US20010012665A1 - Semiconductor device and method for fabricating the same - Google Patents
Semiconductor device and method for fabricating the same Download PDFInfo
- Publication number
- US20010012665A1 US20010012665A1 US09/735,909 US73590900A US2001012665A1 US 20010012665 A1 US20010012665 A1 US 20010012665A1 US 73590900 A US73590900 A US 73590900A US 2001012665 A1 US2001012665 A1 US 2001012665A1
- Authority
- US
- United States
- Prior art keywords
- insulating layer
- impurity
- gate insulating
- semiconductor substrate
- gate electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 79
- 238000000034 method Methods 0.000 title claims description 31
- 239000012535 impurity Substances 0.000 claims abstract description 119
- 239000000758 substrate Substances 0.000 claims abstract description 90
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 150000002500 ions Chemical class 0.000 claims description 9
- 229910052785 arsenic Inorganic materials 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 239000007790 solid phase Substances 0.000 claims description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 26
- 238000005468 ion implantation Methods 0.000 description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 9
- 229920005591 polysilicon Polymers 0.000 description 9
- 238000005530 etching Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 125000006850 spacer group Chemical group 0.000 description 5
- 101000831940 Homo sapiens Stathmin Proteins 0.000 description 4
- 102100024237 Stathmin Human genes 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 101000900567 Pisum sativum Disease resistance response protein Pi49 Proteins 0.000 description 3
- 101000621511 Potato virus M (strain German) RNA silencing suppressor Proteins 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/681—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered
- H10D64/683—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered being parallel to the channel plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/225—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
- H01L21/2251—Diffusion into or out of group IV semiconductors
- H01L21/2254—Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
- H01L21/2255—Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/022—Manufacture or treatment of FETs having insulated gates [IGFET] having lightly-doped source or drain extensions selectively formed at the sides of the gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/0221—Manufacture or treatment of FETs having insulated gates [IGFET] having asymmetry in the channel direction, e.g. lateral high-voltage MISFETs having drain offset region or extended-drain MOSFETs [EDMOS]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/601—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs
- H10D30/603—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs having asymmetry in the channel direction, e.g. lateral high-voltage MISFETs having drain offset region or extended drain IGFETs [EDMOS]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/213—Channel regions of field-effect devices
- H10D62/221—Channel regions of field-effect devices of FETs
- H10D62/235—Channel regions of field-effect devices of FETs of IGFETs
- H10D62/299—Channel regions of field-effect devices of FETs of IGFETs having lateral doping variations
- H10D62/307—Channel regions of field-effect devices of FETs of IGFETs having lateral doping variations the doping variations being parallel to the channel lengths
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/351—Substrate regions of field-effect devices
- H10D62/357—Substrate regions of field-effect devices of FETs
- H10D62/364—Substrate regions of field-effect devices of FETs of IGFETs
- H10D62/371—Inactive supplementary semiconductor regions, e.g. for preventing punch-through, improving capacity effect or leakage current
Definitions
- the present invention relates to a semiconductor device, specifically, to a semiconductor device and method of fabricating the same, which improves its driving power and reliability.
- MOS technology where the surface of silicon is treated with a silicon oxide layer having good insulation characteristics, remarkably improves the transistor characteristic and transistor fabrication process.
- PMOS NMOS
- CMOS complementary metal-oxide-semiconductor
- the PMOS device is widely used because it has lower consumption power and its fabrication process is easily controlled during the manufacture of integrated circuit.
- the NMOS device replace the PMOS. This is because the carrier (electron) mobility of the NMOS is faster than the carrier (hole) mobility of the PMOS device by approximately 2.5 times.
- the CMOS device is fabricated through process more complicated than that for forming the PMOS or NMOS device, its consumption power is very low. Accordingly, the NMOS device is used for the memory region of a semiconductor device, and CMOS device is used for its periphery circuit. Meanwhile, the size of MOS device, especially, the channel length, is gradually reduced as the semiconductor device becomes highly integrated and high-speed. As a result, the distance between the source and drain is decreased but the device still uses the conventional power voltage of 5V. This increases the electric field intensity in the MOS device.
- the carrier obtains high energy from the electric field while it moves from the source to the channel, and it's temperature when it reaches the drain is much higher than that of the lattice around it. Accordingly, impact ionization due to the carrier occurs. This becomes a problem in the NMOS device rather than in the PMOS because electrons are easily impact-ionized than holes. Among electron-hole pairs generated from the impact ionization, the electrons move to the drain of n-type impurity region but holes move to the substrate of p-type impurity region in the NMOS device. The flow of holes creates substrate current. Some holes move to the source, so that the p-n junction becomes forward-biased, creating NPN transistor. This increases the amount of current, and thus impact ionization effect is raised, resulting in high drain current.
- LDD region lightly doped impurity region
- source and drain regions heavily doped impurity regions placed on both sides of the channel region.
- the LDD region spreads the high electric field around the drain junction.
- the carrier supplied from the source is not rapidly accelerated even with a high voltage.
- the resistance of the LDD region serves as parasitic resistance because the concentration of the LDD region is lower (approximately ⁇ fraction (1/1000) ⁇ ) than that of the source and drain regions, resulting in reduction of driving current.
- the increase in the impurity concentration of the LDD region raises the substrate current, heightening the hot carrier effect.
- the reduction of the LDD region's concentration decreases the driving current under the influence of the parasitic resistance.
- the concentration of the LDD region is high, and easily controlled.
- the LDD region is formed on both sides of a gate electrode through ion implantation using the gate electrode as a mask, sidewall spacers are formed on the sides of the gate electrode using an oxide layer, and ion implantation is carried out using the sidewall spacers and gate electrode as a mask, to form heavily doped source and drain regions.
- the LDD region is formed on the source side as well as drain side.
- the LDD region formed between the heavily doped source region and channel region creates higher sheet resistance, and increases the total resistance of the channel. This brings about the reduction in the driving current of MOS device, deteriorating the driving power of MOS transistor.
- FIGS. 1A to 1 F are cross-sectional views showing a method of fabricating the conventional MOSFET.
- a gate oxide layer 2 and polysilicon layer 3 are sequentially formed on a p-type semiconductor substrate 1 , photoresist is coated on polysilicon layer 3 and patterned through exposure and development, to define a gate electrode formation region.
- polysilicon layer 3 and gate oxide layer 2 are selectively removed through etching process using the patterned photoresist as a mask, to form a gate electrode 3 a.
- n-type lightly doped impurity regions 4 are formed on predetermined portions of p-type semiconductor substrate 1 , placed on both sides of gate electrodes 3 a, by ion implantation using gate electrode 3 a as a mask.
- This impurity region 4 corresponds to a conventional LDD region, which prevents the hot carrier effect due to impact ionization.
- Lightly doped impurity regions 4 are symmetrically formed in the portions of semiconductor substrate 1 , placed on both sides of gate electrode 3 a. Furthermore, lightly doped impurity regions 4 are diffused in the substrate during ion implantation and heat treatment, thereby being superposed on a predetermined portion of gate electrode 3 a.
- p-type lightly doped impurity regions 5 are formed in predetermined portions of semiconductor substrate 1 , placed on both sides of gate electrode 3 a, through tilt ion implantation using gate electrode 3 a as a mask, and heat treatment.
- p-type lightly doped impurity regions 5 are formed deeper than n-type lightly doped impurity regions 4 , thus surrounding n-type regions 4 .
- an oxide layer is formed on the overall surface of the substrate including gate electrode 3 a, and etched back, to form sidewall spacers 6 on both sides of the gate electrodes.
- n-type heavily doped impurity regions 7 are formed in predetermined portions of substrate 11 , placed on both sides of gate electrode 3 a and sidewall spacer 6 , through high-concentration impurity ion implantation using gate electrode 3 a and sidewall spacer 7 as a mask, and heat treatment, thereby accomplishing a MOSFET having a pocket shaped LDD region, in which p-type lightly doped impurity region 5 having a conductivity is identical to that of the substrate surrounds n-type lightly doped region 4 whose conductivity is opposite to that of the substrate.
- the present invention is directed to a semiconductor device and method of fabricating the same that substantially obviates one or more of the problems due to limitations and disadvantages of the related art.
- An object of the present invention is to provide a semiconductor device and method of fabricating the same, which forms an unsymmetrical LDD region structure where the LDD region is formed only on the side of drain region, to improve the driving power and reliability of the MOS device.
- a semiconductor device including: a semiconductor substrate; a gate electrode formed on the semiconductor substrate; a first gate insulating layer formed between the gate electrode and semiconductor substrate, and formed at a first region including one edge of the gate electrode; a second gate insulating layer formed between the gate electrode and semiconductor substrate, and formed at a second portion including the other edge of the gate electrode, the second gate insulating layer being thicker than the first gate insulating layer; a first impurity region formed in a predetermined portion of the semiconductor substrate, placed on both sides of the gate electrode; and a second impurity region formed in a predetermined portion of the semiconductor substrate, placed under the second gate insulating layer.
- a method of fabricating a semiconductor device including the steps of: forming a first gate insulating layer on a semiconductor substrate, and forming a second gate insulating layer on one side of the first gate insulating layer, the second gate insulating layer being thicker than the first gate insulating layer; forming a gate electrode on the first and second gate insulating layers, one side of the gate electrode corresponding to the first gate insulating layer and its other side corresponding to the second gate insulating layer; and forming first impurity regions in predetermined portions of the semiconductor substrate, placed on both sides of the gate electrode, and forming a second impurity region in a predetermined portion of the semiconductor substrate, placed under the second gate insulating layer.
- FIGS. 1A to 1 F are cross-sectional views showing a conventional method of fabricating a MOSFET
- FIG. 2 is a cross-sectional view of a MOSFET according to the present invention.
- FIGS. 3A to 3 H are cross-sectional views showing a method of fabricating a MOSFET according to the first embodiment of the present invention.
- FIGS. 4A to 4 H are cross-sectional views showing a method of fabricating a MOSFET according to the second embodiment of the present invention.
- FIG. 2 is a cross-sectional view of a MOSFET according to the present invention.
- the MOSFET of the present invention includes: a semiconductor substrate 10 ; a gate electrode 14 a formed on semiconductor substrate 10 ; a first gate insulating layer 13 formed between semiconductor substrate 10 and gate electrode 14 a , and formed at a first region A including one edge of gate electrode 14 a ; a second gate insulating layer 18 formed between semiconductor substrate 10 and gate electrode 14 a , and formed at a second region B including the other edge of gate electrode 14 a , the second gate insulating layer 18 being formed thicker than the first gate insulating layer 13 ; first impurity regions 15 a and 15 b formed in predetermined portions of semiconductor substrate 10 , placed on both sides of gate electrode 14 a ; and a second impurity region 16 formed in a predetermined portion of semiconductor substrate 10 , placed under second gate insulating layer 18 .
- Second gate insulating layer 18 is formed of an insulating material containing impurity ions.
- Second gate insulating layer 18 consists of a first insulating layer 11 coming into contact with semiconductor substrate 10 , and second insulating layer 12 formed on first insulating layer 11 .
- First insulating layer 11 is formed from an insulating layer doped with an impurity whose conductivity is identical to that of semiconductor substrate 10
- second insulating layer 12 is formed from an insulating layer doped with an impurity whose conductivity is opposite to that of the substrate.
- first insulating layer 11 is, for example, formed from an insulating layer doped with a p-type impurity such as boron (B) or indium (In)
- second insulating layer 12 is formed from an insulating layer doped with an n-type impurity such as phosphorus (P) or arsenic (As).
- the first insulating layer is formed of an insulating layer doped with an n-type impurity
- the second insulating layers are formed from an insulating layer doped with a p-type impurity.
- First gate insulating layer 13 is wider than second gate insulating layer 18 . That is, first region A is wider than second region B.
- First impurity regions 15 a and 15 b are heavily doped impurity regions having conductivity opposite to that of semiconductor substrate 10 , and serve as source and drain regions.
- Second impurity region 16 is formed in low concentration in the portion of semiconductor substrate 10 , placed between first impurity regions 15 a and 15 b , and has conductivity identical to that of the first impurity region. Especially, second impurity region 16 comes into contact with first impurity region 15 b serving as the drain region. That is, second impurity region 16 serves as an LDD region for preventing the hot carrier effect.
- a third impurity region 17 is formed in a predetermined portion of semiconductor substrate 10 , which comes into contact with second impurity region 16 .
- Third impurity region 17 has conductivity opposite to that of second impurity region 16 .
- Third impurity region 17 surrounds one side and bottom of second impurity region 16 .
- first and second insulating layers 11 and 12 are sequentially formed on semiconductor substrate 10 , a first photoresist layer PR 10 is coated thereon and patterned through exposure and development to define a channel region in a predetermined portion of the substrate, thereby being left on a region other than the channel region.
- First insulating layer 11 is formed from an insulating layer doped with an impurity having conductivity identical to that of semiconductor substrate 10
- second insulating layer 12 is formed from an insulating layer doped with an impurity having conductivity opposite to that of semiconductor substrate 10 . That is, when semiconductor substrate 10 is p-type, first insulating layer 11 is, for example, formed from an insulating layer doped with a p-type impurity such as B or In, and second insulating layer 12 is formed from an insulating layer doped with an n-type impurity such as P or As.
- first insulating layer 11 is, for example, formed from an insulating layer doped with an n-type impurity such as P or As
- second insulating layer 12 is formed from an insulating layer doped with a p-type impurity such as B or In.
- First and second insulating layers 11 and 12 may be formed of one layer.
- the one layer is formed of an insulating layer doped with an impurity whose conductivity is opposite to that of the substrate.
- second and first insulating layer 12 and 11 are selectively removed by etching process using patterned first photoresist layer PR 10 as a mask, to expose the surface of semiconductor substrate.
- first photoresist layer PR 10 is removed, and first gate insulating layer 13 is formed on the exposed portion of semiconductor substrate 10 .
- a polysilicon layer 14 is formed on the overall surface of second insulating layer 12 including first gate insulating layer 13 .
- a second photoresist layer PR 1 is coated on polysilicon layer 14 , and patterned through exposure and development, to define a gate electrode region.
- the gate electrode region covers the overall surface of first gate insulating layer 13 , and a predetermined portion of second insulating layer 12 , placed on one side of first gate insulating layer 13 .
- First gate insulating layer 13 is formed of one of oxide layer and nitride layer. When the oxide layer is used as first gate insulating layer 13 , it is formed in such a manner that the exposed portion of semiconductor substrate 10 is thermally oxidized at the ambient of O 2 or 2H 2 O.
- the thickness of first gate insulating layer 13 is similar to that of first insulating layer 11 .
- polysilicon layer 14 , second insulating layer 12 and first insulating layer 11 are etched by etching process using patterned second photoresist layer PR 11 as a mask, to form gate electrode 14 a .
- One edge of gate electrode 14 a is superposed on second insulating layer 12 .
- second photoresist layer PR 11 is removed. Then, high-concentration impurity ions having conductivity opposite to that of semiconductor substrate 10 are implanted into portions of the substrate, placed on both sides of gate electrode 14 a , using gate electrode 14 a as a mask, and annealing process is carried out, to form source and drain regions 15 a and 15 b serving as heavily doped impurity regions.
- source and drain regions 15 a and 15 b will be called a first impurity region.
- Second impurity region 16 has conductivity opposite to that of the substrate.
- impurity ions doped in first insulating layer 11 are also solid-phase diffused, to form third impurity region 17 in a portion of substrate 10 surrounding second impurity region 16 .
- Impurity ions doped in first insulating layer 11 coming into contact with semiconductor substrate 10 is diffused into the substrate wider and deeper than those doped in second insulating layer 12 .
- a pocket structured impurity region is formed, in which third impurity region 17 selectively covers second impurity region 16 .
- Second and third impurity regions 16 and 17 have impurity concentration lower (approximately ⁇ fraction (1/1000) ⁇ ) than that of the first insulating layer of heavily doped source and drain regions 15 a and 15 b .
- Second and third impurity regions 16 and 17 are conventional LDD regions.
- Second and third impurity regions 16 and 17 are not formed symmetrically in the portions of semiconductor substrate 10 , placed on both sides of gate electrode 14 a , but formed in the portion under one edge of gate electrode 14 a . By doing so, the MOSFET having unsymmetrical LDD region is formed. These unsymmetrical LDD regions (second and third impurity regions 16 and 17 ) are formed to come into contact with drain region 15 b.
- a third photoresist layer PR 12 is coated on the overall surface of the substrate including gate electrode 14 a , and patterned through exposure and development, to expose a portion of gate electrode 14 a , placed on second gate insulating layer 18 .
- the portion of gate electrode 14 a and second gate insulating layer 18 are removed by etching process using third photoresist layer PR 12 as a mask.
- third photoresist layer PR 12 is removed, thereby finishing the MOSFET according to the first embodiment of the present invention.
- the process of removing the portion of gate electrode 14 a shown in FIGS. 3F, 3G and 3 H may be omitted.
- FIGS. 4A to 4 H are cross-sectional views showing a process of fabricating a MOSFET according to the second embodiment of the present invention.
- the first gate insulating layer is formed, and then the first and second insulating layers are formed.
- a first gate insulating layer 21 is formed on a semiconductor substrate 20 , and a first photoresist layer PR 20 is coated thereon.
- First photoresist layer PR 20 is patterned through exposure and development to define a channel region, thereby being left on the channel region.
- First gate insulating layer 21 is selectively removed by etching process using first photoresist layer PR 20 as a mask.
- first photoresist layer PR 20 is removed.
- First and second insulating layers 22 an 23 are sequentially formed on the overall surface of semiconductor substrate 20 including first gate insulating layer 21 , and a second photoresist layer PR 21 is coated thereon.
- Second photoresist layer PR 21 is patterned through exposure and development, to be left on a predetermined portion of second insulating layer 23 , having a predetermined distance from one side of first gate insulating layer 21 .
- First insulating layer 22 is formed from an insulating layer doped with an impurity having conductivity identical to that of semiconductor substrate 20
- second insulating layer 23 is formed from an insulating layer doped with an impurity having conductivity opposite to that of semiconductor substrate 20 . That is, when semiconductor substrate 20 is p-type, first insulating layer 22 is, for example, formed from an insulating layer doped with a p-type impurity such as B or In, and second insulating layer 23 is formed from an insulating layer doped with an n-type impurity such as P or As.
- first insulating layer 22 is, for example, formed from an insulating layer doped with an n-type impurity such as P or As
- second insulating layer 23 is formed from an insulating layer doped with a p-type impurity such as B or In.
- First and second insulating layers 22 and 23 may be formed of one layer.
- the one layer is formed of an insulating layer doped with an impurity whose conductivity is opposite to that of the substrate.
- second and first insulating layers 23 and 22 are selectively removed by etching process using patterned second photoresist layer PR 21 as a mask, to form a second gate insulating layer 24 consisting of first and second insulating layers 22 and 23 , on one side of first gate insulating layer.
- Second photoresist layer PR 21 is removed.
- a polysilicon layer 25 is formed on the overall surface of the substrate including first and second gate insulating layers 21 and 24 , and a third photoresist layer PR 22 is coated thereon.
- Third photoresist layer PR 22 is patterned through exposure and development, to be left on a portion of polysilicon layer 25 , placed on first and second insulating layers 21 and 24 .
- polysilicon layer 25 is selectively removed by etching process using patterned third photoresist layer PR 22 as a mask, to form a gate electrode 25 a .
- third photoresist layer PR 22 is removed.
- high-concentration impurity ions having conductivity opposite to that of semiconductor substrate 20 are implanted into portions of the substrate, placed on both sides of gate electrode 25 a , using gate electrode 25 a as a mask, and annealing process is carried out, to form source and drain regions 26 a and 26 b serving as heavily doped impurity regions.
- source and drain regions 26 a and 26 b will be called a first impurity region.
- Second impurity region 27 has conductivity opposite to that of the substrate
- third impurity region 28 has conductivity identical to that of the substrate.
- Second and third impurity regions 27 and 28 have impurity concentration lower (approximately ⁇ fraction (1/1000) ⁇ ) than that of the heavily doped source and drain regions 26 a and 26 b.
- Second and third impurity regions 27 and 28 are conventional LDD regions.
- Second and third impurity regions 27 and 28 are not symmetrically formed in the portions of semiconductor substrate 20 , placed on both sides of gate electrode 25 a , but formed in a portion under one edge of gate electrode 25 a . By doing so, the MOSFET having unsymmetrical LDD region is formed. These unsymmetrical LDD regions (second and third impurity regions 27 and 28 ) are formed to come into contact with drain region 26 b.
- a fourth photoresist layer PR 23 is coated on the overall surface of the substrate including gate electrode 25 a , and patterned through exposure and development, to expose a portion of gate electrode 25 a , placed on second gate insulating layer 24 .
- the portion of gate electrode 25 a and second gate insulating layer 24 are removed by etching process using fourth photoresist layer PR 23 as a mask.
- fourth photoresist layer PR 23 is removed, to finish the MOSFET according to the second embodiment of the present invention. The process of removing the portion of gate electrode 25 a shown in FIGS. 4F, 4G and 4 H may be omitted.
- the LDD region is formed only on the side of the heavily doped impurity region serving as a drain region, not on the source region, the sheet resistance is decreased, thereby improving the driving power and operation speed of the MOS device. Furthermore, ion implantation and tilt ion implantation for forming the LDD region are omitted, increasing the productivity of the device.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates to a semiconductor device, specifically, to a semiconductor device and method of fabricating the same, which improves its driving power and reliability.
- 2. Discussion of Related Art
- The MOS technology, where the surface of silicon is treated with a silicon oxide layer having good insulation characteristics, remarkably improves the transistor characteristic and transistor fabrication process. There are PMOS, NMOS and CMOS in MOS devices. At the earlier stage, the PMOS device is widely used because it has lower consumption power and its fabrication process is easily controlled during the manufacture of integrated circuit. However, in an integrated circuit requiring high speed, the NMOS device replace the PMOS. This is because the carrier (electron) mobility of the NMOS is faster than the carrier (hole) mobility of the PMOS device by approximately 2.5 times.
- Though the CMOS device is fabricated through process more complicated than that for forming the PMOS or NMOS device, its consumption power is very low. Accordingly, the NMOS device is used for the memory region of a semiconductor device, and CMOS device is used for its periphery circuit. Meanwhile, the size of MOS device, especially, the channel length, is gradually reduced as the semiconductor device becomes highly integrated and high-speed. As a result, the distance between the source and drain is decreased but the device still uses the conventional power voltage of 5V. This increases the electric field intensity in the MOS device.
- On the reduction of channel length, the carrier obtains high energy from the electric field while it moves from the source to the channel, and it's temperature when it reaches the drain is much higher than that of the lattice around it. Accordingly, impact ionization due to the carrier occurs. This becomes a problem in the NMOS device rather than in the PMOS because electrons are easily impact-ionized than holes. Among electron-hole pairs generated from the impact ionization, the electrons move to the drain of n-type impurity region but holes move to the substrate of p-type impurity region in the NMOS device. The flow of holes creates substrate current. Some holes move to the source, so that the p-n junction becomes forward-biased, creating NPN transistor. This increases the amount of current, and thus impact ionization effect is raised, resulting in high drain current.
- When the carrier in the channel is accelerated by the high electric field around the drain, and thus its energy becomes higher than the energy barrier between the substrate and gate oxide layer, the carrier becomes hot electron and is inserted into the gate oxide layer. The electron or hole inserted into the gate oxide layer is trapped in the gate oxide layer, and forms a potential on the interface between the substrate and gate oxide layer. This changes the threshold voltage, or decreases mutual conductance. This phenomenon is called hot carrier effect, which is resulted from the high electric field generated at the pinch-off region around the drain. To improve the hot carrier effect, an LDD structured MOS transistor has been proposed, in which a low concentration layer having a gentle impurity concentration profile is formed between the drain and channel, to decrease the high electric field.
- With this LDD structure, a self-aligned lightly doped impurity region (LDD region) is located between the channel region, and heavily doped impurity regions (source and drain regions) placed on both sides of the channel region. The LDD region spreads the high electric field around the drain junction. Thus, the carrier supplied from the source is not rapidly accelerated even with a high voltage. This solves the hot carrier problem. However, the resistance of the LDD region serves as parasitic resistance because the concentration of the LDD region is lower (approximately {fraction (1/1000)}) than that of the source and drain regions, resulting in reduction of driving current. The increase in the impurity concentration of the LDD region raises the substrate current, heightening the hot carrier effect. However, the reduction of the LDD region's concentration decreases the driving current under the influence of the parasitic resistance.
- Accordingly, it is required that the concentration of the LDD region is high, and easily controlled. There is a method to meet this requirement, in which the LDD region is formed on both sides of a gate electrode through ion implantation using the gate electrode as a mask, sidewall spacers are formed on the sides of the gate electrode using an oxide layer, and ion implantation is carried out using the sidewall spacers and gate electrode as a mask, to form heavily doped source and drain regions. With this LDD structure, the LDD region is formed on the source side as well as drain side. As a result, the LDD region formed between the heavily doped source region and channel region creates higher sheet resistance, and increases the total resistance of the channel. This brings about the reduction in the driving current of MOS device, deteriorating the driving power of MOS transistor.
- In addition to, there is a MOSFET structure having a pocket region which is deeply formed around the channel, and surrounds the LDD region of the source and drain regions, to thereby prevent punchthrough. A conventional method of fabricating the semiconductor device described above is explained below with reference to the attached drawings. FIGS. 1A to1F are cross-sectional views showing a method of fabricating the conventional MOSFET.
- Referring to FIG. 1A, a gate oxide layer2 and polysilicon layer 3 are sequentially formed on a p-
type semiconductor substrate 1, photoresist is coated on polysilicon layer 3 and patterned through exposure and development, to define a gate electrode formation region. Referring to FIG. 1B, polysilicon layer 3 and gate oxide layer 2 are selectively removed through etching process using the patterned photoresist as a mask, to form agate electrode 3 a. - Referring to FIG. 1C, n-type lightly doped
impurity regions 4 are formed on predetermined portions of p-type semiconductor substrate 1, placed on both sides ofgate electrodes 3 a, by ion implantation usinggate electrode 3 a as a mask. Thisimpurity region 4 corresponds to a conventional LDD region, which prevents the hot carrier effect due to impact ionization. Lightly dopedimpurity regions 4 are symmetrically formed in the portions ofsemiconductor substrate 1, placed on both sides ofgate electrode 3 a. Furthermore, lightly dopedimpurity regions 4 are diffused in the substrate during ion implantation and heat treatment, thereby being superposed on a predetermined portion ofgate electrode 3 a. - Referring to FIG. 1D, p-type lightly doped
impurity regions 5 are formed in predetermined portions ofsemiconductor substrate 1, placed on both sides ofgate electrode 3 a, through tilt ion implantation usinggate electrode 3 a as a mask, and heat treatment. Here, p-type lightly dopedimpurity regions 5 are formed deeper than n-type lightly dopedimpurity regions 4, thus surrounding n-type regions 4. Referring to FIG. 1E, an oxide layer is formed on the overall surface of the substrate includinggate electrode 3 a, and etched back, to formsidewall spacers 6 on both sides of the gate electrodes. - Referring to FIG. 1F, n-type heavily doped
impurity regions 7 are formed in predetermined portions ofsubstrate 11, placed on both sides ofgate electrode 3 a andsidewall spacer 6, through high-concentration impurity ion implantation usinggate electrode 3 a andsidewall spacer 7 as a mask, and heat treatment, thereby accomplishing a MOSFET having a pocket shaped LDD region, in which p-type lightly dopedimpurity region 5 having a conductivity is identical to that of the substrate surrounds n-type lightly dopedregion 4 whose conductivity is opposite to that of the substrate. - There are problems in the above-described conventional MOS device having an LDD region or pocket shaped LDD region. That is, since the LDD region is symmetrically formed on the side of the source and drain regions, the LDD region formed on the side of the source increases the sheet resistance, raising the total resistance of the MOSFET. Thus, the driving power of MOS is decreased, and its reliability is also lowered. Furthermore, the pocket shaped LDD region is formed through tilt ion implantation, resulting in the deterioration of productivity of semiconductor device.
- Accordingly, the present invention is directed to a semiconductor device and method of fabricating the same that substantially obviates one or more of the problems due to limitations and disadvantages of the related art.
- An object of the present invention is to provide a semiconductor device and method of fabricating the same, which forms an unsymmetrical LDD region structure where the LDD region is formed only on the side of drain region, to improve the driving power and reliability of the MOS device.
- To accomplish the object of the present invention, there is provided a semiconductor device including: a semiconductor substrate; a gate electrode formed on the semiconductor substrate; a first gate insulating layer formed between the gate electrode and semiconductor substrate, and formed at a first region including one edge of the gate electrode; a second gate insulating layer formed between the gate electrode and semiconductor substrate, and formed at a second portion including the other edge of the gate electrode, the second gate insulating layer being thicker than the first gate insulating layer; a first impurity region formed in a predetermined portion of the semiconductor substrate, placed on both sides of the gate electrode; and a second impurity region formed in a predetermined portion of the semiconductor substrate, placed under the second gate insulating layer.
- To accomplish the object of the present invention, there is provided a method of fabricating a semiconductor device, including the steps of: forming a first gate insulating layer on a semiconductor substrate, and forming a second gate insulating layer on one side of the first gate insulating layer, the second gate insulating layer being thicker than the first gate insulating layer; forming a gate electrode on the first and second gate insulating layers, one side of the gate electrode corresponding to the first gate insulating layer and its other side corresponding to the second gate insulating layer; and forming first impurity regions in predetermined portions of the semiconductor substrate, placed on both sides of the gate electrode, and forming a second impurity region in a predetermined portion of the semiconductor substrate, placed under the second gate insulating layer.
- It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
- The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention:
- In the drawings:
- FIGS. 1A to1F are cross-sectional views showing a conventional method of fabricating a MOSFET;
- FIG. 2 is a cross-sectional view of a MOSFET according to the present invention;
- FIGS. 3A to3H are cross-sectional views showing a method of fabricating a MOSFET according to the first embodiment of the present invention; and
- FIGS. 4A to4H are cross-sectional views showing a method of fabricating a MOSFET according to the second embodiment of the present invention.
- Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
- FIG. 2 is a cross-sectional view of a MOSFET according to the present invention. Referring to FIG. 2, the MOSFET of the present invention includes: a
semiconductor substrate 10; agate electrode 14 a formed onsemiconductor substrate 10; a firstgate insulating layer 13 formed betweensemiconductor substrate 10 andgate electrode 14 a, and formed at a first region A including one edge ofgate electrode 14 a; a secondgate insulating layer 18 formed betweensemiconductor substrate 10 andgate electrode 14 a, and formed at a second region B including the other edge ofgate electrode 14 a, the secondgate insulating layer 18 being formed thicker than the firstgate insulating layer 13;first impurity regions semiconductor substrate 10, placed on both sides ofgate electrode 14 a; and asecond impurity region 16 formed in a predetermined portion ofsemiconductor substrate 10, placed under secondgate insulating layer 18. - Second
gate insulating layer 18 is formed of an insulating material containing impurity ions. Secondgate insulating layer 18 consists of a first insulatinglayer 11 coming into contact withsemiconductor substrate 10, and second insulatinglayer 12 formed on first insulatinglayer 11. First insulatinglayer 11 is formed from an insulating layer doped with an impurity whose conductivity is identical to that ofsemiconductor substrate 10, and second insulatinglayer 12 is formed from an insulating layer doped with an impurity whose conductivity is opposite to that of the substrate. That is, whensemiconductor substrate 10 is p-type, first insulatinglayer 11 is, for example, formed from an insulating layer doped with a p-type impurity such as boron (B) or indium (In), and second insulatinglayer 12 is formed from an insulating layer doped with an n-type impurity such as phosphorus (P) or arsenic (As). Whensemiconductor substrate 10 is n-type, the first insulating layer is formed of an insulating layer doped with an n-type impurity, and the second insulating layers are formed from an insulating layer doped with a p-type impurity. - First
gate insulating layer 13 is wider than secondgate insulating layer 18. That is, first region A is wider than second region B.First impurity regions semiconductor substrate 10, and serve as source and drain regions.Second impurity region 16 is formed in low concentration in the portion ofsemiconductor substrate 10, placed betweenfirst impurity regions second impurity region 16 comes into contact withfirst impurity region 15 b serving as the drain region. That is,second impurity region 16 serves as an LDD region for preventing the hot carrier effect. Athird impurity region 17 is formed in a predetermined portion ofsemiconductor substrate 10, which comes into contact withsecond impurity region 16.Third impurity region 17 has conductivity opposite to that ofsecond impurity region 16.Third impurity region 17 surrounds one side and bottom ofsecond impurity region 16. - A method of fabricating the MOSFET according to the first embodiment of the present invention is explained below with reference to FIGS. 3A to3H. Referring to FIG. 3A, first and second insulating
layers semiconductor substrate 10, a first photoresist layer PR10 is coated thereon and patterned through exposure and development to define a channel region in a predetermined portion of the substrate, thereby being left on a region other than the channel region. - First insulating
layer 11 is formed from an insulating layer doped with an impurity having conductivity identical to that ofsemiconductor substrate 10, and second insulatinglayer 12 is formed from an insulating layer doped with an impurity having conductivity opposite to that ofsemiconductor substrate 10. That is, whensemiconductor substrate 10 is p-type, first insulatinglayer 11 is, for example, formed from an insulating layer doped with a p-type impurity such as B or In, and second insulatinglayer 12 is formed from an insulating layer doped with an n-type impurity such as P or As. - When semiconductor substrate is n-type, first insulating
layer 11 is, for example, formed from an insulating layer doped with an n-type impurity such as P or As, and second insulatinglayer 12 is formed from an insulating layer doped with a p-type impurity such as B or In. First and second insulatinglayers - Referring to FIG. 3B, second and first insulating
layer gate insulating layer 13 is formed on the exposed portion ofsemiconductor substrate 10. Apolysilicon layer 14 is formed on the overall surface of second insulatinglayer 12 including firstgate insulating layer 13. Subsequently, a second photoresist layer PR1 is coated onpolysilicon layer 14, and patterned through exposure and development, to define a gate electrode region. - Here, the gate electrode region covers the overall surface of first
gate insulating layer 13, and a predetermined portion of second insulatinglayer 12, placed on one side of firstgate insulating layer 13. Firstgate insulating layer 13 is formed of one of oxide layer and nitride layer. When the oxide layer is used as firstgate insulating layer 13, it is formed in such a manner that the exposed portion ofsemiconductor substrate 10 is thermally oxidized at the ambient of O2 or 2H2O. The thickness of firstgate insulating layer 13 is similar to that of first insulatinglayer 11. - Referring to FIG. 3D,
polysilicon layer 14, second insulatinglayer 12 and first insulatinglayer 11 are etched by etching process using patterned second photoresist layer PR11 as a mask, to formgate electrode 14 a. One edge ofgate electrode 14 a is superposed on second insulatinglayer 12. - First and second insulating
layer gate electrode 14 a form secondgate insulating layer 18 narrower than firstgate insulating layer 13. - Referring to FIG. 3E, second photoresist layer PR11 is removed. Then, high-concentration impurity ions having conductivity opposite to that of
semiconductor substrate 10 are implanted into portions of the substrate, placed on both sides ofgate electrode 14 a, usinggate electrode 14 a as a mask, and annealing process is carried out, to form source and drainregions regions layer 12 forming the upper portion of secondgate insulating layer 18 are solid-phase diffused intosemiconductor substrate 10, to formsecond impurity region 16 in the semiconductor substrate.Second impurity region 16 has conductivity opposite to that of the substrate. - Furthermore, impurity ions doped in first insulating
layer 11 are also solid-phase diffused, to formthird impurity region 17 in a portion ofsubstrate 10 surroundingsecond impurity region 16. Impurity ions doped in first insulatinglayer 11 coming into contact withsemiconductor substrate 10 is diffused into the substrate wider and deeper than those doped in second insulatinglayer 12. Thus, a pocket structured impurity region is formed, in whichthird impurity region 17 selectively coverssecond impurity region 16. - Second and
third impurity regions regions third impurity regions third impurity regions semiconductor substrate 10, placed on both sides ofgate electrode 14 a, but formed in the portion under one edge ofgate electrode 14 a. By doing so, the MOSFET having unsymmetrical LDD region is formed. These unsymmetrical LDD regions (second andthird impurity regions 16 and 17) are formed to come into contact withdrain region 15 b. - Referring to FIG. 3F, a third photoresist layer PR12 is coated on the overall surface of the substrate including
gate electrode 14 a, and patterned through exposure and development, to expose a portion ofgate electrode 14 a, placed on secondgate insulating layer 18. Referring to FIG. 3G, the portion ofgate electrode 14 a and secondgate insulating layer 18 are removed by etching process using third photoresist layer PR12 as a mask. Referring to FIG. 3G, third photoresist layer PR12 is removed, thereby finishing the MOSFET according to the first embodiment of the present invention. The process of removing the portion ofgate electrode 14 a shown in FIGS. 3F, 3G and 3H may be omitted. - FIGS. 4A to4H are cross-sectional views showing a process of fabricating a MOSFET according to the second embodiment of the present invention. In this process, the first gate insulating layer is formed, and then the first and second insulating layers are formed.
- Referring to FIG. 4A, a first
gate insulating layer 21 is formed on asemiconductor substrate 20, and a first photoresist layer PR20 is coated thereon. First photoresist layer PR20 is patterned through exposure and development to define a channel region, thereby being left on the channel region. Firstgate insulating layer 21 is selectively removed by etching process using first photoresist layer PR20 as a mask. Referring to FIG. 4B, first photoresist layer PR20 is removed. First and second insulatinglayers 22 an 23 are sequentially formed on the overall surface ofsemiconductor substrate 20 including firstgate insulating layer 21, and a second photoresist layer PR21 is coated thereon. Second photoresist layer PR21 is patterned through exposure and development, to be left on a predetermined portion of second insulatinglayer 23, having a predetermined distance from one side of firstgate insulating layer 21. - First insulating
layer 22 is formed from an insulating layer doped with an impurity having conductivity identical to that ofsemiconductor substrate 20, and second insulatinglayer 23 is formed from an insulating layer doped with an impurity having conductivity opposite to that ofsemiconductor substrate 20. That is, whensemiconductor substrate 20 is p-type, first insulatinglayer 22 is, for example, formed from an insulating layer doped with a p-type impurity such as B or In, and second insulatinglayer 23 is formed from an insulating layer doped with an n-type impurity such as P or As. - When the semiconductor substrate is n-type, first insulating
layer 22 is, for example, formed from an insulating layer doped with an n-type impurity such as P or As, and second insulatinglayer 23 is formed from an insulating layer doped with a p-type impurity such as B or In. First and second insulatinglayers - Referring to FIG. 4C, second and first insulating
layers gate insulating layer 24 consisting of first and second insulatinglayers polysilicon layer 25 is formed on the overall surface of the substrate including first and secondgate insulating layers polysilicon layer 25, placed on first and second insulatinglayers - Referring to FIG. 4D,
polysilicon layer 25 is selectively removed by etching process using patterned third photoresist layer PR22 as a mask, to form agate electrode 25 a. Referring to FIG. 4E, third photoresist layer PR22 is removed. Then, high-concentration impurity ions having conductivity opposite to that ofsemiconductor substrate 20 are implanted into portions of the substrate, placed on both sides ofgate electrode 25 a, usinggate electrode 25 a as a mask, and annealing process is carried out, to form source and drainregions regions layer 23 and first insulatinglayer 22 respectively forming the upper portion and lower portion of secondgate insulating layer 24, are solid-phase diffused intosemiconductor substrate 20, to form second andthird impurity regions Second impurity region 27 has conductivity opposite to that of the substrate, andthird impurity region 28 has conductivity identical to that of the substrate. - The impurity ions doped in first insulating
layer 22 coming into contact withsemiconductor substrate 20 are diffused into the substrate, wider and deeper than those doped in second insulatinglayer 23. Thus, a pocket structured impurity region is formed, in whichthird impurity region 28 coverssecond impurity region 27. Second andthird impurity regions regions third impurity regions third impurity regions semiconductor substrate 20, placed on both sides ofgate electrode 25 a, but formed in a portion under one edge ofgate electrode 25 a. By doing so, the MOSFET having unsymmetrical LDD region is formed. These unsymmetrical LDD regions (second andthird impurity regions 27 and 28) are formed to come into contact withdrain region 26 b. - Referring to FIG. 4F, a fourth photoresist layer PR23 is coated on the overall surface of the substrate including
gate electrode 25 a, and patterned through exposure and development, to expose a portion ofgate electrode 25 a, placed on secondgate insulating layer 24. Referring to FIG. 4G, the portion ofgate electrode 25 a and secondgate insulating layer 24 are removed by etching process using fourth photoresist layer PR23 as a mask. Referring to FIG. 4H, fourth photoresist layer PR23 is removed, to finish the MOSFET according to the second embodiment of the present invention. The process of removing the portion ofgate electrode 25 a shown in FIGS. 4F, 4G and 4H may be omitted. - According to the present invention, since the LDD region is formed only on the side of the heavily doped impurity region serving as a drain region, not on the source region, the sheet resistance is decreased, thereby improving the driving power and operation speed of the MOS device. Furthermore, ion implantation and tilt ion implantation for forming the LDD region are omitted, increasing the productivity of the device.
- It will be apparent to those skilled in the art that various modifications and variations can be made in the semiconductor device and method of fabricating the same of the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/735,909 US6455380B2 (en) | 1997-09-06 | 2000-12-14 | Semiconductor device and method for fabricating the same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR46038/1997 | 1997-09-06 | ||
KR1019970046038A KR100236098B1 (en) | 1997-09-06 | 1997-09-06 | Semiconductor device and method of manufacturing the same |
KR97-46038 | 1997-09-06 | ||
US08/957,622 US5952700A (en) | 1997-09-06 | 1997-10-24 | MOSFET device with unsymmetrical LDD region |
US09/310,334 US6238985B1 (en) | 1997-09-06 | 1999-05-12 | Semiconductor device and method for fabricating the same |
US09/735,909 US6455380B2 (en) | 1997-09-06 | 2000-12-14 | Semiconductor device and method for fabricating the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/310,334 Continuation US6238985B1 (en) | 1997-09-06 | 1999-05-12 | Semiconductor device and method for fabricating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010012665A1 true US20010012665A1 (en) | 2001-08-09 |
US6455380B2 US6455380B2 (en) | 2002-09-24 |
Family
ID=19520944
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/957,622 Expired - Lifetime US5952700A (en) | 1997-09-06 | 1997-10-24 | MOSFET device with unsymmetrical LDD region |
US09/310,334 Expired - Lifetime US6238985B1 (en) | 1997-09-06 | 1999-05-12 | Semiconductor device and method for fabricating the same |
US09/735,909 Expired - Fee Related US6455380B2 (en) | 1997-09-06 | 2000-12-14 | Semiconductor device and method for fabricating the same |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/957,622 Expired - Lifetime US5952700A (en) | 1997-09-06 | 1997-10-24 | MOSFET device with unsymmetrical LDD region |
US09/310,334 Expired - Lifetime US6238985B1 (en) | 1997-09-06 | 1999-05-12 | Semiconductor device and method for fabricating the same |
Country Status (3)
Country | Link |
---|---|
US (3) | US5952700A (en) |
JP (1) | JP3117197B2 (en) |
KR (1) | KR100236098B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10005915B2 (en) | 2011-08-01 | 2018-06-26 | Sun Chemical Corporation | High-stretch energy curable inks and method of use in heat transfer label applications |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100236098B1 (en) * | 1997-09-06 | 1999-12-15 | 김영환 | Semiconductor device and method of manufacturing the same |
KR100253372B1 (en) * | 1997-12-08 | 2000-04-15 | 김영환 | Semiconductor device and fabricating method thereof |
US6180472B1 (en) * | 1998-07-28 | 2001-01-30 | Matsushita Electrons Corporation | Method for fabricating semiconductor device |
US6225661B1 (en) * | 1998-09-02 | 2001-05-01 | Advanced Micro Devices, Inc. | MOS transistor with stepped gate insulator |
US6225669B1 (en) * | 1998-09-30 | 2001-05-01 | Advanced Micro Devices, Inc. | Non-uniform gate/dielectric field effect transistor |
US6384457B2 (en) * | 1999-05-03 | 2002-05-07 | Intel Corporation | Asymmetric MOSFET devices |
US6060755A (en) * | 1999-07-19 | 2000-05-09 | Sharp Laboratories Of America, Inc. | Aluminum-doped zirconium dielectric film transistor structure and deposition method for same |
US6348385B1 (en) * | 2000-11-30 | 2002-02-19 | Chartered Semiconductor Manufacturing Ltd. | Method for a short channel CMOS transistor with small overlay capacitance using in-situ doped spacers with a low dielectric constant |
US6927435B2 (en) * | 2001-01-16 | 2005-08-09 | Renesas Technology Corp. | Semiconductor device and its production process |
US6406945B1 (en) | 2001-01-26 | 2002-06-18 | Chartered Semiconductor Manufacturing Ltd. | Method for forming a transistor gate dielectric with high-K and low-K regions |
US6436774B1 (en) | 2001-01-26 | 2002-08-20 | Chartered Semiconductor Manufacturing Ltd. | Method for forming variable-K gate dielectric |
US6368928B1 (en) * | 2001-06-12 | 2002-04-09 | Taiwan Semiconductor Manufacturing Company | Method of forming an indium retrograde profile via use of a low temperature anneal procedure to reduce NMOS short channel effects |
TW548850B (en) * | 2002-05-29 | 2003-08-21 | Toppoly Optoelectronics Corp | Low-temperature polysilicon TFT of LDD structure and process for producing same |
US6842374B2 (en) * | 2003-01-06 | 2005-01-11 | Ememory Technology Inc. | Method for operating N-channel electrically erasable programmable logic device |
KR100636680B1 (en) * | 2005-06-29 | 2006-10-23 | 주식회사 하이닉스반도체 | Semiconductor device having recess gate and asymmetric impurity region and manufacturing method thereof |
CN105826392B (en) * | 2016-05-22 | 2018-08-31 | 杭州立昂东芯微电子有限公司 | The asymmetric source drain structure of small band gap iii-v MOSFET element |
US20180138307A1 (en) * | 2016-11-17 | 2018-05-17 | Globalfoundries Inc. | Tunnel finfet with self-aligned gate |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5145438B1 (en) * | 1971-06-25 | 1976-12-03 | ||
US4746624A (en) * | 1986-10-31 | 1988-05-24 | Hewlett-Packard Company | Method for making an LDD MOSFET with a shifted buried layer and a blocking region |
JPH0330475A (en) * | 1989-06-28 | 1991-02-08 | Mitsubishi Electric Corp | Semiconductor device |
JP2903134B2 (en) * | 1990-11-10 | 1999-06-07 | 株式会社 半導体エネルギー研究所 | Semiconductor device |
JPH06151833A (en) * | 1992-11-16 | 1994-05-31 | Mitsubishi Electric Corp | Semiconductor device and manufacturing method thereof |
JPH06232416A (en) * | 1993-02-03 | 1994-08-19 | Rohm Co Ltd | Semiconductor storage device and manufacture thereof |
JP3221766B2 (en) * | 1993-04-23 | 2001-10-22 | 三菱電機株式会社 | Method for manufacturing field effect transistor |
US5407870A (en) * | 1993-06-07 | 1995-04-18 | Motorola Inc. | Process for fabricating a semiconductor device having a high reliability dielectric material |
US5441906A (en) * | 1994-04-04 | 1995-08-15 | Motorola, Inc. | Insulated gate field effect transistor having a partial channel and method for fabricating |
KR0161398B1 (en) * | 1995-03-13 | 1998-12-01 | 김광호 | High breakdown voltage transistor and manufacturing method thereof |
US5897354A (en) * | 1996-12-17 | 1999-04-27 | Cypress Semiconductor Corporation | Method of forming a non-volatile memory device with ramped tunnel dielectric layer |
KR100236098B1 (en) * | 1997-09-06 | 1999-12-15 | 김영환 | Semiconductor device and method of manufacturing the same |
-
1997
- 1997-09-06 KR KR1019970046038A patent/KR100236098B1/en not_active Expired - Fee Related
- 1997-10-24 US US08/957,622 patent/US5952700A/en not_active Expired - Lifetime
-
1998
- 1998-02-13 JP JP10031678A patent/JP3117197B2/en not_active Expired - Fee Related
-
1999
- 1999-05-12 US US09/310,334 patent/US6238985B1/en not_active Expired - Lifetime
-
2000
- 2000-12-14 US US09/735,909 patent/US6455380B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10005915B2 (en) | 2011-08-01 | 2018-06-26 | Sun Chemical Corporation | High-stretch energy curable inks and method of use in heat transfer label applications |
Also Published As
Publication number | Publication date |
---|---|
KR19990024726A (en) | 1999-04-06 |
US6238985B1 (en) | 2001-05-29 |
US6455380B2 (en) | 2002-09-24 |
US5952700A (en) | 1999-09-14 |
JPH1187707A (en) | 1999-03-30 |
KR100236098B1 (en) | 1999-12-15 |
JP3117197B2 (en) | 2000-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100261170B1 (en) | Semiconductor device and method for fabricating the same | |
US5930642A (en) | Transistor with buried insulative layer beneath the channel region | |
US6277675B1 (en) | Method of fabricating high voltage MOS device | |
US6210998B1 (en) | Semiconductor device formed on an insulator and having a damaged portion at the interface between the insulator and the active layer | |
KR100302187B1 (en) | Method for fabricating semiconductor device | |
US6455380B2 (en) | Semiconductor device and method for fabricating the same | |
US7550352B2 (en) | MOS transistor having a recessed gate electrode and fabrication method thereof | |
JP2897004B2 (en) | CMOSFET manufacturing method | |
US6888176B1 (en) | Thyrister semiconductor device | |
US5061649A (en) | Field effect transistor with lightly doped drain structure and method for manufacturing the same | |
KR19980029024A (en) | MOSFET and manufacturing method | |
US7804107B1 (en) | Thyristor semiconductor device and method of manufacture | |
JPH0878672A (en) | MOS semiconductor device and method of manufacturing the same | |
KR0140719B1 (en) | Favrication method of mosfet | |
US6709939B2 (en) | Method for fabricating semiconductor device | |
US20090179274A1 (en) | Semiconductor Device and Method for Fabricating the Same | |
US6207482B1 (en) | Integration method for deep sub-micron dual gate transistor design | |
JPS6055665A (en) | Manufacturing method of semiconductor device | |
US6180502B1 (en) | Self-aligned process for making asymmetric MOSFET using spacer gate technique | |
US5567965A (en) | High-voltage transistor with LDD regions | |
JPH07122657A (en) | Semiconductor memory and fabrication thereof | |
US7161210B2 (en) | Semiconductor device with source and drain regions | |
US20030032227A1 (en) | MOSFET, semiconductor device using the same and production process therefor | |
JP2924947B2 (en) | Method for manufacturing semiconductor device | |
JPH11220128A (en) | MOSFET and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140924 |