US11465210B2 - System for additive manufacturing - Google Patents
System for additive manufacturing Download PDFInfo
- Publication number
- US11465210B2 US11465210B2 US16/672,073 US201916672073A US11465210B2 US 11465210 B2 US11465210 B2 US 11465210B2 US 201916672073 A US201916672073 A US 201916672073A US 11465210 B2 US11465210 B2 US 11465210B2
- Authority
- US
- United States
- Prior art keywords
- recoater blade
- curved
- powder particles
- build
- additive manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 90
- 239000000654 additive Substances 0.000 title claims abstract description 67
- 230000000996 additive effect Effects 0.000 title claims abstract description 67
- 239000000843 powder Substances 0.000 claims abstract description 128
- 239000002245 particle Substances 0.000 claims abstract description 113
- 238000007639 printing Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 20
- 238000009826 distribution Methods 0.000 description 19
- 239000000463 material Substances 0.000 description 19
- 238000007596 consolidation process Methods 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 238000000465 moulding Methods 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000011960 computer-aided design Methods 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 239000011236 particulate material Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000010146 3D printing Methods 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- NLCKLZIHJQEMCU-UHFFFAOYSA-N cyano prop-2-enoate Chemical class C=CC(=O)OC#N NLCKLZIHJQEMCU-UHFFFAOYSA-N 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C11/00—Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
- B05C11/02—Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
- B05C11/04—Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface with blades
- B05C11/045—Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface with blades characterised by the blades themselves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/60—Planarisation devices; Compression devices
- B22F12/67—Blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/001—Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/214—Doctor blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/227—Driving means
- B29C64/241—Driving means for rotary motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/01—Other methods of shaping glass by progressive fusion or sintering of powdered glass onto a shaping substrate, i.e. accretion, e.g. plasma oxidation deposition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/10—Formation of a green body
- B22F10/14—Formation of a green body by jetting of binder onto a bed of metal powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/30—Platforms or substrates
- B22F12/37—Rotatable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/49—Scanners
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the subject matter disclosed herein generally relates to additive manufacturing systems, and more particularly, to recoating assemblies for use in additive manufacturing systems.
- Additive manufacturing also known as 3D printing, generally involves printing an article one layer at a time using specialized systems.
- a layer of a material e.g., a metal and/or ceramic powder bed
- Additive manufacturing may be used to manufacture articles (e.g., fuel nozzles, fuel injectors, turbine blades) from computer aided design (CAD) models using techniques such as, but not limited to, metal laser melting, laser sintering, and binder jetting. These additive manufacturing techniques melt, sinter, or chemically bind layers of material to generate the desired article.
- Additive manufacturing may facilitate manufacturing of complex articles and enable flexibility for customization of articles compared to techniques such as molding (e.g., cast molding, injection molding). Additionally, additive manufacturing can reduce the overall manufacturing costs associated with generating these complex articles compared to molding techniques generally used.
- an additive manufacturing system for printing an article including an build plate having a build surface between an inner radius and an outer radius that may receive powder particles and a recoating assembly that may distribute the powder particles onto the build surface to form a build layer of the article.
- the recoating assembly includes a support jig having a first end, a second end, and a support wall extending between the first and second ends and a recoater blade coupled to the second end and extending along at least a portion of a length of the support wall.
- a shape of the recoater blade is such that, when the recoater blade is positioned against the build surface, an angle between the recoater blade and a tangent at each radii of the build plate is substantially constant.
- a recoating assembly for use in a rotary additive manufacturing system including a support jig having a first end, a second end, and a support wall extending between the first and second ends and a recoater blade that may distribute powder particles onto a build plate of the rotary additive manufacturing system while the build plate is rotating to form a build layer of an article to be printed.
- the recoating blade is coupled to the second end and includes a shape having a curvature.
- an additive manufacturing system including a build platform having an annular build plate and a workstation including a particle delivery system that may deposit powder particles onto a surface extending between an inner radius and an outer radius of the build plate and a recoating assembly that may distribute the powder particles onto the surface.
- the recoating assembly includes a support jig and a recoater blade coupled to the support jig and having a wall having a first face and a second face substantially opposite the first face. The first face is shaped such that, when the recoater blade is positioned adjacent to the surface, an angle between the recoater blade and a tangent at each radii of the build plate is substantially constant.
- FIG. 1 is a schematic view of a continuous additive manufacturing system, in accordance with an embodiment of the present disclosure
- FIG. 2 is a schematic top view of a build platform and workstation of the continuous additive manufacturing system of FIG. 1 , the workstation having a recoating assembly including a curved recoater blade, in accordance with an embodiment of the present disclosure;
- FIG. 3 is a perspective view of the recoating assembly of FIG. 2 , in accordance with an embodiment of the present disclosure
- FIG. 4 is a perspective view of a portion of the build platform of FIG. 2 and a jig alignment tool, whereby a jig alignment tool is used to align the recoating assembly onto a build plate of the build platform;
- FIG. 5 is a schematic top view of the build platform and a portion of recoating assembly of FIG. 3 , whereby the curved recoater blade forms a constant angle relative to a tangent at each radii of the build platform, in accordance with an embodiment of the present disclosure
- FIG. 6 is a schematic top view of the build platform and workstation of the continuous additive manufacturing system of FIG. 1 , the workstation having a recoating assembly including the curved recoater blade and a straight recoater blade, in accordance with an embodiment of the present disclosure.
- a “working surface” is intended to denote a surface onto which a powder bed layer may be deposited during an additive manufacturing process.
- a “straight recoater blade” is intended to denote a recoater blade that is substantially non-curved along its entire length and width.
- a “curved recoater blade” is intended to denote a recoater blade having at least one face that is non-linear along a portion of its length and width.
- additive manufacturing may be advantageous for fabricating parts compared to molding techniques due, in part, to the flexibility of materials that may be used for fabricating the article, the ability to manufacture more complex articles, and lower manufacturing costs.
- additive manufacturing systems that may be used to manufacture articles of interest include Direct Metal Laser Melting (DMLM), Selective Laser Melting (SLM), Direct Metal Laser Sintering (DMLS), LaserCusing®, and binder jet systems.
- DMLM Direct Metal Laser Melting
- SLM Selective Laser Melting
- DMLS Direct Metal Laser Sintering
- LaserCusing® LaserCusing®
- binder jet systems fabricate articles using a focused energy source, such as a laser or an electron beam generator.
- the energy source may direct an energy beam onto a layer of a particulate material (e.g., powder particles) deposited on a working surface (e.g., a build plate or previously deposited powder bed layer).
- the energy beam may melt or sinter particles of the build material to facilitate consolidation of the particles and generate the article of interest.
- a new build layer of the particulate material is formed when a recoating device is used to recoat a deposited build layer with additional particulate material after each build layer is impinged by the energy beam.
- Each step of the build process may be performed sequentially and distinctly within a particulate material bed, and the build time of the article is limited by the particulate deposition, distribution, and consolidation times for each build layer of the article.
- a recoating blade may be used to distribute, meter, and smooth a new layer of the powder particles onto the working surface.
- the working surface e.g., a build plate of the additive manufacturing system
- the recoating assembly includes a recoater blade that distributes the powder particles onto the working surface as the build plate rotates about the axis. The manner by which the recoating blade distributes the powder particles onto the working surface to form the powder bed can substantially affect the geometry of containment walls and/or the article being printed.
- a containment wall e.g., an outer wall
- a containment wall is built at each powder layer to hold the powder particles in place on the working surface.
- Certain recoater blade configurations may be unable to distribute and meter the powder particles evenly across the working surface.
- a leading edge of the distributed powder particles may be curved. The curvature of the leading edge of the distributed powder particles can limit the lateral and radial distribution of the powder particles, such that the powder particles may not be spread evenly along the working surface. Accordingly, a geometry of the containment wall may be limited.
- certain recoater blade configurations may be unable to distribute the powder particles of the subsequent powder bed layer in a manner that fills-in the disruption such that the deposited powder bed layer is continuous along the lateral and radial directions of the working surface.
- the containment wall may have a breach and the powder particles seep out of the containment wall.
- certain existing recoater blade configurations distribute the powder particles past a boundary of the working surface (e.g., past an outer edge of the build plate). Therefore, a portion of the powder particles fall off the working surface and are unavailable for use in the build process. Accordingly, the overall manufacturing cost of the 3D printing the article may be increase due, in part, to loss and increase usage of build material (e.g., the powder particles).
- the build plate of the additive manufacturing system may include surface features (e.g., screw/bolt and/or openings/holes) to facilitate coupling the build plate to the build platform and/or for movement (e.g., rotation and/or translocation) during the additive manufacturing process.
- the surface features of the build plate may create sink holes that result in a discontinuous powder bed. For example, a portion of the powder particles may fall into the openings/holes on the build plate as the recoater blade distributes the powder particles along the working surface, thereby creating a sink hole in the powder bed layer.
- Existing recoater blade configurations are unable to distribute the powder past the portion of the powder bed that has the sink hole. Accordingly, the disruption in the powder bed layer propagates to the subsequent powder bed layers of the article being printed. Consequently, the overall properties (e.g., physical and mechanical properties) of the printed article may not be desirable.
- a rate of powder distribution from an inner radius to the outer radius the working surface is based on the configuration of the recoater blade.
- the rate of powder distribution in the lateral and radial directions along the working surface may vary based on an angle of the recoater blade relative to a tangent at a given radius of the working surface. That is, a velocity at which the recoater blade distributes the powder particles along the working surface to form the powder bed layer depends on the angle of the recoater blade relative to the build plate. Therefore, if the angle of the recoater blade varies relative to the tangent along each radii of the build plate, the rate of powder distribution from the inner radius to the outer radius of the working surface will also vary.
- the variation in the rate of powder distribution along the working surface may not allow the recoater blade to move the powder particles past the areas of the powder bed layer where the disruptions are located.
- straight recoater blades create a variable angle relative to the tangent at a given radius of the build plate from the inner radius to the outer radius of the build plate. Accordingly, the rate at which the straight recoater blade distributes (e.g., spreads) the powder particles along the working surface varies depending on where along a radius of the working surface the straight recoater blade is distributing the powder particles at a given time. This results in uneven distribution of the powder particles, such that the disruptions in the powder bed layer and/or containment wall may be difficult to fill with additional powder.
- the variation in the angle of the straight recoater blade relative to the tangent at each radii of the working surface creates a curved leading edge of the powder bed layer.
- the curved leading edge may limit the steepness, and consequently the geometry, of the containment wall. It has been recognized that by using a recoating blade having a geometry that creates a constant angle between the recoater blade and a tangent at each radii across the working surface, an even distribution of the powder along the working surface may be achieved.
- increasing the rate of powder distribution in a lateral direction may distribute the powder particles in a manner that enables filling-in of disruptions in the powder bed layer created by surface features of the build plate and/or breaches in the containment walls.
- a recoating assembly having a non-linear recoater blade that may be used to substantially evenly distribute the powder particles across the working surface to mitigate propagation of disruptions in downstream layers of the powder bed layer during additive manufacturing of an article of interest.
- FIG. 1 is a schematic view of an embodiment of a continuous additive manufacturing system 10 for manufacturing an article (e.g., a consolidated metal or ceramic part) using a recoating assembly having a non-linear recoater blade that may evenly distribute powder particles along a working surface.
- a coordinate system 11 having an x-axis or direction 12 , a y-axis or direction 14 , and a z-axis or direction 16 , the axes 12 , 14 , and 16 being orthogonal to one another.
- the continuous additive manufacturing system 10 includes an enclosure 17 that houses various components of the continuous additive manufacturing system 10 , and that also maintains an inert atmosphere during the additive manufacturing processes.
- the continuous additive manufacturing system 10 includes two consolidation units 18 positioned within the enclosure 17 .
- the continuous additive manufacturing system 10 may include any number of consolidation units 18 such as, for example, 1, 2, 3, 4, 5, or more consolidation units 18 .
- Each consolidation unit 18 includes a respective laser device 20 , a respective scanning motor 24 , a respective scanning mirror 26 , and a respective scanning lens 28 for fabricating an article 30 using a layer-by-layer manufacturing process (e.g., DMLM/DMLS).
- each consolidation unit 18 may include any component that facilitates consolidation of a material (e.g., metal and/or ceramic) using any of the processes and systems described herein.
- Each laser device 20 provides a high-intensity energy source that generates a respective melt pool 32 (not shown to scale) in a deposited powdered material on a build platform 34 using an energy beam 38 .
- Each laser device 20 is coupled to the respective consolidation unit 18 using a fiber optic cable.
- a housing 40 of each respective consolidation unit 18 is coupled to a respective mounting system 42 .
- Each mounting system 42 is moved by a respective actuator or an actuator system 46 that moves each mounting system 42 in the directions 12 , 14 , and 16 to cooperate with each scanning mirror 26 and facilitate fabricating a layer of the article 30 .
- each mounting system 42 can be pivoted about a central point, moved in a linear path, a curved path, and/or rotated to cover an annular build plate 50 of the build platform 34 with a desired portion of the powder particles.
- the movement of each mounting system 42 facilitates directing each energy beam 38 along a surface of a plurality of powder particles 52 of a build layer 54 to form a layer of the article 30 .
- the housing 40 and the energy beam 38 are moved in any suitable orientation and manner that enables the continuous additive manufacturing system 10 to selectively direct each energy beam 38 to a desired portion of the build layer 54 and to generate the desired geometry of the article 30 .
- Each scanning motor 24 is controlled by a controller 58 to move at each mirror 26 such that each energy beam 38 is reflected to be incident along a predetermined path along the build platform 34 (e.g., a linear and/or rotational scan path 60 ).
- a combination of the scanning motor 24 and the scanning mirror 26 forms a two-dimension scan galvanometer.
- the scanning motors 24 and the scanning mirrors 26 may include a three-dimension (3D) scan galvanometer, dynamic focusing galvanometer, and/or any other method that may be used to deflect the energy beam 38 of the laser device 20 .
- the annular build plate 50 is rotated in a rotation direction 62 about a platform axis 64 (e.g., a longitudinal axis or the Z-axis 16 ) by an actuator system 68 to facilitate continuous deposition, distribution, and consolidation of the plurality of powder particles 52 .
- the actuator system 68 may also move the build platform 34 in the direction corresponding to the X-axis 12 to facilitate consolidation of the build layer 54 on top of a previously consolidated build layer 54 .
- the actuator system 68 may also move the build platform 34 in the XY plane.
- the housing 40 may be stationary.
- the actuator system 68 rotates the annular build plate 50 in the direction 62 and in the directions 12 , 14 to allow each scanning motor 24 and each scanning mirror 26 to direct each energy beam 38 along the scan paths 60 about the annular build plate 50 .
- the actuator system 68 may include a linear motor(s), a hydraulic and/or pneumatic piston(s), a screw drive mechanism(s), and/or a conveyor system to facilitate movement and rotation of the build platform 34 .
- the controller 58 controls operation of the continuous additive manufacturing system 10 to generate the article 30 .
- the controller 58 may include a distributed control system (DCS) or any computer-based workstation that is fully or partially automated.
- DCS distributed control system
- the controller 58 can be any suitable device employing a general purpose computer or an application-specific device, which may generally include memory circuitry 70 storing one or more instructions for controlling operation of the continuous additive manufacturing system 10 .
- the memory circuitry 70 may store computer-aided designs (CAD) representative of a structure of the article being printed.
- CAD computer-aided designs
- the controller 58 may include one or more processing devices (e.g., microprocessor 72 ) for executing the instructions stored in the memory circuitry 70 , and the memory circuitry 70 may include one or more tangible, non-transitory, machine-readable media collectively storing instructions executable by the processor to control actions of the continuous additive manufacturing system 10 , as described herein.
- processing devices e.g., microprocessor 72
- the memory circuitry 70 may include one or more tangible, non-transitory, machine-readable media collectively storing instructions executable by the processor to control actions of the continuous additive manufacturing system 10 , as described herein.
- the controller 58 of the continuous additive manufacturing system 10 converts the CAD file of the article 30 into a layer-by-layer format that includes a plurality of build parameters for each layer of the article 30 (e.g., the build layer 54 of article 30 including the plurality of powder particles 52 to be consolidated).
- the article 30 is modeled in a desired orientation relative to the centerline axis 64 .
- the geometry of the article 30 is sliced into a stack of continuous helical layers of a desired thickness, such that the geometry of each layer is an outline of a cross-section through the article 30 at that particular layer location.
- the scan paths 60 are generated across the geometry of a respective layer.
- the build parameters are applied along the scan path 60 to fabricate that layer of the article 30 from the plurality of powder particles 52 used to construct the article 30 .
- the steps are repeated for each respective layer in the continuous helical layer of the article 30 geometry.
- an electronic representation of the scan paths 60 is generated, including all of the layers.
- the electronic representation of the scan paths 60 is loaded into controller 58 of the continuous additive manufacturing system 10 to control the system during fabrication of each layer.
- the continuous additive manufacturing system 10 is operated to generate the article 30 by implementing the layer-by-layer manufacturing process, such as a direct metal laser melting (DMLM) method, in a rotary manner, effecting a helical structure in the article 30 , for example.
- the layer-by-layer additive manufacturing process does not require the use of a pre-existing article as the precursor to the final component, rather the process produces the article 30 from a raw material in a configurable form, such as the plurality of powder particles 52 .
- a steel article 30 can be additively manufactured using a steel powder.
- the continuous additive manufacturing system 10 enables fabrication of articles, such as the article 30 , using a broad range of materials.
- the materials used for manufacturing the article 30 include metals, ceramics, glass, polymers, and combinations thereof.
- FIG. 2 is a top schematic view of an embodiment of the continuous additive manufacturing system 10 that includes a recoating assembly 80 having at least one curved recoater blade 82 .
- the curved recoater blade 82 facilitates substantially even distribution of the powder particles 52 to mitigate disruptions in the build layer 54 by creating a substantially constant angle relative to a tangent at each radii of the annular build plate 50 .
- radial transport of the powder particles 52 may be substantially even along the radius of the annular build plate 50 .
- a leading edge 84 of the powder particles 52 may move in a straight line, rather than a curved line, along the radius of the annular build plate 50 during spreading of the powder particles 52 to form the build layer 54 .
- the straight line is intended to denote a line that is radially oriented with respect to the platform axis 64 and orthogonal to each radii (e.g., the radii 136 ) of the annular build plate 50 .
- the recoating assembly 80 may be positioned within a workstation 100 of the continuous additive manufacturing system 10 .
- the continuous additive manufacturing system 10 includes two workstations 100 .
- the continuous additive manufacturing system 10 may have any number of workstations 100 such as, for example, 1, 2, 3, 4, 5, or more workstations 100 circumferentially spaced apart along a circumference of the build platform 34 .
- Each workstation 100 includes the consolidation unit 18 , a particle delivery unit 116 , and at least one recoating assembly 80 .
- the shape and arrangement of the annular build plate 50 in FIG. 2 and the workstations 100 may have any configuration that enables the continuous additive manufacturing system 10 to manufacture the article 30 .
- the annular build plate 50 is a circular disc.
- the annular build plate 50 may have any other suitable geometric shape such as rectangular, elliptical, oval, or polygonal.
- An inner radius 102 of the annular build plate 50 defines a central annulus 104 (e.g., open portion).
- the annular build plate 50 provides a continuous workflow path 106 between the inner radius 102 and an outer radius 108 , and rotates in the rotation direction 62 about the platform axis 64 .
- the annular build plate 50 has a platform plane 112 that is orthogonal to the Z-axis 16 .
- the platform plane 112 may be oriented at an angle relative to the Z-axis 16 that is between approximately 85 degrees and approximately 275 degrees.
- the platform plane 112 may be oriented at any other suitable angle that facilitates operation of the continuous additive manufacturing system 10 , as described herein.
- the workstations 100 may be stationary units that are axially spaced apart from the annular build plate 50 along the Z-axis 16 by a workstation height (e.g., a distance between the annular build plate 50 and the respective workstation 100 ).
- the annular build plate 50 may move along the Z-axis 16 relative to workstations 100 to adjust the workstation height.
- the workstations 100 may be movable along the Z-axis 16 , such that movement of the workstations 100 , rather than the annular build plate 50 , adjusts the workstation height. Movement of both the workstations 100 and the annular build plate 50 are also within the scope of the present disclosure.
- Each workstation 100 includes at least one particle delivery unit 116 , at least one recoating assembly 80 , and at least one consolidation unit 18 .
- the workstations 100 may include any type and number of devices and recoating assemblies that facilitate operation of the continuous additive manufacturing system 10 as described herein.
- each particle delivery unit 116 deposits the powder particles 52 on a surface 120 of the annular build plate 50 at a rate that may be controlled to facilitate forming each build layer 54 of the article 30 by the continuous additive manufacturing system 10 .
- each particle delivery unit 116 deposits the powder particles 52 on an area of the surface 120 that allows the recoating assembly 80 to distribute, meter and level (e.g., smooth) the powder particles 52 and form the build layer 54 .
- the particle delivery unit 116 may include a particle hopper 124 , a particle feeder 126 , and a feed restrictor or nozzle 128 .
- the particle delivery unit 116 is a screw-feed particle delivery unit, which includes the particle hopper 124 , a screw-type feeder (e.g., the particle feeder 126 ), a telescoping guide tube, and the nozzle 128 .
- the particle delivery unit 116 may be a fixed orifice funnel particle delivery unit that deposits the powder particles 52 on the surface 120 at a constant rate, a valved variable orifice particle delivery unit that deposits the powder particles 52 on the surface 120 at varying rates, a vibrating channel particle delivery unit that vibrates to facilitate transferring the powder particles 52 from the particle hopper 124 to the surface 120 , a gas-blown particle delivery unit that uses a pressurized gas to entrain and deposit the powder particles 52 on the surface 120 , or a conveyor particle delivery unit that uses a conveyor to deposit the powder particles 52 on the surface 120 .
- Each recoating assembly 80 includes features that facilitate distribution, metering, and smoothing of the powder particles 52 along the annular build plate 50 , thereby forming the build layer 54 .
- each recoating assembly 80 mechanically redistributes the powder particles 52 across the surface 120 as the annular build plate 50 rotates in the rotational direction 62 .
- each recoating assembly 80 evenly distributes the powder particles 52 both laterally and radially on the annular build plate 50 .
- each disclosed recoating assembly 80 distributes (e.g., spreads) the powder particles 52 such that a consistent lateral and radial distribution and depth of the powder particles 52 across the annular build plate 50 is achieved to form the build layer 54 .
- FIG. 3 illustrates an embodiment of the recoating assembly 80 that may be used to evenly distribute the powder particles 52 laterally and radially in a manner that allows disruptions in previously deposited build layers 54 to be filled in to mitigate propagation of the disruptions in subsequent build layers 54 .
- the recoating assembly 80 includes the curved recoater blade 82 positioned at a bottom end 140 of a mounting jig 142 .
- the curved recoater blade 82 is coupled to a jig surface 146 along an axis 144 (e.g., horizontal axis) of the recoating assembly 80 .
- the jig surface 146 corresponds to a surface of the jig 142 positioned closest to the surface 120 of the annular build plate 50 , as illustrated in FIG. 2 .
- the mounting jig 142 supports and couples the curved recoater blade 82 to a supporting structure of the workstation 100 shown in FIG. 2 .
- the curved recoater blade 82 may be removably coupled to the mounting jig 142 .
- an operator of the continuous additive manufacturing system 10 may remove the attached curved recoater blade 82 from the mounting jig 142 and replace it with another recoater blade depending on the geometry of the article 30 to be printed, wear of the attached curved recoater blade 82 , and/or a radius of the annular build plate 50 illustrated in FIG. 2 .
- the replacement recoater blade may have the same or different geometry as the previously attached recoater blade 82 .
- the mounting jig 142 and the curved recoater blade 82 may be manufactured from, for example, stainless steel, steel, titanium, titanium alloys, aluminum, aluminum alloys, copper alloys, ceramic, polymers, resins (e.g., rubber, silicone, polycarbonate, polyvinylchloride, epoxy resins, or the like) or any other suitable material and combinations thereof.
- the mounting jig 142 and the curved recoater blade 82 are manufactured from the same material. In other embodiments, the mounting jig 142 and the curved recoater blade 82 are manufactured from different materials.
- the curved recoater blade 82 may be a hard (e.g., rigid) recoater blade or a soft (flexible) recoater blade.
- the soft recoater blade may have a higher degree of flexibility relative to the hard recoater blade.
- the hard recoater blade may be fabricated from hard materials such as the metals, metal alloys, ceramic materials, and resins discussed above.
- the hard recoater blade may be manufactured from the powder particles 52 or from the same material as the powder particles 52 . In this way, portions of the curved recoater blade 82 that may flake off due to normal wear of the curved recoater blade 82 do not contaminate the build layer 54 with a different material.
- the soft recoater blade may be fabricated from flexible materials such as silicone, rubber, or any other suitable flexible polymeric material and/or fibers.
- the soft recoater blade may include bristles (e.g., silicone, nylon, silk, wool, or any other suitable synthetic and/or natural fiber).
- the curved recoater blade 82 may be coupled to the mounting jig 142 via any suitable means.
- the curved recoater blade 82 may be coupled to the mounting jig 142 via an adhesive (e.g., cyanoacrylates, polyurethane, epoxy, or the like), welding, fasteners (e.g., screws, bolts, clips, etc.), or any other suitable coupling technique. Attaching the curved recoater blade 82 using fasteners may facilitate removal of the attached curved recoater blade 82 .
- an operator of the continuous additive manufacturing system 10 may switch between recoater blades during manufacturing of the article 30 .
- the recoating assembly 80 may be molded or printed such that the mounting jig 142 and the curved recoater blade 82 form a single continuous structure with no removable or adjoined parts.
- the recoating assembly 80 may be coupled to a vibration source (e.g., electrical or acoustic).
- the vibration source may be coupled to the mounting jig 142 or the curved recoater blade 82 .
- the vibration source creates vibrations along the curved recoater blade 82 .
- the vibrations may fluidize the powder particles 52 such that the powder particles 52 may easily flow and be distributed along the surface 120 to form the build layer 54 .
- the mounting jig 142 includes a supporting wall 147 extending between the bottom end 140 and a top end 149 along the axis 144 .
- the supporting wall 147 has a rectangular shape.
- the shape of the supporting wall 147 may be triangular, polygonal, square, or any other suitable shape that supports the curved recoater blade 82 and facilitates coupling of the recoating assembly 80 to the supporting structure of the workstation.
- the supporting wall 147 includes one or more openings 148 that couple the recoating assembly 80 to complimentary coupling members (e.g., a peg, protrusion, hook, or the like) on the supporting structure of the workstation 100 .
- the openings 148 may have any suitable shape that facilitates coupling of the recoating unit 80 to the complimentary coupling member on the workstation 100 .
- the shape of the openings 148 may be square, round, elliptical, polygonal, triangular, or any other suitable shape.
- the mounting jig 142 may have protrusions or pegs that couple to corresponding openings/slots on the support structure of the workstation 100 . In other embodiments, the mounting jig 142 may have a combination of protrusions and the openings 148 .
- the openings 148 are shaped in a manner that enables movement of the recoating assembly 80 relative to the annular build plate 50 in the Z-direction 16 .
- the recoating assembly 80 may move toward or away from the annular build plate 50 to position the curved recoater blade 82 on the surface 120 of the annular build plate 50 such that the curved recoater blade 82 can distribute the deposited powder particles 52 and form the build layer 54 .
- the one or more openings 148 are elongated along a dimension 150 (e.g., a vertical dimension) of the mounting jig 142 .
- the elongated configuration of the openings 148 of the illustrated embodiment facilitates adjustment of a distance (e.g., height) of the curved recoater blade 82 relative the annular build plate 50 . That is, the elongated configuration allows the recoating assembly 80 to move in the Z-direction 16 to change a distance between a contacting surface 152 of the curved recoater blade 82 and the surface 120 of the annular build plate 50 , as best seen in FIG. 2 .
- the build platform 34 illustrated in FIG. 2 may not move in the Z-direction 16 to bring the annular build plate 50 toward or away from the contacting surface 152 of the curved recoater blade 82 . Rather, the recoating assembly 80 translocates relative to the annular build plate 50 in the Z-direction 16 . Therefore, the openings 148 may allow the recoating assembly 80 to slide in the Z-direction 16 . However, in certain embodiments, the recoating assembly 80 is stationary and does not move relative to the annular build plate 50 in the Z-direction 16 .
- the build platform 34 may translocate in the Z-direction to move the annular build plate 50 toward or away from the contacting surface 152 of the curved recoater blade 82 .
- both the recoating assembly 80 and the build platform 34 move relative to each other in the Z-direction 16 .
- the curved recoater blade 82 includes a blade wall 168 having a first face 170 and a second face 172 opposite the first face 170 .
- the first face 170 is curved (e.g., arched). Accordingly, a portion of the first face 170 extends away from the supporting wall 147 of the mounting jig 142 a distance 178 .
- the distance 178 varies along the length 158 of the curved recoater blade 82 from a first end 180 to a second end 182 of the curved recoater blade 82 based on a pitch of curvature of the first face 170 .
- the second face 172 is straight (e.g., flat, planar, non-curved). In other embodiments, both the first and second face 170 , 172 , respectively, are curved. For example, one of the first or the second face 170 , 172 may be convex (e.g., domed), and the other side 170 , 172 , respectively, may be concave.
- the degree of curvature of the first face 170 along the length 158 of the curved recoater blade 82 may be determined or designed based on the pitch that achieves the desired angle 132 . For example, as the pitch of the curvature of the first face 170 increase, the angle 132 decreases, and the radial transport rate of the powder particles 52 by the curved recoater blade 82 increases.
- the length 158 of the curved recoater blade 82 increases as a function of the pitch. That is, as the pitch of the curvature increases, the angle 132 decreases, and the length 158 of the curved recoater blade 82 increases.
- the pitch may be selected such that the angle 132 between the curved recoater blade 82 and the tangent 134 at each respective radii 136 is between approximately 10 degrees and approximately 75 degrees.
- the disclosed curved recoater blade 82 enables a constant radial transport rate of the powder particles 52 , such that the leading edge 84 of the powder particles 52 moves in a straight line, rather than a curved line, along the surface 120 of the annular build plate 50 . In this way, disruptions in the containment wall of each respective build layer 54 resulting from uneven distribution of the powder particles 52 may be mitigated. Additionally, the curved recoater blade 82 may reduce the amount of the powder particles 52 dispensed onto the annular build plate 50 .
- an excess amount of the powder particles 52 may be dispensed to distribute enough of the powder particles 52 to the regions having the disruptions.
- excess powder particles 52 may not be necessary for filling in regions of the build layer 54 having disruptions because the curved recoater blade 82 evenly distributes the powder particles 52 in a manner that mitigates formation and propagation of the disruptions in subsequent build layers 54 .
- the constant radial transport rate promoted by the curved recoater blade 82 may result in a constant smoothness (e.g., leveling) of the build layer 54 compared to recoater blades that are not curved.
- the recoating assembly 80 is positioned on the supporting structure of the respective workstation 100 such that the curved recoater blade 82 is positioned at an angle relative to the annular build plate 50 .
- the recoating assembly 80 is positioned at an angle 154 relative to a tangent 156 at the inner radius 102 of the annular build plate 50 .
- a length 158 (e.g., horizontal length) of the curved recoater blade 82 is orthogonal to the platform axis 64 (e.g., the Z-axis 16 ) of the continuous additive manufacturing system 10 .
- a jig alignment tool 159 may be used to position and align the recoating assembly 80 before securing the mounting jig 142 to the supporting structure of the respective workstation 100 .
- the jig alignment tool 159 includes a base 160 that is positioned against (e.g., abuts) an outer side wall 162 of the annular build plate 50 at the outer radius 108 .
- the base 160 aligns an extending arm 164 of the jig alignment tool 159 at the desired angle 154 .
- the recoating assembly 80 may be positioned against the extending arm 164 such that the contact surface 152 of the curved recoater blade 82 is adjacent to the surface 120 of the annular build plate 50 .
- the jig alignment tool 159 may be set to a desired angle 154 relative to the tangent 156 to set the angle 132 of the curved recoater blade 82 relative to the tangent 134 at each radii 136 of the annular build plate 50 .
- the angle 132 of a recoater blade relative to the tangent 134 at each radii 136 of the annular build plate 50 affects how the powder particles 52 are distributed onto the surface 120 . If the angle 132 varies at each radii 136 between the inner radius 102 and the outer radius 108 of the annular build plate 50 , the rate at which the powder particles 52 are distributed will also vary radially along the surface 120 . The radial variation in the distribution rate of the powder particles 52 results in uneven distribution of the powder particles 52 .
- the shape of the recoater blade affects the angle 132 , and hence how the powder particles 52 are distributed.
- the shape of the recoater blade should have a curvature, as shown by the curved recoater blade 82 in FIG. 3 .
- FIG. 5 is a schematic top view of the recoater blade 82 positioned along the surface 120 of the annular build plate 50 .
- the curved recoater blade 82 is oriented such that the curved recoater blade 82 forms the angle 154 between the second face 172 and the inner radius 102 of the annular build plate 50 .
- the first face 170 of the curved recoater blade 82 faces toward the outer radius 108 of the annular build plate 50 and forms the substantially constant angle 132 relative to the tangent 134 at each radii 136 of the annular build plate 50 .
- the rate at which the curved recoater blade 82 distributes the powder particles 52 onto the surface 120 of the annular build plate 50 is constant, resulting in an even radial distribution.
- the curved recoater blade 82 may be constructed as a single continuous curve, as multiple connected linear segments that effect a continuous curve (e.g. a spline), or as a series of multiple disconnected linear segments that trail one another to effect a continuous curve.
- the curved recoater blade 82 may be part of a kit of various recoater blades having different geometries (e.g., straight and curved).
- the kit may include curved recoater blades 82 that each have a curve with a different pitch.
- each curved blade 82 in the kit may have a curve with a pitch between approximately 10 and approximately 75 degrees to the tangent at a radius.
- the operator of the continuous additive manufacturing system 10 may select at least one recoater blade from the various recoater blades in the kit based on printing parameters and/or the geometry of the article 30 to be printed.
- the recoating assembly 80 distributes, meters, and smooths the powder particles 52 on the surface 120 of the annular build plate 50 to form the build layer 54 during use of the continuous additive manufacturing system 10 .
- the continuous additive manufacturing system 10 may include a combination of recoater blades within a single workstation 100 .
- FIG. 6 is a top schematic view of the continuous additive manufacturing system 10 having a multi-stage recoating configuration.
- each workstation 100 includes a coarse recoater blade (e.g., the curved recoater blade 82 ) and a fine recoater blade (e.g., a straight recoater blade 184 ).
- the continuous additive manufacturing system 10 includes one or more than two workstations 100 .
- one workstation 100 may include both recoater blades 82 , 184 and the other workstation 100 includes either the curved recoater blade 82 or the straight recoater blade 184 .
- the curved recoater blade 82 provides a substantially even lateral and radial distribution of the powder particles 52 on the surface 120 compared to the straight recoater blade 184 , as discussed above.
- the straight recoater blade 184 may be better for metering and/or smoothing of the powder particles 52 compared to the curved recoater blade 82 . Therefore, using both the recoater blades 82 , 180 to form the build layer 54 may result in an evenly distributed and flat (e.g., level) build layer 54 that is suitable for building the article 30 with a desired geometry and quality.
- the curvature of the curved recoater blade 82 can be purposefully designed to deliver non-uniform distribution of the powder.
- its radial velocity may be increased in order to increase the distribution rate (e.g. to fill in after disruptions in the powder bed). In certain embodiments, this could be accomplished using a recoater blade with uniform curvature that is pitched at a specific angle relative to the tangent at a radius.
- a recoater blade with a non-uniform curvature that continuously varies along its length e.g. as a ⁇ (tilde) shape
- both the recoater blades 82 , 180 are mounted on the mounting jig 142 .
- the blades 82 , 180 may be mounted at different height settings along the dimension 150 of the mounting jig 142 .
- the curved recoater blade 82 may be mounted onto the bottom end 140 and the straight recoater blade 184 may be mounted on the supporting wall 147 shown in FIG. 3 , such that a distance between the contacting surface 152 of the curved recoater blade 82 and the surface 120 of the annular build plate 50 is less than a distance between a respective contacting surface of the straight recoater blade 184 and the surface 120 .
- the distance between the contacting surface 152 and the surface 120 is greater than or equal to the respective distance between the contacting surface of the straight blade 184 and the surface 120 .
- each respective recoater blade 82 , 184 is mounted onto its own dedicated mounting jig 142 . That is, the recoater blades 82 , 184 do not share the same mounting jig 142 .
- the straight recoater blade 184 is positioned downstream (e.g., away from the particle delivery unit 116 in the direction 62 ) of the curved recoater blade 82 .
- the straight recoater blade 184 may be positioned upstream of the curved recoater blade 82 . That is, the straight recoater blade 184 may be disposed between the curved recoater blade 82 and the feed nozzle 128 .
- the recoating assembly disclosed herein may be used in continuous additive manufacturing systems to print an article, such as a metal machine part.
- the disclosed recoating assembly includes a curved recoater blade mounted on a mounting jig that may be used to adjust a height of the curved recoater blade relative to a build plate of the continuous additive manufacturing system.
- the curved configuration of the curved recoater blade results in a substantially constant angle between the curved recoater blade and a tangent at each radii along the build plate. As such, the radial and lateral transport rate of powder particles onto the build plate of the continuous additive manufacturing system is increased, which causes a leading edge of the powder particles to move in a substantially straight line.
- the powder particles are evenly distributed on the working surface.
- disruptions in the containment walls and/or build layers of the article of interest may not propagate into subsequent build layers.
- more complex containment wall and article geometries may be achieved with continuous additive manufacturing techniques.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Ceramic Engineering (AREA)
- Plasma & Fusion (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Apparatus (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/672,073 US11465210B2 (en) | 2018-05-08 | 2019-11-01 | System for additive manufacturing |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/974,475 US10493527B1 (en) | 2018-05-08 | 2018-05-08 | System for additive manufacturing |
| US16/672,073 US11465210B2 (en) | 2018-05-08 | 2019-11-01 | System for additive manufacturing |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/974,475 Division US10493527B1 (en) | 2018-05-08 | 2018-05-08 | System for additive manufacturing |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20200061711A1 US20200061711A1 (en) | 2020-02-27 |
| US11465210B2 true US11465210B2 (en) | 2022-10-11 |
Family
ID=68463875
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/974,475 Expired - Fee Related US10493527B1 (en) | 2018-05-08 | 2018-05-08 | System for additive manufacturing |
| US16/672,073 Active 2038-08-04 US11465210B2 (en) | 2018-05-08 | 2019-11-01 | System for additive manufacturing |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/974,475 Expired - Fee Related US10493527B1 (en) | 2018-05-08 | 2018-05-08 | System for additive manufacturing |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US10493527B1 (en) |
| CN (1) | CN110450412B (en) |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019094286A1 (en) * | 2017-11-08 | 2019-05-16 | General Electric Company | Omnidirectional recoater |
| US11273601B2 (en) * | 2018-04-16 | 2022-03-15 | Panam 3D Llc | System and method for rotational 3D printing |
| US11072039B2 (en) * | 2018-06-13 | 2021-07-27 | General Electric Company | Systems and methods for additive manufacturing |
| US11312074B2 (en) * | 2019-09-13 | 2022-04-26 | Formlabs, Inc. | Liquid interface techniques for additive fabrication and related systems and methods |
| CN111974992B (en) * | 2019-12-27 | 2022-04-05 | 中北大学 | A uniform heating device for forming annular metal parts |
| CN111482322B (en) * | 2020-04-10 | 2021-11-23 | 内蒙古警通标牌制作有限责任公司 | Motor vehicle license plate reflective membrane preprinting machine |
| US20230234128A1 (en) * | 2020-07-28 | 2023-07-27 | Siemens Energy, Inc. | Method of and apparatus using a split wiper for the repair of objects protruding above a powder bed |
| CN112276085B (en) * | 2020-10-28 | 2022-11-04 | 广西慧思通科技有限公司 | Metal 3D printing device forming mechanism |
| CN114131925A (en) * | 2021-12-02 | 2022-03-04 | 中国航发动力股份有限公司 | A method and device for spatial position forming based on additive manufacturing |
| US12115727B2 (en) * | 2022-06-28 | 2024-10-15 | Ge Infrastructure Technology Llc | Additive manufacturing methods and systems including a rotator assembly for manipulating a build assembly |
| GB202210688D0 (en) * | 2022-07-21 | 2022-09-07 | Rolls Royce Plc | Apparatus and method |
| US20250001679A1 (en) * | 2023-06-30 | 2025-01-02 | Rtx Corporation | Powder bed fusion additive printer recoater for uniform powder packing |
| US20250001505A1 (en) * | 2023-06-30 | 2025-01-02 | Rtx Corporation | Powder bed fusion additive printer recoater for uniform powder packing |
Citations (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6336480B2 (en) | 1997-03-31 | 2002-01-08 | Therics, Inc. | Apparatus and method for dispensing of powders |
| US20030197076A1 (en) | 2001-12-20 | 2003-10-23 | Yasui Seiki Co., Ltd. | Coating material supply nozzle |
| US20110223349A1 (en) | 2008-07-18 | 2011-09-15 | Simon Peter Scott | Powder Dispensing Apparatus and Method |
| US8021138B2 (en) | 2007-06-21 | 2011-09-20 | Materials Solutions | Rotating build plate |
| CN203778764U (en) | 2014-04-21 | 2014-08-20 | 马鞍山市恒永利机械科技有限公司 | Turntable material-distribution device for slitting knife powder metallurgy |
| US20140314609A1 (en) * | 2013-04-23 | 2014-10-23 | Arcam Ab | Method and apparatus for forming a three-dimensional article |
| CN104245284A (en) | 2012-08-29 | 2014-12-24 | 卡佩兹公司 | Machines for the production of round products by layer-by-layer addition |
| CN105729806A (en) | 2016-04-03 | 2016-07-06 | 吉林大学 | 3D device for laminated manufacturing of powder and 3D printing method |
| US20160193695A1 (en) | 2012-07-27 | 2016-07-07 | Aerojet Rocketdyne Of De, Inc. | Solid axisymmetric powder bed for selective laser melting |
| US20160236277A1 (en) | 2015-02-12 | 2016-08-18 | United Technologies Corporation | Additively manufactured non-contact support |
| US9486962B1 (en) | 2016-05-23 | 2016-11-08 | The Exone Company | Fine powder recoater for three-dimensional printer |
| US20160325503A1 (en) | 2014-01-02 | 2016-11-10 | United Technologies Corporation | Additive manufacturing process distortion management |
| US20170333990A1 (en) | 2016-05-17 | 2017-11-23 | Rolls-Royce Plc | Additive layer manufacturing base plate |
| US20180085856A1 (en) * | 2016-09-29 | 2018-03-29 | Safran Aircraft Engines | Device for fabricating annular pieces by selectively melting powder, the device including a powder wiper |
| CN107900343A (en) | 2018-01-11 | 2018-04-13 | 孟恬静 | A kind of loop laser selective melting former and its manufacturing process |
| US20180345371A1 (en) * | 2017-05-31 | 2018-12-06 | General Electric Company | Apparatus and method for angular and rotational additive manufacturing |
-
2018
- 2018-05-08 US US15/974,475 patent/US10493527B1/en not_active Expired - Fee Related
-
2019
- 2019-05-08 CN CN201910383597.5A patent/CN110450412B/en not_active Expired - Fee Related
- 2019-11-01 US US16/672,073 patent/US11465210B2/en active Active
Patent Citations (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6336480B2 (en) | 1997-03-31 | 2002-01-08 | Therics, Inc. | Apparatus and method for dispensing of powders |
| US20030197076A1 (en) | 2001-12-20 | 2003-10-23 | Yasui Seiki Co., Ltd. | Coating material supply nozzle |
| US8021138B2 (en) | 2007-06-21 | 2011-09-20 | Materials Solutions | Rotating build plate |
| US20110223349A1 (en) | 2008-07-18 | 2011-09-15 | Simon Peter Scott | Powder Dispensing Apparatus and Method |
| US20160193695A1 (en) | 2012-07-27 | 2016-07-07 | Aerojet Rocketdyne Of De, Inc. | Solid axisymmetric powder bed for selective laser melting |
| CN104245284A (en) | 2012-08-29 | 2014-12-24 | 卡佩兹公司 | Machines for the production of round products by layer-by-layer addition |
| US20140314609A1 (en) * | 2013-04-23 | 2014-10-23 | Arcam Ab | Method and apparatus for forming a three-dimensional article |
| US20160325503A1 (en) | 2014-01-02 | 2016-11-10 | United Technologies Corporation | Additive manufacturing process distortion management |
| CN203778764U (en) | 2014-04-21 | 2014-08-20 | 马鞍山市恒永利机械科技有限公司 | Turntable material-distribution device for slitting knife powder metallurgy |
| US20160236277A1 (en) | 2015-02-12 | 2016-08-18 | United Technologies Corporation | Additively manufactured non-contact support |
| CN105729806A (en) | 2016-04-03 | 2016-07-06 | 吉林大学 | 3D device for laminated manufacturing of powder and 3D printing method |
| US20170333990A1 (en) | 2016-05-17 | 2017-11-23 | Rolls-Royce Plc | Additive layer manufacturing base plate |
| US9486962B1 (en) | 2016-05-23 | 2016-11-08 | The Exone Company | Fine powder recoater for three-dimensional printer |
| US20180085856A1 (en) * | 2016-09-29 | 2018-03-29 | Safran Aircraft Engines | Device for fabricating annular pieces by selectively melting powder, the device including a powder wiper |
| CN107876760A (en) | 2016-09-29 | 2018-04-06 | 赛峰飞机发动机公司 | For manufacturing the device of annular element by optionally melting powder |
| US20180345371A1 (en) * | 2017-05-31 | 2018-12-06 | General Electric Company | Apparatus and method for angular and rotational additive manufacturing |
| CN107900343A (en) | 2018-01-11 | 2018-04-13 | 孟恬静 | A kind of loop laser selective melting former and its manufacturing process |
Non-Patent Citations (1)
| Title |
|---|
| Renap et al., Recoating Issues in Stereolithography, Rapid Prototyping Journal, 1995, Vo.1 Issue 3, pp. 4-16. |
Also Published As
| Publication number | Publication date |
|---|---|
| US10493527B1 (en) | 2019-12-03 |
| US20190344346A1 (en) | 2019-11-14 |
| CN110450412B (en) | 2021-09-24 |
| CN110450412A (en) | 2019-11-15 |
| US20200061711A1 (en) | 2020-02-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11465210B2 (en) | System for additive manufacturing | |
| US11584057B2 (en) | Systems and methods for additive manufacturing | |
| CN108790152B (en) | High-throughput additive manufacturing system | |
| CN108025499B (en) | Array of printhead modules for additive manufacturing systems | |
| CN108189390B (en) | Selective laser curing apparatus and method | |
| EP3349967B1 (en) | Printhead module for additive manufacturing system | |
| CN115401213B (en) | Alignment component tool assembly and method for powder bed additive manufacturing repair process | |
| US10786947B2 (en) | Leveling apparatus for a 3D printer | |
| CN110494238A (en) | The increasing material manufacturing carried out using the heavy applicator with the heavy applicator blade that can be replaced in situ | |
| CN111070683B (en) | 3D printing powder laying system, 3D printing device and 3D printing powder laying method | |
| US20120223462A1 (en) | Laser build up method using vibration and apparatus | |
| US20200238613A1 (en) | Recoating Assembly for an Additive Manufacturing Machine | |
| US11745289B2 (en) | Additive manufacturing systems and methods including rotating build platform | |
| US11618216B2 (en) | Additive manufacturing systems and methods including rotating binder jet print head | |
| CN112512730B (en) | Systems and methods for lateral material transfer in an additive manufacturing system | |
| JP2020147038A (en) | Print head coater module for three-dimensional printer, use of print head coater module and three-dimensional printer including print head coater module | |
| US11247393B2 (en) | Additive manufacturing systems and methods including rotating binder jet print head | |
| US11446868B2 (en) | Assembly and method for creating a 3D structure | |
| EP3944951A1 (en) | Additive manufacturing systems and methods including rotating binder jet print head | |
| CN112351847B (en) | System and method for additive manufacturing of powder bed size reduction using walls and retainers | |
| CN114103110A (en) | Additive manufacturing system and method including a rotary adhesive jetting printhead | |
| GB2601736A (en) | Powder deposition in additive layer manufacturing apparatus | |
| CN113631354A (en) | Additive manufacturing apparatus comprising a movable surface for receiving powder and optimised to retain powder particles | |
| HK1252401B (en) | Leveling apparatus for a 3d printer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
| AS | Assignment |
Owner name: GENERAL ELECTRIC COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TUCKER, MICHAEL ROBERT;REEL/FRAME:051091/0905 Effective date: 20180504 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| AS | Assignment |
Owner name: GE INFRASTRUCTURE TECHNOLOGY LLC, SOUTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:065727/0001 Effective date: 20231110 |