0.45/(2×14.7))。於該情形時,觀察立體角O之值θw為約0.88度(arcsin(0.015306))。
如圖8(B)所示,照射立體角I之值可利用以下之式(3)~(5)求出。 F=f/Φ                ・・・(3) NA=1/2F           ・・・(4) θL=arcsin(NA)        ・・・(5) 此處, F:照射透鏡之F數值 f:照射透鏡之焦點距離 Φ:同心圓光源部之最大直徑 NA:照射透鏡之數值孔徑 θL:照射立體角之值(最大值)。
例如,當焦點距離f為208.2 mm,最大直徑Φ為26 mm時,F數值F為約8.007692(208.2/26)。於該情形時,數值孔徑NA為約0.06244(1/(2×8.007692))。又,照射立體角I之值θL為約3.58度(arcsin(0.06244))。
又,RGB各顏色之照射立體角I之值可利用以下之式(6)~(8)求出。 θz=θL×Φz/Φx         ・・・(6) θy=θL×Φy/Φx-θz       ・・・(7) θx=θL-(θy+θz)          ・・・(8) 此處, θz:中心之顏色之照射立體角之值 θy:中間之顏色之照射立體角之值 θx:最外周之顏色之照射立體角之值 θL:照射立體角之值(最大值) Φz:中心之顏色之光源之最外徑 Φy:中間之顏色之光源之最外徑 Φx:最外周之顏色之光源之最外徑。
例如,當照射立體角I之最大值θL為約3.58度,中心之顏色(第1實施方式中為紅色)之光源之最外徑Φz為8.6 mm,中間之顏色(第1實施方式中為綠色)之光源之最外徑Φy為17.4 mm,最外周之顏色(第1實施方式中為藍色)之光源之最外徑Φx為26 mm時,中心之顏色之照射立體角I之值θx為約1.18度(3.58×8.6/26),中間之顏色之照射立體角I之值θy為約1.21度(3.58×17.4/26-1.18),最外周之顏色之照射立體角I之值θx為約1.19度(3.58-(1.21+1.18))。各顏色之照射立體角I之值能夠基於各色光源之最外徑來設定。
如圖8(C)所示,包含極限角度(見圖6)可利用以下之式(9)求出。包含極限角度係觀察立體角O不包含反射光之照射立體角I時之觀察立體角O之光軸與反射光之照射立體角I之光軸所成之角度。又,包含極限角度之情形時之檢查對象P1之檢查面之傾斜角度可利用以下之式(10)求出。 θe=θw+θL        ・・・(9) θb=θe/2       ・・・(10) 此處, θe:包含極限角度 θw:觀察立體角之值 θL:照射立體角之值 θb:包含極限角度之情形時之檢查對象之檢查面之傾斜角度。
例如,當觀察立體角O之值θw為約0.88度,照射立體角I之值θL為約3.58度時,包含極限角度θe為約4.46度(0.88+3.58)。又,包含極限角度θe之情形時之檢查對象P1之檢查面之傾斜角度θb為約2.23度(4.46/2)。於該情形時,利用觀察立體角O與照射立體角I之包含關係能夠測定之檢查對象P1之檢查面之傾斜角度的範圍為0度~約2.23度。
根據上述內容可得出,藉由依照需要測定之角度範圍,設定觀察立體角O之值θw及照射立體角I之值θL,能夠於需要之角度範圍內,測定檢查對象P1之檢查面之傾斜角度。
(檢查對象之檢查) 其次,參照圖9~圖11,說明利用RGB同心圓光進行之檢查對象P1之檢查。
本實施方式中,控制裝置40構成為進行以下控制,即,使攝像部31拍攝照射了RGB同心圓光之檢查對象P1(安裝基板P)。又,控制裝置40構成為獲取攝像部31對照射了RGB同心圓光之檢查對象P1的拍攝結果。又,控制裝置40構成為基於所獲取之拍攝結果,獲取拍攝結果中之檢查對象P1之紅色、綠色及藍色各顏色之明度(RGB之明度)。又,控制裝置40構成為基於所獲取之RGB各顏色之明度,獲取拍攝結果中之檢查對象P1之紅色、綠色及藍色之比率即RGB比率。又,控制裝置40構成為基於所獲取之檢查對象P1之RGB比率,獲取檢查對象P1之傾斜角度。具體而言,控制裝置40構成為基於檢查對象P1之RGB比率、及將預先獲取之RGB比率換算成傾斜角度之換算資訊42a,來獲取檢查對象P1之傾斜角度。
如圖9所示,換算資訊42a係將RGB比率換算成傾斜角度之換算表。於換算資訊42a中,RGB比率與傾斜角度建立了對應。具體而言,於換算資訊42a中,傾斜角度與每個特定之RGB比率範圍建立了對應。再者,圖9中,為方便起見,僅圖示了特定之RGB比率範圍之中心值。控制裝置40構成為,於所獲取之檢查對象P1之RGB比率處於特定之RGB比率範圍內之情形時,從換算資訊42a獲取與特定出之RGB比率範圍建立了對應之傾斜角度,作為檢查對象P1之傾斜角度。換算資訊42a被預先獲取並記憶於記憶部42中。再者,換算資訊42a之獲取方法之詳細情況將於下文敍述。
如圖10及圖11所示,控制裝置40構成為進行以下控制,即,基於檢查對象P1之傾斜角度,對作為檢查對象P1之安裝基板P上之零件E進行檢查。
具體而言,如圖10所示,控制裝置40構成為進行以下控制,即,基於檢查對象P1之傾斜角度,檢測傾斜角度之變化點(傾斜角度之變化邊界)作為裂縫。藉此,控制裝置40構成為進行以下控制,即,基於檢查對象P1之傾斜角度,對作為半導體晶圓晶片(所謂之晶粒)之零件E之裂縫進行檢測。控制裝置40構成為進行以下控制,即,於傾斜角度之變化為基準值以上之情形時,檢測傾斜角度之變化點作為裂縫。
圖10係照射RGB同心圓光所拍攝到之產生了裂縫之零件E之模式圖。於照射RGB同心圓光而拍攝零件E之情形時,通常會因裂縫兩側之傾斜角度不同,而獲得拍攝到之裂縫兩側呈現附著有RGB比率不同之顏色之面的拍攝結果。圖10中,圖示了拍攝到之裂縫一側為附有藍色系顏色之面,裂縫另一側為附有綠色系顏色之面之例。於該情形時,附有藍色系顏色之面與附有綠色系顏色之面的邊界成為傾斜角度之變化點,因此檢測為裂縫。再者,圖10中,為了更容易理解,圖示了裂縫兩側為不同系統之顏色之例,但即便為裂縫兩側為同一系統之顏色(藍色系顏色彼此等),只要存在基準值以上之傾斜角度之變化,便能夠檢測為裂縫。
又,如圖11所示,控制裝置40構成為進行以下控制,即,基於檢查對象P1之傾斜角度,檢測安裝基板P上之零件E之隆起。此處,於利用RGB同心圓光之情形時,可獲取傾斜角度,另一方面,傾斜方向未知。因此,難以區分因安裝基板P上之零件E產生隆起而獲得零件E之傾斜角度的情況、與儘管零件E未產生隆起但因安裝基板P本身傾斜而獲得零件E之傾斜角度的情況。
因此,本實施方式中,控制裝置40構成為進行以下控制,即,根據檢查對象P1之傾斜角度及檢查對象P1之高度資訊,檢測安裝基板P上之零件E之隆起(檢查對象P1之狀態),上述檢查對象P1之傾斜角度係基於攝像部31對照射了RGB同心圓光之檢查對象P1的拍攝結果所得,上述檢查對象P1之高度資訊係利用三維計測部34所得。
具體而言,控制裝置40構成為基於利用三維計測部34所得之檢查對象P1之高度資訊,獲取安裝基板P之傾斜方向及傾斜角度、以及零件E之傾斜方向。而且,控制裝置40構成為,於考慮使用三維計測部34所獲取之安裝基板P之傾斜方向及零件E之傾斜方向之情況下,獲取使用三維計測部34所獲取之安裝基板P之傾斜角度、與使用RGB同心圓光所獲取之零件E之傾斜角度的角度差。而且,控制裝置40構成為進行以下控制,即,於所獲取之角度差為基準值以上之情形時,視為檢測出產生了安裝基板P上之零件E之隆起。再者,本構成無法充分地獲得散射光,因此對於某些零件E(半導體晶圓晶片等)之隆起之檢測尤其有效,例如具有藉由使用散射光進行計測之三維計測部34難以準確地計測傾斜角度之鏡面的零件E(半導體晶圓晶片等)。又,由於安裝基板P通常能夠獲得足夠之散射光,因此能夠藉由三維計測部34計測傾斜方向及傾斜角度。又,關於零件E之傾斜方向,於無法獲取充分之散射光之情形時,亦能藉由三維計測部34進行計測。
(表格獲取處理) 其次,參照圖12及圖13,基於流程圖說明利用第1實施方式之安裝基板檢查裝置100進行之表格獲取處理。再者,表格獲取處理係於利用安裝基板檢查裝置100進行檢查對象P1之檢查之前進行。又,流程圖之各處理可藉由控制裝置40進行,亦可由作業人員進行。
又,如圖13所示,使用專門用於獲取換算資訊42a之治具J進行表格獲取處理。治具J係不具有色相之平板。例如,作為治具J,可採用鏡面之鋁製平板。
如圖12及圖13所示,首先,於步驟S1中,獲取攝像部31對藉由同心圓照明部32照射了RGB同心圓光之治具J之拍攝結果。於第一次步驟S1中,治具J被設定為水平狀態(傾斜角度0之狀態)。
然後,於步驟S2中,基於治具J之拍攝結果,獲取治具J之RGB比率並保存。
然後,於步驟S3中,使治具J傾斜特定角度(例如,0.1度)。
然後,於步驟S4中,判斷是否已測定了全部測定範圍(例如,2.5度之範圍)。於判斷為尚未對全部測定範圍進行測定之情形時,進行至步驟S1。然後,於完成全部測定範圍之測定之前,反覆進行步驟S1~S4之處理。
又,於步驟S4中,於判斷為已測定了全部測定範圍之情形時,進行至步驟S5。於進行至步驟S5之階段,能夠獲取如圖9所示般之與治具J之傾斜角度對應之RGB比率之變化之測定結果。
然後,於步驟S5中,基於與治具J之傾斜角度對應之RGB比率變化之測定結果,獲取(製作)將RGB比率換算成傾斜角度之換算資訊42a,並記憶於記憶部42中。
(基板檢查處理) 其次,參照圖14,基於流程圖說明利用第1實施方式之安裝基板檢查裝置100所進行之基板檢查處理。再者,流程圖之各處理係藉由控制裝置40來進行。
如圖14所示,首先,於步驟S11中,獲取攝像部31對藉由同心圓照明部32照射了RGB同心圓光之檢查對象P1(安裝基板P)之拍攝結果。
然後,於步驟S12中,基於檢查對象P1之拍攝結果獲取檢查對象P1之RGB比率。於步驟S12中,例如,獲取拍攝結果(圖像)中之每個像素之RGB比率。又,於步驟S12中,例如,獲取拍攝結果(圖像)中之每個像素集合體之RGB比率(集合體中之RGB平均比率)。再者,像素集合體例如為拍攝結果(圖像)中被視為同一平面之像素之集合。
然後,於步驟S13中,基於檢查對象P1之RGB比率與換算資訊42a,獲取檢查對象P1之傾斜角度。於步驟S13中,例如,獲取拍攝結果(圖像)中之每個像素之傾斜角度。又,於步驟S12中,例如,獲取拍攝結果(圖像)中之每個像素集合體之傾斜角度。
然後,於步驟S14中,基於檢查對象P1之傾斜角度,對檢查對象P1之狀態進行檢查。於步驟S14中,基於檢查對象P1之傾斜角度,檢測傾斜角度之變化點作為零件E之裂縫。又,於步驟S14中,基於零件E之傾斜角度與藉由三維計測部34所獲取之安裝基板P之傾斜方向、傾斜角度及零件E之傾斜方向,檢測與安裝基板P之間具有極端角度差之零件E,作為產生了從安裝基板P之隆起之零件E。然後,基板檢查處理結束。
(第1實施方式之效果) 第1實施方式中,可獲得如下效果。
第1實施方式中,如上所述,安裝基板檢查裝置100中設置有:攝像部31,其對包含安裝有零件E之安裝基板P之檢查對象P1進行拍攝;同心圓照明部32,其對檢查對象P1照射呈同心圓狀配置有紅色(R)、綠色(G)及藍色(B)之RGB同心圓光;以及控制裝置40,其進行以下控制,即,基於攝像部31對照射了RGB同心圓光之檢查對象P1的拍攝結果,獲取檢查對象P1之傾斜角度,並且基於所獲取之檢查對象P1之傾斜角度,對檢查對象P1之狀態進行檢查。藉此,可利用拍攝結果中之RGB各顏色之明度根據檢查對象P1之傾斜角度而變化這一情況,獲取檢查對象P1之傾斜角度。此處,於檢查對象P1之反射率發生變化之情形時,RGB各顏色之明度(亮度)發生變化,但RGB各顏色之明度之變化狀態(情況)保持不變。因此,藉由利用拍攝結果中之RGB各顏色之明度根據檢查對象P1之傾斜角度而變化這一情況,獲取檢查對象P1之傾斜角度,與基於單色之明暗資訊獲取檢查對象P1之傾斜角度之情形時不同,無論檢查對象P1之反射率如何變化,均可高精度地獲取檢查對象P1之傾斜角度。其結果,可基於傾斜角度,高精度地對檢查對象P1之狀態進行檢查。
又,第1實施方式中,如上所述,控制裝置40構成為基於拍攝結果中之檢查對象P1之紅色、綠色及藍色之比率即RGB比率,獲取檢查對象P1之傾斜角度。藉此,可基於不受檢查對象P1之反射率變化影響之RGB比率,更高精度地獲取檢查對象P1之傾斜角度,因此可基於傾斜角度,更高精度地對檢查對象P1之狀態進行檢查。
又,第1實施方式中,如上所述,控制裝置40構成為基於檢查對象P1之RGB比率與將預先獲取之RGB比率換算成傾斜角度之換算資訊42a,獲取檢查對象P1之傾斜角度。藉此,僅藉由利用將RGB比率換算成傾斜角度之換算資訊42a,將檢查對象P1之RGB比率換算成傾斜角度,便可簡單且確實地獲取檢查對象P1之傾斜角度。
又,第1實施方式中,如上所述,同心圓照明部32包含呈同心圓狀配置之紅色光源61、綠色光源62及藍色光源63,或者包含白色光源71、及配置於與白色光源71對向之位置之RGB同心圓彩色濾光片72。藉此,於同心圓照明部32包含呈同心圓狀配置之紅色光源61、綠色光源62及藍色光源63之情形時,可容易地獲得呈同心圓狀配置有紅色、綠色及藍色之RGB同心圓光。又,於包含白色光源71、及配置於與白色光源71對向之位置之RGB同心圓彩色濾光片72之情形時,與個別地設置RGB各顏色之光源之情形時不同,無需為了抑制混色而將光源彼此隔開之構造,因此可簡化同心圓照明部32之構造。
又,第1實施方式中,如上所述,控制裝置40構成為進行以下控制,即,基於檢查對象P1之傾斜角度,檢測傾斜角度之變化點作為裂縫。藉此,於產生了裂縫之情形時,通常裂縫兩側之傾斜角度不同,因此可利用傾斜角度之變化點對應於裂縫這一情況,高精度地檢測檢查對象P1之裂縫。此處,雖存在檢測圖像之暗部作為裂縫之方法,但於檢測圖像之暗部作為裂縫此種情形時,若裂縫之寬度較窄(例如未達1像素),則無法識別出圖像中之裂縫,因此可能無法檢測出裂縫。另一方面,本構成中,檢測傾斜角度之變化點作為裂縫,因此與檢測圖像之暗部作為裂縫此種情形時不同,即便於裂縫之寬度較窄,無法以暗部之形態識別圖像中之裂縫之情形時,亦可高精度地檢測裂縫。
又,第1實施方式中,如上所述,零件E包含半導體晶圓晶片。又,控制裝置40構成為進行如下控制,即,基於檢查對象P1之傾斜角度,檢測半導體晶圓晶片之裂縫。藉此,可於容易產生裂縫之半導體晶圓晶片中,高精度地檢測裂縫。
又,第1實施方式中,如上所述,控制裝置40構成為進行以下控制,即,基於檢查對象P1之傾斜角度,檢測安裝基板P上之零件E之隆起。藉此,可基於高精度地獲取之檢查對象P1之傾斜角度,高精度地檢測安裝基板P上之零件E之隆起。
又,第1實施方式中,如上所述,安裝基板檢查裝置100具備能夠計測檢查對象P1之高度資訊之三維計測部34。又,控制裝置40構成為進行以下控制,即,根據檢查對象P1之傾斜角度與檢查對象P1之高度資訊,對檢查對象P1之狀態進行檢查,上述檢查對象P1之傾斜角度係基於攝像部31對照射了RGB同心圓光之檢查對象P1的拍攝結果所得,上述檢查對象P1之高度資訊係利用三維計測部34所得。藉此,不僅可根據基於攝像部31對照射了RGB同心圓光之檢查對象P1的拍攝結果所得之檢查對象P1之傾斜角度,亦可根據利用三維計測部34所得之檢查對象P1之高度資訊,而更高精度地對檢查對象P1之狀態進行檢查。
[第2實施方式] 其次,參照圖15說明第2實施方式。於該第2實施方式中,說明與在同心圓照明部設置有照射透鏡之上述第1實施方式不同,使用攝像部之物鏡作為同心圓照明部之照射透鏡之例。再者,對與上述第1實施方式相同之構成,於圖中標註相同之符號來圖示,並省略其說明。
(安裝基板檢查裝置之構成) 如圖15所示,本發明之第2實施方式之安裝基板檢查裝置200於具備同心圓照明部132以代替上述第1實施方式之同心圓照明部32之方面,與上述第1實施方式之安裝基板檢查裝置100不同。再者,安裝基板檢查裝置200具備二維照明部33與三維計測部34。又,安裝基板檢查裝置200係申請專利範圍中之「檢查裝置」之一例。
此處,於第2實施方式中,如圖15所示,同心圓照明部132構成為,使用於攝像部31中配置於最靠近檢查對象P1側之位置之物鏡31a,對檢查對象P1照射RGB同心圓光。即,第2實施方式之同心圓照明部132包含攝像部31之物鏡31a以代替上述第1實施方式之照射透鏡32b。物鏡31a兼用作攝像部31之拍攝用透鏡與同心圓照明部132之照射用透鏡。再者,物鏡31a係申請專利範圍中之「拍攝用透鏡」之一例。
於第2實施方式中,物鏡31a設置於半反射鏡32c與檢查對象P1之間,且構成為被照射經半反射鏡32c反射之RGB同心圓光。物鏡31a係作為遠心透鏡而設置,使通過物鏡31a之光(來自同心圓光源部32a之RGB同心圓光)之主光線於檢查對象P1側(物體側)與物鏡31a之光軸大致平行。又,同心圓光源部32a配置於與物鏡31a隔開和物鏡31a之焦點距離相應之程度之位置,以對檢查對象P1照射主光線與物鏡31a之光軸大致平行之RGB同心圓光。
再者,第2實施方式之其他構成與上述第1實施方式相同。
(第2實施方式之效果) 於第2實施方式中,可獲得如下效果。
於第2實施方式中,如上所述,攝像部31具有物鏡31a。又,同心圓照明部132構成為使用物鏡31a,對檢查對象P1照射RGB同心圓光。藉此,可有效地利用既有之物鏡31a,對檢查對象P1照射RGB同心圓光,因此無需於同心圓照明部132中個別地獨立設置照明用透鏡。其結果,可簡化攝像部31及同心圓照明部132之構造,並且可節省攝像部31及同心圓照明部132之配置空間。
又,於第2實施方式中,如上所述,物鏡31a係於攝像部31中配置於最靠近檢查對象P1側之位置之物鏡。藉此,可有效地利用物鏡31a,對檢查對象P1照射RGB同心圓光。
再者,第2實施方式之其他效果與上述第1實施方式相同。
[第3實施方式] 其次,參照圖16~圖18說明第3實施方式。於該第3實施方式中,說明與同心圓照明部中設置有3種顏色之上述第1及第2實施方式不同,於同心圓照明部中設置有4種顏色之例。再者,對與上述第1及第2實施方式相同之構成,於圖中標註相同之符號來圖示,並省略其說明。
(安裝基板檢查裝置之構成) 如圖16所示,本發明之第3實施方式之安裝基板檢查裝置300於具備同心圓照明部232以代替上述第2實施方式之同心圓照明部132之方面,與上述第2實施方式之安裝基板檢查裝置200不同。再者,安裝基板檢查裝置300具備二維照明部33及三維計測部34。又,安裝基板檢查裝置300係申請專利範圍中之「檢查裝置」之一例。
此處,於第3實施方式中,如圖16所示,同心圓照明部232構成為照射RGB同心圓光,該RGB同心圓光包含RGB三種顏色各1圈,且於同心圓最外側包含與RGB中之位於同心圓中心之顏色相同之顏色。具體而言,同心圓照明部232具有同心圓光源部232a,以代替上述第2實施方式之同心圓光源部32a。
如圖16及圖17所示,同心圓光源部232a構成為發出RGB同心圓光,該RGB同心圓光包含RGB三種顏色各1圈,且於同心圓最外側包含與RGB中之位於同心圓中心之顏色相同之顏色。RGB同心圓光包含大致圓形狀之第1色光、以包圍大致圓形狀之第1色光之外周的方式配置之大致環狀之第2色光、以包圍大致環狀之第2色光之外周的方式配置之大致環狀之第3色光、以及以包圍大致環狀之第3色光之外周的方式配置之大致環狀之第1色光。中心之第1色光、第2色光、第3色光及最外側之第1色光係從中心側朝向外周側依序配置。再者,RGB同心圓光中之紅色、綠色及藍色之配置順序以及中心與最外側之顏色並無特別限制,於圖16及圖17所示之例中,作為一例,從中心側朝向外周側依序配置有紅色、綠色、藍色及紅色。
又,同心圓光源部232a構成為照射如下RGB同心圓光,即中心之顏色之照射立體角I之終端(外側端)與最外側之顏色之照射立體角I之起始端(內側端)之間的角度大於觀察立體角O之值。即,同心圓光源部232a構成為照射如下RGB同心圓光,即中心之顏色之光與最外側之顏色之光這兩個同色光不會同時包含在觀察立體角O內。
圖18係表示利用第3實施方式之同心圓照明部232時之檢查對象P1之檢查面之傾斜角度所對應的RGB比率之變化的曲線圖。對圖18所示之曲線圖與上述第1實施方式之圖9所示之曲線圖進行比較,可知圖18所示之曲線圖中,於檢查對象P1之傾斜角度測定範圍之最後階段(即,檢查對象P1之傾斜角度較大時),紅色與藍色之比率發生變化。即,根據圖18所示之曲線圖可知,於檢查對象P1之傾斜角度測定範圍之最後階段,亦可基於複數種顏色(兩種顏色)之明度變化(比率變化),獲取傾斜角度。即,於第3實施方式中,能夠於檢查對象P1之傾斜角度測定範圍之最後階段中之參考資料增加的狀態下,獲取傾斜角度。再者,於第3實施方式中,獲取(製作)與圖18所示般之曲線圖對應之資訊作為換算資訊42a,但省略詳細之說明。
再者,第3實施方式之其他構成與上述第1及第2實施方式相同。
(第3實施方式之效果) 於第3實施方式中,可獲得如下效果。
於第3實施方式中,如上所述,同心圓照明部232構成為照射RGB同心圓光,該RGB同心圓光包含RGB三種顏色各1圈,且於同心圓最外側包含與RGB中之位於同心圓中心之顏色相同之顏色。藉此,藉由使RGB同心圓光於同心圓最外側包含與RGB中之位於同心圓中心之顏色相同之顏色,而即便於檢查對象P1之傾斜角度測定範圍之最後階段(即,檢查對象P1之傾斜角度較大時),亦可基於複數種顏色之明度變化,高精度地獲取檢查對象P1之傾斜角度。
再者,第3實施方式之其他效果與上述第1及第2實施方式相同。
[第4實施方式] 其次,參照圖19~圖23說明第4實施方式。於該第4實施方式中,說明除了上述第1實施方式之構成以外,進而考慮色相資訊來獲取傾斜角度之例。再者,對與上述第1實施方式相同之構成,於圖中標註相同之符號來圖示,並省略其說明。
(安裝基板檢查裝置之構成) 如圖19(A)(B)所示,本發明之第4實施方式之安裝基板檢查裝置400於具備同心圓照明部332以代替上述第1實施方式之同心圓照明部32之方面,與上述第1實施方式之安裝基板檢查裝置100不同。再者,安裝基板檢查裝置400具備二維照明部33與三維計測部34。又,安裝基板檢查裝置400係申請專利範圍中之「檢查裝置」之一例。
於第4實施方式中,如圖19(A)(B)所示,同心圓照明部332構成為除了能對檢查對象P1照射RGB同心圓光以外,還能對檢查對象P1照射白色光。具體而言,同心圓照明部332具有同心圓光源部332a以代替上述第1實施方式之同心圓光源部32a。
同心圓光源部332a除了包含紅色光源61、綠色光源62及藍色光源63之外,進而包含白色光源366。白色光源366構成為發出與RGB同心圓光大致相同之大致圓形狀之白色光。白色光源366包含複數個(圖19(B)中為17個)白色LED。又,同心圓光源部332a構成為能夠使紅色光源61、綠色光源62及藍色光源63、與白色光源366彼此獨立地點亮。藉此,同心圓照明部332構成為對檢查對象P1分別獨立地照射RGB同心圓光與白色光。於該情形時,無需與同心圓照明部332個別地獨立設置白色照明,因此能夠抑制裝置構造之複雜化。
此處,參照圖20及圖21,說明具有色相之面與不具有色相之面之RGB反射特性之差異。
如圖20所示,不具有色相之面(鏡面、白色面、黑色面及灰色面等)對於RGB各顏色之反射特性相同。因此,於對不具有色相之面照射RGB同心圓光之情形時,反射光之強度會根據不具有色相之面之種類(鏡面、白色面、黑色面及灰色面等)而變化,但無論不具有色相之面為哪一種(鏡面、白色面、黑色面及灰色面等),反射光之RGB比率均保持不變。於該情形時,藉由如圖9所示之換算資訊42a,能夠獲取傾斜角度。
另一方面,如圖21所示,具有色相之面(綠色面、黃色面及紅色面等)對RGB各顏色之反射特性會因色相而不同。因此,於對具有色相之面照射RGB同心圓光之情形時,反射光之RGB比率根據具有色相之面之種類(綠色面、黃色面及紅色面等)而變化。於該情形時,僅利用如圖9所示之換算資訊42a,難以獲取傾斜角度。再者,安裝基板P中,具有色相之面例如為銅箔面(紅色系色相之面)及金箔面(黃色系色相之面)等。
因此,如圖22所示,於第4實施方式中,控制裝置40構成為,基於攝像部31對照射了RGB同心圓光之檢查對象P1的拍攝結果、與從照射了白色光之檢查對象P1之拍攝結果獲取的檢查對象P1之色相資訊,獲取檢查對象P1之傾斜角度。
具體而言,控制裝置40構成為進行以下控制,即,使攝像部31拍攝藉由同心圓照明部332照射了白色光之檢查對象P1(安裝基板P)。又,控制裝置40構成為獲取攝像部31對照射了白色光之檢查對象P1的拍攝結果。又,控制裝置40構成為,基於所獲取之拍攝結果,獲取拍攝結果中之檢查對象P1之RGB各顏色之明度(色相資訊)。又,控制裝置40構成為,基於所獲取之檢查對象P1之RGB各顏色之明度,獲取檢查對象P1之色相修正係數(色相資訊)。色相修正係數係用以消除因色相所致之RGB比率差異之係數。色相修正係數例如被獲取以作為白色光照射下之檢查對象P1之RGB比率之反數。
又,控制裝置40與上述第1實施方式同樣地,構成為基於攝像部31對藉由同心圓照明部332照射了RGB同心圓光之檢查對象P1之拍攝結果,獲取RGB各顏色之明度。又,控制裝置40構成為進行以下控制,即,藉由將使用RGB同心圓光所獲取之檢查對象P1之RGB各顏色之明度乘以檢查對象P1之色相修正係數,來修正使用RGB同心圓光所獲取之檢查對象P1之拍攝結果。藉此,控制裝置40構成為獲取色相差異得以修正之檢查對象P1之拍攝結果。
又,控制裝置40構成為基於修正後之檢查對象P1之拍攝結果,獲取色相差異得以修正之檢查對象P1之RGB比率。又,控制裝置40構成為基於所獲取之檢查對象P1之RGB比率,獲取檢查對象P1之傾斜角度。具體而言,控制裝置40構成為基於檢查對象P1之RGB比率及換算資訊42a,獲取檢查對象P1之傾斜角度。
又,於第4實施方式中,以RGB同心圓光之同一光路(同一照射路徑)照射白色光,獲取利用該白色光所得之檢查對象P1之拍攝結果,因此能夠基於利用白色光所得之檢查對象P1之拍攝結果,高精度地獲取檢查對象P1之色相修正係數(色相資訊)。
圖22中,圖示了對不具有色相之銀色面(半導體晶圓晶片)、具有色相之黃色面(金箔)及具有色相之紅色面(銅箔)這3個面進行上述色相修正之例。再者,3個面傾斜成同一角度。
白色光照射下之拍攝結果中,不具有色相之銀色面對於RGB各顏色之反射特性相同,因此紅色、綠色及藍色之明度均為100。又,具有色相之黃色面對於RGB各顏色之反射特性不同,因此紅色之明度為100,綠色之明度為100,藍色之明度為50。又,具有色相之紅色面對於RGB各顏色之反射特性不同,因此紅色之明度為100,綠色之明度為50,藍色之明度為25。
於基於該拍攝結果獲取色相修正係數之情形時,不具有色相之銀色面對紅色、綠色及藍色之色相修正係數均為1(R係數:G係數:B係數=1:1:1)。又,具有色相之黃色面對紅色之色相修正係數為1,對綠色之色相修正係數為1,對藍色之色相修正係數為2(R係數:G係數:B係數=1:1:2)。又,具有色相之紅色面對紅色之色相修正係數為1,對綠色之色相修正係數為2,對藍色之色相修正係數為4(R係數:G係數:B係數=1:2:4)。
又,RGB同心圓光之照射下之拍攝結果中,不具有色相之銀色面上,紅色之明度為42,綠色之明度為5,藍色之明度為92。又,具有色相之黃色面上難以獲得藍色之反射光,因此與不具有色相之銀色面不同,紅色之明度為42,綠色之明度為5,藍色之明度為46。又,具有色相之紅色面上難以獲得綠色及藍色之反射光,因此與不具有色相之銀色面不同,紅色之明度為42,綠色之明度為2.5,藍色之明度為23。
如此,於不進行上述色相修正之情形時,不具有色相之銀色面、具有色相之黃色面以及具有色相之紅色面這3個面各自的RGB比率不同,因此儘管3個面各自具有相同之傾斜角度,亦會於3個面上獲得不同之傾斜角度。
另一方面,於基於色相修正係數對RGB同心圓光之照射下之拍攝結果進行修正之情形時,不具有色相之銀色面上,R係數:G係數:B係數=1:1:1,因此若使明度乘以色相修正係數,則修正後之紅色之明度成為42,修正後之綠色之明度成為5,修正後之藍色之明度成為92。又,具有色相之黃色面上,R係數:G係數:B係數=1:1:2,因此若使明度乘以色相修正係數,則修正後之紅色之明度成為42,修正後之綠色之明度成為5,藍色之明度成為92。又,具有色相之紅色面上,R係數:G係數:B係數=1:2:4,因此若使明度乘以色相修正係數,則修正後之紅色之明度成為42,修正後之綠色之明度成為5,藍色之明度成為92。
如此,於進行上述色相修正之情形時,因不具有色相之銀色面、具有色相之黃色面以及具有色相之紅色面這3個面各自的RGB比率相同,而能夠於具有相同傾斜角度之3個面上獲得相同之傾斜角度。
(基板檢查處理) 其次,參照圖23,基於流程圖說明利用第4實施方式之安裝基板檢查裝置400所進行之基板檢查處理。再者,流程圖之各處理係藉由控制裝置40來進行。
如圖23所示,首先,於步驟S21中,獲取攝像部31對藉由同心圓照明部332照射了白色光之檢查對象P1(安裝基板P)之拍攝結果。
然後,於步驟S22中,基於檢查對象P1之拍攝結果獲取檢查對象P1之色相修正係數。於步驟S22中,例如,獲取拍攝結果(圖像)中之每個像素之色相修正係數。又,於步驟S22中,例如,獲取拍攝結果(圖像)中之每個像素集合體之色相修正係數(集合體中之平均色相修正係數)。
然後,於步驟S23中,獲取攝像部31對藉由同心圓照明部332照射了RGB同心圓光之檢查對象P1(安裝基板P)之拍攝結果。
然後,於步驟S24中,基於色相修正係數,對使用RGB同心圓光所獲取之檢查對象P1之拍攝結果進行修正。
然後,於步驟S25中,基於修正後之檢查對象P1之拍攝結果,獲取檢查對象P1之RGB比率。於步驟S25中,例如,獲取拍攝結果(圖像)中之每個像素之RGB比率。又,於步驟S25中,例如,獲取拍攝結果(圖像)中之每個像素集合體之RGB比率。
然後,於步驟S26中,基於修正後之檢查對象P1之RGB比率與換算資訊42a,獲取檢查對象P1之傾斜角度。於步驟S26中,例如,獲取拍攝結果(圖像)中之每個像素之傾斜角度。又,於步驟S12中,例如,獲取拍攝結果(圖像)中之每個像素集合體之傾斜角度。
然後,於步驟S27中,基於檢查對象P1之傾斜角度,對檢查對象P1之狀態進行檢查。於步驟S27中,基於檢查對象P1之傾斜角度,檢測傾斜角度之變化點作為零件E之裂縫。又,於步驟S27中,基於零件E之傾斜角度與由三維計測部34獲取之安裝基板P之傾斜方向、傾斜角度及零件E之傾斜方向,檢測出與安裝基板P之間具有極端角度差之零件E作為從安裝基板P產生隆起之零件E。然後,基板檢查處理結束。
再者,第4實施方式之其他構成與上述第1實施方式相同。
(第4實施方式之效果) 第4實施方式中,可獲得如下效果。
第4實施方式中,如上所述,控制裝置40構成為,基於攝像部31對照射了RGB同心圓光之檢查對象P1的拍攝結果、與從照射了白色光之檢查對象P1之拍攝結果獲取的檢查對象P1之色相資訊,獲取檢查對象P1之傾斜角度。藉此,可於考慮具有色相之面與不具有色相之面上的RGB反射特性不同、以及即便是具有色相之面亦根據色相而RGB反射特性不同的情況下,更高精度地獲取檢查對象P1之傾斜角度。
再者,第4實施方式之其他效果與上述第1實施方式相同。
(變化例) 再者,應明白此次揭示之實施方式係於所有方面進行例示,而並非進行限定。本發明之範圍並非由上述實施方式之說明表示,而是藉由申請專利範圍表示,進而包含與申請專利範圍同等之含義及範圍內之所有變更(變化例)。
例如,上述第1~第4實施方式中,示出了將本發明應用於安裝基板檢查裝置之例,但本發明並不限於此。本發明亦可應用於除安裝基板檢查裝置以外之檢查裝置。再者,本發明難以獲得鏡面構件及透明構件(透明殼體等)等之充分之散射光,因此尤其適合檢查難以獲得傾斜角度之資訊之構件(檢查對象)。
又,上述第1~第4實施方式中,示出了安裝基板檢查裝置(檢查裝置)具備二維照明部與三維計測部之例,但本發明並不限於此。本發明中,檢查裝置亦可不具備二維照明部與三維計測部。又,檢查裝置亦可僅具備二維照明部與三維計測部中之任一者。
又,上述第1~第4實施方式中,示出了於同心圓光源部與檢查對象之間設置有半反射鏡之例,但本發明並不限於此。本發明中,亦可於同心圓光源部與檢查對象之間設置稜鏡。
又,上述第1~第4實施方式中,示出了換算資訊為換算表之例,但本發明並不限於此。本發明中,換算資訊亦可為將RGB比率換算成傾斜角度之換算用函數。
又,上述第1~第4實施方式中,示出了基於檢查對象之傾斜角度,檢測零件之裂縫及零件之隆起之例,但本發明並不限於此。本發明中,亦可基於檢查對象之傾斜角度,檢測檢查對象(零件及基板等)之變形。
又,上述第1~第4實施方式中,示出了基於檢查對象之傾斜角度,檢測半導體晶圓晶片之裂縫之例,但本發明並不限於此。本發明中,亦可基於檢查對象之傾斜角度,檢測LED零件之塑模部分(透明樹脂部分)之裂縫。
又,上述第1~第4實施方式中,示出了根據檢查對象之傾斜角度與檢查對象之高度資訊,檢測零件之隆起之例,上述檢查對象之傾斜角度係基於攝像部對照射了RGB同心圓光之檢查對象的拍攝結果所得,上述檢查對象之高度資訊係利用三維計測部所得,但本發明並不限於此。本發明中,亦可根據檢查對象之傾斜角度與檢查對象之高度資訊,檢測零件之裂縫,上述檢查對象之傾斜角度係基於攝像部對照射了RGB同心圓光之檢查對象的拍攝結果所得,上述檢查對象之高度資訊係利用三維計測部所得。又,本發明中,如若可能,亦可僅根據基於攝像部對照射了RGB同心圓光之檢查對象之拍攝結果所得的檢查對象之傾斜角度,檢測零件之隆起。
又,上述第1及第4實施方式中,為便於說明,使用按照處理流程依序進行處理之流程驅動型流程對控制處理進行了說明,但本發明並不限於此。本發明中,亦可藉由以事件單位執行處理之事件驅動型(event driven type)處理進行控制處理。於該情形時,可用完全之事件驅動型來進行,亦可組合事件驅動與流程驅動來進行。
10:基板搬送輸送器 20:頭移動機構 21:X軸馬達 22:Y軸馬達 23:Z軸馬達 30:攝像頭部 31:攝像部 31a:物鏡 31b:成像透鏡 31c:攝像元件 31d:鏡筒 32:同心圓照明部 32a:同心圓光源部 32b:照射透鏡 32c:半反射鏡 33:二維照明部 33a:圓頂照明部 33b:低角度照明部 34:三維計測部 40:控制裝置 41:控制部 42:記憶部 42a:換算資訊 43:圖像處理部 44:攝像控制部 45:照明控制部 46:馬達控制部 51:反射部 52:光源部 53:安裝部 54:光源部 61:紅色光源 62:綠色光源 63:藍色光源 64:擴散板 65:間隔板 71:白色光源 72:RGB同心圓彩色濾光片 72a:紅色濾光片 72b:綠色濾光片 72c:藍色濾光片 73:擴散板 100:安裝基板檢查裝置 132:同心圓照明部 200:安裝基板檢查裝置 300:安裝基板檢查裝置 332:同心圓照明部 332a:同心圓光源部 366:白色光源 400:安裝基板檢查裝置 E:零件 I:照射立體角 J:治具 O:觀察立體角 P:安裝基板 P1:檢查對象
圖1係表示第1實施方式之安裝基板檢查裝置之模式圖。 圖2係表示第1實施方式之同心圓照明部及攝像部之模式圖。 圖3A係從與光軸大致正交之方向觀察第1實施方式之同心圓照明部之第1例之光源部所得之模式圖。 圖3B係從光軸方向觀察第1實施方式之同心圓照明部之第1例之光源部所得之模式圖。 圖4A係從與光軸大致正交之方向觀察第1實施方式之同心圓照明部之第2例之光源部所得之模式圖。 圖4B係從光軸方向觀察第1實施方式之同心圓照明部之第2例之光源部所得之模式圖。 圖5係用以說明第1實施方式之同心圓照明部所發出之RGB同心圓光之模式圖。 圖6係用以說明利用第1實施方式之安裝基板檢查裝置獲取檢查對象之傾斜角度之原理的模式圖。 圖7係用以說明與第1實施方式之檢查對象之傾斜角度對應之RGB各顏色之明度之變化的曲線圖。 圖8A係表示第1實施方式之觀察立體角之模式圖。 圖8B係表示第1實施方式之照射立體角之模式圖。 圖8C係表示第1實施方式之包含極限角度之模式圖。 圖9係用以說明與第1實施方式之檢查對象之傾斜角度對應之RGB比率變化、及對將RGB比率換算成傾斜角度之換算資訊之獲取的模式圖。 圖10係用以說明第1實施方式之零件裂縫之檢測之模式圖。 圖11係用以說明第1實施方式之零件隆起之檢測之模式圖。 圖12係用以說明第1實施方式之表格獲取處理之流程圖。 圖13係用以說明第1實施方式之表格獲取處理之模式圖。 圖14係用以說明第1實施方式之基板檢查處理之流程圖。 圖15係表示第2實施方式之同心圓照明部及攝像部之模式圖。 圖16係表示第3實施方式之同心圓照明部及攝像部之模式圖。 圖17係用以說明第3實施方式之同心圓照明部所發出之RGB同心圓光之模式圖。 圖18係用以說明與第3實施方式之檢查對象之傾斜角度對應之RGB比率之變化的曲線圖。 圖19A係從與光軸大致正交之方向觀察第4實施方式之同心圓照明部之光源部所得之模式圖。 圖19B係從光軸方向觀察第4實施方式之同心圓照明部之光源部所得之模式圖。 圖20係用以說明不具有色相之面中之RGB比率之模式圖。 圖21係用以說明具有色相之面中之RGB比率之模式圖。 圖22係用以說明第4實施方式之色相資訊之獲取以及基於色相資訊之修正之模式圖。 圖23係用以說明第4實施方式之基板檢查處理之流程圖。
31:攝像部
31a:物鏡
31b:成像透鏡
31c:攝像元件
31d:鏡筒
32:同心圓照明部
32a:同心圓光源部
32b:照射透鏡
32c:半反射鏡
P1:檢查對象

Claims (12)

  1. 一種安裝基板檢查裝置,其具備:攝像部,其對包含安裝有零件之安裝基板的檢查對象進行拍攝;同心圓照明部,其對上述檢查對象照射呈同心圓狀配置有紅色(R)、綠色(G)及藍色(B)之RGB同心圓光;以及控制部,其進行以下控制,即,基於上述攝像部對照射了上述RGB同心圓光之上述檢查對象的拍攝結果,獲取上述檢查對象之傾斜角度,並且基於所獲取之上述檢查對象之傾斜角度,檢查上述檢查對象之狀態;且上述同心圓照明部構成為照射上述RGB同心圓光,上述RGB同心圓光包含RGB三種顏色各1圈,且於同心圓最外側包含與同心圓中心之RGB之顏色相同之RGB之顏色。
  2. 如請求項1之安裝基板檢查裝置,其中上述控制部構成為,基於拍攝結果中之上述檢查對象之紅色、綠色及藍色之比率即RGB比率,獲取上述檢查對象之傾斜角度。
  3. 如請求項2之安裝基板檢查裝置,其中上述控制部構成為,基於上述檢查對象之RGB比率、與將預先獲取之RGB比率換算成傾斜角度之換算資訊,獲取上述檢查對象之傾斜角度。
  4. 如請求項1至3中任一項之安裝基板檢查裝置,其中上述同心圓照明部包含呈同心圓狀配置之紅色光源、綠色光源及藍 色光源,或者包含白色光源、及配置於與上述白色光源對向之位置之RGB同心圓彩色濾光片。
  5. 如請求項1至3中任一項之安裝基板檢查裝置,其中上述控制部構成為進行以下控制,即,於上述檢查對象之傾斜角度之變化為基準值以上之情形時,檢測傾斜角度之變化點作為裂縫。
  6. 如請求項5之安裝基板檢查裝置,其中上述零件包含半導體晶圓晶片,上述控制部構成為進行以下控制,即,基於上述檢查對象之傾斜角度,檢測上述半導體晶圓晶片之裂縫。
  7. 如請求項1至3中任一項之安裝基板檢查裝置,其中上述控制部構成為進行以下控制,即,基於上述檢查對象之傾斜角度,檢測上述安裝基板上之上述零件之隆起。
  8. 如請求項1至3中任一項之安裝基板檢查裝置,其進而具備三維計測部,上述三維計測部能夠計測上述檢查對象之高度資訊,上述控制部構成為進行以下控制,即,根據上述檢查對象之傾斜角度與上述檢查對象之高度資訊,檢查上述檢查對象之狀態,上述檢查對象之傾斜角度係基於上述攝像部對照射了上述RGB同心圓光之上述檢查對象的拍攝結果所得,上述檢查對象之高度資訊係利用上述三維計測部所得。
  9. 如請求項1至3中任一項之安裝基板檢查裝置,其中上述攝像部具有拍攝用透鏡,上述同心圓照明部構成為,使用上述拍攝用透鏡,對上述檢查對象照射上述RGB同心圓光。
  10. 如請求項9之安裝基板檢查裝置,其中上述拍攝用透鏡係於上述攝像部中配置於最靠近上述檢查對象側之位置之物鏡。
  11. 如請求項1至3中任一項之安裝基板檢查裝置,其中上述同心圓照明部進一步包含與上述RGB同心圓光彼此獨立而可對上述檢查對象照射白色光之白色光源;上述控制部構成為,基於上述攝像部對照射了上述RGB同心圓光之上述檢查對象的拍攝結果、與從照射了上述白色光之上述檢查對象之拍攝結果獲取的上述檢查對象之色相資訊,獲取上述檢查對象之傾斜角度。
  12. 一種檢查裝置,其具備:攝像部,其拍攝檢查對象;同心圓照明部,其對上述檢查對象照射呈同心圓狀配置有紅色(R)、綠色(G)及藍色(B)之RGB同心圓光;以及控制部,其進行以下控制,即,基於上述攝像部對照射了上述RGB同心圓光之上述檢查對象的拍攝結果,獲取上述檢查對象之傾斜角度,並且基於所獲取之上述檢查對象之傾斜角度,檢查上述檢查對象之狀態;且上述同心圓照明部構成為照射上述RGB同心圓光,上述RGB同心圓 光包含RGB三種顏色各1圈,且於同心圓最外側包含與同心圓中心之RGB之顏色相同之RGB之顏色。
TW110102101A 2020-11-30 2021-01-20 安裝基板檢查裝置及檢查裝置 TWI871420B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/JP2020/044568 2020-11-30
PCT/JP2020/044568 WO2022113369A1 (ja) 2020-11-30 2020-11-30 実装基板検査装置および検査装置

Publications (2)

Publication Number Publication Date
TW202223338A TW202223338A (zh) 2022-06-16
TWI871420B true TWI871420B (zh) 2025-02-01

Family

ID=81754218

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110102101A TWI871420B (zh) 2020-11-30 2021-01-20 安裝基板檢查裝置及檢查裝置

Country Status (4)

Country Link
JP (1) JP7578718B2 (zh)
KR (1) KR102815782B1 (zh)
TW (1) TWI871420B (zh)
WO (1) WO2022113369A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024041395A (ja) * 2022-09-14 2024-03-27 株式会社Screenホールディングス 撮像装置
CN120529988A (zh) * 2023-02-03 2025-08-22 雅马哈发动机株式会社 激光加工装置、激光加工方法、半导体芯片及半导体芯片的制造方法
KR20250093551A (ko) * 2023-03-17 2025-06-24 야마하하쓰도키 가부시키가이샤 검사 장치 및 검사 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10117944A1 (de) * 2001-03-20 2002-10-17 View Eng Verfahren und Anlage zum Beleuchten eines Objektes mit fokussiertem Licht bei variierenden Einfallswinkeln und Mehrfarbenlichtquelle für die Verwendung hierbei
TW200301817A (en) * 2002-01-10 2003-07-16 Omron Tateisi Electronics Co A surface conduction examination method and a subtrate examination device
JP2009294115A (ja) * 2008-06-05 2009-12-17 Shigeki Kobayashi 3次元計測表示方法
CN101363804B (zh) * 2007-08-09 2011-05-25 欧姆龙株式会社 基板外观检查装置
WO2013089849A1 (en) * 2011-12-15 2013-06-20 Uop Llc Initial hydrotreating of naphthenes with subsequent high temperature reforming
JP5365643B2 (ja) * 2011-01-13 2013-12-11 オムロン株式会社 はんだ付け検査方法、および基板検査システムならびにはんだ付け検査機
CN105300315A (zh) * 2014-06-27 2016-02-03 欧姆龙株式会社 基板检查装置及控制方法
CN104040324B (zh) * 2011-12-28 2016-06-29 株式会社普利司通 外观检查设备和外观检查方法
CN110691966A (zh) * 2017-12-05 2020-01-14 机械视觉照明有限公司 检查系统以及检查方式

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3067819B2 (ja) * 1991-03-08 2000-07-24 富士通株式会社 形状計測装置
WO2014196010A1 (ja) * 2013-06-03 2014-12-11 ヤマハ発動機株式会社 外観検査装置
JP6287360B2 (ja) 2014-03-06 2018-03-07 オムロン株式会社 検査装置
JP2015210226A (ja) * 2014-04-30 2015-11-24 三菱電機株式会社 外観検査装置及び外観検査方法
JP5866573B1 (ja) 2015-03-23 2016-02-17 マシンビジョンライティング株式会社 検査用照明装置及び検査システム
JP6493875B2 (ja) 2015-06-08 2019-04-03 富士フイルム株式会社 3次元造形物の形成方法
JP6791631B2 (ja) * 2016-01-06 2020-11-25 株式会社サキコーポレーション 画像生成方法及び検査装置
CN106289099B (zh) * 2016-07-28 2018-11-20 汕头大学 一种单目视觉系统及基于该系统的三维尺寸快速测量方法
JP6954142B2 (ja) * 2018-01-17 2021-10-27 オムロン株式会社 画像検査装置および照明装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10117944A1 (de) * 2001-03-20 2002-10-17 View Eng Verfahren und Anlage zum Beleuchten eines Objektes mit fokussiertem Licht bei variierenden Einfallswinkeln und Mehrfarbenlichtquelle für die Verwendung hierbei
TW200301817A (en) * 2002-01-10 2003-07-16 Omron Tateisi Electronics Co A surface conduction examination method and a subtrate examination device
CN101363804B (zh) * 2007-08-09 2011-05-25 欧姆龙株式会社 基板外观检查装置
JP2009294115A (ja) * 2008-06-05 2009-12-17 Shigeki Kobayashi 3次元計測表示方法
JP5365643B2 (ja) * 2011-01-13 2013-12-11 オムロン株式会社 はんだ付け検査方法、および基板検査システムならびにはんだ付け検査機
WO2013089849A1 (en) * 2011-12-15 2013-06-20 Uop Llc Initial hydrotreating of naphthenes with subsequent high temperature reforming
CN104040324B (zh) * 2011-12-28 2016-06-29 株式会社普利司通 外观检查设备和外观检查方法
CN105300315A (zh) * 2014-06-27 2016-02-03 欧姆龙株式会社 基板检查装置及控制方法
CN110691966A (zh) * 2017-12-05 2020-01-14 机械视觉照明有限公司 检查系统以及检查方式

Also Published As

Publication number Publication date
JPWO2022113369A1 (zh) 2022-06-02
JP7578718B2 (ja) 2024-11-06
WO2022113369A1 (ja) 2022-06-02
KR20230097145A (ko) 2023-06-30
TW202223338A (zh) 2022-06-16
KR102815782B1 (ko) 2025-06-02

Similar Documents

Publication Publication Date Title
US10876975B2 (en) System and method for inspecting a wafer
TWI871420B (zh) 安裝基板檢查裝置及檢查裝置
US5995220A (en) Semiconductor package inspection apparatus
US20100189339A1 (en) System and method for inspecting a wafer
US20180128603A1 (en) Three-dimensional shape measurement apparatus
TWI881180B (zh) 外觀檢查裝置及方法
KR100281881B1 (ko) 인쇄회로기판의크림솔더검사장치및검사방법
KR960005091B1 (ko) 본딩와이어 검사장치
JP2015190826A (ja) 基板検査装置
JP6684992B2 (ja) 突起検査装置及びバンプ検査装置
US20030025906A1 (en) Optical inspection of solder joints
JP5272784B2 (ja) 光学的検査方法および光学的検査装置
TWI845721B (zh) 晶圓外觀檢查裝置及方法
KR101442666B1 (ko) 복수 행의 조명부재를 포함하는 비전검사장치
JP5541646B2 (ja) ライン照明装置
JP2005513430A (ja) モジュール型照明ユニットを用いたビジュアル方式の位置検出のためのセンサ
TWI867532B (zh) 圖像取得裝置、基板檢查裝置、圖像取得方法以及基板檢查方法
KR20070068169A (ko) 비전 검사 시스템
CN100514046C (zh) 图像识别装置和图像识别方法
JP2022108359A (ja) 外観検査装置
JP2023019494A (ja) 検査システム
TW202236922A (zh) 助焊劑分布狀況的檢測方法及檢測設備
CN114689607A (zh) 助焊剂分布状况的检测方法及检测设备
CN118451318A (zh) 晶片外观检查装置
HK40006797A (zh) 检测晶片的系统和方法