US20010026866A1 - Anisotropically electroconductive adhesive material and connecting method - Google Patents
Anisotropically electroconductive adhesive material and connecting method Download PDFInfo
- Publication number
- US20010026866A1 US20010026866A1 US09/809,279 US80927901A US2001026866A1 US 20010026866 A1 US20010026866 A1 US 20010026866A1 US 80927901 A US80927901 A US 80927901A US 2001026866 A1 US2001026866 A1 US 2001026866A1
- Authority
- US
- United States
- Prior art keywords
- adhesive material
- electroconductive
- modulus
- anisotropically
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 43
- 239000000853 adhesive Substances 0.000 title claims abstract description 38
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims description 9
- 239000002245 particle Substances 0.000 claims abstract description 50
- 229920005989 resin Polymers 0.000 claims abstract description 21
- 239000011347 resin Substances 0.000 claims abstract description 21
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 24
- 229910052759 nickel Inorganic materials 0.000 claims description 12
- 230000006835 compression Effects 0.000 description 12
- 238000007906 compression Methods 0.000 description 12
- 239000002313 adhesive film Substances 0.000 description 10
- 239000010931 gold Substances 0.000 description 10
- 239000000758 substrate Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 239000004593 Epoxy Substances 0.000 description 8
- 229920000647 polyepoxide Polymers 0.000 description 8
- 229910000679 solder Inorganic materials 0.000 description 8
- 239000003822 epoxy resin Substances 0.000 description 7
- 238000007747 plating Methods 0.000 description 7
- 238000006073 displacement reaction Methods 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000003292 diminished effect Effects 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 3
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical group CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 239000013528 metallic particle Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000009702 powder compression Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J163/00—Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J5/00—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
- C09J5/06—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J9/00—Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
- C09J9/02—Electrically-conducting adhesives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/321—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
- H05K3/323—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/54—Inorganic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/2919—Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01004—Beryllium [Be]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01015—Phosphorus [P]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01019—Potassium [K]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01023—Vanadium [V]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01027—Cobalt [Co]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/06—Polymers
- H01L2924/0665—Epoxy resin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/06—Polymers
- H01L2924/078—Adhesive characteristics other than chemical
- H01L2924/07802—Adhesive characteristics other than chemical not being an ohmic electrical conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/06—Polymers
- H01L2924/078—Adhesive characteristics other than chemical
- H01L2924/0781—Adhesive characteristics other than chemical being an ohmic electrical conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/06—Polymers
- H01L2924/078—Adhesive characteristics other than chemical
- H01L2924/0781—Adhesive characteristics other than chemical being an ohmic electrical conductor
- H01L2924/07811—Extrinsic, i.e. with electrical conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0302—Properties and characteristics in general
- H05K2201/0314—Elastomeric connector or conductor, e.g. rubber with metallic filler
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0364—Conductor shape
- H05K2201/0367—Metallic bump or raised conductor not used as solder bump
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10613—Details of electrical connections of non-printed components, e.g. special leads
- H05K2201/10621—Components characterised by their electrical contacts
- H05K2201/10674—Flip chip
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
- Y10T428/24917—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
Definitions
- the present invention relates to an anisotropically electroconductive adhesive material and to a connecting method.
- the relatively high hardness of the nickel bumps when compared with gold or solder bumps means that plastic deformation occurs in the anisotropically electroconductive adhesive material because the electroconductive particles therein are crushed by the nickel bumps. This becomes problematic owing to the fact that a stable state of contact cannot be maintained between the nickel bumps of the bare IC chip and the electrode pads of the substrate to be IC-mounted, which results in diminished connection reliability.
- an object of the present invention to provide an anisotropically electroconductive adhesive material with which it can be ensured that the same connection reliability observed in conventional anisotropically electroconductive connections which use gold or solder bumps is maintained, even when relatively hard bumps such as nickel bumps are used as projecting electrodes when effecting anisotropically electroconductive connections between electronic elements such as bare IC chips, which are furnished with projecting electrodes, and the connecting pads of wiring boards.
- the present inventors perfected the present invention by discovering that the reliability of anisotropically electroconductive connections is intimately related to a 10% modulus of compressive elasticity (E) in the electroconductive particles in the anisotropically electroconductive adhesive material and the modulus of longitudinal elasticity (E′) of the projecting electrodes of the electronic element, and moreover that by adjusting the ratio of E to E′ over a specific range the connection reliability can be improved.
- E compressive elasticity
- E′ modulus of longitudinal elasticity
- the present invention provides an anisotropically electroconductive adhesive material, comprising a thermosetting resin and electroconductive particles dispersed in the thermosetting resin, wherein a 10% modulus of compressive elasticity (E) in said electroconductive particles and a modulus of longitudinal elasticity (E′) of projecting electrodes of an electronic element to be connected by said anisotropically electroconductive adhesive material satisfy the below Relational Formula (1).
- the present invention provides a connecting method, comprising sandwiching an anisotropically electroconductive adhesive material, in which electricoconductive particles have been dispersed in a thermosetting resin, between projecting electrodes of an electronic element and the connecting pads of a wiring board, and applying heat and pressure thereto to make a connection therebetween while ensuring continuity between the electrical element and the wiring board, wherein, in the anisotropically electroconductive adhesive material, a 10% modulus of compressive elasticity (E) in the electroconductive particles and a modulus of longitudinal elasticity (E′) of the projecting electrodes of the electronic element that satisfy the Relational Formula (1) below.
- E compressive elasticity
- E′ modulus of longitudinal elasticity
- FIG. 1A and FIG. 1B are a diagram showing the relationship between load and compression displacement and a diagram showing the relationship between compression strain and K value.
- the anisotropically electroconductive adhesive material pertaining to the present invention is an adhesive material in the form of a film, paste or liquid formed through the dispersing of electroconductive particles in a thermosetting resin, which must satisfy Relational Formula (1):
- the modulus of longitudinal elasticity (E′) of the projecting electrodes can be measured with a testing method performed according to JIS Z2241.
- the 10% modulus of compressive elasticity (E) in the electroconductive particles corresponds to the K value defined in “Elastic Theory” on p. 42 of Landau-Liefschitz' textbook on theoretical physics (published by Tokyo Library (1972)).
- the K value is defined as below.
- h expresses the difference between R+R′ and the distance between the centres of the two spheres; F expresses compressive force; E, E′ respectively express the modulus of elasticity of each of the two elastic spheres and ⁇ , ⁇ ′ express the Poisson ratio of the elastic spheres.
- K (3/ ⁇ square root ⁇ square root over ( ) ⁇ 2) ⁇ F ⁇ S ⁇ fraction (3/2) ⁇ ⁇ R ⁇ 1 ⁇ 2 (v)
- This K value expresses universally and quantitatively the hardness of the spheres.
- this K value i.e., the 10% modulus of compressive elasticity (E)
- E the 10% modulus of compressive elasticity
- the numerical values used for the 10% modulus of compressive elasticity (E) for the electroconductive particles are generally within the range of 3 to 30 GPa, owing to the fact that when they are below this range the likelihood that the connections in the connection reliability test will be unsatisfactory is high, while when they exceed the range there are concerns stemming from continuity not being established during the initial connection, or that portions of the circuit other than the projecting electrodes will suffer damage.
- the numerical values used for the modulus of longitudinal elasticity (E′) of the projecting electrodes of the electronic element are generally within the range of 40 to 200 GPa owing to the fact that when they are below this range the electoconductive particles will slide into the projecting electrodes during connection, leading to a poor connection, while when they exceed the range the circuit electrodes on the substrate will break under high connection pressures.
- the anisotropically electroconductive adhesive material pertaining to the present invention possesses the above characteristics, but in other constitutions it can be similar to conventional anisotropically electroconductive adhesive materials.
- thermosetting resins include epoxy, urethane and unsaturated polyester resins.
- the thermosetting resin may contain photoreactive functional groups such as acrylic acid and (meth)acrylic acid ester residues.
- photoreactive functional groups such as acrylic acid and (meth)acrylic acid ester residues.
- a solid epoxy resin that is solid at normal temperatures is used.
- a liquid epoxy resin that is liquid at normal temperatures is also possible to combine it with a liquid epoxy resin that is liquid at normal temperatures.
- the compounding ratio of the liquid epoxy resin to the solid epoxy resin at normal temperatures can be suitably determined according to the performance required of the anisotropically electroconductive adhesive material when used in the form of a film.
- the amount of flexible epoxy resin to be used in the anisotropically electroconductive adhesive material pertaining to the present invention is preferably 5 to 35 wt %, or more preferably 5 to 25 wt %, since any amount below this range will not allow the effect of having added the flexible epoxy resin to be sufficiently realized, while any amount in excess of this range will cause heat resistance to suffer.
- Electroconductive particles to be used in the present invention can be suitably selected from materials conventionally used in anisotropically electroconductive adhesive materials so as to satisfy the aforesaid Formula (1).
- particles which can be used include metallic particles such as solder and nickel, a metal-covered resin particles, in which a metal plating coating has been formed on the surface of a core resin sych as polystyrene, or complex particles in which silica or another inorganic powder is bonded to the resin core surface by hybridisation, and then a metal plating coating is applied thereon.
- the mean particle size of the electroconductive particles can be suitably selected in accordance with the material and height of the bumps of the electrical element to be connected; however, a size of 1 to 10 ⁇ m is preferable when effecting flip-chip mounting of bare IC chips in high densities.
- the electroconductive microparticles can be compounded in an amount suitably determined according to surface area of the bumps of the electronic element to be connected, as well as to the surface area of the connecting pads of the wiring board.
- the amount of the electroconductive microparticles is preferably 3 to 30 wt pts per 100 wt pts solid resin content in the anisotropically electroconductive adhesive material pertaining to the present invention because in amounts below this range the electroconductive particles will not come between the upper and lower electrodes, which will cause poor continuity, while in amounts above this range shorts will occur between adjacent electrodes owing to aggregation of the electroconductive particles.
- a universally known additive which is compounded with conventional anisotropically electroconductive adhesive materials; e.g., isocyanate-based crosslinking agents, coupling agents such as epoxy silane, epoxy-modified silicone resins, or thermosetting insulating resins such as phenoxy resins, can be added to the anisotropically electroconductive adhesive material pertaining to the present invention as needed.
- anisotropically electroconductive adhesive materials e.g., isocyanate-based crosslinking agents, coupling agents such as epoxy silane, epoxy-modified silicone resins, or thermosetting insulating resins such as phenoxy resins
- the anisotropically electroconductive adhesive material pertaining to the present invention can be adjusted by uniformly admixing the aforementioned thermosetting resins and electroconductive particles in toluene or another solvent.
- the material can be used in the form of a liquid or paste, or made into a thermosetting anisotropically electroconductive adhesive film.
- the anisotropically electroconductive adhesive material pertaining to the present invention is preferably suited to anisotropically electroconduction connecting methods wherein connections are achieved between the projecting electrodes of the electronic element and the connecting pads of the wiring board by sandwiching an anisotropically electroconductive adhesive material therebetween, in which electroconductive particles have been dispersed in a thermosetting resin, while applying heat and pressure to the resulting assembly in order to ensure the continuity between the electronic element and the wiring board.
- the electronic elements to which the present invention can be applied are elements which have projecting electrodes. Examples of same include bare IC chips and LSI chips. Examples of projecting electrodes include gold and solder bumps, among which nickel bumps are preferably used due to their high hardness and relatively low material cost.
- the 10% modulus of compressive elasticity (E) of the electroconductive particles i.e., the K value
- the electroconductive particles are scattered over the smooth surface of a steel plate, and one of the particles is selected.
- the compression load was electrically detected as an electromagnetic force
- compression displacement was electrically detected as displacement due to differential transformer, with the relationship between compression displacement and load shown in FIG. 1A.
- compression strain and the K value (10% modulus of compressive elasticity (E)) can be determined.
- Compression strain is defined here as the value obtained by dividing the compression displacement by the electroconductive particle size, expressed as a percentage.
- thermosetting insulating adhesive formed by admixing 50 wt pts epoxy resin (Epicoat 1009; Yuka Shell Epoxy Co., Ltd.) with 45 wt pts latent curing agent (HX3721; Asahi Kasei (KK)), in which 5 wt pts electroconductive gold-plated spherical nickel particles (Nippon Kagaku Kogyo (KK); mean particle size: 6 ⁇ m; 10% modulus of compressive elasticity (E): 41.6 GPa) had been uniformly dispersed, was made into a film, from which a 35 ⁇ m-thick anisotropically electroconductive adhesive film was produced.
- This anisotropically electroconductive adhesive film was sandwiched between a semiconductor chip (bump material: Ni; bump height: 20 ⁇ m; bump surface area: 10,000 ⁇ m 2 ; modulus of longitudinal elasticity (E′): 98 GPa; E/E′: 0.42; outer dimensions: 6.3 mm square) and a glass epoxy substrate (wiring material: Cu, Ni/Au plating; wiring thickness: 18 ⁇ m), and these were connected together by subjecting the assembly to a hot press under conditions of 180° C. and 147N (15 kgf) for 20 sec. The initial continuity resistance per terminal of the resulting connected assembly was 5 to 10 m ⁇ , which revealed a good connection state.
- PCT pressure cooker test
- a connected assembly was obtained in the same manner as in Example 1 by connecting a semiconductor chip and a glass epoxy substrate via the anisotropically electroconductive adhesive film.
- the initial continuity resistance per terminal of the resulting connected assembly was 5 to 10 m ⁇ , which revealed a good connection state.
- the connected assembly was then subjected to a 100 hr pressure cooker test (PCT) (121° C.; 0.213 MPa (2.1 atm); saturated humidity environment), but there were no large discrepancies revealed between the initial and PCT-final continuity resistance values.
- PCT pressure cooker test
- a connected assembly was obtained in the same manner as in Example 1 by connecting a semiconductor chip and a glass epoxy substrate via the anisotropically electroconductive adhesive film.
- the initial continuity resistance per terminal of the resulting connected assembly was 5 to 10 m ⁇ , which revealed a good connection state.
- the connected assembly was then subjected to a 100 hr pressure cooker test (PCT) (121° C.; 0.213 MPa (2.1 atm); saturated humidity environment), but there were no large discrepancies revealed between the initial and PCT-final continuity resistance values.
- PCT pressure cooker test
- 5 wt pts electroconductive gold-plated spherical polystyrene resin particles Nippon Kagaku Kogyo (KK); mean particle size: 5 ⁇ m; 10% modulus of compressive elasticity (E): 1.5 GPa; E/E′: 0.015
- the anisotropically electroconductive adhesive film prepared in Example 1 was sandwiched between a semiconductor chip (bump material: Au; bump height: 20 ⁇ m; bump surface area: 10,000 ⁇ m 2 ; modulus of longitudinal elasticity (E′): 76.4 GPa; E/E′: 0.54; outer dimensions: 6.3 mm square) and a glass epoxy substrate (wiring material: Cu, Ni/Au plating; wiring thickness: 18 ⁇ m), and these were connected together by subjecting the assembly to a hot press under conditions of 180° C. and 147N (15 kgf) for 20 sec. The initial continuity resistance per terminal of the resulting connected assembly was 5 to 10 m ⁇ , which revealed a good connection state.
- PCT pressure cooker test
- anisotropically electroconductive adhesive material pertaining to the present invention it is possible to ensure the same connection reliability observed in conventional anisotropically electroconductive connections in which gold or solder bumps are employed when bare IC chips or other electronic elements which have been furnished with projecting electrodes are brought into anisotropically electroconductive connection with the connecting pads of a wiring board, even when nickel or other relatively hard bumps are used as the projecting electrodes.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Conductive Materials (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Wire Bonding (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates to an anisotropically electroconductive adhesive material and to a connecting method.
- 2. Description of the Related Art
- In recent years, bare IC chips which are furnished with gold or solder bumps as projecting electrodes have been directly flip-chip mounted on electrode pads of substrates to be IC-mounted or worked and mounted in chip size package (CSP) configurations. When chip mounting is carried out as such, an anisotropically electroconductive adhesive material in the form of a film, paste or liquid, in which an epoxy or other thermosetting resin and electroconductive particles have been compounded, is sandwiched between the projecting electrodes of the bare IC chip and the substrate to be IC-mounted, after which heat and pressure are applied thereto.
- However, using gold bumps is problematic due to the extremely high cost of materials. Moreover, using solder bumps is problematic owing to the fact that when an electrolytic plating method is used to form very fine and uniform bumps, a resist step is required, and furthermore, before the solder plating is carried out, complex electrolytic plating steps are required, such as the forming of a underlying metal layer (Ti/Cu) and the forming of a metal multilayered plating barrier layer (Cu/Ni/Au).
- Attempts have therefore been made to use nickel bumps, which are low in cost and which can be formed in a relatively simple electrolytic plating step.
- However, the relatively high hardness of the nickel bumps when compared with gold or solder bumps means that plastic deformation occurs in the anisotropically electroconductive adhesive material because the electroconductive particles therein are crushed by the nickel bumps. This becomes problematic owing to the fact that a stable state of contact cannot be maintained between the nickel bumps of the bare IC chip and the electrode pads of the substrate to be IC-mounted, which results in diminished connection reliability.
- With the foregoing problems with the prior art in view, it is an object of the present invention to provide an anisotropically electroconductive adhesive material with which it can be ensured that the same connection reliability observed in conventional anisotropically electroconductive connections which use gold or solder bumps is maintained, even when relatively hard bumps such as nickel bumps are used as projecting electrodes when effecting anisotropically electroconductive connections between electronic elements such as bare IC chips, which are furnished with projecting electrodes, and the connecting pads of wiring boards.
- The present inventors perfected the present invention by discovering that the reliability of anisotropically electroconductive connections is intimately related to a 10% modulus of compressive elasticity (E) in the electroconductive particles in the anisotropically electroconductive adhesive material and the modulus of longitudinal elasticity (E′) of the projecting electrodes of the electronic element, and moreover that by adjusting the ratio of E to E′ over a specific range the connection reliability can be improved.
- In other words, the present invention provides an anisotropically electroconductive adhesive material, comprising a thermosetting resin and electroconductive particles dispersed in the thermosetting resin, wherein a 10% modulus of compressive elasticity (E) in said electroconductive particles and a modulus of longitudinal elasticity (E′) of projecting electrodes of an electronic element to be connected by said anisotropically electroconductive adhesive material satisfy the below Relational Formula (1).
- 0.02≦E/E′≦0.5 (1)
- Moreover, the present invention provides a connecting method, comprising sandwiching an anisotropically electroconductive adhesive material, in which electricoconductive particles have been dispersed in a thermosetting resin, between projecting electrodes of an electronic element and the connecting pads of a wiring board, and applying heat and pressure thereto to make a connection therebetween while ensuring continuity between the electrical element and the wiring board, wherein, in the anisotropically electroconductive adhesive material, a 10% modulus of compressive elasticity (E) in the electroconductive particles and a modulus of longitudinal elasticity (E′) of the projecting electrodes of the electronic element that satisfy the Relational Formula (1) below.
- 0.02≦E/E′≦0.5 (1)
- FIG. 1A and FIG. 1B, respectively, are a diagram showing the relationship between load and compression displacement and a diagram showing the relationship between compression strain and K value.
- The present invention is described in detail below.
- The anisotropically electroconductive adhesive material pertaining to the present invention is an adhesive material in the form of a film, paste or liquid formed through the dispersing of electroconductive particles in a thermosetting resin, which must satisfy Relational Formula (1):
- 0.02≦E/E′≦0.5 (1)
- for a 10% modulus of compressive elasticity (E) in the electroconductive particles and the modulus of longitudinal elasticity (E′) of the projecting electrodes of the electronic element to be connected by the anisotropically electroconductive adhesive material. This is stipulated because when E/E′ falls below 0.02, sufficient connection reliability cannot be ensured owing to the low restoring force of the electroconductive particles, and, conversely, when E/E′ exceeds 0.5 the electroconductive particles are insufficiently crushed leading again to connection reliability which is insufficiently ensured.
- The modulus of longitudinal elasticity (E′) of the projecting electrodes can be measured with a testing method performed according to JIS Z2241. The 10% modulus of compressive elasticity (E) in the electroconductive particles corresponds to the K value defined in “Elastic Theory” on p. 42 of Landau-Liefschitz' textbook on theoretical physics (published by Tokyo Library (1972)). The K value is defined as below.
- When two elastic spheres of respective radii R and R′ are made to come in contact in a compressed state, then h shall be expressed according to Formulae (i) and (ii) below.
- h=F ⅔ [D 2(1/R+1/R′)]⅓ (i)
- D=(¾)[(1−σ2)/E+(1=σ′2)/E′] (ii)
- In the above formulae, h expresses the difference between R+R′ and the distance between the centres of the two spheres; F expresses compressive force; E, E′ respectively express the modulus of elasticity of each of the two elastic spheres and σ, σ′ express the Poisson ratio of the elastic spheres.
- On the other hand, if a rigid plate is substituted for one of the spheres and a compressive force is applied from both sides, then Formula (iii) can be approximated as follows, assuming that R tends towards ∞ and E is extremely greater than E′.
- F=(2½/3)(S {fraction (3/2)})(E·R ½)(1−σ2) (iii)
- In the above formula, S expresses the amount of compressive deformation. Therefore, if the K value can be defined as in Formula (iv), the K value can be expressed as in Formula (v).
- K=E/(1−σ2) (iv)
- K=(3/{square root}{square root over ( )}2)·F·S −{fraction (3/2)} ·R −½ (v)
- This K value expresses universally and quantitatively the hardness of the spheres. By using this K value (i.e., the 10% modulus of compressive elasticity (E)), it becomes possible to express quantitatively and unconditionally the ideal hardness of microspheres or spacers (referred to below as spacers). A specific method for determining the K value shall be described in detail with the aid of the examples of the present specification.
- The numerical values used for the 10% modulus of compressive elasticity (E) for the electroconductive particles are generally within the range of 3 to 30 GPa, owing to the fact that when they are below this range the likelihood that the connections in the connection reliability test will be unsatisfactory is high, while when they exceed the range there are concerns stemming from continuity not being established during the initial connection, or that portions of the circuit other than the projecting electrodes will suffer damage. The numerical values used for the modulus of longitudinal elasticity (E′) of the projecting electrodes of the electronic element are generally within the range of 40 to 200 GPa owing to the fact that when they are below this range the electoconductive particles will slide into the projecting electrodes during connection, leading to a poor connection, while when they exceed the range the circuit electrodes on the substrate will break under high connection pressures.
- The anisotropically electroconductive adhesive material pertaining to the present invention possesses the above characteristics, but in other constitutions it can be similar to conventional anisotropically electroconductive adhesive materials.
- Examples of thermosetting resins include epoxy, urethane and unsaturated polyester resins. The thermosetting resin may contain photoreactive functional groups such as acrylic acid and (meth)acrylic acid ester residues. Of these, it is preferable that a solid epoxy resin that is solid at normal temperatures is used. In such circumstances, it is also possible to combine it with a liquid epoxy resin that is liquid at normal temperatures. The compounding ratio of the liquid epoxy resin to the solid epoxy resin at normal temperatures can be suitably determined according to the performance required of the anisotropically electroconductive adhesive material when used in the form of a film. Moreover, when the degree of flexibility of a film comprising such solid or liquid epoxy resins is to be improved and it is thereby required to increase the peel strength of the anisotropically electroconductive adhesive material, it is particularly preferable to add a flexible epoxy resin to the aforedescribed epoxy resins. In such circumstances, the amount of flexible epoxy resin to be used in the anisotropically electroconductive adhesive material pertaining to the present invention is preferably 5 to 35 wt %, or more preferably 5 to 25 wt %, since any amount below this range will not allow the effect of having added the flexible epoxy resin to be sufficiently realized, while any amount in excess of this range will cause heat resistance to suffer.
- Electroconductive particles to be used in the present invention can be suitably selected from materials conventionally used in anisotropically electroconductive adhesive materials so as to satisfy the aforesaid Formula (1). Examples of particles which can be used include metallic particles such as solder and nickel, a metal-covered resin particles, in which a metal plating coating has been formed on the surface of a core resin sych as polystyrene, or complex particles in which silica or another inorganic powder is bonded to the resin core surface by hybridisation, and then a metal plating coating is applied thereon.
- The mean particle size of the electroconductive particles can be suitably selected in accordance with the material and height of the bumps of the electrical element to be connected; however, a size of 1 to 10 μm is preferable when effecting flip-chip mounting of bare IC chips in high densities.
- The electroconductive microparticles can be compounded in an amount suitably determined according to surface area of the bumps of the electronic element to be connected, as well as to the surface area of the connecting pads of the wiring board. However, the amount of the electroconductive microparticles is preferably 3 to 30 wt pts per 100 wt pts solid resin content in the anisotropically electroconductive adhesive material pertaining to the present invention because in amounts below this range the electroconductive particles will not come between the upper and lower electrodes, which will cause poor continuity, while in amounts above this range shorts will occur between adjacent electrodes owing to aggregation of the electroconductive particles.
- A universally known additive which is compounded with conventional anisotropically electroconductive adhesive materials; e.g., isocyanate-based crosslinking agents, coupling agents such as epoxy silane, epoxy-modified silicone resins, or thermosetting insulating resins such as phenoxy resins, can be added to the anisotropically electroconductive adhesive material pertaining to the present invention as needed.
- The anisotropically electroconductive adhesive material pertaining to the present invention can be adjusted by uniformly admixing the aforementioned thermosetting resins and electroconductive particles in toluene or another solvent. The material can be used in the form of a liquid or paste, or made into a thermosetting anisotropically electroconductive adhesive film.
- The anisotropically electroconductive adhesive material pertaining to the present invention is preferably suited to anisotropically electroconduction connecting methods wherein connections are achieved between the projecting electrodes of the electronic element and the connecting pads of the wiring board by sandwiching an anisotropically electroconductive adhesive material therebetween, in which electroconductive particles have been dispersed in a thermosetting resin, while applying heat and pressure to the resulting assembly in order to ensure the continuity between the electronic element and the wiring board.
- The electronic elements to which the present invention can be applied are elements which have projecting electrodes. Examples of same include bare IC chips and LSI chips. Examples of projecting electrodes include gold and solder bumps, among which nickel bumps are preferably used due to their high hardness and relatively low material cost.
- The present invention shall be described in further detail by means of the below examples.
- The 10% modulus of compressive elasticity (E) of the electroconductive particles (i.e., the K value) shall be determined as described hereinbelow.
- (Method for Determining the 10% Modulus of Compressive Elasticity (E) of the Electroconductive Particles (K Value))
- The electroconductive particles are scattered over the smooth surface of a steel plate, and one of the particles is selected. Next, using a powder compression testing machine (PCT-200; Shimazu Co.), the particle is compressed using a 50 μm-diameter diamond cylinder with smooth ends (test load=0.0098N (10 grf); compression rate (constant load rate compression method) 2.6×10 −3N (0.27 grf)/sec; measuring temperature=20° C.). The compression load was electrically detected as an electromagnetic force, and compression displacement was electrically detected as displacement due to differential transformer, with the relationship between compression displacement and load shown in FIG. 1A. From the drawing can be respectively calculated the load value and compression displacement of the electroconductive particles under 10% compression deformation, and from these values and Formula (v), as shown in FIG. 1B, compression strain and the K value (10% modulus of compressive elasticity (E)) can be determined. Compression strain is defined here as the value obtained by dividing the compression displacement by the electroconductive particle size, expressed as a percentage.
- A thermosetting insulating adhesive formed by admixing 50 wt pts epoxy resin (Epicoat 1009; Yuka Shell Epoxy Co., Ltd.) with 45 wt pts latent curing agent (HX3721; Asahi Kasei (KK)), in which 5 wt pts electroconductive gold-plated spherical nickel particles (Nippon Kagaku Kogyo (KK); mean particle size: 6 μm; 10% modulus of compressive elasticity (E): 41.6 GPa) had been uniformly dispersed, was made into a film, from which a 35 μm-thick anisotropically electroconductive adhesive film was produced.
- This anisotropically electroconductive adhesive film was sandwiched between a semiconductor chip (bump material: Ni; bump height: 20 μm; bump surface area: 10,000 μm 2; modulus of longitudinal elasticity (E′): 98 GPa; E/E′: 0.42; outer dimensions: 6.3 mm square) and a glass epoxy substrate (wiring material: Cu, Ni/Au plating; wiring thickness: 18 μm), and these were connected together by subjecting the assembly to a hot press under conditions of 180° C. and 147N (15 kgf) for 20 sec. The initial continuity resistance per terminal of the resulting connected assembly was 5 to 10 mΩ, which revealed a good connection state. The connected assembly was then subjected to a 100 hr pressure cooker test (PCT) (121° C.; 0.213 MPa (2.1 atm); saturated humidity environment), but there were no large discrepancies revealed between the initial and PCT-final continuity resistance values.
- The thermosetting insulating adhesive prepared in Example 1 in which 5 wt pts electroconductive gold-plated spherical benzoguanamine resin particles (Nippon Kagaku Kogyo (KK); mean particle size: 5 μm; 10% modulus of compressive elasticity (E): 4.7 GPa; E/E′: 0.048) had been uniformly dispersed was made into a film, from which a 35 μm-thick anisotropically electroconductive adhesive film was produced. A connected assembly was obtained in the same manner as in Example 1 by connecting a semiconductor chip and a glass epoxy substrate via the anisotropically electroconductive adhesive film. The initial continuity resistance per terminal of the resulting connected assembly was 5 to 10 mΩ, which revealed a good connection state. The connected assembly was then subjected to a 100 hr pressure cooker test (PCT) (121° C.; 0.213 MPa (2.1 atm); saturated humidity environment), but there were no large discrepancies revealed between the initial and PCT-final continuity resistance values.
- The thermosetting insulating adhesive prepared in Example 1 in which 5 wt pts electroconductive particles obtained by covering spherical benzoguanamine resin particles with silica and then performing a gold-plating treatment thereon (Nippon Kagaku Kogyo (KK); mean particle size: 7 μm; 10% modulus of compressive elasticity (E) 21.6 GPa; E/E′: 0.22) had been uniformly dispersed was made into a film, from which a 35 μm-thick anisotropically electroconductive adhesive film was produced. A connected assembly was obtained in the same manner as in Example 1 by connecting a semiconductor chip and a glass epoxy substrate via the anisotropically electroconductive adhesive film. The initial continuity resistance per terminal of the resulting connected assembly was 5 to 10 mΩ, which revealed a good connection state. The connected assembly was then subjected to a 100 hr pressure cooker test (PCT) (121° C.; 0.213 MPa (2.1 atm); saturated humidity environment), but there were no large discrepancies revealed between the initial and PCT-final continuity resistance values.
- The thermosetting insulating adhesive prepared in Example 1 in which 5 wt pts electroconductive gold-plated spherical polystyrene resin particles (Nippon Kagaku Kogyo (KK); mean particle size: 5 μm; 10% modulus of compressive elasticity (E): 1.5 GPa; E/E′: 0.015) had been uniformly dispersed was made into a film, from which a 35 μm-thick anisotropically electroconductive adhesive film was produced. When an assembly was about to be connected in the same manner as in Example 1 by connecting a semiconductor chip and a glass epoxy substrate via the anisotropically electroconductive adhesive film, the electroconductive particles sandwiched between the electrodes were crushed (i.e., the electroconductive particles were destroyed), but the initial continuity resistance per terminal of the resulting connected assembly was 5 to 10 mΩ. The connected assembly was then subjected to a 100 hr pressure cooker test (PCT) (121° C.; 0.213 MPa (2.1 atm); saturated humidity environment), but the PCT-final continuity resistance values had risen sharply from the initial continuity resistance values, leading to a markedly diminished connection reliability.
- The anisotropically electroconductive adhesive film prepared in Example 1 was sandwiched between a semiconductor chip (bump material: Au; bump height: 20 μm; bump surface area: 10,000 μm 2; modulus of longitudinal elasticity (E′): 76.4 GPa; E/E′: 0.54; outer dimensions: 6.3 mm square) and a glass epoxy substrate (wiring material: Cu, Ni/Au plating; wiring thickness: 18 μm), and these were connected together by subjecting the assembly to a hot press under conditions of 180° C. and 147N (15 kgf) for 20 sec. The initial continuity resistance per terminal of the resulting connected assembly was 5 to 10 mΩ, which revealed a good connection state. The connected assembly was then subjected to a 100 hr pressure cooker test (PCT) (121° C.; 0.213 MPa (2.1 atm); saturated humidity environment), but the PCT-final continuity resistance values had risen sharply from the initial continuity resistance values, leading to a markedly diminished connection reliability.
- According to the anisotropically electroconductive adhesive material pertaining to the present invention, it is possible to ensure the same connection reliability observed in conventional anisotropically electroconductive connections in which gold or solder bumps are employed when bare IC chips or other electronic elements which have been furnished with projecting electrodes are brought into anisotropically electroconductive connection with the connecting pads of a wiring board, even when nickel or other relatively hard bumps are used as the projecting electrodes.
- The entire disclosure of the specification, summary, claims and drawings of Japanese Patent Application No. 2000-99883 filed on Mar. 31, 2000 is hereby incorporated by reference.
Claims (4)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JPJP2000-99883 | 2000-03-31 | ||
| JP2000099883A JP3738655B2 (en) | 2000-03-31 | 2000-03-31 | Anisotropic conductive adhesive material and connection method |
| JP2000-099883 | 2000-03-31 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20010026866A1 true US20010026866A1 (en) | 2001-10-04 |
| US6426021B2 US6426021B2 (en) | 2002-07-30 |
Family
ID=18614170
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/809,279 Expired - Lifetime US6426021B2 (en) | 2000-03-31 | 2001-03-16 | Anisotropically electroconductive adhesive material and connecting method |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US6426021B2 (en) |
| EP (1) | EP1138737B1 (en) |
| JP (1) | JP3738655B2 (en) |
| KR (1) | KR100913719B1 (en) |
| CN (1) | CN1180463C (en) |
| DE (1) | DE60101175T2 (en) |
| TW (1) | TWI243847B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007120078A3 (en) * | 2006-04-13 | 2008-01-24 | Koltsova Anastasia Adrianovna | Polymer anisotropic electroconductive gluing material and a gluing method |
Families Citing this family (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3417354B2 (en) * | 1999-08-19 | 2003-06-16 | ソニーケミカル株式会社 | Adhesive material and circuit connection method |
| JP4642286B2 (en) * | 2001-08-01 | 2011-03-02 | 早川ゴム株式会社 | Synthetic resin fine particles, conductive fine particles, and anisotropic conductive material composition |
| US6802446B2 (en) * | 2002-02-01 | 2004-10-12 | Delphi Technologies, Inc. | Conductive adhesive material with metallurgically-bonded conductive particles |
| JP4844461B2 (en) * | 2002-02-28 | 2011-12-28 | 日立化成工業株式会社 | Circuit connection material and circuit terminal connection structure using the same |
| JP4154919B2 (en) * | 2002-02-28 | 2008-09-24 | 日立化成工業株式会社 | Circuit connection material and circuit terminal connection structure using the same |
| JP3772983B2 (en) * | 2003-03-13 | 2006-05-10 | セイコーエプソン株式会社 | Manufacturing method of electronic device |
| CN100380741C (en) * | 2003-06-25 | 2008-04-09 | 日立化成工业株式会社 | Circuit connecting material, circuit member connecting structure, and method for manufacturing the same |
| JP2005194393A (en) * | 2004-01-07 | 2005-07-21 | Hitachi Chem Co Ltd | Adhesive film for circuit connection, and circuit connection structure |
| DE102004029589A1 (en) * | 2004-06-18 | 2005-12-29 | Tesa Ag | Electrically anisotropically conductive hotmelt adhesive for the implantation of electrical modules in a card body |
| US9978479B2 (en) * | 2009-02-26 | 2018-05-22 | Corning Incorporated | Electrically isolating polymer composition |
| JP5518747B2 (en) * | 2009-11-16 | 2014-06-11 | 日立化成株式会社 | Circuit connection material and circuit member connection structure using the same |
| JP5576231B2 (en) * | 2010-09-30 | 2014-08-20 | 積水化学工業株式会社 | Conductive particles, anisotropic conductive materials, and connection structures |
| JP6061443B2 (en) * | 2010-12-24 | 2017-01-18 | デクセリアルズ株式会社 | Anisotropic conductive adhesive film, connection structure and manufacturing method thereof |
| JP2013004815A (en) * | 2011-06-17 | 2013-01-07 | Sony Corp | Light source circuit unit, lighting device, and display device |
| CN103000779B (en) * | 2012-09-24 | 2015-01-07 | 安徽三安光电有限公司 | Vertical light emitting diode with current blocking function and method for manufacturing vertical light emitting diode |
| US8975175B1 (en) * | 2013-06-28 | 2015-03-10 | Sunpower Corporation | Solderable contact regions |
| TWI621132B (en) * | 2015-12-10 | 2018-04-11 | 南茂科技股份有限公司 | Bump structure and manufacturing method thereof |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU3460997A (en) | 1996-07-15 | 1998-02-09 | Hitachi Chemical Company, Ltd. | Film-like adhesive for connecting circuit and circuit board |
| JP3678547B2 (en) | 1997-07-24 | 2005-08-03 | ソニーケミカル株式会社 | Multilayer anisotropic conductive adhesive and method for producing the same |
| KR100539060B1 (en) * | 1997-10-28 | 2007-04-25 | 소니 케미카루 가부시키가이샤 | Anisotropic conductive adhesive and adhesive film |
| US6451875B1 (en) | 1999-10-12 | 2002-09-17 | Sony Chemicals Corporation | Connecting material for anisotropically electroconductive connection |
-
2000
- 2000-03-31 JP JP2000099883A patent/JP3738655B2/en not_active Expired - Fee Related
-
2001
- 2001-03-16 US US09/809,279 patent/US6426021B2/en not_active Expired - Lifetime
- 2001-03-16 TW TW090106169A patent/TWI243847B/en not_active IP Right Cessation
- 2001-03-28 DE DE60101175T patent/DE60101175T2/en not_active Expired - Lifetime
- 2001-03-28 EP EP01107937A patent/EP1138737B1/en not_active Expired - Lifetime
- 2001-03-30 KR KR1020010016756A patent/KR100913719B1/en not_active Expired - Fee Related
- 2001-03-31 CN CNB011190310A patent/CN1180463C/en not_active Expired - Fee Related
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007120078A3 (en) * | 2006-04-13 | 2008-01-24 | Koltsova Anastasia Adrianovna | Polymer anisotropic electroconductive gluing material and a gluing method |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1138737B1 (en) | 2003-11-12 |
| JP2001283637A (en) | 2001-10-12 |
| DE60101175D1 (en) | 2003-12-18 |
| EP1138737A1 (en) | 2001-10-04 |
| JP3738655B2 (en) | 2006-01-25 |
| KR20010095134A (en) | 2001-11-03 |
| CN1320961A (en) | 2001-11-07 |
| CN1180463C (en) | 2004-12-15 |
| US6426021B2 (en) | 2002-07-30 |
| TWI243847B (en) | 2005-11-21 |
| KR100913719B1 (en) | 2009-08-24 |
| DE60101175T2 (en) | 2004-05-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6426021B2 (en) | Anisotropically electroconductive adhesive material and connecting method | |
| KR100290993B1 (en) | Semiconductor device, wiring board for mounting semiconductor and method of production of semiconductor device | |
| JP3624818B2 (en) | Anisotropic conductive connection material, connection body, and manufacturing method thereof | |
| US6270363B1 (en) | Z-axis compressible polymer with fine metal matrix suspension | |
| KR100861757B1 (en) | Connecting material for anisotropically electroconductive connection | |
| JP6209313B2 (en) | Anisotropic conductive film, connection structure, method for manufacturing connection structure, and connection method | |
| KR101082238B1 (en) | Connector, manufacture method for connector and anisotropic conductive film to be used therein | |
| JP2004051755A (en) | Elastic conductive resin and elastic conductive bonding structure | |
| TWI759290B (en) | Anisotropic conductive connection structure | |
| KR100989535B1 (en) | Adhesive material | |
| KR20040111441A (en) | Conductive particle and adhesive agent | |
| KR20100077129A (en) | Electrical connection body and method for fabricating the same | |
| JP3486346B2 (en) | Bare chip mounting structure | |
| JP5654289B2 (en) | Manufacturing method of mounting body, mounting body, and anisotropic conductive film | |
| US6673858B2 (en) | Thermosetting adhesive material | |
| JP2010251336A (en) | Anisotropic conductive film and method for manufacturing connection structure using the same | |
| JP2007056209A (en) | Adhesive for circuit connection | |
| JP4378788B2 (en) | IC chip connection method | |
| JP2000090727A (en) | Conductive particle for anisotropic conductive adhesive | |
| JP3506424B2 (en) | Mounting method of semiconductor element | |
| JP2003308728A (en) | Conductive particle for anisotropic conductive adhesive | |
| KR19980013961A (en) | Anisotropic conductive film | |
| KR20230056826A (en) | Anisotropic conductive adhesive film with controlled fluidity of conductive particles | |
| JP5114784B2 (en) | Manufacturing method of connection body and connection body |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SONY CHEMICAL CORP., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUGA, YASUHIRO;TAKEICHI, MOTOHIDE;REEL/FRAME:011618/0678 Effective date: 20010305 |
|
| FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |