US20030143700A1 - Methods for producing optically active alcohols - Google Patents
Methods for producing optically active alcohols Download PDFInfo
- Publication number
- US20030143700A1 US20030143700A1 US10/314,394 US31439402A US2003143700A1 US 20030143700 A1 US20030143700 A1 US 20030143700A1 US 31439402 A US31439402 A US 31439402A US 2003143700 A1 US2003143700 A1 US 2003143700A1
- Authority
- US
- United States
- Prior art keywords
- quinuclidinol
- seq
- dehydrogenase
- dna
- enzyme
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 109
- 150000001298 alcohols Chemical class 0.000 title abstract description 33
- IVLICPVPXWEGCA-ZETCQYMHSA-N (3r)-1-azabicyclo[2.2.2]octan-3-ol Chemical compound C1CC2[C@@H](O)CN1CC2 IVLICPVPXWEGCA-ZETCQYMHSA-N 0.000 claims abstract description 121
- 108010011478 tropine dehydrogenase Proteins 0.000 claims abstract description 101
- 230000009467 reduction Effects 0.000 claims abstract description 44
- ZKMZPXWMMSBLNO-UHFFFAOYSA-N 1-azabicyclo[2.2.2]octan-3-one Chemical compound C1CC2C(=O)CN1CC2 ZKMZPXWMMSBLNO-UHFFFAOYSA-N 0.000 claims abstract description 43
- 230000003287 optical effect Effects 0.000 claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 claims abstract description 34
- 241000196324 Embryophyta Species 0.000 claims abstract description 27
- 241000208280 Hyoscyamus niger Species 0.000 claims abstract description 16
- 240000008853 Datura stramonium Species 0.000 claims abstract description 15
- 108090000623 proteins and genes Proteins 0.000 claims description 100
- 108090000790 Enzymes Proteins 0.000 claims description 93
- 102000004190 Enzymes Human genes 0.000 claims description 91
- 230000000694 effects Effects 0.000 claims description 64
- 239000013598 vector Substances 0.000 claims description 64
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 60
- 102000004169 proteins and genes Human genes 0.000 claims description 58
- 239000002904 solvent Substances 0.000 claims description 53
- 108010050375 Glucose 1-Dehydrogenase Proteins 0.000 claims description 48
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 44
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 38
- 239000005515 coenzyme Substances 0.000 claims description 38
- 230000002829 reductive effect Effects 0.000 claims description 38
- 230000002255 enzymatic effect Effects 0.000 claims description 36
- 239000002773 nucleotide Substances 0.000 claims description 36
- 125000003729 nucleotide group Chemical group 0.000 claims description 36
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 29
- 239000000284 extract Substances 0.000 claims description 29
- OYEJRVVBERZWPD-UHFFFAOYSA-N 1-azabicyclo[2.2.2]octan-3-ol;hydron;chloride Chemical compound Cl.C1CC2C(O)CN1CC2 OYEJRVVBERZWPD-UHFFFAOYSA-N 0.000 claims description 28
- 230000001172 regenerating effect Effects 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 23
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 claims description 23
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 19
- 239000003960 organic solvent Substances 0.000 claims description 18
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 16
- 241000588724 Escherichia coli Species 0.000 claims description 16
- 241000204673 Thermoplasma acidophilum Species 0.000 claims description 16
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 15
- 244000063299 Bacillus subtilis Species 0.000 claims description 14
- 235000014469 Bacillus subtilis Nutrition 0.000 claims description 14
- 150000002576 ketones Chemical class 0.000 claims description 14
- 150000001413 amino acids Chemical class 0.000 claims description 13
- 108091033319 polynucleotide Proteins 0.000 claims description 13
- 102000040430 polynucleotide Human genes 0.000 claims description 13
- 239000002157 polynucleotide Substances 0.000 claims description 13
- 241000208296 Datura Species 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 102000007698 Alcohol dehydrogenase Human genes 0.000 claims description 10
- 108010021809 Alcohol dehydrogenase Proteins 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 241000208278 Hyoscyamus Species 0.000 claims description 9
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 claims description 8
- 108090000698 Formate Dehydrogenases Proteins 0.000 claims description 8
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 claims description 8
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 claims description 7
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 claims description 7
- 101000950981 Bacillus subtilis (strain 168) Catabolic NAD-specific glutamate dehydrogenase RocG Proteins 0.000 claims description 6
- 102000016901 Glutamate dehydrogenase Human genes 0.000 claims description 6
- 102000013460 Malate Dehydrogenase Human genes 0.000 claims description 6
- 108010026217 Malate Dehydrogenase Proteins 0.000 claims description 6
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 claims description 6
- 102000004567 6-phosphogluconate dehydrogenase Human genes 0.000 claims description 5
- 108020001657 6-phosphogluconate dehydrogenase Proteins 0.000 claims description 5
- 108010029731 6-phosphogluconolactonase Proteins 0.000 claims description 5
- 101000892220 Geobacillus thermodenitrificans (strain NG80-2) Long-chain-alcohol dehydrogenase 1 Proteins 0.000 claims description 5
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 claims description 5
- 102000002794 Glucosephosphate Dehydrogenase Human genes 0.000 claims description 5
- 125000003944 tolyl group Chemical group 0.000 claims description 4
- ACFIXJIJDZMPPO-NNYOXOHSSA-N NADPH Chemical group C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](OP(O)(O)=O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 ACFIXJIJDZMPPO-NNYOXOHSSA-N 0.000 claims 2
- 239000000543 intermediate Substances 0.000 abstract description 2
- 229940088598 enzyme Drugs 0.000 description 80
- 108020004414 DNA Proteins 0.000 description 73
- 239000000243 solution Substances 0.000 description 65
- 238000006243 chemical reaction Methods 0.000 description 46
- 235000018102 proteins Nutrition 0.000 description 45
- 210000004027 cell Anatomy 0.000 description 35
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 description 30
- 239000013612 plasmid Substances 0.000 description 28
- 244000005700 microbiome Species 0.000 description 27
- 239000000758 substrate Substances 0.000 description 20
- 239000000047 product Substances 0.000 description 19
- IVLICPVPXWEGCA-UHFFFAOYSA-N 3-quinuclidinol Chemical compound C1C[C@@H]2C(O)C[N@]1CC2 IVLICPVPXWEGCA-UHFFFAOYSA-N 0.000 description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 239000013078 crystal Substances 0.000 description 18
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical group NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 16
- 230000001580 bacterial effect Effects 0.000 description 16
- 230000008929 regeneration Effects 0.000 description 16
- 238000011069 regeneration method Methods 0.000 description 16
- 230000004186 co-expression Effects 0.000 description 14
- 239000012634 fragment Substances 0.000 description 14
- 235000001014 amino acid Nutrition 0.000 description 13
- QQXLDOJGLXJCSE-KNVOCYPGSA-N tropinone Chemical compound C1C(=O)C[C@H]2CC[C@@H]1N2C QQXLDOJGLXJCSE-KNVOCYPGSA-N 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 11
- 239000012528 membrane Substances 0.000 description 11
- QQXLDOJGLXJCSE-UHFFFAOYSA-N N-methylnortropinone Natural products C1C(=O)CC2CCC1N2C QQXLDOJGLXJCSE-UHFFFAOYSA-N 0.000 description 10
- 229940024606 amino acid Drugs 0.000 description 10
- 239000000872 buffer Substances 0.000 description 10
- -1 (S)-3-quinuclidinol ester Chemical class 0.000 description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 9
- 238000001914 filtration Methods 0.000 description 9
- 238000000926 separation method Methods 0.000 description 9
- 241000193830 Bacillus <bacterium> Species 0.000 description 8
- 241001131785 Escherichia coli HB101 Species 0.000 description 8
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 8
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 8
- 230000014509 gene expression Effects 0.000 description 8
- 239000013600 plasmid vector Substances 0.000 description 8
- 239000003125 aqueous solvent Substances 0.000 description 7
- 239000008103 glucose Substances 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 230000001603 reducing effect Effects 0.000 description 7
- 230000010076 replication Effects 0.000 description 7
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical class N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 6
- 230000035772 mutation Effects 0.000 description 6
- 102000039446 nucleic acids Human genes 0.000 description 6
- 108020004707 nucleic acids Proteins 0.000 description 6
- 150000007523 nucleic acids Chemical class 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- QIZDQFOVGFDBKW-DHBOJHSNSA-N Pseudotropine Natural products OC1C[C@@H]2[N+](C)[C@H](C1)CC2 QIZDQFOVGFDBKW-DHBOJHSNSA-N 0.000 description 5
- 239000003513 alkali Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 210000000349 chromosome Anatomy 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 238000006911 enzymatic reaction Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 5
- 239000008057 potassium phosphate buffer Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- XQJMXPAEFMWDOZ-UHFFFAOYSA-N 3exo-benzoyloxy-tropane Natural products CN1C(C2)CCC1CC2OC(=O)C1=CC=CC=C1 XQJMXPAEFMWDOZ-UHFFFAOYSA-N 0.000 description 4
- 241000228212 Aspergillus Species 0.000 description 4
- 108010035289 Glucose Dehydrogenases Proteins 0.000 description 4
- 241000589516 Pseudomonas Species 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 125000000539 amino acid group Chemical group 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 239000002021 butanolic extract Substances 0.000 description 4
- 229940041514 candida albicans extract Drugs 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 239000013611 chromosomal DNA Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- CYHOMWAPJJPNMW-JIGDXULJSA-N tropine Chemical compound C1[C@@H](O)C[C@H]2CC[C@@H]1N2C CYHOMWAPJJPNMW-JIGDXULJSA-N 0.000 description 4
- 239000012138 yeast extract Substances 0.000 description 4
- RFDPHKHXPMDJJD-UHFFFAOYSA-N 1-azabicyclo[2.2.2]octan-3-one;hydron;chloride Chemical compound Cl.C1CC2C(=O)CN1CC2 RFDPHKHXPMDJJD-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 102000005751 Alcohol Oxidoreductases Human genes 0.000 description 3
- 108010031132 Alcohol Oxidoreductases Proteins 0.000 description 3
- 108010025188 Alcohol oxidase Proteins 0.000 description 3
- 241000186146 Brevibacterium Species 0.000 description 3
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 3
- 241000222128 Candida maltosa Species 0.000 description 3
- 235000005956 Cosmos caudatus Nutrition 0.000 description 3
- 102000012410 DNA Ligases Human genes 0.000 description 3
- 108010061982 DNA Ligases Proteins 0.000 description 3
- 241000235649 Kluyveromyces Species 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241000320412 Ogataea angusta Species 0.000 description 3
- 102000011755 Phosphoglycerate Kinase Human genes 0.000 description 3
- 241000235648 Pichia Species 0.000 description 3
- 241000194017 Streptococcus Species 0.000 description 3
- 241000187747 Streptomyces Species 0.000 description 3
- 101001099217 Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) Triosephosphate isomerase Proteins 0.000 description 3
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 3
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 3
- 229960000723 ampicillin Drugs 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 210000004748 cultured cell Anatomy 0.000 description 3
- 238000004925 denaturation Methods 0.000 description 3
- 230000036425 denaturation Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 3
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 3
- 238000003306 harvesting Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 239000012137 tryptone Substances 0.000 description 3
- 244000235231 white angels trumpet Species 0.000 description 3
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- ASNHGEVAWNWCRQ-UHFFFAOYSA-N 4-(hydroxymethyl)oxolane-2,3,4-triol Chemical compound OCC1(O)COC(O)C1O ASNHGEVAWNWCRQ-UHFFFAOYSA-N 0.000 description 2
- WCBVQNZTOKJWJS-ACZMJKKPSA-N Ala-Cys-Glu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(O)=O)C(O)=O WCBVQNZTOKJWJS-ACZMJKKPSA-N 0.000 description 2
- IFKQPMZRDQZSHI-GHCJXIJMSA-N Ala-Ile-Asn Chemical compound [H]N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(O)=O IFKQPMZRDQZSHI-GHCJXIJMSA-N 0.000 description 2
- ZXKNLCPUNZPFGY-LEWSCRJBSA-N Ala-Tyr-Pro Chemical compound C[C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N2CCC[C@@H]2C(=O)O)N ZXKNLCPUNZPFGY-LEWSCRJBSA-N 0.000 description 2
- GNKVBRYFXYWXAB-WDSKDSINSA-N Asn-Glu-Gly Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(O)=O GNKVBRYFXYWXAB-WDSKDSINSA-N 0.000 description 2
- DXVMJJNAOVECBA-WHFBIAKZSA-N Asn-Gly-Asn Chemical compound NC(=O)C[C@H](N)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(O)=O DXVMJJNAOVECBA-WHFBIAKZSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 241000186216 Corynebacterium Species 0.000 description 2
- 241000186226 Corynebacterium glutamicum Species 0.000 description 2
- 241000235646 Cyberlindnera jadinii Species 0.000 description 2
- 101710088194 Dehydrogenase Proteins 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 241000588722 Escherichia Species 0.000 description 2
- 108090000371 Esterases Proteins 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- XLXPYSDGMXTTNQ-UHFFFAOYSA-N Ile-Phe-Leu Natural products CCC(C)C(N)C(=O)NC(C(=O)NC(CC(C)C)C(O)=O)CC1=CC=CC=C1 XLXPYSDGMXTTNQ-UHFFFAOYSA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- 241000186660 Lactobacillus Species 0.000 description 2
- 241000880493 Leptailurus serval Species 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- RAXPACUYEYWFGX-FJXQXJEOSA-N O=C1CN2CCC1CC2.O[C@H]1CN2CCC1CC2 Chemical compound O=C1CN2CCC1CC2.O[C@H]1CN2CCC1CC2 RAXPACUYEYWFGX-FJXQXJEOSA-N 0.000 description 2
- 108010002747 Pfu DNA polymerase Proteins 0.000 description 2
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 2
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 2
- 241000316848 Rhodococcus <scale insect> Species 0.000 description 2
- 241000235070 Saccharomyces Species 0.000 description 2
- 241000235346 Schizosaccharomyces Species 0.000 description 2
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 2
- 244000061456 Solanum tuberosum Species 0.000 description 2
- 235000002595 Solanum tuberosum Nutrition 0.000 description 2
- 108090000787 Subtilisin Proteins 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 241000223259 Trichoderma Species 0.000 description 2
- 108700037590 Tropinone reductases Proteins 0.000 description 2
- HYVLNORXQGKONN-NUTKFTJISA-N Trp-Ala-Lys Chemical compound C1=CC=C2C(C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(O)=O)=CNC2=C1 HYVLNORXQGKONN-NUTKFTJISA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 241000235017 Zygosaccharomyces Species 0.000 description 2
- 241000235033 Zygosaccharomyces rouxii Species 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 108010047495 alanylglycine Proteins 0.000 description 2
- 108010050025 alpha-glutamyltryptophan Proteins 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000011914 asymmetric synthesis Methods 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000004807 desolvation Methods 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 108010048994 glycyl-tyrosyl-alanine Proteins 0.000 description 2
- 108010050848 glycylleucine Proteins 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229940039696 lactobacillus Drugs 0.000 description 2
- 108010003700 lysyl aspartic acid Proteins 0.000 description 2
- 108010009298 lysylglutamic acid Proteins 0.000 description 2
- 108010064235 lysylglycine Proteins 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 108010005942 methionylglycine Proteins 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 108010024654 phenylalanyl-prolyl-alanine Proteins 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 229910000160 potassium phosphate Inorganic materials 0.000 description 2
- 235000011009 potassium phosphates Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 108010030649 tropinone reductase Proteins 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 108010072644 valyl-alanyl-prolyl-glycine Proteins 0.000 description 2
- UOHSTKWPZWFYTF-ARDNSNSESA-N (1r,5r,6s)-6-hydroxy-8-methyl-8-azabicyclo[3.2.1]octan-3-one Chemical compound C1C(=O)C[C@]2([H])[C@@H](O)C[C@@]1([H])N2C UOHSTKWPZWFYTF-ARDNSNSESA-N 0.000 description 1
- OIQXFRANQVWXJF-LIQNAMIISA-N (1s,2z,4r)-2-benzylidene-4,7,7-trimethylbicyclo[2.2.1]heptan-3-one Chemical compound O=C([C@]1(C)CC[C@H]2C1(C)C)\C2=C/C1=CC=CC=C1 OIQXFRANQVWXJF-LIQNAMIISA-N 0.000 description 1
- SJWFXCIHNDVPSH-MRVPVSSYSA-N (2R)-octan-2-ol Chemical compound CCCCCC[C@@H](C)O SJWFXCIHNDVPSH-MRVPVSSYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- IVLICPVPXWEGCA-SSDOTTSWSA-N (3s)-1-azabicyclo[2.2.2]octan-3-ol Chemical compound C1CC2[C@H](O)CN1CC2 IVLICPVPXWEGCA-SSDOTTSWSA-N 0.000 description 1
- RKUNBYITZUJHSG-FXUDXRNXSA-N (S)-atropine Chemical compound C1([C@@H](CO)C(=O)O[C@H]2C[C@H]3CC[C@@H](C2)N3C)=CC=CC=C1 RKUNBYITZUJHSG-FXUDXRNXSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- RAXPACUYEYWFGX-UHFFFAOYSA-N 1-azabicyclo[2.2.2]octan-3-ol 1-azabicyclo[2.2.2]octan-3-one Chemical compound N12CC(C(CC1)CC2)O.N21CC(C(CC2)CC1)=O RAXPACUYEYWFGX-UHFFFAOYSA-N 0.000 description 1
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 1
- PPINMSZPTPRQQB-NHCYSSNCSA-N 2-[[(2s)-1-[(2s)-2-[[(2s)-2-amino-3-methylbutanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]acetic acid Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O PPINMSZPTPRQQB-NHCYSSNCSA-N 0.000 description 1
- NIEPDSXRYYXOIA-UHFFFAOYSA-N 8-ethyl-8-azabicyclo[3.2.1]octan-3-one Chemical compound C1C(=O)CC2CCC1N2CC NIEPDSXRYYXOIA-UHFFFAOYSA-N 0.000 description 1
- AKETXTOLBLTPTP-UHFFFAOYSA-N 8-propan-2-yl-8-azabicyclo[3.2.1]octan-3-one Chemical compound C1C(=O)CC2CCC1N2C(C)C AKETXTOLBLTPTP-UHFFFAOYSA-N 0.000 description 1
- 229930000680 A04AD01 - Scopolamine Natural products 0.000 description 1
- 108010051457 Acid Phosphatase Proteins 0.000 description 1
- 102000013563 Acid Phosphatase Human genes 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 241000186361 Actinobacteria <class> Species 0.000 description 1
- YYSWCHMLFJLLBJ-ZLUOBGJFSA-N Ala-Ala-Ser Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O YYSWCHMLFJLLBJ-ZLUOBGJFSA-N 0.000 description 1
- CVGNCMIULZNYES-WHFBIAKZSA-N Ala-Asn-Gly Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(O)=O CVGNCMIULZNYES-WHFBIAKZSA-N 0.000 description 1
- KIUYPHAMDKDICO-WHFBIAKZSA-N Ala-Asp-Gly Chemical compound C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O KIUYPHAMDKDICO-WHFBIAKZSA-N 0.000 description 1
- PCIFXPRIFWKWLK-YUMQZZPRSA-N Ala-Gly-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)CNC(=O)[C@H](C)N PCIFXPRIFWKWLK-YUMQZZPRSA-N 0.000 description 1
- QHASENCZLDHBGX-ONGXEEELSA-N Ala-Gly-Phe Chemical compound C[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 QHASENCZLDHBGX-ONGXEEELSA-N 0.000 description 1
- HJGZVLLLBJLXFC-LSJOCFKGSA-N Ala-His-Val Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C(C)C)C(O)=O HJGZVLLLBJLXFC-LSJOCFKGSA-N 0.000 description 1
- RZZMZYZXNJRPOJ-BJDJZHNGSA-N Ala-Ile-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](C)N RZZMZYZXNJRPOJ-BJDJZHNGSA-N 0.000 description 1
- LNNSWWRRYJLGNI-NAKRPEOUSA-N Ala-Ile-Val Chemical compound C[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C(C)C)C(O)=O LNNSWWRRYJLGNI-NAKRPEOUSA-N 0.000 description 1
- WUHJHHGYVVJMQE-BJDJZHNGSA-N Ala-Leu-Ile Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O WUHJHHGYVVJMQE-BJDJZHNGSA-N 0.000 description 1
- OYJCVIGKMXUVKB-GARJFASQSA-N Ala-Leu-Pro Chemical compound C[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@@H]1C(=O)O)N OYJCVIGKMXUVKB-GARJFASQSA-N 0.000 description 1
- SDZRIBWEVVRDQI-CIUDSAMLSA-N Ala-Lys-Asp Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(O)=O SDZRIBWEVVRDQI-CIUDSAMLSA-N 0.000 description 1
- ZBLQIYPCUWZSRZ-QEJZJMRPSA-N Ala-Phe-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](C)N)CC1=CC=CC=C1 ZBLQIYPCUWZSRZ-QEJZJMRPSA-N 0.000 description 1
- YYAVDNKUWLAFCV-ACZMJKKPSA-N Ala-Ser-Gln Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(O)=O YYAVDNKUWLAFCV-ACZMJKKPSA-N 0.000 description 1
- MMLHRUJLOUSRJX-CIUDSAMLSA-N Ala-Ser-Lys Chemical compound C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCCCN MMLHRUJLOUSRJX-CIUDSAMLSA-N 0.000 description 1
- SYIFFFHSXBNPMC-UWJYBYFXSA-N Ala-Ser-Tyr Chemical compound C[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)O)N SYIFFFHSXBNPMC-UWJYBYFXSA-N 0.000 description 1
- VYMJAWXRWHJIMS-LKTVYLICSA-N Ala-Tyr-His Chemical compound C[C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)N VYMJAWXRWHJIMS-LKTVYLICSA-N 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- KWKQGHSSNHPGOW-BQBZGAKWSA-N Arg-Ala-Gly Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)NCC(O)=O KWKQGHSSNHPGOW-BQBZGAKWSA-N 0.000 description 1
- XMGVWQWEWWULNS-BPUTZDHNSA-N Arg-Trp-Ser Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N XMGVWQWEWWULNS-BPUTZDHNSA-N 0.000 description 1
- PSUXEQYPYZLNER-QXEWZRGKSA-N Arg-Val-Asn Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O PSUXEQYPYZLNER-QXEWZRGKSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- HZPSDHRYYIORKR-WHFBIAKZSA-N Asn-Ala-Gly Chemical compound OC(=O)CNC(=O)[C@H](C)NC(=O)[C@@H](N)CC(N)=O HZPSDHRYYIORKR-WHFBIAKZSA-N 0.000 description 1
- ZZXMOQIUIJJOKZ-ZLUOBGJFSA-N Asn-Asn-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](N)CC(N)=O ZZXMOQIUIJJOKZ-ZLUOBGJFSA-N 0.000 description 1
- HLTLEIXYIJDFOY-ZLUOBGJFSA-N Asn-Cys-Asn Chemical compound NC(=O)C[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(O)=O HLTLEIXYIJDFOY-ZLUOBGJFSA-N 0.000 description 1
- OLGCWMNDJTWQAG-GUBZILKMSA-N Asn-Glu-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CC(N)=O OLGCWMNDJTWQAG-GUBZILKMSA-N 0.000 description 1
- OLISTMZJGQUOGS-GMOBBJLQSA-N Asn-Ile-Arg Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)NC(=O)[C@H](CC(=O)N)N OLISTMZJGQUOGS-GMOBBJLQSA-N 0.000 description 1
- MVXJBVVLACEGCG-PCBIJLKTSA-N Asn-Phe-Ile Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O MVXJBVVLACEGCG-PCBIJLKTSA-N 0.000 description 1
- MYRLSKYSMXNLLA-LAEOZQHASA-N Asn-Val-Glu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O MYRLSKYSMXNLLA-LAEOZQHASA-N 0.000 description 1
- BUVNWKQBMZLCDW-UGYAYLCHSA-N Asp-Asn-Ile Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O BUVNWKQBMZLCDW-UGYAYLCHSA-N 0.000 description 1
- HOQGTAIGQSDCHR-SRVKXCTJSA-N Asp-Asn-Phe Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O HOQGTAIGQSDCHR-SRVKXCTJSA-N 0.000 description 1
- PZXPWHFYZXTFBI-YUMQZZPRSA-N Asp-Gly-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CC(O)=O PZXPWHFYZXTFBI-YUMQZZPRSA-N 0.000 description 1
- KYQNAIMCTRZLNP-QSFUFRPTSA-N Asp-Ile-Val Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C(C)C)C(O)=O KYQNAIMCTRZLNP-QSFUFRPTSA-N 0.000 description 1
- GKWFMNNNYZHJHV-SRVKXCTJSA-N Asp-Lys-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CC(O)=O GKWFMNNNYZHJHV-SRVKXCTJSA-N 0.000 description 1
- NJLLRXWFPQQPHV-SRVKXCTJSA-N Asp-Tyr-Asn Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC(N)=O)C(O)=O NJLLRXWFPQQPHV-SRVKXCTJSA-N 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 240000006439 Aspergillus oryzae Species 0.000 description 1
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 1
- 241001465356 Atropa belladonna Species 0.000 description 1
- 108090000145 Bacillolysin Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108091005658 Basic proteases Proteins 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 241000255789 Bombyx mori Species 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 241000589513 Burkholderia cepacia Species 0.000 description 1
- MWBULQNPGVGHKO-ZETCQYMHSA-N C[C@@H]1C(CC2)CCN2C1 Chemical compound C[C@@H]1C(CC2)CCN2C1 MWBULQNPGVGHKO-ZETCQYMHSA-N 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 241000222178 Candida tropicalis Species 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- 241001619326 Cephalosporium Species 0.000 description 1
- XABFFGOGKOORCG-CIUDSAMLSA-N Cys-Asp-Leu Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O XABFFGOGKOORCG-CIUDSAMLSA-N 0.000 description 1
- XLLSMEFANRROJE-GUBZILKMSA-N Cys-Leu-Glu Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)O)NC(=O)[C@H](CS)N XLLSMEFANRROJE-GUBZILKMSA-N 0.000 description 1
- GFMJUESGWILPEN-MELADBBJSA-N Cys-Phe-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CC=CC=C2)NC(=O)[C@H](CS)N)C(=O)O GFMJUESGWILPEN-MELADBBJSA-N 0.000 description 1
- BCFXQBXXDSEHRS-FXQIFTODSA-N Cys-Ser-Arg Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O BCFXQBXXDSEHRS-FXQIFTODSA-N 0.000 description 1
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 101000634404 Datura stramonium Tropinone reductase 1 Proteins 0.000 description 1
- 108020005199 Dehydrogenases Proteins 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 101710089384 Extracellular protease Proteins 0.000 description 1
- 108010022535 Farnesyl-Diphosphate Farnesyltransferase Proteins 0.000 description 1
- UVAOVENCIONMJP-GUBZILKMSA-N Gln-Cys-Leu Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(O)=O UVAOVENCIONMJP-GUBZILKMSA-N 0.000 description 1
- RGAOLBZBLOJUTP-GRLWGSQLSA-N Gln-Ile-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)O)NC(=O)[C@H](CCC(=O)N)N RGAOLBZBLOJUTP-GRLWGSQLSA-N 0.000 description 1
- ZNTDJIMJKNNSLR-RWRJDSDZSA-N Gln-Ile-Thr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)O)NC(=O)[C@H](CCC(=O)N)N ZNTDJIMJKNNSLR-RWRJDSDZSA-N 0.000 description 1
- ROHVCXBMIAAASL-HJGDQZAQSA-N Gln-Met-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(=O)N)N)O ROHVCXBMIAAASL-HJGDQZAQSA-N 0.000 description 1
- HLRLXVPRJJITSK-IFFSRLJSSA-N Gln-Thr-Val Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(O)=O HLRLXVPRJJITSK-IFFSRLJSSA-N 0.000 description 1
- RUFHOVYUYSNDNY-ACZMJKKPSA-N Glu-Ala-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCC(O)=O RUFHOVYUYSNDNY-ACZMJKKPSA-N 0.000 description 1
- DIXKFOPPGWKZLY-CIUDSAMLSA-N Glu-Arg-Asp Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(O)=O DIXKFOPPGWKZLY-CIUDSAMLSA-N 0.000 description 1
- CYHBMLHCQXXCCT-AVGNSLFASA-N Glu-Asp-Tyr Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O CYHBMLHCQXXCCT-AVGNSLFASA-N 0.000 description 1
- AUTNXSQEVVHSJK-YVNDNENWSA-N Glu-Glu-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CCC(O)=O AUTNXSQEVVHSJK-YVNDNENWSA-N 0.000 description 1
- MUSGDMDGNGXULI-DCAQKATOSA-N Glu-Glu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CCC(O)=O MUSGDMDGNGXULI-DCAQKATOSA-N 0.000 description 1
- RAUDKMVXNOWDLS-WDSKDSINSA-N Glu-Gly-Ser Chemical compound OC(=O)CC[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O RAUDKMVXNOWDLS-WDSKDSINSA-N 0.000 description 1
- DNPCBMNFQVTHMA-DCAQKATOSA-N Glu-Leu-Gln Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O DNPCBMNFQVTHMA-DCAQKATOSA-N 0.000 description 1
- BCYGDJXHAGZNPQ-DCAQKATOSA-N Glu-Lys-Glu Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(O)=O BCYGDJXHAGZNPQ-DCAQKATOSA-N 0.000 description 1
- GMVCSRBOSIUTFC-FXQIFTODSA-N Glu-Ser-Glu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(O)=O GMVCSRBOSIUTFC-FXQIFTODSA-N 0.000 description 1
- QXUPRMQJDWJDFR-NRPADANISA-N Glu-Val-Ser Chemical compound CC(C)[C@H](NC(=O)[C@@H](N)CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O QXUPRMQJDWJDFR-NRPADANISA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- PUUYVMYCMIWHFE-BQBZGAKWSA-N Gly-Ala-Arg Chemical compound NCC(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N PUUYVMYCMIWHFE-BQBZGAKWSA-N 0.000 description 1
- JXYMPBCYRKWJEE-BQBZGAKWSA-N Gly-Arg-Ala Chemical compound [H]NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(O)=O JXYMPBCYRKWJEE-BQBZGAKWSA-N 0.000 description 1
- GRIRDMVMJJDZKV-RCOVLWMOSA-N Gly-Asn-Val Chemical compound [H]NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(O)=O GRIRDMVMJJDZKV-RCOVLWMOSA-N 0.000 description 1
- XMPXVJIDADUOQB-RCOVLWMOSA-N Gly-Gly-Ile Chemical compound CC[C@H](C)[C@@H](C([O-])=O)NC(=O)CNC(=O)C[NH3+] XMPXVJIDADUOQB-RCOVLWMOSA-N 0.000 description 1
- KAJAOGBVWCYGHZ-JTQLQIEISA-N Gly-Gly-Phe Chemical compound [NH3+]CC(=O)NCC(=O)N[C@H](C([O-])=O)CC1=CC=CC=C1 KAJAOGBVWCYGHZ-JTQLQIEISA-N 0.000 description 1
- YWAQATDNEKZFFK-BYPYZUCNSA-N Gly-Gly-Ser Chemical compound NCC(=O)NCC(=O)N[C@@H](CO)C(O)=O YWAQATDNEKZFFK-BYPYZUCNSA-N 0.000 description 1
- HMHRTKOWRUPPNU-RCOVLWMOSA-N Gly-Ile-Gly Chemical compound NCC(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(O)=O HMHRTKOWRUPPNU-RCOVLWMOSA-N 0.000 description 1
- WDEHMRNSGHVNOH-VHSXEESVSA-N Gly-Lys-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCCCN)NC(=O)CN)C(=O)O WDEHMRNSGHVNOH-VHSXEESVSA-N 0.000 description 1
- JBCLFWXMTIKCCB-VIFPVBQESA-N Gly-Phe Chemical compound NCC(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 JBCLFWXMTIKCCB-VIFPVBQESA-N 0.000 description 1
- GGAPHLIUUTVYMX-QWRGUYRKSA-N Gly-Phe-Ser Chemical compound OC[C@@H](C([O-])=O)NC(=O)[C@@H](NC(=O)C[NH3+])CC1=CC=CC=C1 GGAPHLIUUTVYMX-QWRGUYRKSA-N 0.000 description 1
- WNZOCXUOGVYYBJ-CDMKHQONSA-N Gly-Phe-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)NC(=O)CN)O WNZOCXUOGVYYBJ-CDMKHQONSA-N 0.000 description 1
- POJJAZJHBGXEGM-YUMQZZPRSA-N Gly-Ser-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)CN POJJAZJHBGXEGM-YUMQZZPRSA-N 0.000 description 1
- ZLCLYFGMKFCDCN-XPUUQOCRSA-N Gly-Ser-Val Chemical compound CC(C)[C@H](NC(=O)[C@H](CO)NC(=O)CN)C(O)=O ZLCLYFGMKFCDCN-XPUUQOCRSA-N 0.000 description 1
- FKESCSGWBPUTPN-FOHZUACHSA-N Gly-Thr-Asn Chemical compound [H]NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(O)=O FKESCSGWBPUTPN-FOHZUACHSA-N 0.000 description 1
- KSOBNUBCYHGUKH-UWVGGRQHSA-N Gly-Val-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)CN KSOBNUBCYHGUKH-UWVGGRQHSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- JBCLFWXMTIKCCB-UHFFFAOYSA-N H-Gly-Phe-OH Natural products NCC(=O)NC(C(O)=O)CC1=CC=CC=C1 JBCLFWXMTIKCCB-UHFFFAOYSA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- NWGXCPUKPVISSJ-AVGNSLFASA-N His-Gln-Lys Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CCCCN)C(=O)O)N NWGXCPUKPVISSJ-AVGNSLFASA-N 0.000 description 1
- JUIOPCXACJLRJK-AVGNSLFASA-N His-Lys-Glu Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N JUIOPCXACJLRJK-AVGNSLFASA-N 0.000 description 1
- 102100031004 Histidine-tRNA ligase, cytoplasmic Human genes 0.000 description 1
- 102100029015 Histidine-tRNA ligase, mitochondrial Human genes 0.000 description 1
- 101000838688 Homo sapiens D-aminoacyl-tRNA deacylase 1 Proteins 0.000 description 1
- 101000843187 Homo sapiens Histidine-tRNA ligase, cytoplasmic Proteins 0.000 description 1
- 101000696493 Homo sapiens Histidine-tRNA ligase, mitochondrial Proteins 0.000 description 1
- 101000695548 Homo sapiens Probable proline-tRNA ligase, mitochondrial Proteins 0.000 description 1
- RKUNBYITZUJHSG-UHFFFAOYSA-N Hyosciamin-hydrochlorid Natural products CN1C(C2)CCC1CC2OC(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-UHFFFAOYSA-N 0.000 description 1
- STECJAGHUSJQJN-GAUPFVANSA-N Hyoscine Natural products C1([C@H](CO)C(=O)OC2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-GAUPFVANSA-N 0.000 description 1
- UAQSZXGJGLHMNV-XEGUGMAKSA-N Ile-Gly-Tyr Chemical compound CC[C@H](C)[C@@H](C(=O)NCC(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)O)N UAQSZXGJGLHMNV-XEGUGMAKSA-N 0.000 description 1
- MTONDYJJCIBZTK-PEDHHIEDSA-N Ile-Ile-Met Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCSC)C(=O)O)N MTONDYJJCIBZTK-PEDHHIEDSA-N 0.000 description 1
- GLLAUPMJCGKPFY-BLMTYFJBSA-N Ile-Ile-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H](N)[C@@H](C)CC)C(O)=O)=CNC2=C1 GLLAUPMJCGKPFY-BLMTYFJBSA-N 0.000 description 1
- PHRWFSFCNJPWRO-PPCPHDFISA-N Ile-Leu-Thr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)O)N PHRWFSFCNJPWRO-PPCPHDFISA-N 0.000 description 1
- DSDPLOODKXISDT-XUXIUFHCSA-N Ile-Leu-Val Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O DSDPLOODKXISDT-XUXIUFHCSA-N 0.000 description 1
- XLXPYSDGMXTTNQ-DKIMLUQUSA-N Ile-Phe-Leu Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CC(C)C)C(O)=O XLXPYSDGMXTTNQ-DKIMLUQUSA-N 0.000 description 1
- YBKKLDBBPFIXBQ-MBLNEYKQSA-N Ile-Thr-Gly Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)O)N YBKKLDBBPFIXBQ-MBLNEYKQSA-N 0.000 description 1
- BLFXHAFTNYZEQE-VKOGCVSHSA-N Ile-Trp-Arg Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N BLFXHAFTNYZEQE-VKOGCVSHSA-N 0.000 description 1
- NJGXXYLPDMMFJB-XUXIUFHCSA-N Ile-Val-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)O)N NJGXXYLPDMMFJB-XUXIUFHCSA-N 0.000 description 1
- 108010093096 Immobilized Enzymes Proteins 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- RCFDOSNHHZGBOY-UHFFFAOYSA-N L-isoleucyl-L-alanine Natural products CCC(C)C(N)C(=O)NC(C)C(O)=O RCFDOSNHHZGBOY-UHFFFAOYSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- WNGVUZWBXZKQES-YUMQZZPRSA-N Leu-Ala-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C)C(=O)NCC(O)=O WNGVUZWBXZKQES-YUMQZZPRSA-N 0.000 description 1
- OXKYZSRZKBTVEY-ZPFDUUQYSA-N Leu-Asn-Ile Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O OXKYZSRZKBTVEY-ZPFDUUQYSA-N 0.000 description 1
- ILJREDZFPHTUIE-GUBZILKMSA-N Leu-Asp-Glu Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O ILJREDZFPHTUIE-GUBZILKMSA-N 0.000 description 1
- QKIBIXAQKAFZGL-GUBZILKMSA-N Leu-Cys-Gln Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(O)=O QKIBIXAQKAFZGL-GUBZILKMSA-N 0.000 description 1
- QDSKNVXKLPQNOJ-GVXVVHGQSA-N Leu-Gln-Val Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C(C)C)C(O)=O QDSKNVXKLPQNOJ-GVXVVHGQSA-N 0.000 description 1
- OXRLYTYUXAQTHP-YUMQZZPRSA-N Leu-Gly-Ala Chemical compound [H]N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](C)C(O)=O OXRLYTYUXAQTHP-YUMQZZPRSA-N 0.000 description 1
- DBSLVQBXKVKDKJ-BJDJZHNGSA-N Leu-Ile-Ala Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O DBSLVQBXKVKDKJ-BJDJZHNGSA-N 0.000 description 1
- HGFGEMSVBMCFKK-MNXVOIDGSA-N Leu-Ile-Glu Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(O)=O HGFGEMSVBMCFKK-MNXVOIDGSA-N 0.000 description 1
- DSFYPIUSAMSERP-IHRRRGAJSA-N Leu-Leu-Arg Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N DSFYPIUSAMSERP-IHRRRGAJSA-N 0.000 description 1
- ZRHDPZAAWLXXIR-SRVKXCTJSA-N Leu-Lys-Ala Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O ZRHDPZAAWLXXIR-SRVKXCTJSA-N 0.000 description 1
- LVTJJOJKDCVZGP-QWRGUYRKSA-N Leu-Lys-Gly Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(O)=O LVTJJOJKDCVZGP-QWRGUYRKSA-N 0.000 description 1
- BRTVHXHCUSXYRI-CIUDSAMLSA-N Leu-Ser-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O BRTVHXHCUSXYRI-CIUDSAMLSA-N 0.000 description 1
- VUBIPAHVHMZHCM-KKUMJFAQSA-N Leu-Tyr-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](CO)C(O)=O)CC1=CC=C(O)C=C1 VUBIPAHVHMZHCM-KKUMJFAQSA-N 0.000 description 1
- XZNJZXJZBMBGGS-NHCYSSNCSA-N Leu-Val-Asn Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O XZNJZXJZBMBGGS-NHCYSSNCSA-N 0.000 description 1
- QESXLSQLQHHTIX-RHYQMDGZSA-N Leu-Val-Thr Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O QESXLSQLQHHTIX-RHYQMDGZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- FACUGMGEFUEBTI-SRVKXCTJSA-N Lys-Asn-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](N)CCCCN FACUGMGEFUEBTI-SRVKXCTJSA-N 0.000 description 1
- NCTDKZKNBDZDOL-GARJFASQSA-N Lys-Asn-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC(=O)N)NC(=O)[C@H](CCCCN)N)C(=O)O NCTDKZKNBDZDOL-GARJFASQSA-N 0.000 description 1
- QIJVAFLRMVBHMU-KKUMJFAQSA-N Lys-Asp-Phe Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O QIJVAFLRMVBHMU-KKUMJFAQSA-N 0.000 description 1
- GJJQCBVRWDGLMQ-GUBZILKMSA-N Lys-Glu-Ala Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(O)=O GJJQCBVRWDGLMQ-GUBZILKMSA-N 0.000 description 1
- PBIPLDMFHAICIP-DCAQKATOSA-N Lys-Glu-Glu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O PBIPLDMFHAICIP-DCAQKATOSA-N 0.000 description 1
- GQFDWEDHOQRNLC-QWRGUYRKSA-N Lys-Gly-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN GQFDWEDHOQRNLC-QWRGUYRKSA-N 0.000 description 1
- CANPXOLVTMKURR-WEDXCCLWSA-N Lys-Gly-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN CANPXOLVTMKURR-WEDXCCLWSA-N 0.000 description 1
- NJNRBRKHOWSGMN-SRVKXCTJSA-N Lys-Leu-Asn Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O NJNRBRKHOWSGMN-SRVKXCTJSA-N 0.000 description 1
- ORVFEGYUJITPGI-IHRRRGAJSA-N Lys-Leu-Met Chemical compound CSCC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCCCN ORVFEGYUJITPGI-IHRRRGAJSA-N 0.000 description 1
- RIJCHEVHFWMDKD-SRVKXCTJSA-N Lys-Lys-Asn Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(O)=O RIJCHEVHFWMDKD-SRVKXCTJSA-N 0.000 description 1
- SVSQSPICRKBMSZ-SRVKXCTJSA-N Lys-Pro-Gln Chemical compound [H]N[C@@H](CCCCN)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(O)=O SVSQSPICRKBMSZ-SRVKXCTJSA-N 0.000 description 1
- IOQWIOPSKJOEKI-SRVKXCTJSA-N Lys-Ser-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O IOQWIOPSKJOEKI-SRVKXCTJSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- GAELMDJMQDUDLJ-BQBZGAKWSA-N Met-Ala-Gly Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)NCC(O)=O GAELMDJMQDUDLJ-BQBZGAKWSA-N 0.000 description 1
- HHCOOFPGNXKFGR-HJGDQZAQSA-N Met-Gln-Thr Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O HHCOOFPGNXKFGR-HJGDQZAQSA-N 0.000 description 1
- GPAHWYRSHCKICP-GUBZILKMSA-N Met-Glu-Glu Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O GPAHWYRSHCKICP-GUBZILKMSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910017621 MgSO4-7H2O Inorganic materials 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 102000014415 Muscarinic acetylcholine receptor Human genes 0.000 description 1
- 108050003473 Muscarinic acetylcholine receptor Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- YBAFDPFAUTYYRW-UHFFFAOYSA-N N-L-alpha-glutamyl-L-leucine Natural products CC(C)CC(C(O)=O)NC(=O)C(N)CCC(O)=O YBAFDPFAUTYYRW-UHFFFAOYSA-N 0.000 description 1
- SITLTJHOQZFJGG-UHFFFAOYSA-N N-L-alpha-glutamyl-L-valine Natural products CC(C)C(C(O)=O)NC(=O)C(N)CCC(O)=O SITLTJHOQZFJGG-UHFFFAOYSA-N 0.000 description 1
- XZFYRXDAULDNFX-UHFFFAOYSA-N N-L-cysteinyl-L-phenylalanine Natural products SCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 XZFYRXDAULDNFX-UHFFFAOYSA-N 0.000 description 1
- STECJAGHUSJQJN-UHFFFAOYSA-N N-Methyl-scopolamin Natural products C1C(C2C3O2)N(C)C3CC1OC(=O)C(CO)C1=CC=CC=C1 STECJAGHUSJQJN-UHFFFAOYSA-N 0.000 description 1
- 241000221960 Neurospora Species 0.000 description 1
- 108091005507 Neutral proteases Proteins 0.000 description 1
- 102000035092 Neutral proteases Human genes 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 241000826199 Ogataea wickerhamii Species 0.000 description 1
- 101150012394 PHO5 gene Proteins 0.000 description 1
- HHOOEUSPFGPZFP-QWRGUYRKSA-N Phe-Asn-Gly Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(O)=O HHOOEUSPFGPZFP-QWRGUYRKSA-N 0.000 description 1
- MGBRZXXGQBAULP-DRZSPHRISA-N Phe-Glu-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 MGBRZXXGQBAULP-DRZSPHRISA-N 0.000 description 1
- TXKWKTWYTIAZSV-KKUMJFAQSA-N Phe-Leu-Cys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)N TXKWKTWYTIAZSV-KKUMJFAQSA-N 0.000 description 1
- LRBSWBVUCLLRLU-BZSNNMDCSA-N Phe-Leu-Lys Chemical compound CC(C)C[C@H](NC(=O)[C@@H](N)Cc1ccccc1)C(=O)N[C@@H](CCCCN)C(O)=O LRBSWBVUCLLRLU-BZSNNMDCSA-N 0.000 description 1
- JLLJTMHNXQTMCK-UBHSHLNASA-N Phe-Pro-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)CC1=CC=CC=C1 JLLJTMHNXQTMCK-UBHSHLNASA-N 0.000 description 1
- PTDAGKJHZBGDKD-OEAJRASXSA-N Phe-Thr-Lys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)N)O PTDAGKJHZBGDKD-OEAJRASXSA-N 0.000 description 1
- 240000009134 Physalis philadelphica Species 0.000 description 1
- 235000002489 Physalis philadelphica Nutrition 0.000 description 1
- HAEGAELAYWSUNC-WPRPVWTQSA-N Pro-Gly-Val Chemical compound [H]N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O HAEGAELAYWSUNC-WPRPVWTQSA-N 0.000 description 1
- SSWJYJHXQOYTSP-SRVKXCTJSA-N Pro-His-Gln Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCC(N)=O)C(O)=O SSWJYJHXQOYTSP-SRVKXCTJSA-N 0.000 description 1
- WIPAMEKBSHNFQE-IUCAKERBSA-N Pro-Met-Gly Chemical compound CSCC[C@@H](C(=O)NCC(=O)O)NC(=O)[C@@H]1CCCN1 WIPAMEKBSHNFQE-IUCAKERBSA-N 0.000 description 1
- PRKWBYCXBBSLSK-GUBZILKMSA-N Pro-Ser-Val Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O PRKWBYCXBBSLSK-GUBZILKMSA-N 0.000 description 1
- 102100028531 Probable proline-tRNA ligase, mitochondrial Human genes 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 101710130181 Protochlorophyllide reductase A, chloroplastic Proteins 0.000 description 1
- 241000589776 Pseudomonas putida Species 0.000 description 1
- 230000010757 Reduction Activity Effects 0.000 description 1
- 241000235527 Rhizopus Species 0.000 description 1
- 241000187693 Rhodococcus rhodochrous Species 0.000 description 1
- 241000223252 Rhodotorula Species 0.000 description 1
- 108020001027 Ribosomal DNA Proteins 0.000 description 1
- HRNQLKCLPVKZNE-CIUDSAMLSA-N Ser-Ala-Leu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(O)=O HRNQLKCLPVKZNE-CIUDSAMLSA-N 0.000 description 1
- YQHZVYJAGWMHES-ZLUOBGJFSA-N Ser-Ala-Ser Chemical compound OC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O YQHZVYJAGWMHES-ZLUOBGJFSA-N 0.000 description 1
- FCRMLGJMPXCAHD-FXQIFTODSA-N Ser-Arg-Asn Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(O)=O FCRMLGJMPXCAHD-FXQIFTODSA-N 0.000 description 1
- OYEDZGNMSBZCIM-XGEHTFHBSA-N Ser-Arg-Thr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(O)=O OYEDZGNMSBZCIM-XGEHTFHBSA-N 0.000 description 1
- CDVFZMOFNJPUDD-ACZMJKKPSA-N Ser-Gln-Asn Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O CDVFZMOFNJPUDD-ACZMJKKPSA-N 0.000 description 1
- YPUSXTWURJANKF-KBIXCLLPSA-N Ser-Gln-Ile Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O YPUSXTWURJANKF-KBIXCLLPSA-N 0.000 description 1
- PVDTYLHUWAEYGY-CIUDSAMLSA-N Ser-Glu-Arg Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O PVDTYLHUWAEYGY-CIUDSAMLSA-N 0.000 description 1
- JWOBLHJRDADHLN-KKUMJFAQSA-N Ser-Leu-Tyr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O JWOBLHJRDADHLN-KKUMJFAQSA-N 0.000 description 1
- PMCMLDNPAZUYGI-DCAQKATOSA-N Ser-Lys-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(O)=O PMCMLDNPAZUYGI-DCAQKATOSA-N 0.000 description 1
- QSHKTZVJGDVFEW-GUBZILKMSA-N Ser-Met-Met Chemical compound CSCC[C@@H](C(=O)N[C@@H](CCSC)C(=O)O)NC(=O)[C@H](CO)N QSHKTZVJGDVFEW-GUBZILKMSA-N 0.000 description 1
- JCLAFVNDBJMLBC-JBDRJPRFSA-N Ser-Ser-Ile Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O JCLAFVNDBJMLBC-JBDRJPRFSA-N 0.000 description 1
- PMTWIUBUQRGCSB-FXQIFTODSA-N Ser-Val-Ala Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(O)=O PMTWIUBUQRGCSB-FXQIFTODSA-N 0.000 description 1
- JGUWRQWULDWNCM-FXQIFTODSA-N Ser-Val-Ser Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CO)C(O)=O JGUWRQWULDWNCM-FXQIFTODSA-N 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 102100037997 Squalene synthase Human genes 0.000 description 1
- 241000187398 Streptomyces lividans Species 0.000 description 1
- 241000187122 Streptomyces virginiae Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- DFTCYYILCSQGIZ-GCJQMDKQSA-N Thr-Ala-Asn Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(N)=O)C(O)=O DFTCYYILCSQGIZ-GCJQMDKQSA-N 0.000 description 1
- PXQUBKWZENPDGE-CIQUZCHMSA-N Thr-Ala-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](C)NC(=O)[C@H]([C@@H](C)O)N PXQUBKWZENPDGE-CIQUZCHMSA-N 0.000 description 1
- BSNZTJXVDOINSR-JXUBOQSCSA-N Thr-Ala-Leu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(O)=O BSNZTJXVDOINSR-JXUBOQSCSA-N 0.000 description 1
- JBHMLZSKIXMVFS-XVSYOHENSA-N Thr-Asn-Phe Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O JBHMLZSKIXMVFS-XVSYOHENSA-N 0.000 description 1
- HJOSVGCWOTYJFG-WDCWCFNPSA-N Thr-Glu-Lys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CCCCN)C(=O)O)N)O HJOSVGCWOTYJFG-WDCWCFNPSA-N 0.000 description 1
- VYEHBMMAJFVTOI-JHEQGTHGSA-N Thr-Gly-Gln Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(O)=O VYEHBMMAJFVTOI-JHEQGTHGSA-N 0.000 description 1
- DEGCBBCMYWNJNA-RHYQMDGZSA-N Thr-Pro-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)[C@@H](C)O DEGCBBCMYWNJNA-RHYQMDGZSA-N 0.000 description 1
- BDENGIGFTNYZSJ-RCWTZXSCSA-N Thr-Pro-Met Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(O)=O BDENGIGFTNYZSJ-RCWTZXSCSA-N 0.000 description 1
- NDZYTIMDOZMECO-SHGPDSBTSA-N Thr-Thr-Ala Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(O)=O NDZYTIMDOZMECO-SHGPDSBTSA-N 0.000 description 1
- 241000499912 Trichoderma reesei Species 0.000 description 1
- 241000223230 Trichosporon Species 0.000 description 1
- 101710201408 Tropinone reductase 1 Proteins 0.000 description 1
- OETOOJXFNSEYHQ-WFBYXXMGSA-N Trp-Ala-Asp Chemical compound C1=CC=C2C(C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(O)=O)=CNC2=C1 OETOOJXFNSEYHQ-WFBYXXMGSA-N 0.000 description 1
- HYNAKPYFEYJMAS-XIRDDKMYSA-N Trp-Arg-Glu Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(O)=O HYNAKPYFEYJMAS-XIRDDKMYSA-N 0.000 description 1
- BOBZBMOTRORUPT-XIRDDKMYSA-N Trp-Ser-Leu Chemical compound C1=CC=C2C(C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O)=CNC2=C1 BOBZBMOTRORUPT-XIRDDKMYSA-N 0.000 description 1
- DXYWRYQRKPIGGU-BPNCWPANSA-N Tyr-Ala-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 DXYWRYQRKPIGGU-BPNCWPANSA-N 0.000 description 1
- FBHBVXUBTYVCRU-BZSNNMDCSA-N Tyr-His-Leu Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CN=CN1 FBHBVXUBTYVCRU-BZSNNMDCSA-N 0.000 description 1
- QFHRUCJIRVILCK-YJRXYDGGSA-N Tyr-Thr-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)N)O QFHRUCJIRVILCK-YJRXYDGGSA-N 0.000 description 1
- FZSPNKUFROZBSG-ZKWXMUAHSA-N Val-Ala-Asp Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC(O)=O FZSPNKUFROZBSG-ZKWXMUAHSA-N 0.000 description 1
- JLFKWDAZBRYCGX-ZKWXMUAHSA-N Val-Asn-Ser Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CO)C(=O)O)N JLFKWDAZBRYCGX-ZKWXMUAHSA-N 0.000 description 1
- BWVHQINTNLVWGZ-ZKWXMUAHSA-N Val-Cys-Asp Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(=O)O)C(=O)O)N BWVHQINTNLVWGZ-ZKWXMUAHSA-N 0.000 description 1
- SZTTYWIUCGSURQ-AUTRQRHGSA-N Val-Glu-Glu Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O SZTTYWIUCGSURQ-AUTRQRHGSA-N 0.000 description 1
- XWYUBUYQMOUFRQ-IFFSRLJSSA-N Val-Glu-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](C(C)C)N)O XWYUBUYQMOUFRQ-IFFSRLJSSA-N 0.000 description 1
- KNYHAWKHFQRYOX-PYJNHQTQSA-N Val-Ile-His Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](C(C)C)N KNYHAWKHFQRYOX-PYJNHQTQSA-N 0.000 description 1
- FTKXYXACXYOHND-XUXIUFHCSA-N Val-Ile-Leu Chemical compound CC(C)[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O FTKXYXACXYOHND-XUXIUFHCSA-N 0.000 description 1
- APEBUJBRGCMMHP-HJWJTTGWSA-N Val-Ile-Phe Chemical compound CC(C)[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 APEBUJBRGCMMHP-HJWJTTGWSA-N 0.000 description 1
- XPKCFQZDQGVJCX-RHYQMDGZSA-N Val-Lys-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C(C)C)N)O XPKCFQZDQGVJCX-RHYQMDGZSA-N 0.000 description 1
- DEGUERSKQBRZMZ-FXQIFTODSA-N Val-Ser-Ala Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O DEGUERSKQBRZMZ-FXQIFTODSA-N 0.000 description 1
- YQYFYUSYEDNLSD-YEPSODPASA-N Val-Thr-Gly Chemical compound CC(C)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O YQYFYUSYEDNLSD-YEPSODPASA-N 0.000 description 1
- GTACFKZDQFTVAI-STECZYCISA-N Val-Tyr-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)CC1=CC=C(O)C=C1 GTACFKZDQFTVAI-STECZYCISA-N 0.000 description 1
- BGTDGENDNWGMDQ-KJEVXHAQSA-N Val-Tyr-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)NC(=O)[C@H](C(C)C)N)O BGTDGENDNWGMDQ-KJEVXHAQSA-N 0.000 description 1
- 241000235013 Yarrowia Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- ZNOZWUKQPJXOIG-XSBHQQIPSA-L [(2r,3s,4r,5r,6s)-6-[[(1r,3s,4r,5r,8s)-3,4-dihydroxy-2,6-dioxabicyclo[3.2.1]octan-8-yl]oxy]-4-[[(1r,3r,4r,5r,8s)-8-[(2s,3r,4r,5r,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-sulfonatooxyoxan-2-yl]oxy-4-hydroxy-2,6-dioxabicyclo[3.2.1]octan-3-yl]oxy]-5-hydroxy-2-( Chemical compound O[C@@H]1[C@@H](O)[C@@H](OS([O-])(=O)=O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H]2OC[C@H]1O[C@H](O[C@H]1[C@H]([C@@H](CO)O[C@@H](O[C@@H]3[C@@H]4OC[C@H]3O[C@H](O)[C@@H]4O)[C@@H]1O)OS([O-])(=O)=O)[C@@H]2O ZNOZWUKQPJXOIG-XSBHQQIPSA-L 0.000 description 1
- BJNCVECKNVBHBP-SNVBAGLBSA-N [(3s)-1-azabicyclo[2.2.2]octan-3-yl] butanoate Chemical compound C1CC2[C@H](OC(=O)CCC)CN1CC2 BJNCVECKNVBHBP-SNVBAGLBSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 108010011559 alanylphenylalanine Proteins 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 229940024171 alpha-amylase Drugs 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 108010077245 asparaginyl-proline Proteins 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 108010047857 aspartylglycine Proteins 0.000 description 1
- 108010092854 aspartyllysine Proteins 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- 229940124630 bronchodilator Drugs 0.000 description 1
- 239000000168 bronchodilator agent Substances 0.000 description 1
- KTUQUZJOVNIKNZ-UHFFFAOYSA-N butan-1-ol;hydrate Chemical compound O.CCCCO KTUQUZJOVNIKNZ-UHFFFAOYSA-N 0.000 description 1
- 239000000648 calcium alginate Substances 0.000 description 1
- 235000010410 calcium alginate Nutrition 0.000 description 1
- 229960002681 calcium alginate Drugs 0.000 description 1
- OKHHGHGGPDJQHR-YMOPUZKJSA-L calcium;(2s,3s,4s,5s,6r)-6-[(2r,3s,4r,5s,6r)-2-carboxy-6-[(2r,3s,4r,5s,6r)-2-carboxylato-4,5,6-trihydroxyoxan-3-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylate Chemical compound [Ca+2].O[C@@H]1[C@H](O)[C@H](O)O[C@@H](C([O-])=O)[C@H]1O[C@H]1[C@@H](O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@H](O2)C([O-])=O)O)[C@H](C(O)=O)O1 OKHHGHGGPDJQHR-YMOPUZKJSA-L 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- XVVLAOSRANDVDB-UHFFFAOYSA-N formic acid Chemical compound OC=O.OC=O XVVLAOSRANDVDB-UHFFFAOYSA-N 0.000 description 1
- 230000005176 gastrointestinal motility Effects 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229960003681 gluconolactone Drugs 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 108010089804 glycyl-threonine Proteins 0.000 description 1
- 108010015792 glycyllysine Proteins 0.000 description 1
- 108010081551 glycylphenylalanine Proteins 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 108010025306 histidylleucine Proteins 0.000 description 1
- 229930005342 hyoscyamine Natural products 0.000 description 1
- 229960003210 hyoscyamine Drugs 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- UJKDYMOBUGTJLZ-RUCXOUQFSA-N ksc605q1h Chemical compound OC(=O)[C@@H](N)CCC(O)=O.OC(=O)[C@@H](N)CCC(O)=O UJKDYMOBUGTJLZ-RUCXOUQFSA-N 0.000 description 1
- 229940116298 l- malic acid Drugs 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 108010034529 leucyl-lysine Proteins 0.000 description 1
- 108010057821 leucylproline Proteins 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 108010054155 lysyllysine Proteins 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 238000003541 multi-stage reaction Methods 0.000 description 1
- 238000001728 nano-filtration Methods 0.000 description 1
- 230000031942 natural killer cell mediated cytotoxicity Effects 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000021962 pH elevation Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 101150079312 pgk1 gene Proteins 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 108010012581 phenylalanylglutamate Proteins 0.000 description 1
- 108010051242 phenylalanylserine Proteins 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000013615 primer Substances 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- CYHOMWAPJJPNMW-RNLVFQAGSA-N pseudotropine Chemical compound C1[C@H](O)C[C@H]2CC[C@@H]1N2C CYHOMWAPJJPNMW-RNLVFQAGSA-N 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000003329 reductase reaction Methods 0.000 description 1
- 108020004418 ribosomal RNA Proteins 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- STECJAGHUSJQJN-FWXGHANASA-N scopolamine Chemical compound C1([C@@H](CO)C(=O)O[C@H]2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-FWXGHANASA-N 0.000 description 1
- 229960002646 scopolamine Drugs 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 108010061238 threonyl-glycine Proteins 0.000 description 1
- 108010031491 threonyl-lysyl-glutamic acid Proteins 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 229930004668 tropane alkaloid Natural products 0.000 description 1
- 150000003813 tropane derivatives Chemical class 0.000 description 1
- 101150019416 trpA gene Proteins 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D453/00—Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids
- C07D453/02—Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids containing not further condensed quinuclidine ring systems
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P17/00—Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
- C12P17/18—Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
- C12P17/182—Heterocyclic compounds containing nitrogen atoms as the only ring heteroatoms in the condensed system
Definitions
- the present invention relates to methods for producing optically active alcohols using tropinone reductase-I.
- Optically active alcohols are useful as an asymmetric source for synthesizing various optically active compounds.
- optically active alcohols are produced through optical resolution of racemates or asymmetric synthesis.
- the technology for optically active alcohol production through asymmetric synthesis is recognized to be essential to produce optically active alcohols on a large scale.
- (R)-3-quinuclidinol is an industrially useful optically active alcohol.
- Optically active (R)-3-quinuclidinol has been used as an important intermediate to produce a variety of physiologically active or pharmacological active agents, for example, in therapeutic agents for arteriosclerosis, which have the activity of inhibiting squalene synthase, bronchodilators having antagonistic action to the muscarinic receptor, agents suppressing gastrointestinal motility, etc.
- JP-A Hei 8-134067; EP-404737A2; EP-424021A1; WO92/04346; and WO93/06098.
- Another known production method using a microorganism or enzyme comprises selective asymmetric hydrolysis of (S)-3-quinuclidinol ester by allowing one of the microorganisms or enzymes described below to react to the racemate of 3-quinuclidinol ester that is a raw material, and the subsequent hydrolysis of residual (R)-3-quinuclidinol ester.
- Additional known methods for producing optically active 3-quinuclidinol from 3-quinuclidinone comprises asymmetric reduction using microorganisms or enzymes (JP-A Hei 10-243795; JP-A Hei 11-196890; JP-A 2000-245495; Abstract (2001) The Japan Agricultural Chemical Society, pp. 3713Y7a9).
- the optically active compound is produced directly by incubating a substrate compound with a wild-type microorganism.
- the reaction consists of a single reaction step, thus the method has greatly been simplified.
- the optical purity of the product is low and the concentration of the product obtained is also low.
- An objective of the present invention is to provide a method for efficiently producing optically active alcohols with high optical purity using tropinone reductase-I.
- the present inventors focused on the reducing action of ketone reductase for economic and convenient production of optically active alcohols. They found that optically active alcohols with high optical purity can be efficiently produced by using the reducing action of tropinone reductase-I, which is a ketone reductase, and thus completed the present invention.
- the present inventors studied the usefulness of co-expression of tropinone reductase-I and an enzyme that is capable of regenerating a coenzyme from its oxidized form generated via asymmetric reduction. Then, they found that the co-expression of the two enzymes enabled more efficient production of optically active alcohols. They found that, particularly, co-expression of tropinone reductase-I and a specific glucose dehydrogenase achieved extremely high efficiency of synthesis.
- the present invention relates to the methods for producing optically active alcohols; vectors, which are used in the production method, for co-expressing a ketone reductase and an enzyme responsible for regeneration of a coenzyme from the oxidized form; and transformants carrying the vectors.
- the present invention also relates to a method for crystallizing optically active alcohols obtained by the above-mentioned production method.
- a method for producing an optically active alcohol comprising the steps of contacting a ketone with an enzymatic material having tropinone reductase-I activity in the presence of a reduced coenzyme to perform asymmetric reduction and recovering an optically active alcohol.
- (b) a protein comprising the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4 wherein one or more amino acids have been substituted, deleted, inserted, and/or added, and having the activity of producing (R)-3-quinuclidinol from 3-quinuclidinone by asymmetric reduction;
- (c) a protein comprising an amino acid sequence having 85% or higher identity to the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4, and having the activity of producing (R)-3-quinuclidinol from 3-quinuclidinone by asymmetric reduction; and
- a protein encoded by a polynucleotide capable of hybridizing to the polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3 under a stringent condition, and having the activity of producing (R)-3-quinuclidinol from 3-quinuclidinone by asymmetric reduction.
- a vector comprising and capable of expressing a DNA encoding tropinone reductase-I and a DNA encoding an enzyme of regenerating a reduced coenzyme from the oxidized form.
- the present invention relates to a method for producing an optically active alcohol, the method comprising the step of contacting a ketone with an enzymatic material having tropinone reductase-I activity in the presence of a reduced coenzyme to perform asymmetric reduction and recovering an optically active alcohol produced.
- An arbitrary enzymatic material can be used in the present invention as long as it has tropinone reductase-I activity and can produce optically active alcohols via asymmetric reduction of ketones.
- tropinone reductase-I activity means the activity of producing tropine from tropinone.
- tropinone reductase-I EC.1.1.1.206
- tropinone reductase-II EC1.1.1.236
- tropinone reductase-II EC1.1.1.236
- Hyoscyamus niger Plant Physiol., 100, 836-845 (1992)
- tropinone reductase-II derived from Brugmansia candida x aurea hybrid has been reported to have the activity of reducing 3-quinuclidinone.
- the enzyme used in the present invention is tropinone reductase-I, which is the enzyme having the activity of producing tropine from tropinone.
- the enzymatic activity of tropinone reductase-I can be assayed by, for example, incubating a reaction solution containing 100 mM potassium phosphate buffer (pH 6.5), 0.2 mM NADPH, 4 mM tropinone, and the enzyme at 37° C. and determining a decrease in the absorbance at 340 nm due to a decrease in a NADPH concentration.
- the 3-quinuclidinone-reducing activity can be determined by incubating a reaction solution containing 100 mM potassium phosphate buffer (pH 6.5), 0.2 mM NADPH, 4 mM 3-quinuclidinone, and the enzyme at 37° C.
- one unit (U) is defined as an amount of the enzyme that catalyzes the decrease of 1 ⁇ mol NADPH for 1 minute.
- optical active alcohol means an alcohol in which the quantity of one optical isomer is larger than that of the other, or an alcohol comprising only one type of optical isomer.
- optical isomer of the present invention generally refers to an “optically active form” or “enantiomer.”
- the enzyme capable of producing optically active alcohols via asymmetric reduction of ketones can be defined as an enzyme capable of producing an optically active alcohol corresponding to an arbitrary ketone compound given as a substrate.
- the preferred enzymatic material of the present invention can produce optically active alcohols with at least 70% ee or higher optical purity, preferably with 80% ee or higher optical purity when using a ketone as the substrate.
- the optical purity of the product can be determined by analyzing the reaction product using an optical resolution column or the like.
- the preferred enzymatic material of the present invention is an enzyme that can be obtained, for example, from a plant species belonging to the genus Datura or the genus Hyoscyamus.
- Such enzymes are known, including tropinone reductase-I derived from Datura stramonium (Proc. Natl. Acad. Sci. U.S.A., 90, 9591-9595(1993)) and tropinone reductase-I derived from Hyoscyamus niger (Biosci. Biotechnol. Biochem., 63(10), 1819-1822(1999)).
- tropinone reductase-I derived from various organisms can also be used, as long as it has the activity of producing optically active alcohols by reducing ketones.
- Other organisms from which tropinone reductase-I is derived include, Brugmansia candida x aurea hybrid (Phytochemistry, 52, 871-878 (1999)), Atropa belladonna (Plant Physiol., 100, 836-845 (1992)), Physalis philadelphica (Plant Physiol., 100, 836-845 (1992)), Solanum tuberosum (DNA Databank of JAPAN (DDBJ)), etc.
- tropinone reductase-I is known to have ketone-reducing activity. It has been reported that the enzyme reduces 3-quinuclidinone and thus produces 3-quinuclidinol. However, the configuration and optical purity of 3-quinuclidinol produced have not been clarified. In addition, it is difficult to estimate the configuration of 3-quinuclidinol generated from 3-quinuclidinone based on the action on tropinone.
- the present inventors strenuously studied the production of optically active alcohols via ketone reduction by tropinone reductase-I. They found that tropinone reductase-I produced optically active alcohols. Specifically, they found that, tropinone reductase-I enabled highly efficient production of (R)-3-quinuclidinol with high optical purity via asymmetric reduction of 3-quinuclidinone. They also clarified that the enzyme reaction can be used to produce optically active alcohols.
- the enzymatic material includes enzymatic proteins, microorganisms, plants, plant cultured cells, and processed products of such organisms, having tropinone reductase-I activity.
- the enzymatic proteins should be substantially pure.
- substantially pure as used herein in reference to a given protein means that the protein is substantially free from other biological macromolecules.
- the substantially pure protein is at least 75% (e.g., at least 80, 85, 95, or 99%) pure by dry weight. Purity can be measured by any appropriate standard method, for example by column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis.
- the enzymatic protein according to the present invention is preferably selected from the group consisting of:
- (b) a protein comprising the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4 wherein one or more amino acids have been substituted, deleted, inserted, and/or added, and having the activity of producing (R)-3-quinuclidinol from 3-quinuclidinone by asymmetric reduction;
- (c) a protein comprising an amino acid sequence having 85% or higher identity to the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4, and having the activity of producing (R)-3-quinuclidinol from 3-quinuclidinone by asymmetric reduction; and
- a protein encoded by a polynucleotide capable of hybridizing to the polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3 under a stringent condition, and having the activity of producing (R)-3-quinuclidinol from 3-quinuclidinone by asymmetric reduction.
- microorganisms, plants, and plant cultured cells used in the present invention may be wild-type or transformants, containing and capable of expressing the gene encoding the above protein.
- the processed product refers to a product obtained after physical treatment, biochemical treatment, chemical treatment, etc., of the above-described microorganisms, plants and plant cultured cells.
- the physical treatment for the processed product includes freeze-and-thaw treatment, sonication, pressurization, osmotic shock, and grinding.
- the biochemical treatment includes a treatment with a cell-lytic enzyme, specifically such as lysozyme.
- the chemical treatment includes a treatment with a detergent or an organic solvent such as toluene, xylene, or acetone.
- the processed product includes microorganisms whose cell membrane permeability has been altered by such a treatment, and cell-free extract yielded by crushing microbial or plant cells with glass beads or by enzyme treatment, and partially purified products.
- the purification can be performed by conventional methods including, filtration, centrifugation, precipitation, salting-out, extraction, and various chromatographic procedures such as ion-exchange chromatography, hydrophobic chromatography, affinity chromatography, and gel filtration, etc. These purification methods can be used alone or in combination of two or more.
- the cells or the purified protein can be immobilized on a solid support.
- the method for immobilization is not particularly limited.
- the solid support includes, for example, glutaraldehyde, acrylamide, ⁇ -carrageenan, calcium alginate, ion-exchange resin, Celite, etc.
- Purified enzymes that can be used as the enzymatic material can be isolated, from a plant such as Datura stramonium (Phytochemistry, 37(2), 391-400 (1994)) or Hyoscyamus niger (Plant Physiol., 100, 836-845 (1992)) via conventional methods well known in the art.
- transformants can be used as the enzymatic material.
- a gene encoding tropinone reductase-I is isolated.
- a transformant containing and capable of expressing the gene can be prepared by transforming a homologous or heterologous host with the gene by genetic recombination techniques. The transformant can be used as the enzymatic material without any modification or after processing as described above.
- recombinant tropinone reductase-I obtained from the transformant by culturing the transformant in a culture medium and recovering the enzyme from the culture, can be used.
- tropinone reductase-I that can be used in the present invention include those from Datura stramonium and Hyoscyamus niger.
- the nucleotide sequence of the tropinone reductase-I gene derived from Datura stramonium is shown in SEQ ID NO: 1 (Proc. Natl. Acad. Sci. U.S. A., 90, 9591-9595 (1993)), and the nucleotide sequence of the tropinone reductase-I gene derived from Hyoscyamus niger is shown in SEQ ID NO: 3 (Biosci. Biotechnol. Biochem., 63(10), 1819-1822(1999)).
- the nucleotide sequence information on these genes encoding tropinone reductase-I has been deposited in DNA databases such as DNA Databank of JAPAN (DDBJ), EMBL, Gene-Bank, etc. Based on the nucleotide sequence information, a gene of interest can be obtained from the source organism. PCR and hybridization screening can be used for preparing a gene. Alternatively, the full-length gene can be prepared chemically by DNA synthesis.
- tropinone reductase-I genes derived from other organisms in addition to the above-mentioned organisms.
- tropinone reductase-I can be isolated from various organisms by hybridizing the above-mentioned nucleotide sequence or a partial sequence thereof as a probe to DNAs prepared from other organisms under stringent conditions.
- the polynucleotide capable of hybridizing under a stringent condition refers to a polynucleotide capable of hybridizing to a DNA comprising a nucleotide sequence selected from the nucleotide sequence of SEQ ID NO: 1 and SEQ ID NO: 3 as the probe, for example, by using ECLTM direct nucleic acid labeling and detection system (Amersham Pharmaica Biotech) under the condition as described in the manufacturer's instruction (wash: at 42° C. with a primary wash buffer containing 0.5 ⁇ SSC).
- the nucleotide sequence of the probe DNA may comprise one or more sequences consisting of at least 20 consecutive residues, preferably at least 30 consecutive residues, for example, 40, 60, or 100 consecutive residues arbitrarily selected from the above-mentioned nucleotide sequence.
- PCR primers can be designed from regions exhibiting high homology.
- the gene encoding tropinone reductase-I can be isolated from various organisms by PCR using such primers and chromosomal DNA or cDNA as a template.
- mutant enzyme comprising an amino acid sequence in which one or more amino acid residues have been substituted, deleted, and/or inserted as compared with the original amino acid sequence, so long as the mutant enzyme has the activity of producing (R)-3-quinuclidinol by reducing 3-quinuclidinone.
- mutant enzyme can modify protein structures by introducing appropriate mutations of amino acid substitution, deletion, insertion, and/or addition, for example, by site-directed mutagenesis (Nucleic Acid Res. 10,pp.6487 (1982); Methods in Enzymol. 100, pp.
- the number of amino acid residues that may be substituted, deleted, inserted, and/or added is, typically less than 50 residues, for example, less than 30 residues, or less than 20 residues, preferably less than 16 residues, more preferably less than 5 residues, still more preferably 0 to 3 residues.
- Amino acid mutations can be generated spontaneously, and therefore not only the enzymes containing artificial amino acid mutations but also the enzymes containing spontaneous mutations can be used in the method of the present invention.
- amino acid substitution is preferably mutated into different amino acid(s) in which the properties of the amino acid side-chain are conserved.
- a “conservative amino acid substitution,” as employed in the present invention, refers to a replacement of one amino acid residue belonging to one of the following groups with similar side chain(s) with another amino acid from the same group. Groups of amino acid residues having similar side chains are well known to one of ordinary skill in the art.
- amino acids with basic side chains e.g., lysine, arginine, histidine
- acidic side chains e.g., aspartic acid, glutamic acid
- uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine
- nonpolar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
- beta-branched side chains e.g., threonine, valine, isoleucine
- aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine
- a gene encoding a protein comprising an amino acid sequence having homology to that of tropinone reductase-I can also be used, as long as the enzyme as the gene product has the activity of producing (R)-3-quinuclidinol by reducing 3-quinuclidinone.
- Such genes can be obtained by homology search in the following databases.
- DNA databases such as DNA Databank of JAPAN (DDBJ), EMBL, Gene-Bank, etc.
- a number of known homology search programs such as FASTA and BLAST programs, can be used. Furthermore, services to search the above-mentioned databases by using these programs, are also available on the Internet. Using such services, it is possible to find tropinone reductase-I to be used in the present invention.
- Proteins which have at least 85% identity, preferably 90% or higher identity, more preferably 95% or higher identity to the amino acid sequence of SEQ ID NO: 2 ( Datura stramonium ) or SEQ ID NO: 4 ( Hyoscyamus niger ), can be used as preferred tropinone reductase-I in the present invention. Proteins comprising amino acid sequences of SEQ ID NO: 2 or SEQ ID NO: 4 were found to have enzymatic activity that can be used in the present invention. The identity between the two is 94%.
- the identity used herein means, for example, a “Positive” identity value obtained by using the BLAST program.
- Homology search of protein can readily be performed, for example, in DNA Databank of JAPAN (DDBJ), by using the FASTA program, BLAST program, etc.
- Gapped BLAST is utilized as described in Altsuchl et al. (Nucleic Acids Res. 25: 3389-3402, 1997).
- the default parameters of the respective programs e.g, XBLAST and NBLAST are used.
- Preferred enzymatic materials of the present invention include (i) transformants obtained by genetic recombination techniques that express the gene encoding tropinone reductase-I that has been introduced into a homologous or heterologous host; and (ii)processed product thereof.
- bacteria such as the genus Escherichia, the genus Bacillus, the genus Pseudomonas, the genus Serratia, the genus Brevibacterium, the genus Corynebacterium, the genus Streptococcus, and the genus Lactobacillus;
- actinomycetes such as, the genus Rhodococcus and the genus Streptomyces;
- yeasts such as the genus Saccharomyces, the genus Kluyveromyces, the genus Schizosaccharomyces, the genus Zygosaccharomyces, the genus Yarrowia, the genus Trichosporon, the genus Rhodosporidium, the genus Pichia, and the genus Candida; and
- fungi such as the genus Neurospora, the genus Aspergillus, the genus Cephalosporium, and the genus Trichoderma; etc.
- Preparation of a transformant and construction of a recombinant vector suitable for a host can be carried out by employing techniques that are commonly used in the fields of molecular biology, bioengineering, and genetic engineering (for example, see Sambrook et al., “Molecular Cloning”, Cold Spring Harbor Laboratories (2001)).
- the gene encoding the tropinone reductase-I of the present invention can be expressed in a microorganism, by introducing the DNA encoding the tropinone reductase-I into a plasmid vector or phage vector that is stable in the microorganism and allowing the genetic information to be transcribed and translated.
- a promoter a unit for regulating transcription and translation
- a terminator is placed downstream of the 3′ end of the DNA.
- the promoter and the terminator should be functional in the microorganism to be utilized as a host. Available vectors, promoters, and terminators for the above-mentioned various microorganisms are described in detail in “Fundamental Course in Microbiology (8): Genetic Engineering,” Kyoritsu Shuppan, specifically for yeasts, in Adv. Biochem. Eng. 43, 75-102 (1990) and Yeast 8, 423-488 (1992).
- available plasmids include pBR series and pUC series plasmids; available promoters include promoters derived from lac (derived from ⁇ -galactosidase gene), trp (derived from the tryptophan operon), tac and trc (which are chimeras of lac and trp), P L and P R of ⁇ phage, etc. Available terminators are derived from trpA, phages, rrnB ribosomal RNA, etc.
- pSE420D vector (described in JP-A 2000-189170) can be used preferably, that is, obtained from commercially available pSE420 vector (Invitrogen) by partially modifying its multi-cloning site.
- vectors are pUB110 series and pC194 series plasmids; the vectors can be integrated into host chromosome.
- Available promoters and terminators are derived from apr (alkaline protease), npr (neutral protease), amy ( ⁇ -amylase), etc.
- Pseudomonas For the genus Pseudomonas, there are host-vector systems developed for Pseudomonas putida and Pseudomonas cepacia.
- plasmid vectors include pAJ43 (Gene 39, 281 (1985)). Promoters and terminators used for Escherichia coli can be utilized without any modification for Brevibacterium.
- plasmid vectors such as pCS11 (JP-A Sho 57-183799) and pCB101 (Mol. Gen. Genet. 196, 175(1984) are available.
- plasmid vectors such as pHV1301 (FEMS Microbiol. Lett. 26, 239 (1985)) and pGK1 (Appl. Environ. Microbiol. 50, 94 (1985)) can be used.
- plasmid vectors such as pAM ⁇ 1 (J. Bacteriol. 137, 614 (1979)), which was developed for the genus Streptococcus, can be utilized; and promoters that are used for Escherichia coli are also usable.
- Rhodococcus For the genus Rhodococcus, plasmid vectors isolated from Rhodococcus rhodochrous are available (J. Gen. Microbiol. 138, 1003 (1992)).
- plasmids can be constructed in accordance with the method as described in Hopwood et al., “Genetic Manipulation of Streptomyces: A Laboratory Manual” (Cold Spring Harbor Laboratories (1985)).
- pIJ486 Mol. Gen. Genet. 203, 468-478, 1986
- pKC1064 Gene 103, 97-99 (1991)
- pUWL-KS Gene 165, 149-150 (1995)
- the same plasmids can also be utilized for Streptomyces virginiae (Actinomycetol. 11, 46-53 (1997)).
- Saccharomyces in particular, for Saccharomyces cerevisiae, YRp series, YEp series, YCp series, and YIp series plasmids are available; integration vectors (refer EP 537456, etc.), which are integrated into chromosome via homologous recombination with multicopy-ribosomal genes, allow to introduce a gene of interest in multicopy and the gene incorporated is stably maintained in the microorganism; and thus, these types of vectors are highly useful.
- Available promoters and terminators are derived from genes encoding ADH (alcohol dehydrogenase), GAPDH (glyceraldehyde-3-phosphate dehydrogenase), PHO (acid phosphatase), GAL ( ⁇ -galactosidase), PGK (phosphoglycerate kinase), ENO (enolase), etc.
- ADH alcohol dehydrogenase
- GAPDH glycoside dehydrogenase
- PHO acid phosphatase
- GAL ⁇ -galactosidase
- PGK phosphoglycerate kinase
- ENO enolase
- plasmids are those such as 2- ⁇ m plasmids derived from Saccharomyces cerevisiae, pKD1 series plasmids (J. Bacteriol. 145, 382-390(1981)), plasmids derived from pGK11 and involved in the killer activity, KARS (Kluyveromyces autonomous replication sequence) plasmids, and plasmids (refer EP 537456, etc.) capable of being integrated into chromosome via homologous recombination with the ribosomal DNA. Promoters and terminators derived from ADH, PGK, and the like are available.
- plasmid vectors comprising ARS (autonomous replication sequence) derived from Schizosaccharomyces pombe and auxotrophy-complementing selectable markers derived from Saccharomyces cerevisiae (Mol. Cell. Biol. 6, 80 (1986)). Promoters such as ADH promoter derived from Schizosaccharomyces pombe are usable (EMBO J. 6, 729 (1987)).
- pAUR224 is commercially available from TaKaRa Shuzo Co., Ltd.
- plasmids originating from those such as pSB3 (Nucleic Acids Res. 13, 4267 (1985)) derived from Zygosaccharomyces rouxii are available; it is possible to use promoters such as PHO5 promoter derived from Saccharomyces cerevisiae and GAP-Zr (Glyceraldehyde-3-phosphate dehydrogenase) promoter (Agri. Biol. Chem. 54, 2521 (1990)) derived from Zygosaccharomyces rouxii.
- promoters such as PHO5 promoter derived from Saccharomyces cerevisiae and GAP-Zr (Glyceraldehyde-3-phosphate dehydrogenase) promoter (Agri. Biol. Chem. 54, 2521 (1990)) derived from Zygosaccharomyces rouxii.
- Candida maltosa For the genus Candida, host-vector systems have been developed for Candida maltosa, Candida albicans, Candida tropicalis, Candida utilis, etc.
- An autonomous replication sequence originating from Candida maltosa has been cloned (Agri. Biol. Chem. 51, 51, 1587 (1987)), and a vector using the sequence has been developed for Candida maltosa.
- a chromosome-integration vector with a highly efficient promoter unit has been developed for Candida utilis (JP-A Hei 08-173170).
- Trichoderma reesei For the genus Trichoderma, host-vector systems have been developed for Trichoderma reesei, and promoters such as that derived from an extracellular cellulase gene are available (Biotechnology 7, 596-603(1989)).
- the systems include those of insect such as silkworm (Nature 315, 592-594(1985)), and plants such as rapeseed, maize, potato, etc. These systems are preferably employed to express a large amount of foreign protein.
- the transformants can be cultured and tropinone reductase-I can be purified from the transformants.
- the method of the present invention for producing optically active alcohols can be used in combination with a system of coenzyme regeneration.
- the tropinone reductase-I requires a reduced coenzyme in the process of ketone reduction to produce alcohols.
- Such reduced coenzymes include NADPH and NADH.
- NAD(P)H is used as a reduced coenzyme
- NAD(P) + is generated from NAD(P)H during the reduction by tropinone reductase-I.
- NAD(P) + can be converted to the reduced form NAD(P)H using an appropriate substrate-oxidation reaction.
- NAD(P)H The regeneration of NAD(P)H from NAD(P) + can be achieved by using an NAD(P)H-regenerating enzyme derived from plants, microorganisms, or transformants.
- NAD(P)H regeneration may be a single-step reaction using a single enzyme catalyzing the regeneration, or a multi-step reaction comprising two or more enzymes.
- enzyme system the enzymes of the series of enzymatic reaction steps are collectively referred to as “enzyme system.”
- the NAD(P) + -reducing potency can be enhanced by adding, to the reaction system, a sugar such as glucose or sucrose, organic acid, or alcohol such as ethanol or isopropanol.
- the regeneration of NAD(P)H can also be achieved by using an enzyme capable of converting NAD(P) + to NAD(P)H. Enzymes useful for NAD(P)H generation are listed below. Microorganisms containing such an enzyme, processed product thereof, or the partially purified enzymes can be used in addition to the purified enzymes. For example, when the enzyme is glucose dehydrogenase, NAD(P)H is regenerated from NAD(P) + accompanied by the oxidation of glucose to ⁇ -gluconolactone.
- each of the enzymes required for NAD(P)H regeneration may be added to the reductase reaction system of the present invention.
- the enzymes can be contacted with the above-mentioned reaction system through an NAD(P)H-permeable membrane.
- the auxiliary reaction system of NAD(P)H regeneration may be dispensable in some cases. Namely, when an organism containing the high activity of regenerating NAD(P)H is used as the host, the efficient reduction can be achieved using the transformant without adding the enzyme for NAD(P)H regeneration.
- Two or more genes can be introduced into a host by a known method such as a method where the host is transformed with multiple recombinant vectors having distinct replication origins into which the respective genes have been inserted separately to avoid the incompatibility; a method where both genes have been inserted into a single vector; a method where one or both genes are integrated into a chromosome of the host.
- Glucose dehydrogenases that can be used for NAD(P)H regeneration in the present invention include glucose dehydrogenases derived from Bacillus subtilis and Thermoplasma acidophilum.
- the genes encoding the enzymes are already isolated (Proc. Natl. Acad. Sci U.S.A., 80, 785-789 (1983); Eur. J. Biochem., 211, 549-554 (1993)).
- the genes can also be obtained from the microorganisms by PCR or hybridization screening based on the known nucleotide sequences.
- regions responsible for expressional regulation such as promoter and terminator may be ligated to each gene, or alternatively the genes can be expressed as an operon containing multiple cistrons like the lactose operon.
- a single vector in which the genes encoding tropinone reductase-I and glucose dehydrogenase have been inserted can be prepared, for example, by ligating both genes in tandem into pSE420D (JP-A 2000-189170).
- the plasmid pSG-DSR1 (FERM BP-8061) which contains Datura stramonium -derived tropinone reductase-I and Bacillus subtilis -derived glucose dehydrogenase genes as inserts
- the plasmid pSG-HNR1 (FERM BP-8062) which contains Hyoscyamus niger -derived tropinone reductase-I and Bacillus subtilis -derived glucose dehydrogenase genes as inserts, have been deposited under the following conditions under the Budapest Treaty.
- the present inventors succeeded in obtaining a transformant carrying a vector encompassing tropinone reductase-I and glucose dehydrogenase genes ligated in tandem, which enables asymmetric reduction of 3-quinuclidinone at a concentration of as high as 10%.
- “%” for concentration means “w/v %.”
- the present invention provides a vector containing and capable of expressing a DNA encoding tropinone reductase-I and a DNA encoding an enzyme that regenerates an oxidized coenzyme to its reduced form.
- the DNA encoding tropinone reductase-I to be inserted into the vector of the present invention can be, for example, a DNA selected from the group consisting of (a) to (d):
- the above-mentioned regeneration enzyme can be used as the enzyme of regenerating a reduced coenzyme from its oxidized form, which is to be inserted into the vector of the present invention.
- glucose dehydrogenase is a preferred regeneration enzyme.
- dehydrogenases include glucose dehydrogenases derived from Bacillus subtilis and Thermoplasma acidophilum. As shown in the example herein, when these glucose dehydrogenases are used in combination with a DNA comprising the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3 which encodes tropinone reductase-I, a transformant containing them can produce a high concentration of (R)-3-quinuclidinol.
- ligate DNAs encoding tropinone reductase-I and the regeneration enzyme in tandem in the vector of the present invention are preferred.
- ligate in tandem means arranging the DNAs so as to ensure the expression of these enzymes under the control of a common expressional regulatory region. Such an arrangement allows more efficient expression of the enzyme genes and production of optically active alcohols.
- the present invention also relates to a transformant containing and capable of expressing the vector of the present invention.
- the vector of the present invention may be transformed into arbitrary hosts, so long as the vector is maintained and expressed in the hosts.
- the most preferred host is a microorganism substantially lacking the ability of producing the optical isomer of the optically active alcohol of interest.
- the target optically active alcohol is (R)-3-quinuclidinol
- the host can be a microorganism which itself does not substantially produce 3-quinuclidinol.
- the host has the activity of synthesizing (S)-3-quinuclidinol, it is preferable to use a mutant strain which is deficient in the enzyme producing the (S) form.
- the deficient strain can be obtained by the use of spontaneous mutation, artificial mutation, genetic recombination technique, or the like.
- E. coli HB101 strain used herein in Example is a microorganism which originally does not substantially produce the optical isomer of 3-quinuclidinol.
- the strain is preferably used as a host microorganism to prepare a transformant which is to be used in the method of the present invention for producing (R)-3-quinuclidinol.
- the enzymatic reaction to produce an optically active alcohol according to the method of the present invention can be carried out by contacting the above-mentioned enzymatic material with a reaction solution containing a ketone as the substrate.
- the reaction can be carried out in an aqueous solvent, in a mixed system of an aqueous solvent and a water-soluble organic solvent, or in a two-phase mixed system of an aqueous solvent and a water-insoluble organic solvent.
- aqueous solvents include buffers having buffer capacity at a neutral pH, such as phosphate buffer and Tris-HCl buffer. Alternatively, no buffer is required when the use of acid and alkali can keep the pH change during the reaction within a desired range.
- Organic solvents insoluble or sparingly insoluble in water that can be used include, for example, ethyl acetate, butyl acetate, toluene, chloroform, n-hexane, isooctane, etc.
- the reaction can be carried out in a mixed system consisting of an aqueous solvent and an organic solvent such as ethanol, acetone, dimethyl sulfoxide, and acetonitrile.
- the enzymatic material is supplied as it is, or as a solution after combined with water or buffer.
- an aqueous solvent such as water, buffer, or ethanol
- a compound used as the substrate can be supplied to the reaction system.
- the substrate and enzymatic material react in a single-phase reaction system.
- the reaction of the present invention may be carried out by using an immobilized enzyme, a membrane reactor, or the like.
- Membranes that can constitute a membrane reactor are exemplified by ultra-filter, hydrophobic membrane, cationic membrane, nanofiltration membrane (J. Ferment. Bioeng. 83, 54-58 (1997)) etc.
- the forms of contacting the enzyme with the reaction solution are not limited to these examples.
- the reaction solution is defined as a solution which is obtained by dissolving a substrate in an appropriate solvent providing a condition preferable for the enzymatic activity.
- ketone which is the substrate compound of the present invention, so long as it can be converted to an optically active alcohol of interest by the action of tropinone reductase-I.
- Table 1 lists compounds which are available substrates and alcohols converted from the substrates according to the present invention.
- 3-quinuclidinone a particularly preferred example is 3-quinuclidinone.
- (R)-3-quinuclidinol that is generated from substrate 3-quinuclidinone is an optically active compound that is industrially useful, as described herein earlier.
- the structures of 3-quinuclidinone and (R)-3-quinuclidinol are shown in formula (1).
- tropinone reductase-I of the present invention can be carried out under the following conditions.
- substrate concentration 0.01 to 50%, preferably, 0.1 to 30%.
- enzyme concentration 0.01 to 500 U/ml, preferably 1 to 100 U/ml.
- reaction temperature 4 to 60° C., preferably 30 to 50° C.
- pH 4 to 9, preferably 6.5 to 8.5.
- the coenzyme NAD(P) + or NAD(P)H may be added at a concentration of 0.001 to 100 mM, preferably 0.01 to 10 mM, to the reaction system.
- the substrate may be added to the reaction at once at the start of reaction, or continuously or stepwise.
- the substrate for the coenzyme-regenerating enzyme can be added, for example, at a 0.1 to 20 times higher, preferably 0.5 to 5 times higher molar concentration than the substrate ketone.
- the NAD (P) H-regenerating enzyme can be added at a concentration that ensures approximately 0.1 to 100 times higher, preferably 0.5 to 20 times higher enzymatic activity as compared with tropinone reductase-1. Exemplary combinations of the substrate for regenerating NAD(P)H and the enzyme for NAD(P)H regeneration are shown below.
- Optically active alcohols produced according to the present invention can be collected by well known methods. Such methods include, but are not limited to, separation and purification means such as extraction from a reaction solution with an organic solvent; crystallization; recrystallization; column chromatography; concentration; distillation; etc.
- the separation and purification means can be used singly or in combination.
- the collection method can comprise a step of separating cells of microorganism or proteins from the reaction solution. Such separation of cells of microorganism or proteins can be achieved by centrifugal separation, membrane treatment, etc.
- Optically active alcohols with high optical purity can be produced on a large scale by the method of the present invention.
- the crystals of high optical purity products can be obtained readily.
- (R)-3-quinuclidinol which is an optically active alcohol, can readily be crystallized as the form of a hydrochloride salt by the method as described below.
- the present invention also provides a method for obtaining (R)-3-quinuclidinol hydrochloride, the method comprising the steps of:
- (R)-3-quinuclidinol in the n-butanol extract can be converted into a hydrochloride salt in the above crystallization step by removing moisture from the n-butanol extract, flushing hydrochloric acid gas, then performing crystallization of (R)-3-quinuclidinol hydrochloride from the extract.
- Crystals of free (R)-3-quinuclidinol can also be obtained from (R)-3-quinuclidinol hydrochloride obtained by the above method.
- the present invention provides a method for obtaining crystals of free (R)-3-quinuclidinol, the method comprising the steps of:
- the solubility of 1% or higher of (R)-3-quinuclidinol hydrochloride in a solvent is defined as the solubility at a particular temperature at which (R)-3-quinuclidinol hydrochloride is dissolved in the solvent.
- the second solvent can be substituted for the solvent by distilling off the first solvent, for example, by azeotrophic distillation, from a mixture of these solvents, dissolves free (R)-3-quinuclidinol with lower solubility than the first solvent, and allows crystallizing free (R)-3-quinuclidinol from itself.
- solvent that allows to crystallize 3-quinuclidinol means a solvent that ensures the production of 3-quinuclidinol crystals when the solubility of 3-quinuclidinol is decreased by decreasing the solvent temperature, or the solvent is removed.
- any solvent selected from the group consisting of toluene, hexane, 4-methyl-2-pentanone, and butyl acetate may be used as the second solvent, singly or in combination of two or more of these.
- the combination where the first solvent is water and the second solvent is toluene is particularly preferred.
- the method of the present invention for yielding (R)-3-quinuclidinol hydrochloride is described in more detail.
- the (R)-3-quinuclidinol solution used as a starting material can be provided by dissolving (R)-3-quinuclidinol in an aqueous solvent such as water, a buffer having buffer capacity at a neutral pH, such as phosphate buffer and Tris-HCl buffer.
- an aqueous solvent such as water, a buffer having buffer capacity at a neutral pH, such as phosphate buffer and Tris-HCl buffer.
- the reaction solution of the above enzymatic reaction can be used as the starting (R)-3-quinuclidinol solution.
- the concentration of (R)-3-quinuclidinol in the starting solution ranges from 1 to 80%.
- cells of microorganism or proteins can be separated from the reaction solution containing (R)-3-quinuclidinol by centrifugal separation, membrane treatment, or the like. Then, pH of the reaction solution is made alkaline by adding alkali.
- alkali that can be used includes sodium hydroxide and potassium hydroxide. The pH is adjusted to 10 or higher, preferably 12 or higher.
- (R)-3-quinuclidinol is converted to the free form by this step of alkalifying the reaction solution.
- Free (R)-3-quinuclidinol is extracted from the reaction solution with n-butanol.
- 0.8 to 5 molar equivalent, preferably 1 to 1.2 molar equivalent excess of hydrochloric acid is added to one molar equivalent of (R)-3-quinuclidinol in the n-butanol extract, (R)-3-quinuclidinol is converted to a hydrochloride salt. Then, moisture is removed from the solution by azeotropic dehydration.
- (R)-3-quinuclidinol hydrochloride can be crystallized in the resulting solution by cooling the solution.
- the hydrochloride salt obtained by the procedure as described above.
- the hydrochloride salt is dissolved in 0.5 volumes or higher, preferably 0.8 to 1.5 volumes of the first solvent.
- the first solvent is preferably water.
- the resulting (R)-3-quinuclidinol solution is combined with an alkali.
- the alkali may be sodium hydroxide or potassium hydroxide.
- the pH of the (R)-3-quinuclidinol solution is adjusted to 10 or higher, preferably 12 or higher. Alkalinization of the reaction solution converts (R)-3-quinuclidinol hydrochloride to its free form.
- Free (R)-3-quinuclidinol can be crystallized from the second solvent that is an appropriate organic solvent.
- one or more volumes of, preferably 5 to 50 volumes of toluene is added as the second solvent to the (R)-3-quinuclidinol solution, and then the first solvent is distilled off.
- impurities generated during the treatment such as inorganic salts, are separated by a method such as filtration.
- filtration By cooling, for example, (R)-3-quinuclidinol can be crystallized from the remaining toluene. Separation of impurities is preferably carried out by filtration under heating to prevent yield reduction.
- Hexane, 4methyl-2-pentanone, butyl acetate, or the like, in addition to toluene, can be used as the second solvent.
- (R)-3-quinuclidinol that can be obtained according to the present invention can be crystallized as the free form as well as the form of a hydrochloride salt.
- the present invention provides a method for producing (R)-3-quinuclidinol, the method comprising the steps of:
- an organic solvent is added to the n-butanol extract.
- organic solvent those exemplified for the second solvent as described above can be used and include toluene, hexane, 4-methyl-2-pentanone, butyl acetate, etc. Toluene is particularly preferred.
- High-purity (R)-3-quinuclidinol can be obtained by removing impurities via crystallization.
- the present invention provides a method for producing optically active alcohols using the asymmetric reduction activity of tropinone reductase-I. This method enables simple and efficient production of (R)-3-quinuclidinol that is an industrially important compound. In addition, (R)-3-quinuclidinol obtained according to the present invention has high optical purity.
- the present invention provides a more efficient method for producing (R)-3-quinuclidinol by using genetic recombination techniques.
- the method of the present invention for producing optically active alcohols can be implemented further efficiently when tropinone reductase-I is co-expressed with an enzyme regenerating an oxidized coenzyme.
- Optically active alcohols can be produced highly efficiently by co-expressing, for example, tropinone reductase-I derived from a plant such as Datura stramonium or Hyoscyamus niger and glucose dehydrogenase, as a regeneration enzyme, derived from Bacillus subtilis or Thermoplasma acidophilum. It had been difficult to predict whether co-expression of the plant-derived enzyme and the microorganism-derived enzyme allowed highly efficient production of (R)-3-quinuclidinol with high optical purity.
- the present invention provides a method to crystallize (R)-3-quinuclidinol with high optical purity. Since high optical purity (R)-3-quinuclidinol is obtained at a high concentration according to the present invention, the compound can be efficiently crystallized.
- the present inventors found that particular combinations of solvents allowed to readily crystallize (R)-3-quinuclidinol, which is generally difficult to be crystallized due to high solubility in aqueous solutions. Preparing substances as high purity crystals is essential for their industrial use.
- pETTR1 containing the gene encoding tropinone reductase-I from Datura stramonium was isolated according to the method as described in a literature (Proc. Natl. Acad. Sci. U.S.A., 95, 4876-4881 (1998)).
- the primers DSR-ATG1 (SEQ ID NO: 5) and DSR-TAA1 (SEQ ID NO: 6) were synthesized based on the 5′-end and 3′-end sequences of the structural gene.
- pETTR1 as a template, a specific DNA was amplified by PCR (30 cycles of denaturation at 95° C. for 30 seconds, annealing at 50° C. for 1 minute, and extension at 75° C. for 3 minutes and 15 seconds).
- SEQ ID NO: 5 DSR-ATG1/ATACCATGGAAGAATCAAAAGTG
- SEQ ID NO: 6 DSR-TAA1/TGGTCTAGATTAAAACCCACCATTAGCTGTG
- the plasmid pSE-BSG1 (JP-A 2000-189170) containing the glucose dehydrogenase gene derived from Bacillus subtilis was double-digested with the restriction enzymes NcoI and XbaI, and thus a DNA fragment containing the glucose dehydrogenase gene derived from Bacillus subtilis was prepared.
- the DNA fragment was ligated, by using T4 DNA ligase, to a DNA fragment containing the tropinone reductase-I gene derived from Datura stramonium that had been obtained by digesting the DNA fragment prepared in Example 1 with the same enzymes.
- the plasmid pSG-DSR1 (FERM BP-8061), which allows co-expression of glucose dehydrogenase and tropinone reductase-I, was thus obtained.
- E. coli HB101 strain transformed with pSG-DSR1 E. coli HB101 (pSG-DSR1) was cultured overnight in LB medium containing 50 mg/L ampicillin. 0.1 mM IPTG was added to the culture to induce the expression of genes. Then, the bacterial cells were further cultured for 4 hours. After harvesting, the bacterial cells were crushed in a closed chamber-type sonicator UCD-200TM (Cosmo Bio). The supernatant obtained by centrifugation was used as a cell-free extract.
- Enzymatic activities of the cell-free extract obtained in Example 3 were assayed.
- the cell-free extract derived from the recombinant E. coli cells showed tropinone-reducing activity in an NADPH-dependent fashion, and the specific activity was 9.49 U/mg protein. Further, the cell-free extract derived from the recombinant E. coli cells showed 3-quinuclidinone-reducing activity in an NADPH-dependent fashion, and the specific activity was 4.33 U/mg protein.
- the assay for glucose dehydrogenase activity was carried out by incubating a reaction solution containing 100 mM potassium phosphate buffer (pH 6.5), 2.5 mM NAD + , 100 mM D-glucose, and the cell-free extract at 37° C. 1U was defined as an enzyme amount capable of catalyzing the generation of 1 ⁇ mol NADH for 1 minute.
- the cell-free extract derived from the recombinant E. coli cells showed the specific activity of 9.02 U/mg protein.
- the optical purity of products was determined.
- An assay for the optical purity was carried out by the following procedure. First, after the bacterial cells were removed from the reaction solution, sodium carbonate was added to the solution to a saturated concentration and 3-quinuclidinol was extracted with ethyl acetate. After desolvation, the product was benzoylated with benzoyl chloride, and then analyzed by high-performance liquid chromatography using an optical resolution column (column: CHIRALPACK AD from Daicel Chemical Industries LTD.; mobile phase, n-hexane/ethanol/diethyl amine (95/5/0.1); detection wavelength, 254 nm; flow rate, 1.0 mL/minute). The (S) form was detected with the retention time of 12 minutes; the (R) form was detected with 23 minutes. The result showed that the optical purity of the product was 98.6% ee (R).
- the bacterial cells were removed by centrifugal separation from the reaction solution prepared in Example 5, the solution was deproteinized by the treatment with an UF membrane and concentrated with an evaporator. The pH of the solution was adjusted to 12.0 by adding 25% sodium hydroxide thereto, and then the solution was extracted twice with an equal volume of n-butanol. A 18 mL portion of concentrated hydrochloric acid was added to the extract, and water was removed by distillation at 110 to 130° C. under normal pressure. Crystals of (R)-3-quinuclidinol hydrochloride were obtained by cooling. The resulting crystals were collected by filtration, and dried under reduced pressure. The quantity of crystals obtained was 32.4 g, and the yield was 80.0%.
- the bacterial cells were removed by centrifugal separation from a reaction solution of 3-quinuclidinone reduction by E. coli, which had been transformed with pSG-DSR1.
- the solution was deproteinized by the treatment with an UF membrane.
- the resulting solution (91 g, the content of 3-quinuclidinol hydrochloride was 12%) was combined with a 25% aqueous solution of sodium hydroxide, and then the mixture was adjusted to pH 12.
- the resulting solution was concentrated to 48 g at 50 to 60° C. under reduced pressure of 20 Torr.
- An equal volume of n-butanol was added to the solution and the extraction was performed twice.
- the resulting organic layer was concentrated at 50 to 60° C. under 20 Torr.
- the tropinone reductase-I gene derived from Hyoscyamus niger was isolated according to the method as described in a literature (Biosci. Biotechnol. Biochem., 63(10),1819-1822(1999)).
- the primers HNR-ATG1 (SEQ ID NO: 7) and HNR-TAA1 (SEQ ID NO: 8) were synthesized based on the 5′-end and 3′-end sequences of the structural gene.
- a specific DNA was amplified by PCR (30 cycles of denaturation at 95° C. for 30 seconds, annealing at 50° C. for 1 minute, and extension at 75° C. for 3 minutes and 15 seconds) using a tropinone reductase-I cDNA as a template.
- SEQ ID NO: 7 HNR-ATG1
- SEQ ID NO: 8 HNR-TAA1
- the plasmid pSE-BSG1 (JP-A 2000-189170) containing the glucose dehydrogenase gene derived from Bacillus subtilis was double-digested with the restriction enzymes NcoI and XbaI, and thus a DNA fragment containing the glucose dehydrogenase gene derived from Bacillus subtilis was prepared.
- the DNA fragment was ligated, by using T4 DNA ligase, to a DNA fragment containing the tropinone reductase-I gene derived from Hyoscyamus niger that had been obtained by digesting the DNA fragment prepared in Example 6 with the same enzymes.
- the plasmid pSG-HNR1 (FERM BP-8062), which allows co-expression of glucose dehydrogenase and tropinone reductase-I, was thus obtained.
- E. coli HB101 strain transformed with pSG-HNR1 E. coli HB101 (pSG-HNR1) was cultured overnight in LB medium containing 50 mg/L ampicillin. 0.1 mM IPTG was added to the culture to induce the expression of genes. Thereafter, the bacterial cells were further cultured for 4 hours. After harvesting, the bacterial cells were crushed in a closed chamber-type sonicator UCD-200TM (Cosmo Bio). The supernatant obtained by centrifugation was used as a cell-free extract.
- Example 11 The enzymatic activity of the cell-free extract obtained in Example 11 was assayed.
- the cell-free extract derived from the recombinant E. coli cells showed tropinone-reducing activity in an NADPH-dependent fashion, and the specific activity was 0.35 U/mg protein.
- the cell-free extract derived from the recombinant E. coli showed 3-quinuclidinone-reducing activity in an NADPH-dependent fashion, and the specific activity was 0.26 U/mg protein.
- the specific activity of glucose dehydrogenase was 3.96 U/mg protein.
- the assay for glucose dehydrogenase activity was carried out by the method as described in Example 4.
- E. coli transformed with pSG-HNR1 prepared in Example 9 was cultured in 10 mL of 2 ⁇ YT medium (Tryptone 20 g, Yeast extract 10 g, NaCl 10 g, pH 7.2). After the expression was induced with 0.1 mM IPTG, the cells were harvested. The bacterial cells obtained were added to 10 mL of a reaction solution containing 500 mM potassium phosphate (pH 6.5), 1% (61.9 mM) 3-quinuclidinone hydrochloride, and 278.4 mM glucose, and the mixture was incubated at 20° C. overnight while being agitated.
- Thermoplasma acidophilum IFO 15155 was inoculated into four 250-mL flasks each containing 50 mL of Medium 280 (3 g/L KH 2 PO 4 , 0.5 g/L MgSO 4 -7H 2 O, 0.25 g/L CaCl 2 -2H 2 O, 1 g/L yeast extract, 10 g/L glucose, and 2 g/L (NH 4 ) 2 SO 4 (pH 2.0)). The cells were incubated at 60° C. for two weeks.
- Medium 280 3 g/L KH 2 PO 4 , 0.5 g/L MgSO 4 -7H 2 O, 0.25 g/L CaCl 2 -2H 2 O, 1 g/L yeast extract, 10 g/L glucose, and 2 g/L (NH 4 ) 2 SO 4 (pH 2.0)
- the cells were harvested by centrifugal separation, and the chromosomal DNA was prepared with a DNeasy Tissue kit (Qiagen).
- SEQ ID NO: 9 TAG-ATG1
- SEQ ID NO: 10 TAG-TAA3
- a DNA fragment containing the glucose dehydrogenase gene was amplified by PCR (30 cycles of denaturation at 95° C. for 30 seconds, annealing at 50° C. for 1 minute, and extension at 75° C. for 4 minutes) in a reaction solution containing a buffer for Pfu DNA Polymerase, 0.2 mM dNTP, primer DNAs (25 pmol each), 2.5 U Pfu DNA polymerase, and 50 ng of the chromosomal DNA prepared from Thermoplasma acidophilum in Example 13.
- the DNA fragment obtained was purified with a GFX-column (Pharmacia), and double-digested with EcoRI and SpeI. Then, the DNA fragment was purified by agarose gel electrophoresis.
- the DNA fragment obtained was ligated to pSE420D (JP-A 2000-189170) that had been digested with the same restriction enzymes, and thus pSE-TAG3 was constructed.
- the plasmid pSG-DSR1 prepared in Example 2 was double-digested with NcoI and XbaI, and then an 824-bp DNA fragment (pSG-DSR1/NcoI-XbaI), which contained the tropinone reductase-I gene derived from Datura, was purified.
- the DNA fragment was ligated, by using T4 DNA ligase, to the vector that was prepared by double-digesting the plasmid pSE-TAG3 obtained in Example 14 with NcoI and XbaI.
- the plasmid pTG-DSR1 which allows co-expression of glucose dehydrogenase and tropinone reductase-I, was thus obtained.
- E. coli HB101 strain transformed with pTG-DSR1 E. coli HB101 (pTG-DSR1) was cultured overnight in LB medium containing 50 mg/L ampicillin. After 0.1 mM IPTG was added, the bacterial cells were further cultured for 4 hours.
- Enzymatic activities of the cell-free extract obtained in Example 17 were assayed.
- the cell-free extract derived from the recombinant E. coli cells showed tropinone-reducing activity in an NADPH-dependent fashion, and the specific activity was 5.13 U/mg protein.
- the cell-free extract derived from the recombinant E. coli showed 3-quinuclidinone-reducing activity in an NADPH-dependent fashion, and the specific activity was 1.91 U/mg protein.
- the assay for glucose dehydrogenase activity was carried out by incubating a reaction solution containing 100 mM potassium phosphate buffer (pH 7.0), 2.5 mM NADP + , 100 mM D-glucose, and the cell-free extract at 25° C. 1U was defined as an enzyme amount capable of catalyzing the generation of 1 ⁇ mol NADPH for 1 minute.
- the specific activity of the cell-free extract derived from the recombinant E. coli was 1.95 U/mg protein.
- E. coli HB101 strain transformed with pTG-DSR1 prepared in Example 16 was cultured in 10 mL of 2 ⁇ YT medium (Tryptone 20 g, Yeast extract 10 g, NaCl 10 g, pH 7.2). After induction, the cells were harvested. The bacterial cells obtained were added to 10 mL of a reaction solution containing 500 mM potassium phosphate (pH 7.5), 5% (309.3 mM) 3-quinuclidinone hydrochloride, and 464.0 mM glucose, and the mixture was incubated at 37° C. overnight while being agitated.
- 2 ⁇ YT medium Teryptone 20 g, Yeast extract 10 g, NaCl 10 g, pH 7.2
- the bacterial cells obtained were added to 10 mL of a reaction solution containing 500 mM potassium phosphate (pH 7.5), 5% (309.3 mM) 3-quinuclidinone hydrochloride, and 464.0 mM glucose, and the mixture was
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
Description
- This application claims priority to Japanese Patent Application Serial No. 2001-375041 filed on Dec. 7, 2001, Japanese Patent Application Serial No. 2002-152955 filed on May 27, 2002, and U.S. Provisional Patent Application Serial No. 60/385,434 filed on May 31, 2002. The entire contents of each application is hereby expressly incorporated herein by reference.
- The present invention relates to methods for producing optically active alcohols using tropinone reductase-I.
- Optically active alcohols are useful as an asymmetric source for synthesizing various optically active compounds. Typically, optically active alcohols are produced through optical resolution of racemates or asymmetric synthesis. In particular, the technology for optically active alcohol production through asymmetric synthesis is recognized to be essential to produce optically active alcohols on a large scale.
- (R)-3-quinuclidinol is an industrially useful optically active alcohol. Optically active (R)-3-quinuclidinol has been used as an important intermediate to produce a variety of physiologically active or pharmacological active agents, for example, in therapeutic agents for arteriosclerosis, which have the activity of inhibiting squalene synthase, bronchodilators having antagonistic action to the muscarinic receptor, agents suppressing gastrointestinal motility, etc. (Unexamined Published Japanese Patent Application No. (JP-A) Hei 8-134067; EP-404737A2; EP-424021A1; WO92/04346; and WO93/06098).
- So far known methods for producing optically active 3-quinuclidinol include, a method where the compound is produced through optical resolution of the acetylated form of 3-quinuclidinol racemate with tartaric acid, followed by hydrolysis (Acta Pharm. Suec. 16(4), 281-3 (1979)).
- Another known production method using a microorganism or enzyme comprises selective asymmetric hydrolysis of (S)-3-quinuclidinol ester by allowing one of the microorganisms or enzymes described below to react to the racemate of 3-quinuclidinol ester that is a raw material, and the subsequent hydrolysis of residual (R)-3-quinuclidinol ester.
- Subtilisin protease (U.S. Pat. No. 5,215,918);
- Esterases derived from the genus Aspergillus or the genus Pseudomonas (JP-A Hei 10-210997); and
- Cells of microorganisms belonging to the genus Aspergillus, the genus Rhizopus, the genus Candida, and the genus Pseudomonas (JP-A Hei 10-136995), and enzymes derived therefrom.
- In addition, an alternative production method has been reported, which comprises selective asymmetric hydrolysis of (R)-3-quinuclidinol ester by contacting horse serum esterase with the racemate of 3-quinuclidinol ester that is a raw material (Life Sci. 21(9), 1593-302 (1977)). Further, there is another known method where, using the racemate of 3-quinuclidinol as a raw material, the R form is obtained by converting, with subtilisin protease, only the S form to (S)-3-quinuclidinyl butyrate (German Patent No. 19715465).
- However, the product obtained by these production methods has only low optical purity. In addition, these production methods have complicated synthesis steps. Thus, any of the methods described above cannot be said as the methods for simply and economically producing (R)-3-quinuclidinol.
- Additional known methods for producing optically active 3-quinuclidinol from 3-quinuclidinone, comprises asymmetric reduction using microorganisms or enzymes (JP-A Hei 10-243795; JP-A Hei 11-196890; JP-A 2000-245495; Abstract (2001) The Japan Agricultural Chemical Society, pp. 3713Y7a9). In this reaction, the optically active compound is produced directly by incubating a substrate compound with a wild-type microorganism. The reaction consists of a single reaction step, thus the method has greatly been simplified. However, there still remain some problems; the optical purity of the product is low and the concentration of the product obtained is also low.
- An objective of the present invention is to provide a method for efficiently producing optically active alcohols with high optical purity using tropinone reductase-I.
- The present inventors focused on the reducing action of ketone reductase for economic and convenient production of optically active alcohols. They found that optically active alcohols with high optical purity can be efficiently produced by using the reducing action of tropinone reductase-I, which is a ketone reductase, and thus completed the present invention.
- Furthermore, in order to improve the efficiency of production of optically active alcohols by using tropinone reductase-I, the present inventors studied the usefulness of co-expression of tropinone reductase-I and an enzyme that is capable of regenerating a coenzyme from its oxidized form generated via asymmetric reduction. Then, they found that the co-expression of the two enzymes enabled more efficient production of optically active alcohols. They found that, particularly, co-expression of tropinone reductase-I and a specific glucose dehydrogenase achieved extremely high efficiency of synthesis. Thus, the present invention relates to the methods for producing optically active alcohols; vectors, which are used in the production method, for co-expressing a ketone reductase and an enzyme responsible for regeneration of a coenzyme from the oxidized form; and transformants carrying the vectors. The present invention also relates to a method for crystallizing optically active alcohols obtained by the above-mentioned production method. These inventions are as follows:
- [1] A method for producing an optically active alcohol, the method comprising the steps of contacting a ketone with an enzymatic material having tropinone reductase-I activity in the presence of a reduced coenzyme to perform asymmetric reduction and recovering an optically active alcohol.
- [2] The method according to [1], wherein the ketone is 3-quinuclidinone and the optically active alcohol is (R)-3-quinuclidinol.
- [3] The method according to [1], wherein the enzymatic material has tropinone reductase-I activity to produce an optically active alcohol with 70% ee or higher optical purity.
- [4] The method according to [1], wherein the enzymatic material is derived from a plant belonging to the genus Datura or the genus Hyoscyamus.
- [5] The method according to [4], wherein the plant belonging to the genus Datura isDatura stramonium.
- [6] The method according to [4], wherein the plant belonging to the genus Hyoscyamus isHyoscyamus niger.
- [7] The method according to [1], wherein the enzymatic material comprises a protein selected from the group consisting of (a) to (d):
- (a) a protein comprising the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4;
- (b) a protein comprising the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4 wherein one or more amino acids have been substituted, deleted, inserted, and/or added, and having the activity of producing (R)-3-quinuclidinol from 3-quinuclidinone by asymmetric reduction;
- (c) a protein comprising an amino acid sequence having 85% or higher identity to the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4, and having the activity of producing (R)-3-quinuclidinol from 3-quinuclidinone by asymmetric reduction; and
- (d) a protein encoded by a polynucleotide capable of hybridizing to the polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3 under a stringent condition, and having the activity of producing (R)-3-quinuclidinol from 3-quinuclidinone by asymmetric reduction.
- [8] The method according to [1], wherein the enzymatic material is a transformant carrying a DNA encoding tropinone reductase-I or a vector comprising a DNA encoding tropinone reductase-I, or a processed product of the transformant.
- [9] The method according to [8], wherein the vector comprising the DNA selected from the group consisting of (a) to (d):
- (a) a DNA comprising the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3;
- (b) a DNA that encodes a protein comprising the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4 wherein one or more amino acids have been substituted, deleted, inserted, and/or added and having the activity of producing (R)-3-quinuclidinol from 3-quinuclidinone by asymmetric reduction;
- (c) a DNA comprising a nucleotide sequence having 85% or higher identity to the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3, and encoding a protein having the activity of producing (R)-3-quinuclidinol from 3-quinuclidinone by asymmetric reduction; and
- (d) a DNA that is capable of hybridizing to a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3 under a stringent condition, and encodes a protein having the activity of producing (R)-3-quinuclidinol from 3-quinuclidinone by asymmetric reduction.
- [10] The method according to [8], wherein the vector further comprises a DNA encoding an enzyme of regenerating a reduced coenzyme from the oxidized form.
- [11] The method according to [8], wherein the transformant further comprises a DNA encoding an enzyme of regenerating a reduced coenzyme from the oxidized form or a vector comprising a DNA encoding an enzyme of regenerating a reduced coenzyme from the oxidized form.
- [12] The method according to [1], wherein the reduced coenzyme is NADPH or NADH.
- [13] The method according to [10], wherein the enzyme of regenerating a reduced coenzyme from the oxidized form is selected from the group consisting of glucose dehydrogenase, glutamate dehydrogenase, formate dehydrogenase, malate dehydrogenase, glucose-6-phosphate dehydrogenase, phosphogluconate dehydrogenase, alcohol dehydrogenase, and glycerol dehydrogenase.
- [14] The method according to [13], wherein the enzyme of regenerating a reduced coenzyme from the oxidized form is a glucose dehydrogenase.
- [15] The method according to [14], wherein the glucose dehydrogenase is derived fromBacillus subtilis or Thermoplasma acidophilum.
- [16] The method according to [1], wherein the asymmetric reduction is preformed at pH 6.5 to 8.5.
- [17] A method for producing (R)-3-quinuclidinol hydrochloride, the method comprising the steps of:
- (a) making the pH of (R)-3-quinuclidinol solution alkaline to form free (R)-3-quinuclidinol;
- (b) extracting free (R)-3-quinuclidinol with n-butanol;
- (c) adding hydrochloric acid to the extract;
- (d) removing moisture from the extract; and
- (e) crystallizing (R)-3-quinuclidinol hydrochloride in the solution obtained in (d).
- [18] A method for producing (R)-3-quinuclidinol, the method comprising the steps of:
- (a) dissolving (R)-3-quinuclidinol hydrochloride in a first solvent, wherein the first solvent is capable of dissolving (R)-3-quinuclidinol hydrochloride at a concentration of 1% or higher;
- (b) making the pH of the solution obtained in (a) alkaline to form free (R)-3-quinuclidinol;
- (c) adding a second solvent to the (R)-3-quinuclidinol solution, wherein the second solvent can be substituted for the first solvent by distilling off the first solvent from a mixture of the first and second solvents, dissolves free (R)-3-quinuclidinol with lower solubility than the first solvent, and allows to crystallize free (R)-3-quinuclidinol from itself;
- (d) distilling off the first solvent; and
- (e) crystallizing (R)-3-quinuclidinol in the solution obtained in (d).
- [19] The method according to [18], wherein the second solvent is selected from the group consisting of toluene, hexane, 4-methyl-2-pentanone, and butyl acetate.
- [20] The method according to [18], wherein the first solvent is water, and the second solvent is toluene.
- [21] A method for producing (R)-3-quinuclidinol, the method comprising the steps of:
- (a) making the pH of (R)-3-quinuclidinol solution alkaline to form free (R)-3-quinuclidinol;
- (b) extracting free (R)-3-quinuclidinol with n-butanol; and
- (c) adding an organic solvent to the extract, wherein the organic solvent can be substituted for n-butanol by distilling off n-butanol from a mixture of n-butanol and the organic solvent, dissolves free (R)-3-quinuclidinol with lower solubility than n-butanol, and allows to crystallize free (R)-3-quinuclidinol from itself;
- (d) distilling off n-butanol; and
- (e) crystallizing (R)-3-quinuclidinol in the solution obtained in (d).
- [22] The method according to [21], wherein the organic solvent is selected from the group consisting of toluene, 4-methyl-2-pentanone, and butyl acetate.
- [23] A vector comprising and capable of expressing a DNA encoding tropinone reductase-I and a DNA encoding an enzyme of regenerating a reduced coenzyme from the oxidized form.
- [24] The vector according to [23], wherein the DNA encoding tropinone reductase-I is a DNA selected from the group consisting of (a) to (d):
- (a) a DNA comprising the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3;
- (b) a DNA encoding a protein comprising the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4 wherein one or more amino acids have been substituted, deleted, inserted, and/or added and having an activity of producing (R)-3-quinuclidinol from 3-quinuclidinone by asymmetric reduction;
- (c) a DNA comprising a nucleotide sequence having 85% or higher identity to the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3, and encoding a protein having an activity of producing (R)-3-quinuclidinol from 3-quinuclidinone by asymmetric reduction; and
- (d) a DNA capable of hybridizing to a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3 under a stringent condition, and encoding a protein having the activity of producing (R)-3-quinuclidinol from 3-quinuclidinone by asymmetric reduction.
- [25] The vector according to [23], wherein the reduced coenzyme is NADPH or NADH.
- [26] The vector according to [23], wherein the enzyme of regenerating a reduced coenzyme from the oxidized form is selected from the group consisting of glucose dehydrogenase, glutamate dehydrogenase, formate dehydrogenase, malate dehydrogenase, glucose-6-phosphate dehydrogenase, phosphogluconate dehydrogenase, alcohol dehydrogenase, and glycerol dehydrogenase.
- [27] The vector according to [23], wherein the enzyme of regenerating a reduced coenzyme from the oxidized form is a glucose dehydrogenase.
- [28] The vector according to [27], wherein the glucose dehydrogenase is derived fromBacillus subtilis or Thermoplasma acidophilum.
- [29] A transformant carrying and capable of expressing (1) a DNA encoding tropinone reductase-I or a vector comprising a DNA encoding tropinone reductase-I and (2) a DNA encoding an enzyme of regenerating a reduced coenzyme from the oxidized form or a vector comprising a DNA encoding an enzyme of regenerating a reduced coenzyme from the oxidized form.
- [30] The transformant according to [29], wherein the transformant carries and is capable of expressing the vector according to [23].
- [31] The transformant according to [29], wherein a host isEscherichia coli.
- In one aspect, the present invention relates to a method for producing an optically active alcohol, the method comprising the step of contacting a ketone with an enzymatic material having tropinone reductase-I activity in the presence of a reduced coenzyme to perform asymmetric reduction and recovering an optically active alcohol produced.
- An arbitrary enzymatic material can be used in the present invention as long as it has tropinone reductase-I activity and can produce optically active alcohols via asymmetric reduction of ketones.
- As used herein, “tropinone reductase-I activity” means the activity of producing tropine from tropinone. There are reportedly two types of tropinone reductases, tropinone reductase-I (EC.1.1.1.206) and tropinone reductase-II (EC1.1.1.236), each of which produces tropine or pseudotropine from tropinone, which product has optically isomeric configurations. These enzymes catalyze the reaction at a branch point of the biosynthesis pathway of tropane alkaloids such as hyoscyamine and scopolamine. One of the tropinone reductases, tropinone reductase-I, derived from any of the following organisms, has been reported to exhibit the activity of reducing 3-quinuclidinone:
-
-
-
- The tropinone reductase-II derived fromBrugmansia candida x aurea hybrid has been reported to have the activity of reducing 3-quinuclidinone. The enzyme used in the present invention is tropinone reductase-I, which is the enzyme having the activity of producing tropine from tropinone.
- The enzymatic activity of tropinone reductase-I can be assayed by, for example, incubating a reaction solution containing 100 mM potassium phosphate buffer (pH 6.5), 0.2 mM NADPH, 4 mM tropinone, and the enzyme at 37° C. and determining a decrease in the absorbance at 340 nm due to a decrease in a NADPH concentration. The 3-quinuclidinone-reducing activity can be determined by incubating a reaction solution containing 100 mM potassium phosphate buffer (pH 6.5), 0.2 mM NADPH, 4 mM 3-quinuclidinone, and the enzyme at 37° C. and determining a decrease in the absorbance at 340 nm due to a decrease in a NADPH concentration. In each case, one unit (U) is defined as an amount of the enzyme that catalyzes the decrease of 1 μmol NADPH for 1 minute.
- As used herein, the term “optically active alcohol” means an alcohol in which the quantity of one optical isomer is larger than that of the other, or an alcohol comprising only one type of optical isomer. Furthermore, in some cases, “optical isomer” of the present invention generally refers to an “optically active form” or “enantiomer.”
- Thus, the enzyme capable of producing optically active alcohols via asymmetric reduction of ketones can be defined as an enzyme capable of producing an optically active alcohol corresponding to an arbitrary ketone compound given as a substrate.
- There is no limitation on the origin of the enzymatic material to be used in the present invention. The preferred enzymatic material of the present invention can produce optically active alcohols with at least 70% ee or higher optical purity, preferably with 80% ee or higher optical purity when using a ketone as the substrate. The optical purity of the product can be determined by analyzing the reaction product using an optical resolution column or the like.
- The preferred enzymatic material of the present invention is an enzyme that can be obtained, for example, from a plant species belonging to the genus Datura or the genus Hyoscyamus. Such enzymes are known, including tropinone reductase-I derived fromDatura stramonium (Proc. Natl. Acad. Sci. U.S.A., 90, 9591-9595(1993)) and tropinone reductase-I derived from Hyoscyamus niger (Biosci. Biotechnol. Biochem., 63(10), 1819-1822(1999)).
- Other tropinone reductase-I derived from various organisms can also be used, as long as it has the activity of producing optically active alcohols by reducing ketones. Other organisms from which tropinone reductase-I is derived include,Brugmansia candida x aurea hybrid (Phytochemistry, 52, 871-878 (1999)), Atropa belladonna (Plant Physiol., 100, 836-845 (1992)), Physalis philadelphica (Plant Physiol., 100, 836-845 (1992)), Solanum tuberosum (DNA Databank of JAPAN (DDBJ)), etc.
- As described above, tropinone reductase-I is known to have ketone-reducing activity. It has been reported that the enzyme reduces 3-quinuclidinone and thus produces 3-quinuclidinol. However, the configuration and optical purity of 3-quinuclidinol produced have not been clarified. In addition, it is difficult to estimate the configuration of 3-quinuclidinol generated from 3-quinuclidinone based on the action on tropinone.
- The present inventors strenuously studied the production of optically active alcohols via ketone reduction by tropinone reductase-I. They found that tropinone reductase-I produced optically active alcohols. Specifically, they found that, tropinone reductase-I enabled highly efficient production of (R)-3-quinuclidinol with high optical purity via asymmetric reduction of 3-quinuclidinone. They also clarified that the enzyme reaction can be used to produce optically active alcohols.
- In the present invention, the enzymatic material includes enzymatic proteins, microorganisms, plants, plant cultured cells, and processed products of such organisms, having tropinone reductase-I activity.
- The enzymatic proteins should be substantially pure. The term “substantially pure” as used herein in reference to a given protein means that the protein is substantially free from other biological macromolecules. The substantially pure protein is at least 75% (e.g., at least 80, 85, 95, or 99%) pure by dry weight. Purity can be measured by any appropriate standard method, for example by column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis.
- The enzymatic protein according to the present invention is preferably selected from the group consisting of:
- (a) a protein comprising the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4;
- (b) a protein comprising the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4 wherein one or more amino acids have been substituted, deleted, inserted, and/or added, and having the activity of producing (R)-3-quinuclidinol from 3-quinuclidinone by asymmetric reduction;
- (c) a protein comprising an amino acid sequence having 85% or higher identity to the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4, and having the activity of producing (R)-3-quinuclidinol from 3-quinuclidinone by asymmetric reduction; and
- (d) a protein encoded by a polynucleotide capable of hybridizing to the polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3 under a stringent condition, and having the activity of producing (R)-3-quinuclidinol from 3-quinuclidinone by asymmetric reduction.
- The microorganisms, plants, and plant cultured cells used in the present invention may be wild-type or transformants, containing and capable of expressing the gene encoding the above protein.
- The processed product refers to a product obtained after physical treatment, biochemical treatment, chemical treatment, etc., of the above-described microorganisms, plants and plant cultured cells. The physical treatment for the processed product includes freeze-and-thaw treatment, sonication, pressurization, osmotic shock, and grinding. The biochemical treatment includes a treatment with a cell-lytic enzyme, specifically such as lysozyme. The chemical treatment includes a treatment with a detergent or an organic solvent such as toluene, xylene, or acetone. Specific examples of the processed product includes microorganisms whose cell membrane permeability has been altered by such a treatment, and cell-free extract yielded by crushing microbial or plant cells with glass beads or by enzyme treatment, and partially purified products. The purification can be performed by conventional methods including, filtration, centrifugation, precipitation, salting-out, extraction, and various chromatographic procedures such as ion-exchange chromatography, hydrophobic chromatography, affinity chromatography, and gel filtration, etc. These purification methods can be used alone or in combination of two or more.
- The cells or the purified protein can be immobilized on a solid support. The method for immobilization is not particularly limited. The solid support includes, for example, glutaraldehyde, acrylamide, κ-carrageenan, calcium alginate, ion-exchange resin, Celite, etc.
- Purified enzymes that can be used as the enzymatic material can be isolated, from a plant such asDatura stramonium (Phytochemistry, 37(2), 391-400 (1994)) or Hyoscyamus niger (Plant Physiol., 100, 836-845 (1992)) via conventional methods well known in the art. Alternatively, transformants can be used as the enzymatic material. First, a gene encoding tropinone reductase-I is isolated. A transformant containing and capable of expressing the gene can be prepared by transforming a homologous or heterologous host with the gene by genetic recombination techniques. The transformant can be used as the enzymatic material without any modification or after processing as described above. Further, recombinant tropinone reductase-I obtained from the transformant by culturing the transformant in a culture medium and recovering the enzyme from the culture, can be used.
- Known genes encoding tropinone reductase-I that can be used in the present invention include those fromDatura stramonium and Hyoscyamus niger.
- The nucleotide sequence of the tropinone reductase-I gene derived fromDatura stramonium is shown in SEQ ID NO: 1 (Proc. Natl. Acad. Sci. U.S. A., 90, 9591-9595 (1993)), and the nucleotide sequence of the tropinone reductase-I gene derived from Hyoscyamus niger is shown in SEQ ID NO: 3 (Biosci. Biotechnol. Biochem., 63(10), 1819-1822(1999)).
- The nucleotide sequence information on these genes encoding tropinone reductase-I has been deposited in DNA databases such as DNA Databank of JAPAN (DDBJ), EMBL, Gene-Bank, etc. Based on the nucleotide sequence information, a gene of interest can be obtained from the source organism. PCR and hybridization screening can be used for preparing a gene. Alternatively, the full-length gene can be prepared chemically by DNA synthesis.
- Moreover, based on the above nucleotide sequence information, it is possible to obtain, tropinone reductase-I genes derived from other organisms in addition to the above-mentioned organisms. For example, tropinone reductase-I can be isolated from various organisms by hybridizing the above-mentioned nucleotide sequence or a partial sequence thereof as a probe to DNAs prepared from other organisms under stringent conditions. The polynucleotide capable of hybridizing under a stringent condition refers to a polynucleotide capable of hybridizing to a DNA comprising a nucleotide sequence selected from the nucleotide sequence of SEQ ID NO: 1 and SEQ ID NO: 3 as the probe, for example, by using ECL™ direct nucleic acid labeling and detection system (Amersham Pharmaica Biotech) under the condition as described in the manufacturer's instruction (wash: at 42° C. with a primary wash buffer containing 0.5×SSC). The nucleotide sequence of the probe DNA may comprise one or more sequences consisting of at least 20 consecutive residues, preferably at least 30 consecutive residues, for example, 40, 60, or 100 consecutive residues arbitrarily selected from the above-mentioned nucleotide sequence.
- Furthermore, based on the above-mentioned nucleotide sequence information, PCR primers can be designed from regions exhibiting high homology. The gene encoding tropinone reductase-I can be isolated from various organisms by PCR using such primers and chromosomal DNA or cDNA as a template.
- In the method of the present invention, it is possible to use not only the native enzyme but also a mutant enzyme comprising an amino acid sequence in which one or more amino acid residues have been substituted, deleted, and/or inserted as compared with the original amino acid sequence, so long as the mutant enzyme has the activity of producing (R)-3-quinuclidinol by reducing 3-quinuclidinone. Those skilled in the art can modify protein structures by introducing appropriate mutations of amino acid substitution, deletion, insertion, and/or addition, for example, by site-directed mutagenesis (Nucleic Acid Res. 10,pp.6487 (1982); Methods in Enzymol. 100, pp. 448 (1983); Molecular Cloning 2nd Ed., Cold Spring Harbor Laboratory Press (1989); PCR A Practical Approach IRL Press pp.200 (1991)) or the like. In the present invention, the number of amino acid residues that may be substituted, deleted, inserted, and/or added is, typically less than 50 residues, for example, less than 30 residues, or less than 20 residues, preferably less than 16 residues, more preferably less than 5 residues, still more preferably 0 to 3 residues. Amino acid mutations can be generated spontaneously, and therefore not only the enzymes containing artificial amino acid mutations but also the enzymes containing spontaneous mutations can be used in the method of the present invention.
- An amino acid substitution is preferably mutated into different amino acid(s) in which the properties of the amino acid side-chain are conserved. A “conservative amino acid substitution,” as employed in the present invention, refers to a replacement of one amino acid residue belonging to one of the following groups with similar side chain(s) with another amino acid from the same group. Groups of amino acid residues having similar side chains are well known to one of ordinary skill in the art. These groups include the following: amino acids with basic side chains (e.g., lysine, arginine, histidine); acidic side chains (e.g., aspartic acid, glutamic acid); uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine); nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan); beta-branched side chains (e.g., threonine, valine, isoleucine); and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).
- Furthermore, in the method of the present invention, a gene encoding a protein comprising an amino acid sequence having homology to that of tropinone reductase-I can also be used, as long as the enzyme as the gene product has the activity of producing (R)-3-quinuclidinol by reducing 3-quinuclidinone. Such genes can be obtained by homology search in the following databases.
- Databases of protein amino acid sequences such as SWISS-PROT, PIR, etc.
- DNA databases, such as DNA Databank of JAPAN (DDBJ), EMBL, Gene-Bank, etc.
- Databases of deduced amino acid sequences based on DNA sequences
- A number of known homology search programs such as FASTA and BLAST programs, can be used. Furthermore, services to search the above-mentioned databases by using these programs, are also available on the Internet. Using such services, it is possible to find tropinone reductase-I to be used in the present invention.
- Proteins, which have at least 85% identity, preferably 90% or higher identity, more preferably 95% or higher identity to the amino acid sequence of SEQ ID NO: 2 (Datura stramonium) or SEQ ID NO: 4 (Hyoscyamus niger), can be used as preferred tropinone reductase-I in the present invention. Proteins comprising amino acid sequences of SEQ ID NO: 2 or SEQ ID NO: 4 were found to have enzymatic activity that can be used in the present invention. The identity between the two is 94%. The identity used herein means, for example, a “Positive” identity value obtained by using the BLAST program.
- As used herein, “percent identity” of two amino acid sequences or of two nucleic acids is determined using the algorithm of Karlin and Altschul (Proc. Natl. Acad. Sci. USA 87: 2264-2268, 1990) modified as in Karlin and Altschul (Proc. Natl. Acad. Sci. USA 90:5873-5877, 1993). Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul et al. (J. Mol. Biol. 215:403-410, 1990). BLAST nucleotide searches are performed with the NBLAST program, score=100, wordlength=12. Homology search of protein can readily be performed, for example, in DNA Databank of JAPAN (DDBJ), by using the FASTA program, BLAST program, etc. BLAST protein searches are performed with the XBLAST program, score=50, wordlength=3. Where gaps exist between two sequences, Gapped BLAST is utilized as described in Altsuchl et al. (Nucleic Acids Res. 25: 3389-3402, 1997). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g, XBLAST and NBLAST) are used.
- Preferred enzymatic materials of the present invention include (i) transformants obtained by genetic recombination techniques that express the gene encoding tropinone reductase-I that has been introduced into a homologous or heterologous host; and (ii)processed product thereof.
- In the present invention, there is no restriction on the organism to be transformed for expressing the gene encoding tropinone reductase-I, as long as the organism is capable of being transformed with the vector containing the DNA encoding the polypeptide with activity of tropinone reductase-I and capable of expressing activity of tropinone reductase-I. Available microorganisms are those for which host-vector systems are available and include the following examples:
- bacteria such as the genus Escherichia, the genus Bacillus, the genus Pseudomonas, the genus Serratia, the genus Brevibacterium, the genus Corynebacterium, the genus Streptococcus, and the genus Lactobacillus;
- actinomycetes, such as, the genus Rhodococcus and the genus Streptomyces;
- yeasts such as the genus Saccharomyces, the genus Kluyveromyces, the genus Schizosaccharomyces, the genus Zygosaccharomyces, the genus Yarrowia, the genus Trichosporon, the genus Rhodosporidium, the genus Pichia, and the genus Candida; and
- fungi such as the genus Neurospora, the genus Aspergillus, the genus Cephalosporium, and the genus Trichoderma; etc.
- Preparation of a transformant and construction of a recombinant vector suitable for a host can be carried out by employing techniques that are commonly used in the fields of molecular biology, bioengineering, and genetic engineering (for example, see Sambrook et al., “Molecular Cloning”, Cold Spring Harbor Laboratories (2001)). The gene encoding the tropinone reductase-I of the present invention can be expressed in a microorganism, by introducing the DNA encoding the tropinone reductase-I into a plasmid vector or phage vector that is stable in the microorganism and allowing the genetic information to be transcribed and translated. Preferably, a promoter, a unit for regulating transcription and translation, is placed upstream of the 5′ end of the DNA of the present invention, and a terminator is placed downstream of the 3′ end of the DNA. The promoter and the terminator should be functional in the microorganism to be utilized as a host. Available vectors, promoters, and terminators for the above-mentioned various microorganisms are described in detail in “Fundamental Course in Microbiology (8): Genetic Engineering,” Kyoritsu Shuppan, specifically for yeasts, in Adv. Biochem. Eng. 43, 75-102 (1990) and Yeast 8, 423-488 (1992).
- For example, for the genus Escherichia, in particular, forEscherichia coli, available plasmids include pBR series and pUC series plasmids; available promoters include promoters derived from lac (derived from β-galactosidase gene), trp (derived from the tryptophan operon), tac and trc (which are chimeras of lac and trp), PL and PR of λ phage, etc. Available terminators are derived from trpA, phages, rrnB ribosomal RNA, etc. Among these, pSE420D vector (described in JP-A 2000-189170) can be used preferably, that is, obtained from commercially available pSE420 vector (Invitrogen) by partially modifying its multi-cloning site.
- For the genus Bacillus, available vectors are pUB110 series and pC194 series plasmids; the vectors can be integrated into host chromosome. Available promoters and terminators are derived from apr (alkaline protease), npr (neutral protease), amy (α-amylase), etc.
- For the genus Pseudomonas, there are host-vector systems developed forPseudomonas putida and Pseudomonas cepacia. A broad-host-range vector, pKT240, (containing RSF1010-derived genes required for autonomous replication) based on TOL plasmid, which is involved in decomposition of toluene compounds, is available; a promoter and a terminator derived from the lipase gene (JP-A No. Hei 5-284973) are available.
- For the genus Brevibacterium, in particular, forBrevibacterium lactofermentum, available plasmid vectors include pAJ43 (Gene 39, 281 (1985)). Promoters and terminators used for Escherichia coli can be utilized without any modification for Brevibacterium.
- For the genus Corynebacterium, in particular, forCorynebacterium glutamicum, plasmid vectors such as pCS11 (JP-A Sho 57-183799) and pCB101 (Mol. Gen. Genet. 196, 175(1984)) are available.
- For the genus Streptococcus, plasmid vectors such as pHV1301 (FEMS Microbiol. Lett. 26, 239 (1985)) and pGK1 (Appl. Environ. Microbiol. 50, 94 (1985)) can be used.
- For the genus Lactobacillus, plasmid vectors such as pAMβ1 (J. Bacteriol. 137, 614 (1979)), which was developed for the genus Streptococcus, can be utilized; and promoters that are used forEscherichia coli are also usable.
- For the genus Rhodococcus, plasmid vectors isolated fromRhodococcus rhodochrous are available (J. Gen. Microbiol. 138, 1003 (1992)).
- For the genus Streptomyces, plasmids can be constructed in accordance with the method as described in Hopwood et al., “Genetic Manipulation of Streptomyces: A Laboratory Manual” (Cold Spring Harbor Laboratories (1985)). In particular, forStreptomyces lividans, pIJ486 (Mol. Gen. Genet. 203, 468-478, 1986), pKC1064 (Gene 103, 97-99 (1991)), and pUWL-KS (Gene 165, 149-150 (1995)) are usable. The same plasmids can also be utilized for Streptomyces virginiae (Actinomycetol. 11, 46-53 (1997)).
- For the genus Saccharomyces, in particular, forSaccharomyces cerevisiae, YRp series, YEp series, YCp series, and YIp series plasmids are available; integration vectors (refer EP 537456, etc.), which are integrated into chromosome via homologous recombination with multicopy-ribosomal genes, allow to introduce a gene of interest in multicopy and the gene incorporated is stably maintained in the microorganism; and thus, these types of vectors are highly useful. Available promoters and terminators are derived from genes encoding ADH (alcohol dehydrogenase), GAPDH (glyceraldehyde-3-phosphate dehydrogenase), PHO (acid phosphatase), GAL (β-galactosidase), PGK (phosphoglycerate kinase), ENO (enolase), etc.
- For the genus Kluyveromyces, in particular, forKluyveromyces lactis, available plasmids are those such as 2-μm plasmids derived from Saccharomyces cerevisiae, pKD1 series plasmids (J. Bacteriol. 145, 382-390(1981)), plasmids derived from pGK11 and involved in the killer activity, KARS (Kluyveromyces autonomous replication sequence) plasmids, and plasmids (refer EP 537456, etc.) capable of being integrated into chromosome via homologous recombination with the ribosomal DNA. Promoters and terminators derived from ADH, PGK, and the like are available.
- For the genus Schizosaccharomyces, it is possible to use plasmid vectors comprising ARS (autonomous replication sequence) derived fromSchizosaccharomyces pombe and auxotrophy-complementing selectable markers derived from Saccharomyces cerevisiae (Mol. Cell. Biol. 6, 80 (1986)). Promoters such as ADH promoter derived from Schizosaccharomyces pombe are usable (EMBO J. 6, 729 (1987)). In particular, pAUR224 is commercially available from TaKaRa Shuzo Co., Ltd.
- For the genus Zygosaccharomyces, plasmids originating from those such as pSB3 (Nucleic Acids Res. 13, 4267 (1985)) derived fromZygosaccharomyces rouxii are available; it is possible to use promoters such as PHO5 promoter derived from Saccharomyces cerevisiae and GAP-Zr (Glyceraldehyde-3-phosphate dehydrogenase) promoter (Agri. Biol. Chem. 54, 2521 (1990)) derived from Zygosaccharomyces rouxii.
- For the genus Pichia, host-vector systems originating from autonomous replication sequences (PARS1, PARS2) derived from Pichia have been developed (Mol. Cell. Biol. 5, 3376 (1985)), and it is possible to employ a highly efficient promoter such as methanol-inducible AOX promoter, which is available for high-cell-density-culture (Nucleic Acids Res. 15, 3859 (1987)). Host vector system is developed forPichia angusta (previously called Hansenula polymorpha). Although autonomous replication sequences (HARS1 and HARS2) derived from Pichia angusta are available as vectors, they are rather unstable. Therefore, multicopy integration to chromosome is effective for them (Yeast 7, 431-443 (1991)). In addition, promotors of AOX (alcohol oxidase) and FDH (formate dehydrogenase) induced by methanol and such are available.
- For the genus Candida, host-vector systems have been developed forCandida maltosa, Candida albicans, Candida tropicalis, Candida utilis, etc. An autonomous replication sequence originating from Candida maltosa has been cloned (Agri. Biol. Chem. 51, 51, 1587 (1987)), and a vector using the sequence has been developed for Candida maltosa. Further, a chromosome-integration vector with a highly efficient promoter unit has been developed for Candida utilis (JP-A Hei 08-173170).
- For the genus Aspergillus,Aspergillus niger and Aspergillus oryzae have intensively been studied among fungi, and thus plasmid vectors and chromosome-integration vectors are available, as well as promoters derived from an extracellular protease gene and amylase gene (Trends in Biotechnology 7, 283-287 (1989)).
- For the genus Trichoderma, host-vector systems have been developed forTrichoderma reesei, and promoters such as that derived from an extracellular cellulase gene are available (Biotechnology 7, 596-603(1989)).
- There are various host-vector systems developed for plants and animals other than microorganisms; in particular, the systems include those of insect such as silkworm (Nature 315, 592-594(1985)), and plants such as rapeseed, maize, potato, etc. These systems are preferably employed to express a large amount of foreign protein. According to the known method in the art, the transformants can be cultured and tropinone reductase-I can be purified from the transformants.
- The method of the present invention for producing optically active alcohols can be used in combination with a system of coenzyme regeneration. The tropinone reductase-I requires a reduced coenzyme in the process of ketone reduction to produce alcohols. Such reduced coenzymes include NADPH and NADH. For example, when NAD(P)H is used as a reduced coenzyme, NAD(P)+ is generated from NAD(P)H during the reduction by tropinone reductase-I. NAD(P)+ can be converted to the reduced form NAD(P)H using an appropriate substrate-oxidation reaction. The regeneration of NAD(P)H from NAD(P)+ can be achieved by using an NAD(P)H-regenerating enzyme derived from plants, microorganisms, or transformants. NAD(P)H regeneration may be a single-step reaction using a single enzyme catalyzing the regeneration, or a multi-step reaction comprising two or more enzymes. When a reaction of interest comprises two or more enzymes, the enzymes of the series of enzymatic reaction steps are collectively referred to as “enzyme system.”
- The NAD(P)+-reducing potency can be enhanced by adding, to the reaction system, a sugar such as glucose or sucrose, organic acid, or alcohol such as ethanol or isopropanol. The regeneration of NAD(P)H can also be achieved by using an enzyme capable of converting NAD(P)+ to NAD(P)H. Enzymes useful for NAD(P)H generation are listed below. Microorganisms containing such an enzyme, processed product thereof, or the partially purified enzymes can be used in addition to the purified enzymes. For example, when the enzyme is glucose dehydrogenase, NAD(P)H is regenerated from NAD(P)+ accompanied by the oxidation of glucose to δ-gluconolactone.
- Glucosedehydrogenase
- Glutamate dehydrogenase
- Formate dehydrogenase
- Malate dehydrogenase
- Glucose-6-phosphate dehydrogenase
- Phosphogluconate dehydrogenase
- Alcohol dehydrogenase
- Glycerol dehydrogenase
- Directly or after immobilization, each of the enzymes required for NAD(P)H regeneration may be added to the reductase reaction system of the present invention. Alternatively, the enzymes can be contacted with the above-mentioned reaction system through an NAD(P)H-permeable membrane.
- When a transformant carrying a recombinant vector containing the DNA encoding tropinone reductase-I is used according to the method of the present invention for producing optically active alcohols, the auxiliary reaction system of NAD(P)H regeneration may be dispensable in some cases. Namely, when an organism containing the high activity of regenerating NAD(P)H is used as the host, the efficient reduction can be achieved using the transformant without adding the enzyme for NAD(P)H regeneration.
- Alternatively, it is possible to use a host where the DNA encoding tropinone reductase-I has been co-introduced with the gene encoding the above-mentioned enzyme for NAD(P)H regeneration. The use of such a transformant allows more efficient substrate reduction as well as expression of the NAD(P)H-regenerating enzyme and tropinone reductase-I. Two or more genes can be introduced into a host by a known method such as a method where the host is transformed with multiple recombinant vectors having distinct replication origins into which the respective genes have been inserted separately to avoid the incompatibility; a method where both genes have been inserted into a single vector; a method where one or both genes are integrated into a chromosome of the host.
- Glucose dehydrogenases that can be used for NAD(P)H regeneration in the present invention include glucose dehydrogenases derived fromBacillus subtilis and Thermoplasma acidophilum. The genes encoding the enzymes are already isolated (Proc. Natl. Acad. Sci U.S.A., 80, 785-789 (1983); Eur. J. Biochem., 211, 549-554 (1993)). The genes can also be obtained from the microorganisms by PCR or hybridization screening based on the known nucleotide sequences.
- When multiple genes are inserted into a single vector, regions responsible for expressional regulation such as promoter and terminator may be ligated to each gene, or alternatively the genes can be expressed as an operon containing multiple cistrons like the lactose operon.
- A single vector in which the genes encoding tropinone reductase-I and glucose dehydrogenase have been inserted can be prepared, for example, by ligating both genes in tandem into pSE420D (JP-A 2000-189170). The plasmid pSG-DSR1 (FERM BP-8061) which containsDatura stramonium-derived tropinone reductase-I and Bacillus subtilis-derived glucose dehydrogenase genes as inserts, and the plasmid pSG-HNR1 (FERM BP-8062) which contains Hyoscyamus niger-derived tropinone reductase-I and Bacillus subtilis-derived glucose dehydrogenase genes as inserts, have been deposited under the following conditions under the Budapest Treaty.
- Deposition of plasmids pSG-DSR1 and pSG-HNR1:
- (a) Name and Address of Depositary Institute
- Name: International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology (AIST), Independent Administrative Institution (Previous Name: The National Institute of Bioscience and Human-Technology, The Agency of Industrial Science and Technology, The Ministry of International Trade and Industry (1-1-3 Higashi, Tsukuba, Ibaraki, Japan))
- Address: Chuo 6, 1-1-3 Higashi, Tsukuba, Ibaraki, Japan (Post code: 305-8566)
- (b) Depositary date: May, 28, 2002 (original deposit was made on Jun. 22, 2001)
- (c) Accession number: FERM BP-8061 (pSG-DSR1)
- Accession number: FERM BP-8062 (pSG-HNR1)
- It is often difficult to co-express enzyme genes of different origins. As seen from the example of co-expression ofPichia finlandica-derived (R)-2-octanol dehydrogenase and Bacillus subtilis-derived glucose dehydrogenase whose genes have been inserted in pSG-PFO1 or pSG-PFO2 (WO 01/61014), the expression levels of the two enzymes are not always high. Furthermore, it is generally accepted that a plant-derived enzyme or an enzyme derived from an organism other than plants is hardly co-expressed. Thus, it has not been obvious to obtain a transformant co-expressing tropinone reductase-I and glucose dehydrogenase, which is useful for practicing the above-mentioned production method of the present invention.
- However, the present inventors succeeded in obtaining a transformant carrying a vector encompassing tropinone reductase-I and glucose dehydrogenase genes ligated in tandem, which enables asymmetric reduction of 3-quinuclidinone at a concentration of as high as 10%. Herein, unless otherwise specified, “%” for concentration means “w/v %.” The present invention provides a vector containing and capable of expressing a DNA encoding tropinone reductase-I and a DNA encoding an enzyme that regenerates an oxidized coenzyme to its reduced form.
- The DNA encoding tropinone reductase-I to be inserted into the vector of the present invention can be, for example, a DNA selected from the group consisting of (a) to (d):
- (a) a DNA comprising the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3;
- (b) a DNA that encodes a protein comprising the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4 in which one or more amino acids have been substituted, deleted, inserted, and/or added, and having the activity of producing (R)-3-quinuclidinol via asymmetric reduction of 3-quinuclidinone;
- (c) a DNA comprising a nucleotide sequence having 85% or higher identity to the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3, and encoding a protein having the activity of producing (R)-3-quinuclidinol via asymmetric reduction of 3-quinuclidinone; and
- (d) a DNA that is capable of hybridizing to a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3 under a stringent condition, and encodes a protein having the activity of producing (R)-3-quinuclidinol via asymmetric reduction of 3-quinuclidinone.
- The above-mentioned regeneration enzyme can be used as the enzyme of regenerating a reduced coenzyme from its oxidized form, which is to be inserted into the vector of the present invention. Particularly, glucose dehydrogenase is a preferred regeneration enzyme. Such dehydrogenases include glucose dehydrogenases derived fromBacillus subtilis and Thermoplasma acidophilum. As shown in the example herein, when these glucose dehydrogenases are used in combination with a DNA comprising the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3 which encodes tropinone reductase-I, a transformant containing them can produce a high concentration of (R)-3-quinuclidinol.
- It is preferred to ligate DNAs encoding tropinone reductase-I and the regeneration enzyme in tandem in the vector of the present invention. The term “ligate in tandem,” as employed herein means arranging the DNAs so as to ensure the expression of these enzymes under the control of a common expressional regulatory region. Such an arrangement allows more efficient expression of the enzyme genes and production of optically active alcohols.
- The present invention also relates to a transformant containing and capable of expressing the vector of the present invention. The vector of the present invention may be transformed into arbitrary hosts, so long as the vector is maintained and expressed in the hosts. In the present invention, the most preferred host is a microorganism substantially lacking the ability of producing the optical isomer of the optically active alcohol of interest. For example, when the target optically active alcohol is (R)-3-quinuclidinol, the host can be a microorganism which itself does not substantially produce 3-quinuclidinol. When the host has the activity of synthesizing (S)-3-quinuclidinol, it is preferable to use a mutant strain which is deficient in the enzyme producing the (S) form. The deficient strain can be obtained by the use of spontaneous mutation, artificial mutation, genetic recombination technique, or the like. For example,E. coli HB101 strain used herein in Example is a microorganism which originally does not substantially produce the optical isomer of 3-quinuclidinol. Thus, the strain is preferably used as a host microorganism to prepare a transformant which is to be used in the method of the present invention for producing (R)-3-quinuclidinol.
- The enzymatic reaction to produce an optically active alcohol according to the method of the present invention can be carried out by contacting the above-mentioned enzymatic material with a reaction solution containing a ketone as the substrate. Specifically, the reaction can be carried out in an aqueous solvent, in a mixed system of an aqueous solvent and a water-soluble organic solvent, or in a two-phase mixed system of an aqueous solvent and a water-insoluble organic solvent. Such aqueous solvents include buffers having buffer capacity at a neutral pH, such as phosphate buffer and Tris-HCl buffer. Alternatively, no buffer is required when the use of acid and alkali can keep the pH change during the reaction within a desired range. Organic solvents insoluble or sparingly insoluble in water that can be used include, for example, ethyl acetate, butyl acetate, toluene, chloroform, n-hexane, isooctane, etc. Alternatively, the reaction can be carried out in a mixed system consisting of an aqueous solvent and an organic solvent such as ethanol, acetone, dimethyl sulfoxide, and acetonitrile.
- In such a two-phase system, the enzymatic material is supplied as it is, or as a solution after combined with water or buffer. After dissolved in an aqueous solvent such as water, buffer, or ethanol, a compound used as the substrate can be supplied to the reaction system. In this case, the substrate and enzymatic material react in a single-phase reaction system. Alternatively, the reaction of the present invention may be carried out by using an immobilized enzyme, a membrane reactor, or the like. Membranes that can constitute a membrane reactor are exemplified by ultra-filter, hydrophobic membrane, cationic membrane, nanofiltration membrane (J. Ferment. Bioeng. 83, 54-58 (1997)) etc. The forms of contacting the enzyme with the reaction solution are not limited to these examples. The reaction solution is defined as a solution which is obtained by dissolving a substrate in an appropriate solvent providing a condition preferable for the enzymatic activity.
- There is no limitation on the type of ketone, which is the substrate compound of the present invention, so long as it can be converted to an optically active alcohol of interest by the action of tropinone reductase-I. Table 1 lists compounds which are available substrates and alcohols converted from the substrates according to the present invention.
TABLE 1 Substrate Alcohol Tropinone Tropine 3-Quinuclidinone 3-Quinuclidinol 6-Hydroxytropinone 6-Hydroxytropine N-Methyl-4-piperidone N-Methyl-4-piperidinol 4-Piperidone 4-Piperidinol Tetrahydrothiopyran-4-one Tetrahydrothiopyran-4-ol 4-Methylcyclohexanone 4-Methylcyclohexanol 3 -Methylcyclohexanone 3-Methylcyclohexanol 2-Methylcyclohexanone 2-Methylcyclohexanol 4-Ethylcyclohexanone 4-Ethylcyclohexanol 8-Thiabicyclo[3.2.1] 8-Thiabicyclo[3.2.1] -octan-3-one -octan-3-ol 7-Hydroxytropinone 7-Hydroxytropine N-Ethylnortropinone N-Ethylnortropine N-iso-Propylnortropinone N-iso-Propylnortropine - Among these substrates, a particularly preferred example is 3-quinuclidinone. (R)-3-quinuclidinol that is generated from substrate 3-quinuclidinone is an optically active compound that is industrially useful, as described herein earlier. The structures of 3-quinuclidinone and (R)-3-quinuclidinol are shown in formula (1).
- The enzymatic reaction of tropinone reductase-I of the present invention can be carried out under the following conditions.
- substrate concentration: 0.01 to 50%, preferably, 0.1 to 30%.
- enzyme concentration: 0.01 to 500 U/ml, preferably 1 to 100 U/ml.
- reaction temperature: 4 to 60° C., preferably 30 to 50° C.
- pH: 4 to 9, preferably 6.5 to 8.5.
- When required, the coenzyme NAD(P)+ or NAD(P)H may be added at a concentration of 0.001 to 100 mM, preferably 0.01 to 10 mM, to the reaction system. The substrate may be added to the reaction at once at the start of reaction, or continuously or stepwise.
- The substrate for the coenzyme-regenerating enzyme can be added, for example, at a 0.1 to 20 times higher, preferably 0.5 to 5 times higher molar concentration than the substrate ketone. The NAD (P) H-regenerating enzyme can be added at a concentration that ensures approximately 0.1 to 100 times higher, preferably 0.5 to 20 times higher enzymatic activity as compared with tropinone reductase-1. Exemplary combinations of the substrate for regenerating NAD(P)H and the enzyme for NAD(P)H regeneration are shown below.
Substrate Enzyme Glucose Glucose dehydrogenase Formic acid Formate dehydrogenase Ethanol or 2-propanol Alcohol dehydrogenase L-Glutamic acid Glutamate dehydrogenase L-Malic acid Malate dehydrogenase or organic acid dehydrogenase - Optically active alcohols produced according to the present invention can be collected by well known methods. Such methods include, but are not limited to, separation and purification means such as extraction from a reaction solution with an organic solvent; crystallization; recrystallization; column chromatography; concentration; distillation; etc. The separation and purification means can be used singly or in combination. If required, the collection method can comprise a step of separating cells of microorganism or proteins from the reaction solution. Such separation of cells of microorganism or proteins can be achieved by centrifugal separation, membrane treatment, etc.
- Optically active alcohols with high optical purity can be produced on a large scale by the method of the present invention. The crystals of high optical purity products can be obtained readily. For example, (R)-3-quinuclidinol, which is an optically active alcohol, can readily be crystallized as the form of a hydrochloride salt by the method as described below. The present invention also provides a method for obtaining (R)-3-quinuclidinol hydrochloride, the method comprising the steps of:
- (a) making the pH of a (R)-3-quinuclidinol solution alkaline to form free (R)-3-quinuclidinol;
- (b) extracting free (R)-3-quinuclidinol with n-butanol;
- (c) adding hydrochloric acid to the extract;
- (d) removing moisture from the extract; and
- (e) crystallizing (R)-3-quinuclidinol hydrochloride in the solution obtained in (d).
- (R)-3-quinuclidinol in the n-butanol extract can be converted into a hydrochloride salt in the above crystallization step by removing moisture from the n-butanol extract, flushing hydrochloric acid gas, then performing crystallization of (R)-3-quinuclidinol hydrochloride from the extract.
- Crystals of free (R)-3-quinuclidinol can also be obtained from (R)-3-quinuclidinol hydrochloride obtained by the above method. The present invention provides a method for obtaining crystals of free (R)-3-quinuclidinol, the method comprising the steps of:
- (a) dissolving (R)-3-quinuclidinol hydrochloride in a first solvent;
- (b) making the pH of the solution described in (a) alkaline to form free (R)-3-quinuclidinol;
- (c) adding a second solvent,
- (d) distilling off the first solvent,
- (e) crystallizing (R)-3-quinuclidinol in the solution obtained in (d) wherein the first solvent dissolves (R)-3-quinuclidinol hydrochloride at 1% or higher concentration. The solubility of 1% or higher of (R)-3-quinuclidinol hydrochloride in a solvent is defined as the solubility at a particular temperature at which (R)-3-quinuclidinol hydrochloride is dissolved in the solvent. The second solvent can be substituted for the solvent by distilling off the first solvent, for example, by azeotrophic distillation, from a mixture of these solvents, dissolves free (R)-3-quinuclidinol with lower solubility than the first solvent, and allows crystallizing free (R)-3-quinuclidinol from itself. The term “solvent” that allows to crystallize 3-quinuclidinol” means a solvent that ensures the production of 3-quinuclidinol crystals when the solubility of 3-quinuclidinol is decreased by decreasing the solvent temperature, or the solvent is removed.
- In the above-mentioned crystallization step, for example, any solvent selected from the group consisting of toluene, hexane, 4-methyl-2-pentanone, and butyl acetate may be used as the second solvent, singly or in combination of two or more of these. The combination where the first solvent is water and the second solvent is toluene is particularly preferred.
- The method of the present invention for yielding (R)-3-quinuclidinol hydrochloride is described in more detail. The (R)-3-quinuclidinol solution used as a starting material can be provided by dissolving (R)-3-quinuclidinol in an aqueous solvent such as water, a buffer having buffer capacity at a neutral pH, such as phosphate buffer and Tris-HCl buffer. Alternatively, the reaction solution of the above enzymatic reaction can be used as the starting (R)-3-quinuclidinol solution. The concentration of (R)-3-quinuclidinol in the starting solution ranges from 1 to 80%. When required, cells of microorganism or proteins can be separated from the reaction solution containing (R)-3-quinuclidinol by centrifugal separation, membrane treatment, or the like. Then, pH of the reaction solution is made alkaline by adding alkali. Such alkalis that can be used includes sodium hydroxide and potassium hydroxide. The pH is adjusted to 10 or higher, preferably 12 or higher. (R)-3-quinuclidinol is converted to the free form by this step of alkalifying the reaction solution.
- Free (R)-3-quinuclidinol is extracted from the reaction solution with n-butanol. When 0.8 to 5 molar equivalent, preferably 1 to 1.2 molar equivalent excess of hydrochloric acid is added to one molar equivalent of (R)-3-quinuclidinol in the n-butanol extract, (R)-3-quinuclidinol is converted to a hydrochloride salt. Then, moisture is removed from the solution by azeotropic dehydration. (R)-3-quinuclidinol hydrochloride can be crystallized in the resulting solution by cooling the solution.
- It is possible to crystallize free (R)-3-quinuclidinol from the hydrochloride salt obtained by the procedure as described above. For example, the hydrochloride salt is dissolved in 0.5 volumes or higher, preferably 0.8 to 1.5 volumes of the first solvent. The first solvent is preferably water. The resulting (R)-3-quinuclidinol solution is combined with an alkali. The alkali may be sodium hydroxide or potassium hydroxide. The pH of the (R)-3-quinuclidinol solution is adjusted to 10 or higher, preferably 12 or higher. Alkalinization of the reaction solution converts (R)-3-quinuclidinol hydrochloride to its free form. Free (R)-3-quinuclidinol can be crystallized from the second solvent that is an appropriate organic solvent.
- For example, one or more volumes of, preferably 5 to 50 volumes of toluene is added as the second solvent to the (R)-3-quinuclidinol solution, and then the first solvent is distilled off. If required, impurities generated during the treatment, such as inorganic salts, are separated by a method such as filtration. By cooling, for example, (R)-3-quinuclidinol can be crystallized from the remaining toluene. Separation of impurities is preferably carried out by filtration under heating to prevent yield reduction. Hexane, 4methyl-2-pentanone, butyl acetate, or the like, in addition to toluene, can be used as the second solvent.
- (R)-3-quinuclidinol that can be obtained according to the present invention can be crystallized as the free form as well as the form of a hydrochloride salt. Namely, the present invention provides a method for producing (R)-3-quinuclidinol, the method comprising the steps of:
- (a) making the pH of (R)-3-quinuclidinol solution alkaline to form free (R)-3-quinuclidinol;
- (b) extracting free (R)-3-quinuclidinol with n-butanol; and
- (c) adding an organic solvent to the extract;
- (d) distilling off n-butanol from the extract; and
- (e) crystallizing (R)-3-quinuclidinol from the solution obtained in (d).
- The method of the present invention for yielding crystals of free (R)-3-quinuclidinol is described in more detail. The steps (a) and (b) can be performed in the same manner as in the above-described method for yielding (R)-3-quinuclidinol hydrochloride. For example, (R)-3-quinuclidinol produced by the method according to the present invention as described herein earlier is converted to its free form by adding an alkali. Free (R)-3-quinuclidinol is extracted with n-butanol, and then moisture is removed from the solution by azeotropic dehydration. Further, 3 to 100 volumes of, preferably 5 to 10 volumes of an organic solvent is added to the n-butanol extract. As the organic solvent, those exemplified for the second solvent as described above can be used and include toluene, hexane, 4-methyl-2-pentanone, butyl acetate, etc. Toluene is particularly preferred.
- After water and n-butanol are removed by the azeotropic treatment, when required, impurities are removed by filtration or the like. Then, (R)-3-quinuclidinol can be crystallized in the resulting solution by cooling. The removal of impurities is preferably carried out by filtration under heating to prevent yield reduction.
- For industrial purposes, it is essential to produce high-purity crystals. High-purity (R)-3-quinuclidinol can be obtained by removing impurities via crystallization.
- The present invention provides a method for producing optically active alcohols using the asymmetric reduction activity of tropinone reductase-I. This method enables simple and efficient production of (R)-3-quinuclidinol that is an industrially important compound. In addition, (R)-3-quinuclidinol obtained according to the present invention has high optical purity.
- Further, the present invention provides a more efficient method for producing (R)-3-quinuclidinol by using genetic recombination techniques. The method of the present invention for producing optically active alcohols can be implemented further efficiently when tropinone reductase-I is co-expressed with an enzyme regenerating an oxidized coenzyme. Optically active alcohols can be produced highly efficiently by co-expressing, for example, tropinone reductase-I derived from a plant such asDatura stramonium or Hyoscyamus niger and glucose dehydrogenase, as a regeneration enzyme, derived from Bacillus subtilis or Thermoplasma acidophilum. It had been difficult to predict whether co-expression of the plant-derived enzyme and the microorganism-derived enzyme allowed highly efficient production of (R)-3-quinuclidinol with high optical purity.
- Furthermore, the present invention provides a method to crystallize (R)-3-quinuclidinol with high optical purity. Since high optical purity (R)-3-quinuclidinol is obtained at a high concentration according to the present invention, the compound can be efficiently crystallized. In addition, the present inventors found that particular combinations of solvents allowed to readily crystallize (R)-3-quinuclidinol, which is generally difficult to be crystallized due to high solubility in aqueous solutions. Preparing substances as high purity crystals is essential for their industrial use.
- All publications describing prior art cited herein are incorporated herein by reference.
- The present invention is illustrated in detail below with reference to Examples, but is not to be construed as being limited thereto.
- pETTR1 containing the gene encoding tropinone reductase-I fromDatura stramonium was isolated according to the method as described in a literature (Proc. Natl. Acad. Sci. U.S.A., 95, 4876-4881 (1998)). In order to newly construct a plasmid, the primers DSR-ATG1 (SEQ ID NO: 5) and DSR-TAA1 (SEQ ID NO: 6) were synthesized based on the 5′-end and 3′-end sequences of the structural gene. Using pETTR1 as a template, a specific DNA was amplified by PCR (30 cycles of denaturation at 95° C. for 30 seconds, annealing at 50° C. for 1 minute, and extension at 75° C. for 3 minutes and 15 seconds).
- SEQ ID NO: 5: DSR-ATG1/ATACCATGGAAGAATCAAAAGTG
- SEQ ID NO: 6: DSR-TAA1/TGGTCTAGATTAAAACCCACCATTAGCTGTG
- The plasmid pSE-BSG1 (JP-A 2000-189170) containing the glucose dehydrogenase gene derived fromBacillus subtilis was double-digested with the restriction enzymes NcoI and XbaI, and thus a DNA fragment containing the glucose dehydrogenase gene derived from Bacillus subtilis was prepared. The DNA fragment was ligated, by using T4 DNA ligase, to a DNA fragment containing the tropinone reductase-I gene derived from Datura stramonium that had been obtained by digesting the DNA fragment prepared in Example 1 with the same enzymes. The plasmid pSG-DSR1 (FERM BP-8061), which allows co-expression of glucose dehydrogenase and tropinone reductase-I, was thus obtained.
-
- Enzymatic activities of the cell-free extract obtained in Example 3 were assayed. The cell-free extract derived from the recombinantE. coli cells showed tropinone-reducing activity in an NADPH-dependent fashion, and the specific activity was 9.49 U/mg protein. Further, the cell-free extract derived from the recombinant E. coli cells showed 3-quinuclidinone-reducing activity in an NADPH-dependent fashion, and the specific activity was 4.33 U/mg protein.
- The assay for glucose dehydrogenase activity was carried out by incubating a reaction solution containing 100 mM potassium phosphate buffer (pH 6.5), 2.5 mM NAD+, 100 mM D-glucose, and the cell-free extract at 37° C. 1U was defined as an enzyme amount capable of catalyzing the generation of 1 μmol NADH for 1 minute. The cell-free extract derived from the recombinant E. coli cells showed the specific activity of 9.02 U/mg protein.
- Cells ofE. coli transformed with pSG-DSR1 prepared in Example 2 were cultured in 400 mL of 2×YT medium (Tryptone 20 g, Yeast extract 10 g, NaCl 10 g, pH 7.2). After the expression was induced with 0.1 mM IPTG, the cells were harvested. The bacterial cells obtained were added to 400 mL of a reaction solution containing 500 mM potassium phosphate buffer (pH 7.5), 10% (618.7 mM) 3-quinuclidinone hydrochloride, and 927.8 mM glucose, and the mixture was incubated at 37° C. overnight while being agitated.
- After the bacterial cells were removed, an aliquot of the reaction solution was diluted twice with 0.35 N sodium hydroxide, 3-quinuclidinol produced was quantified by gas chromatography. The gas chromatography analysis was carried out by using Unisol 10T+KOH (10+3%) Uniport HP 80/100 Mesh (2 m, GL Sciences, Inc.). Column temperature was 150° C., and detection temperature was 250° C. The detector used was a Flame Ionization Detector (FID). The retention time for each compound was as follows: 3-quinuclidinone, 5.4 minutes; 3-quinuclidinol, 11.2 minutes. Further, the concentration of 3-quinuclidinol hydrochloride computed based on the signal intensity was 89.5 g/L, and the yield was 88.4%.
- Then, the optical purity of products was determined. An assay for the optical purity was carried out by the following procedure. First, after the bacterial cells were removed from the reaction solution, sodium carbonate was added to the solution to a saturated concentration and 3-quinuclidinol was extracted with ethyl acetate. After desolvation, the product was benzoylated with benzoyl chloride, and then analyzed by high-performance liquid chromatography using an optical resolution column (column: CHIRALPACK AD from Daicel Chemical Industries LTD.; mobile phase, n-hexane/ethanol/diethyl amine (95/5/0.1); detection wavelength, 254 nm; flow rate, 1.0 mL/minute). The (S) form was detected with the retention time of 12 minutes; the (R) form was detected with 23 minutes. The result showed that the optical purity of the product was 98.6% ee (R).
- Further, after the bacterial cells were removed from the reaction solution, sodium carbonate was added to the solution to a saturated concentration and 3-quinuclidinol was extracted twice with ethyl acetate. The crystals obtained after desolvation were dissolved in 1N hydrochloric acid, and then its optical rotation was determined.
- The result showed: [α]D=−43.7 (c=3, 1N HCl). The product was verified to be the (R) form by comparing the value with that previously reported in a literature ([α]D=−43.8 (c=3, 1N HCl); J. Amer. Chem. Soc., 74, 2215-2218 (1952)).
- The bacterial cells were removed by centrifugal separation from the reaction solution prepared in Example 5, the solution was deproteinized by the treatment with an UF membrane and concentrated with an evaporator. The pH of the solution was adjusted to 12.0 by adding 25% sodium hydroxide thereto, and then the solution was extracted twice with an equal volume of n-butanol. A 18 mL portion of concentrated hydrochloric acid was added to the extract, and water was removed by distillation at 110 to 130° C. under normal pressure. Crystals of (R)-3-quinuclidinol hydrochloride were obtained by cooling. The resulting crystals were collected by filtration, and dried under reduced pressure. The quantity of crystals obtained was 32.4 g, and the yield was 80.0%.
- The crystals of (R)-3-quinuclidinol hydrochloride prepared in Example 6 (25.0 g) was dissolved in 25.0 g water, then the pH of the solution was adjusted to 13.0 by adding 25% sodium hydroxide. Toluene (500 g) was added to the solution, and the mixture was treated by azeotropic dehydration at 60 to 70° C. under 170 Torr. After dehydration, (R)-3-quinuclidinol was completely dissolved in toluene at 80° C. under normal pressure, and the residual inorganic salts were removed by filtration with heating at 80° C. (R)-3-quinuclidinol crystals were obtained by cooling the toluene solution. The resulting crystals were collected by filtration, and dried under reduced pressure. The quantity of crystals thus obtained was 16 g.
- The bacterial cells were removed by centrifugal separation from a reaction solution of 3-quinuclidinone reduction byE. coli, which had been transformed with pSG-DSR1. The solution was deproteinized by the treatment with an UF membrane. The resulting solution (91 g, the content of 3-quinuclidinol hydrochloride was 12%) was combined with a 25% aqueous solution of sodium hydroxide, and then the mixture was adjusted to pH 12. The resulting solution was concentrated to 48 g at 50 to 60° C. under reduced pressure of 20 Torr. An equal volume of n-butanol was added to the solution and the extraction was performed twice. The resulting organic layer was concentrated at 50 to 60° C. under 20 Torr. The cycle of addition of 50 g toluene and concentration was repeated, thereby replacing the solvent with toluene. Following this, the toluene solution was then cooled down and precipitated crystals collected via filtration. The wet crystals were then dried under reduced pressure. The quantity of (R)-3-quinuclidinol yielded as crystals was 6.5 g.
- The tropinone reductase-I gene derived fromHyoscyamus niger was isolated according to the method as described in a literature (Biosci. Biotechnol. Biochem., 63(10),1819-1822(1999)). The primers HNR-ATG1 (SEQ ID NO: 7) and HNR-TAA1 (SEQ ID NO: 8) were synthesized based on the 5′-end and 3′-end sequences of the structural gene. A specific DNA was amplified by PCR (30 cycles of denaturation at 95° C. for 30 seconds, annealing at 50° C. for 1 minute, and extension at 75° C. for 3 minutes and 15 seconds) using a tropinone reductase-I cDNA as a template.
- SEQ ID NO: 7: HNR-ATG1
- ATACCATGGCCGGAGAATCA
- SEQ ID NO: 8: HNR-TAA1
- ACCTCTAGATTAAAACCCACCATTAGCTGTG
- The plasmid pSE-BSG1 (JP-A 2000-189170) containing the glucose dehydrogenase gene derived fromBacillus subtilis was double-digested with the restriction enzymes NcoI and XbaI, and thus a DNA fragment containing the glucose dehydrogenase gene derived from Bacillus subtilis was prepared. The DNA fragment was ligated, by using T4 DNA ligase, to a DNA fragment containing the tropinone reductase-I gene derived from Hyoscyamus niger that had been obtained by digesting the DNA fragment prepared in Example 6 with the same enzymes. The plasmid pSG-HNR1 (FERM BP-8062), which allows co-expression of glucose dehydrogenase and tropinone reductase-I, was thus obtained.
-
- The enzymatic activity of the cell-free extract obtained in Example 11 was assayed. The cell-free extract derived from the recombinantE. coli cells showed tropinone-reducing activity in an NADPH-dependent fashion, and the specific activity was 0.35 U/mg protein.
- Furthermore, the cell-free extract derived from the recombinantE. coli showed 3-quinuclidinone-reducing activity in an NADPH-dependent fashion, and the specific activity was 0.26 U/mg protein. The specific activity of glucose dehydrogenase was 3.96 U/mg protein. The assay for glucose dehydrogenase activity was carried out by the method as described in Example 4.
-
- After the bacterial cells were removed, 3-quinuclidinol produced was quantified by the method as described in Example 5. The result showed that the concentration of 3-quinuclidinol hydrochloride was 1.59 g/L and the yield was 15.7%.
- The optical purity was determined by the method as descried in Example 5. The result showed that the optical purity was 89.0% ee (R).
-
- The cells were harvested by centrifugal separation, and the chromosomal DNA was prepared with a DNeasy Tissue kit (Qiagen).
- In order to clone the glucose dehydrogenase gene fromThermoplasma acidophilum IFO 15155, the primers TAG-ATG1 (SEQ ID NO: 9) and TAG-TAA3 (SEQ ID NO: 10) were synthesized.
- SEQ ID NO: 9: TAG-ATG1
- CAGGAATTCAATAATGACTGAACAGAAAGCCATTG
- SEQ ID NO: 10: TAG-TAA3
- CTGACTAGTATTACTGCCACTTTATCACCGTC
- A DNA fragment containing the glucose dehydrogenase gene was amplified by PCR (30 cycles of denaturation at 95° C. for 30 seconds, annealing at 50° C. for 1 minute, and extension at 75° C. for 4 minutes) in a reaction solution containing a buffer for Pfu DNA Polymerase, 0.2 mM dNTP, primer DNAs (25 pmol each), 2.5 U Pfu DNA polymerase, and 50 ng of the chromosomal DNA prepared fromThermoplasma acidophilum in Example 13.
- The DNA fragment obtained was purified with a GFX-column (Pharmacia), and double-digested with EcoRI and SpeI. Then, the DNA fragment was purified by agarose gel electrophoresis.
- The DNA fragment obtained was ligated to pSE420D (JP-A 2000-189170) that had been digested with the same restriction enzymes, and thus pSE-TAG3 was constructed.
- The plasmid pSG-DSR1 prepared in Example 2 was double-digested with NcoI and XbaI, and then an 824-bp DNA fragment (pSG-DSR1/NcoI-XbaI), which contained the tropinone reductase-I gene derived from Datura, was purified. The DNA fragment was ligated, by using T4 DNA ligase, to the vector that was prepared by double-digesting the plasmid pSE-TAG3 obtained in Example 14 with NcoI and XbaI. The plasmid pTG-DSR1, which allows co-expression of glucose dehydrogenase and tropinone reductase-I, was thus obtained.
-
- After harvesting, the bacterial cells were crushed in a closed chamber-type sonicator UCD-200TM (Cosmo Bio). The supernatant obtained by centrifugation was used as a cell-free extract.
- Enzymatic activities of the cell-free extract obtained in Example 17 were assayed. The cell-free extract derived from the recombinantE. coli cells showed tropinone-reducing activity in an NADPH-dependent fashion, and the specific activity was 5.13 U/mg protein.
- Further, the cell-free extract derived from the recombinantE. coli showed 3-quinuclidinone-reducing activity in an NADPH-dependent fashion, and the specific activity was 1.91 U/mg protein.
- The assay for glucose dehydrogenase activity was carried out by incubating a reaction solution containing 100 mM potassium phosphate buffer (pH 7.0), 2.5 mM NADP+, 100 mM D-glucose, and the cell-free extract at 25° C. 1U was defined as an enzyme amount capable of catalyzing the generation of 1 μmol NADPH for 1 minute.
- The specific activity of the cell-free extract derived from the recombinantE. coli was 1.95 U/mg protein.
-
- After the bacterial cells were removed, 3-quinuclidinol produced was quantified by the method as described in Example 5. The result showed that the concentration of 3-quinuclidinol hydrochloride was 44.7 g/L and the yield was 88.3%.
- The optical purity was determined by the method as descried in Example 5. The result showed that the optical purity was 93.4% ee (R).
- Equivalents
- Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents of the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.
- Incorporation by Reference
- All patents, pending patent applications and other publications cited herein are hereby incorporated by reference in their entirety.
-
1 10 1 822 DNA Datura stramonium 1 atggaagaat caaaagtgtc catgatgaat tgcaacaatg aaggaagatg gagtctcaaa 60 ggcaccacag cccttgttac tggtggctct aaaggcattg ggtatgcaat agtggaagaa 120 ttggcaggtc ttggagcaag agtatataca tgttcacgta atgaaaaaga actggacgaa 180 tgccttgaaa tttggagaga aaaaggactt aatgttgaag gttctgtttg tgacttatta 240 tcacgtactg aacgtgataa gcttatgcag actgttgcac atgtatttga tggaaagctc 300 aatattttgg tgaataatgc cggggtggtg atacataagg aagctaaaga tttcacagaa 360 aaagattaca acataattat gggaactaat tttgaagcag cttatcattt atctcaaatt 420 gcttatccat tattgaaggc ttctcaaaat gggaatgtta tttttctctc ttctattgct 480 ggattttcag cactgccttc tgtttctctt tactcagctt ccaaaggtgc aataaatcaa 540 atgacaaaga gtttggcttg tgaatgggct aaagacaaca ttcgggtcaa ttcagttgct 600 ccgggagtca ttttaacccc actggttgaa actgcaatta agaaaaatcc tcatcaaaaa 660 gaagaaatag acaattttat tgtcaagact cctatgggcc gggccggaaa gccccaagaa 720 gtttctgcac taatagcttt tctttgcttc cctgctgctt catatattac gggccagatc 780 atatgggctg acggtggatt cacagctaat ggtgggtttt aa 822 2 273 PRT Datura stramonium 2 Met Glu Glu Ser Lys Val Ser Met Met Asn Cys Asn Asn Glu Gly Arg 1 5 10 15 Trp Ser Leu Lys Gly Thr Thr Ala Leu Val Thr Gly Gly Ser Lys Gly 20 25 30 Ile Gly Tyr Ala Ile Val Glu Glu Leu Ala Gly Leu Gly Ala Arg Val 35 40 45 Tyr Thr Cys Ser Arg Asn Glu Lys Glu Leu Asp Glu Cys Leu Glu Ile 50 55 60 Trp Arg Glu Lys Gly Leu Asn Val Glu Gly Ser Val Cys Asp Leu Leu 65 70 75 80 Ser Arg Thr Glu Arg Asp Lys Leu Met Gln Thr Val Ala His Val Phe 85 90 95 Asp Gly Lys Leu Asn Ile Leu Val Asn Asn Ala Gly Val Val Ile His 100 105 110 Lys Glu Ala Lys Asp Phe Thr Glu Lys Asp Tyr Asn Ile Ile Met Gly 115 120 125 Thr Asn Phe Glu Ala Ala Tyr His Leu Ser Gln Ile Ala Tyr Pro Leu 130 135 140 Leu Lys Ala Ser Gln Asn Gly Asn Val Ile Phe Leu Ser Ser Ile Ala 145 150 155 160 Gly Phe Ser Ala Leu Pro Ser Val Ser Leu Tyr Ser Ala Ser Lys Gly 165 170 175 Ala Ile Asn Gln Met Thr Lys Ser Leu Ala Cys Glu Trp Ala Lys Asp 180 185 190 Asn Ile Arg Val Asn Ser Val Ala Pro Gly Val Ile Leu Thr Pro Leu 195 200 205 Val Glu Thr Ala Ile Lys Lys Asn Pro His Gln Lys Glu Glu Ile Asp 210 215 220 Asn Phe Ile Val Lys Thr Pro Met Gly Arg Ala Gly Lys Pro Gln Glu 225 230 235 240 Val Ser Ala Leu Ile Ala Phe Leu Cys Phe Pro Ala Ala Ser Tyr Ile 245 250 255 Thr Gly Gln Ile Ile Trp Ala Asp Gly Gly Phe Thr Ala Asn Gly Gly 260 265 270 Phe 3 825 DNA Hyoscyamus niger 3 atggccggag aatcagaagt ttacattaat ggcaacaatg gaggaattag atggagtctc 60 aaaggcacaa ctgcccttgt tactggtggc tctaaaggca ttgggtatgc agtagtggaa 120 gaactagcag gtcttggtgc aagagtatat acatgttcac gtaatgaaaa ggaactccaa 180 caatgccttg atatttggag aaatgaagga cttcaagttg aaggttctgt ttgtgattta 240 ttactgcgct ctgaacgtga caaacttatg cagactgttg cagatttatt taatggaaag 300 ctcaatattt tggtaaataa tgcaggtgtg gtgatacata aagaagctaa agatttcaca 360 aaagaagatt acgacatcgt attgggcact aattttgaag cagcttatca cttatgtcaa 420 cttgcttatc cctttttgaa ggcatctcaa aatggcaatg ttatttttct ttcttctata 480 gctggatttt cagcactgcc ttctgtttct ctttattctg cttccaaagc tgcaataaat 540 caaataacga agaacttggc atgtgaatgg gccaaggaca acattcgggt caattcagtt 600 gctccaggag tcattttaac cccactcatt gaaactgcaa ttaagaaaaa tcctcatcaa 660 aaagaagaaa tagacaattt tattgtcaag actccaatgg gccgggctgg aaagcccaat 720 gaagtgtctg cactaatagc ctttctttgc ttccctgctg cttcttatat tactggccaa 780 attatatggg ctgatggtgg attcacagct aatggtgggt tttga 825 4 274 PRT Hyoscyamus niger 4 Met Ala Gly Glu Ser Glu Val Tyr Ile Asn Gly Asn Asn Gly Gly Ile 1 5 10 15 Arg Trp Ser Leu Lys Gly Thr Thr Ala Leu Val Thr Gly Gly Ser Lys 20 25 30 Gly Ile Gly Tyr Ala Val Val Glu Glu Leu Ala Gly Leu Gly Ala Arg 35 40 45 Val Tyr Thr Cys Ser Arg Asn Glu Lys Glu Leu Gln Gln Cys Leu Asp 50 55 60 Ile Trp Arg Asn Glu Gly Leu Gln Val Glu Gly Ser Val Cys Asp Leu 65 70 75 80 Leu Leu Arg Ser Glu Arg Asp Lys Leu Met Gln Thr Val Ala Asp Leu 85 90 95 Phe Asn Gly Lys Leu Asn Ile Leu Val Asn Asn Ala Gly Val Val Ile 100 105 110 His Lys Glu Ala Lys Asp Phe Thr Lys Glu Asp Tyr Asp Ile Val Leu 115 120 125 Gly Thr Asn Phe Glu Ala Ala Tyr His Leu Cys Gln Leu Ala Tyr Pro 130 135 140 Phe Leu Lys Ala Ser Gln Asn Gly Asn Val Ile Phe Leu Ser Ser Ile 145 150 155 160 Ala Gly Phe Ser Ala Leu Pro Ser Val Ser Leu Tyr Ser Ala Ser Lys 165 170 175 Ala Ala Ile Asn Gln Ile Thr Lys Asn Leu Ala Cys Glu Trp Ala Lys 180 185 190 Asp Asn Ile Arg Val Asn Ser Val Ala Pro Gly Val Ile Leu Thr Pro 195 200 205 Leu Ile Glu Thr Ala Ile Lys Lys Asn Pro His Gln Lys Glu Glu Ile 210 215 220 Asp Asn Phe Ile Val Lys Thr Pro Met Gly Arg Ala Gly Lys Pro Asn 225 230 235 240 Glu Val Ser Ala Leu Ile Ala Phe Leu Cys Phe Pro Ala Ala Ser Tyr 245 250 255 Ile Thr Gly Gln Ile Ile Trp Ala Asp Gly Gly Phe Thr Ala Asn Gly 260 265 270 Gly Phe 5 23 DNA Artificial Sequence Description of Artificial Sequencean artificially synthesized primer sequence 5 ataccatgga agaatcaaaa gtg 23 6 31 DNA Artificial Sequence Description of Artificial Sequencean artificially synthesized primer sequence 6 tggtctagat taaaacccac cattagctgt g 31 7 20 DNA Artificial Sequence Description of Artificial Sequencean artificially synthesized primer sequence 7 ataccatggc cggagaatca 20 8 31 DNA Artificial Sequence Description of Artificial Sequencean artificially synthesized primer sequence 8 acctctagat taaaacccac cattagctgt g 31 9 35 DNA Artificial Sequence Description of Artificial Sequencean artificially synthesized primer sequence 9 caggaattca ataatgactg aacagaaagc cattg 35 10 32 DNA Artificial Sequence Description of Artificial Sequencean artificially synthesized primer sequence 10 ctgactagta ttactgccac tttatcaccg tc 32
Claims (31)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/314,394 US20030143700A1 (en) | 2001-12-07 | 2002-12-06 | Methods for producing optically active alcohols |
US11/151,764 US7645599B2 (en) | 2001-12-07 | 2005-06-13 | Methods for producing optically active alcohols |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-375041 | 2001-12-07 | ||
JP2001375041 | 2001-12-07 | ||
JP2002-152955 | 2002-05-27 | ||
JP2002152955A JP2003230398A (en) | 2001-12-07 | 2002-05-27 | Method for producing optically active alcohol |
US38543402P | 2002-05-31 | 2002-05-31 | |
US10/314,394 US20030143700A1 (en) | 2001-12-07 | 2002-12-06 | Methods for producing optically active alcohols |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/151,764 Division US7645599B2 (en) | 2001-12-07 | 2005-06-13 | Methods for producing optically active alcohols |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030143700A1 true US20030143700A1 (en) | 2003-07-31 |
Family
ID=27790631
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/314,394 Abandoned US20030143700A1 (en) | 2001-12-07 | 2002-12-06 | Methods for producing optically active alcohols |
US11/151,764 Expired - Fee Related US7645599B2 (en) | 2001-12-07 | 2005-06-13 | Methods for producing optically active alcohols |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/151,764 Expired - Fee Related US7645599B2 (en) | 2001-12-07 | 2005-06-13 | Methods for producing optically active alcohols |
Country Status (2)
Country | Link |
---|---|
US (2) | US20030143700A1 (en) |
JP (1) | JP2003230398A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111065734A (en) * | 2017-09-12 | 2020-04-24 | 尤妮澈实验室有限公司 | Efficient enzymatic process for producing (R) -3-quinuclidinol |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007189923A (en) * | 2006-01-18 | 2007-08-02 | Daicel Chem Ind Ltd | Process for producing optically active N-benzyl-3-pyrrolidinol |
WO2007142210A1 (en) | 2006-06-05 | 2007-12-13 | Daicel Chemical Industries, Ltd. | Process for production of optically active alcohol |
JP2008007418A (en) * | 2006-06-27 | 2008-01-17 | Tokuyama Corp | Method for producing benzoxazine compound having stable crystal structure |
WO2008063650A2 (en) * | 2006-11-20 | 2008-05-29 | President And Fellows Of Harvard College | Systems of hydrogen and formic acid production in yeast |
JP2008212144A (en) * | 2007-02-08 | 2008-09-18 | Nagase & Co Ltd | Alcohol dehydrogenase, gene encoding the same, and method for producing optically active (R) -3-quinuclidinol using the same |
JP5403498B2 (en) * | 2008-02-26 | 2014-01-29 | 有機合成薬品工業株式会社 | Method for producing (R) -3-quinuclidinol |
WO2010123062A1 (en) | 2009-04-23 | 2010-10-28 | 株式会社カネカ | Process for production of (r)-3-quinuclidinol |
AU2009348523B2 (en) * | 2009-06-22 | 2015-02-26 | Sk Biopharmaceuticals Co., Ltd. | Method for preparation of carbamic acid (R)-1-aryl-2-tetrazolyl-ethyl ester |
US8404461B2 (en) * | 2009-10-15 | 2013-03-26 | SK Biopharmaceutical Co. Ltd. | Method for preparation of carbamic acid (R)-1-aryl-2-tetrazolyl-ethyl ester |
JP5703455B2 (en) * | 2010-01-19 | 2015-04-22 | 富山県 | Quinuclidinone reductase and method for producing optically active 3-quinuclidinol using the same |
JP2011205921A (en) * | 2010-03-29 | 2011-10-20 | Mitsubishi Rayon Co Ltd | Recombinant rhodococcus bacterium and method for producing optically active (r)-3-quinuclidinol by using the same |
US20140147896A1 (en) | 2010-07-14 | 2014-05-29 | Cadila Healthcare Limited | Enzyme for the production of optically pure 3-quinuclidinol |
DE102013104418B4 (en) | 2013-04-30 | 2018-09-27 | Cambrex Iep Gmbh | Biocatalytic process for the preparation of (R) -3-quinuclidinol |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5744606A (en) * | 1996-01-19 | 1998-04-28 | Lonza Ag | Process for the preparation of optically active 3-quinuclidinol |
US6121025A (en) * | 1996-11-05 | 2000-09-19 | Mitsubishi Rayon Co., Ltd. | Process for producing optically active 3-quinuclidinol derivatives |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05194509A (en) | 1992-01-20 | 1993-08-03 | Daicel Chem Ind Ltd | Method for purifying quinuclidine-4-carboxamide |
JPH05194510A (en) | 1992-01-21 | 1993-08-03 | Daicel Chem Ind Ltd | Method for purifying quinuclidine-4-carboxamide |
US5215918A (en) | 1992-06-19 | 1993-06-01 | Bend Research, Inc. | Enantiomeric enrichment of (R,S)-3-quinuclidinol |
DE19715465A1 (en) | 1996-04-18 | 1997-09-11 | Lonza Ag | Preparation of (R)-3-quinuclidinol from (R,S)-3-quinuclidinol |
US5774606A (en) * | 1996-05-17 | 1998-06-30 | Lucent Technologies, Inc. | Optical fiber transmission system with a passive optical router |
JPH10210997A (en) | 1997-01-31 | 1998-08-11 | Nagase & Co Ltd | Production of optically active 3-quinacridinol |
JPH10243795A (en) * | 1997-03-04 | 1998-09-14 | Daicel Chem Ind Ltd | Production of optically active quinuclidinol |
DE19715564C2 (en) | 1997-04-15 | 1999-10-14 | Dornier Tech Gmbh & Co | Cleaning head of an automatic cleaning device |
JP3891522B2 (en) | 1998-01-07 | 2007-03-14 | 長瀬産業株式会社 | Process for producing optically active 3-quinuclidinol |
JP2000189170A (en) | 1998-05-08 | 2000-07-11 | Daicel Chem Ind Ltd | Method for producing optically active 4-halo-3-hydroxybutyrate |
JP2000236883A (en) | 1998-12-21 | 2000-09-05 | Daicel Chem Ind Ltd | Novel carbonyl reductase, method for producing the enzyme, DNA encoding the enzyme, and method for producing alcohol using the same |
JP3858505B2 (en) | 1999-03-05 | 2006-12-13 | 三菱化学株式会社 | Method for producing R-3-quinuclidinol |
TWI275645B (en) | 2000-02-16 | 2007-03-11 | Daicel Chemical Industries Ltd. | (R)-2-octanol dehydrogenases, methods for producing the enzymes, DNA encoding the enzymes, and methods for producing alcohols using the enzymes |
JP4818507B2 (en) | 2000-11-21 | 2011-11-16 | 三菱レイヨン株式会社 | Process for producing optically active 3-quinuclidinol |
-
2002
- 2002-05-27 JP JP2002152955A patent/JP2003230398A/en active Pending
- 2002-12-06 US US10/314,394 patent/US20030143700A1/en not_active Abandoned
-
2005
- 2005-06-13 US US11/151,764 patent/US7645599B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5744606A (en) * | 1996-01-19 | 1998-04-28 | Lonza Ag | Process for the preparation of optically active 3-quinuclidinol |
US6121025A (en) * | 1996-11-05 | 2000-09-19 | Mitsubishi Rayon Co., Ltd. | Process for producing optically active 3-quinuclidinol derivatives |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111065734A (en) * | 2017-09-12 | 2020-04-24 | 尤妮澈实验室有限公司 | Efficient enzymatic process for producing (R) -3-quinuclidinol |
Also Published As
Publication number | Publication date |
---|---|
US7645599B2 (en) | 2010-01-12 |
US20050227336A1 (en) | 2005-10-13 |
JP2003230398A (en) | 2003-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6706507B2 (en) | (R)-2-octanol dehydrogenases, methods for producing the enzymes, DNA encoding the enzymes, and methods for producing alcohols using the enzymes | |
US6485948B2 (en) | Carbonyl reductase, method for producing said enzyme, DNA encoding said enzyme, and method for producing alcohol using said enzyme | |
US7645599B2 (en) | Methods for producing optically active alcohols | |
US20030032153A1 (en) | Novel (R)-2,3-butanediol dehydrogenase, methods for producing same, and methods for producing optically active alcohol using the dehydrogenase | |
US20090203096A1 (en) | Process for Production of Optically Active Alcohol | |
US20110287494A1 (en) | Process for production of optically active amine derivative | |
US7083962B2 (en) | Carbonyl reductases, polynucleotides comprising DNA encoding the same, methods for producing the same, and methods for producing optically active alcohol utilizing the same | |
US20110262977A1 (en) | Process for production of optically active amine derivative | |
JP4294382B2 (en) | (2S, 3S) -2,3-butanediol dehydrogenase | |
US6830907B2 (en) | Mutants of Mycobacterium vaccae-derived formate dehydrogenase and uses thereof | |
JP4809660B2 (en) | 3-quinuclidinone reductase and method for producing (R) -3-quinuclidinol using the same | |
US20080261286A1 (en) | Methods for producing optically active alpha-hydroxy amides | |
EP1318200A2 (en) | Methods for producing optically active alcohols | |
JP2008212144A (en) | Alcohol dehydrogenase, gene encoding the same, and method for producing optically active (R) -3-quinuclidinol using the same | |
JP5499350B2 (en) | Quinuclidinone reductase and method for producing optically active 3-quinuclidinol using the same | |
KR102291199B1 (en) | Biocatalytic process for the production of (r)-3-quinuclidinol | |
JP4603171B2 (en) | (S) -4-Halo-3-hydroxybutyric acid ester-encoding gene useful for enzyme, method for obtaining the same, and method for producing optically active alcohol using the same | |
JP5703455B2 (en) | Quinuclidinone reductase and method for producing optically active 3-quinuclidinol using the same | |
JP2005095022A (en) | Method for producing optically active alcohol | |
JP2007189923A (en) | Process for producing optically active N-benzyl-3-pyrrolidinol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DAICEL CHEMICAL INDUSTRIES, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMAMOTO, HIROAKI;UEDA, MOMOKO;PAN, RITSUZUI;AND OTHERS;REEL/FRAME:013906/0668 Effective date: 20030220 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: DAICEL CHEMICAL INDUSTRIES, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMAMOTO, HIROAKI;UEDA, MOMOKO;PAN, RITSUZUI;AND OTHERS;REEL/FRAME:021000/0147 Effective date: 20030220 |