US20030078456A1 - Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes - Google Patents
Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes Download PDFInfo
- Publication number
- US20030078456A1 US20030078456A1 US10/307,789 US30778902A US2003078456A1 US 20030078456 A1 US20030078456 A1 US 20030078456A1 US 30778902 A US30778902 A US 30778902A US 2003078456 A1 US2003078456 A1 US 2003078456A1
- Authority
- US
- United States
- Prior art keywords
- metaloxide
- ethane
- reaction
- halogen
- haloethane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 82
- 150000001335 aliphatic alkanes Chemical class 0.000 title abstract description 49
- 150000001336 alkenes Chemical class 0.000 title abstract description 23
- 150000001298 alcohols Chemical class 0.000 title abstract description 10
- 150000002170 ethers Chemical class 0.000 title abstract description 10
- 150000001299 aldehydes Chemical class 0.000 title abstract description 5
- 230000008569 process Effects 0.000 title description 44
- 230000002194 synthesizing effect Effects 0.000 title description 7
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims abstract description 138
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 73
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 72
- 229910052794 bromium Inorganic materials 0.000 claims abstract description 68
- 150000002367 halogens Chemical class 0.000 claims abstract description 26
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 25
- 239000000460 chlorine Substances 0.000 claims abstract description 16
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 16
- 229910001507 metal halide Inorganic materials 0.000 claims abstract description 14
- 150000005309 metal halides Chemical class 0.000 claims abstract description 14
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims abstract description 11
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052740 iodine Inorganic materials 0.000 claims abstract description 11
- 239000011630 iodine Substances 0.000 claims abstract description 11
- 229910000039 hydrogen halide Inorganic materials 0.000 claims abstract description 6
- 239000012433 hydrogen halide Substances 0.000 claims abstract description 6
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims abstract 4
- 238000006243 chemical reaction Methods 0.000 claims description 115
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 49
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 29
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 claims description 18
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 16
- RDHPKYGYEGBMSE-UHFFFAOYSA-N bromoethane Chemical compound CCBr RDHPKYGYEGBMSE-UHFFFAOYSA-N 0.000 claims description 15
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 238000004064 recycling Methods 0.000 claims 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 abstract description 29
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 29
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 abstract description 9
- 150000001350 alkyl halides Chemical class 0.000 abstract description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 94
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 82
- GZUXJHMPEANEGY-UHFFFAOYSA-N bromomethane Chemical compound BrC GZUXJHMPEANEGY-UHFFFAOYSA-N 0.000 description 52
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 43
- 239000000243 solution Substances 0.000 description 41
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 33
- 239000000203 mixture Substances 0.000 description 33
- QTMDXZNDVAMKGV-UHFFFAOYSA-L copper(ii) bromide Chemical compound [Cu+2].[Br-].[Br-] QTMDXZNDVAMKGV-UHFFFAOYSA-L 0.000 description 30
- QPLDLSVMHZLSFG-UHFFFAOYSA-N CuO Inorganic materials [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 29
- 229910001868 water Inorganic materials 0.000 description 27
- 229910052760 oxygen Inorganic materials 0.000 description 25
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 22
- 239000003054 catalyst Substances 0.000 description 22
- 239000001301 oxygen Substances 0.000 description 22
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 21
- 238000003756 stirring Methods 0.000 description 21
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 20
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 20
- 229910001509 metal bromide Inorganic materials 0.000 description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 19
- 239000006227 byproduct Substances 0.000 description 17
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 16
- 230000003197 catalytic effect Effects 0.000 description 14
- 239000007789 gas Substances 0.000 description 14
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 14
- 238000002360 preparation method Methods 0.000 description 14
- DIKBFYAXUHHXCS-UHFFFAOYSA-N bromoform Chemical compound BrC(Br)Br DIKBFYAXUHHXCS-UHFFFAOYSA-N 0.000 description 13
- HJUGFYREWKUQJT-UHFFFAOYSA-N tetrabromomethane Chemical compound BrC(Br)(Br)Br HJUGFYREWKUQJT-UHFFFAOYSA-N 0.000 description 13
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 12
- FJBFPHVGVWTDIP-UHFFFAOYSA-N dibromomethane Chemical compound BrCBr FJBFPHVGVWTDIP-UHFFFAOYSA-N 0.000 description 12
- 239000011521 glass Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 12
- 238000005893 bromination reaction Methods 0.000 description 11
- 239000000047 product Substances 0.000 description 10
- 239000001294 propane Substances 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 229910021590 Copper(II) bromide Inorganic materials 0.000 description 9
- 229960004132 diethyl ether Drugs 0.000 description 9
- 150000004820 halides Chemical class 0.000 description 9
- -1 methyl halide Chemical class 0.000 description 9
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000000376 reactant Substances 0.000 description 9
- 229940052303 ethers for general anesthesia Drugs 0.000 description 8
- 229940093499 ethyl acetate Drugs 0.000 description 8
- 235000019439 ethyl acetate Nutrition 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- 239000006200 vaporizer Substances 0.000 description 8
- NAMYKGVDVNBCFQ-UHFFFAOYSA-N 2-bromopropane Chemical compound CC(C)Br NAMYKGVDVNBCFQ-UHFFFAOYSA-N 0.000 description 7
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical class ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 239000001282 iso-butane Substances 0.000 description 7
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 7
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 6
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- APQIUTYORBAGEZ-UHFFFAOYSA-N 1,1-dibromoethane Chemical compound CC(Br)Br APQIUTYORBAGEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052684 Cerium Inorganic materials 0.000 description 5
- 229910052691 Erbium Inorganic materials 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 229910052693 Europium Inorganic materials 0.000 description 5
- 229910052688 Gadolinium Inorganic materials 0.000 description 5
- 229910052765 Lutetium Inorganic materials 0.000 description 5
- 229910052779 Neodymium Inorganic materials 0.000 description 5
- 229910052777 Praseodymium Inorganic materials 0.000 description 5
- 229910052772 Samarium Inorganic materials 0.000 description 5
- 229910052771 Terbium Inorganic materials 0.000 description 5
- 229910052769 Ytterbium Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 229910052787 antimony Inorganic materials 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 5
- 230000031709 bromination Effects 0.000 description 5
- 239000001273 butane Substances 0.000 description 5
- 229910052793 cadmium Inorganic materials 0.000 description 5
- 229910052792 caesium Inorganic materials 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 229910052733 gallium Inorganic materials 0.000 description 5
- 229910052732 germanium Inorganic materials 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 229910052735 hafnium Inorganic materials 0.000 description 5
- 229910052738 indium Inorganic materials 0.000 description 5
- 229910052741 iridium Inorganic materials 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 229910052746 lanthanum Inorganic materials 0.000 description 5
- 229910052745 lead Inorganic materials 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229910052758 niobium Inorganic materials 0.000 description 5
- 229910052763 palladium Inorganic materials 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- 230000008929 regeneration Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- 229910052702 rhenium Inorganic materials 0.000 description 5
- 229910052703 rhodium Inorganic materials 0.000 description 5
- 229910052707 ruthenium Inorganic materials 0.000 description 5
- 229910052706 scandium Inorganic materials 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 229910052712 strontium Inorganic materials 0.000 description 5
- 229910052715 tantalum Inorganic materials 0.000 description 5
- 229910052716 thallium Inorganic materials 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- 229910052727 yttrium Inorganic materials 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- CYNYIHKIEHGYOZ-UHFFFAOYSA-N 1-bromopropane Chemical compound CCCBr CYNYIHKIEHGYOZ-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 4
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 4
- 235000006408 oxalic acid Nutrition 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- RKSOPLXZQNSWAS-UHFFFAOYSA-N tert-butyl bromide Chemical compound CC(C)(C)Br RKSOPLXZQNSWAS-UHFFFAOYSA-N 0.000 description 4
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 4
- HLVFKOKELQSXIQ-UHFFFAOYSA-N 1-bromo-2-methylpropane Chemical compound CC(C)CBr HLVFKOKELQSXIQ-UHFFFAOYSA-N 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 3
- PQLAYKMGZDUDLQ-UHFFFAOYSA-K aluminium bromide Chemical compound Br[Al](Br)Br PQLAYKMGZDUDLQ-UHFFFAOYSA-K 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910000435 bromine oxide Inorganic materials 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000005660 chlorination reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229960004756 ethanol Drugs 0.000 description 3
- 238000004817 gas chromatography Methods 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000004227 thermal cracking Methods 0.000 description 3
- 125000004810 2-methylpropylene group Chemical group [H]C([H])([H])C([H])(C([H])([H])[*:2])C([H])([H])[*:1] 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 2
- 229910001620 barium bromide Inorganic materials 0.000 description 2
- NKQIMNKPSDEDMO-UHFFFAOYSA-L barium bromide Chemical compound [Br-].[Br-].[Ba+2] NKQIMNKPSDEDMO-UHFFFAOYSA-L 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910001622 calcium bromide Inorganic materials 0.000 description 2
- WGEFECGEFUFIQW-UHFFFAOYSA-L calcium dibromide Chemical compound [Ca+2].[Br-].[Br-] WGEFECGEFUFIQW-UHFFFAOYSA-L 0.000 description 2
- RBHJBMIOOPYDBQ-UHFFFAOYSA-N carbon dioxide;propan-2-one Chemical compound O=C=O.CC(C)=O RBHJBMIOOPYDBQ-UHFFFAOYSA-N 0.000 description 2
- 229960001701 chloroform Drugs 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 229960003280 cupric chloride Drugs 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 230000026030 halogenation Effects 0.000 description 2
- 238000005658 halogenation reaction Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229940102396 methyl bromide Drugs 0.000 description 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000011949 solid catalyst Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- PAAZPARNPHGIKF-UHFFFAOYSA-N 1,2-dibromoethane Chemical compound BrCCBr PAAZPARNPHGIKF-UHFFFAOYSA-N 0.000 description 1
- SIQZJFKTROUNPI-UHFFFAOYSA-N 1-(hydroxymethyl)-5,5-dimethylhydantoin Chemical compound CC1(C)N(CO)C(=O)NC1=O SIQZJFKTROUNPI-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229910021630 Antimony pentafluoride Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- VBVBHWZYQGJZLR-UHFFFAOYSA-I antimony pentafluoride Chemical compound F[Sb](F)(F)(F)F VBVBHWZYQGJZLR-UHFFFAOYSA-I 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- INLLPKCGLOXCIV-UHFFFAOYSA-N bromoethene Chemical compound BrC=C INLLPKCGLOXCIV-UHFFFAOYSA-N 0.000 description 1
- AOJDZKCUAATBGE-UHFFFAOYSA-N bromomethane Chemical compound Br[CH2] AOJDZKCUAATBGE-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- 229960004643 cupric oxide Drugs 0.000 description 1
- 229940045803 cuprous chloride Drugs 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- VZMCQCHLKUWIFO-UHFFFAOYSA-N ethane;hydrobromide Chemical compound Br.CC VZMCQCHLKUWIFO-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229960004887 ferric hydroxide Drugs 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000000769 gas chromatography-flame ionisation detection Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 229910052811 halogen oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- IEECXTSVVFWGSE-UHFFFAOYSA-M iron(3+);oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Fe+3] IEECXTSVVFWGSE-UHFFFAOYSA-M 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D301/00—Preparation of oxiranes
- C07D301/02—Synthesis of the oxirane ring
- C07D301/24—Synthesis of the oxirane ring by splitting off HAL—Y from compounds containing the radical HAL—C—C—OY
- C07D301/26—Y being hydrogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/10—Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/09—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
- C07C29/12—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of esters of mineral acids
- C07C29/124—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of esters of mineral acids of halides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/27—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Definitions
- This invention relates generally to the synthesis of alcohols, ethers, aldehydes, and olefins from alkanes, and more particularly to a method of and apparatus for manufacturing methanol and dimethyl ether from methane; for manufacturing ethanol, diethyl ether, ethyl acetate, and acetaldehyde from ethane; and for converting alkanes to their corresponding olefins.
- Methane has previously been converted to methanol by the halogenation of methane followed by hydrolysis of the methyl halide to form methanol.
- gaseous chlorine has been used to chlorinate methane to form chlorinated methane, principally methyl chloride, together with other chlorides, i.e., dichloromethane, trichloromethane and carbon tetrachloride.
- methane has been subjected to oxychlorination with oxygen and hydrochloric acid to form the foregoing compounds.
- the chlorinated methanes produced are hydrolyzed in the vapor phase to produce methanol, formaldehyde, formic acid and by-products, including carbon dioxide and hydrochloric acid, depending on the chlorination selectivity.
- Hydrochloric acid is produced or used in the halogenation of methane by either method and must be recovered, dehydrated by azeotropic distillation and recycled. Corrosion and other problems involved with the handling of chlorine and hydrochloric acid are substantial.
- U.S. Pat. No. 3,172,915 granted to Borkowski, et al. is directed to a process for converting methane to methanol.
- Borkowski discloses the chlorination of methane using ferric chloride at high temperatures to produce chloromethanes and hydrogen chloride.
- the process requires temperatures in the range of 220-800° C., more preferably 250-450° C., and long residence times, e.g., more than one hour.
- the process is hindered by the production of a mixture of chlorination products, e.g., chloromethane, dichloromethane, trichloromethane and carbon tetrachloride, which must be separated before hydrolysis to methanol.
- Other disadvantages result from the energy required to dry the ferric chloride and from the corrosion and handling problems inherent with hydrochloric acid.
- U.S. Pat. No. 5,243,098 granted to Miller discloses another method for converting methane to methanol.
- the reaction of methane with cupric chloride produces chloromethane and hydrochloric acid.
- These intermediates are then reacted with steam and a catalyst containing magnesium oxide to produce methanol and magnesium chloride.
- Magnesium oxide is regenerated by treatment of the magnesium chloride by-product with air or oxygen.
- Cupric chloride is regenerated by treatment of the cuprous chloride by-product with air and hydrochloric acid. While these reactions proceed at favorable rates, attrition of the solid reactants, i.e., cupric and magnesium oxide, is significant.
- U.S. Pat. No. 5,998,679 granted to Jorge Miller discloses a process for converting alkanes and alkenes to the corresponding lower alkanols and diols.
- a gaseous halogen (bromine) is produced by decomposing a metal halide in a liquid having a melting point below and a boiling point above the decomposition temperature of the metal halide.
- the preferred liquid is molten hydrated ferric chloride maintained at a temperature between about 37-280° C.
- the lower alkane or alkene is halogenated in a gas phase reaction with the halogen.
- the resulting alkyl halide or alkyl dihalide is contacted with a metal hydroxide, preferably an aqueous solution of ferric hydroxide, to regenerate the metal halide and produce the corresponding lower alkanol or diol.
- a metal hydroxide preferably an aqueous solution of ferric hydroxide
- problems with this process include low monohalogenation selectivity, and corrosiveness of the hydrated ferric halides, which may present a containment problem if the process is run at 280° C., where high pressure steam is required to maintain ferric halide hydration.
- the process produces a great deal of water and HCl or HBr, all of which are difficult to separate on a large scale from the desired product methanol.
- Olah et al. discloses a method for converting methane to methanol via methyl halides (CH 3 Br and CH 3 Cl), which are then hydrolyzed to prepare methanol.
- CH 3 Br and CH 3 Cl are hydrolyzed over catalysts with excess steam generating a methanol, water, and a HCl or HBr mixture.
- the present invention comprises a process wherein bromine or a bromine-containing compound is used as an intermediate to convert alkanes to alcohols, ethers, aldehydes, or olefins by reaction with oxygen (or air). While the process can be used to convert a variety of alkanes, including methane, ethane, propane, butane, isobutane, pentanes, hexanes, cyclohexane etc. to their respective alcohols, ethers, aldehydes, or olefins, the conversion of methane to methanol and dimethyl ether is illustrative.
- Methane reacts with a halogen selected from the group including chlorine, bromine, and iodine to form a methyl halide and a hydrogen halide, for example CH 3 Br and HBr.
- the reaction may be catalytic or non-catalytic.
- the methyl bromide reacts with a metal oxide to form a variable mixture of dimethyl ether (DME), water and methanol, and the metal bromide.
- DME dimethyl ether
- the metal oxide and molecular bromine are regenerated by reaction of the metal bromide with air and/or oxygen.
- the regenerated bromide is recycled to react with methane while the regenerated metal oxide is used to convert more methyl halide to methanol and DME, completing the reaction cycle.
- the process can be easily carried out in a riser reactor. Compared to the current industrial two step process, in which methane and steam are first converted to CO and H 2 at 800° C. followed by conversion to methanol over a Zn—Cu—Al—C catalyst at approximately 70-150 atmospheres, the process of the present invention operates at roughly atmospheric pressure and relatively low temperatures, thereby providing a safe and efficient process for methanol production.
- the present invention operates with solid/gas mixtures at atmospheric pressure.
- the hydrogen halide is gaseous, and therefore not as corrosive as when aqueous at high temperatures.
- the reaction of the halide with an alkane can reach more than 90% selectivity and high conversion to alkane-monohalide.
- the main side products, alkane dihalides such as CH 2 Br 2 can be converted back to the monohalides by reaction with an alkane.
- the reaction may be catalytic or non-catalytic. Very few by-products are produced.
- FIG. 1 is a schematic illustration of a method of and apparatus for synthesizing alcohols and/or ethers from alkanes comprising a first version of the first embodiment of the invention
- FIG. 2 is a schematic illustration of a method of and apparatus for synthesizing alcohols and/or ethers from alkanes comprising a second version of the first embodiment of the invention
- FIG. 3 is a schematic illustration of a method of and apparatus for synthesizing olefins from alkanes comprising a second embodiment of the invention.
- FIG. 4 is a schematic illustration of a reactor configuration useful in manufacturing acetaldehyde from ethane.
- Alkanes (methane, ethane, propane, butane, isobutane, pentanes, hexanes, cyclohexane etc.) react with a molecular halogen selected from the group including chloride, bromine, and iodine to form alkylhalides.
- the reaction may be catalytic or non-catalytic.
- Most of the by-product is CH 2 Br 2 plus 2 HBr, trace amounts of CHBr 3 and CBr 4 , which can be catalytically reconverted to CH 3 Br by reacting CH 2 Br 2 , CHBr 3 , and CBr 4 with CH 4 .
- a method and apparatus 10 for synthesizing alcohols and ethers from alkanes using a halogen selected from the group including chloride, bromine and iodine comprising a first version of the first embodiment of the invention is schematically illustrated.
- a halide for example, bromine is received from a suitable source through a line 12 and is directed to a bromine storage container 14 .
- bromine is easily manufactured from bromide, which is readily available from sea water.
- bromine is a liquid at room temperature. Liquid bromine from the storage container 14 is directed through a line 16 to a bromine vaporizer 18 wherein the bromine is converted from the liquid phase to the gas phase. From the vaporizer 18 the gaseous bromine is directed through a line 20 to a reactor 22 .
- Methane from a suitable source is directed to the reactor 22 through a line 24 .
- the methane and the gaseous bromine are mixed together over an appropriate solid catalyst, and the temperature of the mixture is raised to between about 20° C. and about 600° C., thereby converting the methane and the bromine to methyl bromide (CH 3 Br) and hydrogen bromide (HBr).
- the CH 3 Br, the HBr, any unreacted methane and by-products CH 2 Br 2 , CHBr 3 , and CBr 4 are directed to a condenser 34 through a line 30 .
- the by products CH 2 Br 2 , CHBr 3 , and CBr 4 are in the liquid state and are sent through a line 32 to a converter 28 to react with methane.
- methane reacts with the by products CH 2 Br 2 , CHBr 3 , and CBr 4 to form CH 3 Br.
- the newly formed CH 3 Br and unreacted CH 2 Br 2 , CHBr 3 , CBr 4 and methane are sent to the condenser 34 through a line 26 and the line 30 .
- dimethyl ether and methanol/water are separated as products and recovered at outlets 40 and 48 , respectively.
- the methanol is subsequently removed from the water by distillation.
- CH 3 Br is sent back to the converter 52 through the line 38 and the line 36 .
- Methane from the separator 44 is sent back to the bromination reactor 22 through the line 42 and the line 24 .
- the original metal oxide is converted to metal bromide and must be regenerated.
- the metal bromide from the converter 52 is sent to a converter 58 through a line 54 to react with oxygen received from a source 74 through a line 72 to regenerate bromine and metal oxide.
- the regenerated metal oxide is sent back to the converter 52 through a line 56 , while the bromine and unreacted oxygen are sent to a condenser 62 through a line 60 , after which they are separated in a separator 68 .
- the liquid bromine is sent to the storage container 14 , while the oxygen is sent to the converter 58 through a blower 66 and a line 70 .
- FIG. 2 there is shown a method of and apparatus 100 for synthesizing alcohols and ethers from alkanes comprising a second version of the first embodiment of the invention.
- the method and apparatus 100 can be used with alkanes such as methane, ethane, propane, butane, isobutene, pentanes, hexanes, cyclohexane, etc.
- the method and apparatus 100 also employs a halide selected from the group including chlorine, bromine, and iodine.
- methane and bromine are directed to a heat zone and vaporizer 102 where the bromine is converted from a liquid to a gas and mixed with methane at a temperature above the atmospheric boiling point of bromine.
- the gas mixture is passed into a bromination reactor 104 containing an appropriate solid catalyst. After the reaction, the mixture is directed to condenser a 106 .
- the liquid phase contains by products CH 2 Br, CHBr 3 , and CBr 4 , while the gas phase contains bromomethane, HBr, and unreacted methane.
- CH 2 Br 2 , CHBr 3 , and CBr 4 are sent to a converter 108 where they react, either catalytically or non-catalytically, with methane to form bromomethane. After the reaction the mixture is sent to the condenser 106 .
- the gas phase mixture from the condenser 106 is passed through a converter 110 , where HBr reacts with the metal oxide to form metal bromide and water.
- the metal bromide is sent to a regenerator 120 to regenerate metal oxide.
- the water, bromomethane, and methane are separated in a separator 112 .
- Methane is recycled to the converter 108 and the vaporizer 102 .
- Bromomethane is sent to the reactor 114 .
- Water is sent to the reactor 118 .
- bromomethane reacts with metal oxide to generate dimethyl ether (DME) and metal bromide.
- Metal bromide is sent to the regenerator 120 .
- the mixture of bromomethane and DME from the reactor 114 is sent to a separator 116 .
- Bromomethane is recycled to the reactor 114 , while DME is obtained as a product or directed to reactor 118 .
- DME reacts with water (from the separator 112 ) to form methanol.
- the reaction may be catalytic or non-catalytic.
- metal bromide from the converter 110 and the reactor 114 reacts with air or oxygen to regenerate metal oxide and bromine. After regeneration the metal oxide is sent to the converter 110 and the reactor 114 , while bromine is sent to the vaporizer 102 . If air is used to provide the oxygen for metal oxide regeneration nitrogen may be purged from the system through the separator 122 .
- FIG. 3 there is shown a method and apparatus 200 for synthesizing olefins from alkanes, comprising a second embodiment of the invention.
- the alkane and a halide selected from the group including chlorine, bromine, and iodine are directed to a heat zone and, when bromine is used, a vaporizer 202 , operating at a temperature above the atmospheric boiling point of bromine, where the now gaseous bromine and methane are allowed to mix.
- the gas mixture is passed into a bromination reactor 204 . After the reaction, which may be catalytic or non-catalytic, the mixture is directed to a condenser 206 .
- the heavier alkane multibromides (below 1%) are separated for other uses, such as solvent or intermediates for other organic synthesis at an outlet 208 , while the alkane monobromide, HBr, and unreacted alkane are sent to a reactor 210 .
- HBr reacts with metal oxide to form metal bromide and water.
- the metal bromide is sent to a regenerator 220 to be regenerated back to metal oxide.
- From the converter 210 the water, alkane monobromide, and alkane are separated in a separator 212 . Unreacted alkane is recycled to the vaporizer 202 , while the alkane monobromide is sent to a reactor 214 . Water is easily separated from the alkane monobromide in the separator 212 as a by product.
- alkane monobromide reacts with metal oxide to generate olefin and metal bromide.
- Metal bromide is sent to the regenerator 220 for regeneration back to metal oxide.
- the mixture of olefin and unreacted alkane monobromide from the reactor 214 is sent to a separator 216 where they are easily separated due to their widely different boiling points. Unreacted alkane monobromide, if any, is recycled to the reactor 214 , while olefin is obtained as a product.
- metal bromide from the converter 210 and the reactor 214 reacts with air or oxygen to regenerate metal oxide and bromine. After regeneration metal oxide is sent to the reactor 210 and the reactor 214 , while bromine is sent to the vaporizer 202 . If air is used as the source of oxygen for regeneration of the metal oxide nitrogen may be purged from the system by a separator 222 .
- Nb 2 O 5 (0.8000 g) was mixed with 0.500 ml 96(w)% H 2 SO 4 , then the mixture was heated at 110° C. for 4 hours. The temperature increased to 500° C. within 6 hours, and kept at 500° C. for 4 hours. Catalyst C 1 was obtained.
- ZrO 2 (2.0000 g) was mixed with H 2 SO 4 (3.000 ml, 96(w)%), then the mixture was heated at 110° C. for 4 hours. The temperature increased to 500° C. within 6 hours, and kept at 500° C. for 4 hours. Catalyst C 2 was obtained.
- the catalyst was tested at a methane flow of 1.5 ml/minute and Br 2 flow of 0.07 ml/hour.
- the reaction temperature was 400° C.
- the reaction was carried out in a micro reactor system. After 6 hours on line reaction, the reaction effluent was analyzed by a GC/MS, and showed a 23 % methane conversion with 55 % selectivity to CH 3 Br.
- the second stage of the process occurs as follows. After separation of the CH 2 Br 2 , CHBr 3 and CBr 4 products from the gas stream, the CH 3 Br, together with the HBr are passed into the next reactor, which contains M 1 (50% CuO on ZrO 2 ) and is maintained at 225° C. Flowing the reactant gases at 10 h ⁇ 1 gives a 96% conversion of CH 3 Br+HBr to CH 3 OCH 3 and H 2 O, or to CH 3 OH, or a mixture of CH 3 OH, CH 3 OCH 3 , and H 2 O, with 94% selectivity, the remaining product being CuBr 2 /ZrO 2 and 6% CO 2 . Dimethyl ether and water are converted into methanol if desired in a third reactor containing catalysts.
- the metal oxide mixture was tested at a CH 3 Br flow rate of 1.0 ml/minute at 230° C. In the first half hour, the average CH 3 Br conversion was 65%, and the average dimethyl ether selectivity was 90.5%.
- Cu(NO 3 ) 2 (0.5M, 40.000 ml) solution was added into Zr solution (0.5M, 30.000 ml as prepared above). After stirring a few seconds, a gel was obtained. The gel was dried at 110° C. for 4 hours, then heated to 500° C. within 6 hours, and calcined at 500° C. for 4 hours. M 3 was obtained.
- the catalyst C 2 (2.0000 g) was loaded in the first reactor (R 1 ).
- a trap was loaded with 2.000 g of M 3 .
- a second reactor (R 2 ) was loaded with M 3 (0.8500 g).
- Reactants methane and bromine were fed into the first reactor (methane flow of 1.5 ml/minute, Br 2 flow of 0.07 ml/hour). The reaction temperature was 390° C. After reaction in R 1 (stabilized by online reaction for more than 8 hours) the resulting mixture was passed through the trap and a mixture of methane and CH 3 Br (in a 85:15 molar ratio) was obtained. This gas mixture was fed directly into reactor R 2 at 220° C. In the first hour an average CH 3 Br conversion of 91% with an average dimethyl ether selectivity of 75% was obtained. Summarizing the overall process in Reaction 2 :
- the solid CuBr 2 /ZrO 2 was transferred from Reactor 2 to Reactor 3 and treated with O 2 at 300° C. to yield Br 2 and CuO/ZrO 2 at 100% yield and conversion. This reaction may be run at 1000 h ⁇ 1 .
- a third embodiment of the invention comprises a process for converting ethane to diethyl ether, ethanol, and ethyl acetate which may be carried out as illustrated in FIGS. 1, 2, and 3 .
- ethane reacts with a halogen selected from the group including chlorine, bromine, and iodine.
- a halogen selected from the group including chlorine, bromine, and iodine.
- ethane is reacted with bromine to form bromomethane and HBr.
- the bromoethane then reacts with metal oxide to form diethyl ether, ethanol, ethyl acetate, and metal bromide.
- the metal bromide reacts with oxygen or air to regenerate the original metal oxide.
- bromine and metal oxide are recycled.
- the ethane to bromine ratio is preferably between about 10:1 and about 1:10, and more preferably about 4:1.
- the temperature range for the ethane/bromine reaction is preferably between about 100° C. and about 500° C. and more preferably between about 300° C. and about 400° C.
- the ethane/bromine reaction can be either catalytic or non-catalytic, it being understood that if a suitable catalyst is used the selectivity to ethane monobromide or dibromides can be high. The reaction is slightly exothermal and is very easy to control.
- the second reaction is preferably carried out a temperature range of between about 150° C. to about 350° C., and more preferably within a temperature range of about 200° C. to about 250° C.
- Bromoethane is converted to diethyl ether with 60 to 80% conversion with about 4% selectivity to ethanol and about 3% selectivity to ethyl acetate.
- high diethyl ether yield with useful ethanol and ethyl acetate by products is obtained in a single pass.
- there is no direct contact between oxygen and ethane thereby providing a high level of safety.
- the diethyl ether can be easily hydrolyzed to ethanol with water over a suitable catalyst.
- a mixture of ethane (6.0 ml/minute) and bromine (Br 2 0.30 ml/hour) was passed into a reactor (glass tube, ID 0.38′′, heating zone length 4′′), and was heated to 330° C.
- the effluent was analyzed by GC/MS. 100% bromine conversion with 80% bromoethane selectivity was obtained.
- the by product with 20% selectivity was 1,1-dibromoethane.
- the 1,1-dibromoethane can be converted to bromoethane by reaction with ethane over a catalyst, such as a metal compound or a mixture of metal compounds.
- the ethane bromination reaction can also be a catalysis reaction.
- the catalysts are compounds of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, Sb, Bi, S, Cl, Br, F, Sc, Y, Mg, Ca, Sr, Ba, Na, Li, K, O, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb, Lu, and Cs or mixtures thereof.
- the reaction is preferably carried out at a temperature range of between about 50° C. to about 600° C.
- the reaction pressure is preferably from about 1 to about 200 atm.
- the reaction mixture can have a ratio of ethane to bromine from 0.1 to 100.
- Part B The Reaction of Bromoethane with Metal Oxides.
- a Cu(NO 3 ) 2 (0.5M, 64.0 ml) solution was added into a Zr solution (0.5M, 64.0 ml) (as prepared above). After stirring for a few seconds, a gel was obtained. The gel was dried at 110° C. for 4 hours, then heated to 500° C. within 6 hours, and calcined at 500° C. for 4 hours. CuO/ZrO 2 metal oxide (M 4 ) was obtained.
- the metal oxides can be oxides of the following metals: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, Sb, Bi, S, Cl, Br, F, Sc, Y, Mg, Ca, Sr, Ba, Na, Li, K, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb, Lu, and Cs or mixtures thereof.
- the reaction can be carried out at a temperature range from about 50° C. to about 600° C.
- the reaction pressure is preferably from about 1 to about 200 atm.
- the reaction can be carried out with or without helium.
- the metal bromide is converted to metal oxide M 4 in oxygen or in air to obtain metal oxide and bromine at a temperature range of about 50 to about 700° C. and pressure range from about 1 to about 300 atm.
- a fourth embodiment of the invention comprises a process for converting ethane to acetaldehyde, which may be carried out as illustrated in FIGS. 1, 2, and 3 .
- ethane is reacted with a halogen selected from the group including chlorine, bromine, and iodine.
- ethane can be reacted with bromine to form bromoethane and HBr.
- the ethane to bromine ratio is preferably between about 10:1 and about 1:10, and more preferably about 4:1.
- the temperature range for the bromination reaction is preferably between about 100° C. and about 500° C., and more preferably between about 300° C. and about 400° C.
- the bromoethane then reacts with metal oxide to form acetaldehyde and metal bromide.
- the second reaction is preferably carried out at a temperature range of between about 150° C. and about 350° C., and more preferably at a temperature range of between about 200° C. and about 250° C.
- the metal bromide is reacted with oxygen or air to regenerate the original metal oxide. In the process, bromine and metal oxide are recycled.
- the reaction products comprising the outlet gas were analyzed by gas chromatography (GC) and a flame ionization detector (FID) during the reaction using nitrogen gas as an internal standard.
- the GC/FID results showed that the reaction achieved 23% ethane conversion.
- the reaction products comprising the outlet gas were also collected into a CDCl 3 solution cooled in a dry-ice acetone bath for nuclear magnetic resonance (NMR) analysis.
- NMR nuclear magnetic resonance
- a second reaction was initiated by directing the reaction products from the first reaction to a second reactor comprising a glass tube (ID 0.38′′, heating zone length 4′′) containing 5 g of a metaloxide comprising CaO/CuO/TiO 2 .
- the second reaction took place at 250° C. and produced acetaldehyde.
- the NMR spectrum of products collected in a CDCl 3 solution cooled in a dry-ice acetone bath demonstrated that the reaction achieved 100% bromoethane and dibromoethane conversion.
- Ti[OCH(CH 3 ) 2 ]4 (97%, 76.7 ml) was dissolved in an oxalic acid solution(56.5 g oxalic acid dissolved in 200 ml distilled water) by heating and stirring for two hours. After two hours, the solution was diluted by water to the total volume of 500 ml. 0.5M Ti Solution was obtained.
- the Reactor System Referring to FIG. 4, ethane bromination and the second reaction were performed in a three-zone reactor. Ethane and bromine were fed into the bottom of reactor zone 1 which was otherwise empty to produce bromoethane.
- the reactor zones contained the solid metaloxide CaOCuOTiO 2 for the oxidation reaction of bromoethane.
- the reactor zone 2 comprised a glass balloon trap between the two reactors, at room temperature, to reflux and collect any dibromoethane produced in the reactor zone 1 .
- the reactor zone 2 is charged through another inlet for the addition of water to the 2 nd reactor system as required.
- a fifth embodiment of the invention comprises a process for converting saturated hydrocarbons (alkanes) to their corresponding olefins. For instance, ethane to ethylene, propane to propylene, butane to butene or butadiene, isobutane to isobutene, etc.
- the process of the fifth embodiment may be carried out as illustrated in FIGS. 3.
- alkane reacts a halogen selected from the group including chlorine, bromine and iodine to form halogenated alkane and hydrogen halide.
- the halogenated alkane then reacts with metal oxide to form olefin and metal halide.
- the metal halide reacts with oxygen or air to regenerate the metal oxide.
- halogen and metal oxide are recycled.
- olefins are made by hydrocarbon thermal cracking.
- the thermal cracking process also produces saturated hydrocarbons, such as propane, butane, isobutane, pentanes, and hexanes, which are usually difficult to convert to useful materials.
- saturated hydrocarbons such as propane, butane, isobutane, pentanes, and hexanes
- ethane can be converted to ethylene by thermal cracking at temperatures over 800° C. in an endothermic reaction, which consumes large amounts of energy, and also generates about 30% by product acetylene (C 2 H 2 ).
- the acetylene must be hydrogenated back to ethylene which usually leads to over hydrogenation to ethane.
- alkanes can easily react with CBr 4 , CHBr 3 , or CH 2 Br 2 , or react with bromine at low temperatures (below 400° C.) to form alkane monobromides or alkane dibromides.
- the reaction can be catalytic or non-catalytic. If a suitable catalyst is used, the selectivity to alkane monobromide or dibromide can be very high (more than 95% CH 3 CH 2 BrCH 3 selectivity can be reached). The reaction is slightly exothermal and is very easy to control. In the next reaction, alkane bromide is converted to olefin with 100% conversion (one pass) and selectivity over 95%.
- a further advantage of the present invention is the virtual elimination of byproducts, rendering recovery of the desired olefin substantially easier then the conventional process.
- An even further advantage of the present invention is the production of the olefin without the production of the corresponding alkyne, thus eliminating the need for partial hydrogenation.
- the alkane/bromine reaction is preferably carried out at an alkane to bromine ratio of between about 10 : 1 and about 1:10, and more preferably at an alkane to bromine ratio of about 4:1.
- the temperature range of the first reaction is preferably between about 100° C. and about 500° C., and more preferably between about 300° C. and about 400° C.
- the second reaction is preferably carried out at a temperature of between about 150° C. and about 350° C., and more preferably at a temperature between about 200° C. and about 250° C.
- This reaction can also be a catalysis reaction.
- the catalysts are compounds of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, Sb, Bi, S, Cl, Br, F, Sc, Y, Mg, Ca, Sr, Ba, Na, Li, K, O, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb, Lu, and Cs or mixtures of such compounds.
- the reaction can be carried out at a temperature range from about ⁇ 10° C. to about 600° C.
- the reaction pressure can be from about 1 to about 200 atm.
- the reaction mixture can have a ratio of propane to bromine from 0.1 to 100.
- This reaction can also be a catalysis reaction.
- the catalysts are compounds of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, In, Tl, Si,. Ge, Sn, Pb, P, Sb, Bi, S, Cl, Br, F, Sc, Y, Mg, Ca, Sr, Ba, Na, Li, K, O, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb, Lu, and Cs or mixtures of such compounds.
- the reaction can be carried out at a temperature range from about ⁇ 10° C. to about 600° C.
- the reaction pressure can be from about 1 to about 200 atm.
- the reaction mixture can have a ratio of isobutane to bromine from 0.1 to 100.
- a Cu(NO 3 ) 2 (0.5M, 8.00 ml) solution was added into Zr solution (0.5M, 8.0 ml) as prepared above was added under stirring. After stirring for a few seconds, a gel was obtained. The gel was dried at 110° C. for 4 hours, then heated to 500° C. within 6 hours, and calcined at 500° C. for 4 hours. M 7 was obtained.
- a mixture of 1-bromo-2-methyl-propane and 2-bromo-2-methyl-propane (volume 1:1) (0.30 ml/hour) and nitrogen (5.0 ml/minute) were passed through a reactor (glass tube ID 0.38′′, heating zone length 4′′) that was packed with 0.8500 gram M 7 and heated to 220° C. 100% reactant conversion with more than 95% propylene selectivity was obtained within the first 40 minutes.
- the metal oxides used above can be oxides of the following metals: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, Sb, Bi, S, Cl, Br, F, Sc, Y, Mg, Ca, Sr, Ba, Na, Li, K, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb, Lu, and Cs and mixtures thereof.
- the reaction can be carried out at a temperature range from about 50° C.
- the reaction pressure can be from about 1 to about 200 atm.
- the reaction can be carried out with or without nitrogen.
- the metal bromide was converted to metal oxide (M 5 , M 6 , and M 7 ) in oxygen or in air to obtain metal oxide and bromine at a temperature range of about 50 to about 700° C. under pressure range from about 1 to about 300 atm.
- the method and apparatus of the present invention operates on a continuous or batch basis to convert alkanes to alcohols, ethers, and olefins.
- the method and apparatus of the present invention operates at relatively low temperatures and at low pressures and is therefore economical to manufacture and use.
- the bromine, which is utilized in the method and apparatus of the present invention is continuously recycled.
- the metal oxide, which is utilized in the process is continuously refreshed.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Alcohols, ethers, aldehydes, and olefins are manufactured from alkanes by mixing an alkane and a halogen selected from the group including chlorine, bromine, and iodine in a reactor to form alkyl halide and hydrogen halide. The alkyl halide only or the alkyl halide and the hydrogen halide are directed into contact with metal oxide to form an alcohol and/or an ether, or an olefin and metal halide. The metal halide is oxidized to form original metal oxide and halogen, both of which are recycled.
Description
- This is a continuation application under 37 C.F.R. §1.63 of application Ser. No. 10/208,068 filed Jul. 29, 2002 which is a continuation-in-part application under 37 C.F.R. §1.63 of application Ser. No. 10/054,004 filed Jan. 4, 2002, currently pending, which is a continuation-in-part of application Ser. No. 09/951,739 filed Sep. 11, 2001, currently pending, which is a continuation-in-part application of application Ser. No. 09/886,078 filed Jun. 20, 2001, currently pending.
- This invention relates generally to the synthesis of alcohols, ethers, aldehydes, and olefins from alkanes, and more particularly to a method of and apparatus for manufacturing methanol and dimethyl ether from methane; for manufacturing ethanol, diethyl ether, ethyl acetate, and acetaldehyde from ethane; and for converting alkanes to their corresponding olefins.
- Methane has previously been converted to methanol by the halogenation of methane followed by hydrolysis of the methyl halide to form methanol. For example, gaseous chlorine has been used to chlorinate methane to form chlorinated methane, principally methyl chloride, together with other chlorides, i.e., dichloromethane, trichloromethane and carbon tetrachloride. Alternatively, methane has been subjected to oxychlorination with oxygen and hydrochloric acid to form the foregoing compounds. The chlorinated methanes produced are hydrolyzed in the vapor phase to produce methanol, formaldehyde, formic acid and by-products, including carbon dioxide and hydrochloric acid, depending on the chlorination selectivity. Hydrochloric acid is produced or used in the halogenation of methane by either method and must be recovered, dehydrated by azeotropic distillation and recycled. Corrosion and other problems involved with the handling of chlorine and hydrochloric acid are substantial.
- U.S. Pat. No. 3,172,915 granted to Borkowski, et al. is directed to a process for converting methane to methanol. Borkowski discloses the chlorination of methane using ferric chloride at high temperatures to produce chloromethanes and hydrogen chloride. The process requires temperatures in the range of 220-800° C., more preferably 250-450° C., and long residence times, e.g., more than one hour. Further, the process is hindered by the production of a mixture of chlorination products, e.g., chloromethane, dichloromethane, trichloromethane and carbon tetrachloride, which must be separated before hydrolysis to methanol. Other disadvantages result from the energy required to dry the ferric chloride and from the corrosion and handling problems inherent with hydrochloric acid.
- U.S. Pat. No. 5,243,098 granted to Miller discloses another method for converting methane to methanol. In the Miller process, the reaction of methane with cupric chloride produces chloromethane and hydrochloric acid. These intermediates are then reacted with steam and a catalyst containing magnesium oxide to produce methanol and magnesium chloride. Magnesium oxide is regenerated by treatment of the magnesium chloride by-product with air or oxygen. Cupric chloride is regenerated by treatment of the cuprous chloride by-product with air and hydrochloric acid. While these reactions proceed at favorable rates, attrition of the solid reactants, i.e., cupric and magnesium oxide, is significant. Special filters and processes are required to recover and regenerate the reactants in the required particle size. Miller also suggests cupric bromide and magnesium zeolite as alternative reactants. Because of the attrition of the reactants, difficulties associated with the handling of solids, and the special filters and processes required to regenerate the reactants, the Miller process has proved unsatisfactory. U.S. Pat. No. 5,334,777, also granted to Miller, discloses a nearly identical process for converting ethene to ethylene glycol.
- U.S. Pat. No. 5,998,679 granted to Jorge Miller, discloses a process for converting alkanes and alkenes to the corresponding lower alkanols and diols. In the method of the invention, a gaseous halogen (bromine) is produced by decomposing a metal halide in a liquid having a melting point below and a boiling point above the decomposition temperature of the metal halide. The preferred liquid is molten hydrated ferric chloride maintained at a temperature between about 37-280° C. The lower alkane or alkene is halogenated in a gas phase reaction with the halogen. The resulting alkyl halide or alkyl dihalide is contacted with a metal hydroxide, preferably an aqueous solution of ferric hydroxide, to regenerate the metal halide and produce the corresponding lower alkanol or diol. Problems with this process include low monohalogenation selectivity, and corrosiveness of the hydrated ferric halides, which may present a containment problem if the process is run at 280° C., where high pressure steam is required to maintain ferric halide hydration. Finally, the process produces a great deal of water and HCl or HBr, all of which are difficult to separate on a large scale from the desired product methanol.
- Published international patent application WO 00/07718, naming Giuseppe Bellussi, Carlo Perego, and Laura Zanibelli as inventors, discloses a method for directly converting methane and oxygen to methanol over a metal halide/metal oxide catalyst. This is not a catalyst in the true sense, however, because the reaction involves transfer of halide from a metal halide via reaction with methane to a different metal oxide producing the metal halide and methanol downstream. Eventually the halide is leached and the catalyst loses activity.
- Olah et al. (George A. Olah, et al. J. Am. Chem. Soc. 1985, 107, 7097-7105) discloses a method for converting methane to methanol via methyl halides (CH3Br and CH3Cl), which are then hydrolyzed to prepare methanol. In the process, CH3Br and CH3Cl are hydrolyzed over catalysts with excess steam generating a methanol, water, and a HCl or HBr mixture. The separation of methanol (about 2% by mole) from HCl or HBr and water on an industry scale (2000 tons per day) requires an enormous amount of energy and generates a great deal of aqueous HCl or HBr waste. Aqueous HCl and HBr are very corrosive as well.
- The present invention comprises a process wherein bromine or a bromine-containing compound is used as an intermediate to convert alkanes to alcohols, ethers, aldehydes, or olefins by reaction with oxygen (or air). While the process can be used to convert a variety of alkanes, including methane, ethane, propane, butane, isobutane, pentanes, hexanes, cyclohexane etc. to their respective alcohols, ethers, aldehydes, or olefins, the conversion of methane to methanol and dimethyl ether is illustrative.
- Methane reacts with a halogen selected from the group including chlorine, bromine, and iodine to form a methyl halide and a hydrogen halide, for example CH 3Br and HBr. The reaction may be catalytic or non-catalytic. The methyl bromide reacts with a metal oxide to form a variable mixture of dimethyl ether (DME), water and methanol, and the metal bromide. The metal oxide and molecular bromine are regenerated by reaction of the metal bromide with air and/or oxygen. The regenerated bromide is recycled to react with methane while the regenerated metal oxide is used to convert more methyl halide to methanol and DME, completing the reaction cycle.
- The process can be easily carried out in a riser reactor. Compared to the current industrial two step process, in which methane and steam are first converted to CO and H 2 at 800° C. followed by conversion to methanol over a Zn—Cu—Al—C catalyst at approximately 70-150 atmospheres, the process of the present invention operates at roughly atmospheric pressure and relatively low temperatures, thereby providing a safe and efficient process for methanol production.
- The present invention operates with solid/gas mixtures at atmospheric pressure. In the process, the hydrogen halide is gaseous, and therefore not as corrosive as when aqueous at high temperatures. The reaction of the halide with an alkane can reach more than 90% selectivity and high conversion to alkane-monohalide. The main side products, alkane dihalides such as CH 2Br2, can be converted back to the monohalides by reaction with an alkane. The reaction may be catalytic or non-catalytic. Very few by-products are produced.
- During operation, most of the halide atoms are trapped in the solid state, making the system less corrosive. Another advantage is that in the process, DME and alcohol (CH 3OH) are not produced as a mixture with excess water. By controlling reaction conditions, almost pure DME and/or methanol is obtained directly so that it is not necessary to separate CH3OH from water. Finally, in the present process, methane and oxygen do not come into direct contact, resulting in improved safety.
- A more complete understanding of the present invention may be had by reference to the following Detailed Description when taken in connection with the accompanying Drawings, wherein:
- FIG. 1 is a schematic illustration of a method of and apparatus for synthesizing alcohols and/or ethers from alkanes comprising a first version of the first embodiment of the invention;
- FIG. 2 is a schematic illustration of a method of and apparatus for synthesizing alcohols and/or ethers from alkanes comprising a second version of the first embodiment of the invention;
- FIG. 3 is a schematic illustration of a method of and apparatus for synthesizing olefins from alkanes comprising a second embodiment of the invention; and
- FIG. 4 is a schematic illustration of a reactor configuration useful in manufacturing acetaldehyde from ethane.
- Alkanes (methane, ethane, propane, butane, isobutane, pentanes, hexanes, cyclohexane etc.) react with a molecular halogen selected from the group including chloride, bromine, and iodine to form alkylhalides. The reaction may be catalytic or non-catalytic. Most of the by-product is CH 2Br2 plus 2 HBr, trace amounts of CHBr3 and CBr4, which can be catalytically reconverted to CH3Br by reacting CH2Br2, CHBr3, and CBr4 with CH4.
- Referring to the Drawings, and particularly to FIG. 1, a method and
apparatus 10 for synthesizing alcohols and ethers from alkanes using a halogen selected from the group including chloride, bromine and iodine comprising a first version of the first embodiment of the invention is schematically illustrated. In the operation of the method andapparatus 10, a halide, for example, bromine is received from a suitable source through aline 12 and is directed to abromine storage container 14. As is well known, bromine is easily manufactured from bromide, which is readily available from sea water. - As is also well known, bromine is a liquid at room temperature. Liquid bromine from the
storage container 14 is directed through aline 16 to abromine vaporizer 18 wherein the bromine is converted from the liquid phase to the gas phase. From thevaporizer 18 the gaseous bromine is directed through aline 20 to areactor 22. - Methane from a suitable source is directed to the
reactor 22 through aline 24. Within thereactor 22 the methane and the gaseous bromine are mixed together over an appropriate solid catalyst, and the temperature of the mixture is raised to between about 20° C. and about 600° C., thereby converting the methane and the bromine to methyl bromide (CH3Br) and hydrogen bromide (HBr). - From the
reactor 22, the CH3Br, the HBr, any unreacted methane and by-products CH2Br2, CHBr3, and CBr4 are directed to acondenser 34 through aline 30. The by products CH2Br2, CHBr3, and CBr4 are in the liquid state and are sent through aline 32 to aconverter 28 to react with methane. In theconverter 28 methane reacts with the by products CH2Br2, CHBr3, and CBr4 to form CH3Br. The newly formed CH3Br and unreacted CH2Br2, CHBr3, CBr4 and methane are sent to thecondenser 34 through aline 26 and theline 30. - From the
condenser 34 gas phase methane, HBr, and CH3Br are sent to aconverter 52 through aline 36. In theconverter 52 HBr and CH3Br react with metal oxide to form CH3OCH3, CH3OH, and H2O, which are sent to aseparator 44 along with unreacted methane and CH3Br through aline 46. - In the
separator 44 dimethyl ether and methanol/water are separated as products and recovered at 40 and 48, respectively. The methanol is subsequently removed from the water by distillation. CH3Br is sent back to theoutlets converter 52 through theline 38 and theline 36. Methane from theseparator 44 is sent back to thebromination reactor 22 through theline 42 and theline 24. - In the
converter 52, the original metal oxide is converted to metal bromide and must be regenerated. The metal bromide from theconverter 52 is sent to aconverter 58 through aline 54 to react with oxygen received from asource 74 through aline 72 to regenerate bromine and metal oxide. The regenerated metal oxide is sent back to theconverter 52 through aline 56, while the bromine and unreacted oxygen are sent to acondenser 62 through aline 60, after which they are separated in aseparator 68. The liquid bromine is sent to thestorage container 14, while the oxygen is sent to theconverter 58 through ablower 66 and aline 70. - Referring to FIG. 2, there is shown a method of and
apparatus 100 for synthesizing alcohols and ethers from alkanes comprising a second version of the first embodiment of the invention. The method andapparatus 100 can be used with alkanes such as methane, ethane, propane, butane, isobutene, pentanes, hexanes, cyclohexane, etc. The method andapparatus 100 also employs a halide selected from the group including chlorine, bromine, and iodine. - For example, methane and bromine are directed to a heat zone and
vaporizer 102 where the bromine is converted from a liquid to a gas and mixed with methane at a temperature above the atmospheric boiling point of bromine. The gas mixture is passed into abromination reactor 104 containing an appropriate solid catalyst. After the reaction, the mixture is directed to condenser a 106. The liquid phase contains by products CH2Br, CHBr3, and CBr4, while the gas phase contains bromomethane, HBr, and unreacted methane. - The by products CH 2Br2, CHBr3, and CBr4 are sent to a
converter 108 where they react, either catalytically or non-catalytically, with methane to form bromomethane. After the reaction the mixture is sent to thecondenser 106. - The conversion of the by products CH 2Br2, CHBr3, and CBr4 to bromomethane in the
converter 108 can be facilitated by the use of an electrophilic catalyst such as AlBr3, SbF5, etc. which provides a low barrier pathway allowing direct four centered exchange of H and Br. The reaction may be represented as follows: - ΔCH4+CBr4+AlBr3(cat)−→CH3Br+CHBr3+AlBr3
- The overall reaction is isothermic and therefore may be driven by fractional recovery of higher bromides and removal of bromomethane from the reaction mixture, all in the presence of excess methane.
- The gas phase mixture from the
condenser 106 is passed through aconverter 110, where HBr reacts with the metal oxide to form metal bromide and water. The metal bromide is sent to aregenerator 120 to regenerate metal oxide. From theconverter 110, the water, bromomethane, and methane are separated in aseparator 112. Methane is recycled to theconverter 108 and thevaporizer 102. Bromomethane is sent to thereactor 114. Water is sent to thereactor 118. - In the
reactor 114 bromomethane reacts with metal oxide to generate dimethyl ether (DME) and metal bromide. Metal bromide is sent to theregenerator 120. The mixture of bromomethane and DME from thereactor 114 is sent to aseparator 116. Bromomethane is recycled to thereactor 114, while DME is obtained as a product or directed toreactor 118. In thereactor 118 DME reacts with water (from the separator 112) to form methanol. The reaction may be catalytic or non-catalytic. - In the
regenerator 120 metal bromide from theconverter 110 and thereactor 114 reacts with air or oxygen to regenerate metal oxide and bromine. After regeneration the metal oxide is sent to theconverter 110 and thereactor 114, while bromine is sent to thevaporizer 102. If air is used to provide the oxygen for metal oxide regeneration nitrogen may be purged from the system through theseparator 122. - Referring to FIG. 3, there is shown a method and
apparatus 200 for synthesizing olefins from alkanes, comprising a second embodiment of the invention. The alkane and a halide selected from the group including chlorine, bromine, and iodine are directed to a heat zone and, when bromine is used, avaporizer 202, operating at a temperature above the atmospheric boiling point of bromine, where the now gaseous bromine and methane are allowed to mix. The gas mixture is passed into abromination reactor 204. After the reaction, which may be catalytic or non-catalytic, the mixture is directed to acondenser 206. The heavier alkane multibromides (below 1%) are separated for other uses, such as solvent or intermediates for other organic synthesis at anoutlet 208, while the alkane monobromide, HBr, and unreacted alkane are sent to areactor 210. - In the
reactor 210 HBr reacts with metal oxide to form metal bromide and water. The metal bromide is sent to aregenerator 220 to be regenerated back to metal oxide. From theconverter 210 the water, alkane monobromide, and alkane are separated in aseparator 212. Unreacted alkane is recycled to thevaporizer 202, while the alkane monobromide is sent to areactor 214. Water is easily separated from the alkane monobromide in theseparator 212 as a by product. - In the
reactor 214 alkane monobromide reacts with metal oxide to generate olefin and metal bromide. Metal bromide is sent to theregenerator 220 for regeneration back to metal oxide. The mixture of olefin and unreacted alkane monobromide from thereactor 214 is sent to aseparator 216 where they are easily separated due to their widely different boiling points. Unreacted alkane monobromide, if any, is recycled to thereactor 214, while olefin is obtained as a product. - In the
regenerator 220 metal bromide from theconverter 210 and thereactor 214 reacts with air or oxygen to regenerate metal oxide and bromine. After regeneration metal oxide is sent to thereactor 210 and thereactor 214, while bromine is sent to thevaporizer 202. If air is used as the source of oxygen for regeneration of the metal oxide nitrogen may be purged from the system by aseparator 222. - Reaction 1:
- Catalyst Preparation
- Nb 2O5 (0.8000 g) was mixed with 0.500 ml 96(w)% H2SO4, then the mixture was heated at 110° C. for 4 hours. The temperature increased to 500° C. within 6 hours, and kept at 500° C. for 4 hours. Catalyst C1 was obtained.
- ZrO 2 (2.0000 g) was mixed with H2SO4 (3.000 ml, 96(w)%), then the mixture was heated at 110° C. for 4 hours. The temperature increased to 500° C. within 6 hours, and kept at 500° C. for 4 hours. Catalyst C2 was obtained.
- Testing
- Reaction Conditions:
- The catalyst was tested at a methane flow of 1.5 ml/minute and Br 2 flow of 0.07 ml/hour. The reaction temperature was 400° C. The reaction was carried out in a micro reactor system. After 6 hours on line reaction, the reaction effluent was analyzed by a GC/MS, and showed a 23% methane conversion with 55% selectivity to CH3Br.
- Summarizing the overall process in Reaction 1:
- CH4+Br2>HBr+CH3Br+CH2Br2+CHBr3 +CBr4 cat (1)
- Reaction 2:
- Reaction on M 1
- For all of the examples provided above the second stage of the process occurs as follows. After separation of the CH 2Br2, CHBr3 and CBr4 products from the gas stream, the CH3Br, together with the HBr are passed into the next reactor, which contains M1 (50% CuO on ZrO2) and is maintained at 225° C. Flowing the reactant gases at 10 h−1 gives a 96% conversion of CH3Br+HBr to CH3OCH3 and H2O, or to CH3OH, or a mixture of CH3OH, CH3OCH3, and H2O, with 94% selectivity, the remaining product being CuBr2/ZrO2 and 6% CO2. Dimethyl ether and water are converted into methanol if desired in a third reactor containing catalysts.
- Zr Solution Preparation
- Zr(OCH 2CH2CH3)4 (70(w)% in isopropanol, 112.6 ml) was dissolved into acetic acid (275 ml) under stirring. After stirring for 10 minutes, the solution was diluted by water to make a total volume of 500 ml. A solution with a Zr concentration of 0.5M was obtained.
- Preparation of M 2
- Cu(NO 3)2 (0.5M, 7.200 ml) solution was added into BaBr2 (0.5M, 0.800 ml). A clear solution was obtained. To this solution, Zr solution (0.5M) as prepared above was added under stirring. After stirring a few seconds, a gel was obtained. The gel was dried at 110° C. for 4 hours, then heated to 500° C. within 6 hours, and kept at 500° C. for 4 hours. M2 was obtained.
- The metal oxide mixture was tested at a CH 3Br flow rate of 1.0 ml/minute at 230° C. In the first half hour, the average CH3Br conversion was 65%, and the average dimethyl ether selectivity was 90.5%.
- Preparation of M 3
- Cu(NO 3)2 (0.5M, 40.000 ml) solution was added into Zr solution (0.5M, 30.000 ml as prepared above). After stirring a few seconds, a gel was obtained. The gel was dried at 110° C. for 4 hours, then heated to 500° C. within 6 hours, and calcined at 500° C. for 4 hours. M3 was obtained.
- Testing
- The catalyst C 2 (2.0000 g) was loaded in the first reactor (R1). A trap was loaded with 2.000 g of M3. A second reactor (R2) was loaded with M3 (0.8500 g).
- Reactants methane and bromine were fed into the first reactor (methane flow of 1.5 ml/minute, Br 2 flow of 0.07 ml/hour). The reaction temperature was 390° C. After reaction in R1 (stabilized by online reaction for more than 8 hours) the resulting mixture was passed through the trap and a mixture of methane and CH3Br (in a 85:15 molar ratio) was obtained. This gas mixture was fed directly into reactor R2 at 220° C. In the first hour an average CH3Br conversion of 91% with an average dimethyl ether selectivity of 75% was obtained. Summarizing the overall process in Reaction 2:
- CH3Br+HBr+CuO>CH3OH+CuBr2 (2)
- Possible variations of Reaction 2:
- 2 HBr+CuO>H2O+CuBr2 (2a)
- 2 CH3Br+CuO>CH3OCH3+CuBr2 (2b)
- Reaction 3:
- The solid CuBr 2/ZrO2 was transferred from
Reactor 2 toReactor 3 and treated with O2 at 300° C. to yield Br2 and CuO/ZrO2 at 100% yield and conversion. This reaction may be run at 1000 h−1. - Summarizing the overall process in Reaction 3:
- CuBr2/ZrO2+½O2>Br2+CuO/ZrO2 (3)
- Overall:
- CH4+½O2>CH3OH (A)
- Possible variation:
- CH4+½O2>½CH3OCH3+½H2O (B)
- A third embodiment of the invention comprises a process for converting ethane to diethyl ether, ethanol, and ethyl acetate which may be carried out as illustrated in FIGS. 1, 2, and 3. In the process, ethane reacts with a halogen selected from the group including chlorine, bromine, and iodine. For example, ethane is reacted with bromine to form bromomethane and HBr. The bromoethane then reacts with metal oxide to form diethyl ether, ethanol, ethyl acetate, and metal bromide. The metal bromide reacts with oxygen or air to regenerate the original metal oxide. In the process, bromine and metal oxide are recycled.
- In the ethane/bromine reaction the ethane to bromine ratio is preferably between about 10:1 and about 1:10, and more preferably about 4:1. The temperature range for the ethane/bromine reaction is preferably between about 100° C. and about 500° C. and more preferably between about 300° C. and about 400° C. The ethane/bromine reaction can be either catalytic or non-catalytic, it being understood that if a suitable catalyst is used the selectivity to ethane monobromide or dibromides can be high. The reaction is slightly exothermal and is very easy to control.
- The second reaction is preferably carried out a temperature range of between about 150° C. to about 350° C., and more preferably within a temperature range of about 200° C. to about 250° C. Bromoethane is converted to diethyl ether with 60 to 80% conversion with about 4% selectivity to ethanol and about 3% selectivity to ethyl acetate. Hence, high diethyl ether yield with useful ethanol and ethyl acetate by products is obtained in a single pass. In the process, there is no direct contact between oxygen and ethane thereby providing a high level of safety. If desired, the diethyl ether can be easily hydrolyzed to ethanol with water over a suitable catalyst.
- Part A. Ethane Bromination Reaction
- A mixture of ethane (6.0 ml/minute) and bromine (Br 2 0.30 ml/hour) was passed into a reactor (glass tube, ID 0.38″, heating zone length 4″), and was heated to 330° C. The effluent was analyzed by GC/MS. 100% bromine conversion with 80% bromoethane selectivity was obtained. The by product with 20% selectivity was 1,1-dibromoethane. The 1,1-dibromoethane can be converted to bromoethane by reaction with ethane over a catalyst, such as a metal compound or a mixture of metal compounds.
- The ethane bromination reaction can also be a catalysis reaction. The catalysts are compounds of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, Sb, Bi, S, Cl, Br, F, Sc, Y, Mg, Ca, Sr, Ba, Na, Li, K, O, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb, Lu, and Cs or mixtures thereof. The reaction is preferably carried out at a temperature range of between about 50° C. to about 600° C. The reaction pressure is preferably from about 1 to about 200 atm. The reaction mixture can have a ratio of ethane to bromine from 0.1 to 100.
- Part B. The Reaction of Bromoethane with Metal Oxides.
- Zr Solution Metal Oxide Preparation
- Zr(OCH 2CH2CH3)4 (70(w)% in isopropanol, 112.6 ml) was dissolved into acetic acid (275 ml) under stirring. After stirring for 10 minutes, the solution was diluted with water to make a total volume of 500 ml. A solution with a Zr concentration of 0.5M was obtained.
- Preparation of M 4
- A Cu(NO 3)2 (0.5M, 64.0 ml) solution was added into a Zr solution (0.5M, 64.0 ml) (as prepared above). After stirring for a few seconds, a gel was obtained. The gel was dried at 110° C. for 4 hours, then heated to 500° C. within 6 hours, and calcined at 500° C. for 4 hours. CuO/ZrO2 metal oxide (M4) was obtained.
- Testing
- Bromoethane (0.20 ml/hour) and helium (4.0 ml/minute) were passed through a reactor that was packed with 3.0000 grams M 4, which was heated to 200° C. Within the first hour, an average bromoethane conversion of 70% was observed and diethyl ether in 50 to 60% selectivity was obtained. The ethanol selectivity was about 4% and ethyl acetate selectivity was about 3%.
- In the above reaction, the metal oxides can be oxides of the following metals: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, Sb, Bi, S, Cl, Br, F, Sc, Y, Mg, Ca, Sr, Ba, Na, Li, K, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb, Lu, and Cs or mixtures thereof.
- The reaction can be carried out at a temperature range from about 50° C. to about 600° C. The reaction pressure is preferably from about 1 to about 200 atm. The reaction can be carried out with or without helium. The metal bromide is converted to metal oxide M 4 in oxygen or in air to obtain metal oxide and bromine at a temperature range of about 50 to about 700° C. and pressure range from about 1 to about 300 atm.
- A fourth embodiment of the invention comprises a process for converting ethane to acetaldehyde, which may be carried out as illustrated in FIGS. 1, 2, and 3. In the process, ethane is reacted with a halogen selected from the group including chlorine, bromine, and iodine. For example, ethane can be reacted with bromine to form bromoethane and HBr. In the bromination reaction the ethane to bromine ratio is preferably between about 10:1 and about 1:10, and more preferably about 4:1. The temperature range for the bromination reaction is preferably between about 100° C. and about 500° C., and more preferably between about 300° C. and about 400° C.
- The bromoethane then reacts with metal oxide to form acetaldehyde and metal bromide. The second reaction is preferably carried out at a temperature range of between about 150° C. and about 350° C., and more preferably at a temperature range of between about 200° C. and about 250° C. The metal bromide is reacted with oxygen or air to regenerate the original metal oxide. In the process, bromine and metal oxide are recycled.
- Ethane and bromine were thermally reacted at 350° C in a first reactor comprising an empty glass tube (ID 0.38″, heating zone length 4″) by feeding ethane and bromine at a 3.6:1 mol ratio, respectively (ethane=4 ml/min and Br2=0.14 ml/h). The reaction products comprising the outlet gas were analyzed by gas chromatography (GC) and a flame ionization detector (FID) during the reaction using nitrogen gas as an internal standard. The GC/FID results showed that the reaction achieved 23% ethane conversion. The reaction products comprising the outlet gas were also collected into a CDCl3 solution cooled in a dry-ice acetone bath for nuclear magnetic resonance (NMR) analysis. The NMR results demonstrated a product distribution in mol percents of 76.8% monobromoethane, 19.3% 1,1 dibromoethane, and 3.8% 1,2 dibromoethane.
- A second reaction was initiated by directing the reaction products from the first reaction to a second reactor comprising a glass tube (ID 0.38″, heating zone length 4″) containing 5g of a metaloxide comprising CaO/CuO/TiO2. The second reaction took place at 250° C. and produced acetaldehyde. After a 1 h reaction the NMR spectrum of products collected in a CDCl3 solution cooled in a dry-ice acetone bath demonstrated that the reaction achieved 100% bromoethane and dibromoethane conversion. The relative distribution of liquid products isolated (in C2 equivalents) was 59.13% acetaldehyde, 8.53% ethylacetate, 5.36% diethylether, 16.47% ethanol and 10.52% vinylbromide. GC analysis of the gas escaping the CDCl3 trap revealed the formation of CO2 (15% of brominated ethanes entering the second reactor) and ethylene (15%) as well.
- Preparation of the Ti Solution: Ti[OCH(CH 3)2]4 (97%, 76.7 ml) was dissolved in an oxalic acid solution(56.5 g oxalic acid dissolved in 200 ml distilled water) by heating and stirring for two hours. After two hours, the solution was diluted by water to the total volume of 500 ml. 0.5M Ti Solution was obtained.
- Preparation of the Metaloxide: Aqueous solutions comprising 20 ml of 0.5M Cu(NO 3)2 and 20 ml of 0.5M CaBr2 were mixed in 40 ml of 0.5M Ti Solution (prepared as described above). After stirring the
mixture 10 minutes it was dried at 120° C. for 4 hours, then heated to 500° C. within 6 hours, and calcined at 500° C. for 4 hours. CaO/CuO/TiO2 was obtained containing 25% each Ca and Cu and 50% Ti in mol percentages. - The Reactor System: Referring to FIG. 4, ethane bromination and the second reaction were performed in a three-zone reactor. Ethane and bromine were fed into the bottom of
reactor zone 1 which was otherwise empty to produce bromoethane. The reactor zones contained the solid metaloxide CaOCuOTiO2 for the oxidation reaction of bromoethane. Thereactor zone 2 comprised a glass balloon trap between the two reactors, at room temperature, to reflux and collect any dibromoethane produced in thereactor zone 1. Thereactor zone 2 is charged through another inlet for the addition of water to the 2nd reactor system as required. - The reaction of ethyl bromide at 250C. over 3 g of several times used and regenerated CuO/ZrO2 with ethane as a carrier gas produced acetaldehyde at 21% selectivity (estimated) during the 2 nd hour of the reaction period. The distribution of other products was 15% ethanol, 5% diethyl ether, 20% ethyl acetate and 3% butadiene.
- Preparation of the Zr Solution: 112 ml of Zr(OCH 2CH2CH3)4 (70% wt in 1-propanol) solution was dissolved into an oxalic acid solution(56.5 g oxalic acid dissolved in 200 ml distilled water) under stirring. After stirring for 2 hours, the solution was diluted by water to make a total volume of 500 ml. A solution comprising a Zr concentration of 0.5M was obtained.
- Preparation of CuO/ZrO 2: Aqueous solutions of 50 ml of 0.5M Cu(NO3)2 solution and 50 ml of 0.5M Zr solution (prepared as described above) were mixed. After stirring a few seconds, a gel was obtained. The gel was dried at 120° C. for 4 hours, then heated to 500° C. within 6 hours, and calcined at 500° C. for 4 hours. CuO/ZrO2 was obtained comprising 50% mol Cu and 50% mol Zr A fifth embodiment of the invention comprises a process for converting saturated hydrocarbons (alkanes) to their corresponding olefins. For instance, ethane to ethylene, propane to propylene, butane to butene or butadiene, isobutane to isobutene, etc. The process of the fifth embodiment may be carried out as illustrated in FIGS. 3.
- In the process, alkane reacts a halogen selected from the group including chlorine, bromine and iodine to form halogenated alkane and hydrogen halide. The halogenated alkane then reacts with metal oxide to form olefin and metal halide. The metal halide reacts with oxygen or air to regenerate the metal oxide. In the process, halogen and metal oxide are recycled.
- In the prior art, olefins are made by hydrocarbon thermal cracking. The thermal cracking process also produces saturated hydrocarbons, such as propane, butane, isobutane, pentanes, and hexanes, which are usually difficult to convert to useful materials. For example, ethane can be converted to ethylene by thermal cracking at temperatures over 800° C. in an endothermic reaction, which consumes large amounts of energy, and also generates about 30% by product acetylene (C 2H2). The acetylene must be hydrogenated back to ethylene which usually leads to over hydrogenation to ethane.
- Propane is currently used as fuel, since there presently exists no efficient process that can convert propane to propylene.
- There has been research directed at oxidizing alkanes to their corresponding olefins by reacting the alkane with oxygen over catalysts. However, low selectivity and low conversion rates were obtained. The reaction generates large amounts of heat, which can melt the catalyst as well as the reactor. Further, most of these processes involve the direct contact of the alkane with oxygen at high temperature and pressure, which is potentially dangerous.
- It is well known that alkanes can easily react with CBr 4 , CHBr3, or CH2Br2, or react with bromine at low temperatures (below 400° C.) to form alkane monobromides or alkane dibromides. The reaction can be catalytic or non-catalytic. If a suitable catalyst is used, the selectivity to alkane monobromide or dibromide can be very high (more than 95% CH3CH2BrCH3 selectivity can be reached). The reaction is slightly exothermal and is very easy to control. In the next reaction, alkane bromide is converted to olefin with 100% conversion (one pass) and selectivity over 95%. Hence, high olefin yield can be obtained in a single pass. In the process, the direct contact of oxygen with alkane is avoided, making the operation safe. A further advantage of the present invention is the virtual elimination of byproducts, rendering recovery of the desired olefin substantially easier then the conventional process. An even further advantage of the present invention is the production of the olefin without the production of the corresponding alkyne, thus eliminating the need for partial hydrogenation.
- The alkane/bromine reaction is preferably carried out at an alkane to bromine ratio of between about 10:1 and about 1:10, and more preferably at an alkane to bromine ratio of about 4:1. The temperature range of the first reaction is preferably between about 100° C. and about 500° C., and more preferably between about 300° C. and about 400° C. The second reaction is preferably carried out at a temperature of between about 150° C. and about 350° C., and more preferably at a temperature between about 200° C. and about 250° C.
- Part A. Alkane Bromination Reaction
- Propane Bromination Reaction
- A mixture of propane (6.0 ml/minute) and bromine (Br 2 0.30 ml/hour) was passed into a reactor (glass tube ID 0.38″, heating zone length 4″), which was heated to 270° C. The effluent was analyzed by GC/MS. 100% bromine conversion with 88.9% 2-bromopropane selectivity and 11.1% 1-bromopropane selectivity were obtained.
- This reaction can also be a catalysis reaction. The catalysts are compounds of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, Sb, Bi, S, Cl, Br, F, Sc, Y, Mg, Ca, Sr, Ba, Na, Li, K, O, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb, Lu, and Cs or mixtures of such compounds. The reaction can be carried out at a temperature range from about −10° C. to about 600° C. The reaction pressure can be from about 1 to about 200 atm. The reaction mixture can have a ratio of propane to bromine from 0.1 to 100.
- Bromination of Isobutane
- A mixture of isobutane (6.0 ml/minute) and bromine (Br 2 0.30 ml/hour) was passed into a reactor (glass tube ID 0.38″, heating zone length 4″), which was heated to 220° C. The effluent was analyzed by GC/MS. 100% bromine conversion with 97% 2-bromo-2-methyl-propane selectivity was obtained.
- This reaction can also be a catalysis reaction. The catalysts are compounds of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, In, Tl, Si,. Ge, Sn, Pb, P, Sb, Bi, S, Cl, Br, F, Sc, Y, Mg, Ca, Sr, Ba, Na, Li, K, O, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb, Lu, and Cs or mixtures of such compounds. The reaction can be carried out at a temperature range from about −10° C. to about 600° C. The reaction pressure can be from about 1 to about 200 atm. The reaction mixture can have a ratio of isobutane to bromine from 0.1 to 100.
- Part B. The Reaction of Alkane Bromides with Metal Oxides
- Preparation of Zr Solution Metal Oxide
- Zr(OCH 2CH2CH3)4 (70(w)% in isopropanol, 112.6 ml) was dissolved into acetic acid (275 ml) under stirring. After stirring for 10 minutes, the solution was diluted with water to make a total volume of 500 ml. A solution with a Zr a concentration of 0.5M was obtained.
- Preparation of M 5
- Cu(NO 3)2 (0.5M, 4.00 ml) solution was added into CaBr2 (0.5M, 4.00 ml). A clear solution was obtained. To this solution, Zr solution (0.5M, 8.0 ml) as prepared above was added under stirring. After stirring for a few seconds, a gel was obtained. The gel was dried at 110° C. for 4 hours, then heated to 500° C. within 6 hours, and calcined at 500° C. for 4 hours. M5 was obtained.
- Preparation of M 6
- Cu(NO 3)2 (0.5M, 7.20 ml) solution was added into BaBr2 (0.5M, 0.80 ml). A clear solution was obtained. To this solution, Zr solution (0.5M, 8.0 ml) as prepared above was added under stirring. After stirring for a few seconds, a gel was obtained. The gel was dried at 110° C. for 4 hours, then heated to 500° C. within 6 hours, and calcined at 500° C. for 4 hours. M6 was obtained.
- Preparation of M 7
- A Cu(NO 3)2 (0.5M, 8.00 ml) solution was added into Zr solution (0.5M, 8.0 ml) as prepared above was added under stirring. After stirring for a few seconds, a gel was obtained. The gel was dried at 110° C. for 4 hours, then heated to 500° C. within 6 hours, and calcined at 500° C. for 4 hours. M7 was obtained.
- Testing on M 5
- 2-bromopropane (0.25 ml/hour) and nitrogen (5.0 ml/minute) were passed through a reactor (glass tube ID 0.38″, heating zone length 4″) that was packed with 0.8701 gram M 5 and heated to 200° C. 100% 2-bromopropane conversion with more than 95% propylene selectivity was obtained within the first 40 minutes. As the reaction proceeds, the CuO is converted to CuBr2, and the 2-bromopropane conversion rate decreases. When the reaction was carried out at 180° C., within the beginning 10 minutes, 99% propylene selectivity was reached with 2-bromopropane conversion more the 60%.
- 1-bromo-2-methyl-propane (0.29 ml/hour) and nitrogen (5.0 ml/minute) were passed through a reactor (glass tube ID 0.38″, heating zone length 4″) that was packed with 0.8701 gram M 5 and heated to 220° C. 100% 1-bromo-2-methyl-propane conversion with more than 96% 2-methyl-propylene selectivity was obtained within the first hour. As the reaction progresses and the CuO is converted to CuBr2, the 2-bromopropane conversion decreases.
- 1-bromo-propane (0.24 ml/hour) and nitrogen (5.0 ml/minute) were passed through a reactor (glass tube ID 0.38″, heating zone length 4″) that was packed with 0.8701 gram M 5 and heated to 220° C. 100% 1-bromo-propane conversion with more than 90% propylene selectivity was obtained within the first 20 minutes.
- 2-bromo-2-methyl-propane (0.31 ml/hour) and nitrogen (5.0 ml/minute) were passed through a reactor (glass tube ID 0.38″, heating zone length 4″) that was packed with 0.8701 gram M 5 and heated to 180° C. 100% 2-bromo-2-methyl-propane conversion with more than 96% 2-methyl-propylene selectivity was obtained within the first hour.
- Testing on M 6
- A mixture of 1-bromopropane and 2-bromopropane (volume 1:1) (0.25 ml/hour) and nitrogen (5.0 ml/minute) was passed through a reactor (glass tube ID 0.3811, heating zone length 4″) that was packed with 0.8980 gram M 6 and heated to 200° C. 100% reactant conversion with more than 90% propylene selectivity was obtained within the first 10 minutes.
- Testing on M 7
- A mixture of 1-bromo-2-methyl-propane and 2-bromo-2-methyl-propane (volume 1:1) (0.30 ml/hour) and nitrogen (5.0 ml/minute) were passed through a reactor (glass tube ID 0.38″, heating zone length 4″) that was packed with 0.8500 gram M 7 and heated to 220° C. 100% reactant conversion with more than 95% propylene selectivity was obtained within the first 40 minutes.
- The metal oxides used above can be oxides of the following metals: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, Sb, Bi, S, Cl, Br, F, Sc, Y, Mg, Ca, Sr, Ba, Na, Li, K, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb, Lu, and Cs and mixtures thereof. The reaction can be carried out at a temperature range from about 50° C. to about 600° C. The reaction pressure can be from about 1 to about 200 atm. The reaction can be carried out with or without nitrogen. The metal bromide was converted to metal oxide (M 5, M6, and M7) in oxygen or in air to obtain metal oxide and bromine at a temperature range of about 50 to about 700° C. under pressure range from about 1 to about 300 atm.
- It will therefore be understood that the method and apparatus of the present invention operates on a continuous or batch basis to convert alkanes to alcohols, ethers, and olefins. The method and apparatus of the present invention operates at relatively low temperatures and at low pressures and is therefore economical to manufacture and use. The bromine, which is utilized in the method and apparatus of the present invention, is continuously recycled. The metal oxide, which is utilized in the process is continuously refreshed.
- Although preferred embodiments of the invention have been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it will be understood that the invention is not limited to the embodiments disclosed but is capable of numerous rearrangements, modifications, and substitutions of parts and elements without departing from the spirit of the invention.
Claims (20)
1. A method for converting ethane to acetaldehyde comprising:
providing a quantity of ethane;
providing a quantity of at least one halogen selected from the group including chlorine, bromine, and iodine;
reacting the ethane with the halogen and thereby forming haloethane and hydrogen halide;
directing at least the haloethane into engagement with a metal oxide and thereby forming acetaldehyde and a metal halide.
2. The method according to claim 1 including additional steps of:
oxidizing the metal halide to form the original metaloxide and halogen;
recycling the metaloxide; and
recycling the halogen.
3. The method according to claim 1 wherein the step of reacting the ethane with the halogen is carried out in the presence of excess ethane.
4. The method according to claim 1 wherein the step of reacting ethane with halogen is carried out at a mole ratio of about 4:1 ethane to halogen.
5. The method according to claim 1 wherein the step of directing the haloethane into engagement with a metaloxide is carried out by directing the haloethane into engagement with a metaloxide selected from the group including CaO/CuO/TiO2 and CUO/ZrO2.
6. The method according to claim 1 wherein the step of directing the haloethane into engagement with a metaloxide is carried out by directing the bromoethane into engagement with a metaloxide comprising CaO/CuO/TiO2.
7. The method according to claim 6 wherein the mol ratios of the components of the metaloxide are 25% CaO, 25% CuO, and 50% TiO2.
8. The method according to claim 1 wherein the step of directing the haloethane into engagement with a metaloxide is carried out by directing the haloethane into a metaloxide comprising CuO/ZrO2, and wherein the metaloxide comprises a mol ratio of 50% CuO2 and 50% Zr O2.
9. A method of converting ethane to acetaldehyde comprising:
providing a first reactor zone;
providing a quantity of ethane;
providing a quantity of a halogen selected from the group including chlorine, bromine, and iodine;
reacting the ethane with the halogen in the first reactor zone and thereby forming haloethane;
providing a second reactor zone;
providing a third reactor zone;
providing a quantity of a metaloxide within the third reactor zone;
directing the haloethane from the first reactor zone through the second reactor zone to the third reactor zone for reaction with the metaloxide therein to form acetaldehyde and metal halide.
10. The method according to claim 9 wherein the reaction of ethane and halogen in the first reactor zone is carried out at about 350° C.
11. The method according to claim 9 wherein the second reactor zone is maintained at room temperature, and wherein any dihaloethane produced during the ethane/halogen reaction in the first reactor zone is refluxed and collected in the second reactor zone.
12. The method according to claim 9 wherein the reaction of the haloethane with the metaloxide in the third reactor zone is carried out at a temperature of between about 250° C. and about 300° C.
13. The method according to claim 9 including additional steps of:
oxidizing the metal halide from the third reactor zone to form the original metaloxide and halogen;
recycling the metaloxide; and
recycling the halogen.
14. The method according to claim 9 wherein the step of reacting the ethane with the halogen is carried out in the presence of excess ethane.
15. The method according to claim 9 wherein the step of reacting ethane with the bromine is carried out at a mole ratio of about 4:1 ethane to halogen.
16. The method according to claim 9 wherein the step of directing the haloethane into engagement with a metaloxide is carried out by directing the haloethane into engagement with a metaloxide selected from the group including CaO/CuO/TiO2 and CUO/ZrO2.
17. The method according to claim 9 wherein the step of directing the haloethane into engagement with a metaloxide is carried out by directing the haloethane into engagement with a metaloxide comprising CaO/CuO/TiO2.
18. The method according to claim 9 wherein the mol ratios of the components of the metaloxide are 25% CaO, 25% CuO, and 50% TiO2.
19. The method according to claim 9 wherein the step of directing the haloethane into engagement with a metaloxide is carried out by directing the haloethane into a metaloxide comprising CuO/ZrO2.
20. The method according to claim 19 wherein the metaloxide comprises a mol ratio of 50% CuO2 and 50% Zr O2.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/307,789 US20030078456A1 (en) | 2001-06-20 | 2002-12-02 | Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes |
| US10/365,087 US6713655B2 (en) | 2001-06-20 | 2003-02-12 | Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes |
| US10/375,464 US7148390B2 (en) | 2001-06-20 | 2003-02-27 | Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/886,078 US6472572B1 (en) | 2001-06-20 | 2001-06-20 | Integrated process for synthesizing alcohols and ethers from alkanes |
| US09/951,739 US6465696B1 (en) | 2001-06-20 | 2001-09-11 | Integrated process for synthesizing alcohols, ethers, and olefins from alkanes |
| US10/054,004 US6486368B1 (en) | 2001-06-20 | 2002-01-24 | Integrated process for synthesizing alcohols, ethers, and olefins from alkanes |
| US20806802A | 2002-07-29 | 2002-07-29 | |
| US10/307,789 US20030078456A1 (en) | 2001-06-20 | 2002-12-02 | Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US20806802A Continuation | 2001-06-20 | 2002-07-29 | |
| US20806802A Continuation-In-Part | 2001-06-20 | 2002-07-29 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/365,087 Continuation US6713655B2 (en) | 2001-06-20 | 2003-02-12 | Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20030078456A1 true US20030078456A1 (en) | 2003-04-24 |
Family
ID=27489600
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/307,789 Abandoned US20030078456A1 (en) | 2001-06-20 | 2002-12-02 | Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes |
| US10/365,087 Expired - Fee Related US6713655B2 (en) | 2001-06-20 | 2003-02-12 | Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes |
| US10/375,464 Expired - Fee Related US7148390B2 (en) | 2001-06-20 | 2003-02-27 | Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/365,087 Expired - Fee Related US6713655B2 (en) | 2001-06-20 | 2003-02-12 | Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes |
| US10/375,464 Expired - Fee Related US7148390B2 (en) | 2001-06-20 | 2003-02-27 | Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes |
Country Status (1)
| Country | Link |
|---|---|
| US (3) | US20030078456A1 (en) |
Cited By (51)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040267074A1 (en) * | 2001-04-18 | 2004-12-30 | Philip Grosso | Zone reactor |
| US20050038310A1 (en) * | 2003-07-15 | 2005-02-17 | Lorkovic Ivan M. | Hydrocarbon synthesis |
| US20050192468A1 (en) * | 2001-06-20 | 2005-09-01 | Sherman Jeffrey H. | Hydrocarbon conversion process improvements |
| US20050234277A1 (en) * | 2004-04-16 | 2005-10-20 | Waycuilis John J | Process for converting gaseous alkanes to liquid hydrocarbons |
| US7019182B2 (en) | 2001-04-18 | 2006-03-28 | Grt, Inc. | Method of hydrocarbon preservation and environmental protection |
| US20060100469A1 (en) * | 2004-04-16 | 2006-05-11 | Waycuilis John J | Process for converting gaseous alkanes to olefins and liquid hydrocarbons |
| US20060229228A1 (en) * | 2005-04-11 | 2006-10-12 | Zachary John Anthony Komon | Method of making alkoxylates |
| US20060270896A1 (en) * | 2005-05-31 | 2006-11-30 | Ethicon, Inc. | Method and device for deployment of a sub-pericardial sack |
| US7148390B2 (en) | 2001-06-20 | 2006-12-12 | Grt, Inc. | Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes |
| US7161050B2 (en) | 2001-06-20 | 2007-01-09 | Grt, Inc. | Method and apparatus for synthesizing olefins, alcohols, ethers, and aldehydes |
| US7361794B2 (en) | 2001-04-18 | 2008-04-22 | Grt, Inc. | Zone reactor |
| US7579510B2 (en) | 2006-02-03 | 2009-08-25 | Grt, Inc. | Continuous process for converting natural gas to liquid hydrocarbons |
| US20090247796A1 (en) * | 2004-04-16 | 2009-10-01 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons |
| US20090308759A1 (en) * | 2008-06-13 | 2009-12-17 | Marathon Gtf Technology, Ltd. | Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery |
| US7674941B2 (en) | 2004-04-16 | 2010-03-09 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons |
| US20100087688A1 (en) * | 2008-10-01 | 2010-04-08 | Jorge Miller | Process and catalyst for converting alkanes |
| US7838708B2 (en) | 2001-06-20 | 2010-11-23 | Grt, Inc. | Hydrocarbon conversion process improvements |
| US7883568B2 (en) | 2006-02-03 | 2011-02-08 | Grt, Inc. | Separation of light gases from halogens |
| US7964764B2 (en) | 2003-07-15 | 2011-06-21 | Grt, Inc. | Hydrocarbon synthesis |
| US7998438B2 (en) | 2007-05-24 | 2011-08-16 | Grt, Inc. | Zone reactor incorporating reversible hydrogen halide capture and release |
| US8198495B2 (en) | 2010-03-02 | 2012-06-12 | Marathon Gtf Technology, Ltd. | Processes and systems for the staged synthesis of alkyl bromides |
| US8273929B2 (en) | 2008-07-18 | 2012-09-25 | Grt, Inc. | Continuous process for converting natural gas to liquid hydrocarbons |
| US8367884B2 (en) | 2010-03-02 | 2013-02-05 | Marathon Gtf Technology, Ltd. | Processes and systems for the staged synthesis of alkyl bromides |
| US8436220B2 (en) | 2011-06-10 | 2013-05-07 | Marathon Gtf Technology, Ltd. | Processes and systems for demethanization of brominated hydrocarbons |
| US8575403B2 (en) | 2010-05-07 | 2013-11-05 | Celanese International Corporation | Hydrolysis of ethyl acetate in ethanol separation process |
| US8592635B2 (en) | 2011-04-26 | 2013-11-26 | Celanese International Corporation | Integrated ethanol production by extracting halides from acetic acid |
| US8642822B2 (en) | 2004-04-16 | 2014-02-04 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor |
| US8664454B2 (en) | 2010-07-09 | 2014-03-04 | Celanese International Corporation | Process for production of ethanol using a mixed feed using copper containing catalyst |
| US8704008B2 (en) | 2010-07-09 | 2014-04-22 | Celanese International Corporation | Process for producing ethanol using a stacked bed reactor |
| US8710279B2 (en) | 2010-07-09 | 2014-04-29 | Celanese International Corporation | Hydrogenolysis of ethyl acetate in alcohol separation processes |
| US8748673B2 (en) | 2011-11-18 | 2014-06-10 | Celanese International Corporation | Process of recovery of ethanol from hydrogenolysis process |
| US8754268B2 (en) | 2011-04-26 | 2014-06-17 | Celanese International Corporation | Process for removing water from alcohol mixtures |
| US8802901B2 (en) | 2011-11-18 | 2014-08-12 | Celanese International Corporation | Continuous ethyl acetate production and hydrogenolysis thereof |
| US8802908B2 (en) | 2011-10-21 | 2014-08-12 | Marathon Gtf Technology, Ltd. | Processes and systems for separate, parallel methane and higher alkanes' bromination |
| US8815050B2 (en) | 2011-03-22 | 2014-08-26 | Marathon Gtf Technology, Ltd. | Processes and systems for drying liquid bromine |
| US8829249B2 (en) | 2011-11-18 | 2014-09-09 | Celanese International Corporation | Integrated esterification and hydrogenolysis process for producing ethanol |
| US8829256B2 (en) | 2011-06-30 | 2014-09-09 | Gtc Technology Us, Llc | Processes and systems for fractionation of brominated hydrocarbons in the conversion of natural gas to liquid hydrocarbons |
| US8829251B2 (en) | 2011-11-18 | 2014-09-09 | Celanese International Corporation | Liquid esterification method to produce ester feed for hydrogenolysis |
| US8846988B2 (en) | 2010-07-09 | 2014-09-30 | Celanese International Corporation | Liquid esterification for the production of alcohols |
| US8853468B2 (en) | 2011-11-18 | 2014-10-07 | Celanese International Corporation | Vapor esterification method to produce ester feed for hydrogenolysis |
| US8859827B2 (en) | 2011-11-18 | 2014-10-14 | Celanese International Corporation | Esterifying acetic acid to produce ester feed for hydrogenolysis |
| US8895786B2 (en) | 2011-08-03 | 2014-11-25 | Celanese International Corporation | Processes for increasing alcohol production |
| US8907141B2 (en) | 2011-04-26 | 2014-12-09 | Celanese International Corporation | Process to recover alcohol with secondary reactors for esterification of acid |
| US8927790B2 (en) | 2011-12-15 | 2015-01-06 | Celanese International Corporation | Multiple vapor feeds for hydrogenation process to produce alcohol |
| US8975451B2 (en) | 2013-03-15 | 2015-03-10 | Celanese International Corporation | Single phase ester feed for hydrogenolysis |
| US9000233B2 (en) | 2011-04-26 | 2015-04-07 | Celanese International Corporation | Process to recover alcohol with secondary reactors for hydrolysis of acetal |
| US9024089B2 (en) | 2011-11-18 | 2015-05-05 | Celanese International Corporation | Esterification process using extractive separation to produce feed for hydrogenolysis |
| US9073816B2 (en) | 2011-04-26 | 2015-07-07 | Celanese International Corporation | Reducing ethyl acetate concentration in recycle streams for ethanol production processes |
| US9193641B2 (en) | 2011-12-16 | 2015-11-24 | Gtc Technology Us, Llc | Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems |
| US9206093B2 (en) | 2004-04-16 | 2015-12-08 | Gtc Technology Us, Llc | Process for converting gaseous alkanes to liquid hydrocarbons |
| US9272970B2 (en) | 2010-07-09 | 2016-03-01 | Celanese International Corporation | Hydrogenolysis of ethyl acetate in alcohol separation processes |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005095310A2 (en) * | 2004-03-23 | 2005-10-13 | Shell Internationale Research Maatschappij B.V. | The utilization of zirconium and zirconium based alloys for the containment of halogen containing environments used in the production of olefins, alcohols, ethers, ethoxylates glycols, and olefin oxides from alkanes |
| US7091387B2 (en) * | 2004-04-21 | 2006-08-15 | Shell Oil Company | Process to convert alkanes into primary alcohols |
| US7462752B2 (en) * | 2004-04-21 | 2008-12-09 | Shell Oil Company | Process to convert linear alkanes into alpha olefins |
| US9024083B2 (en) | 2010-07-09 | 2015-05-05 | Celanese International Corporation | Process for the production of ethanol from an acetic acid feed and a recycled ethyl acetate feed |
| WO2013081621A1 (en) * | 2011-11-30 | 2013-06-06 | Sajet Development Llc | Method of producing alcohols |
| CA2862300A1 (en) * | 2012-02-08 | 2013-08-15 | Sajet Development Llc | Method of producing alcohols |
| US8729318B1 (en) | 2012-11-20 | 2014-05-20 | Celanese International Corporation | Process for producing ethanol from methyl acetate |
| CN103182317A (en) * | 2012-12-31 | 2013-07-03 | 湖南农业大学 | Zr-Ti (zirconium- titanium) esoporous molecular sieve based catalyst used for preparing ethylene through ethanol dehydration, and preparation method of catalyst |
| US10040734B2 (en) | 2014-09-16 | 2018-08-07 | Reaction 35, Llc | Production of isobutylene, isoamylene, or alkylates from mixed alkanes |
Family Cites Families (36)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3172915A (en) | 1965-03-09 | Preparation of oxygenated methane derivatives | ||
| US3273964A (en) | 1963-02-28 | 1966-09-20 | Universal Oil Prod Co | Process for producing bromine from a mixture of hydrogen bromide and olefinic hydrocarbon |
| US3310380A (en) | 1964-02-13 | 1967-03-21 | Universal Oil Prod Co | Bromine recovery |
| US3353916A (en) | 1966-04-25 | 1967-11-21 | Universal Oil Prod Co | Quantitative recovery of bromine by two stage catalytic oxidation of hydrogen bromide |
| US3894107A (en) * | 1973-08-09 | 1975-07-08 | Mobil Oil Corp | Conversion of alcohols, mercaptans, sulfides, halides and/or amines |
| US4006169A (en) * | 1976-02-26 | 1977-02-01 | Smithkline Corporation | Epoxidation of α,β-ethylenic ketones |
| US4496752A (en) * | 1979-05-03 | 1985-01-29 | The Lummus Company | Production of epoxy compounds from olefinic compounds |
| US4333852A (en) * | 1980-09-25 | 1982-06-08 | Union Carbide Corporation | Catalyst for the selective production of ethanol and methanol directly from synthesis gas |
| US4301253A (en) * | 1980-09-25 | 1981-11-17 | Union Carbide Corporation | Process for the selective production of ethanol and methanol directly from synthesis gas |
| US4373109A (en) * | 1981-08-05 | 1983-02-08 | Olah George A | Bifunctional acid-base catalyzed conversion of hetero-substituted methanes into olefins |
| US4523040A (en) | 1981-09-01 | 1985-06-11 | Olah George A | Methyl halides and methyl alcohol from methane |
| US4465893A (en) | 1982-08-25 | 1984-08-14 | Olah George A | Oxidative condensation of natural gas or methane into gasoline range hydrocarbons |
| US4440871A (en) * | 1982-07-26 | 1984-04-03 | Union Carbide Corporation | Crystalline silicoaluminophosphates |
| US4654449A (en) * | 1982-12-09 | 1987-03-31 | Mobil Oil Corporation | Formation of halogenated hydrocarbons from hydrocarbons |
| US4513092A (en) * | 1984-01-04 | 1985-04-23 | Mobil Oil Corporation | Composite catalyst for halogenation and condensation of alkanes |
| US4795843A (en) * | 1985-08-26 | 1989-01-03 | Uop Inc. | Conversion of methane into larger organic hydrocarbons |
| US4769504A (en) * | 1987-03-04 | 1988-09-06 | The United States Of America As Represented By The United States Department Of Energy | Process for converting light alkanes to higher hydrocarbons |
| US4982024A (en) * | 1989-12-26 | 1991-01-01 | Ethyl Corporation | Process for the selective dehydrohalogenation of an admixture of alkylhalides |
| US5087786A (en) * | 1990-04-25 | 1992-02-11 | Amoco Corporation | Halogen-assisted conversion of lower alkanes |
| US5276240A (en) * | 1991-10-18 | 1994-01-04 | Board Of Regents, The University Of Texas System | Catalytic hydrodehalogenation of polyhalogenated hydrocarbons |
| US5243098A (en) | 1992-11-04 | 1993-09-07 | Energia Andina Ltd. | Conversion of methane to methanol |
| US5486627A (en) * | 1994-12-02 | 1996-01-23 | The Dow Chemical Company | Method for producing epoxides |
| US5998679A (en) | 1998-05-20 | 1999-12-07 | Jlm Technology, Ltd. | Methods for converting lower alkanes and alkanes to alcohols and diols |
| IT1302003B1 (en) | 1998-08-05 | 2000-07-20 | Enitecnologie Spa | PROCEDURE FOR THE SELECTIVE TRANSFORMATION OF HYDROCARBONS. |
| US6087294A (en) | 1998-08-12 | 2000-07-11 | Kansas State University Research Foundation | Dispersion and stabilization of reactive atoms on the surface of metal oxides |
| US6444223B1 (en) * | 1999-05-28 | 2002-09-03 | Alkermes Controlled Therapeutics, Inc. | Method of producing submicron particles of a labile agent and use thereof |
| US6472572B1 (en) * | 2001-06-20 | 2002-10-29 | Grt, Inc. | Integrated process for synthesizing alcohols and ethers from alkanes |
| US6525230B2 (en) * | 2001-04-18 | 2003-02-25 | Grt, Inc. | Zone reactor |
| US6452058B1 (en) * | 2001-05-21 | 2002-09-17 | Dow Global Technologies Inc. | Oxidative halogenation of C1 hydrocarbons to halogenated C1 hydrocarbons and integrated processes related thereto |
| US6486368B1 (en) * | 2001-06-20 | 2002-11-26 | Grt, Inc. | Integrated process for synthesizing alcohols, ethers, and olefins from alkanes |
| US6465699B1 (en) | 2001-06-20 | 2002-10-15 | Gri, Inc. | Integrated process for synthesizing alcohols, ethers, and olefins from alkanes |
| US20030078456A1 (en) | 2001-06-20 | 2003-04-24 | Aysen Yilmaz | Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes |
| US7161050B2 (en) | 2001-06-20 | 2007-01-09 | Grt, Inc. | Method and apparatus for synthesizing olefins, alcohols, ethers, and aldehydes |
| US20030069452A1 (en) | 2001-06-20 | 2003-04-10 | Sherman Jeffrey H. | Method and apparatus for synthesizing from alcohols and ethers from alkanes, alkenes, and aromatics |
| WO2003022827A1 (en) | 2001-09-11 | 2003-03-20 | Grt, Inc. | Process for synthesizing olefin oxides |
| EP2277847A3 (en) | 2002-01-24 | 2011-07-27 | GRT, Inc. | Integrated Process for Synthesizing Alcohols, Ethers, and Olefins from Alkanes |
-
2002
- 2002-12-02 US US10/307,789 patent/US20030078456A1/en not_active Abandoned
-
2003
- 2003-02-12 US US10/365,087 patent/US6713655B2/en not_active Expired - Fee Related
- 2003-02-27 US US10/375,464 patent/US7148390B2/en not_active Expired - Fee Related
Cited By (74)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040267074A1 (en) * | 2001-04-18 | 2004-12-30 | Philip Grosso | Zone reactor |
| US7361794B2 (en) | 2001-04-18 | 2008-04-22 | Grt, Inc. | Zone reactor |
| US7019182B2 (en) | 2001-04-18 | 2006-03-28 | Grt, Inc. | Method of hydrocarbon preservation and environmental protection |
| US7230150B2 (en) | 2001-04-18 | 2007-06-12 | Grt, Inc. | Zone reactor |
| US7161050B2 (en) | 2001-06-20 | 2007-01-09 | Grt, Inc. | Method and apparatus for synthesizing olefins, alcohols, ethers, and aldehydes |
| US20050192468A1 (en) * | 2001-06-20 | 2005-09-01 | Sherman Jeffrey H. | Hydrocarbon conversion process improvements |
| US7838708B2 (en) | 2001-06-20 | 2010-11-23 | Grt, Inc. | Hydrocarbon conversion process improvements |
| US8415512B2 (en) | 2001-06-20 | 2013-04-09 | Grt, Inc. | Hydrocarbon conversion process improvements |
| US7148390B2 (en) | 2001-06-20 | 2006-12-12 | Grt, Inc. | Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes |
| US7847139B2 (en) | 2003-07-15 | 2010-12-07 | Grt, Inc. | Hydrocarbon synthesis |
| US8278493B2 (en) * | 2003-07-15 | 2012-10-02 | Grt, Inc. | Hydrocarbon synthesis |
| US20110218375A1 (en) * | 2003-07-15 | 2011-09-08 | Lorkovic Ivan M | Hydrocarbon synthesis |
| US7964764B2 (en) | 2003-07-15 | 2011-06-21 | Grt, Inc. | Hydrocarbon synthesis |
| US20050038310A1 (en) * | 2003-07-15 | 2005-02-17 | Lorkovic Ivan M. | Hydrocarbon synthesis |
| US7560607B2 (en) | 2004-04-16 | 2009-07-14 | Marathon Gtf Technology, Ltd. | Process for converting gaseous alkanes to liquid hydrocarbons |
| US9206093B2 (en) | 2004-04-16 | 2015-12-08 | Gtc Technology Us, Llc | Process for converting gaseous alkanes to liquid hydrocarbons |
| US20090247796A1 (en) * | 2004-04-16 | 2009-10-01 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons |
| US8232441B2 (en) | 2004-04-16 | 2012-07-31 | Marathon Gtf Technology, Ltd. | Process for converting gaseous alkanes to liquid hydrocarbons |
| US7348464B2 (en) | 2004-04-16 | 2008-03-25 | Marathon Oil Company | Process for converting gaseous alkanes to liquid hydrocarbons |
| US8173851B2 (en) | 2004-04-16 | 2012-05-08 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons |
| US7674941B2 (en) | 2004-04-16 | 2010-03-09 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons |
| US8642822B2 (en) | 2004-04-16 | 2014-02-04 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor |
| US8008535B2 (en) | 2004-04-16 | 2011-08-30 | Marathon Gtf Technology, Ltd. | Process for converting gaseous alkanes to olefins and liquid hydrocarbons |
| US20060100469A1 (en) * | 2004-04-16 | 2006-05-11 | Waycuilis John J | Process for converting gaseous alkanes to olefins and liquid hydrocarbons |
| US20050234277A1 (en) * | 2004-04-16 | 2005-10-20 | Waycuilis John J | Process for converting gaseous alkanes to liquid hydrocarbons |
| US7880041B2 (en) | 2004-04-16 | 2011-02-01 | Marathon Gtf Technology, Ltd. | Process for converting gaseous alkanes to liquid hydrocarbons |
| US20060229228A1 (en) * | 2005-04-11 | 2006-10-12 | Zachary John Anthony Komon | Method of making alkoxylates |
| US20090069606A1 (en) * | 2005-04-11 | 2009-03-12 | Grt, Inc. | Method of making alkoxylates |
| US7959555B2 (en) | 2005-05-31 | 2011-06-14 | Ethicon, Inc. | Method and device for deployment of a sub-pericardial sack |
| US20100036194A1 (en) * | 2005-05-31 | 2010-02-11 | Ethicon, Inc. | Method and device for deployment of a sub-pericardial sack |
| US7621866B2 (en) | 2005-05-31 | 2009-11-24 | Ethicon, Inc. | Method and device for deployment of a sub-pericardial sack |
| US20060270896A1 (en) * | 2005-05-31 | 2006-11-30 | Ethicon, Inc. | Method and device for deployment of a sub-pericardial sack |
| US7883568B2 (en) | 2006-02-03 | 2011-02-08 | Grt, Inc. | Separation of light gases from halogens |
| US8053616B2 (en) | 2006-02-03 | 2011-11-08 | Grt, Inc. | Continuous process for converting natural gas to liquid hydrocarbons |
| US7579510B2 (en) | 2006-02-03 | 2009-08-25 | Grt, Inc. | Continuous process for converting natural gas to liquid hydrocarbons |
| US8921625B2 (en) | 2007-02-05 | 2014-12-30 | Reaction35, LLC | Continuous process for converting natural gas to liquid hydrocarbons |
| US7998438B2 (en) | 2007-05-24 | 2011-08-16 | Grt, Inc. | Zone reactor incorporating reversible hydrogen halide capture and release |
| US8282810B2 (en) | 2008-06-13 | 2012-10-09 | Marathon Gtf Technology, Ltd. | Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery |
| US20090308759A1 (en) * | 2008-06-13 | 2009-12-17 | Marathon Gtf Technology, Ltd. | Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery |
| US8273929B2 (en) | 2008-07-18 | 2012-09-25 | Grt, Inc. | Continuous process for converting natural gas to liquid hydrocarbons |
| US8415517B2 (en) | 2008-07-18 | 2013-04-09 | Grt, Inc. | Continuous process for converting natural gas to liquid hydrocarbons |
| US20100087688A1 (en) * | 2008-10-01 | 2010-04-08 | Jorge Miller | Process and catalyst for converting alkanes |
| US7812201B2 (en) | 2008-10-01 | 2010-10-12 | Targa Resources, Inc. | Process and catalyst for converting alkanes |
| US7968755B2 (en) | 2008-10-01 | 2011-06-28 | Sajet Development Llc | Process and catalyst for converting alkanes |
| US8198495B2 (en) | 2010-03-02 | 2012-06-12 | Marathon Gtf Technology, Ltd. | Processes and systems for the staged synthesis of alkyl bromides |
| US8367884B2 (en) | 2010-03-02 | 2013-02-05 | Marathon Gtf Technology, Ltd. | Processes and systems for the staged synthesis of alkyl bromides |
| US9133078B2 (en) | 2010-03-02 | 2015-09-15 | Gtc Technology Us, Llc | Processes and systems for the staged synthesis of alkyl bromides |
| US8575403B2 (en) | 2010-05-07 | 2013-11-05 | Celanese International Corporation | Hydrolysis of ethyl acetate in ethanol separation process |
| US9670119B2 (en) | 2010-07-09 | 2017-06-06 | Celanese International Corporation | Process for producing ethanol using multiple beds each having different catalysts |
| US8710279B2 (en) | 2010-07-09 | 2014-04-29 | Celanese International Corporation | Hydrogenolysis of ethyl acetate in alcohol separation processes |
| US9272970B2 (en) | 2010-07-09 | 2016-03-01 | Celanese International Corporation | Hydrogenolysis of ethyl acetate in alcohol separation processes |
| US8704008B2 (en) | 2010-07-09 | 2014-04-22 | Celanese International Corporation | Process for producing ethanol using a stacked bed reactor |
| US8664454B2 (en) | 2010-07-09 | 2014-03-04 | Celanese International Corporation | Process for production of ethanol using a mixed feed using copper containing catalyst |
| US8846988B2 (en) | 2010-07-09 | 2014-09-30 | Celanese International Corporation | Liquid esterification for the production of alcohols |
| US8815050B2 (en) | 2011-03-22 | 2014-08-26 | Marathon Gtf Technology, Ltd. | Processes and systems for drying liquid bromine |
| US8907141B2 (en) | 2011-04-26 | 2014-12-09 | Celanese International Corporation | Process to recover alcohol with secondary reactors for esterification of acid |
| US8754268B2 (en) | 2011-04-26 | 2014-06-17 | Celanese International Corporation | Process for removing water from alcohol mixtures |
| US8592635B2 (en) | 2011-04-26 | 2013-11-26 | Celanese International Corporation | Integrated ethanol production by extracting halides from acetic acid |
| US9073816B2 (en) | 2011-04-26 | 2015-07-07 | Celanese International Corporation | Reducing ethyl acetate concentration in recycle streams for ethanol production processes |
| US9000233B2 (en) | 2011-04-26 | 2015-04-07 | Celanese International Corporation | Process to recover alcohol with secondary reactors for hydrolysis of acetal |
| US8436220B2 (en) | 2011-06-10 | 2013-05-07 | Marathon Gtf Technology, Ltd. | Processes and systems for demethanization of brominated hydrocarbons |
| US8829256B2 (en) | 2011-06-30 | 2014-09-09 | Gtc Technology Us, Llc | Processes and systems for fractionation of brominated hydrocarbons in the conversion of natural gas to liquid hydrocarbons |
| US8895786B2 (en) | 2011-08-03 | 2014-11-25 | Celanese International Corporation | Processes for increasing alcohol production |
| US8802908B2 (en) | 2011-10-21 | 2014-08-12 | Marathon Gtf Technology, Ltd. | Processes and systems for separate, parallel methane and higher alkanes' bromination |
| US8859827B2 (en) | 2011-11-18 | 2014-10-14 | Celanese International Corporation | Esterifying acetic acid to produce ester feed for hydrogenolysis |
| US8853468B2 (en) | 2011-11-18 | 2014-10-07 | Celanese International Corporation | Vapor esterification method to produce ester feed for hydrogenolysis |
| US9024089B2 (en) | 2011-11-18 | 2015-05-05 | Celanese International Corporation | Esterification process using extractive separation to produce feed for hydrogenolysis |
| US8829251B2 (en) | 2011-11-18 | 2014-09-09 | Celanese International Corporation | Liquid esterification method to produce ester feed for hydrogenolysis |
| US8829249B2 (en) | 2011-11-18 | 2014-09-09 | Celanese International Corporation | Integrated esterification and hydrogenolysis process for producing ethanol |
| US8802901B2 (en) | 2011-11-18 | 2014-08-12 | Celanese International Corporation | Continuous ethyl acetate production and hydrogenolysis thereof |
| US8748673B2 (en) | 2011-11-18 | 2014-06-10 | Celanese International Corporation | Process of recovery of ethanol from hydrogenolysis process |
| US8927790B2 (en) | 2011-12-15 | 2015-01-06 | Celanese International Corporation | Multiple vapor feeds for hydrogenation process to produce alcohol |
| US9193641B2 (en) | 2011-12-16 | 2015-11-24 | Gtc Technology Us, Llc | Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems |
| US8975451B2 (en) | 2013-03-15 | 2015-03-10 | Celanese International Corporation | Single phase ester feed for hydrogenolysis |
Also Published As
| Publication number | Publication date |
|---|---|
| US20030125585A1 (en) | 2003-07-03 |
| US7148390B2 (en) | 2006-12-12 |
| US20030166973A1 (en) | 2003-09-04 |
| US6713655B2 (en) | 2004-03-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7148390B2 (en) | Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes | |
| US6465699B1 (en) | Integrated process for synthesizing alcohols, ethers, and olefins from alkanes | |
| US6486368B1 (en) | Integrated process for synthesizing alcohols, ethers, and olefins from alkanes | |
| US6465696B1 (en) | Integrated process for synthesizing alcohols, ethers, and olefins from alkanes | |
| CA2471295C (en) | Integrated process for synthesizing alcohols, ethers, and olefins from alkanes | |
| AU2002318266A1 (en) | Integrated process for synthesizing alcohols, ethers, and olefins from alkanes | |
| US7161050B2 (en) | Method and apparatus for synthesizing olefins, alcohols, ethers, and aldehydes | |
| CA2950490C (en) | Method for producing hexafluoroisopropanol and fluoromethyl hexafluoroisopropyl ether | |
| WO2005105715A1 (en) | Process to convert alkanes into primary alcohols |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |