US20010012617A1 - Method for reverse transcription - Google Patents
Method for reverse transcription Download PDFInfo
- Publication number
- US20010012617A1 US20010012617A1 US09/803,952 US80395201A US2001012617A1 US 20010012617 A1 US20010012617 A1 US 20010012617A1 US 80395201 A US80395201 A US 80395201A US 2001012617 A1 US2001012617 A1 US 2001012617A1
- Authority
- US
- United States
- Prior art keywords
- reverse transcription
- mrna
- metal ions
- reverse transcriptase
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010839 reverse transcription Methods 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title claims abstract description 60
- 108020004999 messenger RNA Proteins 0.000 claims abstract description 83
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 claims abstract description 70
- 102100034343 Integrase Human genes 0.000 claims abstract description 69
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 45
- 108010006519 Molecular Chaperones Proteins 0.000 claims abstract description 28
- 239000002738 chelating agent Substances 0.000 claims abstract description 28
- 239000000126 substance Substances 0.000 claims abstract description 21
- 230000001747 exhibiting effect Effects 0.000 claims abstract description 17
- 230000004913 activation Effects 0.000 claims abstract description 16
- 239000001226 triphosphate Substances 0.000 claims abstract description 13
- 235000011178 triphosphate Nutrition 0.000 claims abstract description 13
- 150000001720 carbohydrates Chemical class 0.000 claims abstract description 11
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 42
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 28
- 102000040650 (ribonucleotides)n+m Human genes 0.000 claims description 19
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims description 14
- 229910001425 magnesium ion Inorganic materials 0.000 claims description 14
- 150000005846 sugar alcohols Polymers 0.000 claims description 14
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 claims description 10
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 claims description 10
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 claims description 10
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 claims description 9
- 102000005431 Molecular Chaperones Human genes 0.000 claims description 8
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical compound C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 claims description 8
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 claims description 8
- 235000001014 amino acid Nutrition 0.000 claims description 6
- 150000001413 amino acids Chemical class 0.000 claims description 6
- 229910001437 manganese ion Inorganic materials 0.000 claims description 6
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 5
- HEBKCHPVOIAQTA-QWWZWVQMSA-N D-arabinitol Chemical compound OC[C@@H](O)C(O)[C@H](O)CO HEBKCHPVOIAQTA-QWWZWVQMSA-N 0.000 claims description 5
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 5
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 claims description 5
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 claims description 5
- 229960002737 fructose Drugs 0.000 claims description 5
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 claims description 5
- 239000000600 sorbitol Substances 0.000 claims description 5
- 229960002920 sorbitol Drugs 0.000 claims description 5
- 239000000811 xylitol Substances 0.000 claims description 5
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 claims description 5
- 229960002675 xylitol Drugs 0.000 claims description 5
- 235000010447 xylitol Nutrition 0.000 claims description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 4
- 108010077895 Sarcosine Proteins 0.000 claims description 4
- 108010020713 Tth polymerase Proteins 0.000 claims description 4
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 claims description 4
- -1 quitobiose Chemical compound 0.000 claims description 4
- 229940043230 sarcosine Drugs 0.000 claims description 4
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 claims description 4
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 claims description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 3
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 claims description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 3
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 claims description 3
- 239000008103 glucose Substances 0.000 claims description 3
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 claims description 2
- NSIHNAZSHUNILW-HRYURAKTSA-N (2S,3S,4R,5R,6R)-6-[(2S,3S,4S,5S)-5-carboxy-2,3,4,5-tetrahydroxy-1-oxopentan-2-yl]-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound [C@@H]1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)C(=O)O)[C@@](C=O)(O)[C@@H](O)[C@H](O)[C@H](O)C(=O)O NSIHNAZSHUNILW-HRYURAKTSA-N 0.000 claims description 2
- IMXSCCDUAFEIOE-WDSKDSINSA-N (2s)-2-[[(1s)-1-carboxylatoethyl]azaniumyl]-5-(diaminomethylideneazaniumyl)pentanoate Chemical compound OC(=O)[C@H](C)N[C@H](C(O)=O)CCCN=C(N)N IMXSCCDUAFEIOE-WDSKDSINSA-N 0.000 claims description 2
- LGQKSQQRKHFMLI-SJYYZXOBSA-N (2s,3r,4s,5r)-2-[(3r,4r,5r,6r)-4,5,6-trihydroxyoxan-3-yl]oxyoxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)CO[C@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)OC1 LGQKSQQRKHFMLI-SJYYZXOBSA-N 0.000 claims description 2
- LGQKSQQRKHFMLI-UHFFFAOYSA-N 4-O-beta-D-xylopyranosyl-beta-D-xylopyranose Natural products OC1C(O)C(O)COC1OC1C(O)C(O)C(O)OC1 LGQKSQQRKHFMLI-UHFFFAOYSA-N 0.000 claims description 2
- JPLATTLXZFUKRQ-UHFFFAOYSA-N Agarobiose Natural products OCC1OC(OC2C(O)COC2C(O)C=O)C(O)C(O)C1O JPLATTLXZFUKRQ-UHFFFAOYSA-N 0.000 claims description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 claims description 2
- 241000894006 Bacteria Species 0.000 claims description 2
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 claims description 2
- WQZGKKKJIJFFOK-CBPJZXOFSA-N D-Gulose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O WQZGKKKJIJFFOK-CBPJZXOFSA-N 0.000 claims description 2
- IMXSCCDUAFEIOE-UHFFFAOYSA-N D-Octopin Natural products OC(=O)C(C)NC(C(O)=O)CCCN=C(N)N IMXSCCDUAFEIOE-UHFFFAOYSA-N 0.000 claims description 2
- WQZGKKKJIJFFOK-WHZQZERISA-N D-aldose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-WHZQZERISA-N 0.000 claims description 2
- WQZGKKKJIJFFOK-IVMDWMLBSA-N D-allopyranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@@H]1O WQZGKKKJIJFFOK-IVMDWMLBSA-N 0.000 claims description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 claims description 2
- SQNRKWHRVIAKLP-UHFFFAOYSA-N D-xylobiose Natural products O=CC(O)C(O)C(CO)OC1OCC(O)C(O)C1O SQNRKWHRVIAKLP-UHFFFAOYSA-N 0.000 claims description 2
- 239000004471 Glycine Substances 0.000 claims description 2
- 108010004889 Heat-Shock Proteins Proteins 0.000 claims description 2
- 102000002812 Heat-Shock Proteins Human genes 0.000 claims description 2
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 claims description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 2
- WQZGKKKJIJFFOK-VSOAQEOCSA-N L-altropyranose Chemical compound OC[C@@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-VSOAQEOCSA-N 0.000 claims description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 claims description 2
- FEXBYMWJVRXRSN-TWOHWVPZSA-N Levanbiose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@@H]1[C@@H](O)[C@H](O)[C@@](O)(CO)O1 FEXBYMWJVRXRSN-TWOHWVPZSA-N 0.000 claims description 2
- 150000001204 N-oxides Chemical class 0.000 claims description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 claims description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 2
- 229930006000 Sucrose Natural products 0.000 claims description 2
- 235000004279 alanine Nutrition 0.000 claims description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 claims description 2
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 claims description 2
- 229960001231 choline Drugs 0.000 claims description 2
- 229930182830 galactose Natural products 0.000 claims description 2
- 229960003692 gamma aminobutyric acid Drugs 0.000 claims description 2
- 229930195712 glutamate Natural products 0.000 claims description 2
- 125000002951 idosyl group Chemical class C1([C@@H](O)[C@H](O)[C@@H](O)[C@H](O1)CO)* 0.000 claims description 2
- 239000008101 lactose Substances 0.000 claims description 2
- FEXBYMWJVRXRSN-UHFFFAOYSA-N levanbiose Natural products OC1C(O)C(CO)OC1(CO)OCC1C(O)C(O)C(O)(CO)O1 FEXBYMWJVRXRSN-UHFFFAOYSA-N 0.000 claims description 2
- 229960002429 proline Drugs 0.000 claims description 2
- 239000005720 sucrose Substances 0.000 claims description 2
- 229960003080 taurine Drugs 0.000 claims description 2
- 229940074410 trehalose Drugs 0.000 claims description 2
- 150000001412 amines Chemical class 0.000 claims 2
- 125000000647 trehalose group Chemical group 0.000 claims 1
- 239000002299 complementary DNA Substances 0.000 abstract description 17
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 abstract description 5
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 abstract 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 abstract 1
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 32
- 230000000694 effects Effects 0.000 description 24
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 23
- 239000007983 Tris buffer Substances 0.000 description 21
- 229910001629 magnesium chloride Inorganic materials 0.000 description 16
- 102000004190 Enzymes Human genes 0.000 description 15
- 108090000790 Enzymes Proteins 0.000 description 15
- 239000000872 buffer Substances 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- 238000013467 fragmentation Methods 0.000 description 14
- 238000006062 fragmentation reaction Methods 0.000 description 14
- 108020004635 Complementary DNA Proteins 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 6
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 5
- 238000000246 agarose gel electrophoresis Methods 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000002028 premature Effects 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 230000002779 inactivation Effects 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 229920000936 Agarose Polymers 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 101710137500 T7 RNA polymerase Proteins 0.000 description 2
- 229940093740 amino acid and derivative Drugs 0.000 description 2
- 238000000376 autoradiography Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 2
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920001542 oligosaccharide Polymers 0.000 description 2
- 150000002482 oligosaccharides Chemical class 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000003757 reverse transcription PCR Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 101000738180 Euglena gracilis Chaperonin CPN60, mitochondrial Proteins 0.000 description 1
- 102100032510 Heat shock protein HSP 90-beta Human genes 0.000 description 1
- 101001016856 Homo sapiens Heat shock protein HSP 90-beta Proteins 0.000 description 1
- 101000839464 Leishmania braziliensis Heat shock 70 kDa protein Proteins 0.000 description 1
- 101000988090 Leishmania donovani Heat shock protein 83 Proteins 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- KRZWEBVPFGCYMY-UHFFFAOYSA-M methylmercury(1+);hydroxide Chemical compound [OH-].[Hg+]C KRZWEBVPFGCYMY-UHFFFAOYSA-M 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000005758 transcription activity Effects 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1096—Processes for the isolation, preparation or purification of DNA or RNA cDNA Synthesis; Subtracted cDNA library construction, e.g. RT, RT-PCR
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
Definitions
- the present invention relates to a method for reverse transcription which can produce a full length CDNA from a mRNA.
- the present invention relates to a method for improving heat stability of RNA.
- cDNAs can be obtained from mRNAs in vitro using a reverse transcriptase (RNA-dependent DNA polymerase).
- a project elucidating whole human gene sequences is moving on and, in that project, mRNA strands are produced by using genes as templates and full length CDNA strands are produced in turn by using the mRNA strands as templates. That is, synthesis of first chains of cDNA from mRNA strands is used as a first step of production of cDNA libraries, RT-PCR and the like.
- Reverse transcription is utilized in order to obtain full length cDNA strands from the mRNAs as described above.
- conventional reverse transcription can not afford full length cDNAs from mRNAs because the conventional reverse transcription method could not complete reverse transcription to the most end cap site of mRNAs.
- the first object of the present invention is to provide a method capable of reverse transcription of mRNA over the full length and hence capable of providing a full length cDNA even if a long chain mRNA is used as a template.
- the present inventor has found that the above first object of the present invention can be achieved by performing reverse transcription at a temperature at which mRNA does not form a secondary structure.
- a temperature at which mRNAs do not form a secondary structure may change depending on buffer composition and the like, it is for example a range of 45° C. or more, especially, 60° C. or more.
- mRNAs can be maintained, in a condition that it does not take the secondary structure and the synthesis of the first chain can be effected efficiently.
- the reverse transcriptase may be disadvantageously inactivated depending on the kind of the enzyme, and (2) stability of mRNA may be disadvantageously deteriorated (mRNA is fragmented) when metal ions necessary for activation of reverse transcriptase such as magnesium ions and a buffer agent such as Tris [Tris(hydroxymethyl)aminomethane] are present simultaneously.
- the second object of the present invention is to provide a method which is capable of reverse transcription of mRNA over the full length of the mRNA even if a long chain mRNA is used as a template by performing the reverse transcription of mRNA at a temperature at which the mRNA does not form the secondary structure and, in addition, which can prevent inactivation of the enzyme by heat, i.e., activate it at an elevated temperature even when a heat-labile reverse transcriptase is used and, as a result, provide a full length cDNA with high reliability.
- the third object of the present invention is to provide a method which is capable of reverse transcription of mRNA over the full length of mRNA even if a long chain mRNA is used as a template by performing the reverse transcription of mRNA at a temperature at which the mRNA does not form the secondary structure and, in addition, which can provide a full length cDNA with high reliability by using a heat-resistant reverse transcriptase.
- the fourth object of the present invention is to provide a method which is capable of reverse transcription of mRNA over the full length of mRNA even if a long chain mRNA is used as a template by performing the reverse transcription of mRNA at a temperature at which the mRNA does not form the secondary structure and, in addition, which can maintain stability of mRNA and hence provide a full length cDNA with high reliability even when metal ions necessary for activation of reverse transcriptase is present, in particular, when a buffer agent such as Tris is further present simultaneously.
- the fifth object of the present invention is to provide a method improve heat stability of mRNA even when metal ions necessary for activation of reverse transcriptase is present, in particular, when a buffer agent such as Tris is further present simultaneously.
- the first embodiment of the present invention which can achieve the above first object of the present invention, there is provided a method for preparing a cDNA from a mRNA using a reverse transcriptase wherein reverse transcription is performed at a temperature at which temperature the mRNA does not take a secondary structure.
- the second embodiment of the present invention which can achieve the above second object of the present invention, there is provided a method for preparing a CDNA from a mRNA using a reverse transcriptase wherein reverse transcription is performed at a temperature at which the mRNA does not take a secondary structure using a heat-labile reverse transcriptase in the presence of a substance exhibiting chaperone function.
- the third embodiment of the present invention which can achieve the above third object of the present invention, there is provided a method for preparing a CDNA from a mRNA using a reverse transcriptase wherein reverse transcription is performed at a temperature at which the mRNA does not take a secondary structure using a heat-resistant reverse transcriptase.
- the fourth embodiment of the present invention which can achieve the above fourth object of the present invention, there is provided a method for preparing a cDNA from a mRNA using a reverse transcriptase wherein reverse transcription is performed at a temperature at which the mRNA does not take a secondary structure in the presence of metal ions necessary for activation of reverse transcriptase, a Tris buffer and a chelating agent for the metal ions.
- the fifth embodiment of the present invention which can achieve the above fifth object of the present invention, there is provided a method for improving heat stability of RNAs in a solution containing metal ions wherein the solution further contains a chelating agent for the metal ions.
- One of the preferred embodiments of the invention is a method for preparing a CDNA from a mRNA using a reverse transcriptase wherein:
- the reverse transcription is performed using a heat-labile reverse transcriptase in the presence of one or more substances exhibiting chaperone function
- the reverse transcription is performed in the presence of metal ions necessary for activation of the reverse transcriptase and a chelating agent for the metal ions.
- Another preferred embodiment of the invention is a method for preparing a CDNA from a mRNA using a reverse transcriptase wherein:
- the reverse transcription is performed using a heat-labile reverse transcriptase in the presence of one or more substances exhibiting chaperone function and one or more polyalcohols, and
- the reverse transcription is performed in the presence of metal ions necessary for activation of the reverse transcriptase and a chelating agent for the metal ions.
- FIG. 1 is a photograph showing the results of agarose gel electrophoresis obtained in Example 1.
- FIG. 2 is a photograph showing the results of agarose gel electrophoresis obtained in Example 2.
- the first embodiment of the method for preparing a cDNA from a mRNA using a reverse transcriptase according to the present invention is characterized in that the reverse transcription is performed at a temperature at which the mRNA does not take a secondary structure.
- the “temperature at which the mRNA does not take a secondary structure” means, for example, a temperature of 45° C. or more, more precisely, a temperature in the range of 45-90°. As the temperature becomes higher, it becomes easier to keep the mRNA not taking a secondary structure, but the activity of reverse transcriptase and the stability of the mRNA tend to be deteriorated. Therefore, the temperature is preferably in the range of 50-75° C.
- the chain length of the mRNA used for the method of the present invention is not particularly limited. However, it is considered unnecessary to use the present invention for a short chain mRNA which does not take a secondary structure, whereas it is difficult to obtain reverse transcription producing a full length cDNA as to a mRNA of 4 kbp or more, in particular, 7 kbp or more. Therefore, from this point of view, the method of the present invention is particularly useful for the reverse transcription of a mRNA of 4 kbp ore more, in particular, 7 kbp or more. However, a mRNA of less than 4 kbp is not excluded from the objective of the present invention.
- the second embodiment of the method for preparing a CDNA from a mRNA using a reverse transcriptase according to the present invention is characterized in that it uses a heat-labile reverse transcriptase and the reverse transcription is performed in the presence of a substance exhibiting chaperone function.
- the heat-labile reverse transcriptase means a reverse transcriptase exhibiting an optimum temperature of 45° C. or lower.
- heat-labile reverse transcriptase include Superscript II, AMV reverse transcriptase, MuLV reverse transcriptase and the like, but it is not limited to these.
- a reverse transcriptase usually used at an ordinary temperature such as Superscript II exhibits a lower activity at a temperature of 45° C. or more compared to the activity at the optimum temperature and exhibits substantially no activity at a temperature higher than a certain level. Further, if such a reverse transcriptase is maintained at a temperature of 50° C. or higher for a certain period of time, it no longer exhibits the activity even though it is returned to room temperature.
- Examples of the substance exhibiting chaperone function include saccharides, amino acids, polyalcohols and their derivatives, and chaperone proteins. However, the substance is not limited to these.
- the “chaperone function” means a function for renaturing proteins denatured by stress such as heat shock, or a function for preventing complete denaturation of proteins by heat to maintain the native structure.
- Examples of the saccharide exhibiting the chaperone function include oligosaccharides and monosaccharides such as trehalose, maltose, glucose, sucrose, lactose, xylobiose, agarobiose, cellobiose, levanbiose, quitobiose, 2- ⁇ -glucuronosylglucuronic acid, allose, altrose, galactose, gulose, idose, mannose, talose, sorbitol, levulose, xylitol and arabitol.
- the saccharide is not limited to these. Those saccharides mentioned above can be used alone or in any combination thereof.
- trehalose, sorbitol, xylitol, levulose and arabitol exhibit strong chaperone function and marked effect for activating enzymes at an elevated temperature.
- amino acids and derivatives thereof include N e -acetyl- ⁇ -lysine, alanine, ⁇ -aminobutyric acid, betain, N ⁇ -carbamoyl-L-glutamine 1-amide, choline, dimethylthetine, ecotine (1,4,5,6-tetrahydro-2-methyl-4-pirymidine carboxilic acid), glutamate, ⁇ -glutammine, glycine, octopine, proline, sarcosine, taurine and trymethylamine N-oxide (TMAO).
- the amino acids and derivatives thereof are not limited to these. Those amino acids mentioned above can be used alone or in any combination thereof.
- betain and sarcosine exhibit strong chaperone function and marked effect for activating enzymes at an elevated temperature.
- the substance exhibiting chaperone function include polyalcohols.
- the saccharides are included in polyalcohols and other examples of the polyalcohols include glycerol, ethylene glycol, polyethylene glycol and the like. Those polyalcohols can be used alone or in any combination thereof.
- the substance exhibiting chaperone function include chaperone proteins.
- the chaperone proteins include chaperone proteins of Thermophiric bacteria and heat shock proteins such as HSP 90, HSP 70 and HSP 60. Those chaperone proteins can be used alone or in any combination thereof.
- polyalcohols may be used in addition to one ore more kinds of the above substances.
- the polyalcohol include glycerol, ethylene glycol, polyethylene glycol and the like.
- the third embodiment of the method for preparing a cDNA from a mRNA using a reverse transcriptase according to the present invention is characterized in that it is carried out by using a heat-resistant reverse transcriptase.
- a heat-resistant reverse transcriptase refers to a reverse transcriptase having an optimum temperature of about 40° C. or more.
- examples of such a heat-resistant reverse transcriptase include Tth polymerase, but the heat-resistant reverse transcriptase is not limited to this.
- Tth polymerase shows an optimum temperature of 70° C. and can catalyze the reverse transcription with a high activity in the above temperature range of 45° C. or higher.
- the fourth embodiment of the method for preparing a cDNA from a mRNA using a reverse transcriptase according to the present invention is characterized in that, when the reverse transcription is performed in the presence of the metal ions necessary for activating the reverse transcriptase, a chelating agent for the metal ions is used simultaneously.
- Enzymes may require metal ions for their activation.
- Superscript II which is a reverse transcriptase
- a buffer containing magnesium ions such as a Tris buffer
- fragmentation of mRNAs may proceed under the temperature condition mentioned above and hence it is difficult to obtain full length cDNAs.
- Tth polymerase requires manganese ions as metal ions for its activation.
- a buffer containing manganese ions such as a Tris buffer
- fragmentation of mRNA may actively proceed under the temperature condition as mentioned above and hence it is difficult to obtain full length cDNAs.
- a chelating agent for metal ions is added to the system so that the activity of reverse transcriptase should be maintained and the fragmentation of mRNAs can be prevented.
- the reverse transcriptase loses its activity. Therefore, it is suitable to use a chelating agent of comparatively weak chelating power.
- Examples of such a chelating agent of comparatively weak chelating power include deoxynucleotide triphosphates (dNTPs).
- the chelating agent of comparatively weak chelating power is suitably used in an approximately equimolar amount of the metal ion.
- a deoxynucleotide triphosphate is used as the chelating agent, for example, it is suitable to add an approximately equimolar amount of deoxynucleotide triphosphate as to the metal ion.
- the amount of the chelating agent can be suitably decided with consideration to the chelating power as to the objective metal ion, so that the reverse transcriptase activity can be maintained and the fragmentation of mRNAs can be prevented.
- deoxynucleotide triphosphates may be used alone or in any combination thereof. All of the four kinds of dNTPs, dATP, dGTP, dCTP and dTTP, may be used together. Since these can serve also as substrates of the reverse transcription, all of them are usually used together.
- a preferred, but non-limitative embodiment of the method for preparing a CDNA from a mRNA using reverse transcriptase according to the present invention is a method characterized in that:
- the reverse transcription is performed at a temperature at which the mRNA does not take a secondary structure, for example, a temperature of 45 to 90° C., particularly preferably a temperature of around 60° C.,
- the method is performed by using Seperscript II as the reverse transcriptase in a Tris buffer containing deoxynucleotide triphosphates as the chelating agents and magnesium ions.
- the fifth embodiment of the present invention which is a method for improving heat stability of RNAs in a solution containing metal ions is characterized in that the solution further contains a chelating agent for the metal ions.
- enzymes may require metal ions for their activation and in a Tris buffer containing metal ions such as magnesium ions, fragmentation of mRNAs may proceed under an elevated temperature.
- a chelating agent for the metal ions is added to a solution containing RNAs for improvement of heat stability.
- a chelating agent for metal ions is added to the solution so that the fragmentation of mRNAs can be prevented and if reverse transcriptase coexists, the activity of reverse transcriptase should also be maintained. However, if all of the metal ions necessary for the activation of the reverse transcriptase are chelated, the reverse transcriptase may lose its activity. Therefore, it is suitable to use a chelating agent of comparatively weak chelating power.
- Examples of such a chelating agent of comparatively weak chelating power include deoxynucleotide triphosphates (dNTPs).
- the chelating agent of comparatively weak chelating power is suitably used in an approximately equimolar amount of the metal ion.
- a deoxynucleotide triphosphate is used as the chelating agent, for example, it is suitable to add an approximately equimolar amount of deoxynucleotide triphosphate as to the metal ion.
- the amount of the chelating agent can be suitably decided with consideration to the chelating power as to the objective metal ion, so that the reverse transcriptase activity can be maintained and the fragmentation of mRNAs can be prevented.
- the deoxynucleotide triphosphates, DATP, dGTP, dCTP and dTTP may be used alone or in any combination thereof. All of the four kinds of dNTPs, DATP, dGTP, dCTP and dTTP, may be used together. Since these can serve also as substrates of the reverse transcription, all of them are usually used together.
- the solution containing RNAs can further contain one or more polyalcohols such as glycerol.
- RNAs are improved even though the an RNA containing solution further contains metal ions such as magnesium ions or manganese ions and/or tris(hydroxymethyl)aminomethane.
- metal ions such as magnesium ions or manganese ions and/or tris(hydroxymethyl)aminomethane.
- the above improvement is obtainable, for example, at a temperature of 40-100° C., preferably 45-90° C.
- RNAs were incubated in various buffer solutions of the compositions listed below.
- TABLE 1 50 mM Tris, pH 8.3, 3 mM MgCl 2 , 15% (v/v) glycerol 2 50 mM Tris, pH 8.3, 3 mM MgCl 2 3 50 mM Tris, pH 8.3, 3 mM MgCl 2 , 2 mM dNTP 4 50 mM Tris, pH 8.3, 3 mM MgCl 2 , 3 mM dNTP 5 50 mM Tris, pH 8.3, 3 mM MgCl 2 , 4 mM dNTP 6 50 mM Tris, pH 8.3, 3 mM MgCl 2 , 3 mM dNTP, 15% glycerol 7 Sterilized water
- RNAs were not sufficiently protected from the fragmentation by glycerol in the presence of magnesium ion (free Mg 2+ ) of high concentration, i.e., when incubated in 50 mM Tris, pH 8.3, 3 mM MgCl 2 , 15% (v/v) glycerol.
- magnesium ion free Mg 2+
- the degree of the fragmentation was similar to that obtained in 50 mM Tris, pH 8.3, 3 mM MgCl 2 in the absence of glycerol (Lane 2).
- RNA was partially prevented in the condition of 50 mM Tris, pH 8.3, 3 mM MgCl 2 , 3 mM dNTP (same molar concentrations of Mg 2+ and NTP) as shown in Lane 4 .
- RNAs were synthesized using RNAs as template.
- the RNAs were transcribed in vitro by T7 RNA polymerase as mentioned below.
- the RNAs were prepared by transcribing pBluescript II SK, which had been cleaved into a linear form with a restriction enzyme NotI, in vitro with T7 RNA polymerase. This reaction was initiated from T7 promoter described in the instruction of pBluescript II SK.
- RNAs as a template transcribed in vitro and evaluating the products by electrophoresis, reverse transcription efficiencies of the samples can be compared with one another and thereby non-specific transcription termination which leads to premature termination of reverse transcription and/or reduction of reaction efficiency can be evaluated.
- the reverse transcriptase Superscript II was inactivated at a temperature of 50° C. in the above standard buffer condition.
- reaction products were subjected to denatured agarose electrophoresis as described above, and electrophoretic patterns were examined by autoradiography to evaluate recoveries of full length cDNAs and rates of short products obtained from incomplete elongation. The results are shown in FIG. 2.
- cDNAs could be synthesized with high efficiency starting from mRNAs by using the buffer condition of 50 mM Tris-HCl, pH 8.3, 75 mM KCl, 3 MM MgCl 2 , 10 mM dithiothreitol, 0.75 mM each of dNTPs, 20% (w/v) trehalose and 20% (v/v) glycerol.
- reaction conditions were as follows: 1 ⁇ g of template RNA, 400 ng of oligo-dT(12-18) primer and 200 units of Superscript II were reacted in a volume of 24 ⁇ l in the presence of [ ⁇ - 32 P]dGTP, the primer and the template RNAs were annealed at 37° C. for 2 minutes and the enzyme activity was measured at 60° C.
- the obtained first strand cDNA chains are used in long RT-PCR or in construction of full length cDNA libraries.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Bioinformatics & Computational Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Plant Pathology (AREA)
- Immunology (AREA)
- Enzymes And Modification Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates to a method for reverse transcription which can produce a full length CDNA from a mRNA. In addition, the present invention relates to a method for improving heat stability of RNA.
- 2. Related Art
- It is known that cDNAs can be obtained from mRNAs in vitro using a reverse transcriptase (RNA-dependent DNA polymerase). A project elucidating whole human gene sequences is moving on and, in that project, mRNA strands are produced by using genes as templates and full length CDNA strands are produced in turn by using the mRNA strands as templates. That is, synthesis of first chains of cDNA from mRNA strands is used as a first step of production of cDNA libraries, RT-PCR and the like.
- Reverse transcription is utilized in order to obtain full length cDNA strands from the mRNAs as described above. However, conventional reverse transcription can not afford full length cDNAs from mRNAs because the conventional reverse transcription method could not complete reverse transcription to the most end cap site of mRNAs.
- According to the present inventor's examination, it was found that the failure of complete reverse transcription is caused as follows. That is, a long chain mRNA may form a secondary structure like secondary structure of protein and the elongation by reverse transcriptase is sterically hindered at the site forming the secondary structure. As a result, reverse transcription was not completed to the end of mRNA.
- That is, current techniques for reverse transcription have a technical limitation that the reaction is ended prematurely because of a stable secondary structure of mRNA and thus the probability of complete transcription over the whole transcription unit including its 5′ end is extremely low. This technical limitation affects the quality of libraries. That is, most of cloned cDNAs synthesized from the poly A at the 3′ end using an oligo dT as a primer have only the 3′ end and do not have the full length because of the premature termination of the synthesis. Several attempts have been made to overcome this problem. For example, it was proposed that the mRNAs are pre-treated at 70° C. to unfold the secondary structure before the synthesis of the first chains. It is also possible to treat the mRNAs with methylmercury hydroxide instead of the heat treatment. Though these techniques are effective for increasing efficiency of the synthesis of the first chain to some extent, they are not yet sufficient to efficiently obtain full length cDNAs. In particular, they show particularly low efficiency for the reverse transcription of long mRNAs of several kbp or more.
- Therefore, the first object of the present invention is to provide a method capable of reverse transcription of mRNA over the full length and hence capable of providing a full length cDNA even if a long chain mRNA is used as a template.
- In this respect, the present inventor has found that the above first object of the present invention can be achieved by performing reverse transcription at a temperature at which mRNA does not form a secondary structure. Though the temperature range where mRNAs do not form a secondary structure may change depending on buffer composition and the like, it is for example a range of 45° C. or more, especially, 60° C. or more.
- In such a temperature range, mRNAs can be maintained, in a condition that it does not take the secondary structure and the synthesis of the first chain can be effected efficiently. However, it was also found that, in such a temperature range as mentioned above, (1) the reverse transcriptase may be disadvantageously inactivated depending on the kind of the enzyme, and (2) stability of mRNA may be disadvantageously deteriorated (mRNA is fragmented) when metal ions necessary for activation of reverse transcriptase such as magnesium ions and a buffer agent such as Tris [Tris(hydroxymethyl)aminomethane] are present simultaneously.
- Therefore, the second object of the present invention is to provide a method which is capable of reverse transcription of mRNA over the full length of the mRNA even if a long chain mRNA is used as a template by performing the reverse transcription of mRNA at a temperature at which the mRNA does not form the secondary structure and, in addition, which can prevent inactivation of the enzyme by heat, i.e., activate it at an elevated temperature even when a heat-labile reverse transcriptase is used and, as a result, provide a full length cDNA with high reliability.
- The third object of the present invention is to provide a method which is capable of reverse transcription of mRNA over the full length of mRNA even if a long chain mRNA is used as a template by performing the reverse transcription of mRNA at a temperature at which the mRNA does not form the secondary structure and, in addition, which can provide a full length cDNA with high reliability by using a heat-resistant reverse transcriptase.
- The fourth object of the present invention is to provide a method which is capable of reverse transcription of mRNA over the full length of mRNA even if a long chain mRNA is used as a template by performing the reverse transcription of mRNA at a temperature at which the mRNA does not form the secondary structure and, in addition, which can maintain stability of mRNA and hence provide a full length cDNA with high reliability even when metal ions necessary for activation of reverse transcriptase is present, in particular, when a buffer agent such as Tris is further present simultaneously.
- The fifth object of the present invention is to provide a method improve heat stability of mRNA even when metal ions necessary for activation of reverse transcriptase is present, in particular, when a buffer agent such as Tris is further present simultaneously.
- As the first embodiment of the present invention, which can achieve the above first object of the present invention, there is provided a method for preparing a cDNA from a mRNA using a reverse transcriptase wherein reverse transcription is performed at a temperature at which temperature the mRNA does not take a secondary structure.
- As the second embodiment of the present invention, which can achieve the above second object of the present invention, there is provided a method for preparing a CDNA from a mRNA using a reverse transcriptase wherein reverse transcription is performed at a temperature at which the mRNA does not take a secondary structure using a heat-labile reverse transcriptase in the presence of a substance exhibiting chaperone function.
- As the third embodiment of the present invention, which can achieve the above third object of the present invention, there is provided a method for preparing a CDNA from a mRNA using a reverse transcriptase wherein reverse transcription is performed at a temperature at which the mRNA does not take a secondary structure using a heat-resistant reverse transcriptase.
- As the fourth embodiment of the present invention, which can achieve the above fourth object of the present invention, there is provided a method for preparing a cDNA from a mRNA using a reverse transcriptase wherein reverse transcription is performed at a temperature at which the mRNA does not take a secondary structure in the presence of metal ions necessary for activation of reverse transcriptase, a Tris buffer and a chelating agent for the metal ions.
- As the fifth embodiment of the present invention, which can achieve the above fifth object of the present invention, there is provided a method for improving heat stability of RNAs in a solution containing metal ions wherein the solution further contains a chelating agent for the metal ions.
- One of the preferred embodiments of the invention is a method for preparing a CDNA from a mRNA using a reverse transcriptase wherein:
- (1) the reverse transcription is performed at a temperature at which the mRNA does not take a secondary structure,
- (2) the reverse transcription is performed using a heat-labile reverse transcriptase in the presence of one or more substances exhibiting chaperone function, and
- (3) the reverse transcription is performed in the presence of metal ions necessary for activation of the reverse transcriptase and a chelating agent for the metal ions.
- Another preferred embodiment of the invention is a method for preparing a CDNA from a mRNA using a reverse transcriptase wherein:
- (1) the reverse transcription is performed at a temperature at which the mRNA does not take a secondary structure,
- (2) the reverse transcription is performed using a heat-labile reverse transcriptase in the presence of one or more substances exhibiting chaperone function and one or more polyalcohols, and
- (3) the reverse transcription is performed in the presence of metal ions necessary for activation of the reverse transcriptase and a chelating agent for the metal ions.
- FIG. 1 is a photograph showing the results of agarose gel electrophoresis obtained in Example 1.
- FIG. 2 is a photograph showing the results of agarose gel electrophoresis obtained in Example 2.
- The first embodiment of the method for preparing a cDNA from a mRNA using a reverse transcriptase according to the present invention is characterized in that the reverse transcription is performed at a temperature at which the mRNA does not take a secondary structure. The “temperature at which the mRNA does not take a secondary structure” means, for example, a temperature of 45° C. or more, more precisely, a temperature in the range of 45-90°. As the temperature becomes higher, it becomes easier to keep the mRNA not taking a secondary structure, but the activity of reverse transcriptase and the stability of the mRNA tend to be deteriorated. Therefore, the temperature is preferably in the range of 50-75° C.
- The chain length of the mRNA used for the method of the present invention is not particularly limited. However, it is considered unnecessary to use the present invention for a short chain mRNA which does not take a secondary structure, whereas it is difficult to obtain reverse transcription producing a full length cDNA as to a mRNA of 4 kbp or more, in particular, 7 kbp or more. Therefore, from this point of view, the method of the present invention is particularly useful for the reverse transcription of a mRNA of 4 kbp ore more, in particular, 7 kbp or more. However, a mRNA of less than 4 kbp is not excluded from the objective of the present invention.
- The second embodiment of the method for preparing a CDNA from a mRNA using a reverse transcriptase according to the present invention is characterized in that it uses a heat-labile reverse transcriptase and the reverse transcription is performed in the presence of a substance exhibiting chaperone function.
- In the present invention, the heat-labile reverse transcriptase means a reverse transcriptase exhibiting an optimum temperature of 45° C. or lower. Examples of such a heat-labile reverse transcriptase include Superscript II, AMV reverse transcriptase, MuLV reverse transcriptase and the like, but it is not limited to these.
- A reverse transcriptase usually used at an ordinary temperature such as Superscript II exhibits a lower activity at a temperature of 45° C. or more compared to the activity at the optimum temperature and exhibits substantially no activity at a temperature higher than a certain level. Further, if such a reverse transcriptase is maintained at a temperature of 50° C. or higher for a certain period of time, it no longer exhibits the activity even though it is returned to room temperature.
- In particular, when the chain length of mRNA is long, the reverse transcription is likely to prematurely terminate before a complete cDNA is synthesized because of inactivation of the enzyme by heat and hence full length transcription becomes difficult. Therefore, according to the present invention, a substance exhibiting chaperone function is added to the reverse transcription system so that the activity of the reverse transcriptase can be maintained even at an elevated temperature (it is possible to prevent reduction of the activity and inactivation by heat).
- Examples of the substance exhibiting chaperone function include saccharides, amino acids, polyalcohols and their derivatives, and chaperone proteins. However, the substance is not limited to these. The “chaperone function” means a function for renaturing proteins denatured by stress such as heat shock, or a function for preventing complete denaturation of proteins by heat to maintain the native structure.
- Examples of the saccharide exhibiting the chaperone function include oligosaccharides and monosaccharides such as trehalose, maltose, glucose, sucrose, lactose, xylobiose, agarobiose, cellobiose, levanbiose, quitobiose, 2-β-glucuronosylglucuronic acid, allose, altrose, galactose, gulose, idose, mannose, talose, sorbitol, levulose, xylitol and arabitol. However, the saccharide is not limited to these. Those saccharides mentioned above can be used alone or in any combination thereof. Among these, trehalose, sorbitol, xylitol, levulose and arabitol exhibit strong chaperone function and marked effect for activating enzymes at an elevated temperature.
- Examples of the amino acids and derivatives thereof include N e-acetyl-β-lysine, alanine, γ-aminobutyric acid, betain, N α-carbamoyl-L-glutamine 1-amide, choline, dimethylthetine, ecotine (1,4,5,6-tetrahydro-2-methyl-4-pirymidine carboxilic acid), glutamate, β-glutammine, glycine, octopine, proline, sarcosine, taurine and trymethylamine N-oxide (TMAO). However, the amino acids and derivatives thereof are not limited to these. Those amino acids mentioned above can be used alone or in any combination thereof. Among these, betain and sarcosine exhibit strong chaperone function and marked effect for activating enzymes at an elevated temperature.
- The substance exhibiting chaperone function include polyalcohols. The saccharides are included in polyalcohols and other examples of the polyalcohols include glycerol, ethylene glycol, polyethylene glycol and the like. Those polyalcohols can be used alone or in any combination thereof.
- The substance exhibiting chaperone function include chaperone proteins. Examples of the chaperone proteins include chaperone proteins of Thermophiric bacteria and heat shock proteins such as HSP 90, HSP 70 and HSP 60. Those chaperone proteins can be used alone or in any combination thereof.
- These substances exhibiting chaperone function show different optimum concentrations for stabilizing the enzyme depending on the kind of the enzyme and the optimum concentration may vary among the substances for the same enzyme. Therefore, a concentration of particular substance to be added to a specific reaction system may be suitably decided depending on the kinds of the substance and the enzyme such as reverse transcriptase.
- To enhance the effect of the substances exhibiting chaperone function such as saccharides, amino acids or chaperone proteins, one or more kinds of polyalcohols may be used in addition to one ore more kinds of the above substances. Examples of the polyalcohol include glycerol, ethylene glycol, polyethylene glycol and the like.
- The third embodiment of the method for preparing a cDNA from a mRNA using a reverse transcriptase according to the present invention is characterized in that it is carried out by using a heat-resistant reverse transcriptase.
- In the present invention, a heat-resistant reverse transcriptase refers to a reverse transcriptase having an optimum temperature of about 40° C. or more. Examples of such a heat-resistant reverse transcriptase include Tth polymerase, but the heat-resistant reverse transcriptase is not limited to this.
- Tth polymerase shows an optimum temperature of 70° C. and can catalyze the reverse transcription with a high activity in the above temperature range of 45° C. or higher.
- The fourth embodiment of the method for preparing a cDNA from a mRNA using a reverse transcriptase according to the present invention is characterized in that, when the reverse transcription is performed in the presence of the metal ions necessary for activating the reverse transcriptase, a chelating agent for the metal ions is used simultaneously.
- Enzymes may require metal ions for their activation. For example, Superscript II, which is a reverse transcriptase, requires magnesium ions for its activation. However, in a buffer containing magnesium ions such as a Tris buffer, fragmentation of mRNAs may proceed under the temperature condition mentioned above and hence it is difficult to obtain full length cDNAs. Likewise, Tth polymerase requires manganese ions as metal ions for its activation. However, also in a buffer containing manganese ions such as a Tris buffer, fragmentation of mRNA may actively proceed under the temperature condition as mentioned above and hence it is difficult to obtain full length cDNAs.
- To solve this problem, according to the method of the present invention, a chelating agent for metal ions is added to the system so that the activity of reverse transcriptase should be maintained and the fragmentation of mRNAs can be prevented. However, if all of the metal ions necessary for the activation of the reverse transcriptase are chelated, the reverse transcriptase loses its activity. Therefore, it is suitable to use a chelating agent of comparatively weak chelating power.
- Examples of such a chelating agent of comparatively weak chelating power include deoxynucleotide triphosphates (dNTPs). The chelating agent of comparatively weak chelating power is suitably used in an approximately equimolar amount of the metal ion. When a deoxynucleotide triphosphate is used as the chelating agent, for example, it is suitable to add an approximately equimolar amount of deoxynucleotide triphosphate as to the metal ion. Accordingly, the amount of the chelating agent can be suitably decided with consideration to the chelating power as to the objective metal ion, so that the reverse transcriptase activity can be maintained and the fragmentation of mRNAs can be prevented. The deoxynucleotide triphosphates, dATP, dGTP, dCTP and dTTP, may be used alone or in any combination thereof. All of the four kinds of dNTPs, dATP, dGTP, dCTP and dTTP, may be used together. Since these can serve also as substrates of the reverse transcription, all of them are usually used together.
- A preferred, but non-limitative embodiment of the method for preparing a CDNA from a mRNA using reverse transcriptase according to the present invention is a method characterized in that:
- (1) the reverse transcription is performed at a temperature at which the mRNA does not take a secondary structure, for example, a temperature of 45 to 90° C., particularly preferably a temperature of around 60° C.,
- (2) the reverse transcription is performed in the presence of one or more substances exhibiting chaperone function and one or more polyalcohols, and
- (3) the reverse transcription is performed in the presence of metal ions necessary for activation of the reverse transcriptase and a chelating agent for the metal ions.
- For example, the method is performed by using Seperscript II as the reverse transcriptase in a Tris buffer containing deoxynucleotide triphosphates as the chelating agents and magnesium ions.
- The fifth embodiment of the present invention which is a method for improving heat stability of RNAs in a solution containing metal ions is characterized in that the solution further contains a chelating agent for the metal ions.
- As mentioned above, enzymes may require metal ions for their activation and in a Tris buffer containing metal ions such as magnesium ions, fragmentation of mRNAs may proceed under an elevated temperature. In the fifth embodiment of the present invention, a chelating agent for the metal ions is added to a solution containing RNAs for improvement of heat stability.
- A chelating agent for metal ions is added to the solution so that the fragmentation of mRNAs can be prevented and if reverse transcriptase coexists, the activity of reverse transcriptase should also be maintained. However, if all of the metal ions necessary for the activation of the reverse transcriptase are chelated, the reverse transcriptase may lose its activity. Therefore, it is suitable to use a chelating agent of comparatively weak chelating power.
- Examples of such a chelating agent of comparatively weak chelating power include deoxynucleotide triphosphates (dNTPs). The chelating agent of comparatively weak chelating power is suitably used in an approximately equimolar amount of the metal ion. When a deoxynucleotide triphosphate is used as the chelating agent, for example, it is suitable to add an approximately equimolar amount of deoxynucleotide triphosphate as to the metal ion.
- Accordingly, the amount of the chelating agent can be suitably decided with consideration to the chelating power as to the objective metal ion, so that the reverse transcriptase activity can be maintained and the fragmentation of mRNAs can be prevented. The deoxynucleotide triphosphates, DATP, dGTP, dCTP and dTTP, may be used alone or in any combination thereof. All of the four kinds of dNTPs, DATP, dGTP, dCTP and dTTP, may be used together. Since these can serve also as substrates of the reverse transcription, all of them are usually used together.
- The solution containing RNAs can further contain one or more polyalcohols such as glycerol.
- According to the fifth embodiment of the present invention, heat stability of RNAs is improved even though the an RNA containing solution further contains metal ions such as magnesium ions or manganese ions and/or tris(hydroxymethyl)aminomethane. In addition, the above improvement is obtainable, for example, at a temperature of 40-100° C., preferably 45-90° C.
- The present invention will be further explained in detail with reference to the following examples.
- Stability of mRNA in metal ion-containing buffer optionally containing dNTP
- To examine stability of RNAs in a buffer (50 mM Tris, pH 8.3, 3 mM MgCl 2) containing several additives, total River RNAs were incubated in various buffer solutions of the compositions listed below.
TABLE 1 Lane 1 50 mM Tris, pH 8.3, 3 mM MgCl2, 15% (v/v) glycerol 2 50 mM Tris, pH 8.3, 3 mM MgCl 23 50 mM Tris, pH 8.3, 3 mM MgCl2, 2 mM dNTP 4 50 mM Tris, pH 8.3, 3 mM MgCl2, 3 mM dNTP 5 50 mM Tris, pH 8.3, 3 mM MgCl2, 4 mM dNTP 6 50 mM Tris, pH 8.3, 3 mM MgCl2, 3 mM dNTP, 15 % glycerol 7 Sterilized water - To visualize fragmentation of RNAs after the incubation, the samples were subjected to agarose gel electrophoresis as described by Sambrook (Molecular Cloning, The second edition pp. 7.43-7.45). The gel was stained with ethidium bromide and the degree of the RNA fragmentation was evaluated by comparing relative band intensities of rRNA. The results of the agarose gel electrophoresis are shown in FIG. 1 (Lanes 1-7).
- As shown in
Lane 1, the RNAs were not sufficiently protected from the fragmentation by glycerol in the presence of magnesium ion (free Mg2+) of high concentration, i.e., when incubated in 50 mM Tris, pH 8.3, 3 mM MgCl2, 15% (v/v) glycerol. In fact, the degree of the fragmentation was similar to that obtained in 50 mM Tris, pH 8.3, 3 mM MgCl2 in the absence of glycerol (Lane 2). - As shown in
Lane 3, the fragmentation of RNA was not prevented yet by treatment with 50 mM Tris, pH 8.3, 3 mM MgCl2, 2 mM dNTP. - On the other hand, the fragmentation of RNA was partially prevented in the condition of 50 mM Tris, pH 8.3, 3 mM MgCl 2, 3 mM dNTP (same molar concentrations of Mg2+and NTP) as shown in
Lane 4. - Further, as shown in
Lane 5, in 50 mM Tris, pH 8.3, 3 mM MgCl2, 4 mM dNTP, i.e., in a condition that the concentration of NTP was higher than that of Mg2+by 1 mM, the RNAs were very stable. However, it was also found that the activity of the reverse transcriptase is reduced under this condition. - So, 15% glycerol was added to 50 mM Tris, pH 8.3, 3 mM MgCl 2, 3 mM dNTP (same molar concentrations of NTP and Mg2+) and the RNAs did not undergo fragmentation under this condition as shown in
Lane 6. It was also found in a separate experiment that the activity of reverse transcriptase was completely maintained under this condition. - Under the condition of
Lane 6, stability of the RNAs was almost similar to that obtained inLane 7, i.e., in sterilized water. - Improvement of reverse transcription efficiency by making reverse transcriptase heat-resistant
- To examine reverse transcription activity under the novel condition of
Lane 6, cDNAs were synthesized using RNAs as template. The RNAs were transcribed in vitro by T7 RNA polymerase as mentioned below. The RNAs were prepared by transcribing pBluescript II SK, which had been cleaved into a linear form with a restriction enzyme NotI, in vitro with T7 RNA polymerase. This reaction was initiated from T7 promoter described in the instruction of pBluescript II SK. - The resulting products were evaluated. By using RNAs as a template transcribed in vitro and evaluating the products by electrophoresis, reverse transcription efficiencies of the samples can be compared with one another and thereby non-specific transcription termination which leads to premature termination of reverse transcription and/or reduction of reaction efficiency can be evaluated.
- As a control, the following standard buffer condition was used: 50 mM Tris-HCl, pH 8.3, 75 mM KCl, 3 mM MgCl 2, 10 mM dithiothreitol, 0.75 mM each of dNTPs (DATP, dGTP, dCTP and dTTP).
- In the above standard buffer condition, 1 μg of template RNA, 400 ng of primer (20mer SK primer, CGCTCTAGAACTAGTGGATC) and 200 units of Superscript II were prepared and the final volume was adjusted to 20 μl. 0.2 μl of [α- 32P]dGTP was used for labeling of reverse transcription products. The RNA and the primer were incubated at 65° C. before the other substrates were added. Then, the reaction was performed at 42° C. for 1 hour. The reaction products were subjected to denaturing agarose electrophoresis and electrophoretic patterns were examined by autoradiography to evaluate recoveries of full length cDNAs and rates of short products obtained from incomplete elongation. The results are shown in
Lane 1 of FIG. 2. - The reverse transcriptase Superscript II was inactivated at a temperature of 50° C. in the above standard buffer condition.
- The following buffer condition for reverse transcription was used to verify that addition of oligosaccharide stabilizes the enzyme reaction: 50 mM Tris-HCl, pH 8.3, 75 mM KCl, 3 mM MgCl 2, 10 mM dithiothreitol, each 0.75 mM of dNTPs (DATP, dGTP, dCTP, dTTP), 20% (w/v) trehalose and 20% (v/v) glycerol.
- 1 μg of template RNA, 400 ng of primer (20mer SK primer) and 200 units of Superscript II were reacted in 24 μl of aqueous solution under the above buffer condition. 0.2 μl of [α- 32P ]dGTP was used for labeling of reverse transcription products. Under this condition, the reverse transcriptase Superscript II exhibited higher activity than the control reaction at a normal temperature (42° C.). The primer and the template RNAs were annealed at 37° C. for 2 minutes and the enzyme activity was measured at 60° C.
- The reaction products were subjected to denatured agarose electrophoresis as described above, and electrophoretic patterns were examined by autoradiography to evaluate recoveries of full length cDNAs and rates of short products obtained from incomplete elongation. The results are shown in FIG. 2.
- As shown in
Lane 1, products resulted from premature termination of reverse transcription at specific sites or non-specific termination of reverse transcription were seen under the standard buffer condition at 42° C. - As shown in
Lane 2, at 42° C. as inLane 1, such products resulted from premature termination as mentioned above were also observed even though 20% trehalose and 20% glycerol were added. - As shown in
Lane 3, when the temperature was raised to 60° C., the amount of products obtained from prematurely terminated synthesis became very small and full length products were synthesized. - As shown in
Lane 5, when 0.125 μg/μl of BSA was added to the condition ofLane 3, the enzyme activity was further stabilized. However, BSA alone without 20% trehalose and 20% glycerol did not make the enzyme sufficiently heat-resistant. - As shown in
Lane 4, when 0.05% of Triton X100 was added to the condition ofLane 3, the amount of incomplete reverse transcription products was further reduced. However, the whole activity of the reverse transcriptase was slightly reduced. - When the reaction was performed under the same condition as
Lane 3 except that glucose or maltose was used instead of trehalose, the electrophoretic pattern showed again that the amount of products obtained from prematurely terminated synthesis became very small and full length products were synthesized. - Synthesis of CDNA from mRNA template
- From the findings in the above Examples 1 and 2, it became clear that cDNAs could be synthesized with high efficiency starting from mRNAs by using the buffer condition of 50 mM Tris-HCl, pH 8.3, 75 mM KCl, 3 MM MgCl 2, 10 mM dithiothreitol, 0.75 mM each of dNTPs, 20% (w/v) trehalose and 20% (v/v) glycerol. The reaction conditions were as follows: 1 μg of template RNA, 400 ng of oligo-dT(12-18) primer and 200 units of Superscript II were reacted in a volume of 24 μl in the presence of [α -32P]dGTP, the primer and the template RNAs were annealed at 37° C. for 2 minutes and the enzyme activity was measured at 60° C.
- The obtained first strand cDNA chains are used in long RT-PCR or in construction of full length cDNA libraries.
- Reaction was performed under the same condition as
Lane 3 of Example 2 except that arabitol, sorbitol, levulose, xylitol or betain was used instead of trehalose. The electrophoretic pattern showed again that the amount of products obtained from prematurely terminated synthesis became very small and full length products were synthesized as inLane 3 of Example 1.
Claims (27)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/803,952 US6372437B2 (en) | 1996-07-25 | 2001-03-13 | Method for improving heat stability of RNA |
Applications Claiming Priority (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8-196329 | 1996-07-25 | ||
| JP8-196331 | 1996-07-25 | ||
| JP19633196A JP3709490B2 (en) | 1996-07-25 | 1996-07-25 | Method for improving the thermal stability of RNA |
| JP19632996 | 1996-07-25 | ||
| JP196329/1996 | 1996-07-25 | ||
| US08/899,392 US6013488A (en) | 1996-07-25 | 1997-07-23 | Method for reverse transcription |
| US09/414,531 US6221599B1 (en) | 1996-07-25 | 1999-10-08 | Method for improving heat stability of RNA |
| US09/803,952 US6372437B2 (en) | 1996-07-25 | 2001-03-13 | Method for improving heat stability of RNA |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/414,531 Division US6221599B1 (en) | 1996-07-25 | 1999-10-08 | Method for improving heat stability of RNA |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20010012617A1 true US20010012617A1 (en) | 2001-08-09 |
| US6372437B2 US6372437B2 (en) | 2002-04-16 |
Family
ID=26509679
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/899,392 Expired - Lifetime US6013488A (en) | 1996-07-25 | 1997-07-23 | Method for reverse transcription |
| US09/414,531 Expired - Lifetime US6221599B1 (en) | 1996-07-25 | 1999-10-08 | Method for improving heat stability of RNA |
| US09/803,952 Expired - Fee Related US6372437B2 (en) | 1996-07-25 | 2001-03-13 | Method for improving heat stability of RNA |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/899,392 Expired - Lifetime US6013488A (en) | 1996-07-25 | 1997-07-23 | Method for reverse transcription |
| US09/414,531 Expired - Lifetime US6221599B1 (en) | 1996-07-25 | 1999-10-08 | Method for improving heat stability of RNA |
Country Status (4)
| Country | Link |
|---|---|
| US (3) | US6013488A (en) |
| EP (2) | EP1243661B1 (en) |
| CA (1) | CA2211367C (en) |
| DE (2) | DE69738354D1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100317062A1 (en) * | 2005-07-15 | 2010-12-16 | Life Technologies Corporation | Hot start reverse transcription by primer design |
| CN114174503A (en) * | 2019-07-26 | 2022-03-11 | 东洋纺株式会社 | Mutant reverse transcriptase having excellent stability |
Families Citing this family (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ATE445630T1 (en) | 1997-04-22 | 2009-10-15 | Life Technologies Corp | METHOD FOR PRODUCING ASLV REVERSER TRANSCRIPTASE COMPOSED OF MULTIPLE SUBUNITS |
| US6268133B1 (en) | 1997-06-25 | 2001-07-31 | Invitrogen Corporation | Method for isolating and recovering target DNA or RNA molecules having a desired nucleotide sequence |
| US6787305B1 (en) | 1998-03-13 | 2004-09-07 | Invitrogen Corporation | Compositions and methods for enhanced synthesis of nucleic acid molecules |
| AU772847B2 (en) | 1998-11-12 | 2004-05-06 | Invitrogen Corporation | Transfection reagents |
| US7074556B2 (en) | 1999-03-02 | 2006-07-11 | Invitrogen Corporation | cDNA synthesis improvements |
| WO2000055307A2 (en) * | 1999-03-12 | 2000-09-21 | Mcgill University | A method for increasing the processivity of a dna- or rna-dependent polymerase and compositions therefor |
| US6271004B1 (en) * | 1999-06-25 | 2001-08-07 | Display Systems Biotech A/S | Method for improved reverse transcription at high temperatures |
| US6835537B1 (en) | 2000-09-29 | 2004-12-28 | Myriad Genetics, Inc. | Method for equalizing band intensities on sequencing gels |
| DE10105208A1 (en) * | 2001-02-06 | 2002-08-14 | Ihf Inst Fuer Hormon Und Fortp | Enzymatic production of cDNA by reverse transcription, in the presence of betaine, provides a high yield of full-length molecules from large RNA templates |
| ES2188357B1 (en) * | 2001-03-12 | 2005-01-01 | BIOTOOLS BIOTECHNOLOGICAL & MEDICAL LABORATORIES, S.A. | METHOD FOR AMPLIFICATION BY TRANSCRIPTION IN REVERSE COUPLED TO A REACTION OF NESTED OR SEMI-NESTED PCR IN ONE STEP, OF A DIANA RNA, AND ITS APPLICATIONS IN THE IDENTIFICATION OF ENTEROVIRUS AND IN THE DISCRIMINATION BETWEEN POLIOVIRUS AND NON-POLIO. |
| US20050250100A1 (en) * | 2002-06-12 | 2005-11-10 | Yoshihide Hayashizaki | Method of utilizing the 5'end of transcribed nucleic acid regions for cloning and analysis |
| US20040152072A1 (en) * | 2002-07-30 | 2004-08-05 | Invitrogen Corporation | Reverse transcription |
| US20060084799A1 (en) * | 2003-09-24 | 2006-04-20 | Williams Lewis T | Human cDNA clones comprising polynucleotides encoding polypeptides and methods of their use |
| US20070274988A1 (en) * | 2003-10-10 | 2007-11-29 | Five Prime Therapeautics, Inc. | Kiaa0779, Splice Variants Thereof, and Methods of Their Use |
| JP4896006B2 (en) * | 2004-04-08 | 2012-03-14 | バイオマトリカ, インコーポレイテッド | Integration with sample storage and sample management for life sciences |
| US20080176209A1 (en) * | 2004-04-08 | 2008-07-24 | Biomatrica, Inc. | Integration of sample storage and sample management for life science |
| US20060099567A1 (en) * | 2004-04-08 | 2006-05-11 | Biomatrica, Inc. | Integration of sample storage and sample management for life science |
| CA2584230C (en) | 2005-05-06 | 2012-11-27 | Gen-Probe Incorporated | Methods of nucleic acid target capture |
| CA2806670A1 (en) | 2010-07-26 | 2012-02-09 | Biomatrica, Inc. | Compositions for stabilizing dna, rna and proteins in blood and other biological samples during shipping and storage at ambient temperatures |
| WO2012018639A2 (en) | 2010-07-26 | 2012-02-09 | Biomatrica, Inc. | Compositions for stabilizing dna, rna and proteins in saliva and other biological samples during shipping and storage at ambient temperatures |
| WO2012054727A1 (en) | 2010-10-22 | 2012-04-26 | Bio-Rad Laboratories, Inc. | Reverse transcriptase mixtures with improved storage stability |
| FR2984357B1 (en) * | 2011-12-16 | 2016-11-18 | Biomerieux Sa | PROCESS FOR TRANSCRIPTIONAL AMPLIFICATION OF NUCLEIC ACIDS COVERING STEPS OF DIFFERENT TEMPERATURES |
| EP2934572A4 (en) | 2012-12-20 | 2016-11-23 | Biomatrica Inc | Formulations and methods for stabilizing pcr reagents |
| US9663770B2 (en) | 2014-01-22 | 2017-05-30 | Life Technologies Corporation | Reverse transcriptases for use in high temperature nucleic acid synthesis |
| EP3154338B1 (en) | 2014-06-10 | 2020-01-29 | Biomatrica, INC. | Stabilization of thrombocytes at ambient temperatures |
| US10195280B2 (en) | 2014-07-15 | 2019-02-05 | Life Technologies Corporation | Compositions and methods for efficient delivery of molecules to cells |
| US10568317B2 (en) | 2015-12-08 | 2020-02-25 | Biomatrica, Inc. | Reduction of erythrocyte sedimentation rate |
| WO2017130750A1 (en) | 2016-01-27 | 2017-08-03 | 株式会社ダナフォーム | Method of decoding base sequence of nucleic acids corresponding to rna terminal region, and method of analyzing dna element |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3176491D1 (en) * | 1980-03-05 | 1987-11-26 | Miles Lab | Pasteurized therapeutically active protein compositions |
| US4409200A (en) * | 1980-04-28 | 1983-10-11 | Research Corporation | Reverse transcriptase from human milk, method for its purification, and its use in the detection of breast cancer |
| US5017492A (en) * | 1986-02-27 | 1991-05-21 | Life Technologies, Inc. | Reverse transcriptase and method for its production |
| US5374553A (en) * | 1986-08-22 | 1994-12-20 | Hoffmann-La Roche Inc. | DNA encoding a thermostable nucleic acid polymerase enzyme from thermotoga maritima |
| US5407800A (en) * | 1986-08-22 | 1995-04-18 | Hoffmann-La Roche Inc. | Reverse transcription with Thermus thermophilus polymerase |
| US5310652A (en) * | 1986-08-22 | 1994-05-10 | Hoffman-La Roche Inc. | Reverse transcription with thermostable DNA polymerase-high temperature reverse transcription |
| DE69030386T2 (en) * | 1989-12-22 | 1997-10-09 | F. Hoffmann-La Roche Ag, Basel | AT HIGH TEMPERATURE ACTIVE REVERSE TRANSCRIPTASES |
| DE4124286A1 (en) * | 1991-07-22 | 1993-01-28 | Boehringer Mannheim Gmbh | METHOD FOR STABILIZING PROTEINS IN OPTICAL TESTS |
| FR2690691B1 (en) | 1992-04-29 | 1999-02-12 | Bio Merieux | METHOD OF AMPLIFYING RNA REQUIRING A SINGLE HANDLING STAGE. |
| JP4372837B2 (en) * | 1992-08-04 | 2009-11-25 | ジェン−プローブ・インコーポレイテッド | Nucleic acid sequence amplification |
| WO1994012657A1 (en) * | 1992-11-20 | 1994-06-09 | Katcher Harold L | Direct-phenol pcr, rt and rt-pcr methods |
| DE4239969A1 (en) * | 1992-11-27 | 1994-06-01 | Boehringer Mannheim Gmbh | Process for the stabilization of proteins |
| CA2139623A1 (en) * | 1993-05-06 | 1994-11-24 | Baxter Diagnostics Inc. | Human papillomavirus detection assay |
| AU1035495A (en) * | 1993-11-25 | 1995-06-13 | Pacific Enzymes (1993) Limited | Improved polymerase |
| EP0742838B1 (en) * | 1994-01-31 | 2003-08-13 | The Regents Of The University Of California | Methods for the elimination of dna sequencing artifacts |
| DE4411588C1 (en) * | 1994-03-30 | 1995-09-28 | Deutsches Rheuma Forschungszen | Buffer, contg. betaine, for RNA- and DNA-polymerase reactions |
| US5556771A (en) * | 1995-02-10 | 1996-09-17 | Gen-Probe Incorporated | Stabilized compositions of reverse transcriptase and RNA polymerase for nucleic acid amplification |
-
1997
- 1997-07-23 US US08/899,392 patent/US6013488A/en not_active Expired - Lifetime
- 1997-07-24 CA CA002211367A patent/CA2211367C/en not_active Expired - Fee Related
- 1997-07-24 EP EP02013871A patent/EP1243661B1/en not_active Expired - Lifetime
- 1997-07-24 DE DE69738354T patent/DE69738354D1/en not_active Expired - Lifetime
- 1997-07-24 DE DE69734913T patent/DE69734913T2/en not_active Expired - Lifetime
- 1997-07-24 EP EP97112672A patent/EP0821059B8/en not_active Expired - Lifetime
-
1999
- 1999-10-08 US US09/414,531 patent/US6221599B1/en not_active Expired - Lifetime
-
2001
- 2001-03-13 US US09/803,952 patent/US6372437B2/en not_active Expired - Fee Related
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100317062A1 (en) * | 2005-07-15 | 2010-12-16 | Life Technologies Corporation | Hot start reverse transcription by primer design |
| US8993240B2 (en) | 2005-07-15 | 2015-03-31 | Applied Biosystems, Llc | Hot start reverse transcription by primer design |
| US9567635B2 (en) | 2005-07-15 | 2017-02-14 | Life Technologies Corporation | Hot start reverse transcription by primer design |
| CN114174503A (en) * | 2019-07-26 | 2022-03-11 | 东洋纺株式会社 | Mutant reverse transcriptase having excellent stability |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2211367C (en) | 2008-04-22 |
| US6372437B2 (en) | 2002-04-16 |
| EP1243661B1 (en) | 2007-12-05 |
| DE69738354D1 (en) | 2008-01-17 |
| US6221599B1 (en) | 2001-04-24 |
| EP0821059A3 (en) | 1998-04-22 |
| EP0821059B1 (en) | 2005-12-21 |
| US6013488A (en) | 2000-01-11 |
| DE69734913T2 (en) | 2006-08-24 |
| EP0821059B8 (en) | 2006-03-08 |
| DE69734913D1 (en) | 2006-01-26 |
| EP0821059A2 (en) | 1998-01-28 |
| CA2211367A1 (en) | 1998-01-25 |
| EP1243661A1 (en) | 2002-09-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6372437B2 (en) | Method for improving heat stability of RNA | |
| US6458556B1 (en) | Method for enhancing enzyme activity at elevated temperature | |
| EP1705253B1 (en) | Compositons and methods for reverse transcriptase-Polymerase chain reaction (RT-PCR) | |
| US6300069B1 (en) | Generation and amplification of nucleic acids from ribonucleic acids | |
| US7205128B2 (en) | Method for synthesis of the second strand of cDNA | |
| EP2212430B1 (en) | Reduced inhibition of one-step rt-pcr | |
| KR102119431B1 (en) | 5' protection dependent amplification | |
| US9353409B2 (en) | Compositions and methods for RT-PCR | |
| US6962780B2 (en) | Method for synthesis of nucleic acids | |
| JP3206894B2 (en) | How to heat activate enzymes | |
| CA2512701C (en) | Improved method for reverse transcription | |
| AU737546B2 (en) | Stabilized aqueous nucleoside triphosphate solutions | |
| US20160097086A1 (en) | Compositions and Methods for RT-PCR | |
| JP3536052B2 (en) | Improved reverse transcription method | |
| US9169482B2 (en) | Method for synthesizing cDNA | |
| JP3709490B2 (en) | Method for improving the thermal stability of RNA | |
| JP4216165B2 (en) | Methods for heat-activating enzymes | |
| JP3709471B2 (en) | Methods for heat-activating enzymes | |
| EP4022083B1 (en) | Compositions and methods for multiplex rt-pcr and genetic analysis | |
| JP2006051041A (en) | Methods for heat-activating enzymes | |
| Castroviejo et al. | Ethidium bromide stimulation of DNA polymerase activity by stabilization of the primer-template duplex | |
| GB2351559A (en) | Reverse transcriptase formulations |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: KABUSHIKI KAISHA DNAFORM, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAYASHIZAKI, YOSHIHIDE;REEL/FRAME:015377/0308 Effective date: 20041014 |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140416 |