TWI881774B - Memory structure, manufacturing method thereof, operating method thereof, and memory array - Google Patents
Memory structure, manufacturing method thereof, operating method thereof, and memory array Download PDFInfo
- Publication number
- TWI881774B TWI881774B TW113111881A TW113111881A TWI881774B TW I881774 B TWI881774 B TW I881774B TW 113111881 A TW113111881 A TW 113111881A TW 113111881 A TW113111881 A TW 113111881A TW I881774 B TWI881774 B TW I881774B
- Authority
- TW
- Taiwan
- Prior art keywords
- layers
- doped
- layer
- doping
- conductivity type
- Prior art date
Links
Images
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
本揭示內容是關於一種記憶體結構、一種記憶體結構的製造方法,一種記憶體結構的操作方法及一種記憶體陣列。 This disclosure relates to a memory structure, a method for manufacturing a memory structure, a method for operating a memory structure, and a memory array.
動態隨機存取記憶體(Dynamic random access memory,DRAM)具有高密度、低成本、低功率耗損等優點,故已廣泛地被使用。然而,隨著記憶體技術逐漸接近物理極限,傳統的DRAM(例如具有一電晶體一電容(1T1C)的DRAM)在發展上正面臨許多嚴峻的挑戰。例如,DRAM尺寸不易被微縮、DRAM製程趨於複雜,及電容的縱橫比隨尺寸縮小大幅增加。鑒於上述,需要提供一種新的動態隨機存取記憶體及其製造方法,以克服上述問題。 Dynamic random access memory (DRAM) has the advantages of high density, low cost, and low power consumption, so it has been widely used. However, as memory technology gradually approaches physical limits, traditional DRAM (such as DRAM with one transistor and one capacitor (1T1C)) is facing many severe challenges in development. For example, DRAM size is not easy to be miniaturized, DRAM process tends to be complex, and the aspect ratio of capacitors increases significantly with the size reduction. In view of the above, it is necessary to provide a new dynamic random access memory and its manufacturing method to overcome the above problems.
本揭示內容提供一種記憶體結構,其包括複數個絕 緣層、複數個閘極層、第一摻雜層、複數個第二摻雜層、柱狀通道、複數個第三摻雜層、第四摻雜層、第五摻雜層、第一介電層、複數個第二介電層、第三介電層及複數個第四介電層。這些絕緣層及這些閘極層交替堆疊。第一摻雜層貫穿這些絕緣層及這些閘極層,且具有第一導電型。這些第二摻雜層各自直接接觸第一摻雜層,且具有與第一導電型不同的第二導電型,其中第一摻雜層及這些第二摻雜層形成複數個隧道二極體(tunnel diode),這些第二摻雜層及這些絕緣層交替堆疊。柱狀通道貫穿這些絕緣層及這些閘極層。這些第三摻雜層各自環繞柱狀通道,其中這些第三摻雜層各自連接至這些第二摻雜層,這些第三摻雜層具有第二導電型。第四摻雜層及第五摻雜層耦合至柱狀通道。第一介電層設置於第一摻雜層與這些閘極層之間。這些第二介電層各自設置於這些第三摻雜層與這些閘極層之間。第三介電層設置於柱狀通道與這些第三摻雜層之間。複數個第四介電層各自設置於這些第二摻雜層與這些閘極層之間。 The present disclosure provides a memory structure, which includes a plurality of insulating layers, a plurality of gate layers, a first doped layer, a plurality of second doped layers, a columnar channel, a plurality of third doped layers, a fourth doped layer, a fifth doped layer, a first dielectric layer, a plurality of second dielectric layers, a third dielectric layer, and a plurality of fourth dielectric layers. These insulating layers and these gate layers are alternately stacked. The first doped layer penetrates these insulating layers and these gate layers and has a first conductivity type. The second doped layers are each directly in contact with the first doped layer and have a second conductivity type different from the first conductivity type, wherein the first doped layer and the second doped layers form a plurality of tunnel diodes, and the second doped layers and the insulating layers are alternately stacked. The columnar channels penetrate the insulating layers and the gate layers. The third doped layers each surround the columnar channels, wherein the third doped layers are each connected to the second doped layers, and the third doped layers have the second conductivity type. The fourth doped layer and the fifth doped layer are coupled to the columnar channels. The first dielectric layer is disposed between the first doped layer and the gate layers. The second dielectric layers are disposed between the third doped layers and the gate layers. The third dielectric layer is disposed between the columnar channel and the third doped layers. The plurality of fourth dielectric layers are disposed between the second doped layers and the gate layers.
在一些實施方式中,第一導電型為N型,第二導電型為P型。 In some embodiments, the first conductivity type is N-type and the second conductivity type is P-type.
在一些實施方式中,第一導電型為P型,第二導電型為N型。 In some embodiments, the first conductivity type is P-type and the second conductivity type is N-type.
在一些實施方式中,記憶體結構更包括寫入位元線設置於第一摻雜層上。 In some embodiments, the memory structure further includes a write bit line disposed on the first doped layer.
在一些實施方式中,記憶體結構更包括讀取位元線 耦合至第五摻雜層。 In some embodiments, the memory structure further includes a read bit line coupled to the fifth doped layer.
在一些實施方式中,第四摻雜層設置於柱狀通道下,第五摻雜層設置於柱狀通道上,第四摻雜層及第五摻雜層具有第二導電型。 In some embodiments, the fourth doped layer is disposed under the columnar channel, the fifth doped layer is disposed on the columnar channel, and the fourth doped layer and the fifth doped layer have the second conductivity type.
在一些實施方式中,記憶體結構更包括讀取位元線設置於第五摻雜層上。 In some embodiments, the memory structure further includes a read bit line disposed on the fifth doped layer.
在一些實施方式中,柱狀通道具有第一導電型。 In some embodiments, the columnar channel has a first conductivity type.
在一些實施方式中,柱狀通道為無摻雜的。 In some embodiments, the columnar channels are undoped.
在一些實施方式中,這些第三摻雜層的摻雜濃度高於這些第二摻雜層的摻雜濃度。 In some embodiments, the doping concentration of these third doping layers is higher than the doping concentration of these second doping layers.
本揭示內容提供一種記憶體陣列,包括複數個前述任一實施方式的記憶體結構、複數條寫入位元線及複數條讀取位元線。這些寫入位元線沿第一方向延伸,其中沿第一方向排列的這些記憶體結構的這些第一摻雜層藉由這些寫入位元線相互耦接。這些讀取位元線沿第二方向延伸,其中第一方向垂直於第二方向,沿第二方向排列的這些記憶體結構的這些第五摻雜層藉由這些讀取位元線相互耦接。 The present disclosure provides a memory array, including a plurality of memory structures of any of the aforementioned embodiments, a plurality of write bit lines, and a plurality of read bit lines. The write bit lines extend along a first direction, wherein the first doped layers of the memory structures arranged along the first direction are coupled to each other via the write bit lines. The read bit lines extend along a second direction, wherein the first direction is perpendicular to the second direction, and the fifth doped layers of the memory structures arranged along the second direction are coupled to each other via the read bit lines.
本揭示內容提供一種記憶體結構的製造方法,其包括以下操作。形成第一孔洞貫穿交替堆疊的複數個絕緣層及複數個第一閘極層。形成第一介電層覆蓋第一孔洞的側壁。形成第一摻雜層於第一孔洞中,其中第一摻雜層具有第一導電型。形成第二孔洞貫穿這些絕緣層及這些第一閘極層。部分移除自第二孔洞暴露的這些第一閘極層以形成 複數個凹陷部。形成複數個第二介電層於這些凹陷部中。形成複數個第二摻雜層覆蓋這些第二介電層,其中第二摻雜層具有與第一導電型不同的第二導電型。形成第三介電層於第二孔洞中覆蓋這些絕緣層及這些第二摻雜層。形成柱狀通道於第二孔洞中。移除位於第一摻雜層與這些第二摻雜層之間的第一介電層、這些第一閘極層及這些第二介電層,以形成複數個溝槽。形成複數個第三摻雜層於這些溝槽中以直接接觸第一摻雜層及連接至這些第二摻雜層,其中這些第三摻雜層具有第二導電型。 The present disclosure provides a method for manufacturing a memory structure, which includes the following operations. A first hole is formed to penetrate a plurality of insulating layers and a plurality of first gate layers that are alternately stacked. A first dielectric layer is formed to cover the sidewall of the first hole. A first doped layer is formed in the first hole, wherein the first doped layer has a first conductivity type. A second hole is formed to penetrate the insulating layers and the first gate layers. The first gate layers exposed from the second hole are partially removed to form a plurality of recessed portions. A plurality of second dielectric layers are formed in the recessed portions. A plurality of second doped layers are formed to cover the second dielectric layers, wherein the second doped layers have a second conductivity type different from the first conductivity type. A third dielectric layer is formed in the second hole to cover the insulating layers and the second doped layers. A columnar channel is formed in the second hole. The first dielectric layer, the first gate layers, and the second dielectric layers between the first doped layer and the second doped layers are removed to form a plurality of trenches. A plurality of third doped layers are formed in the trenches to directly contact the first doped layers and connect to the second doped layers, wherein the third doped layers have a second conductivity type.
在一些實施方式中,製造方法更包括以下操作:在形成這些第三摻雜層於這些溝槽中後,形成複數個第四介電層於這些第三摻雜層旁;以及形成複數個第二閘極層於這些第四介電層旁。 In some embodiments, the manufacturing method further includes the following operations: after forming these third doped layers in these trenches, forming a plurality of fourth dielectric layers next to these third doped layers; and forming a plurality of second gate layers next to these fourth dielectric layers.
在一些實施方式中,製造方法更包括以下操作:在形成第二孔洞貫穿這些絕緣層及這些第一閘極層前,形成第四摻雜層於基板中,以及形成這些絕緣層及這些第一閘極層於基板上,其中第二孔洞暴露出第四摻雜層;以及摻雜柱狀通道的頂部部分以形成第五摻雜層。 In some embodiments, the manufacturing method further includes the following operations: before forming the second hole through the insulating layers and the first gate layers, forming a fourth doping layer in the substrate, and forming the insulating layers and the first gate layers on the substrate, wherein the second hole exposes the fourth doping layer; and doping the top portion of the columnar channel to form a fifth doping layer.
在一些實施方式中,製造方法更包括以下操作:形成寫入位元線於第一摻雜層上;以及形成讀取位元線於第五摻雜層上。 In some embodiments, the manufacturing method further includes the following operations: forming a write bit line on the first doped layer; and forming a read bit line on the fifth doped layer.
在一些實施方式中,第一導電型為N型,第二導電型為P型。 In some embodiments, the first conductivity type is N-type and the second conductivity type is P-type.
在一些實施方式中,第一導電型為P型,第二導 電型為N型。 In some embodiments, the first conductivity type is P-type and the second conductivity type is N-type.
本揭示內容提供一種記憶體結構的操作方法,其包括以下操作。接收前述任一實施方式的記憶體結構,其中這些閘極層、這些第三摻雜層、第四摻雜層、第五摻雜層及柱狀通道形成複數個讀取電晶體。當這些讀取電晶體為P型電晶體,第一導電型為N型,執行寫入操作,寫入操作包括:施加逆向偏壓(reverse bias)至這些隧道二極體的第一者,以使對應第一者的這些第三摻雜層的一者具有高電位;或者施加順向偏壓(forward bias)至這些隧道二極體的第二者,以使對應第二者的這些第三摻雜層的一者具有低電位。當這些讀取電晶體為N型電晶體,第一導電型為P型,執行寫入操作,寫入操作包括:施加逆向偏壓至這些隧道二極體的第三者,以使對應第三者的這些第三摻雜層的一者具有低電位;或者施加順向偏壓至這些隧道二極體的第四者,以使對應第四者的這些第三摻雜層的一者具有高電位。 The present disclosure provides a method for operating a memory structure, which includes the following operations. A memory structure of any of the aforementioned embodiments is received, wherein the gate layers, the third doped layers, the fourth doped layers, the fifth doped layers and the columnar channels form a plurality of read transistors. When the read transistors are P-type transistors and the first conductivity type is N-type, a write operation is performed, and the write operation includes: applying a reverse bias to the first of the tunnel diodes so that one of the third doped layers corresponding to the first has a high potential; or applying a forward bias to the second of the tunnel diodes so that one of the third doped layers corresponding to the second has a low potential. When these read transistors are N-type transistors and the first conductivity type is P-type, a write operation is performed, and the write operation includes: applying a reverse bias to a third of these tunnel diodes so that one of the third doped layers corresponding to the third has a low potential; or applying a forward bias to a fourth of these tunnel diodes so that one of the third doped layers corresponding to the fourth has a high potential.
在一些實施方式中,這些讀取電晶體為P型電晶體,操作方法更包括以下操作。施加0V至對應具有高電位或低電位的第三摻雜層的這些閘極層的選擇閘極。施加複數個負電壓至這些閘極層中的複數個未選擇閘極。施加正電壓至第四摻雜層或第五摻雜層。 In some embodiments, these read transistors are P-type transistors, and the operation method further includes the following operations. Apply 0V to the selection gates of these gate layers corresponding to the third doping layer with high potential or low potential. Apply a plurality of negative voltages to a plurality of unselected gates in these gate layers. Apply a positive voltage to the fourth doping layer or the fifth doping layer.
在一些實施方式中,這些讀取電晶體為N型電晶體,操作方法更包括以下操作。施加0V至對應具有高電位或低電位的第三摻雜層的這些閘極層的選擇閘極。施加 複數個正電壓至這些閘極層中的複數個未選擇閘極。施加正電壓至第四摻雜層或第五摻雜層。 In some embodiments, these read transistors are N-type transistors, and the operation method further includes the following operations. Apply 0V to the selection gates of these gate layers corresponding to the third doping layer with high potential or low potential. Apply a plurality of positive voltages to a plurality of unselected gates in these gate layers. Apply a positive voltage to the fourth doping layer or the fifth doping layer.
100:記憶體結構 100:Memory structure
110:基板 110: Substrate
120:閘極層 120: Gate layer
130:絕緣層 130: Insulation layer
400:記憶體陣列 400:Memory array
500:製造方法 500: Manufacturing method
512、514、516、518、520、522、524、526、528、530、532、534、536、538、540、542、544:操作 512, 514, 516, 518, 520, 522, 524, 526, 528, 530, 532, 534, 536, 538, 540, 542, 544: Operation
600:記憶體結構 600:Memory structure
700、800:電路 700, 800: Circuit
1B-1B’:剖面線 1B-1B’: Section line
A-A’、B-B’:剖面線 A-A’, B-B’: section line
CC:柱狀通道 CC: Columnar Channel
CI:電路 CI:Circuit
D1:第一摻雜層 D1: First doping layer
D2:第二摻雜層 D2: Second doping layer
D3:第三摻雜層 D3: The third doping layer
D4:第四摻雜層 D4: The fourth doping layer
D5:第五摻雜層 D5: The fifth doping layer
DL1:第一介電層 DL1: First dielectric layer
DL2:第二介電層 DL2: Second dielectric layer
DL3:第三介電層 DL3: The third dielectric layer
DL4:第四介電層 DL4: Fourth dielectric layer
G1:第一閘極層 G1: First gate layer
G2:第二閘極層 G2: Second gate layer
GSL1、GSL2:整體選擇線 GSL 1 , GSL 2 : Global Selection Line
H1:第一孔洞 H1: First hole
H2:第二孔洞 H2: Second hole
M1、M2、MC11、MC12、MC13、MC14、MC15、MC16、 MC21、MC22、MC23、MC24、MC25、MC26:記憶體單元 M 1 , M 2 , MC 11 , MC 12 , MC 13 , MC 14 , MC 15 , MC 16 , MC 21 , MC 22 , MC 23 , MC 24 , MC 25 , MC 26 : memory unit
P1:第一部分 P1: Part 1
P2:第二部分 P2: Part 2
PB:頁面緩衝器 PB: Page Buffer
PG1、PG2:頁面 PG1, PG2: Page
RP:凹陷部 RP: Depression
SN1、SN2:儲存節點 SN 1 , SN 2 : Storage nodes
SSL1、SSL2:串選擇線 SSL 1 , SSL 2 : String selection line
STI:隔離結構 STI: Isolation Structure
SW:側壁 SW: Sidewall
t11、t12、t13、t14、t15、t21、t22、t23、t24、t31、t32、t33、t34、t35:時間 t 11 , t 12 , t 13 , t 14 , t 15 , t 21 , t 22 , t 23 , t 24 , t 31 , t 32 , t 33 , t 34 , t 35 : time
T:溝槽 T: Groove
TD、TD1、TD2:隧道二極體 TD, TD 1 , TD 2 : Tunnel diode
RT、RTp、RTn:讀取電晶體 RT, RT p , RT n : read transistor
WG1、WG2、WG3、WG4、WG5、WG6:寫入字元線 WG 1 , WG 2 , WG 3 , WG 4 , WG 5 , WG 6 : Write character line
WBL、WBL1、WBL2:寫入位元線 WBL, WBL 1 , WBL 2 : Write bit line
RBL、RBL1、RBL2:讀取位元線 RBL, RBL 1 , RBL 2 : Read bit line
RSL、RSL1、RSL2:讀取源極線 RSL, RSL 1 , RSL 2 : Read source line
VCC1、VCC2:供應電壓 V CC1 , V CC2 : Supply voltage
X:第二方向 X: Second direction
Y:第一方向 Y: First direction
藉由閱讀以下實施方式的詳細描述,並參照附圖,可以更全面地理解本揭示內容。 By reading the detailed description of the following implementation method and referring to the attached drawings, you can more fully understand the content of this disclosure.
第1A圖是根據本揭示內容各種實施方式的記憶體結構的立體示意圖。 Figure 1A is a three-dimensional schematic diagram of a memory structure according to various implementations of the present disclosure.
第1B圖是沿第1A圖的剖面線1B-1B’的剖面示意圖。
Figure 1B is a schematic cross-sectional view along the
第2圖是沿第1B圖的剖面線A-A’的剖面示意圖。 Figure 2 is a schematic cross-sectional view along the section line A-A’ of Figure 1B.
第3圖是沿第1B圖的剖面線B-B’的剖面示意圖。 Figure 3 is a schematic cross-sectional view along the section line B-B’ of Figure 1B.
第4圖是根據本揭示內容各種實施方式的記憶體陣列的立體示意圖。 FIG. 4 is a three-dimensional schematic diagram of a memory array according to various implementations of the present disclosure.
第5A圖及第5B圖是根據本揭示內容各種實施方式的記憶體結構的製造方法的流程圖。 Figures 5A and 5B are flow charts of methods for manufacturing memory structures according to various implementations of the present disclosure.
第6A圖至第6I圖是根據本揭示內容各種實施方式的製造記憶體結構的中間階段的剖面示意圖。 Figures 6A to 6I are cross-sectional schematic diagrams of intermediate stages of manufacturing memory structures according to various implementations of the present disclosure.
第7圖及第8圖分別是根據本揭示內容各種實施方式的記憶體結構的等效電路示意圖。 Figures 7 and 8 are schematic diagrams of equivalent circuits of memory structures according to various implementations of the present disclosure.
第9圖、第11圖及第13圖分別是根據本揭示內容各種實施方式的記憶體陣列的電路示意圖。 Figures 9, 11 and 13 are circuit diagrams of memory arrays according to various implementations of the present disclosure.
第10圖、第12圖及第14圖分別是根據本揭示內容各種實施方式的控制訊號之時序圖。 Figures 10, 12, and 14 are timing diagrams of control signals according to various implementations of the present disclosure.
以附圖詳細描述及揭露以下的複數個實施方式。為明確說明,許多實務上的細節將在以下敘述中一併說明。然而,應當理解,這些實務上的細節並非旨在限制本揭示內容。也就是說,在本揭示內容部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式,一些習知結構與元件在圖式中將以示意方式繪示。 The following multiple implementations are described and disclosed in detail with the attached figures. For the sake of clarity, many practical details will be described together in the following description. However, it should be understood that these practical details are not intended to limit the content of this disclosure. In other words, in some implementations of the content of this disclosure, these practical details are not necessary. In addition, to simplify the drawings, some known structures and components will be shown in schematic form in the drawings.
在本文中,使用第一、第二與第三等等之詞彙以描述各種元件、組件、區域、層與/或區塊是可以被理解的。但是這些元件、組件、區域、層與/或區塊不應該被這些詞彙限制。這些詞彙只限於用來辨別單一元件、組件、區域、層與/或區塊。因此,在下文中的一第一元件、組件、區域、層與/或區塊也可被稱為第二元件、組件、區域、層與/或區塊,而不脫離本揭示內容的本意。 In this article, it is understandable to use the terms first, second, third, etc. to describe various elements, components, regions, layers, and/or blocks. However, these elements, components, regions, layers, and/or blocks should not be limited by these terms. These terms are limited to identifying a single element, component, region, layer, and/or block. Therefore, a first element, component, region, layer, and/or block in the following text may also be referred to as a second element, component, region, layer, and/or block without departing from the original meaning of the present disclosure.
此外,應該理解的是,當元件A被稱為「連接至」或「耦合至」元件B時,元件A可以直接連接至元件B,也可以間接連接至元件B(例如,可以在元件A和元件B之間設置一個中間元件C(和/或其他元件))。 In addition, it should be understood that when element A is referred to as being "connected to" or "coupled to" element B, element A may be directly connected to element B or indirectly connected to element B (for example, an intermediate element C (and/or other elements) may be disposed between element A and element B).
本揭示內容提供一種記憶體結構,其為三維(three dimensional,3D)動態隨機存取記憶體(DRAM)結構。記憶體結構包括複數個記憶體單元,各記憶體單元包括一隧道二極體及一讀取電晶體,以形成1D1T的DRAM結構。本揭示內容的記憶體結構具有高密度的記憶 體單元,故利於記憶體結構的尺寸微縮。並且,製造記憶體結構的流程簡易,故可降低製造成本,進而取代傳統1T1C的DRAM結構。並且,複數個記憶體結構可形成記憶體陣列,此記憶體陣列具有高密度的記憶體單元,故利於記憶體陣列的尺寸微縮。 The present disclosure provides a memory structure, which is a three-dimensional (3D) dynamic random access memory (DRAM) structure. The memory structure includes a plurality of memory cells, each memory cell includes a tunnel diode and a read transistor to form a 1D1T DRAM structure. The memory structure of the present disclosure has a high density of memory cells, so it is beneficial to miniaturize the size of the memory structure. In addition, the process of manufacturing the memory structure is simple, so the manufacturing cost can be reduced, thereby replacing the traditional 1T1C DRAM structure. Furthermore, a plurality of memory structures can form a memory array, which has a high density of memory cells, thus facilitating the miniaturization of the memory array.
第1A圖是根據本揭示內容各種實施方式的記憶體結構100的立體示意圖。第1B圖是沿第1A圖的剖面線1B-1B’的剖面示意圖。第2圖是沿第1B圖的剖面線A-A’的剖面示意圖。第3圖是沿第1B圖的剖面線B-B’的剖面示意圖。如第1A圖至第3圖所示,記憶體結構100包括基板110、隔離結構STI、複數個閘極層120、複數個絕緣層130、第一摻雜層D1、複數個第二摻雜層D2、複數個第三摻雜層D3、第四摻雜層D4、第五摻雜層D5、柱狀通道CC、第一介電層DL1、複數個第二介電層DL2、第三介電層DL3及複數個第四介電層DL4。
FIG. 1A is a schematic three-dimensional diagram of a
在一些實施方式中,基板110為半導體基板。在一些實施方式中,基板110包括任何合適的半導體材料及/或用於形成半導體結構的半導體材料。半導體材料例如包括一或多種材料,例如結晶矽、氧化矽、應變矽、鍺矽、摻雜或無摻雜的多晶矽、摻雜或無摻雜的矽晶圓、鍺、砷化鎵、其他合適的半導體材料或其組合。在一些實施方式中,基板110為矽基板。在一些實施方式中,閘極層120包括金屬導電材料、非金屬導電材料或其組合,例如金屬氮化物。閘極層120的材料例如包括氮化鎢、鎢、銅、鋁、
金、銀、其他合適的金屬、金屬合金、多晶矽或其組合。在一些實施方式中,絕緣層130包括氧化物、氮化物或其組合,例如二氧化矽、氮化矽或其組合。在一些實施方式中,隔離結構STI為淺溝槽隔離(shallow trench isolation,STI)。在一些實施方式中,記憶體結構100更包括互補式金屬氧化物半導體(complementary metal-oxide-semiconductor,CMOS)元件(未示出)設置於基板110中,以電性連接至第一摻雜層D1或第四摻雜層D4。
In some embodiments, the
請同時參照第1A圖及第1B圖,閘極層120及絕緣層130交替堆疊,閘極層120及絕緣層130的數量可任意調整,不限於此。第一摻雜層D1貫穿閘極層120及絕緣層130,且具有第一導電型。如第1B圖所示,第一摻雜層D1包括相互連接的第一部分P1及第二部分P2,其中第一部分P1貫穿閘極層120及絕緣層130,第二部分P2位於基板110中。第二摻雜層D2各自直接接觸第一摻雜層D1,且具有與第一導電型不同的第二導電型,第一摻雜層D1及第二摻雜層D2形成複數個隧道二極體TD,其中第二摻雜層D2及絕緣層130交替堆疊,隧道二極體TD作為通道選擇器(access selector)。如第1B圖所示,隧道二極體TD在縱向上相互連接,故記憶體結構100可具有高密度的隧道二極體TD,從而利於尺寸微縮。在一些實施方式中,第一導電型為N型,第二導電型為P型,因此第一摻雜層D1為陰極(cathode),第二摻雜層D2
為陽極(anode)。在另一些實施方式中,第一導電型為P型,第二導電型為N型,因此第一摻雜層D1為陽極(anode),第二摻雜層D2為陰極(cathode)。柱狀通道CC貫穿閘極層120及絕緣層130。如第1B圖及第2圖所示,第三摻雜層D3各自環繞柱狀通道CC,各自連接至第二摻雜層D2,其中第三摻雜層D3具有第二導電型。在一些實施方式中,第三摻雜層D3直接接觸第二摻雜層D2。如第2圖所示,各閘極層120包括第一閘極層G1及第二閘極層G2。第一閘極層G1環繞第一摻雜層D1、第三摻雜層D3及柱狀通道CC。第二閘極層G2位於第二摻雜層D2的兩側。
Please refer to FIG. 1A and FIG. 1B simultaneously. The
請繼續參照第1B圖及第2圖,第四摻雜層D4及第五摻雜層D5各自耦合至柱狀通道CC。在一些實施方式中,如第1B圖所示,第四摻雜層D4設置於柱狀通道CC下,第五摻雜層D5設置於柱狀通道CC上,但配置不限於此,第四摻雜層D4及第五摻雜層D5具有第二導電型。在一些實施方式中,第四摻雜層D4為源極,第五摻雜層D5為汲極。在另一些實施方式中,第四摻雜層D4為汲極,第五摻雜層D5為源極。閘極層120、第三摻雜層D3、第四摻雜層D4、第五摻雜層D5及柱狀通道CC形成複數個讀取電晶體RT。讀取電晶體RT可為P型電晶體或N型電晶體。如第1B圖所示,這些讀取電晶體RT在縱向上相互連接,故記憶體結構100可具有高密度的讀取電晶體RT,從而利於尺寸微縮。如第2圖所示,讀取電晶體RT的柱
狀通道CC被第三摻雜層D3及閘極層120環繞,第三摻雜層D3及閘極層120作為讀取電晶體RT的閘極。第三摻雜層D3為環形的。可執行寫入操作,施加逆向偏壓(reverse bias)或順向偏壓(forward bias)至隧道二極體TD的一者,以使環繞柱狀通道CC的對應的第三摻雜層D3具有高電位或低電位。藉此,寫入資料1或資料0至讀取電晶體RT中。第三摻雜層D3可儲存電荷,為可充電的或可放電的。可藉由充電或放電第三摻雜層D3,調控第三摻雜層D3的電位。第三摻雜層D3亦可稱為儲存節點(storage node,SN),儲存節點會決定讀取電晶體RT的閾值電壓。後續會再以電路圖進一步說明記憶體結構100的操作方法。
Please continue to refer to FIG. 1B and FIG. 2, the fourth doped layer D4 and the fifth doped layer D5 are each coupled to the columnar channel CC. In some embodiments, as shown in FIG. 1B, the fourth doped layer D4 is disposed under the columnar channel CC, and the fifth doped layer D5 is disposed on the columnar channel CC, but the configuration is not limited thereto, and the fourth doped layer D4 and the fifth doped layer D5 have the second conductivity type. In some embodiments, the fourth doped layer D4 is a source, and the fifth doped layer D5 is a drain. In other embodiments, the fourth doped layer D4 is a drain, and the fifth doped layer D5 is a source. The
如第1B圖至第3圖所示,第一介電層DL1設置於第一摻雜層D1與閘極層120之間且設置於第一摻雜層D1與絕緣層130之間,故閘極層120與第一摻雜層D1電性隔離。第二介電層DL2各自設置於第三摻雜層D3與閘極層120之間,故閘極層120與第三摻雜層D3電性隔離。第三介電層DL3設置於柱狀通道CC與第三摻雜層D3之間且設置於柱狀通道CC與絕緣層130之間,故柱狀通道CC與第三摻雜層D3電性隔離。第三介電層DL3為環形的。第四介電層DL4各自設置於第二摻雜層D2與閘極層120之間,故閘極層120與第二摻雜層D2電性隔離。請再次參照第1A圖及第1B圖。在一些實施方式中,第三介電層DL3設置於第五摻雜層D5與這些絕緣層130
的其中一者之間。在一些實施方式中,第一介電層DL1、第二介電層DL2、第三介電層DL3及第四介電層DL4各自包括閘極氧化物。在一些實施方式中,第一介電層DL1、第二介電層DL2、第三介電層DL3及第四介電層DL4各自包括二氧化矽、氮化矽、氮氧化矽、氧化鋁、氧化鉿、氧化鋯、氧化鈦、氧化鉭、其他適合的高介電常數(high-k)介電材料或其組合。
As shown in FIG. 1B to FIG. 3 , the first dielectric layer DL1 is disposed between the first doped layer D1 and the
請再次參照第1B圖及第2圖。第一摻雜層D1具有第一導電型,第二摻雜層D2、第三摻雜層D3、第四摻雜層D4及第五摻雜層D5具有第二導電型,其中第一導電型與第二導電型不同。在一些實施方式中,第一摻雜層D1、第二摻雜層D2、第三摻雜層D3、第四摻雜層D4及第五摻雜層D5的材料各自包括矽,例如結晶矽、多晶矽或鍺矽,但不限於此。在一些實施方式中,第一導電型為N型,第二導電型為P型。包含第四摻雜層D4及第五摻雜層D5的讀取電晶體RT為P型電晶體,例如P型金氧半場效電晶體(P-type metal-oxide-semiconductor field-effect transistor,PMOSFET)。在一些實施方式中,第三摻雜層D3的摻雜濃度高於第二摻雜層D2的摻雜濃度。在一些實施方式中,第一摻雜層D1為N+摻雜區,第二摻雜層D2為P-摻雜區,第三摻雜層D3為P+摻雜區,第四摻雜層D4及第五摻雜層D5為P+摻雜區。在一些實施方式中,柱狀通道CC具有第一導電型,柱狀通道CC例如為N-摻雜區。在另一些實施方式中,柱狀通道CC為 無摻雜的。 Please refer to FIG. 1B and FIG. 2 again. The first doping layer D1 has a first conductivity type, and the second doping layer D2, the third doping layer D3, the fourth doping layer D4, and the fifth doping layer D5 have a second conductivity type, wherein the first conductivity type is different from the second conductivity type. In some embodiments, the materials of the first doping layer D1, the second doping layer D2, the third doping layer D3, the fourth doping layer D4, and the fifth doping layer D5 each include silicon, such as crystalline silicon, polycrystalline silicon, or germanium silicon, but not limited thereto. In some embodiments, the first conductivity type is N-type, and the second conductivity type is P-type. The read transistor RT including the fourth doping layer D4 and the fifth doping layer D5 is a P-type transistor, such as a P-type metal-oxide-semiconductor field-effect transistor (PMOSFET). In some embodiments, the doping concentration of the third doping layer D3 is higher than the doping concentration of the second doping layer D2. In some embodiments, the first doping layer D1 is an N+ doping region, the second doping layer D2 is a P- doping region, the third doping layer D3 is a P+ doping region, and the fourth doping layer D4 and the fifth doping layer D5 are P+ doping regions. In some embodiments, the columnar channel CC has a first conductivity type, and the columnar channel CC is, for example, an N-doped region. In other embodiments, the columnar channel CC is undoped.
請再次參照第1B圖及第2圖。第一摻雜層D1具有第一導電型,第二摻雜層D2、第三摻雜層D3、第四摻雜層D4及第五摻雜層D5具有第二導電型,其中第一導電型與第二導電型不同。在一些實施方式中,第一導電型為P型,第二導電型為N型。包含第四摻雜層D4及第五摻雜層D5的讀取電晶體RT為N型電晶體,例如N型金氧半場效電晶體(N-type metal-oxide-semiconductor field-effect transistor,NMOSFET)。在一些實施方式中,第三摻雜層D3的摻雜濃度高於第二摻雜層D2的摻雜濃度。在一些實施方式中,第一摻雜層D1為P+摻雜區,第二摻雜層D2為N-摻雜區,第三摻雜層D3為N+摻雜區,第四摻雜層D4及第五摻雜層D5為N+摻雜區。在一些實施方式中,柱狀通道CC具有第一導電型,柱狀通道CC例如為P-摻雜區。在另一些實施方式中,柱狀通道CC為無摻雜的。 Please refer to FIG. 1B and FIG. 2 again. The first doping layer D1 has a first conductivity type, and the second doping layer D2, the third doping layer D3, the fourth doping layer D4, and the fifth doping layer D5 have a second conductivity type, wherein the first conductivity type is different from the second conductivity type. In some embodiments, the first conductivity type is a P type, and the second conductivity type is an N type. The read transistor RT including the fourth doping layer D4 and the fifth doping layer D5 is an N type transistor, such as an N type metal-oxide-semiconductor field-effect transistor (NMOSFET). In some embodiments, the doping concentration of the third doping layer D3 is higher than the doping concentration of the second doping layer D2. In some embodiments, the first doping layer D1 is a P+ doping region, the second doping layer D2 is an N- doping region, the third doping layer D3 is an N+ doping region, and the fourth doping layer D4 and the fifth doping layer D5 are N+ doping regions. In some embodiments, the columnar channel CC has a first conductivity type, and the columnar channel CC is, for example, a P- doping region. In other embodiments, the columnar channel CC is undoped.
在一些實施方式中,柱狀通道CC的材料包括矽、鍺、多晶矽、半導體氧化物(例如氧化銦(In2O3)、氧化銦鎵鋅(indium gallium zinc oxide,IGZO)、氧化銦錫(indium tin oxide,ITO))或其他適合的三五族材料。 In some embodiments, the material of the columnar channel CC includes silicon, germanium, polysilicon, semiconductor oxide (eg, indium oxide (In 2 O 3 ), indium gallium zinc oxide (IGZO), indium tin oxide (ITO)) or other suitable III-V materials.
請再次參照第1A圖,複數個記憶體結構100可形成記憶體陣列。本揭示內容提供一種記憶體陣列,包括複數個記憶體結構100、複數條寫入位元線及複數條讀取
位元線。寫入位元線沿第一方向延伸,其中沿第一方向排列的記憶體結構100的第一摻雜層D1藉由這些寫入位元線相互耦接。讀取位元線沿第二方向延伸,其中第一方向垂直於第二方向,沿第二方向排列的記憶體結構100的第五摻雜層D5藉由這些讀取位元線相互耦接。第4圖是根據本揭示內容各種實施方式的記憶體陣列400的立體示意圖。記憶體陣列400包括8個如第1A圖所示的記憶體結構100,但本揭示內容不限於此。可根據設計需求,任意調整記憶體結構100的數量為例如2、4、6、8、10、12、14、16、18或20。記憶體陣列400在第一方向Y上包括複數個記憶體結構100,且包括沿第一方向Y延伸的複數條寫入位元線WBL。記憶體陣列400在第二方向X上包括複數個記憶體結構100,且包括沿第二方向X延伸的複數條讀取位元線RBL。第一方向Y垂直於第二方向X。在記憶體陣列400中,複數個閘極層120與複數個絕緣層交替堆疊,在第二方向X上,相鄰的記憶體結構100的閘極層120係藉由絕緣層分隔開來,然而為了清楚起見,絕緣層未示出。此外,為了清楚起見,將柱狀結構內的元件位置向上移,以清楚示意第一摻雜層D1、第二摻雜層D2、第三摻雜層D3、第五摻雜層D5、第一介電層DL1、第二介電層DL2、第三介電層DL3及第四介電層DL4的相對位置。記憶體結構100藉由讀取位元線RBL及寫入位元線WBL相互耦接以形成記憶體陣列400。如第4圖所示,沿第一方向Y排列的記憶體結構100的第一摻雜層D1藉
由這些寫入位元線WBL相互耦接,沿第二方向X排列的記憶體結構100的第五摻雜層D5藉由這些讀取位元線RBL相互耦接。在記憶體陣列400中,可藉由寫入位元線WBL寫入資料至多個記憶體結構100中,可藉由讀取位元線RBL讀取多個記憶體結構100內的資料,因此,記憶體陣列400能夠大幅提升寫入速度及讀取速度。
Please refer to FIG. 1A again, a plurality of
本揭示內容提供一種記憶體結構的製造方法,請參閱第2圖及第5A圖至第6I圖。第5A圖及第5B圖是根據本揭示內容各種實施方式的記憶體結構的製造方法500的流程圖。製造方法500包括操作512、操作514、操作516、操作518、操作520、操作522、操作524、操作526、操作528、操作530、操作532、操作534、操作536、操作538、操作540、操作542及操作544。第6A圖至第6I圖是根據本揭示內容各種實施方式的製造記憶體結構的中間階段的剖面示意圖。後續將以第6A圖至第6I圖及第2圖說明上述操作512至操作544。本揭示內容的製造方法的流程簡單,故可降低製造成本。
The present disclosure provides a method for manufacturing a memory structure, see FIG. 2 and FIG. 5A to FIG. 6I. FIG. 5A and FIG. 5B are flow charts of a
雖然下文中利用一系列的操作或步驟來說明在此揭露之方法,但是這些操作或步驟所示的順序不應被解釋為本揭示內容的限制。例如,某些操作或步驟可以按不同順序進行及/或與其它步驟同時進行。此外,並非必須執行所有繪示的操作、步驟及/或特徵才能實現本揭示內容的實施方式。此外,在此所述的每一個操作或步驟可以包含數個子步驟或動作。 Although a series of operations or steps are used below to illustrate the methods disclosed herein, the order in which these operations or steps are shown should not be interpreted as a limitation of the present disclosure. For example, certain operations or steps may be performed in a different order and/or simultaneously with other steps. In addition, not all operations, steps, and/or features shown must be performed to implement the present disclosure. In addition, each operation or step described herein may include a number of sub-steps or actions.
在操作512中,如第6A圖所示,形成第一摻雜層D1的第一部分P1及第四摻雜層D4於基板110中。第一摻雜層D1的第一部分P1與第四摻雜層D4藉由嵌設於基板110中的隔離結構STI電性隔離。在一些實施方式中,第一摻雜層D1的第一部分P1及第四摻雜層D4是各自藉由摻雜一部分的基板110形成。在操作514中,如第6A圖所示,形成交替堆疊的複數個絕緣層130及複數個第一閘極層G1於基板110上。在操作516中,如第6A圖所示,形成第一孔洞H1貫穿絕緣層130及第一閘極層G1,以暴露出第一摻雜層D1的第一部分P1。在一些實施方式中,第一孔洞H1是藉由蝕刻製程形成。
In
在操作518中,如第6B圖所示,形成第一介電層DL1覆蓋第一孔洞H1的側壁SW。在操作520中,如第6B圖所示,形成第一摻雜層D1的第二部分P2於第一孔洞H1中,其中第一摻雜層D1具有第一導電型。在一些實施方式中,藉由沉積製程形成第一摻雜層D1的第二部分P2。在一些實施方式中,第一摻雜層D1具有第一導電型,第四摻雜層D4具有第二導電型,第一導電型與第二導電型不同。在一些實施方式中,第一導電型為N型,第二導電型為P型。在其他實施方式中,第一導電型為P型,第二導電型為N型。
In
在操作522中,如第6C圖所示,形成第二孔洞H2貫穿絕緣層130及第一閘極層G1。第二孔洞H2暴露出第四摻雜層D4。在一些實施方式中,第二孔洞H2是藉
由蝕刻製程形成。在操作524中,如第6D圖所示,部分移除自第二孔洞H2暴露的第一閘極層G1以形成複數個凹陷部RP。在操作524後,第二孔洞H2的側壁具有複數個凹陷部RP。在一些實施方式中,部分移除第一閘極層G1是藉由溼蝕刻製程執行。
In
在操作526中,如第6E圖所示,形成複數個第二介電層DL2於凹陷部RP中,以覆蓋經部分移除的第一閘極層G1。詳言之,第二介電層DL2各自形成於凹陷部RP中且並未填滿凹陷部RP。在操作528中,如第6F圖所示,形成複數個第三摻雜層D3覆蓋第二介電層DL2,其中第三摻雜層D3具有與第一導電型不同的第二導電型。詳言之,第三摻雜層D3各自形成於凹陷部RP中並填滿凹陷部RP。在操作530中,如第6F圖所示,形成第三介電層DL3於第二孔洞H2中,覆蓋絕緣層130及第三摻雜層D3。第三介電層DL3並未填滿第二孔洞H2。在操作532中,如第6F圖所示,形成柱狀通道CC於第二孔洞H2中。柱狀通道CC填滿第二孔洞H2。
In
在操作534中,如第6G圖所示,移除位於第一摻雜層D1與第三摻雜層D3之間的第一介電層DL1、第一閘極層G1及第二介電層DL2,以形成複數個溝槽T。詳言之,移除第一介電層DL1的多個部分、第一閘極層G1的多個部分及第二介電層DL2的多個部分,以形成溝槽T。在操作536中,如第6H圖所示,形成複數個第二摻雜層D2於溝槽T中以直接接觸第一摻雜層D1及連接
至第三摻雜層D3,其中第二摻雜層D2具有第二導電型。沿剖面線A-A’的剖面請參第2圖。在一些實施方式中,藉由沉積製程形成第二摻雜層D2。在一些實施方式中,如第6F圖至第6H圖所示,依序執行操作528、操作530、操作532、操作534及操作536。在形成柱狀通道CC於第二孔洞H2中後,形成第二摻雜層D2連接至第一摻雜層D1及第三摻雜層D3。在其他實施方式中,在形成第二摻雜層D2連接至第一摻雜層D1及第三摻雜層D3後,形成柱狀通道CC於第二孔洞H2中。在操作538中,如第2圖所示,形成複數個第四介電層DL4於第二摻雜層D2旁。在操作540中,如第2圖所示,形成複數個第二閘極層G2於第四介電層DL4旁。在操作542中,如第6H圖所示,摻雜柱狀通道CC的頂部部分以形成第五摻雜層D5。
In
在操作544中,如第6I圖所示,形成寫入位元線WBL於第一摻雜層D1上及形成讀取位元線RBL於第五摻雜層D5上。第6I圖的記憶體結構600與第1B圖的記憶體結構100的差異在於記憶體結構600更包括設置於第一摻雜層D1上的寫入位元線WBL,以及設置於第五摻雜層D5上的讀取位元線RBL,其中寫入位元線WBL耦接至第一摻雜層D1,讀取位元線RBL耦接至第五摻雜層D5。
In
請同時參照第6I圖及第7圖。第7圖是根據本揭示內容各種實施方式的記憶體結構600的等效電路示意圖。電路700包括記憶體單元MC11、MC12、MC13、MC14、
MC15、MC16、寫入位元線WBL、讀取位元線RBL、讀取源極線RSL及複數條寫入字元線WG1、WG2、WG3、WG4、WG5、WG6。電路700亦可稱為串列(string)電路。在一些實施方式中,在記憶體結構600中,第一導電型為N型,第二導電型為P型,第一摻雜層D1為N+摻雜區,第二摻雜層D2為P-摻雜區,第一摻雜層D1及第二摻雜層D2形成如第7圖所示的複數個隧道二極體TD1,其中第一摻雜層D1為陰極(cathode),第二摻雜層D2為陽極(anode)。並且,第三摻雜層D3為P+摻雜區,第四摻雜層D4及第五摻雜層D5為P+摻雜區。閘極層120、第三摻雜層D3、第四摻雜層D4、第五摻雜層D5及柱狀通道CC形成如第7圖所示的複數個讀取電晶體RTp,即複數個P型電晶體。第6I圖的複數個第三摻雜層D3分別對應第7圖的複數個儲存節點SN1。這些隧道二極體TD1的陰極共同連接至寫入位元線WBL,這些隧道二極體TD1的陽極分別連接至儲存節點SN1。
Please refer to FIG. 6I and FIG. 7 at the same time. FIG. 7 is an equivalent circuit diagram of a
請繼續參照第6I圖及第7圖。本揭示內容提供一種記憶體單元MC11的操作方法。記憶體單元MC11包括隧道二極體TD1及讀取電晶體RTp。隧道二極體TD1耦合至寫入位元線WBL,閘極層120的一者耦合至寫入字元線WG1,第三摻雜層D3的一者作為讀取電晶體RTp的儲存節點SN1,讀取電晶體RTp耦合至讀取源極線RSL及讀取位元線RBL。儲存節點SN1與相鄰的閘極層120形成一電容器。
Please continue to refer to FIG. 6I and FIG. 7. The present disclosure provides an operation method of a memory cell MC 11. The memory cell MC 11 includes a tunnel diode TD 1 and a read transistor RT p . The tunnel diode TD 1 is coupled to the write bit line WBL, one of the gate layers 120 is coupled to the write word line WG 1 , one of the third doped layers D3 serves as a storage node SN 1 of the read transistor RT p , and the read transistor RT p is coupled to the read source line RSL and the read bit line RBL. The storage node SN 1 forms a capacitor with the
當欲寫入資料0,施加逆向偏壓(reverse bias)至隧道二極體TD1,更具體來說,施加於寫入位元線WBL的電壓高於施加於寫入字元線WG1的電壓。藉此,隧道二極體TD1中發生電子穿隧(electron tunneling),從而使儲存節點SN1具有高電位,儲存節點SN1會決定讀取電晶體RTp的閾值電壓(threshold voltage)。因此,在讀取操作時,沒有電流流經讀取電晶體RTp。當欲寫入資料1,施加順向偏壓(forward bias)至隧道二極體TD1,更具體來說,施加於寫入位元線WBL的電壓低於施加於寫入字元線WG1的電壓。藉此,儲存節點SN1具有低電位,儲存節點SN1會決定讀取電晶體RTp的閾值電壓。因此,在讀取操作時,會量測到電流流經讀取電晶體RTp。此外,請參照記憶體單元MC11以了解記憶體單元MC12、MC13、MC14、MC15、MC16的結構和操作方式,不再贅述。記憶體單元MC11、MC12、MC13、MC14、MC15、MC16可分別儲存資料1或資料0。 When data 0 is to be written, a reverse bias is applied to the tunnel diode TD 1 , more specifically, the voltage applied to the write bit line WBL is higher than the voltage applied to the write word line WG 1 . As a result, electron tunneling occurs in the tunnel diode TD 1 , so that the storage node SN 1 has a high potential, and the storage node SN 1 determines the threshold voltage of the read transistor RT p . Therefore, during the read operation, no current flows through the read transistor RT p . When data 1 is to be written, a forward bias is applied to the tunnel diode TD 1 , more specifically, the voltage applied to the write bit line WBL is lower than the voltage applied to the write word line WG 1 . As a result, the storage node SN 1 has a low potential, and the storage node SN 1 determines the threshold voltage of the read transistor RT p . Therefore, during the read operation, a current is measured flowing through the read transistor RT p . In addition, please refer to the memory cell MC 11 to understand the structure and operation of the memory cells MC 12 , MC 13 , MC 14 , MC 15 , and MC 16 , which will not be described in detail. Memory cells MC 11 , MC 12 , MC 13 , MC 14 , MC 15 , and MC 16 can store data 1 or data 0, respectively.
請繼續參照第6I圖及第7圖。本揭示內容提供一種記憶體結構600的操作方法。執行寫入操作,寫入操作包括:施加逆向偏壓至這些隧道二極體TD1的第一者,以使對應第一者的第三摻雜層D3(或是儲存節點SN1)的一者具有高電位,藉此寫入資料0至對應的讀取電晶體RTp中。或者,執行寫入操作,寫入操作包括:施加順向偏壓至這些隧道二極體TD1的第二者,以使對應第二者的第三摻雜層D3(或是儲存節點SN1)的一者具有低電位,藉此
寫入資料1至對應的讀取電晶體RTp中。在一些實施方式中,操作方法更包括以下操作。施加0V至對應具有高電位或低電位的第三摻雜層D3的這些閘極層120的選擇閘極。施加複數個負電壓至這些閘極層120中的複數個未選擇閘極,以開啟對應未選擇閘極的讀取電晶體RTp。施加正電壓至第四摻雜層D4或第五摻雜層D5,以讀取對應選擇閘極的讀取電晶體RTp中的資料0或資料1。
Please continue to refer to FIG. 6I and FIG. 7. The present disclosure provides an operating method of a
請同時參照第6I圖及第8圖。第8圖是根據本揭示內容各種實施方式的記憶體結構600的等效電路示意圖。電路800包括記憶體單元MC21、MC22、MC23、MC24、MC25、MC26、寫入位元線WBL、讀取位元線RBL、讀取源極線RSL及複數條寫入字元線WG1、WG2、WG3、WG4、WG5、WG6。電路800亦可稱為串列電路。在一些實施方式中,在記憶體結構600中,第一導電型為P型,第二導電型為N型,第一摻雜層D1為P+摻雜區,第二摻雜層D2為N-摻雜區,第一摻雜層D1及第二摻雜層D2形成如第8圖所示的複數個隧道二極體TD2,其中第一摻雜層D1為陽極(anode),第二摻雜層D2為陰極(cathode)。並且,第三摻雜層D3為N+摻雜區,第四摻雜層D4及第五摻雜層D5為N+摻雜區。閘極層120、第三摻雜層D3、第四摻雜層D4、第五摻雜層D5及柱狀通道CC形成如第8圖所示的複數個讀取電晶體RTn,即複數個N型電晶體。第6I圖的複數個第三摻雜層D3分別對應第8圖的複數個儲存節點SN2。這些隧道二極體TD2
的陽極共同連接至寫入位元線WBL,這些隧道二極體TD2的陰極分別連接至儲存節點SN2。
Please refer to FIG. 6I and FIG. 8 at the same time. FIG. 8 is an equivalent circuit diagram of a
請繼續參照第6I圖及第8圖。本揭示內容提供一種記憶體單元MC21的操作方法。記憶體單元MC21包括隧道二極體TD2及讀取電晶體RTn。隧道二極體TD2耦合至寫入位元線WBL,閘極層120的一者耦合至寫入字元線WG1,第三摻雜層D3的一者作為讀取電晶體RTn的儲存節點SN2,讀取電晶體RTn耦合至讀取源極線RSL及讀取位元線RBL。儲存節點SN2與相鄰的閘極層120形成一電容器。
Please continue to refer to FIG. 6I and FIG. 8. The present disclosure provides an operation method of a memory cell MC 21. The memory cell MC 21 includes a tunnel diode TD 2 and a read transistor RT n . The tunnel diode TD 2 is coupled to the write bit line WBL, one of the gate layers 120 is coupled to the write word line WG 1 , one of the third doped layers D3 serves as a storage node SN 2 of the read transistor RT n , and the read transistor RT n is coupled to the read source line RSL and the read bit line RBL. The storage node SN 2 forms a capacitor with the
當欲寫入資料1,施加順向偏壓至隧道二極體TD2,更具體來說,施加於寫入位元線WBL的電壓高於施加於寫入字元線WG1的電壓。藉此,儲存節點SN2具有高電位,儲存節點SN2會決定讀取電晶體RTn的閾值電壓。因此,在讀取操作時,會量測到電流流經讀取電晶體RTn。當欲寫入資料0,施加逆向偏壓至隧道二極體TD2,更具體來說,施加於寫入位元線WBL的電壓低於施加於寫入字元線WG1的電壓。藉此,隧道二極體TD2中發生電子穿隧,從而使儲存節點SN2具有低電位,儲存節點SN2會決定讀取電晶體RTn的閾值電壓。因此,在讀取操作時,沒有電流流經讀取電晶體RTn。此外,請參照記憶體單元MC21以了解記憶體單元MC22、MC23、MC24、MC25、MC26的結構和操作方式,不再贅述。記憶體單元MC21、MC22、MC23、MC24、MC25、MC26可分別儲存資料1 或資料0。 When data 1 is to be written, a forward bias is applied to the tunnel diode TD 2 , more specifically, the voltage applied to the write bit line WBL is higher than the voltage applied to the write word line WG 1 . As a result, the storage node SN 2 has a high potential, and the storage node SN 2 determines the threshold voltage of the read transistor RT n . Therefore, during the read operation, a current is measured flowing through the read transistor RT n . When data 0 is to be written, a reverse bias is applied to the tunnel diode TD 2 , more specifically, the voltage applied to the write bit line WBL is lower than the voltage applied to the write word line WG 1 . Thereby, electron tunneling occurs in the tunnel diode TD 2 , so that the storage node SN 2 has a low potential, and the storage node SN 2 determines the threshold voltage of the read transistor RT n . Therefore, during the read operation, no current flows through the read transistor RT n . In addition, please refer to the memory cell MC 21 to understand the structure and operation of the memory cells MC 22 , MC 23 , MC 24 , MC 25 , and MC 26 , which will not be repeated. The memory cells MC 21 , MC 22 , MC 23 , MC 24 , MC 25 , and MC 26 can store data 1 or data 0 respectively.
請繼續參照第6I圖及第8圖。本揭示內容提供一種記憶體結構600的操作方法。執行寫入操作,寫入操作包括:施加逆向偏壓至這些隧道二極體TD2的第一者,以使對應第一者的第三摻雜層D3(或是儲存節點SN2)的一者具有低電位,藉此寫入資料0至對應的讀取電晶體RTn中。或者,執行寫入操作,寫入操作包括:施加順向偏壓至這些隧道二極體TD2的第二者,以使對應第二者的第三摻雜層D3(或是儲存節點SN2)的一者具有高電位,藉此寫入資料1至對應的讀取電晶體RTn中。在一些實施方式中,操作方法更包括以下操作。施加0V至對應具有高電位或低電位的第三摻雜層D3的這些閘極層120的選擇閘極。施加複數個正電壓至這些閘極層120中的複數個未選擇閘極,以開啟對應未選擇閘極的讀取電晶體RTn。施加正電壓至第四摻雜層D4或第五摻雜層D5,以讀取對應選擇閘極的讀取電晶體RTn中的資料0或資料1。
Please continue to refer to FIG. 6I and FIG. 8. The present disclosure provides an operating method of a
請再次參照第1A圖、第1B圖及第4圖。在一些實施方式中,記憶體陣列400更包括沿第一方向Y延伸的複數條讀取源極線(未示出),沿第一方向Y排列的記憶體結構100的第四摻雜層D4藉由這些讀取源極線相互耦接。在一些實施方式中,讀取源極線共同連接至一頁面緩衝器(未示出)。在一些實施方式中,寫入位元線WBL分別連接至具有電晶體的串選擇線(string select line,SSL)(未示出),以控制寫入位元線WBL的電壓是否施加到記
憶體結構100。在一些實施方式中,在記憶體陣列400中,第一摻雜層D1分別連接至具有電晶體的整體選擇線(global select line,GSL)(未示出),以控制施加至第一摻雜層D1的電壓。
Please refer to FIG. 1A, FIG. 1B and FIG. 4 again. In some embodiments, the
接下來,以第9圖至第14圖進一步說明如何寫入、讀取或清除記憶體陣列的資料。第9圖是根據本揭示內容各種實施方式的記憶體陣列的電路示意圖。如第9圖所示,電路CI包括頁面PG1、頁面PG2、寫入字元線WG1、WG2、WG3、寫入位元線WBL1、WBL2、讀取源極線RSL1、RSL2、串選擇線SSL1、SSL2和整體選擇線GSL1、GSL2及頁面緩衝器PB。頁面PG1及頁面PG2各自包括6個記憶體單元,記憶體單元各包括一隧道二極體及一P型讀取電晶體。頁面緩衝器PB可進一步耦接感測放大器(sense amplifier,SA)(未示出)。寫入字元線WG1、WG2、WG3分別耦接頁面PG1及頁面PG2中的P型讀取電晶體。在頁面PG1和頁面PG2中,在讀取操作時,讀取位元線RBL1、RBL2可被施加電壓或不被施加電壓,從而決定讀取哪一頁面的資料。在頁面PG1和頁面PG2中,串選擇線SSL1、SSL2和整體選擇線GSL1、GSL2分別用於控制電晶體的開關,這些電晶體作為選擇串列電路的開關。不同串列上的電晶體共享同一串選擇線及同一整體選擇線。頁面PG1和頁面PG2中的串列電路分別連接至串選擇線和整體選擇線的電晶體的源極或汲極。供應電壓VCC1、VCC2分別用於提供電壓至隧道二極體的陰極。 讀取源極線RSL1、RSL2分別耦接不同頁面的串列電路,並耦接至頁面緩衝器PB,頁面緩衝器PB可一次讀取整個頁面的資料。頁面、寫入位元線、讀取源極線、串選擇線、整體選擇線及記憶體單元的數量不限於第9圖所繪示的數量,可根據設計需求,任意調整數量。 Next, how to write, read or clear data in the memory array is further described with reference to FIGS. 9 to 14. FIG. 9 is a circuit diagram of a memory array according to various embodiments of the present disclosure. As shown in FIG. 9, the circuit CI includes page PG1, page PG2, write word lines WG1 , WG2 , WG3 , write bit lines WBL1 , WBL2 , read source lines RSL1 , RSL2 , string select lines SSL1 , SSL2 , and global select lines GSL1 , GSL2 , and page buffer PB. Page PG1 and page PG2 each include 6 memory cells, and each memory cell includes a tunnel diode and a P-type read transistor. The page buffer PB may be further coupled to a sense amplifier (SA) (not shown). The write word lines WG 1 , WG 2 , and WG 3 are coupled to the P-type read transistors in page PG1 and page PG2, respectively. In page PG1 and page PG2, during the read operation, the read bit lines RBL 1 and RBL 2 may be applied with voltage or not applied with voltage, thereby determining which page of data is read. In page PG1 and page PG2, the string select lines SSL 1 , SSL 2 and the overall select lines GSL 1 , GSL 2 are respectively used to control the switches of transistors, which serve as switches for selecting the serial circuits. Transistors on different strings share the same string select line and the same overall select line. The serial circuits in page PG1 and page PG2 are connected to the source or drain of the transistors of the string select line and the overall select line, respectively. The supply voltages VCC1 and VCC2 are used to provide voltage to the cathode of the tunnel diode, respectively. The read source lines RSL1 and RSL2 are coupled to the serial circuits of different pages, respectively, and are coupled to the page buffer PB, which can read the data of the entire page at one time. The number of pages, write bit lines, read source lines, string select lines, overall select lines, and memory cells is not limited to the number shown in FIG. 9, and the number can be adjusted arbitrarily according to design requirements.
以下說明如何在第9圖的電路CI中執行寫入操作,其中頁面PG1為被選擇寫入的頁面,頁面PG2為未被選擇寫入的頁面。舉例來說,可藉由以下表一的操作電壓,在頁面PG1的記憶體單元M1寫入資料0,記憶體單元M2寫入資料1。更詳細來說,串選擇線SSL1的電壓為3.6V,故可開啟電晶體,使寫入位元線WBL1施加3V至記憶體單元中隧道二極體的陰極,使寫入位元線WBL2施加-1V至記憶體單元中隧道二極體的陰極。寫入字元線WG1的電壓為0V,寫入字元線WG2、WG3的電壓為-0.5V或1V。因此,記憶體單元M1的隧道二極體被施加逆向偏壓,以使儲存節點具有高電位,從而寫入資料0至記憶體單元M1。記憶體單元M2的隧道二極體被施加順向偏壓,以使儲存節點具有低電位,從而寫入資料1至記憶體單元M2。在頁面PG1中,記憶體單元M1、M2之外的記憶體單元的隧道二極體被施加的偏壓皆不足以使儲存節點具有高電位或低電位。頁面PG2為未被選擇寫入的頁面,故串選擇線SSL2的電壓為0V。請參以下表二,供應電壓VCC2為1.5V,寫入字元線WG1的電壓為0V、寫入字元線WG2及WG3的電壓為-0.5V或1V,因此,在頁面PG2 中,記憶體單元的隧道二極體被施加的逆向偏壓皆不足以使儲存節點具有高電位。 The following describes how to perform a write operation in the circuit CI of FIG. 9, where page PG1 is the page selected for writing and page PG2 is the page not selected for writing. For example, data 0 can be written into the memory cell M1 of page PG1 and data 1 can be written into the memory cell M2 by the operating voltage in Table 1 below. In more detail, the voltage of the string select line SSL 1 is 3.6V, so the transistor can be turned on, so that the write bit line WBL 1 applies 3V to the cathode of the tunnel diode in the memory cell, and the write bit line WBL 2 applies -1V to the cathode of the tunnel diode in the memory cell. The voltage of the write word line WG 1 is 0V, and the voltage of the write word lines WG 2 and WG 3 is -0.5V or 1V. Therefore, the tunnel diode of the memory cell M 1 is reverse biased so that the storage node has a high potential, thereby writing data 0 to the memory cell M 1 . The tunnel diode of the memory cell M 2 is forward biased so that the storage node has a low potential, thereby writing data 1 to the memory cell M 2 . In page PG1, the bias applied to the tunnel diodes of the memory cells other than the memory cells M 1 and M 2 is not enough to make the storage nodes have a high potential or a low potential. Page PG2 is a page that is not selected for writing, so the voltage of string selection line SSL 2 is 0 V. Please refer to Table 2 below, the supply voltage V CC2 is 1.5 V, the voltage of write word line WG 1 is 0 V, and the voltage of write word lines WG 2 and WG 3 is -0.5 V or 1 V. Therefore, in page PG2, the reverse bias applied to the tunnel diode of the memory cell is not enough to make the storage node have a high potential.
請同時參照第9圖及第10圖。第10圖是根據本揭示內容各種實施方式的控制訊號之時序圖。寫入字元線WG1的電壓維持於0V。未被選擇的寫入字元線WG2、WG3的電壓維持於1V或-0.5V。未被選擇的串選擇線SSL2的電壓維持於0V。未被選擇的整體選擇線GSL2的電壓維持於3.6V。在時間t11,寫入位元線WBL1的電壓變為3V,寫入位元線WBL2的電壓變為-1V。在時間t12,串選擇線SSL1的電壓變為3.6V,藉此,寫入位元線WBL1的電壓3V施加至記憶體單元M1的隧道二極體的陰極,從而寫入資料0至記憶體單元M1,寫入位元線WBL2的電壓-1V施加至記憶體單元M2的隧道二極體的陰極,從而寫入資料1至記憶體單元M2。在時間t13,串選擇線SSL1的電壓變為0V。在時間t14,寫入位元線WBL1的電壓變為0V。在時間t15,整體選擇線GSL1的電壓變為3.6V。 Please refer to FIG. 9 and FIG. 10 simultaneously. FIG. 10 is a timing diagram of control signals according to various embodiments of the present disclosure. The voltage of the write word line WG 1 is maintained at 0V. The voltage of the unselected write word lines WG 2 and WG 3 is maintained at 1V or -0.5V. The voltage of the unselected string select line SSL 2 is maintained at 0V. The voltage of the unselected global select line GSL 2 is maintained at 3.6V. At time t 11 , the voltage of the write bit line WBL 1 becomes 3V, and the voltage of the write bit line WBL 2 becomes -1V. At time t12 , the voltage of the string selection line SSL1 becomes 3.6V, whereby the voltage of the write bit line WBL1 , 3V, is applied to the cathode of the tunnel diode of the memory cell M1 , thereby writing data 0 to the memory cell M1 , and the voltage of the write bit line WBL2, -1V, is applied to the cathode of the tunnel diode of the memory cell M2 , thereby writing data 1 to the memory cell M2 . At time t13 , the voltage of the string selection line SSL1 becomes 0V. At time t14 , the voltage of the write bit line WBL1 becomes 0V. At time t15 , the voltage of the global selection line GSL1 becomes 3.6V.
第11圖是根據本揭示內容各種實施方式的記憶體 陣列的電路示意圖。以下說明如何在第11圖的電路CI中執行讀取操作,頁面PG1為被選擇讀取的頁面,頁面PG2為未被選擇讀取的頁面。舉例來說,若頁面PG1的記憶體單元M1儲存資料0,記憶體單元M2儲存資料1,可藉由以下表三的操作電壓讀取記憶體單元M1、M2的資料。更詳細來說,供應電壓VCC1為1.5V,施加0V於寫入字元線WG1,記憶體單元M1、M2中P型讀取電晶體的閾值電壓由儲存節點決定,施加-0.5V於寫入字元線WG2、WG3,以開啟對應的P型讀取電晶體。為了簡化起見,一些耦合於不同頁面的P型讀取電晶體的寫入字元線並未繪於第11圖。並且,讀取位元線RBL1的電壓為0.5V,讀取源極線RSL1、RSL2分別耦接頁面PG1、PG2的串列電路以讀取電流。含有記憶體單元M1的串列電路無法被量測到電流,可知有記憶體單元M1儲存資料0。含有記憶體單元M2的串列電路可被量測到電流,可知有記憶體單元M2儲存資料1。頁面PG2為未被選擇讀取的頁面,故讀取位元線RBL2的電壓為0V。並且,施加逆向偏壓至頁面PG2中記憶體單元的隧道二極體,以避免電流自儲存節點洩漏。請參以下表四,供應電壓VCC2為1.5V,寫入字元線WG1的電壓為0V、寫入字元線WG2及WG3的電壓為-0.5V,由此可知,頁面PG2中記憶體單元的隧道二極體皆被施加逆向偏壓。 FIG. 11 is a circuit diagram of a memory array according to various embodiments of the present disclosure. The following describes how to perform a read operation in the circuit CI of FIG. 11, where page PG1 is the page selected for reading and page PG2 is the page not selected for reading. For example, if the memory cell M1 of page PG1 stores data 0 and the memory cell M2 stores data 1, the data of the memory cells M1 and M2 can be read by the operating voltages in Table 3 below. In more detail, the supply voltage V CC1 is 1.5V, 0V is applied to the write word line WG 1 , the threshold voltage of the P-type read transistors in the memory cells M 1 and M 2 is determined by the storage node, and -0.5V is applied to the write word lines WG 2 and WG 3 to turn on the corresponding P-type read transistors. For simplicity, some write word lines coupled to the P-type read transistors of different pages are not shown in FIG. 11 . In addition, the voltage of the read bit line RBL 1 is 0.5V, and the read source lines RSL 1 and RSL 2 are respectively coupled to the serial circuits of the pages PG1 and PG2 to read the current. The serial circuit containing the memory cell M1 cannot be measured with current, which means that the memory cell M1 stores data 0. The serial circuit containing the memory cell M2 can be measured with current, which means that the memory cell M2 stores data 1. Page PG2 is a page that is not selected for reading, so the voltage of the read bit line RBL 2 is 0V. In addition, a reverse bias is applied to the tunnel diode of the memory cell in page PG2 to prevent current from leaking from the storage node. Please refer to the following Table 4. The supply voltage V CC2 is 1.5V, the voltage of the write word line WG 1 is 0V, and the voltage of the write word lines WG 2 and WG 3 is -0.5V. It can be seen that the tunnel diodes of the memory cells in page PG2 are all reverse biased.
請同時參照第11圖及第12圖。第12圖是根據本揭示內容各種實施方式的控制訊號之時序圖。未被選擇的寫入字元線WG2、WG3的電壓維持於-0.5V。在時間t21,寫入字元線WG1的電壓變為0V。在時間t22,讀取位元線RBL1的電壓變為0.5V。在時間t23,讀取位元線RBL1的電壓變為0V。在時間t24,寫入字元線WG1的電壓變為-0.5V。藉此,在時間t22至時間t23的期間,讀取源極線RSL2可量測到電流,可知記憶體單元M2儲存資料1,另一方面,讀取源極線RSL1沒有量測到電流,可知記憶體單元M1儲存資料0。 Please refer to FIG. 11 and FIG. 12 at the same time. FIG. 12 is a timing diagram of control signals according to various embodiments of the present disclosure. The voltage of the unselected write word lines WG 2 and WG 3 is maintained at -0.5V. At time t 21 , the voltage of the write word line WG 1 becomes 0V. At time t 22 , the voltage of the read bit line RBL 1 becomes 0.5V. At time t 23 , the voltage of the read bit line RBL 1 becomes 0V. At time t 24 , the voltage of the write word line WG 1 becomes -0.5V. Thus, during the period from time t 22 to time t 23 , the current can be measured by reading the source line RSL 2 , indicating that the memory cell M 2 stores data 1. On the other hand, no current is measured by reading the source line RSL 1 , indicating that the memory cell M 1 stores data 0.
第13圖是根據本揭示內容各種實施方式的記憶體陣列的電路示意圖。以下說明如何在第13圖的電路CI中執行清除(erase)操作,其中頁面PG1為被選擇清除的頁面,頁面PG2為未被選擇清除的頁面。舉例來說,可藉由以下表五的操作電壓,清除頁面PG1的記憶體單元內的資料。串選擇線SSL1的電壓為3.6V,故可開啟電晶體,寫入位元線WBL1、WBL2施加3V至記憶體單元中隧道二極體的陰極,寫入字元線WG1、WG2、WG3的電壓皆為0V,因此,記憶體單元的隧道二極體皆被施加逆向偏壓,以使儲存節點具有高電位,從而寫入資料0至頁面PG1的 記憶體單元。另一方面,請參以下表六,在頁面PG2中,串選擇線SSL2的電壓為0V,故頁面PG2的記憶體單元不會受寫入位元線WBL1、WBL2的電壓影響。供應電壓VCC2為1.5V,寫入字元線WG1、WG2、WG3的電壓皆為0V,因此,在頁面PG2中,記憶體單元的隧道二極體被施加的逆向偏壓皆不足以使儲存節點具有高電位。 FIG. 13 is a circuit diagram of a memory array according to various embodiments of the present disclosure. The following describes how to perform an erase operation in the circuit CI of FIG. 13, wherein page PG1 is a page selected for erase and page PG2 is a page not selected for erase. For example, the data in the memory cell of page PG1 can be erased by the operating voltage of Table 5 below. The voltage of the string select line SSL 1 is 3.6V, so the transistor can be turned on, and the write bit lines WBL 1 and WBL 2 apply 3V to the cathode of the tunnel diode in the memory cell. The voltages of the write word lines WG 1 , WG 2 , and WG 3 are all 0V, so the tunnel diodes of the memory cells are all reverse biased to make the storage nodes have a high potential, thereby writing data 0 to the memory cells of page PG1. On the other hand, please refer to the following Table 6. In page PG2, the voltage of the string select line SSL 2 is 0V, so the memory cells of page PG2 will not be affected by the voltage of the write bit lines WBL 1 and WBL 2 . The supply voltage V CC2 is 1.5V, and the voltages of the write word lines WG 1 , WG 2 , and WG 3 are all 0V. Therefore, in page PG2 , the reverse bias applied to the tunnel diode of the memory cell is not sufficient to make the storage node have a high potential.
請同時參照第13圖及第14圖。第14圖是根據本揭示內容各種實施方式的控制訊號之時序圖。寫入字元線WG1、WG2、WG3的電壓維持於0V。整體選擇線GSL2的電壓維持3.6V。在時間t31,寫入位元線WBL1、WBL2的電壓變為3V。在時間t32,串選擇線SSL1的電壓變為3.6V,藉此,寫入位元線WBL1、WBL2的電壓3V施加至頁面PG1的記憶體單元的隧道二極體的陰極,以對隧道二極體施加逆向偏壓,從而使儲存節點具有高電位。換言之,寫入資料0至記憶體單元。在時間t33,串選擇線SSL1的電壓變為0V。在時間t34,寫入位元線WBL1、WBL2的電壓變為0V。在時間t35,整體選擇線GSL1的電壓變為3.6V。 Please refer to FIG. 13 and FIG. 14 at the same time. FIG. 14 is a timing diagram of control signals according to various implementations of the present disclosure. The voltage of the write word lines WG 1 , WG 2 , and WG 3 is maintained at 0V. The voltage of the global selection line GSL 2 is maintained at 3.6V. At time t 31 , the voltage of the write bit lines WBL 1 , WBL 2 becomes 3V. At time t 32 , the voltage of the string selection line SSL 1 becomes 3.6V, whereby the voltage of 3V of the write bit lines WBL 1 , WBL 2 is applied to the cathode of the tunnel diode of the memory cell of page PG1 to apply a reverse bias to the tunnel diode, thereby making the storage node have a high potential. In other words, data 0 is written to the memory cell. At time t 33 , the voltage of the string select line SSL 1 becomes 0V. At time t 34 , the voltage of the write bit lines WBL 1 and WBL 2 becomes 0V. At time t 35 , the voltage of the global select line GSL 1 becomes 3.6V.
綜上所述,本揭示內容提供一種記憶體結構、其製造方法及其操作方法,以及一種記憶體陣列。在記憶體結構及記憶體陣列中,各記憶體單元包括一隧道二極體及一讀取電晶體,以形成1D1T的DRAM結構。讀取電晶體在縱向上相互連接,因此能夠提高記憶體單元的密度故有利於記憶體結構及記憶體陣列的尺寸微縮。並且,本揭示內容的製造方法的流程簡單,故可降低製造成本。 In summary, the present disclosure provides a memory structure, a manufacturing method and an operating method thereof, and a memory array. In the memory structure and the memory array, each memory cell includes a tunnel diode and a read transistor to form a 1D1T DRAM structure. The read transistors are connected to each other in the vertical direction, so that the density of the memory cell can be increased, which is beneficial to the miniaturization of the memory structure and the memory array. In addition, the manufacturing method of the present disclosure has a simple process, so the manufacturing cost can be reduced.
儘管已經參考某些實施方式相當詳細地描述了本揭示內容,但是亦可能有其他實施方式。因此,所附申請專利範圍的精神和範圍不應限於此處包含的實施方式的描述。 Although the present disclosure has been described in considerable detail with reference to certain embodiments, other embodiments are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein.
對於所屬技術領域具有通常知識者來說,顯而易見的是,在不脫離本揭示內容的範圍或精神的情況下,可以對本揭示內容的結構進行各種修改和變化。鑑於前述內容,本揭示內容意圖涵蓋落入所附申請專利範圍內的本揭示內容的修改和變化。 It is obvious to a person of ordinary skill in the art that various modifications and variations can be made to the structure of this disclosure without departing from the scope or spirit of this disclosure. In view of the foregoing, this disclosure is intended to cover modifications and variations of this disclosure that fall within the scope of the attached patent applications.
600:記憶體結構 600:Memory structure
110:基板 110: Substrate
120:閘極層 120: Gate layer
130:絕緣層 130: Insulation layer
CC:柱狀通道 CC: Columnar Channel
D1:第一摻雜層 D1: First doping layer
D2:第二摻雜層 D2: Second doping layer
D3:第三摻雜層 D3: The third doping layer
D4:第四摻雜層 D4: The fourth doping layer
D5:第五摻雜層 D5: The fifth doping layer
DL1:第一介電層 DL1: First dielectric layer
DL2:第二介電層 DL2: Second dielectric layer
DL3:第三介電層 DL3: The third dielectric layer
G1:第一閘極層 G1: First gate layer
P1:第一部分 P1: Part 1
P2:第二部分 P2: Part 2
RBL:讀取位元線 RBL: Read Bit Line
STI:隔離結構 STI: Isolation Structure
WBL:寫入位元線 WBL: Write Bit Line
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113111881A TWI881774B (en) | 2024-03-28 | 2024-03-28 | Memory structure, manufacturing method thereof, operating method thereof, and memory array |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113111881A TWI881774B (en) | 2024-03-28 | 2024-03-28 | Memory structure, manufacturing method thereof, operating method thereof, and memory array |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI881774B true TWI881774B (en) | 2025-04-21 |
| TW202539363A TW202539363A (en) | 2025-10-01 |
Family
ID=96141987
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW113111881A TWI881774B (en) | 2024-03-28 | 2024-03-28 | Memory structure, manufacturing method thereof, operating method thereof, and memory array |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI881774B (en) |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140269002A1 (en) * | 2013-03-14 | 2014-09-18 | Crossbar, Inc. | Two-terminal memory with intrinsic rectifying characteristic |
| US20160308535A1 (en) * | 2003-12-04 | 2016-10-20 | Yakimishu Co. Ltd. L.L.C. | Programmable structured arrays |
| TW202119603A (en) * | 2019-11-05 | 2021-05-16 | 大陸商長江存儲科技有限責任公司 | Bonded three-dimensional memory device and forming method thereof |
| TW202123344A (en) * | 2019-12-03 | 2021-06-16 | 芯恩(青島)積體電路有限公司 | A three-dimensional junctionless neuron network device and manufacturing method thereof |
| TW202220177A (en) * | 2020-11-13 | 2022-05-16 | 大陸商長江存儲科技有限責任公司 | Three-dimensional memory device and manufacturing method thereof |
| TW202226548A (en) * | 2020-12-17 | 2022-07-01 | 旺宏電子股份有限公司 | Three-dimensional memory device and method for manufacturing the same |
| US20220238171A1 (en) * | 2021-01-26 | 2022-07-28 | Attopsemi Technology Co., Ltd | Programmable resistance memory on wide-bandgap semiconductor technologies |
| TW202318643A (en) * | 2021-10-19 | 2023-05-01 | 旺宏電子股份有限公司 | Memory device |
| TW202333346A (en) * | 2022-02-10 | 2023-08-16 | 旺宏電子股份有限公司 | Memory device and method of fabricating the same |
-
2024
- 2024-03-28 TW TW113111881A patent/TWI881774B/en active
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160308535A1 (en) * | 2003-12-04 | 2016-10-20 | Yakimishu Co. Ltd. L.L.C. | Programmable structured arrays |
| US20180159537A1 (en) * | 2003-12-04 | 2018-06-07 | Callahan Cellular L.L.C. | Programmable structured arrays |
| US20140269002A1 (en) * | 2013-03-14 | 2014-09-18 | Crossbar, Inc. | Two-terminal memory with intrinsic rectifying characteristic |
| TW202119603A (en) * | 2019-11-05 | 2021-05-16 | 大陸商長江存儲科技有限責任公司 | Bonded three-dimensional memory device and forming method thereof |
| TW202123344A (en) * | 2019-12-03 | 2021-06-16 | 芯恩(青島)積體電路有限公司 | A three-dimensional junctionless neuron network device and manufacturing method thereof |
| TW202220177A (en) * | 2020-11-13 | 2022-05-16 | 大陸商長江存儲科技有限責任公司 | Three-dimensional memory device and manufacturing method thereof |
| TW202226548A (en) * | 2020-12-17 | 2022-07-01 | 旺宏電子股份有限公司 | Three-dimensional memory device and method for manufacturing the same |
| US20220238171A1 (en) * | 2021-01-26 | 2022-07-28 | Attopsemi Technology Co., Ltd | Programmable resistance memory on wide-bandgap semiconductor technologies |
| TW202318643A (en) * | 2021-10-19 | 2023-05-01 | 旺宏電子股份有限公司 | Memory device |
| TW202333346A (en) * | 2022-02-10 | 2023-08-16 | 旺宏電子股份有限公司 | Memory device and method of fabricating the same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10872903B2 (en) | Three dimensional memory and methods of forming the same | |
| US10056150B2 (en) | Non-volatile semiconductor memory device | |
| US8089801B2 (en) | Semiconductor memory device and method of forming the same | |
| CN102386188B (en) | Three-dimensional array memory architecture with diodes in memory strings | |
| CN100492541C (en) | Nonvolatile semiconductor memory and method of operating the same | |
| US6136652A (en) | Preventing dielectric thickening over a channel area of a split-gate transistor | |
| CN102194821B (en) | Three-dimensional memory array with improved string select line and bit line contact layout | |
| US20190181147A1 (en) | Vertical ferroelectric thin film storage transistor and data write and read methods thereof | |
| US10515810B2 (en) | Self-aligned di-silicon silicide bit line and source line landing pads in 3D vertical channel memory | |
| Kim et al. | Novel 3-D structure for ultra high density flash memory with VRAT (Vertical-Recess-Array-Transistor) and PIPE (Planarized Integration on the same PlanE) | |
| US20110303958A1 (en) | Nonvolatile semiconductor memory | |
| JP2008536336A (en) | High density trench based non-volatile random access SONOS memory cell structure for SOC applications and method of manufacturing the same | |
| JP2006054435A (en) | Integrated memory device and manufacturing method thereof | |
| US5243209A (en) | Semiconductor memory device including junction field effect transistor and capacitor and method of manufacturing the same | |
| US12144164B2 (en) | Method for manufacturing memory device using semiconductor element | |
| TWI292609B (en) | Semiconductor storage device | |
| JP2023502344A (en) | Integrated assembly and method of forming integrated assembly | |
| TWI241017B (en) | Non-volatile memory device and manufacturing method and operating method thereof | |
| KR102757931B1 (en) | An assembly having a conductive structure having three or more different materials | |
| JP2005101174A (en) | Nonvolatile semiconductor memory device and manufacturing method thereof | |
| TWI881774B (en) | Memory structure, manufacturing method thereof, operating method thereof, and memory array | |
| CN112466892A (en) | Memory, integrated circuit memory and method for manufacturing memory | |
| WO2024127518A1 (en) | Memory device using semiconductor element | |
| TWI869130B (en) | Memory structure, manufacturing method thereof, and operating method thereof | |
| CN120751698A (en) | Memory structure, manufacturing method thereof, operating method thereof and memory array |