[go: up one dir, main page]

TWI881774B - Memory structure, manufacturing method thereof, operating method thereof, and memory array - Google Patents

Memory structure, manufacturing method thereof, operating method thereof, and memory array Download PDF

Info

Publication number
TWI881774B
TWI881774B TW113111881A TW113111881A TWI881774B TW I881774 B TWI881774 B TW I881774B TW 113111881 A TW113111881 A TW 113111881A TW 113111881 A TW113111881 A TW 113111881A TW I881774 B TWI881774 B TW I881774B
Authority
TW
Taiwan
Prior art keywords
layers
doped
layer
doping
conductivity type
Prior art date
Application number
TW113111881A
Other languages
Chinese (zh)
Other versions
TW202539363A (en
Inventor
王為甫
林昱佑
李峯旻
翁偉綸
李明修
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW113111881A priority Critical patent/TWI881774B/en
Application granted granted Critical
Publication of TWI881774B publication Critical patent/TWI881774B/en
Publication of TW202539363A publication Critical patent/TW202539363A/en

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A memory structure includes insulating layers, gate layers, a first doping layer, second doping layers, third doping layers, a columnar channel, a first dielectric layer, second dielectric layers, and a third dielectric layer. The first doping layer and the columnar channel penetrate through the insulating layers and the gate layers that are alternately stacked. The second doping layers are in direct contact with the first doping layer to form tunnel diodes, in which the second doping layers and the insulating layers are alternately stacked. The third doping layers surround the columnar channel and are connected to the second doping layers. The first dielectric layer is between the first doping layer and the gate layers. The second dielectric layers are between the third doping layers and the gate layers. The third dielectric layer is between the columnar channel and the third doping layers.

Description

記憶體結構、其製造方法、其操作方法及記憶體陣列Memory structure, manufacturing method thereof, operation method thereof and memory array

本揭示內容是關於一種記憶體結構、一種記憶體結構的製造方法,一種記憶體結構的操作方法及一種記憶體陣列。 This disclosure relates to a memory structure, a method for manufacturing a memory structure, a method for operating a memory structure, and a memory array.

動態隨機存取記憶體(Dynamic random access memory,DRAM)具有高密度、低成本、低功率耗損等優點,故已廣泛地被使用。然而,隨著記憶體技術逐漸接近物理極限,傳統的DRAM(例如具有一電晶體一電容(1T1C)的DRAM)在發展上正面臨許多嚴峻的挑戰。例如,DRAM尺寸不易被微縮、DRAM製程趨於複雜,及電容的縱橫比隨尺寸縮小大幅增加。鑒於上述,需要提供一種新的動態隨機存取記憶體及其製造方法,以克服上述問題。 Dynamic random access memory (DRAM) has the advantages of high density, low cost, and low power consumption, so it has been widely used. However, as memory technology gradually approaches physical limits, traditional DRAM (such as DRAM with one transistor and one capacitor (1T1C)) is facing many severe challenges in development. For example, DRAM size is not easy to be miniaturized, DRAM process tends to be complex, and the aspect ratio of capacitors increases significantly with the size reduction. In view of the above, it is necessary to provide a new dynamic random access memory and its manufacturing method to overcome the above problems.

本揭示內容提供一種記憶體結構,其包括複數個絕 緣層、複數個閘極層、第一摻雜層、複數個第二摻雜層、柱狀通道、複數個第三摻雜層、第四摻雜層、第五摻雜層、第一介電層、複數個第二介電層、第三介電層及複數個第四介電層。這些絕緣層及這些閘極層交替堆疊。第一摻雜層貫穿這些絕緣層及這些閘極層,且具有第一導電型。這些第二摻雜層各自直接接觸第一摻雜層,且具有與第一導電型不同的第二導電型,其中第一摻雜層及這些第二摻雜層形成複數個隧道二極體(tunnel diode),這些第二摻雜層及這些絕緣層交替堆疊。柱狀通道貫穿這些絕緣層及這些閘極層。這些第三摻雜層各自環繞柱狀通道,其中這些第三摻雜層各自連接至這些第二摻雜層,這些第三摻雜層具有第二導電型。第四摻雜層及第五摻雜層耦合至柱狀通道。第一介電層設置於第一摻雜層與這些閘極層之間。這些第二介電層各自設置於這些第三摻雜層與這些閘極層之間。第三介電層設置於柱狀通道與這些第三摻雜層之間。複數個第四介電層各自設置於這些第二摻雜層與這些閘極層之間。 The present disclosure provides a memory structure, which includes a plurality of insulating layers, a plurality of gate layers, a first doped layer, a plurality of second doped layers, a columnar channel, a plurality of third doped layers, a fourth doped layer, a fifth doped layer, a first dielectric layer, a plurality of second dielectric layers, a third dielectric layer, and a plurality of fourth dielectric layers. These insulating layers and these gate layers are alternately stacked. The first doped layer penetrates these insulating layers and these gate layers and has a first conductivity type. The second doped layers are each directly in contact with the first doped layer and have a second conductivity type different from the first conductivity type, wherein the first doped layer and the second doped layers form a plurality of tunnel diodes, and the second doped layers and the insulating layers are alternately stacked. The columnar channels penetrate the insulating layers and the gate layers. The third doped layers each surround the columnar channels, wherein the third doped layers are each connected to the second doped layers, and the third doped layers have the second conductivity type. The fourth doped layer and the fifth doped layer are coupled to the columnar channels. The first dielectric layer is disposed between the first doped layer and the gate layers. The second dielectric layers are disposed between the third doped layers and the gate layers. The third dielectric layer is disposed between the columnar channel and the third doped layers. The plurality of fourth dielectric layers are disposed between the second doped layers and the gate layers.

在一些實施方式中,第一導電型為N型,第二導電型為P型。 In some embodiments, the first conductivity type is N-type and the second conductivity type is P-type.

在一些實施方式中,第一導電型為P型,第二導電型為N型。 In some embodiments, the first conductivity type is P-type and the second conductivity type is N-type.

在一些實施方式中,記憶體結構更包括寫入位元線設置於第一摻雜層上。 In some embodiments, the memory structure further includes a write bit line disposed on the first doped layer.

在一些實施方式中,記憶體結構更包括讀取位元線 耦合至第五摻雜層。 In some embodiments, the memory structure further includes a read bit line coupled to the fifth doped layer.

在一些實施方式中,第四摻雜層設置於柱狀通道下,第五摻雜層設置於柱狀通道上,第四摻雜層及第五摻雜層具有第二導電型。 In some embodiments, the fourth doped layer is disposed under the columnar channel, the fifth doped layer is disposed on the columnar channel, and the fourth doped layer and the fifth doped layer have the second conductivity type.

在一些實施方式中,記憶體結構更包括讀取位元線設置於第五摻雜層上。 In some embodiments, the memory structure further includes a read bit line disposed on the fifth doped layer.

在一些實施方式中,柱狀通道具有第一導電型。 In some embodiments, the columnar channel has a first conductivity type.

在一些實施方式中,柱狀通道為無摻雜的。 In some embodiments, the columnar channels are undoped.

在一些實施方式中,這些第三摻雜層的摻雜濃度高於這些第二摻雜層的摻雜濃度。 In some embodiments, the doping concentration of these third doping layers is higher than the doping concentration of these second doping layers.

本揭示內容提供一種記憶體陣列,包括複數個前述任一實施方式的記憶體結構、複數條寫入位元線及複數條讀取位元線。這些寫入位元線沿第一方向延伸,其中沿第一方向排列的這些記憶體結構的這些第一摻雜層藉由這些寫入位元線相互耦接。這些讀取位元線沿第二方向延伸,其中第一方向垂直於第二方向,沿第二方向排列的這些記憶體結構的這些第五摻雜層藉由這些讀取位元線相互耦接。 The present disclosure provides a memory array, including a plurality of memory structures of any of the aforementioned embodiments, a plurality of write bit lines, and a plurality of read bit lines. The write bit lines extend along a first direction, wherein the first doped layers of the memory structures arranged along the first direction are coupled to each other via the write bit lines. The read bit lines extend along a second direction, wherein the first direction is perpendicular to the second direction, and the fifth doped layers of the memory structures arranged along the second direction are coupled to each other via the read bit lines.

本揭示內容提供一種記憶體結構的製造方法,其包括以下操作。形成第一孔洞貫穿交替堆疊的複數個絕緣層及複數個第一閘極層。形成第一介電層覆蓋第一孔洞的側壁。形成第一摻雜層於第一孔洞中,其中第一摻雜層具有第一導電型。形成第二孔洞貫穿這些絕緣層及這些第一閘極層。部分移除自第二孔洞暴露的這些第一閘極層以形成 複數個凹陷部。形成複數個第二介電層於這些凹陷部中。形成複數個第二摻雜層覆蓋這些第二介電層,其中第二摻雜層具有與第一導電型不同的第二導電型。形成第三介電層於第二孔洞中覆蓋這些絕緣層及這些第二摻雜層。形成柱狀通道於第二孔洞中。移除位於第一摻雜層與這些第二摻雜層之間的第一介電層、這些第一閘極層及這些第二介電層,以形成複數個溝槽。形成複數個第三摻雜層於這些溝槽中以直接接觸第一摻雜層及連接至這些第二摻雜層,其中這些第三摻雜層具有第二導電型。 The present disclosure provides a method for manufacturing a memory structure, which includes the following operations. A first hole is formed to penetrate a plurality of insulating layers and a plurality of first gate layers that are alternately stacked. A first dielectric layer is formed to cover the sidewall of the first hole. A first doped layer is formed in the first hole, wherein the first doped layer has a first conductivity type. A second hole is formed to penetrate the insulating layers and the first gate layers. The first gate layers exposed from the second hole are partially removed to form a plurality of recessed portions. A plurality of second dielectric layers are formed in the recessed portions. A plurality of second doped layers are formed to cover the second dielectric layers, wherein the second doped layers have a second conductivity type different from the first conductivity type. A third dielectric layer is formed in the second hole to cover the insulating layers and the second doped layers. A columnar channel is formed in the second hole. The first dielectric layer, the first gate layers, and the second dielectric layers between the first doped layer and the second doped layers are removed to form a plurality of trenches. A plurality of third doped layers are formed in the trenches to directly contact the first doped layers and connect to the second doped layers, wherein the third doped layers have a second conductivity type.

在一些實施方式中,製造方法更包括以下操作:在形成這些第三摻雜層於這些溝槽中後,形成複數個第四介電層於這些第三摻雜層旁;以及形成複數個第二閘極層於這些第四介電層旁。 In some embodiments, the manufacturing method further includes the following operations: after forming these third doped layers in these trenches, forming a plurality of fourth dielectric layers next to these third doped layers; and forming a plurality of second gate layers next to these fourth dielectric layers.

在一些實施方式中,製造方法更包括以下操作:在形成第二孔洞貫穿這些絕緣層及這些第一閘極層前,形成第四摻雜層於基板中,以及形成這些絕緣層及這些第一閘極層於基板上,其中第二孔洞暴露出第四摻雜層;以及摻雜柱狀通道的頂部部分以形成第五摻雜層。 In some embodiments, the manufacturing method further includes the following operations: before forming the second hole through the insulating layers and the first gate layers, forming a fourth doping layer in the substrate, and forming the insulating layers and the first gate layers on the substrate, wherein the second hole exposes the fourth doping layer; and doping the top portion of the columnar channel to form a fifth doping layer.

在一些實施方式中,製造方法更包括以下操作:形成寫入位元線於第一摻雜層上;以及形成讀取位元線於第五摻雜層上。 In some embodiments, the manufacturing method further includes the following operations: forming a write bit line on the first doped layer; and forming a read bit line on the fifth doped layer.

在一些實施方式中,第一導電型為N型,第二導電型為P型。 In some embodiments, the first conductivity type is N-type and the second conductivity type is P-type.

在一些實施方式中,第一導電型為P型,第二導 電型為N型。 In some embodiments, the first conductivity type is P-type and the second conductivity type is N-type.

本揭示內容提供一種記憶體結構的操作方法,其包括以下操作。接收前述任一實施方式的記憶體結構,其中這些閘極層、這些第三摻雜層、第四摻雜層、第五摻雜層及柱狀通道形成複數個讀取電晶體。當這些讀取電晶體為P型電晶體,第一導電型為N型,執行寫入操作,寫入操作包括:施加逆向偏壓(reverse bias)至這些隧道二極體的第一者,以使對應第一者的這些第三摻雜層的一者具有高電位;或者施加順向偏壓(forward bias)至這些隧道二極體的第二者,以使對應第二者的這些第三摻雜層的一者具有低電位。當這些讀取電晶體為N型電晶體,第一導電型為P型,執行寫入操作,寫入操作包括:施加逆向偏壓至這些隧道二極體的第三者,以使對應第三者的這些第三摻雜層的一者具有低電位;或者施加順向偏壓至這些隧道二極體的第四者,以使對應第四者的這些第三摻雜層的一者具有高電位。 The present disclosure provides a method for operating a memory structure, which includes the following operations. A memory structure of any of the aforementioned embodiments is received, wherein the gate layers, the third doped layers, the fourth doped layers, the fifth doped layers and the columnar channels form a plurality of read transistors. When the read transistors are P-type transistors and the first conductivity type is N-type, a write operation is performed, and the write operation includes: applying a reverse bias to the first of the tunnel diodes so that one of the third doped layers corresponding to the first has a high potential; or applying a forward bias to the second of the tunnel diodes so that one of the third doped layers corresponding to the second has a low potential. When these read transistors are N-type transistors and the first conductivity type is P-type, a write operation is performed, and the write operation includes: applying a reverse bias to a third of these tunnel diodes so that one of the third doped layers corresponding to the third has a low potential; or applying a forward bias to a fourth of these tunnel diodes so that one of the third doped layers corresponding to the fourth has a high potential.

在一些實施方式中,這些讀取電晶體為P型電晶體,操作方法更包括以下操作。施加0V至對應具有高電位或低電位的第三摻雜層的這些閘極層的選擇閘極。施加複數個負電壓至這些閘極層中的複數個未選擇閘極。施加正電壓至第四摻雜層或第五摻雜層。 In some embodiments, these read transistors are P-type transistors, and the operation method further includes the following operations. Apply 0V to the selection gates of these gate layers corresponding to the third doping layer with high potential or low potential. Apply a plurality of negative voltages to a plurality of unselected gates in these gate layers. Apply a positive voltage to the fourth doping layer or the fifth doping layer.

在一些實施方式中,這些讀取電晶體為N型電晶體,操作方法更包括以下操作。施加0V至對應具有高電位或低電位的第三摻雜層的這些閘極層的選擇閘極。施加 複數個正電壓至這些閘極層中的複數個未選擇閘極。施加正電壓至第四摻雜層或第五摻雜層。 In some embodiments, these read transistors are N-type transistors, and the operation method further includes the following operations. Apply 0V to the selection gates of these gate layers corresponding to the third doping layer with high potential or low potential. Apply a plurality of positive voltages to a plurality of unselected gates in these gate layers. Apply a positive voltage to the fourth doping layer or the fifth doping layer.

100:記憶體結構 100:Memory structure

110:基板 110: Substrate

120:閘極層 120: Gate layer

130:絕緣層 130: Insulation layer

400:記憶體陣列 400:Memory array

500:製造方法 500: Manufacturing method

512、514、516、518、520、522、524、526、528、530、532、534、536、538、540、542、544:操作 512, 514, 516, 518, 520, 522, 524, 526, 528, 530, 532, 534, 536, 538, 540, 542, 544: Operation

600:記憶體結構 600:Memory structure

700、800:電路 700, 800: Circuit

1B-1B’:剖面線 1B-1B’: Section line

A-A’、B-B’:剖面線 A-A’, B-B’: section line

CC:柱狀通道 CC: Columnar Channel

CI:電路 CI:Circuit

D1:第一摻雜層 D1: First doping layer

D2:第二摻雜層 D2: Second doping layer

D3:第三摻雜層 D3: The third doping layer

D4:第四摻雜層 D4: The fourth doping layer

D5:第五摻雜層 D5: The fifth doping layer

DL1:第一介電層 DL1: First dielectric layer

DL2:第二介電層 DL2: Second dielectric layer

DL3:第三介電層 DL3: The third dielectric layer

DL4:第四介電層 DL4: Fourth dielectric layer

G1:第一閘極層 G1: First gate layer

G2:第二閘極層 G2: Second gate layer

GSL1、GSL2:整體選擇線 GSL 1 , GSL 2 : Global Selection Line

H1:第一孔洞 H1: First hole

H2:第二孔洞 H2: Second hole

M1、M2、MC11、MC12、MC13、MC14、MC15、MC16、 MC21、MC22、MC23、MC24、MC25、MC26:記憶體單元 M 1 , M 2 , MC 11 , MC 12 , MC 13 , MC 14 , MC 15 , MC 16 , MC 21 , MC 22 , MC 23 , MC 24 , MC 25 , MC 26 : memory unit

P1:第一部分 P1: Part 1

P2:第二部分 P2: Part 2

PB:頁面緩衝器 PB: Page Buffer

PG1、PG2:頁面 PG1, PG2: Page

RP:凹陷部 RP: Depression

SN1、SN2:儲存節點 SN 1 , SN 2 : Storage nodes

SSL1、SSL2:串選擇線 SSL 1 , SSL 2 : String selection line

STI:隔離結構 STI: Isolation Structure

SW:側壁 SW: Sidewall

t11、t12、t13、t14、t15、t21、t22、t23、t24、t31、t32、t33、t34、t35:時間 t 11 , t 12 , t 13 , t 14 , t 15 , t 21 , t 22 , t 23 , t 24 , t 31 , t 32 , t 33 , t 34 , t 35 : time

T:溝槽 T: Groove

TD、TD1、TD2:隧道二極體 TD, TD 1 , TD 2 : Tunnel diode

RT、RTp、RTn:讀取電晶體 RT, RT p , RT n : read transistor

WG1、WG2、WG3、WG4、WG5、WG6:寫入字元線 WG 1 , WG 2 , WG 3 , WG 4 , WG 5 , WG 6 : Write character line

WBL、WBL1、WBL2:寫入位元線 WBL, WBL 1 , WBL 2 : Write bit line

RBL、RBL1、RBL2:讀取位元線 RBL, RBL 1 , RBL 2 : Read bit line

RSL、RSL1、RSL2:讀取源極線 RSL, RSL 1 , RSL 2 : Read source line

VCC1、VCC2:供應電壓 V CC1 , V CC2 : Supply voltage

X:第二方向 X: Second direction

Y:第一方向 Y: First direction

藉由閱讀以下實施方式的詳細描述,並參照附圖,可以更全面地理解本揭示內容。 By reading the detailed description of the following implementation method and referring to the attached drawings, you can more fully understand the content of this disclosure.

第1A圖是根據本揭示內容各種實施方式的記憶體結構的立體示意圖。 Figure 1A is a three-dimensional schematic diagram of a memory structure according to various implementations of the present disclosure.

第1B圖是沿第1A圖的剖面線1B-1B’的剖面示意圖。 Figure 1B is a schematic cross-sectional view along the section line 1B-1B’ of Figure 1A.

第2圖是沿第1B圖的剖面線A-A’的剖面示意圖。 Figure 2 is a schematic cross-sectional view along the section line A-A’ of Figure 1B.

第3圖是沿第1B圖的剖面線B-B’的剖面示意圖。 Figure 3 is a schematic cross-sectional view along the section line B-B’ of Figure 1B.

第4圖是根據本揭示內容各種實施方式的記憶體陣列的立體示意圖。 FIG. 4 is a three-dimensional schematic diagram of a memory array according to various implementations of the present disclosure.

第5A圖及第5B圖是根據本揭示內容各種實施方式的記憶體結構的製造方法的流程圖。 Figures 5A and 5B are flow charts of methods for manufacturing memory structures according to various implementations of the present disclosure.

第6A圖至第6I圖是根據本揭示內容各種實施方式的製造記憶體結構的中間階段的剖面示意圖。 Figures 6A to 6I are cross-sectional schematic diagrams of intermediate stages of manufacturing memory structures according to various implementations of the present disclosure.

第7圖及第8圖分別是根據本揭示內容各種實施方式的記憶體結構的等效電路示意圖。 Figures 7 and 8 are schematic diagrams of equivalent circuits of memory structures according to various implementations of the present disclosure.

第9圖、第11圖及第13圖分別是根據本揭示內容各種實施方式的記憶體陣列的電路示意圖。 Figures 9, 11 and 13 are circuit diagrams of memory arrays according to various implementations of the present disclosure.

第10圖、第12圖及第14圖分別是根據本揭示內容各種實施方式的控制訊號之時序圖。 Figures 10, 12, and 14 are timing diagrams of control signals according to various implementations of the present disclosure.

以附圖詳細描述及揭露以下的複數個實施方式。為明確說明,許多實務上的細節將在以下敘述中一併說明。然而,應當理解,這些實務上的細節並非旨在限制本揭示內容。也就是說,在本揭示內容部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式,一些習知結構與元件在圖式中將以示意方式繪示。 The following multiple implementations are described and disclosed in detail with the attached figures. For the sake of clarity, many practical details will be described together in the following description. However, it should be understood that these practical details are not intended to limit the content of this disclosure. In other words, in some implementations of the content of this disclosure, these practical details are not necessary. In addition, to simplify the drawings, some known structures and components will be shown in schematic form in the drawings.

在本文中,使用第一、第二與第三等等之詞彙以描述各種元件、組件、區域、層與/或區塊是可以被理解的。但是這些元件、組件、區域、層與/或區塊不應該被這些詞彙限制。這些詞彙只限於用來辨別單一元件、組件、區域、層與/或區塊。因此,在下文中的一第一元件、組件、區域、層與/或區塊也可被稱為第二元件、組件、區域、層與/或區塊,而不脫離本揭示內容的本意。 In this article, it is understandable to use the terms first, second, third, etc. to describe various elements, components, regions, layers, and/or blocks. However, these elements, components, regions, layers, and/or blocks should not be limited by these terms. These terms are limited to identifying a single element, component, region, layer, and/or block. Therefore, a first element, component, region, layer, and/or block in the following text may also be referred to as a second element, component, region, layer, and/or block without departing from the original meaning of the present disclosure.

此外,應該理解的是,當元件A被稱為「連接至」或「耦合至」元件B時,元件A可以直接連接至元件B,也可以間接連接至元件B(例如,可以在元件A和元件B之間設置一個中間元件C(和/或其他元件))。 In addition, it should be understood that when element A is referred to as being "connected to" or "coupled to" element B, element A may be directly connected to element B or indirectly connected to element B (for example, an intermediate element C (and/or other elements) may be disposed between element A and element B).

本揭示內容提供一種記憶體結構,其為三維(three dimensional,3D)動態隨機存取記憶體(DRAM)結構。記憶體結構包括複數個記憶體單元,各記憶體單元包括一隧道二極體及一讀取電晶體,以形成1D1T的DRAM結構。本揭示內容的記憶體結構具有高密度的記憶 體單元,故利於記憶體結構的尺寸微縮。並且,製造記憶體結構的流程簡易,故可降低製造成本,進而取代傳統1T1C的DRAM結構。並且,複數個記憶體結構可形成記憶體陣列,此記憶體陣列具有高密度的記憶體單元,故利於記憶體陣列的尺寸微縮。 The present disclosure provides a memory structure, which is a three-dimensional (3D) dynamic random access memory (DRAM) structure. The memory structure includes a plurality of memory cells, each memory cell includes a tunnel diode and a read transistor to form a 1D1T DRAM structure. The memory structure of the present disclosure has a high density of memory cells, so it is beneficial to miniaturize the size of the memory structure. In addition, the process of manufacturing the memory structure is simple, so the manufacturing cost can be reduced, thereby replacing the traditional 1T1C DRAM structure. Furthermore, a plurality of memory structures can form a memory array, which has a high density of memory cells, thus facilitating the miniaturization of the memory array.

第1A圖是根據本揭示內容各種實施方式的記憶體結構100的立體示意圖。第1B圖是沿第1A圖的剖面線1B-1B’的剖面示意圖。第2圖是沿第1B圖的剖面線A-A’的剖面示意圖。第3圖是沿第1B圖的剖面線B-B’的剖面示意圖。如第1A圖至第3圖所示,記憶體結構100包括基板110、隔離結構STI、複數個閘極層120、複數個絕緣層130、第一摻雜層D1、複數個第二摻雜層D2、複數個第三摻雜層D3、第四摻雜層D4、第五摻雜層D5、柱狀通道CC、第一介電層DL1、複數個第二介電層DL2、第三介電層DL3及複數個第四介電層DL4。 FIG. 1A is a schematic three-dimensional diagram of a memory structure 100 according to various embodiments of the present disclosure. FIG. 1B is a schematic cross-sectional diagram along section line 1B-1B' of FIG. 1A. FIG. 2 is a schematic cross-sectional diagram along section line A-A' of FIG. 1B. FIG. 3 is a schematic cross-sectional diagram along section line B-B' of FIG. 1B. As shown in FIGS. 1A to 3, the memory structure 100 includes a substrate 110, an isolation structure STI, a plurality of gate layers 120, a plurality of insulating layers 130, a first doping layer D1, a plurality of second doping layers D2, a plurality of third doping layers D3, a fourth doping layer D4, a fifth doping layer D5, a columnar channel CC, a first dielectric layer DL1, a plurality of second dielectric layers DL2, a third dielectric layer DL3, and a plurality of fourth dielectric layers DL4.

在一些實施方式中,基板110為半導體基板。在一些實施方式中,基板110包括任何合適的半導體材料及/或用於形成半導體結構的半導體材料。半導體材料例如包括一或多種材料,例如結晶矽、氧化矽、應變矽、鍺矽、摻雜或無摻雜的多晶矽、摻雜或無摻雜的矽晶圓、鍺、砷化鎵、其他合適的半導體材料或其組合。在一些實施方式中,基板110為矽基板。在一些實施方式中,閘極層120包括金屬導電材料、非金屬導電材料或其組合,例如金屬氮化物。閘極層120的材料例如包括氮化鎢、鎢、銅、鋁、 金、銀、其他合適的金屬、金屬合金、多晶矽或其組合。在一些實施方式中,絕緣層130包括氧化物、氮化物或其組合,例如二氧化矽、氮化矽或其組合。在一些實施方式中,隔離結構STI為淺溝槽隔離(shallow trench isolation,STI)。在一些實施方式中,記憶體結構100更包括互補式金屬氧化物半導體(complementary metal-oxide-semiconductor,CMOS)元件(未示出)設置於基板110中,以電性連接至第一摻雜層D1或第四摻雜層D4。 In some embodiments, the substrate 110 is a semiconductor substrate. In some embodiments, the substrate 110 includes any suitable semiconductor material and/or semiconductor material used to form a semiconductor structure. The semiconductor material includes, for example, one or more materials, such as crystalline silicon, silicon oxide, strained silicon, germanium silicon, doped or undoped polysilicon, doped or undoped silicon wafer, germanium, gallium arsenide, other suitable semiconductor materials or combinations thereof. In some embodiments, the substrate 110 is a silicon substrate. In some embodiments, the gate layer 120 includes a metal conductive material, a non-metal conductive material or a combination thereof, such as a metal nitride. The material of the gate layer 120 includes, for example, tungsten nitride, tungsten, copper, aluminum, gold, silver, other suitable metals, metal alloys, polysilicon or a combination thereof. In some embodiments, the insulating layer 130 includes oxide, nitride or a combination thereof, such as silicon dioxide, silicon nitride or a combination thereof. In some embodiments, the isolation structure STI is a shallow trench isolation (STI). In some embodiments, the memory structure 100 further includes a complementary metal-oxide-semiconductor (CMOS) element (not shown) disposed in the substrate 110 to be electrically connected to the first doping layer D1 or the fourth doping layer D4.

請同時參照第1A圖及第1B圖,閘極層120及絕緣層130交替堆疊,閘極層120及絕緣層130的數量可任意調整,不限於此。第一摻雜層D1貫穿閘極層120及絕緣層130,且具有第一導電型。如第1B圖所示,第一摻雜層D1包括相互連接的第一部分P1及第二部分P2,其中第一部分P1貫穿閘極層120及絕緣層130,第二部分P2位於基板110中。第二摻雜層D2各自直接接觸第一摻雜層D1,且具有與第一導電型不同的第二導電型,第一摻雜層D1及第二摻雜層D2形成複數個隧道二極體TD,其中第二摻雜層D2及絕緣層130交替堆疊,隧道二極體TD作為通道選擇器(access selector)。如第1B圖所示,隧道二極體TD在縱向上相互連接,故記憶體結構100可具有高密度的隧道二極體TD,從而利於尺寸微縮。在一些實施方式中,第一導電型為N型,第二導電型為P型,因此第一摻雜層D1為陰極(cathode),第二摻雜層D2 為陽極(anode)。在另一些實施方式中,第一導電型為P型,第二導電型為N型,因此第一摻雜層D1為陽極(anode),第二摻雜層D2為陰極(cathode)。柱狀通道CC貫穿閘極層120及絕緣層130。如第1B圖及第2圖所示,第三摻雜層D3各自環繞柱狀通道CC,各自連接至第二摻雜層D2,其中第三摻雜層D3具有第二導電型。在一些實施方式中,第三摻雜層D3直接接觸第二摻雜層D2。如第2圖所示,各閘極層120包括第一閘極層G1及第二閘極層G2。第一閘極層G1環繞第一摻雜層D1、第三摻雜層D3及柱狀通道CC。第二閘極層G2位於第二摻雜層D2的兩側。 Please refer to FIG. 1A and FIG. 1B simultaneously. The gate layer 120 and the insulating layer 130 are alternately stacked. The number of the gate layer 120 and the insulating layer 130 can be adjusted arbitrarily and is not limited thereto. The first doped layer D1 penetrates the gate layer 120 and the insulating layer 130 and has a first conductivity type. As shown in FIG. 1B , the first doped layer D1 includes a first portion P1 and a second portion P2 connected to each other, wherein the first portion P1 penetrates the gate layer 120 and the insulating layer 130, and the second portion P2 is located in the substrate 110. The second doped layers D2 are directly in contact with the first doped layers D1 and have a second conductivity type different from the first conductivity type. The first doped layers D1 and the second doped layers D2 form a plurality of tunnel diodes TD, wherein the second doped layers D2 and the insulating layers 130 are alternately stacked, and the tunnel diodes TD serve as access selectors. As shown in FIG. 1B , the tunnel diodes TD are connected to each other in the vertical direction, so the memory structure 100 can have a high density of tunnel diodes TD, which is conducive to size miniaturization. In some embodiments, the first conductivity type is N-type and the second conductivity type is P-type, so the first doped layer D1 is a cathode and the second doped layer D2 is an anode. In other embodiments, the first conductivity type is P-type and the second conductivity type is N-type, so the first doped layer D1 is an anode and the second doped layer D2 is a cathode. The columnar channel CC penetrates the gate layer 120 and the insulating layer 130. As shown in FIG. 1B and FIG. 2, the third doping layer D3 surrounds the columnar channel CC and is connected to the second doping layer D2, wherein the third doping layer D3 has a second conductivity type. In some embodiments, the third doping layer D3 directly contacts the second doping layer D2. As shown in FIG. 2, each gate layer 120 includes a first gate layer G1 and a second gate layer G2. The first gate layer G1 surrounds the first doping layer D1, the third doping layer D3 and the columnar channel CC. The second gate layer G2 is located on both sides of the second doping layer D2.

請繼續參照第1B圖及第2圖,第四摻雜層D4及第五摻雜層D5各自耦合至柱狀通道CC。在一些實施方式中,如第1B圖所示,第四摻雜層D4設置於柱狀通道CC下,第五摻雜層D5設置於柱狀通道CC上,但配置不限於此,第四摻雜層D4及第五摻雜層D5具有第二導電型。在一些實施方式中,第四摻雜層D4為源極,第五摻雜層D5為汲極。在另一些實施方式中,第四摻雜層D4為汲極,第五摻雜層D5為源極。閘極層120、第三摻雜層D3、第四摻雜層D4、第五摻雜層D5及柱狀通道CC形成複數個讀取電晶體RT。讀取電晶體RT可為P型電晶體或N型電晶體。如第1B圖所示,這些讀取電晶體RT在縱向上相互連接,故記憶體結構100可具有高密度的讀取電晶體RT,從而利於尺寸微縮。如第2圖所示,讀取電晶體RT的柱 狀通道CC被第三摻雜層D3及閘極層120環繞,第三摻雜層D3及閘極層120作為讀取電晶體RT的閘極。第三摻雜層D3為環形的。可執行寫入操作,施加逆向偏壓(reverse bias)或順向偏壓(forward bias)至隧道二極體TD的一者,以使環繞柱狀通道CC的對應的第三摻雜層D3具有高電位或低電位。藉此,寫入資料1或資料0至讀取電晶體RT中。第三摻雜層D3可儲存電荷,為可充電的或可放電的。可藉由充電或放電第三摻雜層D3,調控第三摻雜層D3的電位。第三摻雜層D3亦可稱為儲存節點(storage node,SN),儲存節點會決定讀取電晶體RT的閾值電壓。後續會再以電路圖進一步說明記憶體結構100的操作方法。 Please continue to refer to FIG. 1B and FIG. 2, the fourth doped layer D4 and the fifth doped layer D5 are each coupled to the columnar channel CC. In some embodiments, as shown in FIG. 1B, the fourth doped layer D4 is disposed under the columnar channel CC, and the fifth doped layer D5 is disposed on the columnar channel CC, but the configuration is not limited thereto, and the fourth doped layer D4 and the fifth doped layer D5 have the second conductivity type. In some embodiments, the fourth doped layer D4 is a source, and the fifth doped layer D5 is a drain. In other embodiments, the fourth doped layer D4 is a drain, and the fifth doped layer D5 is a source. The gate layer 120, the third doping layer D3, the fourth doping layer D4, the fifth doping layer D5 and the columnar channel CC form a plurality of read transistors RT. The read transistor RT can be a P-type transistor or an N-type transistor. As shown in FIG. 1B , these read transistors RT are connected to each other in the vertical direction, so the memory structure 100 can have a high density of read transistors RT, which is conducive to size miniaturization. As shown in FIG. 2 , the columnar channel CC of the read transistor RT is surrounded by the third doped layer D3 and the gate layer 120, and the third doped layer D3 and the gate layer 120 serve as the gate of the read transistor RT. The third doped layer D3 is annular. A write operation can be performed, and a reverse bias or a forward bias is applied to one of the tunnel diodes TD so that the corresponding third doped layer D3 surrounding the columnar channel CC has a high potential or a low potential. Thereby, data 1 or data 0 is written into the read transistor RT. The third doped layer D3 can store charges and is chargeable or dischargeable. The potential of the third doped layer D3 can be controlled by charging or discharging the third doped layer D3. The third doped layer D3 can also be called a storage node (SN), and the storage node determines the threshold voltage of the read transistor RT. The operation method of the memory structure 100 will be further explained using a circuit diagram later.

如第1B圖至第3圖所示,第一介電層DL1設置於第一摻雜層D1與閘極層120之間且設置於第一摻雜層D1與絕緣層130之間,故閘極層120與第一摻雜層D1電性隔離。第二介電層DL2各自設置於第三摻雜層D3與閘極層120之間,故閘極層120與第三摻雜層D3電性隔離。第三介電層DL3設置於柱狀通道CC與第三摻雜層D3之間且設置於柱狀通道CC與絕緣層130之間,故柱狀通道CC與第三摻雜層D3電性隔離。第三介電層DL3為環形的。第四介電層DL4各自設置於第二摻雜層D2與閘極層120之間,故閘極層120與第二摻雜層D2電性隔離。請再次參照第1A圖及第1B圖。在一些實施方式中,第三介電層DL3設置於第五摻雜層D5與這些絕緣層130 的其中一者之間。在一些實施方式中,第一介電層DL1、第二介電層DL2、第三介電層DL3及第四介電層DL4各自包括閘極氧化物。在一些實施方式中,第一介電層DL1、第二介電層DL2、第三介電層DL3及第四介電層DL4各自包括二氧化矽、氮化矽、氮氧化矽、氧化鋁、氧化鉿、氧化鋯、氧化鈦、氧化鉭、其他適合的高介電常數(high-k)介電材料或其組合。 As shown in FIG. 1B to FIG. 3 , the first dielectric layer DL1 is disposed between the first doped layer D1 and the gate layer 120 and between the first doped layer D1 and the insulating layer 130, so that the gate layer 120 is electrically isolated from the first doped layer D1. The second dielectric layer DL2 is disposed between the third doped layer D3 and the gate layer 120, so that the gate layer 120 is electrically isolated from the third doped layer D3. The third dielectric layer DL3 is disposed between the columnar channel CC and the third doped layer D3 and between the columnar channel CC and the insulating layer 130, so that the columnar channel CC and the third doped layer D3 are electrically isolated. The third dielectric layer DL3 is annular. The fourth dielectric layer DL4 is respectively disposed between the second doped layer D2 and the gate layer 120, so that the gate layer 120 and the second doped layer D2 are electrically isolated. Please refer to FIG. 1A and FIG. 1B again. In some embodiments, the third dielectric layer DL3 is disposed between the fifth doped layer D5 and one of these insulating layers 130 . In some embodiments, the first dielectric layer DL1, the second dielectric layer DL2, the third dielectric layer DL3, and the fourth dielectric layer DL4 each include a gate oxide. In some embodiments, the first dielectric layer DL1, the second dielectric layer DL2, the third dielectric layer DL3, and the fourth dielectric layer DL4 each include silicon dioxide, silicon nitride, silicon oxynitride, aluminum oxide, tantalum oxide, zirconium oxide, titanium oxide, tantalum oxide, other suitable high-k dielectric materials, or combinations thereof.

請再次參照第1B圖及第2圖。第一摻雜層D1具有第一導電型,第二摻雜層D2、第三摻雜層D3、第四摻雜層D4及第五摻雜層D5具有第二導電型,其中第一導電型與第二導電型不同。在一些實施方式中,第一摻雜層D1、第二摻雜層D2、第三摻雜層D3、第四摻雜層D4及第五摻雜層D5的材料各自包括矽,例如結晶矽、多晶矽或鍺矽,但不限於此。在一些實施方式中,第一導電型為N型,第二導電型為P型。包含第四摻雜層D4及第五摻雜層D5的讀取電晶體RT為P型電晶體,例如P型金氧半場效電晶體(P-type metal-oxide-semiconductor field-effect transistor,PMOSFET)。在一些實施方式中,第三摻雜層D3的摻雜濃度高於第二摻雜層D2的摻雜濃度。在一些實施方式中,第一摻雜層D1為N+摻雜區,第二摻雜層D2為P-摻雜區,第三摻雜層D3為P+摻雜區,第四摻雜層D4及第五摻雜層D5為P+摻雜區。在一些實施方式中,柱狀通道CC具有第一導電型,柱狀通道CC例如為N-摻雜區。在另一些實施方式中,柱狀通道CC為 無摻雜的。 Please refer to FIG. 1B and FIG. 2 again. The first doping layer D1 has a first conductivity type, and the second doping layer D2, the third doping layer D3, the fourth doping layer D4, and the fifth doping layer D5 have a second conductivity type, wherein the first conductivity type is different from the second conductivity type. In some embodiments, the materials of the first doping layer D1, the second doping layer D2, the third doping layer D3, the fourth doping layer D4, and the fifth doping layer D5 each include silicon, such as crystalline silicon, polycrystalline silicon, or germanium silicon, but not limited thereto. In some embodiments, the first conductivity type is N-type, and the second conductivity type is P-type. The read transistor RT including the fourth doping layer D4 and the fifth doping layer D5 is a P-type transistor, such as a P-type metal-oxide-semiconductor field-effect transistor (PMOSFET). In some embodiments, the doping concentration of the third doping layer D3 is higher than the doping concentration of the second doping layer D2. In some embodiments, the first doping layer D1 is an N+ doping region, the second doping layer D2 is a P- doping region, the third doping layer D3 is a P+ doping region, and the fourth doping layer D4 and the fifth doping layer D5 are P+ doping regions. In some embodiments, the columnar channel CC has a first conductivity type, and the columnar channel CC is, for example, an N-doped region. In other embodiments, the columnar channel CC is undoped.

請再次參照第1B圖及第2圖。第一摻雜層D1具有第一導電型,第二摻雜層D2、第三摻雜層D3、第四摻雜層D4及第五摻雜層D5具有第二導電型,其中第一導電型與第二導電型不同。在一些實施方式中,第一導電型為P型,第二導電型為N型。包含第四摻雜層D4及第五摻雜層D5的讀取電晶體RT為N型電晶體,例如N型金氧半場效電晶體(N-type metal-oxide-semiconductor field-effect transistor,NMOSFET)。在一些實施方式中,第三摻雜層D3的摻雜濃度高於第二摻雜層D2的摻雜濃度。在一些實施方式中,第一摻雜層D1為P+摻雜區,第二摻雜層D2為N-摻雜區,第三摻雜層D3為N+摻雜區,第四摻雜層D4及第五摻雜層D5為N+摻雜區。在一些實施方式中,柱狀通道CC具有第一導電型,柱狀通道CC例如為P-摻雜區。在另一些實施方式中,柱狀通道CC為無摻雜的。 Please refer to FIG. 1B and FIG. 2 again. The first doping layer D1 has a first conductivity type, and the second doping layer D2, the third doping layer D3, the fourth doping layer D4, and the fifth doping layer D5 have a second conductivity type, wherein the first conductivity type is different from the second conductivity type. In some embodiments, the first conductivity type is a P type, and the second conductivity type is an N type. The read transistor RT including the fourth doping layer D4 and the fifth doping layer D5 is an N type transistor, such as an N type metal-oxide-semiconductor field-effect transistor (NMOSFET). In some embodiments, the doping concentration of the third doping layer D3 is higher than the doping concentration of the second doping layer D2. In some embodiments, the first doping layer D1 is a P+ doping region, the second doping layer D2 is an N- doping region, the third doping layer D3 is an N+ doping region, and the fourth doping layer D4 and the fifth doping layer D5 are N+ doping regions. In some embodiments, the columnar channel CC has a first conductivity type, and the columnar channel CC is, for example, a P- doping region. In other embodiments, the columnar channel CC is undoped.

在一些實施方式中,柱狀通道CC的材料包括矽、鍺、多晶矽、半導體氧化物(例如氧化銦(In2O3)、氧化銦鎵鋅(indium gallium zinc oxide,IGZO)、氧化銦錫(indium tin oxide,ITO))或其他適合的三五族材料。 In some embodiments, the material of the columnar channel CC includes silicon, germanium, polysilicon, semiconductor oxide (eg, indium oxide (In 2 O 3 ), indium gallium zinc oxide (IGZO), indium tin oxide (ITO)) or other suitable III-V materials.

請再次參照第1A圖,複數個記憶體結構100可形成記憶體陣列。本揭示內容提供一種記憶體陣列,包括複數個記憶體結構100、複數條寫入位元線及複數條讀取 位元線。寫入位元線沿第一方向延伸,其中沿第一方向排列的記憶體結構100的第一摻雜層D1藉由這些寫入位元線相互耦接。讀取位元線沿第二方向延伸,其中第一方向垂直於第二方向,沿第二方向排列的記憶體結構100的第五摻雜層D5藉由這些讀取位元線相互耦接。第4圖是根據本揭示內容各種實施方式的記憶體陣列400的立體示意圖。記憶體陣列400包括8個如第1A圖所示的記憶體結構100,但本揭示內容不限於此。可根據設計需求,任意調整記憶體結構100的數量為例如2、4、6、8、10、12、14、16、18或20。記憶體陣列400在第一方向Y上包括複數個記憶體結構100,且包括沿第一方向Y延伸的複數條寫入位元線WBL。記憶體陣列400在第二方向X上包括複數個記憶體結構100,且包括沿第二方向X延伸的複數條讀取位元線RBL。第一方向Y垂直於第二方向X。在記憶體陣列400中,複數個閘極層120與複數個絕緣層交替堆疊,在第二方向X上,相鄰的記憶體結構100的閘極層120係藉由絕緣層分隔開來,然而為了清楚起見,絕緣層未示出。此外,為了清楚起見,將柱狀結構內的元件位置向上移,以清楚示意第一摻雜層D1、第二摻雜層D2、第三摻雜層D3、第五摻雜層D5、第一介電層DL1、第二介電層DL2、第三介電層DL3及第四介電層DL4的相對位置。記憶體結構100藉由讀取位元線RBL及寫入位元線WBL相互耦接以形成記憶體陣列400。如第4圖所示,沿第一方向Y排列的記憶體結構100的第一摻雜層D1藉 由這些寫入位元線WBL相互耦接,沿第二方向X排列的記憶體結構100的第五摻雜層D5藉由這些讀取位元線RBL相互耦接。在記憶體陣列400中,可藉由寫入位元線WBL寫入資料至多個記憶體結構100中,可藉由讀取位元線RBL讀取多個記憶體結構100內的資料,因此,記憶體陣列400能夠大幅提升寫入速度及讀取速度。 Please refer to FIG. 1A again, a plurality of memory structures 100 can form a memory array. The present disclosure provides a memory array, including a plurality of memory structures 100, a plurality of write bit lines, and a plurality of read bit lines. The write bit lines extend along a first direction, wherein the first doping layers D1 of the memory structures 100 arranged along the first direction are mutually coupled through these write bit lines. The read bit lines extend along a second direction, wherein the first direction is perpendicular to the second direction, and the fifth doping layers D5 of the memory structures 100 arranged along the second direction are mutually coupled through these read bit lines. FIG. 4 is a three-dimensional schematic diagram of a memory array 400 according to various embodiments of the present disclosure. The memory array 400 includes 8 memory structures 100 as shown in FIG. 1A , but the present disclosure is not limited thereto. The number of memory structures 100 can be arbitrarily adjusted to, for example, 2, 4, 6, 8, 10, 12, 14, 16, 18, or 20 according to design requirements. The memory array 400 includes a plurality of memory structures 100 in a first direction Y, and includes a plurality of write bit lines WBL extending along the first direction Y. The memory array 400 includes a plurality of memory structures 100 in a second direction X, and includes a plurality of read bit lines RBL extending along the second direction X. The first direction Y is perpendicular to the second direction X. In the memory array 400, a plurality of gate layers 120 and a plurality of insulating layers are alternately stacked. In the second direction X, the gate layers 120 of adjacent memory structures 100 are separated by insulating layers, but for the sake of clarity, the insulating layers are not shown. In addition, for the sake of clarity, the position of the components in the columnar structure is moved upward to clearly illustrate the relative positions of the first doping layer D1, the second doping layer D2, the third doping layer D3, the fifth doping layer D5, the first dielectric layer DL1, the second dielectric layer DL2, the third dielectric layer DL3, and the fourth dielectric layer DL4. The memory structure 100 is coupled to each other through the read bit lines RBL and the write bit lines WBL to form a memory array 400. As shown in FIG. 4 , the first doped layers D1 of the memory structure 100 arranged along the first direction Y are coupled to each other through the write bit lines WBL, and the fifth doped layers D5 of the memory structure 100 arranged along the second direction X are coupled to each other through the read bit lines RBL. In the memory array 400, data can be written into multiple memory structures 100 via the write bit line WBL, and data in multiple memory structures 100 can be read via the read bit line RBL. Therefore, the memory array 400 can greatly improve the writing speed and the reading speed.

本揭示內容提供一種記憶體結構的製造方法,請參閱第2圖及第5A圖至第6I圖。第5A圖及第5B圖是根據本揭示內容各種實施方式的記憶體結構的製造方法500的流程圖。製造方法500包括操作512、操作514、操作516、操作518、操作520、操作522、操作524、操作526、操作528、操作530、操作532、操作534、操作536、操作538、操作540、操作542及操作544。第6A圖至第6I圖是根據本揭示內容各種實施方式的製造記憶體結構的中間階段的剖面示意圖。後續將以第6A圖至第6I圖及第2圖說明上述操作512至操作544。本揭示內容的製造方法的流程簡單,故可降低製造成本。 The present disclosure provides a method for manufacturing a memory structure, see FIG. 2 and FIG. 5A to FIG. 6I. FIG. 5A and FIG. 5B are flow charts of a method 500 for manufacturing a memory structure according to various embodiments of the present disclosure. The manufacturing method 500 includes operations 512, 514, 516, 518, 520, 522, 524, 526, 528, 530, 532, 534, 536, 538, 540, 542, and 544. FIG. 6A to FIG. 6I are cross-sectional schematic diagrams of intermediate stages of manufacturing a memory structure according to various embodiments of the present disclosure. The above operations 512 to 544 will be described later with reference to Figures 6A to 6I and Figure 2. The manufacturing method disclosed in the present invention has a simple process, thus reducing the manufacturing cost.

雖然下文中利用一系列的操作或步驟來說明在此揭露之方法,但是這些操作或步驟所示的順序不應被解釋為本揭示內容的限制。例如,某些操作或步驟可以按不同順序進行及/或與其它步驟同時進行。此外,並非必須執行所有繪示的操作、步驟及/或特徵才能實現本揭示內容的實施方式。此外,在此所述的每一個操作或步驟可以包含數個子步驟或動作。 Although a series of operations or steps are used below to illustrate the methods disclosed herein, the order in which these operations or steps are shown should not be interpreted as a limitation of the present disclosure. For example, certain operations or steps may be performed in a different order and/or simultaneously with other steps. In addition, not all operations, steps, and/or features shown must be performed to implement the present disclosure. In addition, each operation or step described herein may include a number of sub-steps or actions.

在操作512中,如第6A圖所示,形成第一摻雜層D1的第一部分P1及第四摻雜層D4於基板110中。第一摻雜層D1的第一部分P1與第四摻雜層D4藉由嵌設於基板110中的隔離結構STI電性隔離。在一些實施方式中,第一摻雜層D1的第一部分P1及第四摻雜層D4是各自藉由摻雜一部分的基板110形成。在操作514中,如第6A圖所示,形成交替堆疊的複數個絕緣層130及複數個第一閘極層G1於基板110上。在操作516中,如第6A圖所示,形成第一孔洞H1貫穿絕緣層130及第一閘極層G1,以暴露出第一摻雜層D1的第一部分P1。在一些實施方式中,第一孔洞H1是藉由蝕刻製程形成。 In operation 512, as shown in FIG. 6A, a first portion P1 of the first doped layer D1 and a fourth doped layer D4 are formed in the substrate 110. The first portion P1 of the first doped layer D1 and the fourth doped layer D4 are electrically isolated by an isolation structure STI embedded in the substrate 110. In some embodiments, the first portion P1 of the first doped layer D1 and the fourth doped layer D4 are each formed by doping a portion of the substrate 110. In operation 514, as shown in FIG. 6A, a plurality of insulating layers 130 and a plurality of first gate layers G1 are alternately stacked on the substrate 110. In operation 516, as shown in FIG. 6A, a first hole H1 is formed through the insulating layer 130 and the first gate layer G1 to expose the first portion P1 of the first doped layer D1. In some embodiments, the first hole H1 is formed by an etching process.

在操作518中,如第6B圖所示,形成第一介電層DL1覆蓋第一孔洞H1的側壁SW。在操作520中,如第6B圖所示,形成第一摻雜層D1的第二部分P2於第一孔洞H1中,其中第一摻雜層D1具有第一導電型。在一些實施方式中,藉由沉積製程形成第一摻雜層D1的第二部分P2。在一些實施方式中,第一摻雜層D1具有第一導電型,第四摻雜層D4具有第二導電型,第一導電型與第二導電型不同。在一些實施方式中,第一導電型為N型,第二導電型為P型。在其他實施方式中,第一導電型為P型,第二導電型為N型。 In operation 518, as shown in FIG. 6B, a first dielectric layer DL1 is formed to cover the sidewall SW of the first hole H1. In operation 520, as shown in FIG. 6B, a second portion P2 of the first doped layer D1 is formed in the first hole H1, wherein the first doped layer D1 has a first conductivity type. In some embodiments, the second portion P2 of the first doped layer D1 is formed by a deposition process. In some embodiments, the first doped layer D1 has a first conductivity type, and the fourth doped layer D4 has a second conductivity type, and the first conductivity type is different from the second conductivity type. In some embodiments, the first conductivity type is N-type and the second conductivity type is P-type. In other embodiments, the first conductivity type is P-type and the second conductivity type is N-type.

在操作522中,如第6C圖所示,形成第二孔洞H2貫穿絕緣層130及第一閘極層G1。第二孔洞H2暴露出第四摻雜層D4。在一些實施方式中,第二孔洞H2是藉 由蝕刻製程形成。在操作524中,如第6D圖所示,部分移除自第二孔洞H2暴露的第一閘極層G1以形成複數個凹陷部RP。在操作524後,第二孔洞H2的側壁具有複數個凹陷部RP。在一些實施方式中,部分移除第一閘極層G1是藉由溼蝕刻製程執行。 In operation 522, as shown in FIG. 6C, a second hole H2 is formed to penetrate the insulating layer 130 and the first gate layer G1. The second hole H2 exposes the fourth doped layer D4. In some embodiments, the second hole H2 is formed by an etching process. In operation 524, as shown in FIG. 6D, the first gate layer G1 exposed from the second hole H2 is partially removed to form a plurality of recessed portions RP. After operation 524, the sidewall of the second hole H2 has a plurality of recessed portions RP. In some embodiments, the partial removal of the first gate layer G1 is performed by a wet etching process.

在操作526中,如第6E圖所示,形成複數個第二介電層DL2於凹陷部RP中,以覆蓋經部分移除的第一閘極層G1。詳言之,第二介電層DL2各自形成於凹陷部RP中且並未填滿凹陷部RP。在操作528中,如第6F圖所示,形成複數個第三摻雜層D3覆蓋第二介電層DL2,其中第三摻雜層D3具有與第一導電型不同的第二導電型。詳言之,第三摻雜層D3各自形成於凹陷部RP中並填滿凹陷部RP。在操作530中,如第6F圖所示,形成第三介電層DL3於第二孔洞H2中,覆蓋絕緣層130及第三摻雜層D3。第三介電層DL3並未填滿第二孔洞H2。在操作532中,如第6F圖所示,形成柱狀通道CC於第二孔洞H2中。柱狀通道CC填滿第二孔洞H2。 In operation 526, as shown in FIG. 6E, a plurality of second dielectric layers DL2 are formed in the recessed portion RP to cover the partially removed first gate layer G1. Specifically, each of the second dielectric layers DL2 is formed in the recessed portion RP and does not fill the recessed portion RP. In operation 528, as shown in FIG. 6F, a plurality of third doped layers D3 are formed to cover the second dielectric layer DL2, wherein the third doped layers D3 have a second conductivity type different from the first conductivity type. Specifically, each of the third doped layers D3 is formed in the recessed portion RP and fills the recessed portion RP. In operation 530, as shown in FIG. 6F, a third dielectric layer DL3 is formed in the second hole H2, covering the insulating layer 130 and the third doping layer D3. The third dielectric layer DL3 does not fill up the second hole H2. In operation 532, as shown in FIG. 6F, a columnar channel CC is formed in the second hole H2. The columnar channel CC fills up the second hole H2.

在操作534中,如第6G圖所示,移除位於第一摻雜層D1與第三摻雜層D3之間的第一介電層DL1、第一閘極層G1及第二介電層DL2,以形成複數個溝槽T。詳言之,移除第一介電層DL1的多個部分、第一閘極層G1的多個部分及第二介電層DL2的多個部分,以形成溝槽T。在操作536中,如第6H圖所示,形成複數個第二摻雜層D2於溝槽T中以直接接觸第一摻雜層D1及連接 至第三摻雜層D3,其中第二摻雜層D2具有第二導電型。沿剖面線A-A’的剖面請參第2圖。在一些實施方式中,藉由沉積製程形成第二摻雜層D2。在一些實施方式中,如第6F圖至第6H圖所示,依序執行操作528、操作530、操作532、操作534及操作536。在形成柱狀通道CC於第二孔洞H2中後,形成第二摻雜層D2連接至第一摻雜層D1及第三摻雜層D3。在其他實施方式中,在形成第二摻雜層D2連接至第一摻雜層D1及第三摻雜層D3後,形成柱狀通道CC於第二孔洞H2中。在操作538中,如第2圖所示,形成複數個第四介電層DL4於第二摻雜層D2旁。在操作540中,如第2圖所示,形成複數個第二閘極層G2於第四介電層DL4旁。在操作542中,如第6H圖所示,摻雜柱狀通道CC的頂部部分以形成第五摻雜層D5。 In operation 534, as shown in FIG. 6G, the first dielectric layer DL1, the first gate layer G1, and the second dielectric layer DL2 between the first doping layer D1 and the third doping layer D3 are removed to form a plurality of trenches T. Specifically, multiple portions of the first dielectric layer DL1, multiple portions of the first gate layer G1, and multiple portions of the second dielectric layer DL2 are removed to form the trenches T. In operation 536, as shown in FIG. 6H, a plurality of second doping layers D2 are formed in the trenches T to directly contact the first doping layer D1 and to connect to the third doping layer D3, wherein the second doping layer D2 has a second conductivity type. The cross section along the section line A-A' is shown in FIG. 2. In some embodiments, the second doping layer D2 is formed by a deposition process. In some embodiments, as shown in FIGS. 6F to 6H, operations 528, 530, 532, 534, and 536 are performed in sequence. After forming the columnar channel CC in the second hole H2, the second doping layer D2 is formed to connect to the first doping layer D1 and the third doping layer D3. In other embodiments, after forming the second doping layer D2 to connect to the first doping layer D1 and the third doping layer D3, the columnar channel CC is formed in the second hole H2. In operation 538, as shown in FIG. 2, a plurality of fourth dielectric layers DL4 are formed next to the second doped layer D2. In operation 540, as shown in FIG. 2, a plurality of second gate layers G2 are formed next to the fourth dielectric layer DL4. In operation 542, as shown in FIG. 6H, the top portion of the columnar channel CC is doped to form a fifth doped layer D5.

在操作544中,如第6I圖所示,形成寫入位元線WBL於第一摻雜層D1上及形成讀取位元線RBL於第五摻雜層D5上。第6I圖的記憶體結構600與第1B圖的記憶體結構100的差異在於記憶體結構600更包括設置於第一摻雜層D1上的寫入位元線WBL,以及設置於第五摻雜層D5上的讀取位元線RBL,其中寫入位元線WBL耦接至第一摻雜層D1,讀取位元線RBL耦接至第五摻雜層D5。 In operation 544, as shown in FIG. 6I, a write bit line WBL is formed on the first doped layer D1 and a read bit line RBL is formed on the fifth doped layer D5. The difference between the memory structure 600 of FIG. 6I and the memory structure 100 of FIG. 1B is that the memory structure 600 further includes a write bit line WBL disposed on the first doped layer D1 and a read bit line RBL disposed on the fifth doped layer D5, wherein the write bit line WBL is coupled to the first doped layer D1 and the read bit line RBL is coupled to the fifth doped layer D5.

請同時參照第6I圖及第7圖。第7圖是根據本揭示內容各種實施方式的記憶體結構600的等效電路示意圖。電路700包括記憶體單元MC11、MC12、MC13、MC14、 MC15、MC16、寫入位元線WBL、讀取位元線RBL、讀取源極線RSL及複數條寫入字元線WG1、WG2、WG3、WG4、WG5、WG6。電路700亦可稱為串列(string)電路。在一些實施方式中,在記憶體結構600中,第一導電型為N型,第二導電型為P型,第一摻雜層D1為N+摻雜區,第二摻雜層D2為P-摻雜區,第一摻雜層D1及第二摻雜層D2形成如第7圖所示的複數個隧道二極體TD1,其中第一摻雜層D1為陰極(cathode),第二摻雜層D2為陽極(anode)。並且,第三摻雜層D3為P+摻雜區,第四摻雜層D4及第五摻雜層D5為P+摻雜區。閘極層120、第三摻雜層D3、第四摻雜層D4、第五摻雜層D5及柱狀通道CC形成如第7圖所示的複數個讀取電晶體RTp,即複數個P型電晶體。第6I圖的複數個第三摻雜層D3分別對應第7圖的複數個儲存節點SN1。這些隧道二極體TD1的陰極共同連接至寫入位元線WBL,這些隧道二極體TD1的陽極分別連接至儲存節點SN1Please refer to FIG. 6I and FIG. 7 at the same time. FIG. 7 is an equivalent circuit diagram of a memory structure 600 according to various embodiments of the present disclosure. Circuit 700 includes memory cells MC11 , MC12 , MC13 , MC14 , MC15 , MC16 , write bit lines WBL, read bit lines RBL, read source lines RSL, and a plurality of write word lines WG1 , WG2 , WG3 , WG4 , WG5 , WG6 . Circuit 700 may also be referred to as a string circuit. In some embodiments, in the memory structure 600, the first conductivity type is N type, the second conductivity type is P type, the first doped layer D1 is an N+ doped region, the second doped layer D2 is a P- doped region, the first doped layer D1 and the second doped layer D2 form a plurality of tunnel diodes TD 1 as shown in FIG. 7 , wherein the first doped layer D1 is a cathode, and the second doped layer D2 is an anode. Furthermore, the third doped layer D3 is a P+ doped region, and the fourth doped layer D4 and the fifth doped layer D5 are P+ doped regions. The gate layer 120, the third doping layer D3, the fourth doping layer D4, the fifth doping layer D5 and the columnar channel CC form a plurality of read transistors RTp , i.e., a plurality of P-type transistors, as shown in FIG7. The plurality of third doping layers D3 in FIG6I respectively correspond to the plurality of storage nodes SN1 in FIG7. The cathodes of these tunnel diodes TD1 are commonly connected to the write bit line WBL, and the anodes of these tunnel diodes TD1 are respectively connected to the storage node SN1 .

請繼續參照第6I圖及第7圖。本揭示內容提供一種記憶體單元MC11的操作方法。記憶體單元MC11包括隧道二極體TD1及讀取電晶體RTp。隧道二極體TD1耦合至寫入位元線WBL,閘極層120的一者耦合至寫入字元線WG1,第三摻雜層D3的一者作為讀取電晶體RTp的儲存節點SN1,讀取電晶體RTp耦合至讀取源極線RSL及讀取位元線RBL。儲存節點SN1與相鄰的閘極層120形成一電容器。 Please continue to refer to FIG. 6I and FIG. 7. The present disclosure provides an operation method of a memory cell MC 11. The memory cell MC 11 includes a tunnel diode TD 1 and a read transistor RT p . The tunnel diode TD 1 is coupled to the write bit line WBL, one of the gate layers 120 is coupled to the write word line WG 1 , one of the third doped layers D3 serves as a storage node SN 1 of the read transistor RT p , and the read transistor RT p is coupled to the read source line RSL and the read bit line RBL. The storage node SN 1 forms a capacitor with the adjacent gate layer 120 .

當欲寫入資料0,施加逆向偏壓(reverse bias)至隧道二極體TD1,更具體來說,施加於寫入位元線WBL的電壓高於施加於寫入字元線WG1的電壓。藉此,隧道二極體TD1中發生電子穿隧(electron tunneling),從而使儲存節點SN1具有高電位,儲存節點SN1會決定讀取電晶體RTp的閾值電壓(threshold voltage)。因此,在讀取操作時,沒有電流流經讀取電晶體RTp。當欲寫入資料1,施加順向偏壓(forward bias)至隧道二極體TD1,更具體來說,施加於寫入位元線WBL的電壓低於施加於寫入字元線WG1的電壓。藉此,儲存節點SN1具有低電位,儲存節點SN1會決定讀取電晶體RTp的閾值電壓。因此,在讀取操作時,會量測到電流流經讀取電晶體RTp。此外,請參照記憶體單元MC11以了解記憶體單元MC12、MC13、MC14、MC15、MC16的結構和操作方式,不再贅述。記憶體單元MC11、MC12、MC13、MC14、MC15、MC16可分別儲存資料1或資料0。 When data 0 is to be written, a reverse bias is applied to the tunnel diode TD 1 , more specifically, the voltage applied to the write bit line WBL is higher than the voltage applied to the write word line WG 1 . As a result, electron tunneling occurs in the tunnel diode TD 1 , so that the storage node SN 1 has a high potential, and the storage node SN 1 determines the threshold voltage of the read transistor RT p . Therefore, during the read operation, no current flows through the read transistor RT p . When data 1 is to be written, a forward bias is applied to the tunnel diode TD 1 , more specifically, the voltage applied to the write bit line WBL is lower than the voltage applied to the write word line WG 1 . As a result, the storage node SN 1 has a low potential, and the storage node SN 1 determines the threshold voltage of the read transistor RT p . Therefore, during the read operation, a current is measured flowing through the read transistor RT p . In addition, please refer to the memory cell MC 11 to understand the structure and operation of the memory cells MC 12 , MC 13 , MC 14 , MC 15 , and MC 16 , which will not be described in detail. Memory cells MC 11 , MC 12 , MC 13 , MC 14 , MC 15 , and MC 16 can store data 1 or data 0, respectively.

請繼續參照第6I圖及第7圖。本揭示內容提供一種記憶體結構600的操作方法。執行寫入操作,寫入操作包括:施加逆向偏壓至這些隧道二極體TD1的第一者,以使對應第一者的第三摻雜層D3(或是儲存節點SN1)的一者具有高電位,藉此寫入資料0至對應的讀取電晶體RTp中。或者,執行寫入操作,寫入操作包括:施加順向偏壓至這些隧道二極體TD1的第二者,以使對應第二者的第三摻雜層D3(或是儲存節點SN1)的一者具有低電位,藉此 寫入資料1至對應的讀取電晶體RTp中。在一些實施方式中,操作方法更包括以下操作。施加0V至對應具有高電位或低電位的第三摻雜層D3的這些閘極層120的選擇閘極。施加複數個負電壓至這些閘極層120中的複數個未選擇閘極,以開啟對應未選擇閘極的讀取電晶體RTp。施加正電壓至第四摻雜層D4或第五摻雜層D5,以讀取對應選擇閘極的讀取電晶體RTp中的資料0或資料1。 Please continue to refer to FIG. 6I and FIG. 7. The present disclosure provides an operating method of a memory structure 600. A write operation is performed, the write operation comprising: applying a reverse bias to a first one of these tunnel diodes TD 1 so that one of the third doping layers D3 (or storage node SN 1 ) corresponding to the first one has a high potential, thereby writing data 0 into the corresponding read transistor RT p . Alternatively, a write operation is performed, the write operation comprising: applying a forward bias to a second one of these tunnel diodes TD 1 so that one of the third doping layers D3 (or storage node SN 1 ) corresponding to the second one has a low potential, thereby writing data 1 into the corresponding read transistor RT p . In some embodiments, the operating method further comprises the following operations. 0V is applied to the selection gates of the gate layers 120 corresponding to the third doping layer D3 having a high potential or a low potential. A plurality of negative voltages are applied to the plurality of unselected gates in the gate layers 120 to turn on the read transistors RTp corresponding to the unselected gates. A positive voltage is applied to the fourth doping layer D4 or the fifth doping layer D5 to read the data 0 or the data 1 in the read transistors RTp corresponding to the selection gates.

請同時參照第6I圖及第8圖。第8圖是根據本揭示內容各種實施方式的記憶體結構600的等效電路示意圖。電路800包括記憶體單元MC21、MC22、MC23、MC24、MC25、MC26、寫入位元線WBL、讀取位元線RBL、讀取源極線RSL及複數條寫入字元線WG1、WG2、WG3、WG4、WG5、WG6。電路800亦可稱為串列電路。在一些實施方式中,在記憶體結構600中,第一導電型為P型,第二導電型為N型,第一摻雜層D1為P+摻雜區,第二摻雜層D2為N-摻雜區,第一摻雜層D1及第二摻雜層D2形成如第8圖所示的複數個隧道二極體TD2,其中第一摻雜層D1為陽極(anode),第二摻雜層D2為陰極(cathode)。並且,第三摻雜層D3為N+摻雜區,第四摻雜層D4及第五摻雜層D5為N+摻雜區。閘極層120、第三摻雜層D3、第四摻雜層D4、第五摻雜層D5及柱狀通道CC形成如第8圖所示的複數個讀取電晶體RTn,即複數個N型電晶體。第6I圖的複數個第三摻雜層D3分別對應第8圖的複數個儲存節點SN2。這些隧道二極體TD2 的陽極共同連接至寫入位元線WBL,這些隧道二極體TD2的陰極分別連接至儲存節點SN2Please refer to FIG. 6I and FIG. 8 at the same time. FIG. 8 is an equivalent circuit diagram of a memory structure 600 according to various embodiments of the present disclosure. Circuit 800 includes memory cells MC 21 , MC 22 , MC 23 , MC 24 , MC 25 , MC 26 , a write bit line WBL, a read bit line RBL, a read source line RSL, and a plurality of write word lines WG 1 , WG 2 , WG 3 , WG 4 , WG 5 , WG 6 . Circuit 800 may also be referred to as a serial circuit. In some embodiments, in the memory structure 600, the first conductivity type is P type, the second conductivity type is N type, the first doped layer D1 is a P+ doped region, the second doped layer D2 is an N- doped region, the first doped layer D1 and the second doped layer D2 form a plurality of tunnel diodes TD 2 as shown in FIG. 8 , wherein the first doped layer D1 is an anode, and the second doped layer D2 is a cathode. Furthermore, the third doped layer D3 is an N+ doped region, and the fourth doped layer D4 and the fifth doped layer D5 are N+ doped regions. The gate layer 120, the third doping layer D3, the fourth doping layer D4, the fifth doping layer D5 and the columnar channel CC form a plurality of read transistors RTn , i.e., a plurality of N-type transistors, as shown in FIG8. The plurality of third doping layers D3 in FIG6I respectively correspond to the plurality of storage nodes SN2 in FIG8. The anodes of these tunnel diodes TD2 are commonly connected to the write bit line WBL, and the cathodes of these tunnel diodes TD2 are respectively connected to the storage node SN2 .

請繼續參照第6I圖及第8圖。本揭示內容提供一種記憶體單元MC21的操作方法。記憶體單元MC21包括隧道二極體TD2及讀取電晶體RTn。隧道二極體TD2耦合至寫入位元線WBL,閘極層120的一者耦合至寫入字元線WG1,第三摻雜層D3的一者作為讀取電晶體RTn的儲存節點SN2,讀取電晶體RTn耦合至讀取源極線RSL及讀取位元線RBL。儲存節點SN2與相鄰的閘極層120形成一電容器。 Please continue to refer to FIG. 6I and FIG. 8. The present disclosure provides an operation method of a memory cell MC 21. The memory cell MC 21 includes a tunnel diode TD 2 and a read transistor RT n . The tunnel diode TD 2 is coupled to the write bit line WBL, one of the gate layers 120 is coupled to the write word line WG 1 , one of the third doped layers D3 serves as a storage node SN 2 of the read transistor RT n , and the read transistor RT n is coupled to the read source line RSL and the read bit line RBL. The storage node SN 2 forms a capacitor with the adjacent gate layer 120.

當欲寫入資料1,施加順向偏壓至隧道二極體TD2,更具體來說,施加於寫入位元線WBL的電壓高於施加於寫入字元線WG1的電壓。藉此,儲存節點SN2具有高電位,儲存節點SN2會決定讀取電晶體RTn的閾值電壓。因此,在讀取操作時,會量測到電流流經讀取電晶體RTn。當欲寫入資料0,施加逆向偏壓至隧道二極體TD2,更具體來說,施加於寫入位元線WBL的電壓低於施加於寫入字元線WG1的電壓。藉此,隧道二極體TD2中發生電子穿隧,從而使儲存節點SN2具有低電位,儲存節點SN2會決定讀取電晶體RTn的閾值電壓。因此,在讀取操作時,沒有電流流經讀取電晶體RTn。此外,請參照記憶體單元MC21以了解記憶體單元MC22、MC23、MC24、MC25、MC26的結構和操作方式,不再贅述。記憶體單元MC21、MC22、MC23、MC24、MC25、MC26可分別儲存資料1 或資料0。 When data 1 is to be written, a forward bias is applied to the tunnel diode TD 2 , more specifically, the voltage applied to the write bit line WBL is higher than the voltage applied to the write word line WG 1 . As a result, the storage node SN 2 has a high potential, and the storage node SN 2 determines the threshold voltage of the read transistor RT n . Therefore, during the read operation, a current is measured flowing through the read transistor RT n . When data 0 is to be written, a reverse bias is applied to the tunnel diode TD 2 , more specifically, the voltage applied to the write bit line WBL is lower than the voltage applied to the write word line WG 1 . Thereby, electron tunneling occurs in the tunnel diode TD 2 , so that the storage node SN 2 has a low potential, and the storage node SN 2 determines the threshold voltage of the read transistor RT n . Therefore, during the read operation, no current flows through the read transistor RT n . In addition, please refer to the memory cell MC 21 to understand the structure and operation of the memory cells MC 22 , MC 23 , MC 24 , MC 25 , and MC 26 , which will not be repeated. The memory cells MC 21 , MC 22 , MC 23 , MC 24 , MC 25 , and MC 26 can store data 1 or data 0 respectively.

請繼續參照第6I圖及第8圖。本揭示內容提供一種記憶體結構600的操作方法。執行寫入操作,寫入操作包括:施加逆向偏壓至這些隧道二極體TD2的第一者,以使對應第一者的第三摻雜層D3(或是儲存節點SN2)的一者具有低電位,藉此寫入資料0至對應的讀取電晶體RTn中。或者,執行寫入操作,寫入操作包括:施加順向偏壓至這些隧道二極體TD2的第二者,以使對應第二者的第三摻雜層D3(或是儲存節點SN2)的一者具有高電位,藉此寫入資料1至對應的讀取電晶體RTn中。在一些實施方式中,操作方法更包括以下操作。施加0V至對應具有高電位或低電位的第三摻雜層D3的這些閘極層120的選擇閘極。施加複數個正電壓至這些閘極層120中的複數個未選擇閘極,以開啟對應未選擇閘極的讀取電晶體RTn。施加正電壓至第四摻雜層D4或第五摻雜層D5,以讀取對應選擇閘極的讀取電晶體RTn中的資料0或資料1。 Please continue to refer to FIG. 6I and FIG. 8. The present disclosure provides an operating method of a memory structure 600. A write operation is performed, the write operation comprising: applying a reverse bias to a first one of these tunnel diodes TD 2 so that one of the third doping layers D3 (or storage nodes SN 2 ) corresponding to the first one has a low potential, thereby writing data 0 into the corresponding read transistor RT n . Alternatively, a write operation is performed, the write operation comprising: applying a forward bias to a second one of these tunnel diodes TD 2 so that one of the third doping layers D3 (or storage nodes SN 2 ) corresponding to the second one has a high potential, thereby writing data 1 into the corresponding read transistor RT n . In some embodiments, the operating method further comprises the following operations. 0V is applied to the selection gates of the gate layers 120 corresponding to the third doping layer D3 having a high potential or a low potential. A plurality of positive voltages are applied to a plurality of unselected gates in the gate layers 120 to turn on the read transistors RTn corresponding to the unselected gates. A positive voltage is applied to the fourth doping layer D4 or the fifth doping layer D5 to read the data 0 or the data 1 in the read transistors RTn corresponding to the selection gates.

請再次參照第1A圖、第1B圖及第4圖。在一些實施方式中,記憶體陣列400更包括沿第一方向Y延伸的複數條讀取源極線(未示出),沿第一方向Y排列的記憶體結構100的第四摻雜層D4藉由這些讀取源極線相互耦接。在一些實施方式中,讀取源極線共同連接至一頁面緩衝器(未示出)。在一些實施方式中,寫入位元線WBL分別連接至具有電晶體的串選擇線(string select line,SSL)(未示出),以控制寫入位元線WBL的電壓是否施加到記 憶體結構100。在一些實施方式中,在記憶體陣列400中,第一摻雜層D1分別連接至具有電晶體的整體選擇線(global select line,GSL)(未示出),以控制施加至第一摻雜層D1的電壓。 Please refer to FIG. 1A, FIG. 1B and FIG. 4 again. In some embodiments, the memory array 400 further includes a plurality of read source lines (not shown) extending along the first direction Y, and the fourth doped layers D4 of the memory structures 100 arranged along the first direction Y are coupled to each other through these read source lines. In some embodiments, the read source lines are commonly connected to a page buffer (not shown). In some embodiments, the write bit lines WBL are respectively connected to string select lines (SSL) (not shown) having transistors to control whether the voltage of the write bit lines WBL is applied to the memory structure 100. In some embodiments, in the memory array 400, the first doped layer D1 is respectively connected to a global select line (GSL) (not shown) having a transistor to control the voltage applied to the first doped layer D1.

接下來,以第9圖至第14圖進一步說明如何寫入、讀取或清除記憶體陣列的資料。第9圖是根據本揭示內容各種實施方式的記憶體陣列的電路示意圖。如第9圖所示,電路CI包括頁面PG1、頁面PG2、寫入字元線WG1、WG2、WG3、寫入位元線WBL1、WBL2、讀取源極線RSL1、RSL2、串選擇線SSL1、SSL2和整體選擇線GSL1、GSL2及頁面緩衝器PB。頁面PG1及頁面PG2各自包括6個記憶體單元,記憶體單元各包括一隧道二極體及一P型讀取電晶體。頁面緩衝器PB可進一步耦接感測放大器(sense amplifier,SA)(未示出)。寫入字元線WG1、WG2、WG3分別耦接頁面PG1及頁面PG2中的P型讀取電晶體。在頁面PG1和頁面PG2中,在讀取操作時,讀取位元線RBL1、RBL2可被施加電壓或不被施加電壓,從而決定讀取哪一頁面的資料。在頁面PG1和頁面PG2中,串選擇線SSL1、SSL2和整體選擇線GSL1、GSL2分別用於控制電晶體的開關,這些電晶體作為選擇串列電路的開關。不同串列上的電晶體共享同一串選擇線及同一整體選擇線。頁面PG1和頁面PG2中的串列電路分別連接至串選擇線和整體選擇線的電晶體的源極或汲極。供應電壓VCC1、VCC2分別用於提供電壓至隧道二極體的陰極。 讀取源極線RSL1、RSL2分別耦接不同頁面的串列電路,並耦接至頁面緩衝器PB,頁面緩衝器PB可一次讀取整個頁面的資料。頁面、寫入位元線、讀取源極線、串選擇線、整體選擇線及記憶體單元的數量不限於第9圖所繪示的數量,可根據設計需求,任意調整數量。 Next, how to write, read or clear data in the memory array is further described with reference to FIGS. 9 to 14. FIG. 9 is a circuit diagram of a memory array according to various embodiments of the present disclosure. As shown in FIG. 9, the circuit CI includes page PG1, page PG2, write word lines WG1 , WG2 , WG3 , write bit lines WBL1 , WBL2 , read source lines RSL1 , RSL2 , string select lines SSL1 , SSL2 , and global select lines GSL1 , GSL2 , and page buffer PB. Page PG1 and page PG2 each include 6 memory cells, and each memory cell includes a tunnel diode and a P-type read transistor. The page buffer PB may be further coupled to a sense amplifier (SA) (not shown). The write word lines WG 1 , WG 2 , and WG 3 are coupled to the P-type read transistors in page PG1 and page PG2, respectively. In page PG1 and page PG2, during the read operation, the read bit lines RBL 1 and RBL 2 may be applied with voltage or not applied with voltage, thereby determining which page of data is read. In page PG1 and page PG2, the string select lines SSL 1 , SSL 2 and the overall select lines GSL 1 , GSL 2 are respectively used to control the switches of transistors, which serve as switches for selecting the serial circuits. Transistors on different strings share the same string select line and the same overall select line. The serial circuits in page PG1 and page PG2 are connected to the source or drain of the transistors of the string select line and the overall select line, respectively. The supply voltages VCC1 and VCC2 are used to provide voltage to the cathode of the tunnel diode, respectively. The read source lines RSL1 and RSL2 are coupled to the serial circuits of different pages, respectively, and are coupled to the page buffer PB, which can read the data of the entire page at one time. The number of pages, write bit lines, read source lines, string select lines, overall select lines, and memory cells is not limited to the number shown in FIG. 9, and the number can be adjusted arbitrarily according to design requirements.

以下說明如何在第9圖的電路CI中執行寫入操作,其中頁面PG1為被選擇寫入的頁面,頁面PG2為未被選擇寫入的頁面。舉例來說,可藉由以下表一的操作電壓,在頁面PG1的記憶體單元M1寫入資料0,記憶體單元M2寫入資料1。更詳細來說,串選擇線SSL1的電壓為3.6V,故可開啟電晶體,使寫入位元線WBL1施加3V至記憶體單元中隧道二極體的陰極,使寫入位元線WBL2施加-1V至記憶體單元中隧道二極體的陰極。寫入字元線WG1的電壓為0V,寫入字元線WG2、WG3的電壓為-0.5V或1V。因此,記憶體單元M1的隧道二極體被施加逆向偏壓,以使儲存節點具有高電位,從而寫入資料0至記憶體單元M1。記憶體單元M2的隧道二極體被施加順向偏壓,以使儲存節點具有低電位,從而寫入資料1至記憶體單元M2。在頁面PG1中,記憶體單元M1、M2之外的記憶體單元的隧道二極體被施加的偏壓皆不足以使儲存節點具有高電位或低電位。頁面PG2為未被選擇寫入的頁面,故串選擇線SSL2的電壓為0V。請參以下表二,供應電壓VCC2為1.5V,寫入字元線WG1的電壓為0V、寫入字元線WG2及WG3的電壓為-0.5V或1V,因此,在頁面PG2 中,記憶體單元的隧道二極體被施加的逆向偏壓皆不足以使儲存節點具有高電位。 The following describes how to perform a write operation in the circuit CI of FIG. 9, where page PG1 is the page selected for writing and page PG2 is the page not selected for writing. For example, data 0 can be written into the memory cell M1 of page PG1 and data 1 can be written into the memory cell M2 by the operating voltage in Table 1 below. In more detail, the voltage of the string select line SSL 1 is 3.6V, so the transistor can be turned on, so that the write bit line WBL 1 applies 3V to the cathode of the tunnel diode in the memory cell, and the write bit line WBL 2 applies -1V to the cathode of the tunnel diode in the memory cell. The voltage of the write word line WG 1 is 0V, and the voltage of the write word lines WG 2 and WG 3 is -0.5V or 1V. Therefore, the tunnel diode of the memory cell M 1 is reverse biased so that the storage node has a high potential, thereby writing data 0 to the memory cell M 1 . The tunnel diode of the memory cell M 2 is forward biased so that the storage node has a low potential, thereby writing data 1 to the memory cell M 2 . In page PG1, the bias applied to the tunnel diodes of the memory cells other than the memory cells M 1 and M 2 is not enough to make the storage nodes have a high potential or a low potential. Page PG2 is a page that is not selected for writing, so the voltage of string selection line SSL 2 is 0 V. Please refer to Table 2 below, the supply voltage V CC2 is 1.5 V, the voltage of write word line WG 1 is 0 V, and the voltage of write word lines WG 2 and WG 3 is -0.5 V or 1 V. Therefore, in page PG2, the reverse bias applied to the tunnel diode of the memory cell is not enough to make the storage node have a high potential.

Figure 113111881-A0305-12-0026-1
Figure 113111881-A0305-12-0026-1

Figure 113111881-A0305-12-0026-2
Figure 113111881-A0305-12-0026-2

請同時參照第9圖及第10圖。第10圖是根據本揭示內容各種實施方式的控制訊號之時序圖。寫入字元線WG1的電壓維持於0V。未被選擇的寫入字元線WG2、WG3的電壓維持於1V或-0.5V。未被選擇的串選擇線SSL2的電壓維持於0V。未被選擇的整體選擇線GSL2的電壓維持於3.6V。在時間t11,寫入位元線WBL1的電壓變為3V,寫入位元線WBL2的電壓變為-1V。在時間t12,串選擇線SSL1的電壓變為3.6V,藉此,寫入位元線WBL1的電壓3V施加至記憶體單元M1的隧道二極體的陰極,從而寫入資料0至記憶體單元M1,寫入位元線WBL2的電壓-1V施加至記憶體單元M2的隧道二極體的陰極,從而寫入資料1至記憶體單元M2。在時間t13,串選擇線SSL1的電壓變為0V。在時間t14,寫入位元線WBL1的電壓變為0V。在時間t15,整體選擇線GSL1的電壓變為3.6V。 Please refer to FIG. 9 and FIG. 10 simultaneously. FIG. 10 is a timing diagram of control signals according to various embodiments of the present disclosure. The voltage of the write word line WG 1 is maintained at 0V. The voltage of the unselected write word lines WG 2 and WG 3 is maintained at 1V or -0.5V. The voltage of the unselected string select line SSL 2 is maintained at 0V. The voltage of the unselected global select line GSL 2 is maintained at 3.6V. At time t 11 , the voltage of the write bit line WBL 1 becomes 3V, and the voltage of the write bit line WBL 2 becomes -1V. At time t12 , the voltage of the string selection line SSL1 becomes 3.6V, whereby the voltage of the write bit line WBL1 , 3V, is applied to the cathode of the tunnel diode of the memory cell M1 , thereby writing data 0 to the memory cell M1 , and the voltage of the write bit line WBL2, -1V, is applied to the cathode of the tunnel diode of the memory cell M2 , thereby writing data 1 to the memory cell M2 . At time t13 , the voltage of the string selection line SSL1 becomes 0V. At time t14 , the voltage of the write bit line WBL1 becomes 0V. At time t15 , the voltage of the global selection line GSL1 becomes 3.6V.

第11圖是根據本揭示內容各種實施方式的記憶體 陣列的電路示意圖。以下說明如何在第11圖的電路CI中執行讀取操作,頁面PG1為被選擇讀取的頁面,頁面PG2為未被選擇讀取的頁面。舉例來說,若頁面PG1的記憶體單元M1儲存資料0,記憶體單元M2儲存資料1,可藉由以下表三的操作電壓讀取記憶體單元M1、M2的資料。更詳細來說,供應電壓VCC1為1.5V,施加0V於寫入字元線WG1,記憶體單元M1、M2中P型讀取電晶體的閾值電壓由儲存節點決定,施加-0.5V於寫入字元線WG2、WG3,以開啟對應的P型讀取電晶體。為了簡化起見,一些耦合於不同頁面的P型讀取電晶體的寫入字元線並未繪於第11圖。並且,讀取位元線RBL1的電壓為0.5V,讀取源極線RSL1、RSL2分別耦接頁面PG1、PG2的串列電路以讀取電流。含有記憶體單元M1的串列電路無法被量測到電流,可知有記憶體單元M1儲存資料0。含有記憶體單元M2的串列電路可被量測到電流,可知有記憶體單元M2儲存資料1。頁面PG2為未被選擇讀取的頁面,故讀取位元線RBL2的電壓為0V。並且,施加逆向偏壓至頁面PG2中記憶體單元的隧道二極體,以避免電流自儲存節點洩漏。請參以下表四,供應電壓VCC2為1.5V,寫入字元線WG1的電壓為0V、寫入字元線WG2及WG3的電壓為-0.5V,由此可知,頁面PG2中記憶體單元的隧道二極體皆被施加逆向偏壓。 FIG. 11 is a circuit diagram of a memory array according to various embodiments of the present disclosure. The following describes how to perform a read operation in the circuit CI of FIG. 11, where page PG1 is the page selected for reading and page PG2 is the page not selected for reading. For example, if the memory cell M1 of page PG1 stores data 0 and the memory cell M2 stores data 1, the data of the memory cells M1 and M2 can be read by the operating voltages in Table 3 below. In more detail, the supply voltage V CC1 is 1.5V, 0V is applied to the write word line WG 1 , the threshold voltage of the P-type read transistors in the memory cells M 1 and M 2 is determined by the storage node, and -0.5V is applied to the write word lines WG 2 and WG 3 to turn on the corresponding P-type read transistors. For simplicity, some write word lines coupled to the P-type read transistors of different pages are not shown in FIG. 11 . In addition, the voltage of the read bit line RBL 1 is 0.5V, and the read source lines RSL 1 and RSL 2 are respectively coupled to the serial circuits of the pages PG1 and PG2 to read the current. The serial circuit containing the memory cell M1 cannot be measured with current, which means that the memory cell M1 stores data 0. The serial circuit containing the memory cell M2 can be measured with current, which means that the memory cell M2 stores data 1. Page PG2 is a page that is not selected for reading, so the voltage of the read bit line RBL 2 is 0V. In addition, a reverse bias is applied to the tunnel diode of the memory cell in page PG2 to prevent current from leaking from the storage node. Please refer to the following Table 4. The supply voltage V CC2 is 1.5V, the voltage of the write word line WG 1 is 0V, and the voltage of the write word lines WG 2 and WG 3 is -0.5V. It can be seen that the tunnel diodes of the memory cells in page PG2 are all reverse biased.

Figure 113111881-A0305-12-0027-3
Figure 113111881-A0305-12-0027-3
Figure 113111881-A0305-12-0028-4
Figure 113111881-A0305-12-0028-4

Figure 113111881-A0305-12-0028-5
Figure 113111881-A0305-12-0028-5

請同時參照第11圖及第12圖。第12圖是根據本揭示內容各種實施方式的控制訊號之時序圖。未被選擇的寫入字元線WG2、WG3的電壓維持於-0.5V。在時間t21,寫入字元線WG1的電壓變為0V。在時間t22,讀取位元線RBL1的電壓變為0.5V。在時間t23,讀取位元線RBL1的電壓變為0V。在時間t24,寫入字元線WG1的電壓變為-0.5V。藉此,在時間t22至時間t23的期間,讀取源極線RSL2可量測到電流,可知記憶體單元M2儲存資料1,另一方面,讀取源極線RSL1沒有量測到電流,可知記憶體單元M1儲存資料0。 Please refer to FIG. 11 and FIG. 12 at the same time. FIG. 12 is a timing diagram of control signals according to various embodiments of the present disclosure. The voltage of the unselected write word lines WG 2 and WG 3 is maintained at -0.5V. At time t 21 , the voltage of the write word line WG 1 becomes 0V. At time t 22 , the voltage of the read bit line RBL 1 becomes 0.5V. At time t 23 , the voltage of the read bit line RBL 1 becomes 0V. At time t 24 , the voltage of the write word line WG 1 becomes -0.5V. Thus, during the period from time t 22 to time t 23 , the current can be measured by reading the source line RSL 2 , indicating that the memory cell M 2 stores data 1. On the other hand, no current is measured by reading the source line RSL 1 , indicating that the memory cell M 1 stores data 0.

第13圖是根據本揭示內容各種實施方式的記憶體陣列的電路示意圖。以下說明如何在第13圖的電路CI中執行清除(erase)操作,其中頁面PG1為被選擇清除的頁面,頁面PG2為未被選擇清除的頁面。舉例來說,可藉由以下表五的操作電壓,清除頁面PG1的記憶體單元內的資料。串選擇線SSL1的電壓為3.6V,故可開啟電晶體,寫入位元線WBL1、WBL2施加3V至記憶體單元中隧道二極體的陰極,寫入字元線WG1、WG2、WG3的電壓皆為0V,因此,記憶體單元的隧道二極體皆被施加逆向偏壓,以使儲存節點具有高電位,從而寫入資料0至頁面PG1的 記憶體單元。另一方面,請參以下表六,在頁面PG2中,串選擇線SSL2的電壓為0V,故頁面PG2的記憶體單元不會受寫入位元線WBL1、WBL2的電壓影響。供應電壓VCC2為1.5V,寫入字元線WG1、WG2、WG3的電壓皆為0V,因此,在頁面PG2中,記憶體單元的隧道二極體被施加的逆向偏壓皆不足以使儲存節點具有高電位。 FIG. 13 is a circuit diagram of a memory array according to various embodiments of the present disclosure. The following describes how to perform an erase operation in the circuit CI of FIG. 13, wherein page PG1 is a page selected for erase and page PG2 is a page not selected for erase. For example, the data in the memory cell of page PG1 can be erased by the operating voltage of Table 5 below. The voltage of the string select line SSL 1 is 3.6V, so the transistor can be turned on, and the write bit lines WBL 1 and WBL 2 apply 3V to the cathode of the tunnel diode in the memory cell. The voltages of the write word lines WG 1 , WG 2 , and WG 3 are all 0V, so the tunnel diodes of the memory cells are all reverse biased to make the storage nodes have a high potential, thereby writing data 0 to the memory cells of page PG1. On the other hand, please refer to the following Table 6. In page PG2, the voltage of the string select line SSL 2 is 0V, so the memory cells of page PG2 will not be affected by the voltage of the write bit lines WBL 1 and WBL 2 . The supply voltage V CC2 is 1.5V, and the voltages of the write word lines WG 1 , WG 2 , and WG 3 are all 0V. Therefore, in page PG2 , the reverse bias applied to the tunnel diode of the memory cell is not sufficient to make the storage node have a high potential.

Figure 113111881-A0305-12-0029-6
Figure 113111881-A0305-12-0029-6

Figure 113111881-A0305-12-0029-7
Figure 113111881-A0305-12-0029-7

請同時參照第13圖及第14圖。第14圖是根據本揭示內容各種實施方式的控制訊號之時序圖。寫入字元線WG1、WG2、WG3的電壓維持於0V。整體選擇線GSL2的電壓維持3.6V。在時間t31,寫入位元線WBL1、WBL2的電壓變為3V。在時間t32,串選擇線SSL1的電壓變為3.6V,藉此,寫入位元線WBL1、WBL2的電壓3V施加至頁面PG1的記憶體單元的隧道二極體的陰極,以對隧道二極體施加逆向偏壓,從而使儲存節點具有高電位。換言之,寫入資料0至記憶體單元。在時間t33,串選擇線SSL1的電壓變為0V。在時間t34,寫入位元線WBL1、WBL2的電壓變為0V。在時間t35,整體選擇線GSL1的電壓變為3.6V。 Please refer to FIG. 13 and FIG. 14 at the same time. FIG. 14 is a timing diagram of control signals according to various implementations of the present disclosure. The voltage of the write word lines WG 1 , WG 2 , and WG 3 is maintained at 0V. The voltage of the global selection line GSL 2 is maintained at 3.6V. At time t 31 , the voltage of the write bit lines WBL 1 , WBL 2 becomes 3V. At time t 32 , the voltage of the string selection line SSL 1 becomes 3.6V, whereby the voltage of 3V of the write bit lines WBL 1 , WBL 2 is applied to the cathode of the tunnel diode of the memory cell of page PG1 to apply a reverse bias to the tunnel diode, thereby making the storage node have a high potential. In other words, data 0 is written to the memory cell. At time t 33 , the voltage of the string select line SSL 1 becomes 0V. At time t 34 , the voltage of the write bit lines WBL 1 and WBL 2 becomes 0V. At time t 35 , the voltage of the global select line GSL 1 becomes 3.6V.

綜上所述,本揭示內容提供一種記憶體結構、其製造方法及其操作方法,以及一種記憶體陣列。在記憶體結構及記憶體陣列中,各記憶體單元包括一隧道二極體及一讀取電晶體,以形成1D1T的DRAM結構。讀取電晶體在縱向上相互連接,因此能夠提高記憶體單元的密度故有利於記憶體結構及記憶體陣列的尺寸微縮。並且,本揭示內容的製造方法的流程簡單,故可降低製造成本。 In summary, the present disclosure provides a memory structure, a manufacturing method and an operating method thereof, and a memory array. In the memory structure and the memory array, each memory cell includes a tunnel diode and a read transistor to form a 1D1T DRAM structure. The read transistors are connected to each other in the vertical direction, so that the density of the memory cell can be increased, which is beneficial to the miniaturization of the memory structure and the memory array. In addition, the manufacturing method of the present disclosure has a simple process, so the manufacturing cost can be reduced.

儘管已經參考某些實施方式相當詳細地描述了本揭示內容,但是亦可能有其他實施方式。因此,所附申請專利範圍的精神和範圍不應限於此處包含的實施方式的描述。 Although the present disclosure has been described in considerable detail with reference to certain embodiments, other embodiments are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein.

對於所屬技術領域具有通常知識者來說,顯而易見的是,在不脫離本揭示內容的範圍或精神的情況下,可以對本揭示內容的結構進行各種修改和變化。鑑於前述內容,本揭示內容意圖涵蓋落入所附申請專利範圍內的本揭示內容的修改和變化。 It is obvious to a person of ordinary skill in the art that various modifications and variations can be made to the structure of this disclosure without departing from the scope or spirit of this disclosure. In view of the foregoing, this disclosure is intended to cover modifications and variations of this disclosure that fall within the scope of the attached patent applications.

600:記憶體結構 600:Memory structure

110:基板 110: Substrate

120:閘極層 120: Gate layer

130:絕緣層 130: Insulation layer

CC:柱狀通道 CC: Columnar Channel

D1:第一摻雜層 D1: First doping layer

D2:第二摻雜層 D2: Second doping layer

D3:第三摻雜層 D3: The third doping layer

D4:第四摻雜層 D4: The fourth doping layer

D5:第五摻雜層 D5: The fifth doping layer

DL1:第一介電層 DL1: First dielectric layer

DL2:第二介電層 DL2: Second dielectric layer

DL3:第三介電層 DL3: The third dielectric layer

G1:第一閘極層 G1: First gate layer

P1:第一部分 P1: Part 1

P2:第二部分 P2: Part 2

RBL:讀取位元線 RBL: Read Bit Line

STI:隔離結構 STI: Isolation Structure

WBL:寫入位元線 WBL: Write Bit Line

Claims (20)

一種記憶體結構,包括: 交替堆疊的複數個絕緣層及複數個閘極層; 一第一摻雜層,貫穿該些絕緣層及該些閘極層,且具有一第一導電型; 複數個第二摻雜層,各自直接接觸該第一摻雜層,且具有與該第一導電型不同的一第二導電型,其中該第一摻雜層及該些第二摻雜層形成複數個隧道二極體,該些第二摻雜層及該些絕緣層交替堆疊; 一柱狀通道,貫穿該些絕緣層及該些閘極層; 複數個第三摻雜層,各自環繞該柱狀通道,其中該些第三摻雜層各自連接至該些第二摻雜層,該些第三摻雜層具有該第二導電型; 一第四摻雜層及一第五摻雜層,耦合至該柱狀通道; 一第一介電層,設置於該第一摻雜層與該些閘極層之間; 複數個第二介電層,各自設置於該些第三摻雜層與該些閘極層之間; 一第三介電層,設置於該柱狀通道與該些第三摻雜層之間;以及 複數個第四介電層,各自設置於該些第二摻雜層與該些閘極層之間。 A memory structure includes: A plurality of insulating layers and a plurality of gate layers stacked alternately; A first doped layer, penetrating the insulating layers and the gate layers, and having a first conductivity type; A plurality of second doped layers, each directly contacting the first doped layer, and having a second conductivity type different from the first conductivity type, wherein the first doped layer and the second doped layers form a plurality of tunnel diodes, and the second doped layers and the insulating layers are stacked alternately; A columnar channel, penetrating the insulating layers and the gate layers; A plurality of third doped layers, each surrounding the columnar channel, wherein the third doped layers are each connected to the second doped layers, and the third doped layers have the second conductivity type; A fourth doped layer and a fifth doped layer, coupled to the columnar channel; A first dielectric layer, disposed between the first doped layer and the gate layers; A plurality of second dielectric layers, each disposed between the third doped layers and the gate layers; A third dielectric layer is disposed between the columnar channel and the third doped layers; and a plurality of fourth dielectric layers are each disposed between the second doped layers and the gate layers. 如請求項1所述之記憶體結構,其中該第一導電型為N型,該第二導電型為P型。The memory structure as described in claim 1, wherein the first conductivity type is N type and the second conductivity type is P type. 如請求項1所述之記憶體結構,其中該第一導電型為P型,該第二導電型為N型。The memory structure as described in claim 1, wherein the first conductivity type is P type and the second conductivity type is N type. 如請求項1所述之記憶體結構,更包括一寫入位元線設置於該第一摻雜層上。The memory structure as described in claim 1 further includes a write bit line arranged on the first doped layer. 如請求項1所述之記憶體結構,更包括一讀取位元線耦合至該第五摻雜層。The memory structure as described in claim 1 further includes a read bit line coupled to the fifth doped layer. 如請求項1所述之記憶體結構,其中該第四摻雜層設置於該柱狀通道下,該第五摻雜層設置於該柱狀通道上,該第四摻雜層及該第五摻雜層具有該第二導電型。The memory structure as described in claim 1, wherein the fourth doped layer is disposed under the columnar channel, the fifth doped layer is disposed on the columnar channel, and the fourth doped layer and the fifth doped layer have the second conductivity type. 如請求項6所述之記憶體結構,更包括一讀取位元線設置於該第五摻雜層上。The memory structure as described in claim 6 further includes a read bit line disposed on the fifth doped layer. 如請求項6所述之記憶體結構,其中該柱狀通道具有該第一導電型。A memory structure as described in claim 6, wherein the columnar channel has the first conductivity type. 如請求項1所述之記憶體結構,其中該柱狀通道為無摻雜的。A memory structure as described in claim 1, wherein the columnar channel is undoped. 如請求項1至請求項9任一項所述之記憶體結構,其中該些第三摻雜層的摻雜濃度高於該些第二摻雜層的摻雜濃度。A memory structure as described in any one of claim 1 to claim 9, wherein the doping concentration of the third doping layers is higher than the doping concentration of the second doping layers. 一種記憶體陣列,包括: 複數個如請求項1至請求項9任一項所述之記憶體結構; 複數條寫入位元線,沿一第一方向延伸,其中沿該第一方向排列的該些記憶體結構的該些第一摻雜層藉由該些寫入位元線相互耦接;以及 複數條讀取位元線,沿一第二方向延伸,其中該第一方向垂直於該第二方向,沿該第二方向排列的該些記憶體結構的該些第五摻雜層藉由該些讀取位元線相互耦接。 A memory array, comprising: A plurality of memory structures as described in any one of claim 1 to claim 9; A plurality of write bit lines extending along a first direction, wherein the first doped layers of the memory structures arranged along the first direction are coupled to each other via the write bit lines; and A plurality of read bit lines extending along a second direction, wherein the first direction is perpendicular to the second direction, and the fifth doped layers of the memory structures arranged along the second direction are coupled to each other via the read bit lines. 一種記憶體結構的製造方法,包括: 形成一第一孔洞貫穿交替堆疊的複數個絕緣層及複數個第一閘極層; 形成一第一介電層覆蓋該第一孔洞的一側壁; 形成一第一摻雜層於該第一孔洞中,其中該第一摻雜層具有一第一導電型; 形成一第二孔洞貫穿該些絕緣層及該些第一閘極層; 部分移除自該第二孔洞暴露的該些第一閘極層以形成複數個凹陷部; 形成複數個第二介電層於該些凹陷部中; 形成複數個第二摻雜層覆蓋該些第二介電層,其中該第二摻雜層具有與該第一導電型不同的一第二導電型; 形成一第三介電層於該第二孔洞中覆蓋該些絕緣層及該些第二摻雜層; 形成一柱狀通道於該第二孔洞中; 移除位於該第一摻雜層與該些第二摻雜層之間的該第一介電層、該些第一閘極層及該些第二介電層,以形成複數個溝槽;以及 形成複數個第三摻雜層於該些溝槽中以直接接觸該第一摻雜層及連接至該些第二摻雜層,其中該些第三摻雜層具有該第二導電型。 A method for manufacturing a memory structure, comprising: forming a first hole penetrating a plurality of alternately stacked insulating layers and a plurality of first gate layers; forming a first dielectric layer covering a side wall of the first hole; forming a first doped layer in the first hole, wherein the first doped layer has a first conductivity type; forming a second hole penetrating the insulating layers and the first gate layers; partially removing the first gate layers exposed from the second hole to form a plurality of recesses; forming a plurality of second dielectric layers in the recesses; Forming a plurality of second doped layers to cover the second dielectric layers, wherein the second doped layers have a second conductivity type different from the first conductivity type; Forming a third dielectric layer in the second hole to cover the insulating layers and the second doped layers; Forming a columnar channel in the second hole; Removing the first dielectric layer, the first gate layers and the second dielectric layers between the first doped layer and the second doped layers to form a plurality of trenches; and A plurality of third doped layers are formed in the trenches to directly contact the first doped layer and connect to the second doped layers, wherein the third doped layers have the second conductivity type. 如請求項12所述之製造方法,更包括: 在形成該些第三摻雜層於該些溝槽中後,形成複數個第四介電層於該些第三摻雜層旁;以及 形成複數個第二閘極層於該些第四介電層旁。 The manufacturing method as described in claim 12 further includes: After forming the third doping layers in the trenches, forming a plurality of fourth dielectric layers next to the third doping layers; and forming a plurality of second gate layers next to the fourth dielectric layers. 如請求項12所述之製造方法,更包括: 在形成該第二孔洞貫穿該些絕緣層及該些第一閘極層前,形成一第四摻雜層於一基板中,以及形成該些絕緣層及該些第一閘極層於該基板上,其中該第二孔洞暴露出該第四摻雜層;以及 摻雜該柱狀通道的一頂部部分以形成一第五摻雜層。 The manufacturing method as described in claim 12 further includes: Before forming the second hole through the insulating layers and the first gate layers, forming a fourth doping layer in a substrate, and forming the insulating layers and the first gate layers on the substrate, wherein the second hole exposes the fourth doping layer; and Doping a top portion of the columnar channel to form a fifth doping layer. 如請求項14所述之製造方法,更包括: 形成一寫入位元線於該第一摻雜層上;以及 形成一讀取位元線於該第五摻雜層上。 The manufacturing method as described in claim 14 further includes: forming a write bit line on the first doped layer; and forming a read bit line on the fifth doped layer. 如請求項12所述之製造方法,其中該第一導電型為N型,該第二導電型為P型。A manufacturing method as described in claim 12, wherein the first conductivity type is N-type and the second conductivity type is P-type. 如請求項12所述之製造方法,其中該第一導電型為P型,該第二導電型為N型。A manufacturing method as described in claim 12, wherein the first conductivity type is P type and the second conductivity type is N type. 一種記憶體結構的操作方法,包括: 接收如請求項1至請求項9任一項所述之記憶體結構,其中該些閘極層、該些第三摻雜層、該第四摻雜層、該第五摻雜層及該柱狀通道形成複數個讀取電晶體;以及 執行一寫入操作,該寫入操作包括: 當該些讀取電晶體為P型電晶體,該第一導電型為N型, 施加一逆向偏壓至該些隧道二極體的一第一者,以使對應該第一者的該些第三摻雜層的一者具有一高電位;或者施加一順向偏壓至該些隧道二極體的一第二者,以使對應該第二者的該些第三摻雜層的一者具有一低電位; 當該些讀取電晶體為N型電晶體,該第一導電型為P型, 施加一逆向偏壓至該些隧道二極體的一第三者,以使對應該第三者的該些第三摻雜層的一者具有一低電位;或者施加一順向偏壓至該些隧道二極體的一第四者,以使對應該第四者的該些第三摻雜層的一者具有一高電位。 A method for operating a memory structure, comprising: Receiving a memory structure as described in any one of claim 1 to claim 9, wherein the gate layers, the third doping layers, the fourth doping layer, the fifth doping layer and the columnar channel form a plurality of read transistors; and Performing a write operation, the write operation comprising: When the read transistors are P-type transistors and the first conductivity type is N-type, A reverse bias is applied to a first one of the tunnel diodes so that one of the third doped layers corresponding to the first one has a high potential; or a forward bias is applied to a second one of the tunnel diodes so that one of the third doped layers corresponding to the second one has a low potential; When the read transistors are N-type transistors and the first conductivity type is P-type, a reverse bias is applied to a third one of the tunnel diodes so that one of the third doped layers corresponding to the third one has a low potential; or a forward bias is applied to a fourth one of the tunnel diodes so that one of the third doped layers corresponding to the fourth one has a high potential. 如請求項18所述之操作方法,其中該些讀取電晶體為P型電晶體,該操作方法更包括: 施加0V至對應具有該高電位或該低電位的該第三摻雜層的該些閘極層的一選擇閘極; 施加複數個負電壓至該些閘極層中的複數個未選擇閘極;以及 施加一正電壓至該第四摻雜層或該第五摻雜層。 The operating method as described in claim 18, wherein the read transistors are P-type transistors, and the operating method further includes: Applying 0V to a selection gate of the gate layers corresponding to the third doped layer having the high potential or the low potential; Applying a plurality of negative voltages to a plurality of unselected gates in the gate layers; and Applying a positive voltage to the fourth doped layer or the fifth doped layer. 如請求項18所述之操作方法,其中該些讀取電晶體為N型電晶體,該操作方法更包括: 施加0V至對應具有該高電位或該低電位的該第三摻雜層的該些閘極層的一選擇閘極; 施加複數個正電壓至該些閘極層中的複數個未選擇閘極;以及 施加一正電壓至該第四摻雜層或該第五摻雜層。 The operating method as described in claim 18, wherein the read transistors are N-type transistors, and the operating method further includes: Applying 0V to a selection gate of the gate layers corresponding to the third doped layer having the high potential or the low potential; Applying a plurality of positive voltages to a plurality of unselected gates in the gate layers; and Applying a positive voltage to the fourth doped layer or the fifth doped layer.
TW113111881A 2024-03-28 2024-03-28 Memory structure, manufacturing method thereof, operating method thereof, and memory array TWI881774B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW113111881A TWI881774B (en) 2024-03-28 2024-03-28 Memory structure, manufacturing method thereof, operating method thereof, and memory array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW113111881A TWI881774B (en) 2024-03-28 2024-03-28 Memory structure, manufacturing method thereof, operating method thereof, and memory array

Publications (2)

Publication Number Publication Date
TWI881774B true TWI881774B (en) 2025-04-21
TW202539363A TW202539363A (en) 2025-10-01

Family

ID=96141987

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113111881A TWI881774B (en) 2024-03-28 2024-03-28 Memory structure, manufacturing method thereof, operating method thereof, and memory array

Country Status (1)

Country Link
TW (1) TWI881774B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140269002A1 (en) * 2013-03-14 2014-09-18 Crossbar, Inc. Two-terminal memory with intrinsic rectifying characteristic
US20160308535A1 (en) * 2003-12-04 2016-10-20 Yakimishu Co. Ltd. L.L.C. Programmable structured arrays
TW202119603A (en) * 2019-11-05 2021-05-16 大陸商長江存儲科技有限責任公司 Bonded three-dimensional memory device and forming method thereof
TW202123344A (en) * 2019-12-03 2021-06-16 芯恩(青島)積體電路有限公司 A three-dimensional junctionless neuron network device and manufacturing method thereof
TW202220177A (en) * 2020-11-13 2022-05-16 大陸商長江存儲科技有限責任公司 Three-dimensional memory device and manufacturing method thereof
TW202226548A (en) * 2020-12-17 2022-07-01 旺宏電子股份有限公司 Three-dimensional memory device and method for manufacturing the same
US20220238171A1 (en) * 2021-01-26 2022-07-28 Attopsemi Technology Co., Ltd Programmable resistance memory on wide-bandgap semiconductor technologies
TW202318643A (en) * 2021-10-19 2023-05-01 旺宏電子股份有限公司 Memory device
TW202333346A (en) * 2022-02-10 2023-08-16 旺宏電子股份有限公司 Memory device and method of fabricating the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160308535A1 (en) * 2003-12-04 2016-10-20 Yakimishu Co. Ltd. L.L.C. Programmable structured arrays
US20180159537A1 (en) * 2003-12-04 2018-06-07 Callahan Cellular L.L.C. Programmable structured arrays
US20140269002A1 (en) * 2013-03-14 2014-09-18 Crossbar, Inc. Two-terminal memory with intrinsic rectifying characteristic
TW202119603A (en) * 2019-11-05 2021-05-16 大陸商長江存儲科技有限責任公司 Bonded three-dimensional memory device and forming method thereof
TW202123344A (en) * 2019-12-03 2021-06-16 芯恩(青島)積體電路有限公司 A three-dimensional junctionless neuron network device and manufacturing method thereof
TW202220177A (en) * 2020-11-13 2022-05-16 大陸商長江存儲科技有限責任公司 Three-dimensional memory device and manufacturing method thereof
TW202226548A (en) * 2020-12-17 2022-07-01 旺宏電子股份有限公司 Three-dimensional memory device and method for manufacturing the same
US20220238171A1 (en) * 2021-01-26 2022-07-28 Attopsemi Technology Co., Ltd Programmable resistance memory on wide-bandgap semiconductor technologies
TW202318643A (en) * 2021-10-19 2023-05-01 旺宏電子股份有限公司 Memory device
TW202333346A (en) * 2022-02-10 2023-08-16 旺宏電子股份有限公司 Memory device and method of fabricating the same

Similar Documents

Publication Publication Date Title
US10872903B2 (en) Three dimensional memory and methods of forming the same
US10056150B2 (en) Non-volatile semiconductor memory device
US8089801B2 (en) Semiconductor memory device and method of forming the same
CN102386188B (en) Three-dimensional array memory architecture with diodes in memory strings
CN100492541C (en) Nonvolatile semiconductor memory and method of operating the same
US6136652A (en) Preventing dielectric thickening over a channel area of a split-gate transistor
CN102194821B (en) Three-dimensional memory array with improved string select line and bit line contact layout
US20190181147A1 (en) Vertical ferroelectric thin film storage transistor and data write and read methods thereof
US10515810B2 (en) Self-aligned di-silicon silicide bit line and source line landing pads in 3D vertical channel memory
Kim et al. Novel 3-D structure for ultra high density flash memory with VRAT (Vertical-Recess-Array-Transistor) and PIPE (Planarized Integration on the same PlanE)
US20110303958A1 (en) Nonvolatile semiconductor memory
JP2008536336A (en) High density trench based non-volatile random access SONOS memory cell structure for SOC applications and method of manufacturing the same
JP2006054435A (en) Integrated memory device and manufacturing method thereof
US5243209A (en) Semiconductor memory device including junction field effect transistor and capacitor and method of manufacturing the same
US12144164B2 (en) Method for manufacturing memory device using semiconductor element
TWI292609B (en) Semiconductor storage device
JP2023502344A (en) Integrated assembly and method of forming integrated assembly
TWI241017B (en) Non-volatile memory device and manufacturing method and operating method thereof
KR102757931B1 (en) An assembly having a conductive structure having three or more different materials
JP2005101174A (en) Nonvolatile semiconductor memory device and manufacturing method thereof
TWI881774B (en) Memory structure, manufacturing method thereof, operating method thereof, and memory array
CN112466892A (en) Memory, integrated circuit memory and method for manufacturing memory
WO2024127518A1 (en) Memory device using semiconductor element
TWI869130B (en) Memory structure, manufacturing method thereof, and operating method thereof
CN120751698A (en) Memory structure, manufacturing method thereof, operating method thereof and memory array