US20030113375A1 - Pharmaceutical formulation and process - Google Patents
Pharmaceutical formulation and process Download PDFInfo
- Publication number
- US20030113375A1 US20030113375A1 US10/235,392 US23539202A US2003113375A1 US 20030113375 A1 US20030113375 A1 US 20030113375A1 US 23539202 A US23539202 A US 23539202A US 2003113375 A1 US2003113375 A1 US 2003113375A1
- Authority
- US
- United States
- Prior art keywords
- alkaline
- dosage form
- enteric coating
- core material
- form according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000008194 pharmaceutical composition Substances 0.000 title description 4
- 239000011162 core material Substances 0.000 claims abstract description 89
- 239000010410 layer Substances 0.000 claims abstract description 84
- 238000009505 enteric coating Methods 0.000 claims abstract description 76
- 239000002702 enteric coating Substances 0.000 claims abstract description 76
- 150000001875 compounds Chemical class 0.000 claims abstract description 51
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000002552 dosage form Substances 0.000 claims abstract description 32
- 229940126409 proton pump inhibitor Drugs 0.000 claims abstract description 32
- 239000000612 proton pump inhibitor Substances 0.000 claims abstract description 32
- 229920001688 coating polymer Polymers 0.000 claims abstract description 29
- 150000003839 salts Chemical class 0.000 claims abstract description 22
- 238000011065 in-situ storage Methods 0.000 claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 239000000546 pharmaceutical excipient Substances 0.000 claims abstract description 7
- 239000003814 drug Substances 0.000 claims abstract description 3
- 239000000126 substance Substances 0.000 claims description 22
- 239000004615 ingredient Substances 0.000 claims description 18
- 239000008188 pellet Substances 0.000 claims description 15
- SUBDBMMJDZJVOS-UHFFFAOYSA-N 5-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole Chemical compound N=1C2=CC(OC)=CC=C2NC=1S(=O)CC1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-UHFFFAOYSA-N 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- 239000001257 hydrogen Substances 0.000 claims description 12
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 12
- 229960000381 omeprazole Drugs 0.000 claims description 12
- 125000000217 alkyl group Chemical group 0.000 claims description 11
- 159000000011 group IA salts Chemical class 0.000 claims description 10
- -1 methacrylic acid methyl esters Chemical class 0.000 claims description 9
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 claims description 8
- 229910052736 halogen Inorganic materials 0.000 claims description 8
- 150000002367 halogens Chemical group 0.000 claims description 8
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 claims description 7
- 125000003545 alkoxy group Chemical group 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 230000002401 inhibitory effect Effects 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 5
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 claims description 4
- 241000124008 Mammalia Species 0.000 claims description 4
- IQPSEEYGBUAQFF-UHFFFAOYSA-N Pantoprazole Chemical group COC1=CC=NC(CS(=O)C=2NC3=CC=C(OC(F)F)C=C3N=2)=C1OC IQPSEEYGBUAQFF-UHFFFAOYSA-N 0.000 claims description 4
- 210000004211 gastric acid Anatomy 0.000 claims description 4
- 229920000639 hydroxypropylmethylcellulose acetate succinate Polymers 0.000 claims description 4
- 229960003174 lansoprazole Drugs 0.000 claims description 4
- MJIHNNLFOKEZEW-UHFFFAOYSA-N lansoprazole Chemical compound CC1=C(OCC(F)(F)F)C=CN=C1CS(=O)C1=NC2=CC=CC=C2N1 MJIHNNLFOKEZEW-UHFFFAOYSA-N 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 4
- 229960005019 pantoprazole Drugs 0.000 claims description 4
- 239000004475 Arginine Substances 0.000 claims description 3
- 239000004472 Lysine Substances 0.000 claims description 3
- 150000001412 amines Chemical class 0.000 claims description 3
- 150000001413 amino acids Chemical class 0.000 claims description 3
- 150000003863 ammonium salts Chemical class 0.000 claims description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims description 3
- 201000010099 disease Diseases 0.000 claims description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 3
- 230000027119 gastric acid secretion Effects 0.000 claims description 3
- 239000001863 hydroxypropyl cellulose Substances 0.000 claims description 3
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 claims description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 2
- 125000004448 alkyl carbonyl group Chemical group 0.000 claims description 2
- 125000004414 alkyl thio group Chemical group 0.000 claims description 2
- 125000002947 alkylene group Chemical group 0.000 claims description 2
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 2
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 125000006165 cyclic alkyl group Chemical group 0.000 claims description 2
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 claims description 2
- 125000004663 dialkyl amino group Chemical group 0.000 claims description 2
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- 239000011737 fluorine Substances 0.000 claims description 2
- 125000001153 fluoro group Chemical group F* 0.000 claims description 2
- 125000004438 haloalkoxy group Chemical group 0.000 claims description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 2
- 125000002971 oxazolyl group Chemical group 0.000 claims description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 2
- 125000002071 phenylalkoxy group Chemical group 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- 125000001424 substituent group Chemical group 0.000 claims description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical class OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims 4
- 229910052783 alkali metal Inorganic materials 0.000 claims 2
- 150000001340 alkali metals Chemical class 0.000 claims 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical class O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims 2
- 235000012239 silicon dioxide Nutrition 0.000 claims 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims 1
- 125000005083 alkoxyalkoxy group Chemical group 0.000 claims 1
- 125000005055 alkyl alkoxy group Chemical group 0.000 claims 1
- 239000007963 capsule composition Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims 1
- 150000004679 hydroxides Chemical class 0.000 claims 1
- 150000007524 organic acids Chemical class 0.000 claims 1
- 229940124531 pharmaceutical excipient Drugs 0.000 abstract 1
- 239000003826 tablet Substances 0.000 description 28
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 24
- 239000000203 mixture Substances 0.000 description 20
- 239000006185 dispersion Substances 0.000 description 18
- 239000013543 active substance Substances 0.000 description 16
- 239000000843 powder Substances 0.000 description 14
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 12
- MVPICKVDHDWCJQ-UHFFFAOYSA-N ethyl 3-pyrrolidin-1-ylpropanoate Chemical compound CCOC(=O)CCN1CCCC1 MVPICKVDHDWCJQ-UHFFFAOYSA-N 0.000 description 12
- 239000008187 granular material Substances 0.000 description 12
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 12
- 229940045902 sodium stearyl fumarate Drugs 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- 238000005507 spraying Methods 0.000 description 11
- 239000004141 Sodium laurylsulphate Substances 0.000 description 10
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 10
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 230000002378 acidificating effect Effects 0.000 description 8
- 239000000454 talc Substances 0.000 description 8
- 229910052623 talc Inorganic materials 0.000 description 8
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 7
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 7
- 239000001069 triethyl citrate Substances 0.000 description 7
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 7
- 235000013769 triethyl citrate Nutrition 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 229940016286 microcrystalline cellulose Drugs 0.000 description 6
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 6
- 239000008108 microcrystalline cellulose Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 235000000346 sugar Nutrition 0.000 description 6
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 5
- 229930195725 Mannitol Natural products 0.000 description 5
- IYKJEILNJZQJPU-UHFFFAOYSA-N acetic acid;butanedioic acid Chemical compound CC(O)=O.OC(=O)CCC(O)=O IYKJEILNJZQJPU-UHFFFAOYSA-N 0.000 description 5
- 239000003513 alkali Substances 0.000 description 5
- 239000011247 coating layer Substances 0.000 description 5
- 239000007888 film coating Substances 0.000 description 5
- 238000009501 film coating Methods 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- 159000000003 magnesium salts Chemical class 0.000 description 5
- 239000000594 mannitol Substances 0.000 description 5
- 235000010355 mannitol Nutrition 0.000 description 5
- 239000004014 plasticizer Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 235000010980 cellulose Nutrition 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical class OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 4
- 238000001218 confocal laser scanning microscopy Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 229960003194 meglumine Drugs 0.000 description 3
- 238000005563 spheronization Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- IKXCHOUDIPZROZ-LXGUWJNJSA-N (2r,3r,4r,5s)-6-(ethylamino)hexane-1,2,3,4,5-pentol Chemical class CCNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO IKXCHOUDIPZROZ-LXGUWJNJSA-N 0.000 description 2
- 0 C*S(C)=O.CC.CC1=C(C)C=CC=C1.CC1=NCCN1C1=NC=CC=C1.N.[1*]C1=CN=C(C)C([3*])=C1[2*].[10*]C(C)C.[11*]C.[12*]C.[16*]C.[4*]N([5*])C1=CC=CN=C1C.[6*]c1c([7*])c([8*])c([9*])c2c1N=C(C)N2[H].[H]N1C(C)=NC2=[SH]/C/C=C\21 Chemical compound C*S(C)=O.CC.CC1=C(C)C=CC=C1.CC1=NCCN1C1=NC=CC=C1.N.[1*]C1=CN=C(C)C([3*])=C1[2*].[10*]C(C)C.[11*]C.[12*]C.[16*]C.[4*]N([5*])C1=CC=CN=C1C.[6*]c1c([7*])c([8*])c([9*])c2c1N=C(C)N2[H].[H]N1C(C)=NC2=[SH]/C/C=C\21 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- 229920003134 Eudragit® polymer Polymers 0.000 description 2
- 229930064664 L-arginine Natural products 0.000 description 2
- 235000014852 L-arginine Nutrition 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 235000009697 arginine Nutrition 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 2
- 229960004770 esomeprazole Drugs 0.000 description 2
- SUBDBMMJDZJVOS-DEOSSOPVSA-N esomeprazole Chemical compound C([S@](=O)C1=NC2=CC=C(C=C2N1)OC)C1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-DEOSSOPVSA-N 0.000 description 2
- 210000004051 gastric juice Anatomy 0.000 description 2
- 208000021302 gastroesophageal reflux disease Diseases 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical class CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 229940068918 polyethylene glycol 400 Drugs 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 229940068965 polysorbates Drugs 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- NDQQRRVKUBPTHQ-QBIQUQHTSA-N (2r,3r,4r,5s)-6-(methylamino)hexane-1,2,3,4,5-pentol Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO NDQQRRVKUBPTHQ-QBIQUQHTSA-N 0.000 description 1
- PVOAHINGSUIXLS-UHFFFAOYSA-N 1-Methylpiperazine Chemical compound CN1CCNCC1 PVOAHINGSUIXLS-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical class N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- 101100328518 Caenorhabditis elegans cnt-1 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical class OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- 208000007882 Gastritis Diseases 0.000 description 1
- 208000018522 Gastrointestinal disease Diseases 0.000 description 1
- 239000001828 Gelatine Substances 0.000 description 1
- 206010019375 Helicobacter infections Diseases 0.000 description 1
- 208000028861 Helicobacter pylori infectious disease Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 235000019766 L-Lysine Nutrition 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 1
- 125000002059 L-arginyl group Chemical class O=C([*])[C@](N([H])[H])([H])C([H])([H])C([H])([H])C([H])([H])N([H])C(=N[H])N([H])[H] 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 208000007107 Stomach Ulcer Diseases 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Chemical class [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 206010046274 Upper gastrointestinal haemorrhage Diseases 0.000 description 1
- SAXUQSABKPBJJV-UHFFFAOYSA-N [H]N1C2=C(C=C(OC(F)F)C=C2)/N=C\1S(=O)Cc1nccc(OC)c1OC.[H]N1C2=C(C=C(OC)C=C2)/N=C\1S(=O)Cc1ncc(C)c(OC)c1C.[H]N1C2=C(C=CC=C2)/N=C\1S(=O)Cc1nccc(OCC(F)(F)F)c1C.[H]N1C2=C(C=CC=C2)/N=C\1S(=O)Cc1nccc(OCCCOC)c1C.[H]N1C2=CC(C)=C(C(=O)OC)C=C2/N=C\1S(=O)CC1=C(OC)C(OC)=CC=N1.[H]N1C2=CC=C(F)C=C2/N=C\1S(=O)CC1=CC(OCC2CC2)=CC=N1 Chemical compound [H]N1C2=C(C=C(OC(F)F)C=C2)/N=C\1S(=O)Cc1nccc(OC)c1OC.[H]N1C2=C(C=C(OC)C=C2)/N=C\1S(=O)Cc1ncc(C)c(OC)c1C.[H]N1C2=C(C=CC=C2)/N=C\1S(=O)Cc1nccc(OCC(F)(F)F)c1C.[H]N1C2=C(C=CC=C2)/N=C\1S(=O)Cc1nccc(OCCCOC)c1C.[H]N1C2=CC(C)=C(C(=O)OC)C=C2/N=C\1S(=O)CC1=C(OC)C(OC)=CC=N1.[H]N1C2=CC=C(F)C=C2/N=C\1S(=O)CC1=CC(OCC2CC2)=CC=N1 SAXUQSABKPBJJV-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 229910000318 alkali metal phosphate Inorganic materials 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical class [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Chemical class NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 1
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229940031954 dibutyl sebacate Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- WODOUQLMOIMKAL-FJSYBICCSA-L disodium;(2s)-2-(octadecanoylamino)pentanedioate Chemical class [Na+].[Na+].CCCCCCCCCCCCCCCCCC(=O)N[C@H](C([O-])=O)CCC([O-])=O WODOUQLMOIMKAL-FJSYBICCSA-L 0.000 description 1
- 239000004815 dispersion polymer Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 208000000718 duodenal ulcer Diseases 0.000 description 1
- 206010013864 duodenitis Diseases 0.000 description 1
- 201000006549 dyspepsia Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002662 enteric coated tablet Substances 0.000 description 1
- XBRDBODLCHKXHI-UHFFFAOYSA-N epolamine Chemical compound OCCN1CCCC1 XBRDBODLCHKXHI-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Chemical class 0.000 description 1
- 229930195729 fatty acid Chemical class 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 201000005917 gastric ulcer Diseases 0.000 description 1
- 201000000052 gastrinoma Diseases 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 150000004687 hexahydrates Chemical class 0.000 description 1
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 description 1
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 235000018977 lysine Nutrition 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000008184 oral solid dosage form Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 208000000689 peptic esophagitis Diseases 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 150000003022 phthalic acids Chemical class 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229940068917 polyethylene glycols Drugs 0.000 description 1
- 229940100467 polyvinyl acetate phthalate Drugs 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000011975 tartaric acid Chemical class 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 125000005591 trimellitate group Chemical group 0.000 description 1
- 230000036269 ulceration Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/444—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4164—1,3-Diazoles
- A61K31/4184—1,3-Diazoles condensed with carbocyclic rings, e.g. benzimidazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4164—1,3-Diazoles
- A61K31/4188—1,3-Diazoles condensed with other heterocyclic ring systems, e.g. biotin, sorbinil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/4439—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1617—Organic compounds, e.g. phospholipids, fats
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2072—Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
- A61K9/2077—Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
- A61K9/2081—Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets with microcapsules or coated microparticles according to A61K9/50
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/28—Dragees; Coated pills or tablets, e.g. with film or compression coating
- A61K9/2806—Coating materials
- A61K9/2833—Organic macromolecular compounds
- A61K9/286—Polysaccharides, e.g. gums; Cyclodextrin
- A61K9/2866—Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/28—Dragees; Coated pills or tablets, e.g. with film or compression coating
- A61K9/2886—Dragees; Coated pills or tablets, e.g. with film or compression coating having two or more different drug-free coatings; Tablets of the type inert core-drug layer-inactive layer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5026—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5073—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5073—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
- A61K9/5078—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings with drug-free core
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
Definitions
- the present invention refers to new pharmaceutical formulations comprising acid labile heterocyclic compounds with gastric inhibitory effect, in the following referred to as proton pump inhibitors.
- the new formulations are intended for oral use.
- the present invention refers to a new method for the manufacture of such a formulation and, the use of the new formulations in medicine.
- N in the benzimidazole moiety means that one of the carbon atoms substituted by R 6 -R 9 optionally may be exchanged for a nitrogen atom without any substituents;
- R 1 , R 2 and R 3 are the same or different and selected from hydrogen, alkyl, alkoxy optionally substituted by fluorine, alkylthio, alikoxyalkoxy, dialkylamino, piperidino, morpholino, halogen, phenyl and phenylalkoxy;
- R 4 and R 5 are the same or different and selected from hydrogen, alkyl and aralkyl
- R′ 6 is hydrogen, halogen, trifluoromethyl, alkyl and alkoxy
- R 6 -R 9 are the same or different and selected from hydrogen, alkyl, alkoxy, halogen, halo-alkoxy, alkylcarbonyl, alkoxycarbonyl, oxazolyl tifluoroalkyl, or adjacent groups R 6 -R 9 form ring structures which may be further substituted;
- R 10 is hydrogen or fonts an alkylene chain together with R 3 and
- R 11 and R 12 are the same or different and selected from hydrogen, halogen or alkyl and alkyl groups, alkoxy groups and moities thereof may be branched and straight C 1 -C 9 -chains or comprise cyclic alkyl groups, for example cycloalkylalkyl.
- the proton pump inhibitors used in the dosage forms of the invention may be used in neutral form or in the form of an alkaline salt, such as for instance the Mg 2+ ,Ca 2+ , Na + , K + or Li + salts, preferably the Mg 2+ salts.
- an alkaline salt such as for instance the Mg 2+ ,Ca 2+ , Na + , K + or Li + salts, preferably the Mg 2+ salts.
- the compounds listed above may be used in racemic form or in the form of a substantially pure enantiomer thereof, or alkaline salts of the racemates or the single enantiomers.
- Suitable proton pump inhibitors are for example disclosed in EP-A1-0005129, EP-A1-174 726, EP-A1-166 287, GB 2 163 747 and WO90/06925, WO91/19711, WO91/19712, and further especially suitable compounds are described in WO94/27988 and WO95/01977.
- proton pump inhibitors are, as already mentioned, useful for inhibiting gastric acid secretion in mammals and man.
- they may be used for prevention and treatment of gastric-acid related diseases in mammals and man, including e.g. reflux esophagitis, gastritis, duodenitis, gastric ulcer and duodenal ulcer.
- gastric acid inhibitory effect is desirable e.g. in patients on NSAID therapy, in patients with Non Ulcer Dyspepsia, in patients with symptomatic gastro-esophageal reflux disease, and in patients with gastrinomas.
- They may also be used in patients in intensive care situations, in patients with acute upper gastrointestinal bleeding, pre- and postoperatively to prevent aspiration of gastric acid and to prevent and treat stress ulceration. Further, they may be useful in the treatment of Helicobacter infections and diseases related to these.
- proton pump inhibitors are, however, susceptible to degradation/transformation in acidic reacting and neutral media.
- the degradation is catalyzed by acidic reacting compounds and the proton pump inhibitors are usually stabilized in mixtures with alkaline reacting compounds.
- a pharmaceutical dosage form of these proton pump inhibitors is best protected from contact with acidic gastric juice by an enteric coating layer.
- enteric coated preparations of different acid labile substances are described. Said preparations contain an alkaline core material comprising the active substance, a separating layer and an enteric coating layer.
- ordinary enteric coating layers comprise compounds which contain acidic groups. If covered with such an enteric coating layer, the acid labile substance may rapidly decompose by direct or indirect contact with the acidic groups resulting in discoloration of the content and loss in content of the active compound with the passage of time. The discoloration can be avoided by applying some type of separating layer between the core material comprising the susceptible proton pump inhibitor and the enteric coating layer.
- a new pharmaceutical dosage form is provided in the form of an enteric coated tablet.
- individually enteric coated units are prepared and filled into a capsule, a sachet or included in a tableted multiple unit dosage form.
- the present invention is characterized by the presence of a separating layer between an alkaline reacting core material comprising a pharmaceutically active acid labile substance and an enteric coating layer, wherein the separating layer comprises a water soluble salt of an enteric coating polymer.
- the present invention provides a process for the manufacture of two functionally different layers in one manufacturing step.
- a separating layer comprising a water soluble salt of an enteric coating polymer is obtained, as well as the enteric coating layer itself.
- the present invention simplifies the preparation of enteric coated articles comprising a separating layer between a core material and an enteric coating layer by providing a new process for the manufacture of such dosage forms.
- the separating layer is formed by an in situ reaction between the enteric coating polymer and the alkaline core material comprising the pharmaceutically active substance.
- FIG. 1 is a photo showing a cross-section of a tablet manufactured according to the invention described in the present specification.
- FIG. 2 is a schematic drawing of the photo disclosed in FIG. 1.
- the tablet has an enteric coating layer ( 3 ), which has been applied on an alkaline core material ( 1 ) comprising the pharmaceutically active substance. Between the enteric coating layer ( 3 ) and the core material ( 1 ) there is a separating layer ( 2 ) shown. The separating layer ( 2 ) is on the photo inked by a fluorescent colour.
- One object of the present invention is to provide a new enteric coated pharmaceutical formulation comprising a core material that contains a proton pump inhibitor, one or more alkaline reacting compound(s) and optionally pharmaceutically acceptable excipients, which formulation has a water soluble separating layer and an enteric coating layer and wherein the core material is alkaline and the separating layer is being formed in situ during the enteric coating as a salt between the enteric coating polymer(s) and an alkaline reacting compound(s) in the core material.
- Another object of the present invention is to provide a new process for the manufacture of such enteric coated pharmaceutical formulations comprising a core material of a proton pump inhibitor wherein a separating layer is formed in situ during the enteric coating by a reaction between the enteric coating polymer(s) and one or more alkaline reacting compound(s) in the core material, i.e. thereby a salt is formed between the enteric coating polymer(s) and the alkaline reacting compound(s).
- the new pharmaceutical dosage form according to the invention is further characterized in the following way.
- Compacted tablets or individual cores in the form of small tablets, small beads, granules or pellets
- the tablets or individual cores, that also comprise one or more alkaline reacting compound(s) which is in the position to form a water soluble salt by a reaction with an enteric coating material are coated with one or more enteric coating layers.
- the separating layer is formed in situ by a reaction between the enteric coating polymer(s) and the alkaline reacting compound(s) in the core material during the enteric coating process.
- the core material for the manufacture of enteric coated pellets can be prepared according to two main principles. Firstly, seeds can be layered with the proton pump inhibitor, alkaline reating compound(s) and necessary excipients to give an alkaline reacting core material, or the alkaline reacting core material can be prepared as substantially homogeneous cores or tablets comprising the proton pump inhibitor and the alkaline reacting compound(s).
- the alkaline reacting compound(s) in the core material or tablet cores, necessary for an in situ reaction with the enteric coating polymer is a substance in the position to form a water soluble salt with an enteric coating polymer.
- alkaline reacting compounds are for instance amino acids, such as lysine, arginine, ornitine, histidine, organic buffering compounds such as trometamine (i.e. Tris-buffer), N-amino sugars such as N-methyl-D-glucamine (i.e. Meglumine ), N-ethyl-D-glucamine (i.e.
- Eglumine Eglumine
- glucosamine disodium -N-stearoyl-glutamate
- heterocyclic amine derivatives such as piperazine or its hexahydrate, N-methylpiperazine, morpholine, 1-(2-hydroxyethyl)pyrrolidine
- alkali salts of citric acid, tartaric acid, caproic acid or fatty acids alkali metal phosphates, silicates or carbonates, sodium, potassium, magnesium, calcium or aluminium hydroxides and organic amines such as ethylamine, dicyclohexylamine or triethanolamine, or alkaline ammonium salts.
- the core material as such should be an alkaline reacting core material, i.e. the amount of alkaline reacting compound(s) available in the core material should be enough to form a salt between the enteric coating polymer(s) and the alkaline reacting compound(s).
- the concentration of alkaline reacting compound(s) in the core material is from approximately 0.1 mmol/g dry ingredients in the alkali containing part of the core material up to approximately 15 mmol/g, preferably the concentration shall be more than 0.3 mmol/g dry ingredients in the alkaline part of the core material.
- the upper limit range is only restricted by the need to include a pharmaceutically active ingredient and excipients such as binders etc in the alkaline core material.
- concentration of alkaline reacting compound(s) may be illustrated as follows. For a core material where, for instance, 10% w/w of a proton pump inhibitor and 5% w/w of excipients (binders, surfactants etc) are to be included, 85% w/w remains to possible disposition to the alkaline reacting compound(s).
- the alkaline reacting compound is sodium bicarbonate which has the rather low molecular weight of 84 u
- the concentration of the alkaline material in the core material will be [(85/84)/100] ⁇ 1,000, i.e. approximately 9.9 mmol/g in the alkali containing part/layer.
- enteric coating layers are applied onto the prepared core material or tablets by using a suitable aqueous coating technique.
- the enteric coating material is dispersed and/or dissolved in an aqueous vehicle.
- enteric coating polymer(s) one or more, separately or in combination, of the following can be used; methacrylic acid copolymers, cellulose acetate phthalate, hydroxypropyl methylcellulose phthalate, hydroxypropyl methylcellulose acetate succinate, polyvinyl acetate phthalate, cellulose acetate trimellitate, carboxymethylethylcellulose, shellac or other suitable enteric coating polymer(s).
- the enteric coating layer(s) may contain pharmaceutically acceptable plasticizers to obtain desired mechanical properties, such as flexibility and hardness of the enteric coating layer(s).
- the amount of plasticizer is optimized for each enteric coating formulation, in relation to selected enteric coating polymer(s), selected plasticizer(s) and the applied amount of said polymer(s).
- the mechanical properties of the enteric coating are especially important for a tableted multiple unit dosage form, i.e. the individually enteric coated units must withstand the compression into a tableted multiple unit dosage form without any significant effect on the acid resistance.
- Suitable plasticizers are for instance, but not restricted to, triacetin, citric acid esters, phthalic acid esters, dibutyl sebacate, cetyl alcohol, polyethylene glycols, polysorbates or other plasticizers.
- the preparation of the core material containing the proton pump inhibitor and alkaline reacting compound(s) is described more in detail below.
- the individually enteric coated cores can be constituted according to different principles.
- the active substance, the proton pump inhibitor, used as a racemate or one of its single enantiomers or an alkaline salt of said compound or one of its single enantiomers, mixed with the alkaline reacting compound(s) is applied on seeds and are used for further processing.
- the seeds which are to be layered with the active substances, can be water insoluble seeds comprising different oxides, celluloses, organic polymers and other materials, alone or in mixtures or water soluble seeds comprising different inorganic salts, sugars, non-pareils and other materials, alone or in mixtures. Further, the seeds may comprise active substance in the form of crystals, agglomerates, compacts etc. The size of the seeds is not essential for the present invention but may vary between approximately 0.1 and 2 mm.
- the seeds layered with active substance are produced either by powder or solution suspension layering using for instance granulating or spray coating/layering equipment.
- the active substance is mixed with alkaline reacting compound(s) and further components to obtain preferred handling and processing properties and suitable concentration of the active substance.
- Pharmaceutical constituents such as fillers, binders, lubricants, disintegrating agents, surfactants and other pharmaceutically acceptable additives, can be used.
- Binders are for example celluloses such as hydroxypropyl methylcellulose, hydroxypropyl cellulose and carboxymethylcellulose sodium, polyvinylpyrrolidone, sugars, starches and other pharmaceutically acceptable substances with cohesive properties.
- Suitable surfactants are found in the groups of pharmaceutically acceptable non-ionic or ionic surfactants such as a for instance sodium lauryl sulfate or polysorbates.
- the active substance mixed with alkaline compound(s) and further mixed with suitable constituents can be formulated into tablets or individual cores.
- Said tablets or cores may be produced by compression/extrusion/spheronization or balling utilizing different processing equipments.
- the manufactured tablets or cores can further be layered with additional ingredients comprising active substance and alkaline reacting compound(s) and/or be used for further processing.
- the active substance may optionally be mixed with alkaline pharmaceutically acceptable substance (or substances) for further stabilisation.
- alkaline pharmaceutically acceptable substance or substances
- Such substances can be chosen among, but are not restricted to, substances such as for instance the above mentioned alkaline reacting compounds or other alkaline reacting substances known by the skilled person in the art to be useful as stabilizers for acidic susceptable substances.
- the aforementioned alkaline reacting core material can be prepared by the use of spray drying or spray congealing technique.
- the prepared alkaline reacting core material in the form of tablets or pellets are spray coated with an aqueous enteric coating polymer dispersion/solution.
- the process parameters such as inlet air temperature, air flow, atomizer air flow and spraying rate are adjusted with respect to the equipment used for the process as well as the specific enteric coating polymer(s).
- the inlet air temperature must not be such that the enteric coating polymer(s) will block in the spraying nozzles.
- Tablets containing lansoprazole and arginine are produced according to the following procedure. Firstly, dry ingredients are thoroughly mixed and then granulated with a solution in a laboratory mixer. The dried granules are mixed with lubricants etc. in a final mixing step. Concentration Dry ingredients for granulation (mmol/g dry ingredients in (for approx. 4000 tablets) the alkaline tablet core) Lansoprazole 40.4 g L-arginine (passing 120 mesh) 365.4 g 4.2 Microcrystalline cellulose 38.5 g Granulating solution Distilled water 173 g Corn starch 7.7 g
- the solution is poured over the premixed powder mass during mixing.
- the wet granules are dried on a tray in a drying cabinet.
- the dried granules are milled to pass a 1.0 mm sieve.
- the granules are mixed with Talc 3.1 g Sodium dodecyl sulphate 20.8 g Microcrystalline cellulose 19.2 g Magnesium stearate 5.0 g
- Obtained tablets are spray coated with the enteric coating dispersion defined below, in a Wurster equipped fluidized bed.
- Enteric coating dispersion Water 80.0 g Triethylcitrate 1.3 g Na-laurylsulphate 0.2 g Hydroxypropylmethylcellulose 6.3 g acetate succinate LF Talc 1.9 g
- FIG. 1 obtained with confocal laser scanning microscopy (CLSM) shows a cross-section of the tablet where the separating layer is easily detected as a layer having an intense fluorescence.
- CLSM confocal laser scanning microscopy
- the separating layer is spontaneously formed in situ during the process, as a salt between the alkaline reacting compound and the enteric coating polymer.
- the powder mixture is mixed with the water and the wet mass is mixed to obtain a suitable consistency of the mass.
- Extrusion is performed with an extruder fitted with 1.0 mm screen.
- the extrudate is formed into pellets on a spheronizer and dried in a fluidized bed drier.
- This single coating step resulted in pellets having two polymeric layers with different characteristics.
- the inner layer is not soluble in acetone as the outer layer, but soluble in water.
- the separating layer is spontaneously formed in situ during the process, as a salt between the alkaline reacting compound and the enteric coating polymer.
- Enteric coated pellets having a separating layer are obtained. These pellets may be filled in capsules or sachets for oral administration.
- Obtained dried pellets/cores are spray coated with the enteric coating dispersion described below, in a Wurster equipped fluidized bed.
- Enteric coating dispersion Water 93.9 g Polyethylene glycol 400 4.6 g Eudragit TM L30D-55 151.5 g
- This single coating step resulted in tablets having two polymeric layers with different characteristics.
- the inner layer is not soluble in acetone, as the outer one, but soluble in water.
- the separating layer is spontaneously formed in situ during the process, as a salt between the alkaline reacting compound and the enteric coating polymer.
- the obtained pellets having a separating layer and an enteric coating layer are suitable for filling into hard gelatine capsules or sachets for oral administration.
- Core material containing magnesium salt of omeprazole and N-methyl-D-glucamine (meglumine) is prepared by layer coating in a Wurster equipped fluidized bed on sugar seeds. For this operation the following materials are used; Concentration (mmol/g dry ingredients in Substance Amount the alkali containing layer) Water purified 102 g Ethanol 99% (w/v) 102 g HPMC 6 cps 2 g N-methyl-D-glucamine 3.3 g 0.37 Magnesium salt of omeprazole 40 g Non Pareille 500 g
- the Wurster apparatus was equipped with a 60 mm high insertion tube, having a diameter of 50 mm, positioned to leave a 10 mm slit below it.
- a spraying nozzle having a 0.8 mm opening was used.
- the atomizing air flow was 2.3 Nm 3 /h and air pressure used was 1.9 bar.
- the inlet air temperature was 50° C. and flow used 43 m 3 /h.
- Inlet air temperature used was 42° C. and flow was set to 40 Nm 3 /h.
- Atomizing air flow used was 2.1 Nm 3 /h, obtained with a pressure of 1.7 bar.
- the inlet air temperature is rised to 60° C. and the product is kept at this temperature for appr. 5 minutes.
- This single film-coating step resulted in cores having two polymeric coating layers with different characteristics.
- the inner layer is not soluble in acetone, as the outer layer, but soluble in water.
- confocal laser scanning microscopy to study a cross-section of the cores from this example, the presence of an inner layer was confirmed.
- the separating layer is spontaneously formed in situ during the process, as a salt between the alkaline reacting compound and the enteric coating polymer.
- a rotogranulator was used to produce spherical core units containing pantoprazole.
- inert sugar seeds Non-Pareille
- the sugar seeds were coating layered with the powder mixture described below, by spraying a 5% solution of HPMC 6 cps in water.
- Enteric coated pellets having a water soluble separating layer were obtained. These pellets may be filled in capsules or sachets for oral administration.
- Omeprazole tablets 6 mm in diameter containing 20 mg of omeprazole were prepared by mixing and granulating dry powder ingredients with water in a Kenwood mixer. For this operation the following materials are used; Concentration (mmol/g dry ingredients Substance Amount in the alkaline tablet core) Omeprazole 40.0 g Mannitol pwd 68.0 g Microcrystalline cellulose 35.0 g Polyvinylpyrrolidone cross- 30.0 g linked Hydroxypropylcellulose low- 20.0 g substituted L-arginine 5.3 g 0.14 Sodium laurylsulphate 2.0 g Water purified q.s. approx 50 g Sodium stearylfumarate (SSF) 1.0 g
- This single film-coating step resulted in cores having two polymeric coating layers with different characteristics.
- the inner layer is not soluble in acetone, as the outer layer, but soluble in water.
- the separating layer is spontaneously formed in situ during the process, as a salt between the alkaline reacting compound and the enteric coating polymer.
- Tablets, 7 mm in diameter containing omeprazole and disodiumhydrogenphosphate was prepared by mixing and granulating dry powder ingredients with a water solution containing sodium laurylsulphate, in a Kenwood mixer. For this operation the following materials are used: Concentration (mmol/g dry ingredients in Substance Amount the alkaline tablet core) Omeprazole 80 g Mannitol pwd 88 g Microcrystalline cellulose 132 g L-HPC 53 g Disodiumhydrogenphosphate 104 g 1.12 dihydrate Granulation liquid Water purified 80 g Sodium laurylsulphate 3 g Water purified q.s. Final mixing Sodium stearylfumarate (SSF) 10 g Polyvinylpyrrolidone crosslinked 50 g
- This single film-coating step resulted in cores having two polymeric coating layers with different characteristics.
- the inner layer is not soluble in acetone, as the outer layer, but soluble in water.
- the separating layer is spontaneously formed in situ during the process, as a salt between the inorganic alkaline reacting compound and the enteric coating polymer.
- Placebo tablets, 6 mm in diameter was prepared by mixing and granulating dry powder ingredients with water in a Kenwood mixer. For this operation the following materials are used; Concentration (mmol/g dry ingredients in the Amount alkali containing layer) Substance Ref. Ex. 1 Ref. Ex. 2 Ref. Ex. 1 Ref. Ex. 2 Mannitol pwd 161.5 g 141.3 g Microcrystalline 38.5 g 38.5 g g cellulose Na 2 HPO 4 x2H 2 O — 20.2 g — 0.56 Water purified q.s. approx 45 g 45 g g Sodium stearylfumarate 1.0 g 1.0 g (SSF)
- this single film-coating step resulted in cores having two polymeric coating layers with different characteristics.
- the inner layer is not soluble in acetone, as the outer layer, but soluble in water.
- the separating layer is spontaneously formed in situ during the process, as a salt between the alkaline reacting compound and the enteric coating polymer.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Saccharide Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
Abstract
A new oral pharmaceutical dosage form comprising a core material that contains a proton pump inhibitor, one or more alkaline reacting compounds and optionally pharmaceutical excipients having a water soluble separating layer and an enteric coating layer. The core material as such is alkaline reacting and the separating layer between the alkaline reacting core material and the enteric coating layer is formed in situ as a water soluble salt between the alkaline reacting compound(s) and the enteric coating polymer. The invention also describes a new efficient process for the manufacture of such a dosage form comprising two functionally different layers in one manufacturing step, and its use in medicine.
Description
- The present invention refers to new pharmaceutical formulations comprising acid labile heterocyclic compounds with gastric inhibitory effect, in the following referred to as proton pump inhibitors. The new formulations are intended for oral use. Furthermore, the present invention refers to a new method for the manufacture of such a formulation and, the use of the new formulations in medicine.
-
- wherein
- N in the benzimidazole moiety means that one of the carbon atoms substituted by R6-R9 optionally may be exchanged for a nitrogen atom without any substituents;
- R1, R2 and R3 are the same or different and selected from hydrogen, alkyl, alkoxy optionally substituted by fluorine, alkylthio, alikoxyalkoxy, dialkylamino, piperidino, morpholino, halogen, phenyl and phenylalkoxy;
- R4 and R5 are the same or different and selected from hydrogen, alkyl and aralkyl;
- R′6 is hydrogen, halogen, trifluoromethyl, alkyl and alkoxy,
- R6-R9 are the same or different and selected from hydrogen, alkyl, alkoxy, halogen, halo-alkoxy, alkylcarbonyl, alkoxycarbonyl, oxazolyl tifluoroalkyl, or adjacent groups R6-R9form ring structures which may be further substituted;
- R10 is hydrogen or fonts an alkylene chain together with R3 and
- R11 and R12 are the same or different and selected from hydrogen, halogen or alkyl and alkyl groups, alkoxy groups and moities thereof may be branched and straight C1-C9-chains or comprise cyclic alkyl groups, for example cycloalkylalkyl.
-
- The proton pump inhibitors used in the dosage forms of the invention may be used in neutral form or in the form of an alkaline salt, such as for instance the Mg2+,Ca2+, Na+, K+ or Li+ salts, preferably the Mg2+ salts. Further where applicable, the compounds listed above may be used in racemic form or in the form of a substantially pure enantiomer thereof, or alkaline salts of the racemates or the single enantiomers.
- Suitable proton pump inhibitors are for example disclosed in EP-A1-0005129, EP-A1-174 726, EP-A1-166 287,
GB 2 163 747 and WO90/06925, WO91/19711, WO91/19712, and further especially suitable compounds are described in WO94/27988 and WO95/01977. - These proton pump inhibitors are, as already mentioned, useful for inhibiting gastric acid secretion in mammals and man. In a more general sense, they may be used for prevention and treatment of gastric-acid related diseases in mammals and man, including e.g. reflux esophagitis, gastritis, duodenitis, gastric ulcer and duodenal ulcer. Furthermore, they may be used for treatment of other gastrointestinal disorders where gastric acid inhibitory effect is desirable e.g. in patients on NSAID therapy, in patients with Non Ulcer Dyspepsia, in patients with symptomatic gastro-esophageal reflux disease, and in patients with gastrinomas. They may also be used in patients in intensive care situations, in patients with acute upper gastrointestinal bleeding, pre- and postoperatively to prevent aspiration of gastric acid and to prevent and treat stress ulceration. Further, they may be useful in the treatment of Helicobacter infections and diseases related to these.
- These proton pump inhibitors are, however, susceptible to degradation/transformation in acidic reacting and neutral media. The degradation is catalyzed by acidic reacting compounds and the proton pump inhibitors are usually stabilized in mixtures with alkaline reacting compounds.
- In respect to the stability properties of the proton pump inhibitors mentioned above, it is obvious that a proton pump inhibitor in an oral solid dosage form must be protected from contact with the acidic reacting gastric juice and the active substance must be transferred in intact form to that part of the gastrointestinal tract where pH is less acidic, neutral or alkaline and where rapid absorption of the pharmaceutically active substance, i.e. the proton pump inhibitor, can occur.
- A pharmaceutical dosage form of these proton pump inhibitors is best protected from contact with acidic gastric juice by an enteric coating layer. In U.S. Pat. No. 4,853,230 such enteric coated preparations of different acid labile substances are described. Said preparations contain an alkaline core material comprising the active substance, a separating layer and an enteric coating layer.
- Ordinary enteric coating layers, however, comprise compounds which contain acidic groups. If covered with such an enteric coating layer, the acid labile substance may rapidly decompose by direct or indirect contact with the acidic groups resulting in discoloration of the content and loss in content of the active compound with the passage of time. The discoloration can be avoided by applying some type of separating layer between the core material comprising the susceptible proton pump inhibitor and the enteric coating layer.
- Thus, there are a lot of patent applications describing such a separating layer between a core material comprising the pharmaceutically active substance and an enteric coating layer. See for instance, U.S. Pat. No. 4,786,505, EP 0,277,741 and EP 0,342,522. The prior art techniques to apply at least two different layers on a pellet core or a tablet comprising an acid labile compound is rather complicated and there is a demand for finding new processes and formulations to simplify the manufacturing of such enteric coated articles comprising acid labile substances.
- According to one aspect of the invention a new pharmaceutical dosage form is provided in the form of an enteric coated tablet. Alternatively, individually enteric coated units are prepared and filled into a capsule, a sachet or included in a tableted multiple unit dosage form.
- The present invention is characterized by the presence of a separating layer between an alkaline reacting core material comprising a pharmaceutically active acid labile substance and an enteric coating layer, wherein the separating layer comprises a water soluble salt of an enteric coating polymer.
- According to a second aspect the present invention provides a process for the manufacture of two functionally different layers in one manufacturing step. By such a process a separating layer comprising a water soluble salt of an enteric coating polymer is obtained, as well as the enteric coating layer itself.
- Thus, the present invention simplifies the preparation of enteric coated articles comprising a separating layer between a core material and an enteric coating layer by providing a new process for the manufacture of such dosage forms. According to said process the separating layer is formed by an in situ reaction between the enteric coating polymer and the alkaline core material comprising the pharmaceutically active substance.
- FIG. 1 is a photo showing a cross-section of a tablet manufactured according to the invention described in the present specification.
- FIG. 2 is a schematic drawing of the photo disclosed in FIG. 1. The tablet has an enteric coating layer (3), which has been applied on an alkaline core material (1) comprising the pharmaceutically active substance. Between the enteric coating layer (3) and the core material (1) there is a separating layer (2) shown. The separating layer (2) is on the photo inked by a fluorescent colour.
- One object of the present invention is to provide a new enteric coated pharmaceutical formulation comprising a core material that contains a proton pump inhibitor, one or more alkaline reacting compound(s) and optionally pharmaceutically acceptable excipients, which formulation has a water soluble separating layer and an enteric coating layer and wherein the core material is alkaline and the separating layer is being formed in situ during the enteric coating as a salt between the enteric coating polymer(s) and an alkaline reacting compound(s) in the core material.
- Another object of the present invention is to provide a new process for the manufacture of such enteric coated pharmaceutical formulations comprising a core material of a proton pump inhibitor wherein a separating layer is formed in situ during the enteric coating by a reaction between the enteric coating polymer(s) and one or more alkaline reacting compound(s) in the core material, i.e. thereby a salt is formed between the enteric coating polymer(s) and the alkaline reacting compound(s).
- The new pharmaceutical dosage form according to the invention is further characterized in the following way. Compacted tablets or individual cores (in the form of small tablets, small beads, granules or pellets) contain the proton pump inhibitor in the form of a racemate or one of its single enantiomers or an alkaline salt of said compound or one of its single enantiomers. The tablets or individual cores, that also comprise one or more alkaline reacting compound(s) which is in the position to form a water soluble salt by a reaction with an enteric coating material, are coated with one or more enteric coating layers.
- The separating layer is formed in situ by a reaction between the enteric coating polymer(s) and the alkaline reacting compound(s) in the core material during the enteric coating process.
- The core material for the manufacture of enteric coated pellets can be prepared according to two main principles. Firstly, seeds can be layered with the proton pump inhibitor, alkaline reating compound(s) and necessary excipients to give an alkaline reacting core material, or the alkaline reacting core material can be prepared as substantially homogeneous cores or tablets comprising the proton pump inhibitor and the alkaline reacting compound(s).
- The alkaline reacting compound(s) in the core material or tablet cores, necessary for an in situ reaction with the enteric coating polymer, is a substance in the position to form a water soluble salt with an enteric coating polymer. Such alkaline reacting compounds are for instance amino acids, such as lysine, arginine, ornitine, histidine, organic buffering compounds such as trometamine (i.e. Tris-buffer), N-amino sugars such as N-methyl-D-glucamine (i.e. Meglumine ), N-ethyl-D-glucamine (i.e. Eglumine), glucosamine, disodium -N-stearoyl-glutamate, heterocyclic amine derivatives such as piperazine or its hexahydrate, N-methylpiperazine, morpholine, 1-(2-hydroxyethyl)pyrrolidine, alkali salts of citric acid, tartaric acid, caproic acid or fatty acids, alkali metal phosphates, silicates or carbonates, sodium, potassium, magnesium, calcium or aluminium hydroxides and organic amines such as ethylamine, dicyclohexylamine or triethanolamine, or alkaline ammonium salts.
- The core material as such should be an alkaline reacting core material, i.e. the amount of alkaline reacting compound(s) available in the core material should be enough to form a salt between the enteric coating polymer(s) and the alkaline reacting compound(s).
- Thus, the concentration of alkaline reacting compound(s) in the core material (before applying the enteric coating polymer) is from approximately 0.1 mmol/g dry ingredients in the alkali containing part of the core material up to approximately 15 mmol/g, preferably the concentration shall be more than 0.3 mmol/g dry ingredients in the alkaline part of the core material.
- The upper limit range is only restricted by the need to include a pharmaceutically active ingredient and excipients such as binders etc in the alkaline core material. The concentration of alkaline reacting compound(s) may be illustrated as follows. For a core material where, for instance, 10% w/w of a proton pump inhibitor and 5% w/w of excipients (binders, surfactants etc) are to be included, 85% w/w remains to possible disposition to the alkaline reacting compound(s). For such a core material, this means that, if the alkaline reacting compound is sodium bicarbonate which has the rather low molecular weight of 84 u, the concentration of the alkaline material in the core material will be [(85/84)/100]×1,000, i.e. approximately 9.9 mmol/g in the alkali containing part/layer.
- One or more enteric coating layers are applied onto the prepared core material or tablets by using a suitable aqueous coating technique. The enteric coating material is dispersed and/or dissolved in an aqueous vehicle. As enteric coating polymer(s) one or more, separately or in combination, of the following can be used; methacrylic acid copolymers, cellulose acetate phthalate, hydroxypropyl methylcellulose phthalate, hydroxypropyl methylcellulose acetate succinate, polyvinyl acetate phthalate, cellulose acetate trimellitate, carboxymethylethylcellulose, shellac or other suitable enteric coating polymer(s).
- The enteric coating layer(s) may contain pharmaceutically acceptable plasticizers to obtain desired mechanical properties, such as flexibility and hardness of the enteric coating layer(s). The amount of plasticizer is optimized for each enteric coating formulation, in relation to selected enteric coating polymer(s), selected plasticizer(s) and the applied amount of said polymer(s). The mechanical properties of the enteric coating are especially important for a tableted multiple unit dosage form, i.e. the individually enteric coated units must withstand the compression into a tableted multiple unit dosage form without any significant effect on the acid resistance. Suitable plasticizers are for instance, but not restricted to, triacetin, citric acid esters, phthalic acid esters, dibutyl sebacate, cetyl alcohol, polyethylene glycols, polysorbates or other plasticizers.
- The preparation of the core material containing the proton pump inhibitor and alkaline reacting compound(s) is described more in detail below. The individually enteric coated cores can be constituted according to different principles.
- The active substance, the proton pump inhibitor, used as a racemate or one of its single enantiomers or an alkaline salt of said compound or one of its single enantiomers, mixed with the alkaline reacting compound(s) is applied on seeds and are used for further processing.
- The seeds, which are to be layered with the active substances, can be water insoluble seeds comprising different oxides, celluloses, organic polymers and other materials, alone or in mixtures or water soluble seeds comprising different inorganic salts, sugars, non-pareils and other materials, alone or in mixtures. Further, the seeds may comprise active substance in the form of crystals, agglomerates, compacts etc. The size of the seeds is not essential for the present invention but may vary between approximately 0.1 and 2 mm. The seeds layered with active substance are produced either by powder or solution suspension layering using for instance granulating or spray coating/layering equipment.
- Before the seeds are layered, the active substance is mixed with alkaline reacting compound(s) and further components to obtain preferred handling and processing properties and suitable concentration of the active substance. Pharmaceutical constituents such as fillers, binders, lubricants, disintegrating agents, surfactants and other pharmaceutically acceptable additives, can be used. Binders are for example celluloses such as hydroxypropyl methylcellulose, hydroxypropyl cellulose and carboxymethylcellulose sodium, polyvinylpyrrolidone, sugars, starches and other pharmaceutically acceptable substances with cohesive properties. Suitable surfactants are found in the groups of pharmaceutically acceptable non-ionic or ionic surfactants such as a for instance sodium lauryl sulfate or polysorbates.
- Alternatively, the active substance mixed with alkaline compound(s) and further mixed with suitable constituents can be formulated into tablets or individual cores. Said tablets or cores may be produced by compression/extrusion/spheronization or balling utilizing different processing equipments. The manufactured tablets or cores can further be layered with additional ingredients comprising active substance and alkaline reacting compound(s) and/or be used for further processing.
- The active substance may optionally be mixed with alkaline pharmaceutically acceptable substance (or substances) for further stabilisation. Such substances can be chosen among, but are not restricted to, substances such as for instance the above mentioned alkaline reacting compounds or other alkaline reacting substances known by the skilled person in the art to be useful as stabilizers for acidic susceptable substances.
- Alternatively, the aforementioned alkaline reacting core material can be prepared by the use of spray drying or spray congealing technique.
- The prepared alkaline reacting core material in the form of tablets or pellets are spray coated with an aqueous enteric coating polymer dispersion/solution. The process parameters such as inlet air temperature, air flow, atomizer air flow and spraying rate are adjusted with respect to the equipment used for the process as well as the specific enteric coating polymer(s). The inlet air temperature must not be such that the enteric coating polymer(s) will block in the spraying nozzles.
- The invention is described more in detail by the following examples, which are not intended to limit the scope of the invention.
- Tablets containing lansoprazole and arginine are produced according to the following procedure. Firstly, dry ingredients are thoroughly mixed and then granulated with a solution in a laboratory mixer. The dried granules are mixed with lubricants etc. in a final mixing step.
Concentration Dry ingredients for granulation (mmol/g dry ingredients in (for approx. 4000 tablets) the alkaline tablet core) Lansoprazole 40.4 g L-arginine (passing 120 mesh) 365.4 g 4.2 Microcrystalline cellulose 38.5 g Granulating solution Distilled water 173 g Corn starch 7.7 g - The solution is poured over the premixed powder mass during mixing. The wet granules are dried on a tray in a drying cabinet. The dried granules are milled to pass a 1.0 mm sieve. The granules are mixed with
Talc 3.1 g Sodium dodecyl sulphate 20.8 g Microcrystalline cellulose 19.2 g Magnesium stearate 5.0 g - in a laboratory mixer, and then compressed into tablets having a size of 7 mm Ø and a weight of approximately 125 mg. The obtained tablets have a content of lansoprazole of 10 mg per tablet.
- Obtained tablets are spray coated with the enteric coating dispersion defined below, in a Wurster equipped fluidized bed.
Enteric coating dispersion Water 80.0 g Triethylcitrate 1.3 g Na-laurylsulphate 0.2 g Hydroxypropylmethylcellulose 6.3 g acetate succinate LF Talc 1.9 g - This single coating step resulted in tablets having two polymeric layers with different characteristics. The inner layer is not soluble in acetone, as the outer layer, but soluble in water. FIG. 1, obtained with confocal laser scanning microscopy (CLSM) shows a cross-section of the tablet where the separating layer is easily detected as a layer having an intense fluorescence.
- The separating layer is spontaneously formed in situ during the process, as a salt between the alkaline reacting compound and the enteric coating polymer.
- Core material containing the magnesium salt of (-)-omeprazole and the alkaline reacting compound trometamine (=tris-buffer) is prepared by extrusion and spheronization.
- The powder mass is mixed in a laboratory mixer and then water is added.
Concentration (mmol/g dry ingredients in the Powder mixture alkaline core material) Magnesium salt of (−)-omeprazole 400 g Microcrystalline cellulose 300 g Trometamine 1000 g 4.1 PVP-XL 100 g Mannitol pwd 195 g Hydroxypropyl methylcellulose 6 cps 5 g Water q.s. - The powder mixture is mixed with the water and the wet mass is mixed to obtain a suitable consistency of the mass.
- Extrusion is performed with an extruder fitted with 1.0 mm screen. The extrudate is formed into pellets on a spheronizer and dried in a fluidized bed drier.
- 200 g of the obtained pellets are spray coated with the enteric coating dispersion described below, in a Wurster equipped fluidized bed.
Enteric coating dispersion Water 93.9 g Polyethylene glycol 400 4.6 g Eudragit ™ L30D-55 151.5 g - This single coating step resulted in pellets having two polymeric layers with different characteristics. The inner layer is not soluble in acetone as the outer layer, but soluble in water. The separating layer is spontaneously formed in situ during the process, as a salt between the alkaline reacting compound and the enteric coating polymer.
- Enteric coated pellets having a separating layer are obtained. These pellets may be filled in capsules or sachets for oral administration.
- Core material containing omeprazole and N-methyl-D-glucamine (=meglumine) is prepared by extrusion and spheronization of the below described composition using the same procedure as in Example 2;
Concentration (mmol/g dry ingredients in the Powder mixture alkaline core material) Omeprazole 100.0 g Microcrystalline cellulose 50.0 g Meglumine 500.0 g 2.6 Mannitol pwd 297.0 g Sodium starch glycolate 48.0 g Sodium laurylsulphate 5.0 g Water q.s. - Obtained dried pellets/cores are spray coated with the enteric coating dispersion described below, in a Wurster equipped fluidized bed.
Enteric coating dispersion Water 93.9 g Polyethylene glycol 400 4.6 g Eudragit ™ L30D-55 151.5 g - This single coating step resulted in tablets having two polymeric layers with different characteristics. The inner layer is not soluble in acetone, as the outer one, but soluble in water. The separating layer is spontaneously formed in situ during the process, as a salt between the alkaline reacting compound and the enteric coating polymer.
- The obtained pellets having a separating layer and an enteric coating layer, are suitable for filling into hard gelatine capsules or sachets for oral administration.
- Core material containing magnesium salt of omeprazole and N-methyl-D-glucamine (meglumine) is prepared by layer coating in a Wurster equipped fluidized bed on sugar seeds. For this operation the following materials are used;
Concentration (mmol/g dry ingredients in Substance Amount the alkali containing layer) Water purified 102 g Ethanol 99% (w/v) 102 g HPMC 6 cps 2 g N-methyl-D-glucamine 3.3 g 0.37 Magnesium salt of omeprazole 40 g Non Pareille 500 g - First the water and ethanol were mixed whereafter the HPMC was dissolved in the obtained solution. N-methyl-D-glucamine and magnesium salt of omeprazole were dissolved/suspended in the solution. The sugar cores (Non Pareille) were used as starting seeds for the formation of core material. A peristaltic pump was used to feed the spraying suspension, which was fed with a velocity of 3.9 g/min.
- The Wurster apparatus was equipped with a 60 mm high insertion tube, having a diameter of 50 mm, positioned to leave a 10 mm slit below it. A spraying nozzle having a 0.8 mm opening was used. The atomizing air flow was 2.3 Nm3/h and air pressure used was 1.9 bar. The inlet air temperature was 50° C. and flow used 43 m3/h.
- After the core formation step, 100 grams of the obtained core material was film-coated by spraying with an enteric coating dispersion as described below, using the same equipment as in the core formation step.
Enteric coating dispersion Water purified 183 g Triethyl citrate 2.9 g Sodium laurylsulphate 0.4 g Hydroxypropyl methylcellulose acetate succinate LF 14.4 g Talc 4.3 g - First the triethyl citrate was dissolved in the water, and thereafter the sodium laurylsulphate was added. The hydroxypropylmethylcellulose acetate succinate was dispersed in the solution, and then the talc was added. The dispersion was fed with a rate of 3.8 g/min.
- Inlet air temperature used was 42° C. and flow was set to 40 Nm3/h. Atomizing air flow used was 2.1 Nm3/h, obtained with a pressure of 1.7 bar.
- After finalizing the spraying, the inlet air temperature is rised to 60° C. and the product is kept at this temperature for appr. 5 minutes.
- This single film-coating step resulted in cores having two polymeric coating layers with different characteristics. The inner layer is not soluble in acetone, as the outer layer, but soluble in water. Using confocal laser scanning microscopy to study a cross-section of the cores from this example, the presence of an inner layer was confirmed.
- The separating layer is spontaneously formed in situ during the process, as a salt between the alkaline reacting compound and the enteric coating polymer.
- A rotogranulator was used to produce spherical core units containing pantoprazole. As starting material inert sugar seeds (Non-Pareille) with an average size between 0.6 to 0.71 mm Ø was used. The sugar seeds were coating layered with the powder mixture described below, by spraying a 5% solution of HPMC 6 cps in water.
- The obtained core material containing pantoprazole was dried at 40° C. for 16 hours in vacuum and then sieved to give granules between 0.6 mm to 1.25 mm Ø.
Concentration (mmol/g dry ingredients in Powder mixture Amount the alkali containing layer) Starting material Non-Pareille 110 parts by weight Pantoprazole 29.3 parts by weight L-Lysine 22.0 parts by weight 0.88 Sucrose 36.7 parts by weight Corn starch 42.5 parts by weight Microcrystalline 36.7 parts by weight cellulose Solution Hydroxypropyl 2.9 parts by weight methylcellulose Water (58.7 parts by weight) - 250 g of the core material produced in this way was spray coated with an enteric coating dispersion in a Wurster equipped fluidized bed apparatus. The dispersion was made by adding the mentioned ingredients in stated order, while stirring.
Dispersion Water 626.8 g Triethylcitrate 9.8 g Sodium-laurylsulphate 1.5 g Hydroxypropylmethylcellulose 49.2 g acetate succinate LF Talc 14.8 g - Enteric coated pellets having a water soluble separating layer were obtained. These pellets may be filled in capsules or sachets for oral administration.
- Omeprazole tablets, 6 mm in diameter containing 20 mg of omeprazole were prepared by mixing and granulating dry powder ingredients with water in a Kenwood mixer. For this operation the following materials are used;
Concentration (mmol/g dry ingredients Substance Amount in the alkaline tablet core) Omeprazole 40.0 g Mannitol pwd 68.0 g Microcrystalline cellulose 35.0 g Polyvinylpyrrolidone cross- 30.0 g linked Hydroxypropylcellulose low- 20.0 g substituted L-arginine 5.3 g 0.14 Sodium laurylsulphate 2.0 g Water purified q.s. approx 50 g Sodium stearylfumarate (SSF) 1.0 g - The dry powders except for SSF were mixed to homogeneity. This mixture was moistened with the water and the wet mass dried on a tray in a drying oven. The obtained granules were milled to pass a screen with 0.8 mm apertures. Then the lubricant SSF was mixed with the granules using the same Kenwood mixer as before.
- Cores having an average weight of 101 mg were compressed on a tableting machine equipped with 6 mm diameter punches.
- After the core formation step, 50 grams of the obtained cores were film-coated by spraying an aqueous enteric coating dispersion as described below, using a Wurster equipped fluidized bed.
Enteric coating dispersion Substance Amount Water purified 183 g Triethyl citrate 2.9 g Sodium laurylsulphate 0.4 g Hydroxypropylmethylcellulose 14.4 g acetate succinate LF Talc 4.3 g - This single film-coating step resulted in cores having two polymeric coating layers with different characteristics. The inner layer is not soluble in acetone, as the outer layer, but soluble in water.
- The separating layer is spontaneously formed in situ during the process, as a salt between the alkaline reacting compound and the enteric coating polymer.
- Tablets, 7 mm in diameter containing omeprazole and disodiumhydrogenphosphate was prepared by mixing and granulating dry powder ingredients with a water solution containing sodium laurylsulphate, in a Kenwood mixer. For this operation the following materials are used:
Concentration (mmol/g dry ingredients in Substance Amount the alkaline tablet core) Omeprazole 80 g Mannitol pwd 88 g Microcrystalline cellulose 132 g L-HPC 53 g Disodiumhydrogenphosphate 104 g 1.12 dihydrate Granulation liquid Water purified 80 g Sodium laurylsulphate 3 g Water purified q.s. Final mixing Sodium stearylfumarate (SSF) 10 g Polyvinylpyrrolidone crosslinked 50 g - The dry powders except for SSF were mixed to homogenity. This mixture was moistened first with the granulation liquid and then with water until satisfactory consistency of the mass. The wet mass was dried on a tray in a drying oven. The obtained granules were milled to pass a screen with 0.8 mm apertures and then the lubricant SSF and the disintegrating agent polyvinylpyrrolidone crosslinked were mixed with the obtained granules using the same Kenwood mixer as before.
- Cores having an average weight of 130 mg were compressed on a tableting machine equipped with 7 mm diameter punches.
- After the core formation step, 50 grams of the obtained cores were film-coated by spraying with an aqueous enteric coating dispersion as described below, using a Wurster equipped fluidized bed.
Enteric coating dispersion Water purified 183 g Triethyl citrate 2.9 g Sodium laurylsulphate 0.4 g Hydroxypropyl methylcellulose 14.4 g acetate succinate LF Talc 4.3 g - This single film-coating step resulted in cores having two polymeric coating layers with different characteristics. The inner layer is not soluble in acetone, as the outer layer, but soluble in water. The separating layer is spontaneously formed in situ during the process, as a salt between the inorganic alkaline reacting compound and the enteric coating polymer.
- Reference Examples 1 and 2
- Placebo tablets, 6 mm in diameter was prepared by mixing and granulating dry powder ingredients with water in a Kenwood mixer. For this operation the following materials are used;
Concentration (mmol/g dry ingredients in the Amount alkali containing layer) Substance Ref. Ex. 1 Ref. Ex. 2 Ref. Ex. 1 Ref. Ex. 2 Mannitol pwd 161.5 g 141.3 g Microcrystalline 38.5 g 38.5 g cellulose Na2HPO4x2H2O — 20.2 g — 0.56 Water purified q.s. approx 45 g 45 g Sodium stearylfumarate 1.0 g 1.0 g (SSF) - The dry powders except for SSF were mixed to homogeneity. This mixture was moistened with the water and the wet mass dried on a tray in a drying oven. The obtained granules were milled to pass a screen with 0.8 mm apertures. Then the lubricant SSF was mixed with the granules using the same Kenwood mixer as before.
- Cores having an average weight of 93- 94 mg were compressed on a tableting machine equipped with 6 mm diameter punches.
- After the core formation step, 50 grams of each kind of the obtained cores were (separately) film-coated by spraying an aqueous enteric coating dispersion according to below, using a Wurster equipped fluidized bed.
Enteric coating dispersion Substance Amount Water purified 183 g Triethyl citrate 2.9 g Sodium laurylsulphate 0.4 g Hydroxypropylmethylcellulose 14.4 g acetate succinate LF Talc 4.3 g - These reference examples show that presence of the alkaline material in the core material composition is necessary for the formation of an in situ formed spontaneously developed separating layer.
- For Reference Ex. 1, this single film-coating step resulted in cores having only one coating layer, being soluble in acetone. No separating layer was spontaneously formed.
- For Reference Ex. 2, this single film-coating step resulted in cores having two polymeric coating layers with different characteristics. The inner layer is not soluble in acetone, as the outer layer, but soluble in water. The separating layer is spontaneously formed in situ during the process, as a salt between the alkaline reacting compound and the enteric coating polymer.
- By using confocal laser scanning microscopy to study a cross-section of the cores from the Reference example 2, the presence of an inner layer was confirmed. In contrast, examining a cross-section of a core from Reference example 1, no inner layer was seen.
- The best mode to practice the invention is by the formulations described in Examples 1 and 2.
- The different active substances, i.e. proton pump inhibitors, are prepared according to information disclosed in the Patent specifications mentioned in page 6 of this specification.
Claims (20)
1. An oral pharmaceutical dosage form comprising a core material that contains a proton pump inhibitor, one or more alkaline reacting compound(s) and optionally pharmaceutically acceptable excipients having a water soluble separating layer and an enteric coating layer characterized in that the core material is alkaline reacting and that the separating layer is being formed in situ during the enteric coating as a water soluble salt between the enteric coating layer polymer(s) and the alkaline reacting compound(s).
2. A dosage form according to claim 1 , wherein the alkaline reacting compounds are selected from the group of alkaline organic substances, hydroxides of alkali metals or one of their alkaline salts of phosphoric acid, carbonic acid or silicic acid, or an alkaline ammonium salt.
3. A dosage form according to claim 2 , wherein the alkaline reacting substance is a hydroxide of an alkali metal or an alkaline salt of phosphoric acid, carbonic acid or silicic acid, or an alkaline ammonium salt.
4. A dosage form according to claim 2 , wherein the alkaline reacting compound is an alkaline organic substance, e.g. an amino acid or a salt thereof, an alkaline amine or a derivative thereof, or an alkaline salt of a weak organic acid.
5. A dosage form according to claim 2 , wherein the alkaline organic substance is an amino acid, e.g. lysine, arginine, ornitine or histidine, or an alkaline amine or a derivative thereof, e.g. N-methyl-D-glucamine or trometamine.
6. A dosage form according to claim 1 , wherein the alkaline reacting compounds are present in a concentration of more than 0.1 mmol/g dry ingredients in the alkaline part of the core material.
7. A dosage form according to claim 1 , wherein the enteric coating polymer(s) is/are hydroxypropyl cellulose derivative(s), e.g. hydroxypropylmethylcellulose acetate succinate.
8. A dosage form according to claim 1 , wherein the enteric coating polymer is copolymerized methacrylic acid/methacrylic acid methyl esters.
9. A dosage form according to claim 1 , wherein the proton pump inhibitor is a compound of the general formula I or a pharmaceutically acceptable salt thereof or a pure enantiomer thereof in neutral form or in the form of an alkaline salt
wherein
N in the benzimidazole moiety means that one of the carbon atoms substituted by R6-R9 optionally may be exchanged for a nitrogen atom without any substituents;
R1, R2 and R3 are the same or different and selected from hydrogen, alkyl, alkoxy optionally substituted by fluorine, alkylthio, alkoxyalkoxy, dialkylamino, piperidino, morpholino, halogen, phenyl and phenylalkoxy;
R4 and R5 are the same or different and selected from hydrogen, alkyl and aralkyl;
R′6 is hydrogen, halogen, trifluoromethyl, alkyl and alkoxy;
R6-R9 are the same or different and selected from hydrogen, alkyl alkoxy, halogen, halo-alkoxy, alkylcarbonyl, alkoxycarbonyl, oxazolyl trifuoroalkyl or adjacent groups R6-R9 form ring structures which may be further substituted;
R10 is hydrogen or forms an alkylene chain together with R3 and
R11 and R12 are the same or different and selected from hydrogen, halogen or alkyl and alkyl groups, alkoxy groups and moities thereof may be branched and straight C1-C9-chains or comprise cyclic alkyl groups, for example cycloalkylalkyl.
10. A dosage form according to claim 1 , wherein the proton pump inhibitor is omeprazole or an alkaline salt thereof.
11. A dosage form according to claim 1 , wherein the proton pump inhibitor is a pure enantiomer of omeprazole or an alkaline salt thereof.
12. A dosage form according to claim 1 , wherein the proton pump inhibitor is lansoprazole, one of its pure enantiomers or a pharmaceutically acceptable salt thereof.
13. A dosage form according to claim 1 , wherein the proton pump inhibitor is pantoprazole, one of its pure enantiomers or a pharmaceutically acceptable salt thereof.
14. A dosage form according to claim 1 , wherein the alkaline reacting core material is individual pellets intended for a capsule formulation or a tableted multiple unit dosage form.
15. A dosage form according to claim 1 , wherein the alkaline reacting core material is a tablet.
16. A dosage form according to claim 1 , wherein individually enteric coated pellets are compressed into a tableted multiple unit dosage form.
17. A process for the preparation of an oral, enteric coated pharmaceutical dosage form comprising a core material that contains a proton pump inhibitor, one or more alkaline reacting compounds and optionally pharmaceutically acceptable excipients having a water soluble separating layer and an enteric coating layer characterized in that an alkaline reacting core material is prepared and coated with an enteric coating polymer wherein a separating layer between the core material and the enteric coating layer is formed in situ by a reaction between the enteric coating polymer(s) and the alkaline reacting compound(s) in the core material during the application of the enteric coating onto the alkaline reacting core material.
18. An oral, pharmaceutical dosage form comprising a proton pump inhibitor as defined in any of claims 1-16 for use in inhibiting gastric acid secretion in mammals and man.
19. A method for inhibiting gastric acid secretion in mammals and man by administering to a host in need thereof a dosage form comprising a therapeutically effective dose of a proton pump inhibitor as defined in any of claims 1-16.
20. Use of an oral pharmaceutical dosage form defined in any of claims 1-16 for the manufacture of a medicament useful in the treatment of gastric acid related diseases.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/235,392 US20030113375A1 (en) | 1995-02-09 | 2002-09-04 | Pharmaceutical formulation and process |
US10/693,317 US20040234594A1 (en) | 1995-02-09 | 2003-10-23 | Pharmaceutical formulation and process |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9500478-4 | 1995-02-09 | ||
SE9500478A SE9500478D0 (en) | 1995-02-09 | 1995-02-09 | New pharmaceutical formulation and process |
US08/612,951 US6013281A (en) | 1995-02-09 | 1996-02-09 | Method of making a pharmaceutical dosage form comprising a proton pump inhibitor |
US09/413,521 US20020012676A1 (en) | 1995-02-09 | 1999-10-06 | New pharmaceutical formulation and process |
US10/023,968 US20020086029A1 (en) | 1995-02-09 | 2001-12-18 | Pharmaceutical formulation and process |
US10/235,392 US20030113375A1 (en) | 1995-02-09 | 2002-09-04 | Pharmaceutical formulation and process |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/023,968 Continuation US20020086029A1 (en) | 1995-02-09 | 2001-12-18 | Pharmaceutical formulation and process |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/693,317 Continuation US20040234594A1 (en) | 1995-02-09 | 2003-10-23 | Pharmaceutical formulation and process |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030113375A1 true US20030113375A1 (en) | 2003-06-19 |
Family
ID=20397154
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/612,951 Expired - Fee Related US6013281A (en) | 1995-02-09 | 1996-02-09 | Method of making a pharmaceutical dosage form comprising a proton pump inhibitor |
US09/413,521 Abandoned US20020012676A1 (en) | 1995-02-09 | 1999-10-06 | New pharmaceutical formulation and process |
US10/023,968 Abandoned US20020086029A1 (en) | 1995-02-09 | 2001-12-18 | Pharmaceutical formulation and process |
US10/235,392 Abandoned US20030113375A1 (en) | 1995-02-09 | 2002-09-04 | Pharmaceutical formulation and process |
US10/693,317 Abandoned US20040234594A1 (en) | 1995-02-09 | 2003-10-23 | Pharmaceutical formulation and process |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/612,951 Expired - Fee Related US6013281A (en) | 1995-02-09 | 1996-02-09 | Method of making a pharmaceutical dosage form comprising a proton pump inhibitor |
US09/413,521 Abandoned US20020012676A1 (en) | 1995-02-09 | 1999-10-06 | New pharmaceutical formulation and process |
US10/023,968 Abandoned US20020086029A1 (en) | 1995-02-09 | 2001-12-18 | Pharmaceutical formulation and process |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/693,317 Abandoned US20040234594A1 (en) | 1995-02-09 | 2003-10-23 | Pharmaceutical formulation and process |
Country Status (28)
Country | Link |
---|---|
US (5) | US6013281A (en) |
EP (2) | EP1174136A3 (en) |
JP (1) | JP3881377B2 (en) |
KR (1) | KR100405586B1 (en) |
CN (1) | CN1182841C (en) |
AT (1) | ATE218327T1 (en) |
BR (1) | BR9605121A (en) |
CA (1) | CA2186037C (en) |
CZ (1) | CZ291720B6 (en) |
DE (1) | DE69621523T2 (en) |
DK (1) | DK0752851T3 (en) |
EE (1) | EE03379B1 (en) |
ES (1) | ES2179175T3 (en) |
FI (1) | FI119141B (en) |
HU (1) | HUP9603112A3 (en) |
IS (1) | IS1884B (en) |
MX (1) | MX9604497A (en) |
NO (1) | NO315925B1 (en) |
NZ (1) | NZ301424A (en) |
PL (1) | PL184433B1 (en) |
PT (1) | PT752851E (en) |
RU (1) | RU2170090C2 (en) |
SE (1) | SE9500478D0 (en) |
SK (1) | SK281202B6 (en) |
TR (1) | TR199600785T1 (en) |
UA (1) | UA44890C2 (en) |
WO (1) | WO1996024338A1 (en) |
ZA (1) | ZA961078B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030161846A1 (en) * | 2000-03-08 | 2003-08-28 | Christina Holmberg | Self emulsifying drug delivery system |
US6926907B2 (en) | 2001-06-01 | 2005-08-09 | Pozen Inc. | Pharmaceutical compositions for the coordinated delivery of NSAIDs |
US20100062064A1 (en) * | 2008-09-09 | 2010-03-11 | Astrazeneca Uk Ltd. | Method for Delivering A Pharmaceutical Composition to Patient in Need Thereof |
US7736666B2 (en) | 2000-03-08 | 2010-06-15 | Nicox S.A. | Self emulsifying drug delivery system |
US7815933B2 (en) | 2001-09-07 | 2010-10-19 | Nicox S.A. | Self emulsifying drug delivery system |
US20110008432A1 (en) * | 2009-06-25 | 2011-01-13 | Pozen Inc. | Method for Treating a Patient in Need of Aspirin Therapy |
US8206741B2 (en) | 2001-06-01 | 2012-06-26 | Pozen Inc. | Pharmaceutical compositions for the coordinated delivery of NSAIDs |
US8945621B2 (en) | 2009-06-25 | 2015-02-03 | Pozen Inc. | Method for treating a patient at risk for developing an NSAID-associated ulcer |
US9539214B2 (en) | 2011-12-28 | 2017-01-10 | Pozen Inc. | Compositions and methods for delivery of omeprazole plus acetylsalicylic acid |
Families Citing this family (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2094694B1 (en) | 1995-02-01 | 1997-12-16 | Esteve Quimica Sa | NEW PHARMACEUTICALLY STABLE FORMULATION OF A COMPOUND OF BENZMIDAZOLE AND ITS PROCESS OF OBTAINING. |
SE9500478D0 (en) * | 1995-02-09 | 1995-02-09 | Astra Ab | New pharmaceutical formulation and process |
US5824339A (en) * | 1995-09-08 | 1998-10-20 | Takeda Chemical Industries, Ltd | Effervescent composition and its production |
US6645988B2 (en) * | 1996-01-04 | 2003-11-11 | Curators Of The University Of Missouri | Substituted benzimidazole dosage forms and method of using same |
US6699885B2 (en) * | 1996-01-04 | 2004-03-02 | The Curators Of The University Of Missouri | Substituted benzimidazole dosage forms and methods of using same |
US5840737A (en) | 1996-01-04 | 1998-11-24 | The Curators Of The University Of Missouri | Omeprazole solution and method for using same |
US6489346B1 (en) | 1996-01-04 | 2002-12-03 | The Curators Of The University Of Missouri | Substituted benzimidazole dosage forms and method of using same |
US6623759B2 (en) * | 1996-06-28 | 2003-09-23 | Astrazeneca Ab | Stable drug form for oral administration with benzimidazole derivatives as active ingredient and process for the preparation thereof |
CA2282513C (en) * | 1997-03-13 | 2007-09-18 | Hexal Ag | Stabilization of acid sensitive benzimidazoles with amino acid/cyclodextrin combinations |
WO1998050019A1 (en) * | 1997-05-09 | 1998-11-12 | Sage Pharmaceuticals, Inc. | Stable oral pharmaceutical dosage forms |
WO1999001454A1 (en) * | 1997-07-03 | 1999-01-14 | Du Pont Pharmaceuticals Company | Imidazopyrimidines and imidazopyridines for the treatment of neurological disorders |
SI9700186B (en) | 1997-07-14 | 2006-10-31 | Lek, Tovarna Farmacevtskih In Kemicnih Izdelkov, D.D. | Novel pharmaceutical preparation with controlled release of active healing substances |
US6096340A (en) * | 1997-11-14 | 2000-08-01 | Andrx Pharmaceuticals, Inc. | Omeprazole formulation |
US6174548B1 (en) * | 1998-08-28 | 2001-01-16 | Andrx Pharmaceuticals, Inc. | Omeprazole formulation |
AU751066B2 (en) * | 1997-12-08 | 2002-08-08 | Nycomed Gmbh | Novel administration form comprising an acid-labile active compound |
DK173431B1 (en) | 1998-03-20 | 2000-10-23 | Gea Farmaceutisk Fabrik As | Pharmaceutical formulation comprising a 2 - [[(2-pyridinyl) methyl] sulfinyl] benzimidazole with anti-ulcer activity and progress |
JP4127740B2 (en) * | 1998-04-20 | 2008-07-30 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Stabilized benzimidazole compound-containing composition |
EP1004305B1 (en) * | 1998-04-20 | 2011-09-28 | Eisai R&D Management Co., Ltd. | Stabilized compositions containing benzimidazole-type compounds |
US6365589B1 (en) | 1998-07-02 | 2002-04-02 | Bristol-Myers Squibb Pharma Company | Imidazo-pyridines, -pyridazines, and -triazines as corticotropin releasing factor antagonists |
US7041313B1 (en) | 1998-08-12 | 2006-05-09 | Altana Pharma Ag | Oral administration form for pyridin-2-ylmethylsulfinyl-1H-benzimidazoles |
US7094426B2 (en) * | 1998-08-27 | 2006-08-22 | Sage Pharmaceuticals, Inc. | Stable oral pharmaceutical dosage forms |
US6733778B1 (en) | 1999-08-27 | 2004-05-11 | Andrx Pharmaceuticals, Inc. | Omeprazole formulation |
IL130602A0 (en) * | 1999-06-22 | 2000-06-01 | Dexcel Ltd | Stable benzimidazole formulation |
US6228400B1 (en) * | 1999-09-28 | 2001-05-08 | Carlsbad Technology, Inc. | Orally administered pharmaceutical formulations of benzimidazole derivatives and the method of preparing the same |
US7365047B1 (en) | 1999-09-28 | 2008-04-29 | The Regents Of The University Of California | Use of pentagastrin to inhibit gastric acid secretion or as a diuretic |
US7732404B2 (en) | 1999-12-30 | 2010-06-08 | Dexcel Ltd | Pro-nanodispersion for the delivery of cyclosporin |
AU2001296908A1 (en) * | 2000-09-29 | 2002-04-08 | Geneva Pharmaceuticals, Inc. | Proton pump inhibitor formulation |
US20020192299A1 (en) * | 2000-12-28 | 2002-12-19 | Rajneesh Taneja | Pharmaceutical compositions of a non-enteric coated proton pump inhibitor with a carbonate salt and bicarbonate salt combination |
US20040180087A1 (en) * | 2001-06-21 | 2004-09-16 | Boyong Li | Stable controlled release pharmaceutical compositions containing pravastatin |
EP1404301A4 (en) * | 2001-06-21 | 2006-03-22 | Andrx Pharmaceuticals Inc | Stable controlled release pharmaceutical compositions containing pravastatin |
US20030235628A1 (en) * | 2001-09-19 | 2003-12-25 | Rajneesh Taneja | Methods and pharmaceutical formulations for protecting pharmaceutical compounds from acidic environments |
AU2002330164A1 (en) * | 2001-09-28 | 2003-04-07 | Mcneil-Ppc, Inc. | Modified release dosage forms |
EP1469839A2 (en) * | 2002-01-25 | 2004-10-27 | Santarus, Inc. | Transmucosal delivery of proton pump inhibitors |
ES2297204T3 (en) * | 2002-05-17 | 2008-05-01 | Merckle Gmbh | PIRROLIC COMPOUNDS RECOGNIZED AS INHIBITORS OF THE PUMP OF PROTONS FOR THE TREATMENT OF ULCERA. |
US20030228363A1 (en) * | 2002-06-07 | 2003-12-11 | Patel Mahendra R. | Stabilized pharmaceutical compositons containing benzimidazole compounds |
US20040082618A1 (en) * | 2002-07-03 | 2004-04-29 | Rajneesh Taneja | Liquid dosage forms of acid labile drugs |
TW200410955A (en) | 2002-07-29 | 2004-07-01 | Altana Pharma Ag | Novel salt of (S)-PANTOPRAZOLE |
US20040028737A1 (en) * | 2002-08-12 | 2004-02-12 | Kopran Research Laboratories Limited | Enteric coated stable oral pharmaceutical composition of acid unstable drug and process for preparing the same |
US20070243251A1 (en) * | 2002-12-20 | 2007-10-18 | Rajneesh Taneja | Dosage Forms Containing A PPI, NSAID, and Buffer |
US20040121004A1 (en) * | 2002-12-20 | 2004-06-24 | Rajneesh Taneja | Dosage forms containing a PPI, NSAID, and buffer |
KR100592511B1 (en) * | 2002-12-30 | 2006-07-03 | 안경섭 | Controlled release-controlled formulations having a benzimidazole derivative or a pharmacologically acceptable salt thereof as an active substance and a method for preparing the same |
US20040131672A1 (en) * | 2003-01-07 | 2004-07-08 | Nilobon Podhipleux | Direct compression pharmaceutical composition containing a pharmaceutically active ingredient with poor flowing properties |
WO2004066924A2 (en) * | 2003-01-24 | 2004-08-12 | Andrx Labs Llc | Novel pharmaceutical formulation containing a proton pump inhibitor and an antacid |
EP1603537A4 (en) * | 2003-02-20 | 2009-11-04 | Santarus Inc | IMMEDIATE RELEASE OF OMEPRAZOLE ANTACIDAL COMPLEX WITH NEW FORMULATION FOR RAPID AND PROLONGED ELIMINATION OF GASTRIC ACID |
US8449911B2 (en) * | 2003-03-12 | 2013-05-28 | Takeda Pharmaceutical Company Limited | Drug composition having active ingredient adhered at high concentration to spherical core |
CA2523218A1 (en) * | 2003-04-22 | 2004-11-04 | Dr. Reddy's Laboratories Limited | Oral pharmaceutical formulations of acid-labile active ingredients and process for making same |
US8993599B2 (en) * | 2003-07-18 | 2015-03-31 | Santarus, Inc. | Pharmaceutical formulations useful for inhibiting acid secretion and methods for making and using them |
EP1648416A4 (en) * | 2003-07-18 | 2012-03-28 | Santarus Inc | Pharmaceutical formulations useful for inhibiting acid secretion and methods for making and using them |
WO2005007117A2 (en) * | 2003-07-18 | 2005-01-27 | Santarus, Inc. | Pharmaceutical formulation and method for treating acid-caused gastrointestinal disorders |
TWI372066B (en) | 2003-10-01 | 2012-09-11 | Wyeth Corp | Pantoprazole multiparticulate formulations |
EP1677770A2 (en) * | 2003-10-31 | 2006-07-12 | Dexcel Ltd. | Stable lansoprazole formulation |
US20070292498A1 (en) * | 2003-11-05 | 2007-12-20 | Warren Hall | Combinations of proton pump inhibitors, sleep aids, buffers and pain relievers |
WO2005046634A2 (en) * | 2003-11-14 | 2005-05-26 | Siegfried Generics International Ag | Gastric juice-resistant form of administration |
HU227317B1 (en) * | 2003-11-25 | 2011-03-28 | Egis Gyogyszergyar Nyilvanosan Muekoedoe Reszvenytarsasag | Enteric coated tablet containing pantoprazole |
KR100581967B1 (en) * | 2003-12-18 | 2006-05-22 | 한국유나이티드제약 주식회사 | Dual pellet formulation containing proton pump inhibitor and clarithromycin for the treatment of peptic ulcer and preparation method thereof |
US20070141150A1 (en) * | 2003-12-30 | 2007-06-21 | Raghupathi Kandarapu | Pharmaceutical composition |
ITMI20040235A1 (en) * | 2004-02-13 | 2004-05-13 | Therapicon Srl | PHARMACEUTICAL PREPARATION FOR THE ORAL CABLE |
US8815916B2 (en) * | 2004-05-25 | 2014-08-26 | Santarus, Inc. | Pharmaceutical formulations useful for inhibiting acid secretion and methods for making and using them |
US8906940B2 (en) * | 2004-05-25 | 2014-12-09 | Santarus, Inc. | Pharmaceutical formulations useful for inhibiting acid secretion and methods for making and using them |
CA2469427A1 (en) * | 2004-06-01 | 2005-12-01 | Pharmascience Inc. | Dry mixed dosage form containing benzimidazole derivatives |
WO2006002077A2 (en) * | 2004-06-15 | 2006-01-05 | Teva Pharmaceutical Industries Ltd. | Stable pharmaceutical formulations of benzimidazole compounds |
CA2570916C (en) | 2004-06-16 | 2013-06-11 | Tap Pharmaceutical Products, Inc. | Pulsed release dosage form of a ppi |
US20050281876A1 (en) | 2004-06-18 | 2005-12-22 | Shun-Por Li | Solid dosage form for acid-labile active ingredient |
US20050287185A1 (en) * | 2004-06-23 | 2005-12-29 | David Wong | Extended release oxybutynin formulation |
CN100364989C (en) * | 2004-09-30 | 2008-01-30 | 江苏豪森药业股份有限公司 | Prazole derivative and its salt and use |
US20060134210A1 (en) * | 2004-12-22 | 2006-06-22 | Astrazeneca Ab | Solid dosage form comprising proton pump inhibitor and suspension made thereof |
EP1833469A2 (en) * | 2005-01-03 | 2007-09-19 | Lupin Ltd. | Pharmaceutical composition of acid labile substances |
KR100570446B1 (en) * | 2005-02-14 | 2006-04-12 | 지엘팜텍 주식회사 | Enteric oral preparations containing acid labile pharmacologically active substances and preparation method thereof |
US8673352B2 (en) * | 2005-04-15 | 2014-03-18 | Mcneil-Ppc, Inc. | Modified release dosage form |
GB0514926D0 (en) * | 2005-07-20 | 2005-08-24 | Huntleigh Technology Plc | Bed assembly |
US20070141151A1 (en) * | 2005-12-20 | 2007-06-21 | Silver David I | Lansoprazole orally disintegrating tablets |
CA2630235A1 (en) * | 2005-12-20 | 2007-07-12 | Teva Pharmaceutical Industries Ltd. | Lansoprazole orally disintegrating tablets |
US20070154542A1 (en) * | 2005-12-30 | 2007-07-05 | Cogentus Pharmaceuticals, Inc. | Oral pharmaceutical formulations containing non-steroidal anti-inflammatory drugs and acid inhibitors |
WO2007099433A2 (en) * | 2006-02-28 | 2007-09-07 | Wockhardt Ltd | Delayed release dosage form of pantoprazole or salt thereof |
BRPI0709745A2 (en) | 2006-04-04 | 2011-07-26 | Cogentus Pharmaceuticals Inc | oral dosage form, and method for preventing or reducing the severity, duration, and / or symptoms of a gastrointestinal disorder. |
DE102006017896A1 (en) † | 2006-04-13 | 2007-10-25 | Tiefenbacher Pharmachemikalien Alfred E. Tiefenbacher Gmbh & Co. Kg | Leflunomide-containing pharmaceutical compositions |
AU2007266574A1 (en) * | 2006-06-01 | 2007-12-06 | Dexcel Pharma Technologies Ltd. | Multiple unit pharmaceutical formulation |
US20090092658A1 (en) * | 2007-10-05 | 2009-04-09 | Santarus, Inc. | Novel formulations of proton pump inhibitors and methods of using these formulations |
CA2667682A1 (en) | 2006-10-27 | 2008-05-15 | The Curators Of The University Of Missouri | Compositions comprising acid labile proton pump inhibiting agents, at least one other pharmaceutically active agent and methods of using same |
US20080194307A1 (en) * | 2007-02-13 | 2008-08-14 | Jeff Sanger | Sports-based game of chance |
AU2007352872B2 (en) * | 2007-05-07 | 2013-03-14 | Evonik Operations Gmbh | Solid dosage forms comprising an enteric coating with accelerated drug release |
US8247440B2 (en) | 2008-02-20 | 2012-08-21 | Curators Of The University Of Missouri | Composition comprising omeprazole, lansoprazole and at least one buffering agent |
US20090263475A1 (en) * | 2008-04-21 | 2009-10-22 | Nagaraju Manne | Dexlansoprazole compositions |
EP2293782B1 (en) * | 2008-05-06 | 2015-08-12 | Dexcel Pharma Technologies Ltd. | Stable benzimidazole formulation |
DE102008045339A1 (en) * | 2008-09-01 | 2010-03-04 | Stada Arzneimittel Ag | Pharmaceutical pellet |
WO2010122583A2 (en) | 2009-04-24 | 2010-10-28 | Rubicon Research Private Limited | Oral pharmaceutical compositions of acid labile substances |
JP5691142B2 (en) * | 2009-07-17 | 2015-04-01 | ニプロ株式会社 | Benzimidazole injection |
EP2345408A3 (en) | 2010-01-08 | 2012-02-29 | Dr. Reddy's Laboratories Ltd. | Acid labile drug formulations |
US20110189271A1 (en) * | 2010-02-02 | 2011-08-04 | Vishal Lad | Pharmaceutical formulations of acid-labile drugs |
CN102085188B (en) * | 2011-01-14 | 2013-01-02 | 寿光富康制药有限公司 | Novel lansoprazole enteric pellet and preparation method thereof |
WO2013141827A1 (en) | 2012-03-21 | 2013-09-26 | Sanovel Ilac Sanayi Ve Ticaret Anonim Sirketi | Enteric coated solid pharmaceutical compositions for proton pump inhibitors |
WO2015155307A1 (en) | 2014-04-11 | 2015-10-15 | Sanovel Ilac Sanayi Ve Ticaret A.S. | Pharmaceutical combinations of rivaroxaban and proton pump inhibitors |
WO2015155281A1 (en) | 2014-04-11 | 2015-10-15 | Sanovel Ilac Sanayi Ve Ticaret A.S. | Pharmaceutical combinations of dabigatran and proton pump inhibitors |
WO2016174664A1 (en) | 2015-04-29 | 2016-11-03 | Dexcel Pharma Technologies Ltd. | Orally disintegrating compositions |
US10076494B2 (en) | 2016-06-16 | 2018-09-18 | Dexcel Pharma Technologies Ltd. | Stable orally disintegrating pharmaceutical compositions |
KR102227486B1 (en) * | 2017-06-30 | 2021-03-12 | 롯데정밀화학 주식회사 | Oral solid formulation composition comprising proton pump inhibitor, oral solid formulation comprising the same and manufacturing method thereof |
CN114569579B (en) | 2020-12-02 | 2023-10-31 | 丽珠医药集团股份有限公司 | Enteric coated pellets, process for their preparation and formulations containing them |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE7804231L (en) * | 1978-04-14 | 1979-10-15 | Haessle Ab | Gastric acid secretion |
IL75400A (en) * | 1984-06-16 | 1988-10-31 | Byk Gulden Lomberg Chem Fab | Dialkoxypyridine methyl(sulfinyl or sulfonyl)benzimidazoles,processes for the preparation thereof and pharmaceutical compositions containing the same |
JPS6150978A (en) * | 1984-08-16 | 1986-03-13 | Takeda Chem Ind Ltd | Pyridine derivative and preparation thereof |
AU4640985A (en) * | 1984-08-31 | 1986-03-06 | Nippon Chemiphar Co. Ltd. | Benzimidazole derivatives |
ZA861026B (en) * | 1985-02-13 | 1986-09-24 | Ciba Geigy Ag | Pesticidal compositions |
CA1327010C (en) * | 1986-02-13 | 1994-02-15 | Tadashi Makino | Stabilized solid pharmaceutical composition containing antiulcer benzimidazole compound and its production |
US5433959A (en) * | 1986-02-13 | 1995-07-18 | Takeda Chemical Industries, Ltd. | Stabilized pharmaceutical composition |
GB2189699A (en) * | 1986-04-30 | 1987-11-04 | Haessle Ab | Coated acid-labile medicaments |
GB2189698A (en) * | 1986-04-30 | 1987-11-04 | Haessle Ab | Coated omeprazole tablets |
US5026560A (en) * | 1987-01-29 | 1991-06-25 | Takeda Chemical Industries, Ltd. | Spherical granules having core and their production |
JPH0768125B2 (en) * | 1988-05-18 | 1995-07-26 | エーザイ株式会社 | Oral formulation of acid labile compounds |
SE8803822D0 (en) * | 1988-10-26 | 1988-10-26 | NOVEL DOSAGE FORM | |
SE8804629D0 (en) * | 1988-12-22 | 1988-12-22 | Ab Haessle | NEW THERAPEUTICALLY ACTIVE COMPOUNDS |
PL165898B1 (en) * | 1990-06-20 | 1995-02-28 | Astra Ab | Method for the production of new dialkoxyplridinylbenzemldazole derivatives PL |
SE9002206D0 (en) * | 1990-06-20 | 1990-06-20 | Haessle Ab | NEW COMPOUNDS |
US5232706A (en) * | 1990-12-31 | 1993-08-03 | Esteve Quimica, S.A. | Oral pharmaceutical preparation containing omeprazol |
YU48263B (en) * | 1991-06-17 | 1997-09-30 | Byk Gulden Lomberg Chemische Fabrik Gmbh. | PROCEDURE FOR OBTAINING PANTOPRAZOLE PHARMACEUTICAL PRODUCT |
SE9301830D0 (en) * | 1993-05-28 | 1993-05-28 | Ab Astra | NEW COMPOUNDS |
SE9302396D0 (en) * | 1993-07-09 | 1993-07-09 | Ab Astra | A NOVEL COMPOUND FORM |
SE9302395D0 (en) * | 1993-07-09 | 1993-07-09 | Ab Astra | NEW PHARMACEUTICAL FORMULATION |
TW359614B (en) * | 1993-08-31 | 1999-06-01 | Takeda Chemical Industries Ltd | Composition containing benzimidazole compounds for rectal administration |
SE9402431D0 (en) * | 1994-07-08 | 1994-07-08 | Astra Ab | New tablet formulation |
SK281803B6 (en) * | 1994-07-08 | 2001-08-06 | Astra Ab | Oral enteric-coated preparation containing the magnesium salt of omeprazole and method for its production |
DK1078628T3 (en) * | 1994-07-08 | 2009-02-23 | Astrazeneca Ab | Tabulated multi-unit dosage form |
ES2094694B1 (en) * | 1995-02-01 | 1997-12-16 | Esteve Quimica Sa | NEW PHARMACEUTICALLY STABLE FORMULATION OF A COMPOUND OF BENZMIDAZOLE AND ITS PROCESS OF OBTAINING. |
SE9500478D0 (en) * | 1995-02-09 | 1995-02-09 | Astra Ab | New pharmaceutical formulation and process |
-
1995
- 1995-02-09 SE SE9500478A patent/SE9500478D0/en unknown
-
1996
- 1996-02-09 EE EE9600148A patent/EE03379B1/en not_active IP Right Cessation
- 1996-02-09 KR KR1019960705620A patent/KR100405586B1/en not_active Expired - Lifetime
- 1996-02-09 HU HU9603112A patent/HUP9603112A3/en unknown
- 1996-02-09 JP JP52420996A patent/JP3881377B2/en not_active Expired - Lifetime
- 1996-02-09 DK DK96902579T patent/DK0752851T3/en active
- 1996-02-09 ZA ZA9601078A patent/ZA961078B/en unknown
- 1996-02-09 AT AT96902579T patent/ATE218327T1/en active
- 1996-02-09 PL PL96316685A patent/PL184433B1/en not_active IP Right Cessation
- 1996-02-09 TR TR96/00785T patent/TR199600785T1/en unknown
- 1996-02-09 CA CA002186037A patent/CA2186037C/en not_active Expired - Lifetime
- 1996-02-09 UA UA96114336A patent/UA44890C2/en unknown
- 1996-02-09 WO PCT/SE1996/000161 patent/WO1996024338A1/en active IP Right Grant
- 1996-02-09 US US08/612,951 patent/US6013281A/en not_active Expired - Fee Related
- 1996-02-09 NZ NZ301424A patent/NZ301424A/en not_active IP Right Cessation
- 1996-02-09 ES ES96902579T patent/ES2179175T3/en not_active Expired - Lifetime
- 1996-02-09 MX MX9604497A patent/MX9604497A/en unknown
- 1996-02-09 DE DE69621523T patent/DE69621523T2/en not_active Expired - Lifetime
- 1996-02-09 BR BR9605121A patent/BR9605121A/en not_active Application Discontinuation
- 1996-02-09 CZ CZ19962918A patent/CZ291720B6/en not_active IP Right Cessation
- 1996-02-09 EP EP01125523A patent/EP1174136A3/en not_active Withdrawn
- 1996-02-09 EP EP96902579A patent/EP0752851B1/en not_active Expired - Lifetime
- 1996-02-09 RU RU96120189/14A patent/RU2170090C2/en active
- 1996-02-09 CN CNB961900903A patent/CN1182841C/en not_active Expired - Lifetime
- 1996-02-09 SK SK1261-96A patent/SK281202B6/en not_active IP Right Cessation
- 1996-02-09 PT PT96902579T patent/PT752851E/en unknown
- 1996-09-17 IS IS4359A patent/IS1884B/en unknown
- 1996-10-08 FI FI964028A patent/FI119141B/en not_active IP Right Cessation
- 1996-10-08 NO NO19964271A patent/NO315925B1/en not_active IP Right Cessation
-
1999
- 1999-10-06 US US09/413,521 patent/US20020012676A1/en not_active Abandoned
-
2001
- 2001-12-18 US US10/023,968 patent/US20020086029A1/en not_active Abandoned
-
2002
- 2002-09-04 US US10/235,392 patent/US20030113375A1/en not_active Abandoned
-
2003
- 2003-10-23 US US10/693,317 patent/US20040234594A1/en not_active Abandoned
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030161846A1 (en) * | 2000-03-08 | 2003-08-28 | Christina Holmberg | Self emulsifying drug delivery system |
US7736666B2 (en) | 2000-03-08 | 2010-06-15 | Nicox S.A. | Self emulsifying drug delivery system |
US20100266683A1 (en) * | 2000-03-08 | 2010-10-21 | Nicox S.A. | New self emulsifying drug delivery system |
US9345695B2 (en) | 2001-06-01 | 2016-05-24 | Pozen Inc. | Pharmaceutical compositions for the coordinated delivery of NSAIDs |
US9707181B2 (en) | 2001-06-01 | 2017-07-18 | Pozen Inc. | Pharmaceutical compositions for the coordinated delivery of NSAIDs |
US9364439B2 (en) | 2001-06-01 | 2016-06-14 | Pozen Inc. | Pharmaceutical compositions for the coordinated delivery of NSAIDs |
US8557285B2 (en) | 2001-06-01 | 2013-10-15 | Pozen Inc. | Pharmaceutical compositions for the coordinated delivery of NSAIDs |
US9198888B2 (en) | 2001-06-01 | 2015-12-01 | Pozen Inc. | Pharmaceutical compositions for the coordinated delivery of NSAIDs |
US6926907B2 (en) | 2001-06-01 | 2005-08-09 | Pozen Inc. | Pharmaceutical compositions for the coordinated delivery of NSAIDs |
US8852636B2 (en) | 2001-06-01 | 2014-10-07 | Pozen Inc. | Pharmaceutical compositions for the coordinated delivery of NSAIDs |
US8858996B2 (en) | 2001-06-01 | 2014-10-14 | Pozen Inc. | Pharmaceutical compositions for the coordinated delivery of NSAIDS |
US8865190B2 (en) | 2001-06-01 | 2014-10-21 | Pozen Inc. | Pharmaceutical compositions for the coordinated delivery of NSAIDs |
US8206741B2 (en) | 2001-06-01 | 2012-06-26 | Pozen Inc. | Pharmaceutical compositions for the coordinated delivery of NSAIDs |
US9161920B2 (en) | 2001-06-01 | 2015-10-20 | Pozen Inc. | Pharmaceutical compositions for the coordinated delivery of NSAIDs |
US7815933B2 (en) | 2001-09-07 | 2010-10-19 | Nicox S.A. | Self emulsifying drug delivery system |
US9220698B2 (en) | 2008-09-09 | 2015-12-29 | Pozen Inc. | Method for delivering a pharmaceutical composition to patient in need thereof |
US9801824B2 (en) | 2008-09-09 | 2017-10-31 | Pozen Inc. | Method for delivering a pharmaceutical composition to patient in need thereof |
US20100062064A1 (en) * | 2008-09-09 | 2010-03-11 | Astrazeneca Uk Ltd. | Method for Delivering A Pharmaceutical Composition to Patient in Need Thereof |
US9393208B2 (en) | 2008-09-09 | 2016-07-19 | Pozen Inc. | Method for delivering a pharmaceutical composition to patient in need thereof |
US20110008432A1 (en) * | 2009-06-25 | 2011-01-13 | Pozen Inc. | Method for Treating a Patient in Need of Aspirin Therapy |
US8945621B2 (en) | 2009-06-25 | 2015-02-03 | Pozen Inc. | Method for treating a patient at risk for developing an NSAID-associated ulcer |
US9539214B2 (en) | 2011-12-28 | 2017-01-10 | Pozen Inc. | Compositions and methods for delivery of omeprazole plus acetylsalicylic acid |
US9987231B2 (en) | 2011-12-28 | 2018-06-05 | Pozen Inc. | Compositions and methods for delivery of omeprazole plus acetylsalicylic acid |
US10603283B2 (en) | 2011-12-28 | 2020-03-31 | Genus Lifesciences, Inc. | Compositions and methods for delivery of omeprazole plus acetylsalicylic acid |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0752851B1 (en) | Process for preparing a pharmaceutical formulation | |
US5753265A (en) | Multiple unit pharmaceutical preparation | |
RU2214232C2 (en) | Prolonged-release oral pharmaceutical medicinal form | |
EP0814783B1 (en) | Multiple unit effervescent dosage forms comprising protonpump inhibitor | |
EP0723436B1 (en) | Multiple unit tableted dosage form i | |
AU695774C (en) | New pharmaceutical formulation and process | |
HK1008302B (en) | Process for preparing a pharmaceutical formulation | |
HK1008298B (en) | Multiple unit pharmaceutical preparation containing proton pump inhibitor | |
HK1008300B (en) | Multiple unit tableted dosage form 1 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |