TWI881529B - System and method for managing medical quality indicator - Google Patents
System and method for managing medical quality indicator Download PDFInfo
- Publication number
- TWI881529B TWI881529B TW112143070A TW112143070A TWI881529B TW I881529 B TWI881529 B TW I881529B TW 112143070 A TW112143070 A TW 112143070A TW 112143070 A TW112143070 A TW 112143070A TW I881529 B TWI881529 B TW I881529B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- medical
- database
- quality indicator
- acquisition module
- Prior art date
Links
Images
Landscapes
- Medical Treatment And Welfare Office Work (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
本發明係關於管理醫療品質指標的系統與方法。The present invention relates to a system and method for managing medical quality indicators.
通常醫院中是藉由程式輔助來計算醫療品質指標,其中的工作包含:從子系統資料庫取得資料、高頻率地調取資料及用不同形式閱覽案例。Usually, hospitals calculate medical quality indicators with the help of programs, which include obtaining data from subsystem databases, frequently retrieving data, and reviewing cases in different forms.
然而,不同來源的資料散落於不同子系統資料庫、高頻率地調取資料也容易導致系統不穩定,但降低調取資料的頻率也會導致無法貼近即時資訊。However, data from different sources are scattered in different subsystem databases, and high-frequency data retrieval can easily lead to system instability. However, reducing the frequency of data retrieval can also result in a lack of real-time information.
因此,需要提出一種更有效方法與系統來管理與調取資料。Therefore, a more effective method and system is needed to manage and retrieve data.
在一方面,本發明提供一種醫療品質指標管理系統,包含:一目的醫療數據資料庫、一資料擷取模組、一資料分析模組及一資料視覺化模組。該資料擷取模組連接該目的醫療數據資料庫。該資料擷取模組響應於一醫療品質指標的一檢視請求,或依一資料更新頻率控制表中設定的該醫療品質指標的一更新頻率,根據該醫療品質指標的一操作型定義向一或多原始醫療數據資料庫取得所需資料,經一資料處理後,儲存為該目的醫療數據資料庫中的該醫療品質指標的複數筆結構化資料,每一筆結構化資料相關聯地儲存有一患者的一患者資料、該患者的一就診索引資料及該醫療品質指標的一指標元素資料;且該資料擷取模組根據該資料更新頻率控制表中設定的該醫療品質指標的一熱資料區間,判斷是否僅取得該所需資料中位於該熱資料區間內的資料,或依該更新頻率取得該所需資料中位於該熱資料區間內的資料。該資料分析模組連接該目的醫療數據資料庫,其根據該操作型定義對該複數筆結構化資料進行資料確認及資料排除,並根據該檢視請求對該複數筆結構化資料進行一運算,以獲得一組統計資料。該資料視覺化模組連接該資料分析模組,其用於透過一使用者介面顯示該組統計資料。In one aspect, the present invention provides a medical quality indicator management system, comprising: a target medical data database, a data acquisition module, a data analysis module and a data visualization module. The data acquisition module is connected to the target medical data database. The data acquisition module responds to a review request of a medical quality indicator, or according to an update frequency of the medical quality indicator set in a data update frequency control table, obtains the required data from one or more original medical data databases according to an operational definition of the medical quality indicator, and after data processing, stores a plurality of structured data of the medical quality indicator in the target medical data database, each structured data A patient data of a patient, a consultation index data of the patient and an indicator element data of the medical quality indicator are stored in association; and the data acquisition module determines whether to obtain only the data in the hot data interval of the medical quality indicator set in the data update frequency control table, or to obtain the data in the hot data interval of the required data according to the update frequency. The data analysis module is connected to the target medical data database, and performs data confirmation and data exclusion on the plurality of structured data according to the operational definition, and performs an operation on the plurality of structured data according to the viewing request to obtain a set of statistical data. The data visualization module is connected to the data analysis module and is used to display the set of statistical data through a user interface.
另一方面,本發明提供一種醫療品質指標管理方法,包含:提供一目的醫療數據資料庫、一資料擷取模組、一資料分析模組及一資料視覺化模組,其中該資料擷取模組連接該目的醫療數據資料庫,該資料分析模組連接該目的醫療數據資料庫,該資料視覺化模組連接該資料分析模組;該資料擷取模組響應於一醫療品質指標的一檢視請求,或依一資料更新頻率控制表中設定的該醫療品質指標的一更新頻率,根據該醫療品質指標的一操作型定義向一或多原始醫療數據資料庫取得所需資料,經一資料處理後,儲存為該目的醫療數據資料庫中的該醫療品質指標的複數筆結構化資料,每一筆結構化資料相關聯地儲存有一患者的一患者資料、該患者的一就診索引資料及該醫療品質指標的一指標元素資料;該資料擷取模組根據該資料更新頻率控制表中設定的該醫療品質指標的一熱資料區間,判斷是否僅取得該所需資料中位於該熱資料區間內的資料,或依該更新頻率取得該所需資料中位於該熱資料區間內的資料;該資料分析模組根據該操作型定義對該複數筆結構化資料進行資料確認及資料排除,並根據該檢視請求對該複數筆結構化資料進行一運算,以獲得一組統計資料;及該資料視覺化模組透過一使用者介面顯示該組統計資料。On the other hand, the present invention provides a medical quality indicator management method, comprising: providing a target medical data database, a data acquisition module, a data analysis module and a data visualization module, wherein the data acquisition module is connected to the target medical data database, the data analysis module is connected to the target medical data database, and the data visualization module is connected to the data analysis module; The data acquisition module responds to a review request of a medical quality indicator, or an update frequency of the medical quality indicator set in a data update frequency control table, obtains required data from one or more original medical data databases according to an operational definition of the medical quality indicator, and stores multiple records of the medical quality indicator in the target medical data database after data processing. Structured data, each of which stores patient data of a patient, consultation index data of the patient and indicator element data of the medical quality indicator in association; the data acquisition module determines whether to obtain only the data in the hot data interval of the medical quality indicator according to a hot data interval of the medical quality indicator set in the data update frequency control table, or The data in the hot data interval of the required data is obtained according to the update frequency; the data analysis module performs data confirmation and data exclusion on the plurality of structured data according to the operational definition, and performs an operation on the plurality of structured data according to the viewing request to obtain a set of statistical data; and the data visualization module displays the set of statistical data through a user interface.
根據本發明之部分具體實施例,該操作型定義中界定有評估該醫療品質指標所需的資料項目,且該資料擷取模組根據該資料項目向對應的原始醫療數據資料庫取得該所需資料。According to some specific embodiments of the present invention, the operational definition defines the data items required for evaluating the medical quality indicator, and the data acquisition module obtains the required data from the corresponding original medical data database based on the data items.
根據本發明之部分具體實施例,該患者資料包括:病歷號、住院號、檢驗單號、姓名、性別、生日或其組合。According to some specific embodiments of the present invention, the patient data includes: medical record number, hospitalization number, test number, name, gender, birthday or a combination thereof.
根據本發明之部分具體實施例,該就診索引資料包括:門診、急診、住院或其組合。According to some specific embodiments of the present invention, the visit index data includes: outpatient visit, emergency visit, hospitalization or a combination thereof.
根據本發明之部分具體實施例,該資料更新頻率控制表中更設定有一冷資料區間,該資料擷取模組先判斷該所需資料中位於該熱資料區間內及該冷資料區間的資料是否皆已儲存為該目的醫療數據資料庫中的結構化資料,若否,則取得尚未儲存的資料並將其儲存為該目的醫療數據資料庫中的結構化資料,若是,則僅取得該所需資料中位於該熱資料區間內的資料,並將其儲存為該目的醫療數據資料庫中的結構化資料,或據以更新該目的醫療數據資料庫中的儲存的該複數筆結構化資料。According to some specific embodiments of the present invention, a cold data interval is further set in the data update frequency control table. The data acquisition module first determines whether the data in the hot data interval and the cold data interval in the required data have all been stored as structured data in the target medical data database. If not, the data that has not been stored is obtained and stored as structured data in the target medical data database. If so, only the data in the hot data interval in the required data is obtained and stored as structured data in the target medical data database, or the plurality of structured data stored in the target medical data database is updated accordingly.
根據本發明之部分具體實施例,該醫療品質指標管理系統更包含一工作排程模組,連接該資料擷取模組,並用以安排該資料擷取模組針對複數醫療品質指標進行之資料擷取或更新,該工作排程模組具有一工作描述清單及一排程控制單元。According to some specific embodiments of the present invention, the medical quality indicator management system further includes a work scheduling module, which is connected to the data acquisition module and is used to arrange the data acquisition module to acquire or update data for multiple medical quality indicators. The work scheduling module has a work description list and a scheduling control unit.
根據本發明之部分具體實施例,該工作描述清單記錄有該複數醫療品質指標各自的更新頻率、再次嘗試頻率、熱資料區間及上游工作名稱。According to some specific embodiments of the present invention, the work description list records the update frequency, retry frequency, hot data interval and upstream work name of each of the plurality of medical quality indicators.
根據本發明之部分具體實施例,該排程控制單元根據該工作描述清單觸發該資料擷取模組進行資料擷取或更新。According to some specific embodiments of the present invention, the scheduling control unit triggers the data acquisition module to acquire or update data according to the work description list.
本發明之其他目的及優點一部分記載於下述說明中,或者可透過本發明的實施例而理解。應了解前文之發明內容及下文之實施方式僅為例示性及闡釋性之說明,而非如申請專利範圍般限定本發明。Other purposes and advantages of the present invention are partially described in the following description, or can be understood through the embodiments of the present invention. It should be understood that the above invention content and the following embodiments are only exemplary and explanatory descriptions, and do not limit the present invention as the scope of the patent application.
除非另有指明,所有在此處使用的技術性和科學性術語具有如同本發明所屬技術領域中之具有通常知識者一般所瞭解的意義。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
本文所使用的「一」乙詞,如未特別指明,係指至少一個(一個或一個以上)之數量。The terms "a" or "an" as used herein, unless otherwise specified, refer to a quantity of at least one (one or more than one).
本發明提供一種醫療品質指標管理系統,包含: 一目的醫療數據資料庫; 一資料擷取模組,連接該目的醫療數據資料庫,其中: 該資料擷取模組響應於一醫療品質指標的一檢視請求,或依一資料更新頻率控制表中設定的該醫療品質指標的一更新頻率,根據該醫療品質指標的一操作型定義向一或多原始醫療數據資料庫取得所需資料,經一資料處理後,儲存為該目的醫療數據資料庫中的該醫療品質指標的複數筆結構化資料,每一筆結構化資料相關聯地儲存有一患者的一患者資料、該患者的一就診索引資料及該醫療品質指標的一指標元素資料;且 該資料擷取模組根據該資料更新頻率控制表中設定的該醫療品質指標的一熱資料區間,判斷是否僅取得該所需資料中位於該熱資料區間內的資料,或依該更新頻率取得該所需資料中位於該熱資料區間內的資料; 一資料分析模組,連接該目的醫療數據資料庫,其根據該操作型定義對該複數筆結構化資料進行資料確認及資料排除,並根據該檢視請求對該複數筆結構化資料進行一運算,以獲得一組統計資料;及 一資料視覺化模組,連接該資料分析模組,其用於透過一使用者介面顯示該組統計資料。The present invention provides a medical quality index management system, comprising: a target medical data database; a data acquisition module connected to the target medical data database, wherein: The data acquisition module responds to a review request of a medical quality indicator, or according to an update frequency of the medical quality indicator set in a data update frequency control table, obtains required data from one or more original medical data databases according to an operational definition of the medical quality indicator, and stores a plurality of structured data of the medical quality indicator in the target medical data database after data processing, each structured data stores patient data of a patient, consultation index data of the patient and indicator element data of the medical quality indicator in association; and The data acquisition module determines whether to obtain only the data in the hot data interval of the medical quality indicator set in the data update frequency control table, or to obtain the data in the hot data interval of the required data according to the update frequency; a data analysis module is connected to the target medical data database, which performs data confirmation and data exclusion on the plurality of structured data according to the operational definition, and performs an operation on the plurality of structured data according to the viewing request to obtain a set of statistical data; and a data visualization module is connected to the data analysis module, which is used to display the set of statistical data through a user interface.
本發明亦提供一種醫療品質指標管理方法,包含: 提供一目的醫療數據資料庫、一資料擷取模組、一資料分析模組及一資料視覺化模組,其中該資料擷取模組連接該目的醫療數據資料庫,該資料分析模組連接該目的醫療數據資料庫,該資料視覺化模組連接該資料分析模組; 該資料擷取模組響應於一醫療品質指標的一檢視請求,或依一資料更新頻率控制表中設定的該醫療品質指標的一更新頻率,根據該醫療品質指標的一操作型定義向一或多原始醫療數據資料庫取得所需資料,經一資料處理後,儲存為該目的醫療數據資料庫中的該醫療品質指標的複數筆結構化資料,每一筆結構化資料相關聯地儲存有一患者的一患者資料、該患者的一就診索引資料及該醫療品質指標的一指標元素資料; 該資料擷取模組根據該資料更新頻率控制表中設定的該醫療品質指標的一熱資料區間,判斷是否僅取得該所需資料中位於該熱資料區間內的資料,或依該更新頻率取得該所需資料中位於該熱資料區間內的資料; 該資料分析模組根據該操作型定義對該複數筆結構化資料進行資料確認及資料排除,並根據該檢視請求對該複數筆結構化資料進行一運算,以獲得一組統計資料;及 該資料視覺化模組透過一使用者介面顯示該組統計資料。The present invention also provides a medical quality indicator management method, comprising: providing a target medical data database, a data acquisition module, a data analysis module and a data visualization module, wherein the data acquisition module is connected to the target medical data database, the data analysis module is connected to the target medical data database, and the data visualization module is connected to the data analysis module; The data acquisition module responds to a review request of a medical quality indicator or an update frequency of the medical quality indicator set in a data update frequency control table, obtains required data from one or more original medical data databases according to an operational definition of the medical quality indicator, and stores a plurality of structured data of the medical quality indicator in the target medical data database after data processing, wherein each structured data stores patient data of a patient, consultation index data of the patient and indicator element data of the medical quality indicator in association; The data acquisition module determines whether to obtain only the data in the hot data interval of the medical quality indicator set in the data update frequency control table, or to obtain the data in the hot data interval in the required data according to the update frequency; the data analysis module performs data confirmation and data exclusion on the plurality of structured data according to the operational definition, and performs an operation on the plurality of structured data according to the view request to obtain a set of statistical data; and the data visualization module displays the set of statistical data through a user interface.
如上述各模組或資料庫可獨立地包含一儲存裝置、一處理器及/或一通訊晶片。儲存裝置之實例包括硬碟、隨身碟、記憶體、記憶卡等。處理器之實例包括積體電路如微控制單元、微處理器、數位訊號處理器、特殊應用積體電路(ASIC)、邏輯電路或其他類似元件或上述元件的組合。通訊晶片可以實施為長期演進系統(LTE)、全球互通微波存取系統(WiMAX)、無線保真系統(Wi-Fi)、藍芽傳輸、全球行動通訊(GSM)或個人手持式電話系統(PHS)等。Each module or database as mentioned above may independently include a storage device, a processor and/or a communication chip. Examples of storage devices include hard disks, flash drives, memories, memory cards, etc. Examples of processors include integrated circuits such as microcontrollers, microprocessors, digital signal processors, application-specific integrated circuits (ASICs), logic circuits or other similar components or combinations of the above components. The communication chip may be implemented as Long Term Evolution (LTE), Worldwide Interoperability for Microwave Access (WiMAX), Wireless Fidelity (Wi-Fi), Bluetooth, Global System for Mobile Communications (GSM) or Personal Handyphone System (PHS), etc.
為了解決先前技術中的問題,本發明提出能夠於單一平台上管理大量的即時報表數據,以用於醫院中的各式管理情境之醫療品質指標管理系統。本發明透過「冷熱資料區間」及「上下游」資料的共享,並優化「工作排程索引模式」來簡化查詢過程與減少管理成本,以在醫院中的各式管理情境中於單一平台上管理大量的即時報表數據。熱資料讓使用者每次進行報表檢視時,僅針對重要的熱資料(例如1周內或是1個月內的資料)進行更新。冷資料在每次檢視報表時並不進行資料的更新,這部分資料可能是(半年以前或是一年以前的資料)。當下游資料要進行資料擷取的時候,不需要重新建立上游資料(已經存在),只需要透過已存在的上游資料報表,取得所需的資料進行細節的資料擷取即可,不用重複跑主機資料庫資源,可以保證主機資料庫的資源與安全。In order to solve the problems in the previous technology, the present invention proposes a medical quality indicator management system that can manage a large amount of real-time report data on a single platform for use in various management scenarios in hospitals. The present invention simplifies the query process and reduces management costs through the sharing of "hot and cold data intervals" and "upstream and downstream" data, and optimizes the "task scheduling index mode" to manage a large amount of real-time report data on a single platform in various management scenarios in hospitals. Hot data allows users to update only important hot data (such as data within 1 week or 1 month) every time they view a report. Cold data is not updated every time a report is viewed, and this part of the data may be (data from half a year ago or a year ago). When downstream data needs to be captured, there is no need to re-create upstream data (already existing). It only needs to obtain the required data through the existing upstream data report for detailed data capture. There is no need to repeatedly run the host database resources, which can ensure the resources and security of the host database.
以手術清單為例,報表呈現為近三年資料。若每次報表均查詢全部資料,則為,資料全部搜尋時間約15分鐘左右。而手術病理醫囑分析,則3年的資料約需3-4小時。For example, the surgical list shows the data of the past three years. If all the data are queried for each report, it will take about 15 minutes to search all the data. For surgical pathology analysis, it will take about 3-4 hours to search for 3 years of data.
以手術病理醫囑分析為例,透過上下游的資料結構,進行分科手術清單與手術病理醫囑分析,每次搜尋報表都不用進行全院手術清單,也就是說,每個使用者每使用報表一次,可以節省約15分鐘的時間重新建立全院手術清單報表資料,而主機可以減少約33萬筆的搜尋資源。Taking surgical pathology physician order analysis as an example, through the upstream and downstream data structure, the departmental surgery list and surgical pathology physician order analysis can be performed. There is no need to search the entire hospital surgery list every time a report is searched. In other words, each user can save about 15 minutes of time to re-establish the hospital surgery list report data each time they use the report, and the host can reduce about 330,000 search resources.
以手術病理醫囑分析為例,該資料庫的資料大多在手術當下即建立完成,即使有候補或是修改資料的情況,大多也是在記錄產生的7天後即不在變動。根據此邏輯本報表的熱資料區間即訂為7天,也是說每次更新資料的時間點往前只更新七天資料。例如,2023-10-10進行資料更新,則只更新2023-10-3到2023-10-10這七天的資料。Taking surgical pathology medical record analysis as an example, most of the data in the database is created at the time of surgery. Even if there is a waiting list or modified data, most of them will not change after 7 days of the record generation. Based on this logic, the hot data interval of this report is set to 7 days, which means that only seven days of data will be updated each time the data is updated. For example, if the data is updated on 2023-10-10, only the data from 2023-10-3 to 2023-10-10 will be updated.
以病人檢查驗危急值回覆率為例,醫師被規定在收到病人檢查驗結果異常或危急值得通知簡訊後,應於24小時內使用公務手機、院內網站(SMSOT)、或醫療作業系統報告查詢回覆。也就是說只要在簡訊通知發出超過24小時以後,不論醫師是否有回覆,則該筆紀錄均視為未回覆。同時在醫院實務上將開放7天的時間監測雖未在24小時內回覆但有在7天內回覆的紀錄。從上述的定義即可設定該指標的運作特徵:冷資料為系統紀錄至今七天前的所有檢查驗異常紀錄(已超過7天的資料,不必每次更新),熱資料為7天內的資料紀錄(須確定是否有回覆),熱資料的更新頻率(8小時一次)。例如,2023-10-10進行資料更新,則只更新2023-10-3到2023-10-10這七天的熱資料,2023-10-3之前的冷資料則不必更新。Taking the response rate of critical values of patient examination results as an example, doctors are required to use their official mobile phones, the hospital website (SMSOT), or the medical operating system to report and query responses within 24 hours after receiving SMS notifications of abnormal or critical values of patient examination results. In other words, as long as more than 24 hours have passed since the SMS notification was sent, regardless of whether the doctor has responded, the record will be considered unanswered. At the same time, in hospital practice, a 7-day time monitoring will be opened to monitor records of responses within 7 days even though they were not responded within 24 hours. From the above definition, the operating characteristics of the indicator can be set: cold data refers to all inspection abnormality records recorded by the system seven days ago (data older than 7 days does not need to be updated every time), hot data refers to data records within 7 days (it is necessary to confirm whether there is a response), and the update frequency of hot data is once every 8 hours. For example, if data is updated on 2023-10-10, only the hot data from 2023-10-3 to 2023-10-10 will be updated, and the cold data before 2023-10-3 does not need to be updated.
以手術清單為例,可分為全院手術清單、分科手術清單、手術病理醫囑分析三個報表。全院手術清單針對醫院高層的管理者,理解全院的手術狀況,不會細部到各分科的細部層級。分科手術清單針對各部門的管理者,理解整個部門的狀況。只針對該部門即可,各部門之間各自獨立報表。手術病理醫囑分析針對品質管理單位或是各科別手術的管理者,碰到有病安疑慮或是醫療品質事件時需要透過該報表細部瞭解每一筆手術紀錄的經過情形。全院手術清單層級最高,涵蓋全院所有的手術紀錄清單,但這部分不需要細節到每一個手術的詳細資料(手術方式、原因、麻醉方式等等)。分科手術清單與手術病理醫囑分析則都是根據全院手術清單的名單中去進行細部的分析。全院手術清單報表是另外兩個報表的上游資料。分科手術清單與手術病理醫囑分析則是下游資料。當下游資料要進行資料擷取的時候,不需要重新建立上游資料(已經存在),只需要透過已存在的上游資料報表,取得所需的資料進行細節的資料擷取即可,不用重複跑主機資料庫資源,可以保證主機資料庫的資源與安全。Taking the surgery list as an example, it can be divided into three reports: the hospital-wide surgery list, the department-specific surgery list, and the surgical pathology medical report analysis. The hospital-wide surgery list is for senior managers of the hospital to understand the surgical situation of the entire hospital, and will not be detailed to the detailed level of each department. The department-specific surgery list is for managers of each department to understand the situation of the entire department. It only targets the department, and each department has its own independent report. The surgical pathology medical report analysis is for the quality management unit or managers of surgeries in each department. When encountering patient safety concerns or medical quality incidents, they need to use this report to understand the details of each surgical record. The hospital-wide surgical list is the highest level, covering all surgical record lists in the hospital, but this part does not require detailed information on each surgery (surgical method, cause, anesthesia method, etc.). The specialized surgical list and surgical pathology medical order analysis are both based on the hospital-wide surgical list for detailed analysis. The hospital-wide surgical list report is the upstream data of the other two reports. The specialized surgical list and surgical pathology medical order analysis are downstream data. When downstream data needs to be captured, there is no need to re-establish upstream data (already exists). It only needs to use the existing upstream data report to obtain the required data for detailed data capture. There is no need to repeatedly run the host database resources, which can ensure the resources and security of the host database.
以手術清單為例,報表呈現為近三年資料。若每次報表均查詢全部資料,則為,資料全部搜尋時間約15分鐘左右。而手術病理醫囑分析,則3年的資料約需3-4小時。For example, the surgical list shows the data of the past three years. If all the data are queried for each report, it will take about 15 minutes to search all the data. For surgical pathology analysis, it will take about 3-4 hours to search for 3 years of data.
以手術病理醫囑分析為例,透過上下游的資料結構,進行分科手術清單與手術病理醫囑分析,每次搜尋報表都不用進行全院手術清單,也就是說每個使用者每使用報表一次,可以節省約15分鐘的時間重新建立全院手術清單報表資料,而主機可以減少約33萬筆的搜尋資源。Taking surgical pathology physician order analysis as an example, through the upstream and downstream data structure, the departmental surgery list and surgical pathology physician order analysis can be performed. Every time a report is searched, there is no need to search the entire hospital's surgery list. In other words, each user can save about 15 minutes of time to re-establish the hospital's surgery list report data each time they use the report, and the host can reduce about 330,000 search resources.
以手術病理醫囑分析為例,該資料庫的資料大多在手術當下即建立完成,即使有候補或是修改資料的情況,大多也是在記錄產生的7天候即不在變動。根據此邏輯本報表的熱資料區間即訂為7天,也是說每次更新資料的時間點往前只更新七天資料。Take surgical pathology medical record analysis as an example. Most of the data in this database is created at the time of surgery. Even if there are waiting lists or modified data, most of them will not change within 7 days of the record generation. Based on this logic, the hot data interval of this report is set to 7 days, which means that each time the data is updated, only the data of 7 days before the time point is updated.
冷熱資料的機制使得每次更新報表資料時只需要更新7天的資料,只約需1-2分鐘即可完成。不僅可以將原本3-4小時的時間縮短到1-2分鐘內即可產出最即時的報表,同時可以減少主機資料庫被搜尋幾百萬次的資源(幾百萬次減少為2千筆資料搜尋)。原本的報表產製方式受限於主機資源及機敏資料安全性等限制,導致指標報表無法即時呈現資料,在醫療場域的應用上非常受限。本發明透過冷熱資料與上下游資料機制,可以將原本需要幾小時的報表資料蒐集時間(約百萬筆的搜尋資源),縮短到1-2分鐘內(約2千筆搜尋資源)。如此可以達到在段時間內快速產製即時報表,以符合實際臨床場域的需求。The hot and cold data mechanism means that each time the report data is updated, only 7 days of data needs to be updated, which takes only about 1-2 minutes to complete. Not only can the original 3-4 hours be shortened to 1-2 minutes to produce the most timely report, but it can also reduce the number of resource searches in the host database by millions (millions of times reduced to 2,000 data searches). The original report production method is limited by host resources and sensitive data security, which results in the inability of indicator reports to present data in real time, and is very limited in its application in the medical field. The present invention uses hot and cold data and upstream and downstream data mechanisms to shorten the report data collection time that originally took several hours (approximately one million search resources) to 1-2 minutes (approximately 2,000 search resources). This enables the rapid generation of real-time reports within a short period of time to meet the needs of actual clinical settings.
在本發明一實施例中,品管中心指藉由本發明提出之具可擴充性之醫療品質指標管理系統及其運作方法,透過將各個系統模組化,賦予整個醫療品質指標管理系統具有可擴充性,根據指標操作型定義,自動擷取資料庫中數位化之資料進行運算後,將指標結果自動傳送到視覺化管理平台(SASVA)上,供使用者即時查看。In one embodiment of the present invention, the quality control center refers to the scalable medical quality indicator management system and its operation method proposed by the present invention, which modularizes each system to give the entire medical quality indicator management system scalability. According to the indicator operational definition, the digitized data in the database is automatically captured and calculated, and the indicator results are automatically transmitted to the visual management platform (SASVA) for users to view in real time.
因此,智慧化指標功能包含自動化擷取、運算、呈現指標資;即時化呈現資料(指標更新頻率,每8小時更新一次);圖形化使用者介面;透過點選方式及圖表呈現資料。Therefore, the intelligent indicator function includes automatic acquisition, calculation, and presentation of indicator data; real-time presentation of data (indicator update frequency is once every 8 hours); graphical user interface; and presentation of data through point-and-click methods and charts.
在本發明一實施例中,本發明迅速建立全自動化之COVID專責病房戰情看板及個案追蹤機制,成功地達成標準化資訊、自動化資料處理、視覺化呈現等重要項目,且在短時間內快速上線,並且隨時依據臨床需求進行調整。In one embodiment of the present invention, the present invention quickly establishes a fully automated COVID-dedicated ward situation dashboard and case tracking mechanism, successfully achieving important projects such as standardized information, automated data processing, and visual presentation, and is quickly launched in a short time and can be adjusted at any time according to clinical needs.
如圖1所示,本發明的醫療品質指標管理系統100包含目的醫療數據資料庫110、資料擷取模組120、資料分析模組130、資料視覺化模組140及工作排程模組150。資料擷取模組120連接該目的醫療數據資料庫110,資料分析模組130連接該目的醫療數據資料庫110,資料視覺化模組140連接該資料分析模組130。工作排程模組150連接該資料擷取模組120。資料擷取模組120包含可擴充性資料庫擷取介面,針對不同醫療指標資料庫的讀取介面介接擷取資料,該讀取介面至少包含SQL語法與API溝通介面。同時,定義資料型態、資料內容計算、欄位命名對照以及資料型態整合等轉換成一份完整資料。資料擷取模組120將經過資料擷取模組後的完整資料轉換建立「病人-就診索引-指標元素」之資料集,同時搭配後續分析模組需求,提供擴充性定義,對於每筆資料定義指標提供元素以外的附加描述資訊,輸出並寫入目的資料庫。As shown in FIG1 , the medical quality
資料擷取模組120包含以下控制項目:資料接入方式控制表、資料更新頻率控制表、資料運算邏輯控制表、資料輸出格式對照表。資料擷取模組120透過資料接入方式控制表,可介接不同資料源,包含關聯式資料庫,如:Oracle、SqlServer、DB2等支援透過SQL語法進行資料的ETL,擷取(extract)、轉換(transform)和載入(load)等操作;或是檔案類型資料源,如:Excel檔案、TXT檔案、XML檔案等資料源。資料擷取模組可透過複數個控制項目,介接複數個資料源及複數個終端設置。資料來源可根據使用需求定義為冷熱資料,透過資料更新頻率控制表定義資料更新頻率與冷熱資料區間。資料擷取模組120每次更新資料時判斷資料是否為新資料,若為新資料則不論冷熱資料,皆透過資料運算邏輯控制表與資料輸出格式對照表輸出至目的資料庫儲存。若為舊資料且為冷資料,則不進行資料處理以提升資料處理的效能。若為舊資料且為熱資料,則透過資料運算邏輯控制表與資料輸出格式對照表處理後,輸出至目的資料庫儲存。The
該資料擷取模組120根據資料輸出格式對照表所提供的資料型態,將自定義複數個欄位進行資料命名與整併,輸出具標準化格式的資料儲存到目的資料庫。The
該資料擷取模組120響應於一醫療品質指標的一檢視請求,或依一資料更新頻率控制表中設定的該醫療品質指標的一更新頻率,根據該醫療品質指標的一操作型定義向一或多原始醫療數據資料庫110取得所需資料,該操作型定義中界定有評估該醫療品質指標所需的資料項目,且該資料擷取模組根據該資料項目向對應的原始醫療數據資料庫取得該所需資料,經一資料處理後,儲存為該目的醫療數據資料庫110中的該醫療品質指標的複數筆結構化資料,每一筆結構化資料相關聯地儲存有一患者的一患者資料(病歷號、住院號、檢驗單號、姓名、性別、生日、診斷碼、用藥紀錄、治療處置紀錄、檢驗檢查紀錄、門診急診住院之就診紀錄或其組合)、該患者的一就診索引資料(門診、急診、住院或其組合)及該醫療品質指標的一指標元素資料。就診索引可以彈性設計,就診索引包含醫師、日期、診斷。The
該資料更新頻率控制表中更設定有一冷資料區間,該資料擷取模組先判斷該所需資料中位於該熱資料區間內及該冷資料區間的資料是否皆已儲存為該目的醫療數據資料庫110中的結構化資料,若否,則取得尚未儲存的資料並將其儲存為該目的醫療數據資料庫110中的結構化資料,若是,則僅取得該所需資料中位於該熱資料區間內的資料,並將其儲存為該目的醫療數據資料庫110中的結構化資料,或據以更新該目的醫療數據資料庫110中的儲存的該複數筆結構化資料。A cold data interval is further set in the data update frequency control table. The data acquisition module first determines whether the data in the hot data interval and the cold data interval in the required data have all been stored as structured data in the target
該資料擷取模組120根據該資料更新頻率控制表中設定的該醫療品質指標的一熱資料區間,判斷是否僅取得該所需資料中位於該熱資料區間內的資料,或依該更新頻率取得該所需資料中位於該熱資料區間內的資料。The
資料來源包含:資訊室資料庫(以關聯式資料表為主)、填報系統(異常事件、各部科指標等)、臨床指標事件收集系統。資料擷取模組120將根據各醫療指標資料庫的來源,各自設計資料的讀取介面(如SQL語法、API介面等),介接擷取資料。待收集到數據後,資料擷取模組120可以根據指標的特性需求,設定資料轉換的方式,將不同來源與不同格式的資料,轉換為同一格式,再交由後續模型使用。換句話說,後續階段的模組,不論資料收集來源為何,均接受已轉換好且統一格式的資料。資料擷取模組120可以依據各指標獨特的生命周期與時效性,透過模組化的方式,調整決定資料擷取模組120的資料擷取與更新頻率,兼顧資料即時性、正確性且維持合理的資料維運成本。Data sources include: information room database (mainly relational tables), reporting system (abnormal events, indicators of various departments, etc.), clinical indicator event collection system. The
資料擷取模組120將在資料收集後根據指標的操作型定義,透過資料型態定義、資料內容計算、欄位命名轉換以及資料型態整合等,將原始散亂的數據資料,轉換成一份完整資料,再確保資料的一致性後,再將其輸出至目的醫療數據資料庫進行儲存。After data collection, the
以品質管理指標來說,資料擷取模組120可以建立特定索引:所有指標元素均是跟隨著「病人」,而病人在醫院中的資料,又是以「就診」(分門診、急診、住院)為索引。所以建立「病人-就診索引-指標元素」之資料集,最有利於後續資料分析及應用。In terms of quality management indicators, the
資料擷取模組120儲存「病人-就診索引-指標元素」之資訊時,將會同時附加該筆紀錄建立時間、異動時間、操作者,以利後續的檢驗與校對。When the
資料擷取模組120以階段性暫存(staging)方式時確保資料的及時性、準確性,同時提供後續子群體分析使用(如部科分析、年齡性別分層分析,或是往下分析到病人層級)時定義指標元素以外的附加描述資訊。The
資料分析模組130根據該操作型定義對該複數筆結構化資料進行資料確認及資料排除,並根據該檢視請求對該複數筆結構化資料進行一運算,以獲得一組統計資料。資料分析模組130主要進行資料的確認以及運算兩大工作。在資料的收集上,各個不同的數據資料庫可能因各自的設立需求,對於同樣的資料會有不同的命名與紀錄方式,或是對於不同的資料有相近似的紀錄方式。因此,資料分析模組130將依據醫療品管指標的操作型定義,針對蒐集而來的資料進行整併、確認與排除等工作,僅保留所需要的資料及確保其正確性後,再進行集成(aggregation)運算。在集成運算時需明確定義資料在時間軸上如何分割,傳統指標多為月報表形式,也就是大部分指標都是每各月算一次,但資料分析模組130可依不同時空背景與指標操作型定義的需求,進行規劃至少按日、周、月、季、年等不同周期的集成運算方式,充分發揮具可擴充性之醫療品質指標管理系統及其運作方法的優勢,達到智慧指標系統的目標。月報表的呈現方式以符合紙本列印版面需求為主,並將醫療部科系進行複數個自定義分群,其至少包含全院、內科系、外科系、婦兒科、急重及家醫、五官及其他等群組,各分群包含複數個各級醫療部科臨床單位。The
資料視覺化模組140透過一使用者介面顯示該組統計資料。視覺化平台有各式各樣的模式,常見的如Microsoft Power BI、SAS Visual Analytics、Tableau、QlikView等。不同的視覺化平台有不同的介接需求。資料視覺化模組140主要作為資料與使用者互動的溝通介面,可依據使用者的目的需求以及視覺化平台的特色進行設計,介接資料端與視覺化平台呈現資料,達到可擴充應用於不同使用需求與平台系統需求的特性。未來若指標已資訊化到一定程度,可在可視化模組做出智慧應用,如:異常值警示等,而指標的內容若能再由使用端檢視並且收集回饋資訊,未來可更進一步修正及改善系統本身。The
資料視覺化模組140包含複數個介接手段,其至少包含API溝通介面。視覺化平台包含複數個呈現方式,其至少包含月報表與儀表板模式。儀表板的呈現方式以符合電腦螢幕操作為主,並提供複數個互動式查詢介面,其至少包含本月摘要、近年趨勢、最近30日內動態、按月查詢、按季查詢、樞紐分析、指標說明等項目。儀表板的各項目均包含下鑽功能,可查詢複數個「病人-就診索引-指標元素」之明細資料,因原始資料已經透過重新編碼存放在目的醫療資料庫中,每個使用者的不同需求(例如:依年/季/月綜覽或是下鑽到每一案例)都可以透過指標元素作為索引,快速地取得每一筆相關的病人-就診索引-指標元素資料,該資料及代表每一個下鑽的案例在不同時間點所產生的指標結果。同時,在該資料中亦包含了時間的資訊故而可以快速地根據年/季/月進行排序分類。The
如此一來,將該KPI指標的運作透過指標基本資料-冷熱資料區間-上游資料-執行紀錄作為管理指標於資訊系統自動化運作的新索引編碼。每個指標有其獨特對應的單一運作索引,透過該索引可以快速地瞭解並管理目前指標的運作。透過冷熱資料區間的定義與調控,可以有效減少不必要的資料調取,以病人檢查驗危急值回覆率為例,如果原本每次查詢年度資料需要調動近百萬筆的資料,透過冷熱資料區間不論每次查詢的是年度或是N年的資料,則僅會從原始資料庫調動近7天的資料平均約2千多筆資料,可以有效地提升系統效能並確保系統的穩定性。In this way, the operation of the KPI indicator is coded as a new index for the automated operation of the management indicator in the information system through the basic indicator data - hot and cold data intervals - upstream data - execution records. Each indicator has its own unique corresponding single operation index, through which the operation of the current indicator can be quickly understood and managed. Through the definition and regulation of hot and cold data intervals, unnecessary data retrieval can be effectively reduced. Taking the response rate of critical values of patient examinations as an example, if each query of annual data originally requires the mobilization of nearly one million data records, through hot and cold data intervals, regardless of whether the query is annual or N years of data, only an average of about 2,000 data records from the past 7 days will be mobilized from the original database, which can effectively improve system performance and ensure system stability.
工作排程模組150安排該資料擷取模組120針對複數醫療品質指標進行之資料擷取或更新,該工作排程模組150具有一工作描述清單及一排程控制單元。該工作描述清單記錄有該複數醫療品質指標各自的更新頻率、再次嘗試頻率、熱資料區間及上游工作名稱。該排程控制單元根據該工作描述清單觸發該資料擷取模組120進行資料擷取或更新。工作的內容是在主要伺服器(如醫療作業系統)中查詢並重新整理資料,再將資料上傳至指定視覺化資料平台,這樣的工作項目名稱為「進行資料搜索與整理的指標報表名稱」。在該資料更新頻率控制表中可以查看及管理所有的指標的更新頻率及熱資料區間。The
工作自動更新資料的頻率預設為每8小時自動更新,透過自動更新頻率可取得即時的資料。The default frequency of automatic task data update is every 8 hours. Real-time data can be obtained through the automatic update frequency.
指標工作執行失敗後,預設等候1小時後再次重新嘗試執行。If a task fails to execute, it will try again after 1 hour by default.
工作要持續更新資料(熱資料)的天數,預設為7天,這樣的熱資料區間有助於快速產生報表資料。The number of days that the job needs to continuously update data (hot data) is set to 7 days by default. Such a hot data period helps to quickly generate report data.
參考的基準日期若設定為0,代表基準日期為今天,若設定為-1,代表基準日期為昨天。If the reference base date is set to 0, it means the base date is today; if it is set to -1, it means the base date is yesterday.
資料蒐集起始日若設定為2020-01-01,代表從2020年01月01日開始蒐集資料。If the data collection start date is set to 2020-01-01, it means that data collection will start from January 1, 2020.
上游工作名稱是指上游資料的指標名稱(job name),預設為空值。The upstream job name refers to the pointer name of the upstream data (job name), and the default value is null.
工作排程模組150在每次迴圈執行中,檢查是否有工作滿足執行條件,若是,則執行該工作。條件判斷流程包含:In each loop execution, the
1.載入基本設定:讀取上述的工作描述清單載入工作設定內容並建立工作狀態文件記錄工作執行情況。同時進行基本資料檢查,包含:資料型態定義(數值型態、布林型態、日期時間型態)、檢查上游指標名稱(如果有指定上游指標則檢查上游資料庫是否存在;若無則先進行上游資料庫建立工作)、必要參數檢查(檢查指標更新的頻率、再次嘗試頻率、時間單位等基本設定,如果沒有填寫,則工作會報警異常並記錄於工作狀態文件)。1. Load basic settings: Read the above work description list, load the work settings and create a work status file to record the work execution status. At the same time, perform basic data checks, including: data type definition (numeric type, Boolean type, date and time type), check the upstream indicator name (if there is a specified upstream indicator, check whether the upstream database exists; if not, first perform the upstream database creation work), and check the necessary parameters (check the indicator update frequency, retry frequency, time unit and other basic settings. If not filled in, the work will alarm abnormalities and record them in the work status file).
2.計算資料需求區間:計算工作應該開始執行的時間與需要撈取的資料日期區間。根據熱資料期間、資料蒐集起始日及日期基準偏移天數,取得應該存在目的醫療數據資料庫中的資料日期。2. Calculate the data requirement interval: Calculate the time when the work should start and the data date interval that needs to be collected. According to the hot data period, the data collection start date and the date base offset days, obtain the data date that should exist in the target medical database.
3.建立代辦事項清單:比對目的醫療數據資料庫中的資料日期與前述計算出的資料日期,建立待辦事項清單(真正需要進行擷取資料日期清單)。3. Create a to-do list: Compare the data date in the target medical data database with the data date calculated above, and create a to-do list (a list of data dates that really need to be retrieved).
4.進行資料擷取與紀錄執行情況:根據上述代辦清單進行資料擷取工作。同時紀錄資料擷取的時間點、計算下次迴圈開始執行的時間點以及擷取工作是否成功完成等資訊記錄在工作狀態表上。4. Perform data acquisition and record execution status: Perform data acquisition according to the above-mentioned agency list. At the same time, record the time of data acquisition, the time to calculate the start of the next loop, and whether the acquisition work is successfully completed, etc., and record it in the work status table.
5.迴圈:如果系統無重新啟動則在完成進行資料擷取與紀錄執行情況後,系統會進行等待,直到時間到達預計開始的下次工作執行時間,才在進行資料擷取與紀錄狀況。如果系統重新啟動,則重新從載入基本設定的步驟開始執行。5. Loop: If the system is not restarted, after completing the data acquisition and recording of the execution status, the system will wait until the time reaches the next expected work execution time, and then perform data acquisition and recording. If the system is restarted, it will start again from the step of loading basic settings.
舉例來說,現在有工作項目1,在系統開始執行時,會先檢查指標更新頻率及再次嘗試頻率以及時間單位是否有填寫。如果沒問題才進行下一步驟。For example, if there is work item 1, when the system starts to execute, it will first check whether the indicator update frequency, retry frequency and time unit are filled in. If there is no problem, it will proceed to the next step.
系統根據日期基準偏移天數為0,資料蒐集起始日為2019年01月01日(2019-01-01),比對目的醫療數據資料庫中的資料日期,判斷有哪些資料是不存在的,進而建立待辦事項清單並進行資料擷取的工作。如果有設定缺漏則系統會報警並停止執行;如果設定接正確,則建立代辦事項清單。The system compares the data date in the target medical database with the date base offset days of 0 and the data collection start date of January 1, 2019 (2019-01-01), determines which data does not exist, and then creates a to-do list and performs data acquisition. If there are missing settings, the system will alarm and stop execution; if the settings are correct, a to-do list will be created.
根據代辦事項清單進行資料擷取,如果待辦事項清單為空,表示所有資料皆已存在。則進行下一步驟的熱資料更新。熱資料區間設定為2,系統每次只會更新今天與昨天的資料(2天內的資料)。判斷系統執行是否成功,如果成功則每8小時重新更新一次熱資料(2天內的資料)。如果系統執行失敗,則等2小時後再次嘗試更新熱資料(2天內的資料)。計算下次開始時間,然後重複判斷系統執行是否成功的步驟。Data is retrieved according to the to-do list. If the to-do list is empty, it means that all data already exists. Then proceed to the next step of hot data update. The hot data interval is set to 2, and the system will only update today's and yesterday's data each time (data within 2 days). Determine whether the system execution is successful. If successful, re-update the hot data (data within 2 days) every 8 hours. If the system execution fails, wait 2 hours and try to update the hot data (data within 2 days) again. Calculate the next start time, and then repeat the steps to determine whether the system execution is successful.
舉例來說,現在有工作項目3,該指標如果執行成功,每24小時會更新一次。如果執行失敗,則等兩小時後會再重新執行一次。熱資料區間為2,每次只會更新最近兩天的資料。日期基準偏移天數為0,資料蒐集起始日為2022-01-01。表示資料庫內的資料會有從2022-01-01開始一直到今天的所以資料。上游資料是工作項目1,所以在進行工作項目3的的資料擷取時會優先確認工作項目1的資料。For example, there is now work item 3. If the indicator is executed successfully, it will be updated every 24 hours. If the execution fails, it will be re-executed after two hours. The hot data interval is 2, and only the data of the last two days will be updated each time. The date base offset days is 0, and the data collection start date is 2022-01-01. It means that the data in the database will have all the data from 2022-01-01 to today. The upstream data is work item 1, so when the data of work item 3 is captured, the data of work item 1 will be confirmed first.
舉例來說,現在有工作項目2,在系統開始執行時,會先檢查指標更新頻率及再次嘗試頻率以及時間單位是否有填寫。如果沒問題才進行下一步驟。存在工作項目1,先執行工作項目1的工作,檢查資料是否已存在。For example, if there is work item 2, when the system starts to execute, it will first check whether the indicator update frequency and retry frequency and time unit are filled in. If there is no problem, it will proceed to the next step. If there is work item 1, execute the work of work item 1 first and check whether the data already exists.
系統根據日期基準偏移天數為0,資料蒐集起始日為2022-01-01。進行比對目的醫療數據資料庫中的資料日期,判斷有哪些資料是不存在的,進而建立待辦事項清單並進行資料擷取的工作。如果有設定缺漏則系統會報警並停止執行。如果設定接正確,則建立代辦事項清單。根據上述代辦事項清單進行資料擷取。如果待辦事項清單為空,表示所有資料皆已存在。則進行下一步驟的熱資料更新。熱資料區間設定為2,系統每次只會更新今天與昨天的資料(2天內的資料)。判斷系統執行是否成功,如果成功則每24小時重新更新一次熱資料(2天內的資料)。如果系統執行失敗,則等2小時後再次嘗試更新熱資料(2天內的資料)。計算下次開始時間,然後重複判斷系統執行是否成功的步驟。The system sets the date base offset days to 0, and the data collection start date is 2022-01-01. Compare the data dates in the target medical data database to determine which data does not exist, and then create a to-do list and perform data acquisition. If there are missing settings, the system will alarm and stop execution. If the settings are correct, create a to-do list. Perform data acquisition based on the above to-do list. If the to-do list is empty, it means that all data already exists. Then proceed to the next step of hot data update. The hot data interval is set to 2, and the system will only update today's and yesterday's data each time (data within 2 days). Determine whether the system execution is successful. If successful, the hot data will be updated every 24 hours (data within 2 days). If the system fails to execute, it will try to update the hot data (data within 2 days) again after 2 hours. It will calculate the next start time and then repeat the steps to determine whether the system execution is successful.
在沒有使用熱資料與上游資料的情形下,工作項目1每8小時擷取一次資料,每次均需要從2019年開始擷取。工作項目2每24小時擷取一次資料,每次要先取得2022年開始的工作項目1的資料,然後再擷取自2022年開始的工作項目2的資料。工作項目3每8小時擷取一次資料,每次要先取得2023年開始的工作項目1的資料,然後再擷取自2023年開始的工作項目3的資料。每次資料更新時都需要擷取資料開始日至今的所有資料。Without using hot data and upstream data, Work Item 1 will capture data every 8 hours, and each time it needs to start from 2019. Work Item 2 will capture data every 24 hours, and each time it needs to first obtain the data of Work Item 1 starting in 2022, and then capture the data of Work Item 2 starting in 2022. Work Item 3 will capture data every 8 hours, and each time it needs to first obtain the data of Work Item 1 starting in 2023, and then capture the data of Work Item 3 starting in 2023. All data from the data start date to the present needs to be captured every time the data is updated.
在有使用熱資料與上游資料的情形下,工作項目1只有第一次(目的醫療數據資料庫沒有資料時)才需要從2019年開始擷取。之後每次更新僅需要針對缺乏的資料(待辦事項清單)進行資料擷取,如果沒有缺乏的資料,則每次僅需要針對熱資料(2天)進行擷取。工作項目2與工作項目3均直接導入上游資料(存在目的醫療數據資料庫中的工作項目1)資料,不用重新建立工作項目1的所有資料。工作項目2跟工作項目3,只有第一次(目的醫療數據資料庫沒有資料時)才需要從設定的資料起始日(工作項目2為2022-01-01,工作項目3為2023-01-01)開始擷取,之後每次更新僅需要針對缺乏的資料(待辦事項清單)進行資料擷取;如果沒有缺乏的資料,則每次僅需要針對熱資料(2天)進行擷取。When using hot data and upstream data, Work Item 1 only needs to be captured from 2019 for the first time (when there is no data in the destination medical database). After that, each update only needs to capture data for the missing data (to-do list). If there is no missing data, only hot data (2 days) needs to be captured each time. Work Item 2 and Work Item 3 both directly import the upstream data (Work Item 1 in the destination medical database) data, without re-establishing all the data of Work Item 1. For work items 2 and 3, only the first time (when there is no data in the target medical database) do you need to start capturing data from the set data start date (2022-01-01 for work item 2 and 2023-01-01 for work item 3). Each subsequent update only requires capturing data for the missing data (to-do list); if there is no missing data, only hot data (2 days) needs to be captured each time.
為了管理諸多KPI指標的運作本發明提供了一個基於工作管理系統和方法,可用於處理複雜的工作流程和執行不同類型的工作。該發明使得工作管理變得更加方便、可控和高效,同時提高應用程式的效能和可靠性。這個發明具有廣泛的應用前景,在自動化、資料處理、工作流程管理等領域具有重要的價值。將不同來源的資料擷取並合併成病人、就診索引及指標元素組成的資料結構。這個資料結構將不同的相關資訊整合在一起,並存放在目的醫療數據資料庫供後續的使用。In order to manage the operation of multiple KPI indicators, the present invention provides a work management system and method that can be used to handle complex workflows and perform different types of work. The invention makes work management more convenient, controllable and efficient, while improving the performance and reliability of applications. This invention has broad application prospects and has important value in the fields of automation, data processing, workflow management, etc. Data from different sources are captured and merged into a data structure consisting of patient, visit index and indicator elements. This data structure integrates different related information and stores it in the target medical database for subsequent use.
透過指標基本資料、冷熱資料區間、上游資料及執行紀錄組成的索引方式來管理所有的KPI指標的狀態和設定。透過該索引將不同KPI指標工作的相關資訊整合在一起,包括工作名稱、狀態、設定等,從而提供一個統一的索引來管理工作。同時根據每個KPI指標工作的設定和狀態進行計算,考慮工作的優先級、依賴關係和其他因素,以確定最佳的執行時間並確保工作能夠按照預期的時間執行。透過執行紀錄更新工作的狀態並返回一個布林值,代表工作是否成功執行以及更新後的工作狀態。The status and settings of all KPI indicators are managed through an index consisting of basic indicator data, hot and cold data ranges, upstream data, and execution records. The relevant information of different KPI indicator tasks is integrated through this index, including task name, status, settings, etc., so as to provide a unified index to manage tasks. At the same time, calculations are performed based on the settings and status of each KPI indicator task, taking into account the priority, dependency relationship, and other factors of the task to determine the best execution time and ensure that the task can be executed as expected. The status of the task is updated through the execution record and a Boolean value is returned, indicating whether the task is successfully executed and the updated task status.
實例1:具可擴充性之醫院中醫療品質指標資料收集與管理系統Example 1: Scalable hospital TCM quality indicator data collection and management system
具可擴充性之醫院中醫療品質指標資料收集與管理系統,包含一資料擷取模組,其包含可擴充性資料庫擷取介面,針對不同醫療指標資料庫的讀取介面介接擷取資料,該讀取介面至少包含SQL語法與API溝通介面。同時,至少定義資料型態、資料內容計算、欄位命名對照以及資料型態整合等並轉換成一份完整資料;一資料儲存模組,其將經過資料擷取模組後的完整資料轉換建立「病人-就診索引-指標元素」之資料集,同時搭配後續分析模組需求,提供擴充性定義,對於每筆資料定義指標提供元素以外的附加描述資訊,輸出並寫入目的資料庫;一資料分析模組,其進行資料的確認與排除後進行分析,至少包含部科分析、年齡性別分析、分層分析、病人層級分析等。同時進行集成運算與資料時間軸分割,本模組可依不同時空背景與指標操作型定義的需求進行集成運算;一資料視覺化模組,其接收資料推送模組所傳送的資料,透過視覺化平台呈現資料。The scalable hospital traditional Chinese medicine quality indicator data collection and management system includes a data acquisition module, which includes an scalable database acquisition interface, and is connected to the read interface of different medical indicator databases to acquire data. The read interface at least includes SQL syntax and API communication interface. At the same time, at least define the data type, data content calculation, field naming comparison and data type integration, and convert it into a complete data; a data storage module, which converts the complete data after the data acquisition module to establish a "patient-visit index-indicator element" data set, and at the same time, in conjunction with the needs of the subsequent analysis module, provides extended definitions, and provides additional descriptive information other than the elements for each data definition indicator, outputs and writes it into the target database; a data analysis module, which performs analysis after confirming and excluding the data, at least including department analysis, age and gender analysis, hierarchical analysis, patient level analysis, etc. This module can perform integrated calculations and data time axis segmentation at the same time, and can perform integrated calculations according to the needs of different time and space backgrounds and indicator operation definitions; a data visualization module, which receives data transmitted by the data push module and presents the data through a visualization platform.
以住院病人死亡率為例,其操作型定義如下。 指標的資料收集範圍:包含(1)急性一般病床、(2)特殊病床的加護病床、燒傷病床、嬰兒病床、嬰兒床及亞急性呼吸照護病床(RCC)、燒傷加護病床、骨髓移植病床及隔離病床。 指標元素:本指標分母為前述所有病床於監測月份出院(含轉院)之病人次,每一病人都應以下列其中一種狀態進行歸類:(1)死亡出院、(2)病危自動出院:經醫師判定為病危瀕臨死亡,由病人家屬要求辦理自動出院、(3)違反醫囑自動出院(AAD)、(4)直接出院(MBD) 排除規則:可用「依指標收案條件篩選」功能,切換排除嬰兒室(科代碼:NB)、精神部病房(科代碼:PSY、GPSY、PSYD)、安寧病房(科代碼:HOSP)之個案。 計算公式: 住院死亡率(含病危自動出院) = 死亡人數(含病危自動出院) / 出院總人次 住院死亡率(不含病危自動出院) = 死亡人數(不含病危自動出院) / 出院總人次Taking the inpatient mortality rate as an example, its operational definition is as follows. The scope of data collection for the indicator includes (1) acute general hospital beds, (2) special hospital beds, intensive care beds, burn beds, infant beds, infant beds and subacute respiratory care beds (RCC), burn intensive care beds, bone marrow transplant beds and isolation beds. Indicator elements: The denominator of this indicator is the number of patients discharged (including transfers) from all the aforementioned beds during the monitoring month. Each patient should be classified into one of the following statuses: (1) discharged due to death, (2) discharged due to critical illness: the patient is diagnosed as critically ill and on the verge of death by a physician and the patient's family requests automatic discharge, (3) discharged due to violation of medical instructions (AAD), (4) discharged directly from the hospital (MBD) Exclusion rules: The "Filter by indicator case conditions" function can be used to switch to exclude cases from the nursery (department code: NB), psychiatric ward (department code: PSY, GPSY, PSYD), and hospice ward (department code: HOSP). Calculation formula: Inpatient mortality rate (including self-discharge due to critical illness) = number of deaths (including self-discharge due to critical illness) / total number of discharges Inpatient mortality rate (excluding self-discharge due to critical illness) = number of deaths (excluding self-discharge due to critical illness) / total number of discharges
承上,資料擷取模組包含4個控制項目:資料接入方式控制表、資料更新頻率控制表、資料運算邏輯控制表、資料輸出格式對照表。資料擷取模組透過資料接入方式控制表,可介接不同資料源,包含關聯式資料庫,如:Oracle、SqlServer、DB2等)支援透過SQL語法進行資料的ETL,擷取(extract)、轉換(transform) 和載入(load)等操作;或是檔案類型資料源,如:Excel檔案、TXT檔案、XML檔案等資料源。資料擷取模組可透過複數個項目2所述之手段,介接複數個資料源、及複數個終端設置。以住院病人死亡率的操作型定義為例內容,資料擷取模組將擷取包含(1)病人基本資料檔、(2)病人住院登錄資料庫、(3)醫師資料檔、(4)病人住院歷程資料庫等至少4個資料來源以符合操作型定義的需求。As mentioned above, the data acquisition module includes 4 control items: data access method control table, data update frequency control table, data calculation logic control table, and data output format comparison table. The data acquisition module can interface with different data sources through the data access method control table, including relational databases such as Oracle, SqlServer, DB2, etc.) to support ETL of data through SQL syntax, such as extract, transform, and load operations; or file type data sources such as Excel files, TXT files, XML files, etc. The data acquisition module can interface with multiple data sources and multiple terminal settings through multiple means described in item 2. Taking the operational definition of inpatient mortality as an example, the data acquisition module will acquire at least four data sources including (1) patient basic data file, (2) patient hospitalization registration database, (3) physician data file, and (4) patient hospitalization history database to meet the requirements of the operational definition.
資料來源可根據使用需求定義為冷熱資料,透過資料更新頻率控制表定義資料更新頻率與冷熱資料區間。透過下列pseudocode 的方式在每次更新資料時針對判斷資料是否為新資料。若為新資料則不論冷資料或熱資料,皆透過資料運算邏輯控制表與資料輸出格式對照表輸出至目的資料庫儲存。若為舊資料則進一步判斷其為冷資料或是熱資料,若是舊資料且為冷資料,則不進行資料處理以提升資料處理的效能。若為舊資料且為熱資料,則透過資料運算邏輯控制表與資料輸出格式對照表處理後,輸出至目的資料庫儲存。以住院病人死亡率為例,超過一個月的住院病人死亡資料在實際業務上不該有太大的變化,因此熱資料的區間定義為以資料擷取日起往前30日內的資料。超過30日的資料即定義為冷資料。Data sources can be defined as cold and hot data according to usage requirements, and the data update frequency and cold and hot data ranges can be defined through the data update frequency control table. The following pseudocode method is used to determine whether the data is new data each time the data is updated. If it is new data, regardless of whether it is cold data or hot data, it is output to the target database for storage through the data calculation logic control table and the data output format comparison table. If it is old data, it is further determined whether it is cold data or hot data. If it is old data and cold data, data processing is not performed to improve data processing efficiency. If it is old data and hot data, it is processed through the data calculation logic control table and the data output format comparison table and then output to the target database for storage. Taking the mortality rate of inpatients as an example, the inpatient mortality data over a month should not change much in actual business, so the hot data interval is defined as the data within 30 days before the data acquisition date. Data over 30 days is defined as cold data.
虛擬碼(pseudocode)範例如下: 冷資料區間 = 2020-01-01 ~前30日 熱資料區間 = 前30日 ~ 今日 需要的資料日期清單 = [day for day in date_range(2020-01-0,今日)] 已有的資料日期清單 = Read and list資料庫已有的檔案日期 for 資料日期 in需要的資料日期清單: if 資料日期 not in已有的資料日期: 資料型態 = 新資料 資料需處理並儲存 elif 資料日期 in已有的資料日期: 資料型態 = 舊資料 if 資料日期 in冷資料區間: 資料不處理 elif資料日期 熱資料區間: 資料需處理並儲存 else: raise Exception()The pseudocode example is as follows: Cold data range = 2020-01-01 ~ previous 30 days Hot data range = previous 30 days ~ today Required data date list = [day for day in date_range(2020-01-0, today)] Existing data date list = Read and list database existing file dates for data date in required data date list: if data date not in existing data date: data type = new data data needs to be processed and stored elif data date in existing data date: data type = old data if data date in cold data range: data is not processed elif data date hot data range: data needs to be processed and stored else: raise Exception()
資料輸出格式對照表將資料格式定義分為三種類型,分別為數值(numeric)、日期(datetime)、字串(string)。透過下列pseudocode 的方式將所有輸入資料格式映射到三種資料類型。The data output format comparison table divides the data format definitions into three types: numeric, datetime, and string. All input data formats are mapped to the three data types using the following pseudocode method.
虛擬碼(pseudocode)範例如下: 數值類資料類型清單 = ['n', 'number', 'float64'…...] 日期類資料類型清單 = ['d', 'dt', 'datetime', 'datetime64[ns]'……] 字串類資料類型清單 = ['s', 'str', 'string', 'object'……] if 輸入資料格式 in日期類資料類型清單: 輸出資料格式 = pd.to_datetime(輸入資料) à日期類資料格式輸出 elif 輸入資料格式 in數值類資料類型清單: 輸出資料格式 = pd.to_numeric (輸入資料) à數值類資料格式輸出 elif 輸入資料格式 in字串類資料類型清單: 輸出資料格式 = 輸入資料.astype('object').fillna('') à字串類資料格式輸出 else: raise Exception()The pseudocode examples are as follows: Numerical data type list = ['n', 'number', 'float64'…...] Date data type list = ['d', 'dt', 'datetime', 'datetime64[ns]'……] String data type list = ['s', 'str', 'string', 'object'……] if input data format in date data type list: Output data format = pd.to_datetime (input data) à output in date data format elif input data format in numerical data type list: Output data format = pd.to_numeric (input data) à output in numeric data format elif input data format in string data type list: Output data format = input data.astype('object').fillna('') à string data format output else: raise Exception()
資料儲存模組根據資料輸出格式對照表所提供的資料型態,將自定義複數個欄位進行資料命名與整併,輸出具標準化格式的資料儲存到目的資料庫。資料輸出格式對照表的格式均為”資料欄位名稱=資料型態代碼”,同時建立「病人-就診索引-指標元素」的資料集架構。The data storage module will name and consolidate the data in multiple custom fields according to the data type provided by the data output format comparison table, and output the data in a standardized format to the target database. The format of the data output format comparison table is "data field name = data type code", and at the same time, a data set structure of "patient-visit index-indicator element" is established.
以住院病人死亡率為例:需要取得病人每次住院與出院的日期、每次住院的科別、床號以及每次出院時的狀態(死亡、存活或是彌留等狀態),才能根據操作型定義進行計算與排除。因此其「病人-就診索引-指標元素」的資料集架構與實例如下: 病人資料:至少應包含病歷號、住院號、姓名、性別、生日。 就診索引:至少應包含門診、住院、急診。 指標元素:至少應包含住院日期、住院時間、出院日期、出院時間、出院狀態、主治醫師代號、主治醫師姓名、科別代碼、病房號、病床號。 附加資訊:包含資料建立時間、資料異動時間、操作者。Take the mortality rate of inpatients as an example: it is necessary to obtain the date of each hospitalization and discharge, the department of each hospitalization, the bed number, and the status of each discharge (death, survival, or dying, etc.) in order to calculate and exclude according to the operational definition. Therefore, the data set structure and instance of "patient-visit index-indicator element" are as follows: Patient data: at least should include medical record number, hospitalization number, name, gender, and birthday. Visit index: at least should include outpatient, inpatient, and emergency. Indicator elements: at least should include hospitalization date, hospitalization time, discharge date, discharge time, discharge status, attending physician code, attending physician name, department code, ward number, and bed number. Additional information: including data creation time, data change time, and operator.
表1:資料集架構
資料分析模組可將複數筆完整的資料紀錄,根據複數個條件進行資料的確認與排除功能,其至少包含指標的條件確認與遺漏值排除。且可進行複數個集成運算,其至少包含按日、周、月、季、年等周期分割進行集成運算功能。以住院病人死亡率為例,資料分析模組可針對指標進行如下: (1) 分時間週期(年、季、月、周、日)等進行集成運算,例如:呈現某年度死亡率、某月份的死亡率、近兩年(2020~2022年)的住院病人死亡率等。 (2) 分科別進行集成運算,例如:呈現內科部住院病人死亡率或是骨科與心臟科住院病人的死亡率。 (3) 分主治醫師進行集成運算,例如:某醫師治療照護的住院病人死亡率。 (4) 將上述不同條件進行複數個集成運算,例如:2022年骨科的住院病人死亡率(以時間跟科別進行複數個集成)、近兩年內A醫師治療照護的住院病人死亡率並分月份進行呈現(以時間跟醫師進行複數個集成)The data analysis module can perform data confirmation and exclusion functions for multiple complete data records based on multiple conditions, which at least includes conditional confirmation of indicators and exclusion of missing values. It can also perform multiple integrated operations, which at least includes integrated operations based on daily, weekly, monthly, quarterly, and annual periods. Taking the mortality rate of inpatients as an example, the data analysis module can perform the following operations on indicators: (1) Perform integrated operations by time period (year, quarter, month, week, day), etc., for example: present the mortality rate of a certain year, the mortality rate of a certain month, the mortality rate of inpatients in the past two years (2020~2022), etc. (2) Perform integrated operations by department, for example: present the mortality rate of inpatients in the Department of Internal Medicine or the mortality rate of inpatients in the Department of Orthopedics and Cardiology. (3) Perform integrated operations by attending physician, for example: the mortality rate of inpatients treated and cared for by a certain physician. (4) Perform multiple integration operations on the above different conditions, for example: the mortality rate of inpatients in the Department of Orthopedics in 2022 (multiple integrations by time and department), the mortality rate of inpatients treated and cared for by Doctor A in the past two years and presented by month (multiple integrations by time and doctor)
下表為以某年某月的耳鼻喉頭頸部(以時間跟科別進行複數個集成)集成運算後的實例。The following table shows an example of the integration operation of the ENT head and neck department in a certain year and month (multiple integrations are performed based on time and department).
表2:集成運算結果
資料視覺化模組包含複數個介接手段,其至少包含API溝通介面。視覺化平台包含複數個呈現方式,其至少包含月報表與儀表板模式。月報表的呈現方式以符合紙本列印版面需求為主,並將醫療部科系進行複數個自定義分群,其至少包含全院、內科系、外科系、婦兒科、急重及家醫、五官及其他等群組,各分群包含複數個各級醫療部科臨床單位。實例:內科系群組包含內科部、胸腔部等一級單位,內科部包含一般內科、腎臟科等二級單位。儀表板的呈現方式以符合電腦螢幕操作為主,並提供複數個互動式查詢介面,其至少包含本月摘要、近年趨勢、最近30日內動態、按月查詢、按季查詢、樞紐分析、指標說明等項目。儀表板的各項目均包含下鑽功能,可查詢複數個「病人-就診索引-指標元素」之明細資料。以住院病人死亡率為例,下鑽功能提供查詢資料集表列之各項資料欄位的詳細資料,可以讓使用者回溯每筆資料的詳細記錄。The data visualization module includes multiple interface methods, which at least include an API communication interface. The visualization platform includes multiple presentation methods, which at least include monthly reports and dashboard modes. The presentation method of the monthly report is mainly based on the requirements of paper printing layout, and the medical department departments are divided into multiple customized groups, which at least include the whole hospital, internal medicine department, surgical department, gynecology and pediatrics, emergency and family medicine, ENT and others. Each group includes multiple clinical units of various levels of medical departments. Example: The internal medicine department group includes first-level units such as the internal medicine department and the thoracic department, and the internal medicine department includes second-level units such as general internal medicine and nephrology. The dashboard is presented in a way that is compatible with computer screen operation and provides multiple interactive query interfaces, which at least include monthly summary, recent trends, dynamics within the last 30 days, monthly query, quarterly query, hub analysis, indicator description, etc. Each item on the dashboard includes a drill-down function, which can query the detailed data of multiple "patient-visit index-indicator elements". Taking the mortality rate of inpatients as an example, the drill-down function provides detailed data for querying each data field in the data set table, allowing users to trace back the detailed records of each data.
實例2:特定KPI-病人檢查驗危急值回覆率Example 2: Specific KPI - Patient test critical value response rate
為確保「醫院醫療品質及病人安全」,本院規定醫師在收到病人檢查驗結果異常或危急值得通知簡訊後,應於24小時內使用公務手機、院內網站(SMSOT)、或醫療作業系統報告查詢回覆。To ensure "hospital medical quality and patient safety", our hospital requires that doctors should report and respond to inquiries within 24 hours using their official mobile phones, the hospital website (SMSOT), or the medical operating system after receiving SMS notifications of abnormal or critical test results from patients.
當檢驗室完成檢驗報告時,若該檢驗結果異常,該筆資料會被紀錄到異常值註冊表(Abnormal Report Registration,ARR);然後透過一對多的方式,對應到該病人所屬的主治醫師、住院醫師及開單醫師等多位醫師,該資料會被記錄在異常值通知表(Order Abnormal Report Notification,ARN)。接著會透過簡訊發送系統發送簡訊通知ARN中所記錄所有醫師的公務手機上,簡訊發送的時間與內容等資料則記錄在簡訊傳呼記錄檔(PHSLOG)中。最後醫師收到簡訊後透過公務手機回覆簡訊的內容與時間等紀錄則會被記錄在回覆簡訊內容檔(PHSREPLY)中。而如果醫師是透過院內網站(SMSOT)或醫療作業系統進行回復的話,則會被記錄在異常值通知紀錄表(ORDREPLY)資料檔中。When the laboratory completes the test report, if the test result is abnormal, the data will be recorded in the Abnormal Report Registration (ARR); then through a one-to-many method, it will correspond to the patient's attending physician, resident physician, ordering physician and other doctors, and the data will be recorded in the Abnormal Report Notification (ARN). Then, a text message will be sent through the SMS sending system to the official mobile phones of all doctors recorded in the ARN, and the time and content of the SMS will be recorded in the SMS paging log file (PHSLOG). Finally, after the doctor receives the SMS, the content and time of the reply SMS through the official mobile phone will be recorded in the reply SMS content file (PHSREPLY). If the doctor responds through the hospital website (SMSOT) or medical operating system, it will be recorded in the abnormal value notification record (ORDREPLY) data file.
承上,要監測病人檢查驗危急值回覆率至少需要從5個資料庫取得資料:異常值註冊表(Abnormal Report Registration,ARR)、異常值通知表(Order Abnormal Report Notification,ARN)、簡訊傳呼記錄檔(PHSLOG)、簡訊回覆內容檔(PHSREPLY)及異常值回覆紀錄表(ORDREPLY)。如果要再了解醫師的資料與病人的資料則需要再增加至少兩個資料庫:醫師基本資料檔及病人基本資料檔。To monitor the response rate of critical values of patients' examinations, data must be obtained from at least five databases: Abnormal Report Registration (ARR), Order Abnormal Report Notification (ARN), PHSLOG, PHSREPLY, and ORDREPLY. If you want to know the doctor's and patient's data, you need to add at least two more databases: doctor's basic data file and patient's basic data file.
也就是說以本院每個月平均會有1萬筆以上的異常報告,以每筆報告至少對應3位醫師,每位醫師會有三種可能的回覆方式計算即達9萬筆的資料量,若再擴及到季度或是年度的資料,則每次調取的資料量將超過幾百萬筆。若是再進一步根據醫師所屬的科別及病人的基本資料進行分類,則至少要再串聯2個以上的資料庫,該資料量亦將複數倍增加。如此龐大的資料量,若在資訊系統上頻繁的調取,將會造成系統運作上的高度負擔,因此目前大多是採用每個月計算一次當月的資料來維持系統的穩定度。但許多檢驗異常的病人可能因短時間沒有妥適的處理,而會造成不可挽回的後果,因此為了確保醫療品質與病人安全,該指標應該是能即時的反映現況,而非每月只進行一次統計的落後指標。That is to say, our hospital has an average of more than 10,000 abnormal reports per month. Each report corresponds to at least 3 doctors, and each doctor has three possible responses, which means that the amount of data is 90,000. If it is expanded to quarterly or annual data, the amount of data retrieved each time will exceed several million. If it is further classified according to the department to which the doctor belongs and the basic information of the patient, at least 2 more databases will be connected in series, and the amount of data will also increase several times. Such a large amount of data, if frequently retrieved from the information system, will cause a high burden on the operation of the system. Therefore, most of them currently calculate the data of the current month once a month to maintain the stability of the system. However, many patients with abnormal test results may suffer irreversible consequences if they are not properly treated within a short period of time. Therefore, in order to ensure medical quality and patient safety, this indicator should be able to reflect the current situation in real time rather than an outdated indicator that is only counted once a month.
從原始資料庫根據指標元素的定義,擷取資料並轉換成指標元素所需的內容,建立病人-就診索引-指標元素,也就是透過病人病歷號從原始醫療數據資料庫擷取資料(如上述7個資料庫取得資料),並以病人病歷號為主搭配就診索引(醫師、日期、檢查單號)等紀錄資料,並根據檢查項目單號串連到指標元素(檢驗異常值回覆率)並將此檔案存放在目的醫療資料庫。According to the definition of the indicator element, data is extracted from the original database and converted into the content required by the indicator element to establish the patient-visit index-indicator element. That is, data is extracted from the original medical database through the patient's medical record number (such as the data obtained from the above 7 databases), and the patient's medical record number is used as the main combination with the visit index (doctor, date, examination order number) and other record data, and it is linked to the indicator element (test abnormal value response rate) according to the examination item order number and this file is stored in the target medical database.
原本資料散佈在7個原始醫療數據資料庫,各個資料庫之間無法從頭串連到尾,需要透過不同的索引來串接。這也意味的每次的查詢都需要搜索從頭到尾搜索7個資料庫中的全部內容,也因此導致系統效能受限無法即時頻繁查詢。檢驗開單後會產生REQNO,該索引可以對應到檢驗異常值註冊表(ARR)。而檢驗異常值註冊表(ARR)再透過ARRID對應到檢驗異常值通知表(ARN),然後再透過ARNID對應到異常職回復紀錄表(ORDREPLY)。病人基本資料檔與醫師基本資料檔則透過HISID作為索引跟檢驗單對應。檢驗單則透過REQNO與簡訊通知紀錄串聯,然後再透過MSGID作為索引與簡訊回覆內容檔對應。The original data was scattered across seven original medical data databases, and each database could not be connected from beginning to end, and needed to be connected through different indexes. This also means that every query needs to search all the contents of the seven databases from beginning to end, which also limits the system performance and prevents frequent queries in real time. After the test order is issued, REQNO will be generated, and this index can correspond to the test abnormal value registration table (ARR). The test abnormal value registration table (ARR) is then mapped to the test abnormal value notification table (ARN) through ARRID, and then mapped to the abnormal position response record table (ORDREPLY) through ARNID. The patient basic data file and the doctor basic data file correspond to the test order through HISID as an index. The inspection form is linked to the SMS notification record through REQNO, and then mapped to the SMS reply content file through MSGID as an index.
根據本發明,將前述7個資料庫的資料進行整理與串聯後重新編碼並存放於目的醫療資料庫中,其資料將是如下範例,透過病人-就診索引-指標元素作為目的醫療資料庫中資料的新索引編碼: [病人]病歷號(病人基本資料檔)-檢驗單號(病人基本資料檔)- [就診索引]檢驗日期(病人基本資料檔)-醫師(醫師基本資料檔)- [指標元素]檢驗報告結果(異常值註冊表)-報告日期(異常值註冊表)-異常單號(異常值註冊表)-異常內容(異常值通知表)-簡訊通知時間(簡訊傳呼記錄檔)-簡訊內容(簡訊傳呼記錄檔)-醫師回覆方式(簡訊回覆內容檔/異常值回覆紀錄表)-回覆內容(簡訊回覆內容檔/異常值回覆紀錄表)-回復時間(簡訊回覆內容檔/異常值回覆紀錄表)-回覆時間差。According to the present invention, the data of the above 7 databases are reorganized and concatenated, and then recoded and stored in the target medical database. The data will be as follows, using the patient-visit index-indicator element as a new index code for the data in the target medical database: [Patient] Medical record number (Patient basic data file)-Test order number (Patient basic data file)-[Visit index] Test date (Patient basic data file)-Doctor (Doctor basic data file)- [Indicator elements] Test report results (abnormal value registration table) - report date (abnormal value registration table) - abnormal order number (abnormal value registration table) - abnormal content (abnormal value notification table) - SMS notification time (SMS paging record file) - SMS content (SMS paging record file) - doctor's reply method (SMS reply content file/abnormal value reply record table) - reply content (SMS reply content file/abnormal value reply record table) - reply time (SMS reply content file/abnormal value reply record table) - reply time difference.
同時,因原始資料已經透過重新編碼存放在目的醫療資料庫中,因此即使每個使用者的需求會不同(例如:依年/季/月綜覽或是下鑽到每一案例)。都可以透過指標元素作為索引,快速地取得每一筆相關的病人-就診索引-指標元素資料,該資料及代表每一個下鑽的案例在不同時間點所產生的指標結果。同時在該資料中亦包含了時間的資訊故而可以快速地根據年/季/月進行排序分類。At the same time, because the original data has been recoded and stored in the target medical database, even if each user has different needs (for example, overview by year/quarter/month or drilling down to each case), they can use the indicator element as an index to quickly obtain each related patient-visit index-indicator element data, and the data represents the indicator results generated by each drilled case at different time points. At the same time, the data also contains time information, so it can be quickly sorted and classified according to year/quarter/month.
醫院管理中所需要的KPI指標繁多,每個指標有分別有其特殊性,也因此決定了每個指標的更新頻率以及其與各指標間的關聯性。以病人檢查驗危急值回覆率為例,醫院可規定醫師在收到病人檢查驗結果異常或危急值得通知簡訊後,應於24小時內使用公務手機、院內網站(SMSOT)、或醫療作業系統報告查詢回覆。也就是說只要在簡訊通知發出超過24小時以後,不論醫師是否有回覆,則該筆紀錄均視為未回覆。同時在醫院實務上將開放7天的時間監測雖未在24小時內回覆但有在7天內回覆的紀錄。There are many KPI indicators required in hospital management, and each indicator has its own particularity, which determines the update frequency of each indicator and its correlation with other indicators. Taking the response rate of critical values of patient examinations as an example, the hospital can stipulate that after receiving the SMS notification of abnormal or critical values of patient examination results, the doctor should use the official mobile phone, the hospital website (SMSOT), or the medical operating system report to query and reply within 24 hours. In other words, as long as the SMS notification is sent more than 24 hours later, regardless of whether the doctor has replied, the record will be regarded as unanswered. At the same time, in hospital practice, a 7-day time monitoring will be opened to monitor the records of replying within 7 days even if there is no reply within 24 hours.
從上述的定義我們即可設定該指標的運作特徵: 1. 冷資料為系統紀錄至今的所有檢查驗異常紀錄(已超過7天,不必每次更新)。 2. 熱資料為7天內的資料紀錄(須確定是否有回覆)。 3. 熱資料的更新頻率(8小時一次)。From the above definition, we can set the operating characteristics of the indicator: 1. Cold data refers to all inspection abnormality records recorded by the system so far (more than 7 days, no need to update every time). 2. Hot data refers to data records within 7 days (must confirm whether there is a response). 3. The update frequency of hot data (once every 8 hours).
本發明將該KPI指標的運作透過指標基本資料-冷熱資料區間-上游資料-執行紀錄作為管理指標於資訊系統自動化運作的新索引編碼: [指標基本資料] 指標名稱-指標是否啟動-目前啟動狀態 [冷熱資料區間] 冷資料區間-熱資料區間-更新頻率- [上游資料] 有無上游指標-上游指標名稱 [執行紀錄] 上次啟動執行時間-上次結束執行時間-上次執行結果-下次啟動執行時間-其他註記The present invention uses the basic data of the indicator - hot and cold data intervals - upstream data - execution records as a new index code for the automatic operation of the management indicator in the information system: [Basic data of the indicator] Name of the indicator - Whether the indicator is activated - Current activation status [Hot and cold data intervals] Cold data interval - Hot data interval - Update frequency - [Upstream data] Whether there is an upstream indicator - Upstream indicator name [Execution record] Last start execution time - Last end execution time - Last execution result - Next start execution time - Other notes
每個指標有其獨特對應的單一運作索引,透過該索引可以快速地瞭解並管理目前指標的運作。透過冷熱資料區間的定義與調控,可以有效減少不必要的資料調取,以病人檢查驗危急值回覆率為例,如果原本每次查詢年度資料需要調動近百萬筆的資料,透過冷熱資料區間不論每次查詢的是年度或是N年的資料,則僅會從原始資料庫調動近7天的資料平均約2千多筆資料,可以有效地提升系統效能並確保系統的穩定性。Each indicator has its own unique corresponding single operation index, through which the operation of the current indicator can be quickly understood and managed. Through the definition and regulation of hot and cold data intervals, unnecessary data retrieval can be effectively reduced. For example, if the original query of annual data requires the retrieval of nearly one million data records each time, through the hot and cold data intervals, regardless of whether the query is annual or N years of data, only the data of the past 7 days will be retrieved from the original database, an average of about 2,000 data records, which can effectively improve system performance and ensure system stability.
為管理諸多KPI指標的運作,本發明提供一工作管理系統及方法,可用於處理複雜的工作流程和執行不同類型的工作,使得工作管理變得更加方便、可控和高效,同時提高應用程式的效能和可靠性。本發明具有廣泛的應用前景,在自動化、資料處理、工作流程管理等領域具有重要的價值,例如: (1) 將不同來源的資料擷取並合併成病人-就診索引-指標元素的資料結構。這個資料結構將不同的相關資訊整合在一起,並存放在目的醫療數據資料庫供後續的使用。 (2) 透過指標基本資料-冷熱資料區間-上游資料-執行紀錄的索引方式來管理所有的KPI指標的狀態和設定。透過該索引將不同KPI指標工作的相關資訊整合在一起,包括工作名稱、狀態、設定等,從而提供一個統一的索引來管理工作。同時根據每個KPI指標工作的設定和狀態進行計算,考慮工作的優先級、依賴關係和其他因素,以確定最佳的執行時間並確保工作能夠按照預期的時間執行。透過執行紀錄更新工作的狀態並返回一個布林值,代表工作是否成功執行以及更新後的工作狀態。In order to manage the operation of multiple KPI indicators, the present invention provides a work management system and method that can be used to handle complex workflows and perform different types of work, making work management more convenient, controllable and efficient, while improving the performance and reliability of applications. The present invention has broad application prospects and has important value in the fields of automation, data processing, workflow management, etc. For example: (1) Capturing and merging data from different sources into a data structure of patient-visit index-indicator elements. This data structure integrates different related information and stores it in the target medical database for subsequent use. (2) Managing the status and settings of all KPI indicators through the indexing method of indicator basic data-cold and hot data intervals-upstream data-execution records. The index integrates the relevant information of different KPI indicator tasks, including the task name, status, settings, etc., to provide a unified index to manage tasks. At the same time, calculations are performed based on the settings and status of each KPI indicator task, taking into account the priority, dependency relationship and other factors of the task to determine the best execution time and ensure that the task can be executed at the expected time. The status of the task is updated through the execution record and a Boolean value is returned, indicating whether the task is successfully executed and the updated task status.
本發明提供的醫療品質指標管理系統與方法能有效率的共用不同報表中的資訊,藉此省下大量運算資源,並適當地優化運算資源,以提高自動更新報表的頻率,如此一來能大幅度地減少管理報表的成本。The medical quality indicator management system and method provided by the present invention can efficiently share information in different reports, thereby saving a large amount of computing resources, and appropriately optimize computing resources to increase the frequency of automatically updating reports, thereby significantly reducing the cost of managing reports.
100 醫療品質指標管理系統 110 醫療數據資料庫 120 資料擷取模組 130 資料分析模組 140 資料視覺化模組 150 工作排程模組100 Medical quality
圖1為本發明中的醫療品質指標管理系統方塊圖。FIG1 is a block diagram of the medical quality indicator management system of the present invention.
100:醫療品質指標管理系統 100: Medical quality indicator management system
110:醫療數據資料庫 110: Medical Data Database
120:資料擷取模組 120: Data acquisition module
130:資料分析模組 130:Data analysis module
140:資料視覺化模組 140:Data visualization module
150:工作排程模組 150: Task Scheduling Module
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112143070A TWI881529B (en) | 2023-11-08 | 2023-11-08 | System and method for managing medical quality indicator |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112143070A TWI881529B (en) | 2023-11-08 | 2023-11-08 | System and method for managing medical quality indicator |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI881529B true TWI881529B (en) | 2025-04-21 |
| TW202520283A TW202520283A (en) | 2025-05-16 |
Family
ID=96141879
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW112143070A TWI881529B (en) | 2023-11-08 | 2023-11-08 | System and method for managing medical quality indicator |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI881529B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201926074A (en) * | 2017-12-08 | 2019-07-01 | 鐘振聲 | Automatic analysis and processing system based on big data performing conversion, integration, and preliminary analysis, to generate data for characteristic columns |
| TW201933147A (en) * | 2018-01-24 | 2019-08-16 | 中華電信股份有限公司 | A system and a method of data inspection used for smart operating center |
| US20220399110A1 (en) * | 2021-06-15 | 2022-12-15 | Canon Medical Systems Corporation | Medical information processing apparatus and medical information processing system |
| TW202305617A (en) * | 2021-07-27 | 2023-02-01 | 昊慧股份有限公司 | System and method for data process |
-
2023
- 2023-11-08 TW TW112143070A patent/TWI881529B/en active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201926074A (en) * | 2017-12-08 | 2019-07-01 | 鐘振聲 | Automatic analysis and processing system based on big data performing conversion, integration, and preliminary analysis, to generate data for characteristic columns |
| TW201933147A (en) * | 2018-01-24 | 2019-08-16 | 中華電信股份有限公司 | A system and a method of data inspection used for smart operating center |
| US20220399110A1 (en) * | 2021-06-15 | 2022-12-15 | Canon Medical Systems Corporation | Medical information processing apparatus and medical information processing system |
| TW202305617A (en) * | 2021-07-27 | 2023-02-01 | 昊慧股份有限公司 | System and method for data process |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202520283A (en) | 2025-05-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12026154B2 (en) | Managing data objects for graph-based data structures | |
| US7792783B2 (en) | System and method for semantic normalization of healthcare data to support derivation conformed dimensions to support static and aggregate valuation across heterogeneous data sources | |
| US10223759B2 (en) | Method for implementing a controlled medical vocabulary | |
| US8751501B2 (en) | Longitudinal electronic record system and method with task-based workflow | |
| US20060287890A1 (en) | Method and apparatus for organizing and integrating structured and non-structured data across heterogeneous systems | |
| US20090150439A1 (en) | Common extensible data exchange format | |
| US20110288877A1 (en) | Health Information Exchange and Integration System and Methods Useful in Conjunction Therewith | |
| US20140122099A1 (en) | Cohort identification system | |
| JP6328768B2 (en) | Metadata automation system | |
| US20160012184A1 (en) | System and method for master data management | |
| US20180046779A1 (en) | Caching technology for clinical data sources | |
| CN117290304A (en) | Retrieval system and method based on medical big data establishment | |
| TWI881529B (en) | System and method for managing medical quality indicator | |
| US20250149131A1 (en) | System and method for managing medical quality indicator | |
| Hu | Research on monitoring system of daily statistical indexes through big data | |
| Kumar et al. | A framework for interoperable healthcare information systems | |
| Li et al. | Medical informatics: an essential tool for health sciences research in acute care | |
| Goossen | Architecture for variable data entry into a national registry | |
| Mohammad et al. | Healthcare Big Data Normalization Graph Theory Implementation | |
| CN119785950B (en) | Medical knowledge base updating method, system, terminal and storage medium | |
| Nammour et al. | Using performance measurement in healthcare analytics | |
| WO2018031012A1 (en) | Caching technology for clinical data sources | |
| CN117633124A (en) | A method of building a medical consultation big data processing platform | |
| Pecoraro et al. | Developing HL7 CDA-Based Data Warehouse for the Use of Electronic Health Record Data for Secondary Purposes | |
| CN119170290A (en) | Multi-source heterogeneous diagnosis and treatment data quality assessment method, device and computer equipment |