US20030166565A1 - Compositions and methods to inhibit formation of the C5b-9 complex of complement - Google Patents
Compositions and methods to inhibit formation of the C5b-9 complex of complement Download PDFInfo
- Publication number
- US20030166565A1 US20030166565A1 US10/403,340 US40334003A US2003166565A1 US 20030166565 A1 US20030166565 A1 US 20030166565A1 US 40334003 A US40334003 A US 40334003A US 2003166565 A1 US2003166565 A1 US 2003166565A1
- Authority
- US
- United States
- Prior art keywords
- compound
- peptide
- amino acid
- acid residues
- thr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 64
- 230000000295 complement effect Effects 0.000 title claims abstract description 39
- 239000000203 mixture Substances 0.000 title claims abstract description 20
- 108010034753 Complement Membrane Attack Complex Proteins 0.000 title claims description 76
- 230000015572 biosynthetic process Effects 0.000 title claims description 16
- 101000897400 Homo sapiens CD59 glycoprotein Proteins 0.000 claims abstract description 267
- 102100022002 CD59 glycoprotein Human genes 0.000 claims abstract description 256
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 146
- 150000001875 compounds Chemical class 0.000 claims abstract description 92
- 241000282414 Homo sapiens Species 0.000 claims abstract description 80
- 150000001413 amino acids Chemical class 0.000 claims abstract description 71
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 63
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 59
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 48
- 125000000539 amino acid group Chemical group 0.000 claims abstract description 31
- 230000005764 inhibitory process Effects 0.000 claims abstract description 20
- 230000001404 mediated effect Effects 0.000 claims abstract description 16
- 239000000816 peptidomimetic Substances 0.000 claims abstract description 14
- 230000024203 complement activation Effects 0.000 claims abstract description 11
- 150000003384 small molecules Chemical class 0.000 claims abstract description 8
- 230000002401 inhibitory effect Effects 0.000 claims description 29
- 108091006116 chimeric peptides Proteins 0.000 claims description 6
- 239000003937 drug carrier Substances 0.000 claims description 6
- 206010061218 Inflammation Diseases 0.000 claims description 5
- 230000004054 inflammatory process Effects 0.000 claims description 5
- 108020004707 nucleic acids Proteins 0.000 claims description 5
- 102000039446 nucleic acids Human genes 0.000 claims description 5
- 150000007523 nucleic acids Chemical class 0.000 claims description 5
- 206010028980 Neoplasm Diseases 0.000 claims description 2
- 238000002560 therapeutic procedure Methods 0.000 claims description 2
- 230000001737 promoting effect Effects 0.000 claims 1
- 230000001629 suppression Effects 0.000 claims 1
- 230000027455 binding Effects 0.000 abstract description 52
- 230000003993 interaction Effects 0.000 abstract description 17
- 125000003275 alpha amino acid group Chemical group 0.000 abstract description 13
- 101100167771 Homo sapiens C9 gene Proteins 0.000 abstract description 11
- 238000009510 drug design Methods 0.000 abstract description 11
- 239000003446 ligand Substances 0.000 abstract description 7
- 108091005601 modified peptides Proteins 0.000 abstract description 6
- 230000000903 blocking effect Effects 0.000 abstract description 5
- 238000001311 chemical methods and process Methods 0.000 abstract description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 63
- 235000001014 amino acid Nutrition 0.000 description 60
- 210000004027 cell Anatomy 0.000 description 60
- 229940024606 amino acid Drugs 0.000 description 58
- 235000018102 proteins Nutrition 0.000 description 44
- 230000006870 function Effects 0.000 description 27
- 230000009089 cytolysis Effects 0.000 description 23
- 230000000694 effects Effects 0.000 description 22
- 239000002299 complementary DNA Substances 0.000 description 21
- 239000012528 membrane Substances 0.000 description 21
- 229920001184 polypeptide Polymers 0.000 description 21
- 241000894007 species Species 0.000 description 21
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 19
- 238000002474 experimental method Methods 0.000 description 18
- 238000006467 substitution reaction Methods 0.000 description 17
- 210000001772 blood platelet Anatomy 0.000 description 14
- 230000002949 hemolytic effect Effects 0.000 description 14
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 13
- 108091034117 Oligonucleotide Proteins 0.000 description 12
- 230000002101 lytic effect Effects 0.000 description 12
- 108010069495 cysteinyltyrosine Proteins 0.000 description 11
- 239000013612 plasmid Substances 0.000 description 11
- 241001465754 Metazoa Species 0.000 description 10
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 10
- 102000051442 human CD59 Human genes 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000003752 polymerase chain reaction Methods 0.000 description 10
- 239000011780 sodium chloride Substances 0.000 description 10
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 9
- 229940098773 bovine serum albumin Drugs 0.000 description 9
- 210000000170 cell membrane Anatomy 0.000 description 9
- UMCMPZBLKLEWAF-BCTGSCMUSA-N 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 UMCMPZBLKLEWAF-BCTGSCMUSA-N 0.000 description 8
- 206010057248 Cell death Diseases 0.000 description 8
- DKEZVKFLETVJFY-CIUDSAMLSA-N Leu-Cys-Asn Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(=O)N)C(=O)O)N DKEZVKFLETVJFY-CIUDSAMLSA-N 0.000 description 8
- DXYBNWJZJVSZAE-GUBZILKMSA-N Leu-Gln-Cys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CS)C(=O)O)N DXYBNWJZJVSZAE-GUBZILKMSA-N 0.000 description 8
- 241000699666 Mus <mouse, genus> Species 0.000 description 8
- 239000008280 blood Substances 0.000 description 8
- 210000004899 c-terminal region Anatomy 0.000 description 8
- 108020001507 fusion proteins Proteins 0.000 description 8
- 102000037865 fusion proteins Human genes 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- 239000013598 vector Substances 0.000 description 8
- 108020004414 DNA Proteins 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 238000005481 NMR spectroscopy Methods 0.000 description 7
- 210000004369 blood Anatomy 0.000 description 7
- 108010004073 cysteinylcysteine Proteins 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 229940088598 enzyme Drugs 0.000 description 7
- 210000003743 erythrocyte Anatomy 0.000 description 7
- 230000003053 immunization Effects 0.000 description 7
- 230000003278 mimic effect Effects 0.000 description 7
- 239000013615 primer Substances 0.000 description 7
- 210000002966 serum Anatomy 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 108010069112 Complement System Proteins Proteins 0.000 description 6
- 102000000989 Complement System Proteins Human genes 0.000 description 6
- VPQZSNQICFCCSO-BJDJZHNGSA-N Cys-Leu-Ile Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O VPQZSNQICFCCSO-BJDJZHNGSA-N 0.000 description 6
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 6
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 6
- MYTOTTSMVMWVJN-STQMWFEESA-N Lys-Tyr Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 MYTOTTSMVMWVJN-STQMWFEESA-N 0.000 description 6
- DWJQKEZKLQCHKO-SRVKXCTJSA-N Tyr-Asn-Cys Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CS)C(=O)O)N)O DWJQKEZKLQCHKO-SRVKXCTJSA-N 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- CKLJMWTZIZZHCS-REOHCLBHSA-N aspartic acid group Chemical group N[C@@H](CC(=O)O)C(=O)O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 6
- 238000003556 assay Methods 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- 230000009137 competitive binding Effects 0.000 description 6
- 239000004074 complement inhibitor Substances 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Chemical compound O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 6
- 238000002649 immunization Methods 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- SFUUYRSAJPWTGO-SRVKXCTJSA-N Cys-Asn-Phe Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O SFUUYRSAJPWTGO-SRVKXCTJSA-N 0.000 description 5
- MXZYQNJCBVJHSR-KATARQTJSA-N Cys-Lys-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CS)N)O MXZYQNJCBVJHSR-KATARQTJSA-N 0.000 description 5
- PXEGEYISOXISDV-XIRDDKMYSA-N Cys-Trp-Lys Chemical compound C1=CC=C2C(C[C@@H](C(=O)N[C@@H](CCCCN)C(O)=O)NC(=O)[C@@H](N)CS)=CNC2=C1 PXEGEYISOXISDV-XIRDDKMYSA-N 0.000 description 5
- 206010018910 Haemolysis Diseases 0.000 description 5
- 239000007983 Tris buffer Substances 0.000 description 5
- 239000002671 adjuvant Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000000427 antigen Substances 0.000 description 5
- 102000036639 antigens Human genes 0.000 description 5
- 108091007433 antigens Proteins 0.000 description 5
- 238000012937 correction Methods 0.000 description 5
- 108010060199 cysteinylproline Proteins 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 210000003038 endothelium Anatomy 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 230000008588 hemolysis Effects 0.000 description 5
- 230000002163 immunogen Effects 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 108010047926 leucyl-lysyl-tyrosine Proteins 0.000 description 5
- 210000004698 lymphocyte Anatomy 0.000 description 5
- 108010038320 lysylphenylalanine Proteins 0.000 description 5
- -1 methylenethio Chemical group 0.000 description 5
- 239000004005 microsphere Substances 0.000 description 5
- 239000002773 nucleotide Substances 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 5
- CXZFXHGJJPVUJE-CIUDSAMLSA-N Ala-Cys-Leu Chemical compound C[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(=O)O)N CXZFXHGJJPVUJE-CIUDSAMLSA-N 0.000 description 4
- 229940124073 Complement inhibitor Drugs 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 239000012981 Hank's balanced salt solution Substances 0.000 description 4
- 108010052285 Membrane Proteins Proteins 0.000 description 4
- YBAFDPFAUTYYRW-UHFFFAOYSA-N N-L-alpha-glutamyl-L-leucine Natural products CC(C)CC(C(O)=O)NC(=O)C(N)CCC(O)=O YBAFDPFAUTYYRW-UHFFFAOYSA-N 0.000 description 4
- 108010076504 Protein Sorting Signals Proteins 0.000 description 4
- OHNXAUCZVWGTLL-KKUMJFAQSA-N Tyr-His-Cys Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CC2=CN=CN2)C(=O)N[C@@H](CS)C(=O)O)N)O OHNXAUCZVWGTLL-KKUMJFAQSA-N 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 108010047495 alanylglycine Proteins 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 238000007385 chemical modification Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 210000002889 endothelial cell Anatomy 0.000 description 4
- 210000003617 erythrocyte membrane Anatomy 0.000 description 4
- 239000012091 fetal bovine serum Substances 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 208000026278 immune system disease Diseases 0.000 description 4
- 210000000265 leukocyte Anatomy 0.000 description 4
- 239000002502 liposome Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000002503 metabolic effect Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 230000009870 specific binding Effects 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- QUIGLPSHIFPEOV-CIUDSAMLSA-N Ala-Lys-Ala Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O QUIGLPSHIFPEOV-CIUDSAMLSA-N 0.000 description 3
- 241000282709 Aotus trivirgatus Species 0.000 description 3
- SPIPSJXLZVTXJL-ZLUOBGJFSA-N Asn-Cys-Ser Chemical compound NC(=O)C[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(O)=O SPIPSJXLZVTXJL-ZLUOBGJFSA-N 0.000 description 3
- WPOLSNAQGVHROR-GUBZILKMSA-N Asn-Gln-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CC(=O)N)N WPOLSNAQGVHROR-GUBZILKMSA-N 0.000 description 3
- 241000283707 Capra Species 0.000 description 3
- 241000282552 Chlorocebus aethiops Species 0.000 description 3
- 241000287828 Gallus gallus Species 0.000 description 3
- 108090000144 Human Proteins Proteins 0.000 description 3
- PVMPDMIKUVNOBD-CIUDSAMLSA-N Leu-Asp-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(O)=O PVMPDMIKUVNOBD-CIUDSAMLSA-N 0.000 description 3
- QDSKNVXKLPQNOJ-GVXVVHGQSA-N Leu-Gln-Val Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C(C)C)C(O)=O QDSKNVXKLPQNOJ-GVXVVHGQSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 102000018697 Membrane Proteins Human genes 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- 239000012124 Opti-MEM Substances 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 241001504519 Papio ursinus Species 0.000 description 3
- 241001494479 Pecora Species 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- KIAWKQJTSGRCSA-AVGNSLFASA-N Phe-Asn-Glu Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N KIAWKQJTSGRCSA-AVGNSLFASA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 241000288906 Primates Species 0.000 description 3
- TXPUNZXZDVJUJQ-LPEHRKFASA-N Pro-Asn-Pro Chemical compound C1C[C@H](NC1)C(=O)N[C@@H](CC(=O)N)C(=O)N2CCC[C@@H]2C(=O)O TXPUNZXZDVJUJQ-LPEHRKFASA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- XSLXHSYIVPGEER-KZVJFYERSA-N Thr-Ala-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(O)=O XSLXHSYIVPGEER-KZVJFYERSA-N 0.000 description 3
- VASYSJHSMSBTDU-LKXGYXEUSA-N Thr-Asn-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CS)C(=O)O)N)O VASYSJHSMSBTDU-LKXGYXEUSA-N 0.000 description 3
- STUAPCLEDMKXKL-LKXGYXEUSA-N Thr-Ser-Asn Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(O)=O STUAPCLEDMKXKL-LKXGYXEUSA-N 0.000 description 3
- KWKJGBHDYJOVCR-SRVKXCTJSA-N Tyr-Ser-Cys Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CS)C(=O)O)N)O KWKJGBHDYJOVCR-SRVKXCTJSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 230000000692 anti-sense effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 210000000601 blood cell Anatomy 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 230000004154 complement system Effects 0.000 description 3
- 235000018417 cysteine Nutrition 0.000 description 3
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000003511 endothelial effect Effects 0.000 description 3
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 3
- 108010083327 glycyl-prolyl-arginyl-valine Proteins 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 108010034529 leucyl-lysine Proteins 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 241001515942 marmosets Species 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 230000009834 selective interaction Effects 0.000 description 3
- 238000002741 site-directed mutagenesis Methods 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000004448 titration Methods 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- IKWHIGGRTYBSIW-OBJOEFQTSA-N (2s)-2-[[(2s)-2-[[(2s)-1-(2-aminoacetyl)pyrrolidine-2-carbonyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-3-methylbutanoic acid Chemical compound NC(N)=NCCC[C@@H](C(=O)N[C@@H](C(C)C)C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)CN IKWHIGGRTYBSIW-OBJOEFQTSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- DLZKEQQWXODGGZ-KCJUWKMLSA-N 2-[[(2r)-2-[[(2s)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]propanoyl]amino]acetic acid Chemical compound OC(=O)CNC(=O)[C@@H](C)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 DLZKEQQWXODGGZ-KCJUWKMLSA-N 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- PCIFXPRIFWKWLK-YUMQZZPRSA-N Ala-Gly-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)CNC(=O)[C@H](C)N PCIFXPRIFWKWLK-YUMQZZPRSA-N 0.000 description 2
- OMCKWYSDUQBYCN-FXQIFTODSA-N Ala-Ser-Met Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(O)=O OMCKWYSDUQBYCN-FXQIFTODSA-N 0.000 description 2
- KWKQGHSSNHPGOW-BQBZGAKWSA-N Arg-Ala-Gly Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)NCC(O)=O KWKQGHSSNHPGOW-BQBZGAKWSA-N 0.000 description 2
- RKRSYHCNPFGMTA-CIUDSAMLSA-N Arg-Glu-Asn Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O RKRSYHCNPFGMTA-CIUDSAMLSA-N 0.000 description 2
- ANAHQDPQQBDOBM-UHFFFAOYSA-N Arg-Val-Tyr Natural products CC(C)C(NC(=O)C(N)CCNC(=N)N)C(=O)NC(Cc1ccc(O)cc1)C(=O)O ANAHQDPQQBDOBM-UHFFFAOYSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- XLHLPYFMXGOASD-CIUDSAMLSA-N Asn-His-Asp Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CC(=O)N)N XLHLPYFMXGOASD-CIUDSAMLSA-N 0.000 description 2
- UHGUKCOQUNPSKK-CIUDSAMLSA-N Asn-Leu-Cys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)N)N UHGUKCOQUNPSKK-CIUDSAMLSA-N 0.000 description 2
- KLYPOCBLKMPBIQ-GHCJXIJMSA-N Asp-Ile-Ser Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CC(=O)O)N KLYPOCBLKMPBIQ-GHCJXIJMSA-N 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 102000016574 Complement C3-C5 Convertases Human genes 0.000 description 2
- 108010067641 Complement C3-C5 Convertases Proteins 0.000 description 2
- 108010027644 Complement C9 Proteins 0.000 description 2
- IZUNQDRIAOLWCN-YUMQZZPRSA-N Cys-Leu-Gly Chemical compound CC(C)C[C@@H](C(=O)NCC(=O)O)NC(=O)[C@H](CS)N IZUNQDRIAOLWCN-YUMQZZPRSA-N 0.000 description 2
- WVLZTXGTNGHPBO-SRVKXCTJSA-N Cys-Leu-Leu Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O WVLZTXGTNGHPBO-SRVKXCTJSA-N 0.000 description 2
- IQXSTXKVEMRMMB-XAVMHZPKSA-N Cys-Thr-Pro Chemical compound C[C@H]([C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CS)N)O IQXSTXKVEMRMMB-XAVMHZPKSA-N 0.000 description 2
- IZJLAQMWJHCHTN-BPUTZDHNSA-N Cys-Trp-Arg Chemical compound N[C@@H](CS)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(=N)N)C(=O)O IZJLAQMWJHCHTN-BPUTZDHNSA-N 0.000 description 2
- HRMMVZISPQOKMU-KKUMJFAQSA-N Cys-Tyr-His Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)NC(=O)[C@H](CS)N)O HRMMVZISPQOKMU-KKUMJFAQSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 108010074105 Factor Va Proteins 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- QKCZZAZNMMVICF-DCAQKATOSA-N Gln-Leu-Glu Chemical compound NC(=O)CC[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O QKCZZAZNMMVICF-DCAQKATOSA-N 0.000 description 2
- RDDSZZJOKDVPAE-ACZMJKKPSA-N Glu-Asn-Ser Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(O)=O RDDSZZJOKDVPAE-ACZMJKKPSA-N 0.000 description 2
- NADWTMLCUDMDQI-ACZMJKKPSA-N Glu-Asp-Cys Chemical compound C(CC(=O)O)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CS)C(=O)O)N NADWTMLCUDMDQI-ACZMJKKPSA-N 0.000 description 2
- PVBBEKPHARMPHX-DCAQKATOSA-N Glu-Gln-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CCC(O)=O PVBBEKPHARMPHX-DCAQKATOSA-N 0.000 description 2
- DNPCBMNFQVTHMA-DCAQKATOSA-N Glu-Leu-Gln Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O DNPCBMNFQVTHMA-DCAQKATOSA-N 0.000 description 2
- IVGJYOOGJLFKQE-AVGNSLFASA-N Glu-Leu-Lys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CCC(=O)O)N IVGJYOOGJLFKQE-AVGNSLFASA-N 0.000 description 2
- UQJNXZSSGQIPIQ-FBCQKBJTSA-N Gly-Gly-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)CNC(=O)CN UQJNXZSSGQIPIQ-FBCQKBJTSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- JBCLFWXMTIKCCB-UHFFFAOYSA-N H-Gly-Phe-OH Natural products NCC(=O)NC(C(O)=O)CC1=CC=CC=C1 JBCLFWXMTIKCCB-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 102000003839 Human Proteins Human genes 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- RSDHVTMRXSABSV-GHCJXIJMSA-N Ile-Asn-Cys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CS)C(=O)O)N RSDHVTMRXSABSV-GHCJXIJMSA-N 0.000 description 2
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 2
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- RCFDOSNHHZGBOY-UHFFFAOYSA-N L-isoleucyl-L-alanine Natural products CCC(C)C(N)C(=O)NC(C)C(O)=O RCFDOSNHHZGBOY-UHFFFAOYSA-N 0.000 description 2
- 108010001831 LDL receptors Proteins 0.000 description 2
- 241000880493 Leptailurus serval Species 0.000 description 2
- MYGQXVYRZMKRDB-SRVKXCTJSA-N Leu-Asp-Lys Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(O)=O)CCCCN MYGQXVYRZMKRDB-SRVKXCTJSA-N 0.000 description 2
- NRFGTHFONZYFNY-MGHWNKPDSA-N Leu-Ile-Tyr Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 NRFGTHFONZYFNY-MGHWNKPDSA-N 0.000 description 2
- XVZCXCTYGHPNEM-UHFFFAOYSA-N Leu-Leu-Pro Natural products CC(C)CC(N)C(=O)NC(CC(C)C)C(=O)N1CCCC1C(O)=O XVZCXCTYGHPNEM-UHFFFAOYSA-N 0.000 description 2
- ONPJGOIVICHWBW-BZSNNMDCSA-N Leu-Lys-Tyr Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 ONPJGOIVICHWBW-BZSNNMDCSA-N 0.000 description 2
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 description 2
- RIJCHEVHFWMDKD-SRVKXCTJSA-N Lys-Lys-Asn Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(O)=O RIJCHEVHFWMDKD-SRVKXCTJSA-N 0.000 description 2
- ALGGDNMLQNFVIZ-SRVKXCTJSA-N Lys-Lys-Asp Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(=O)O)C(=O)O)N ALGGDNMLQNFVIZ-SRVKXCTJSA-N 0.000 description 2
- 239000007993 MOPS buffer Substances 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 102100039373 Membrane cofactor protein Human genes 0.000 description 2
- 108090000143 Mouse Proteins Proteins 0.000 description 2
- XMBSYZWANAQXEV-UHFFFAOYSA-N N-alpha-L-glutamyl-L-phenylalanine Natural products OC(=O)CCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 XMBSYZWANAQXEV-UHFFFAOYSA-N 0.000 description 2
- 108010035766 P-Selectin Proteins 0.000 description 2
- 102100023472 P-selectin Human genes 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 208000000733 Paroxysmal Hemoglobinuria Diseases 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 108010033276 Peptide Fragments Proteins 0.000 description 2
- 102000007079 Peptide Fragments Human genes 0.000 description 2
- WSXKXSBOJXEZDV-DLOVCJGASA-N Phe-Ala-Asn Chemical compound NC(=O)C[C@@H](C([O-])=O)NC(=O)[C@H](C)NC(=O)[C@@H]([NH3+])CC1=CC=CC=C1 WSXKXSBOJXEZDV-DLOVCJGASA-N 0.000 description 2
- SWZKMTDPQXLQRD-XVSYOHENSA-N Phe-Asp-Thr Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O SWZKMTDPQXLQRD-XVSYOHENSA-N 0.000 description 2
- 102100036050 Phosphatidylinositol N-acetylglucosaminyltransferase subunit A Human genes 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- SNGZLPOXVRTNMB-LPEHRKFASA-N Pro-Ser-Pro Chemical compound C1C[C@H](NC1)C(=O)N[C@@H](CO)C(=O)N2CCC[C@@H]2C(=O)O SNGZLPOXVRTNMB-LPEHRKFASA-N 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 108010094028 Prothrombin Proteins 0.000 description 2
- 102100027378 Prothrombin Human genes 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 108010003201 RGH 0205 Proteins 0.000 description 2
- SQBLRDDJTUJDMV-ACZMJKKPSA-N Ser-Glu-Asn Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O SQBLRDDJTUJDMV-ACZMJKKPSA-N 0.000 description 2
- XXNYYSXNXCJYKX-DCAQKATOSA-N Ser-Leu-Met Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(O)=O XXNYYSXNXCJYKX-DCAQKATOSA-N 0.000 description 2
- SRSPTFBENMJHMR-WHFBIAKZSA-N Ser-Ser-Gly Chemical compound OC[C@H](N)C(=O)N[C@@H](CO)C(=O)NCC(O)=O SRSPTFBENMJHMR-WHFBIAKZSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- MEJHFIOYJHTWMK-VOAKCMCISA-N Thr-Leu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)[C@@H](C)O MEJHFIOYJHTWMK-VOAKCMCISA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 108090000190 Thrombin Proteins 0.000 description 2
- SEFNTZYRPGBDCY-IHRRRGAJSA-N Tyr-Arg-Cys Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CS)C(=O)O)N)O SEFNTZYRPGBDCY-IHRRRGAJSA-N 0.000 description 2
- HKIUVWMZYFBIHG-KKUMJFAQSA-N Tyr-Arg-Gln Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N)O HKIUVWMZYFBIHG-KKUMJFAQSA-N 0.000 description 2
- MBFJIHUHHCJBSN-AVGNSLFASA-N Tyr-Asn-Gln Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(O)=O MBFJIHUHHCJBSN-AVGNSLFASA-N 0.000 description 2
- AYPAIRCDLARHLM-KKUMJFAQSA-N Tyr-Asn-Lys Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CCCCN)C(=O)O)N)O AYPAIRCDLARHLM-KKUMJFAQSA-N 0.000 description 2
- UPODKYBYUBTWSV-BZSNNMDCSA-N Tyr-Phe-Cys Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CS)C(O)=O)C1=CC=C(O)C=C1 UPODKYBYUBTWSV-BZSNNMDCSA-N 0.000 description 2
- ANHVRCNNGJMJNG-BZSNNMDCSA-N Tyr-Tyr-Cys Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CC2=CC=C(C=C2)O)C(=O)N[C@@H](CS)C(=O)O)N)O ANHVRCNNGJMJNG-BZSNNMDCSA-N 0.000 description 2
- PQSNETRGCRUOGP-KKHAAJSZSA-N Val-Thr-Asn Chemical compound CC(C)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@H](C(O)=O)CC(N)=O PQSNETRGCRUOGP-KKHAAJSZSA-N 0.000 description 2
- LLJLBRRXKZTTRD-GUBZILKMSA-N Val-Val-Ser Chemical compound CC(C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CO)C(=O)O)N LLJLBRRXKZTTRD-GUBZILKMSA-N 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 108010081404 acein-2 Proteins 0.000 description 2
- NTECHUXHORNEGZ-UHFFFAOYSA-N acetyloxymethyl 3',6'-bis(acetyloxymethoxy)-2',7'-bis[3-(acetyloxymethoxy)-3-oxopropyl]-3-oxospiro[2-benzofuran-1,9'-xanthene]-5-carboxylate Chemical compound O1C(=O)C2=CC(C(=O)OCOC(C)=O)=CC=C2C21C1=CC(CCC(=O)OCOC(C)=O)=C(OCOC(C)=O)C=C1OC1=C2C=C(CCC(=O)OCOC(=O)C)C(OCOC(C)=O)=C1 NTECHUXHORNEGZ-UHFFFAOYSA-N 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 108010040443 aspartyl-aspartic acid Proteins 0.000 description 2
- 108010058966 bacteriophage T7 induced DNA polymerase Proteins 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 229960000074 biopharmaceutical Drugs 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000001461 cytolytic effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 238000007876 drug discovery Methods 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 210000003989 endothelium vascular Anatomy 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 108010018413 epidermal growth factor precursor Proteins 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 108091006104 gene-regulatory proteins Proteins 0.000 description 2
- 102000034356 gene-regulatory proteins Human genes 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 108010050848 glycylleucine Proteins 0.000 description 2
- 108010081551 glycylphenylalanine Proteins 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 208000027866 inflammatory disease Diseases 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 230000010039 intracellular degradation Effects 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 239000007928 intraperitoneal injection Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- 238000000324 molecular mechanic Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000009871 nonspecific binding Effects 0.000 description 2
- 201000003045 paroxysmal nocturnal hemoglobinuria Diseases 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229940039716 prothrombin Drugs 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 101150116497 sacm1l gene Proteins 0.000 description 2
- RGHFKWPGWBFQLN-UHFFFAOYSA-M sodium;5,5-diethylpyrimidin-3-ide-2,4,6-trione Chemical compound [Na+].CCC1(CC)C([O-])=NC(=O)NC1=O RGHFKWPGWBFQLN-UHFFFAOYSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 108010068698 spleen exonuclease Proteins 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N thiocyanic acid Chemical compound SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 2
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 108010061238 threonyl-glycine Proteins 0.000 description 2
- 229960004072 thrombin Drugs 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 210000005167 vascular cell Anatomy 0.000 description 2
- UVGHPGOONBRLCX-NJSLBKSFSA-N (2,5-dioxopyrrolidin-1-yl) 6-[5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]hexanoate Chemical compound C([C@H]1[C@H]2NC(=O)N[C@H]2CS1)CCCC(=O)NCCCCCC(=O)ON1C(=O)CCC1=O UVGHPGOONBRLCX-NJSLBKSFSA-N 0.000 description 1
- KMEMIMRPZGDOMG-UHFFFAOYSA-N 2-cyanoethoxyphosphonamidous acid Chemical compound NP(O)OCCC#N KMEMIMRPZGDOMG-UHFFFAOYSA-N 0.000 description 1
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 1
- 101150084229 ATXN1 gene Proteins 0.000 description 1
- HHGYNJRJIINWAK-FXQIFTODSA-N Ala-Ala-Arg Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N HHGYNJRJIINWAK-FXQIFTODSA-N 0.000 description 1
- KQFRUSHJPKXBMB-BHDSKKPTSA-N Ala-Ala-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H](C)NC(=O)[C@@H](N)C)C(O)=O)=CNC2=C1 KQFRUSHJPKXBMB-BHDSKKPTSA-N 0.000 description 1
- FBHOPGDGELNWRH-DRZSPHRISA-N Ala-Glu-Phe Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O FBHOPGDGELNWRH-DRZSPHRISA-N 0.000 description 1
- NBTGEURICRTMGL-WHFBIAKZSA-N Ala-Gly-Ser Chemical compound C[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O NBTGEURICRTMGL-WHFBIAKZSA-N 0.000 description 1
- CCDFBRZVTDDJNM-GUBZILKMSA-N Ala-Leu-Glu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O CCDFBRZVTDDJNM-GUBZILKMSA-N 0.000 description 1
- MEFILNJXAVSUTO-JXUBOQSCSA-N Ala-Leu-Thr Chemical compound C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O MEFILNJXAVSUTO-JXUBOQSCSA-N 0.000 description 1
- YCRAFFCYWOUEOF-DLOVCJGASA-N Ala-Phe-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)C)CC1=CC=CC=C1 YCRAFFCYWOUEOF-DLOVCJGASA-N 0.000 description 1
- ADSGHMXEAZJJNF-DCAQKATOSA-N Ala-Pro-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H](C)N ADSGHMXEAZJJNF-DCAQKATOSA-N 0.000 description 1
- XSLGWYYNOSUMRM-ZKWXMUAHSA-N Ala-Val-Asn Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O XSLGWYYNOSUMRM-ZKWXMUAHSA-N 0.000 description 1
- DHONNEYAZPNGSG-UBHSHLNASA-N Ala-Val-Phe Chemical compound C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 DHONNEYAZPNGSG-UBHSHLNASA-N 0.000 description 1
- REWSWYIDQIELBE-FXQIFTODSA-N Ala-Val-Ser Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CO)C(O)=O REWSWYIDQIELBE-FXQIFTODSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241000272525 Anas platyrhynchos Species 0.000 description 1
- YZXBAPSDXZZRGB-DOFZRALJSA-M Arachidonate Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC([O-])=O YZXBAPSDXZZRGB-DOFZRALJSA-M 0.000 description 1
- DFCIPNHFKOQAME-FXQIFTODSA-N Arg-Ala-Asn Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(N)=O)C(O)=O DFCIPNHFKOQAME-FXQIFTODSA-N 0.000 description 1
- YHSNASXGBPAHRL-BPUTZDHNSA-N Arg-Cys-Trp Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CCCN=C(N)N)N YHSNASXGBPAHRL-BPUTZDHNSA-N 0.000 description 1
- NKNILFJYKKHBKE-WPRPVWTQSA-N Arg-Gly-Val Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O NKNILFJYKKHBKE-WPRPVWTQSA-N 0.000 description 1
- GXXWTNKNFFKTJB-NAKRPEOUSA-N Arg-Ile-Ser Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(O)=O GXXWTNKNFFKTJB-NAKRPEOUSA-N 0.000 description 1
- LVMUGODRNHFGRA-AVGNSLFASA-N Arg-Leu-Arg Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O LVMUGODRNHFGRA-AVGNSLFASA-N 0.000 description 1
- OTZMRMHZCMZOJZ-SRVKXCTJSA-N Arg-Leu-Glu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O OTZMRMHZCMZOJZ-SRVKXCTJSA-N 0.000 description 1
- MJINRRBEMOLJAK-DCAQKATOSA-N Arg-Lys-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CCCN=C(N)N MJINRRBEMOLJAK-DCAQKATOSA-N 0.000 description 1
- PJOPLXOCKACMLK-KKUMJFAQSA-N Arg-Tyr-Glu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCC(O)=O)C(O)=O PJOPLXOCKACMLK-KKUMJFAQSA-N 0.000 description 1
- CPTXATAOUQJQRO-GUBZILKMSA-N Arg-Val-Ser Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CO)C(O)=O CPTXATAOUQJQRO-GUBZILKMSA-N 0.000 description 1
- WHLDJYNHXOMGMU-JYJNAYRXSA-N Arg-Val-Tyr Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 WHLDJYNHXOMGMU-JYJNAYRXSA-N 0.000 description 1
- MFFOYNGMOYFPBD-DCAQKATOSA-N Asn-Arg-Leu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(O)=O MFFOYNGMOYFPBD-DCAQKATOSA-N 0.000 description 1
- RFLVTVBAESPKKR-ZLUOBGJFSA-N Asn-Cys-Cys Chemical compound N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](CS)C(O)=O RFLVTVBAESPKKR-ZLUOBGJFSA-N 0.000 description 1
- NKTLGLBAGUJEGA-BIIVOSGPSA-N Asn-Cys-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CS)NC(=O)[C@H](CC(=O)N)N)C(=O)O NKTLGLBAGUJEGA-BIIVOSGPSA-N 0.000 description 1
- QRHYAUYXBVVDSB-LKXGYXEUSA-N Asn-Cys-Thr Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H]([C@@H](C)O)C(O)=O QRHYAUYXBVVDSB-LKXGYXEUSA-N 0.000 description 1
- HJRBIWRXULGMOA-ACZMJKKPSA-N Asn-Gln-Asp Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O HJRBIWRXULGMOA-ACZMJKKPSA-N 0.000 description 1
- JREOBWLIZLXRIS-GUBZILKMSA-N Asn-Glu-Leu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O JREOBWLIZLXRIS-GUBZILKMSA-N 0.000 description 1
- GJFYPBDMUGGLFR-NKWVEPMBSA-N Asn-Gly-Pro Chemical compound C1C[C@@H](N(C1)C(=O)CNC(=O)[C@H](CC(=O)N)N)C(=O)O GJFYPBDMUGGLFR-NKWVEPMBSA-N 0.000 description 1
- LTZIRYMWOJHRCH-GUDRVLHUSA-N Asn-Ile-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC(=O)N)N LTZIRYMWOJHRCH-GUDRVLHUSA-N 0.000 description 1
- IBLAOXSULLECQZ-IUKAMOBKSA-N Asn-Ile-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H](N)CC(N)=O IBLAOXSULLECQZ-IUKAMOBKSA-N 0.000 description 1
- FTSAJSADJCMDHH-CIUDSAMLSA-N Asn-Lys-Asp Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CC(=O)N)N FTSAJSADJCMDHH-CIUDSAMLSA-N 0.000 description 1
- FODVBOKTYKYRFJ-CIUDSAMLSA-N Asn-Lys-Cys Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)N)N FODVBOKTYKYRFJ-CIUDSAMLSA-N 0.000 description 1
- COWITDLVHMZSIW-CIUDSAMLSA-N Asn-Lys-Ser Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(O)=O COWITDLVHMZSIW-CIUDSAMLSA-N 0.000 description 1
- RAUPFUCUDBQYHE-AVGNSLFASA-N Asn-Phe-Glu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCC(O)=O)C(O)=O RAUPFUCUDBQYHE-AVGNSLFASA-N 0.000 description 1
- HNXWVVHIGTZTBO-LKXGYXEUSA-N Asn-Ser-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O HNXWVVHIGTZTBO-LKXGYXEUSA-N 0.000 description 1
- LTDGPJKGJDIBQD-LAEOZQHASA-N Asn-Val-Gln Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O LTDGPJKGJDIBQD-LAEOZQHASA-N 0.000 description 1
- GBAWQWASNGUNQF-ZLUOBGJFSA-N Asp-Ala-Cys Chemical compound C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)O)N GBAWQWASNGUNQF-ZLUOBGJFSA-N 0.000 description 1
- AKPLMZMNJGNUKT-ZLUOBGJFSA-N Asp-Asp-Cys Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CS)C(O)=O AKPLMZMNJGNUKT-ZLUOBGJFSA-N 0.000 description 1
- IAMNNSSEBXDJMN-CIUDSAMLSA-N Asp-Cys-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CC(=O)O)N IAMNNSSEBXDJMN-CIUDSAMLSA-N 0.000 description 1
- ACEDJCOOPZFUBU-CIUDSAMLSA-N Asp-Cys-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CC(=O)O)N ACEDJCOOPZFUBU-CIUDSAMLSA-N 0.000 description 1
- BKXPJCBEHWFSTF-ACZMJKKPSA-N Asp-Gln-Asp Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O BKXPJCBEHWFSTF-ACZMJKKPSA-N 0.000 description 1
- SVABRQFIHCSNCI-FOHZUACHSA-N Asp-Gly-Thr Chemical compound [H]N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(O)=O SVABRQFIHCSNCI-FOHZUACHSA-N 0.000 description 1
- AITKTFCQOBRJTG-CIUDSAMLSA-N Asp-Leu-Cys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)O)N AITKTFCQOBRJTG-CIUDSAMLSA-N 0.000 description 1
- MGSVBZIBCCKGCY-ZLUOBGJFSA-N Asp-Ser-Ser Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O MGSVBZIBCCKGCY-ZLUOBGJFSA-N 0.000 description 1
- UXRVDHVARNBOIO-QSFUFRPTSA-N Asp-Val-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(=O)O)N UXRVDHVARNBOIO-QSFUFRPTSA-N 0.000 description 1
- RKXVTTIQNKPCHU-KKHAAJSZSA-N Asp-Val-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CC(O)=O RKXVTTIQNKPCHU-KKHAAJSZSA-N 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 238000000035 BCA protein assay Methods 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 108010009575 CD55 Antigens Proteins 0.000 description 1
- 102000001324 CD59 Antigens Human genes 0.000 description 1
- 108010055167 CD59 Antigens Proteins 0.000 description 1
- 101100512078 Caenorhabditis elegans lys-1 gene Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 241000122205 Chamaeleonidae Species 0.000 description 1
- 101710091342 Chemotactic peptide Proteins 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 102000014447 Complement C1q Human genes 0.000 description 1
- 108010078043 Complement C1q Proteins 0.000 description 1
- 102100025680 Complement decay-accelerating factor Human genes 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 206010011091 Coronary artery thrombosis Diseases 0.000 description 1
- NLCZGISONIGRQP-DCAQKATOSA-N Cys-Arg-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CS)N NLCZGISONIGRQP-DCAQKATOSA-N 0.000 description 1
- HRJLVSQKBLZHSR-ZLUOBGJFSA-N Cys-Asn-Ala Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(O)=O HRJLVSQKBLZHSR-ZLUOBGJFSA-N 0.000 description 1
- LWTTURISBKEVAC-CIUDSAMLSA-N Cys-Cys-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CS)N LWTTURISBKEVAC-CIUDSAMLSA-N 0.000 description 1
- SDWZYDDNSMPBRM-AVGNSLFASA-N Cys-Gln-Phe Chemical compound SC[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 SDWZYDDNSMPBRM-AVGNSLFASA-N 0.000 description 1
- KKUVRYLJEXJSGX-MXAVVETBSA-N Cys-Ile-Phe Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)NC(=O)[C@H](CS)N KKUVRYLJEXJSGX-MXAVVETBSA-N 0.000 description 1
- UCSXXFRXHGUXCQ-SRVKXCTJSA-N Cys-Leu-Lys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CS)N UCSXXFRXHGUXCQ-SRVKXCTJSA-N 0.000 description 1
- OHLLDUNVMPPUMD-DCAQKATOSA-N Cys-Leu-Val Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](C(C)C)C(=O)O)NC(=O)[C@H](CS)N OHLLDUNVMPPUMD-DCAQKATOSA-N 0.000 description 1
- HJXSYJVCMUOUNY-SRVKXCTJSA-N Cys-Ser-Phe Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](CS)N HJXSYJVCMUOUNY-SRVKXCTJSA-N 0.000 description 1
- ABLQPNMKLMFDQU-BIIVOSGPSA-N Cys-Ser-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CO)NC(=O)[C@H](CS)N)C(=O)O ABLQPNMKLMFDQU-BIIVOSGPSA-N 0.000 description 1
- GFAPBMCRSMSGDZ-XGEHTFHBSA-N Cys-Thr-Met Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCSC)C(=O)O)NC(=O)[C@H](CS)N)O GFAPBMCRSMSGDZ-XGEHTFHBSA-N 0.000 description 1
- JTEGHEWKBCTIAL-IXOXFDKPSA-N Cys-Thr-Phe Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)NC(=O)[C@H](CS)N)O JTEGHEWKBCTIAL-IXOXFDKPSA-N 0.000 description 1
- NAPULYCVEVVFRB-HEIBUPTGSA-N Cys-Thr-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](N)CS NAPULYCVEVVFRB-HEIBUPTGSA-N 0.000 description 1
- 229920002271 DEAE-Sepharose Polymers 0.000 description 1
- 108020001019 DNA Primers Proteins 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical group OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 108010074860 Factor Xa Proteins 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- WUAYFMZULZDSLB-ACZMJKKPSA-N Gln-Ala-Asn Chemical compound NC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCC(N)=O WUAYFMZULZDSLB-ACZMJKKPSA-N 0.000 description 1
- REJJNXODKSHOKA-ACZMJKKPSA-N Gln-Ala-Asp Chemical compound C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CCC(=O)N)N REJJNXODKSHOKA-ACZMJKKPSA-N 0.000 description 1
- CYTSBCIIEHUPDU-ACZMJKKPSA-N Gln-Asp-Ala Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(O)=O CYTSBCIIEHUPDU-ACZMJKKPSA-N 0.000 description 1
- PZVJDMJHKUWSIV-AVGNSLFASA-N Gln-Cys-Tyr Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CCC(=O)N)N)O PZVJDMJHKUWSIV-AVGNSLFASA-N 0.000 description 1
- IULKWYSYZSURJK-AVGNSLFASA-N Gln-Leu-Lys Chemical compound NC(=O)CC[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(O)=O IULKWYSYZSURJK-AVGNSLFASA-N 0.000 description 1
- YPMDZWPZFOZYFG-GUBZILKMSA-N Gln-Leu-Ser Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O YPMDZWPZFOZYFG-GUBZILKMSA-N 0.000 description 1
- ILKYYKRAULNYMS-JYJNAYRXSA-N Gln-Lys-Phe Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O ILKYYKRAULNYMS-JYJNAYRXSA-N 0.000 description 1
- CSMHMEATMDCQNY-DZKIICNBSA-N Gln-Val-Tyr Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O CSMHMEATMDCQNY-DZKIICNBSA-N 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- CKRUHITYRFNUKW-WDSKDSINSA-N Glu-Asn-Gly Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(O)=O CKRUHITYRFNUKW-WDSKDSINSA-N 0.000 description 1
- ZOXBSICWUDAOHX-GUBZILKMSA-N Glu-Asn-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](N)CCC(O)=O ZOXBSICWUDAOHX-GUBZILKMSA-N 0.000 description 1
- JPHYJQHPILOKHC-ACZMJKKPSA-N Glu-Asp-Asp Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O JPHYJQHPILOKHC-ACZMJKKPSA-N 0.000 description 1
- HJIFPJUEOGZWRI-GUBZILKMSA-N Glu-Asp-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CCC(=O)O)N HJIFPJUEOGZWRI-GUBZILKMSA-N 0.000 description 1
- LVCHEMOPBORRLB-DCAQKATOSA-N Glu-Gln-Lys Chemical compound NCCCC[C@H](NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CCC(O)=O)C(O)=O LVCHEMOPBORRLB-DCAQKATOSA-N 0.000 description 1
- NKLRYVLERDYDBI-FXQIFTODSA-N Glu-Glu-Asp Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O NKLRYVLERDYDBI-FXQIFTODSA-N 0.000 description 1
- ZWABFSSWTSAMQN-KBIXCLLPSA-N Glu-Ile-Ala Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O ZWABFSSWTSAMQN-KBIXCLLPSA-N 0.000 description 1
- ZCOJVESMNGBGLF-GRLWGSQLSA-N Glu-Ile-Ile Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O ZCOJVESMNGBGLF-GRLWGSQLSA-N 0.000 description 1
- ZHNHJYYFCGUZNQ-KBIXCLLPSA-N Glu-Ile-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H](N)CCC(O)=O ZHNHJYYFCGUZNQ-KBIXCLLPSA-N 0.000 description 1
- NJCALAAIGREHDR-WDCWCFNPSA-N Glu-Leu-Thr Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O NJCALAAIGREHDR-WDCWCFNPSA-N 0.000 description 1
- QDMVXRNLOPTPIE-WDCWCFNPSA-N Glu-Lys-Thr Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O QDMVXRNLOPTPIE-WDCWCFNPSA-N 0.000 description 1
- XMBSYZWANAQXEV-QWRGUYRKSA-N Glu-Phe Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 XMBSYZWANAQXEV-QWRGUYRKSA-N 0.000 description 1
- UERORLSAFUHDGU-AVGNSLFASA-N Glu-Phe-Asn Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CCC(=O)O)N UERORLSAFUHDGU-AVGNSLFASA-N 0.000 description 1
- DTPOVRRYXPJJAZ-FJXKBIBVSA-N Gly-Arg-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CCCN=C(N)N DTPOVRRYXPJJAZ-FJXKBIBVSA-N 0.000 description 1
- UXJHNZODTMHWRD-WHFBIAKZSA-N Gly-Asn-Ala Chemical compound [H]NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(O)=O UXJHNZODTMHWRD-WHFBIAKZSA-N 0.000 description 1
- XTQFHTHIAKKCTM-YFKPBYRVSA-N Gly-Glu-Gly Chemical compound NCC(=O)N[C@@H](CCC(O)=O)C(=O)NCC(O)=O XTQFHTHIAKKCTM-YFKPBYRVSA-N 0.000 description 1
- YWAQATDNEKZFFK-BYPYZUCNSA-N Gly-Gly-Ser Chemical compound NCC(=O)NCC(=O)N[C@@H](CO)C(O)=O YWAQATDNEKZFFK-BYPYZUCNSA-N 0.000 description 1
- VIIBEIQMLJEUJG-LAEOZQHASA-N Gly-Ile-Gln Chemical compound [H]NCC(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(N)=O)C(O)=O VIIBEIQMLJEUJG-LAEOZQHASA-N 0.000 description 1
- HKSNHPVETYYJBK-LAEOZQHASA-N Gly-Ile-Glu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)O)NC(=O)CN HKSNHPVETYYJBK-LAEOZQHASA-N 0.000 description 1
- NTBOEZICHOSJEE-YUMQZZPRSA-N Gly-Lys-Ser Chemical compound [H]NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(O)=O NTBOEZICHOSJEE-YUMQZZPRSA-N 0.000 description 1
- IFHJOBKVXBESRE-YUMQZZPRSA-N Gly-Met-Gln Chemical compound CSCC[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)CN IFHJOBKVXBESRE-YUMQZZPRSA-N 0.000 description 1
- KBBFOULZCHWGJX-KBPBESRZSA-N Gly-Tyr-His Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)NC(=O)CN)O KBBFOULZCHWGJX-KBPBESRZSA-N 0.000 description 1
- SYOJVRNQCXYEOV-XVKPBYJWSA-N Gly-Val-Glu Chemical compound [H]NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O SYOJVRNQCXYEOV-XVKPBYJWSA-N 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- RBOOOLVEKJHUNA-CIUDSAMLSA-N His-Cys-Asn Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(O)=O RBOOOLVEKJHUNA-CIUDSAMLSA-N 0.000 description 1
- YAALVYQFVJNXIV-KKUMJFAQSA-N His-Leu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC1=CN=CN1 YAALVYQFVJNXIV-KKUMJFAQSA-N 0.000 description 1
- ZHHLTWUOWXHVQJ-YUMQZZPRSA-N His-Ser-Gly Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CO)C(=O)NCC(=O)O)N ZHHLTWUOWXHVQJ-YUMQZZPRSA-N 0.000 description 1
- PZAJPILZRFPYJJ-SRVKXCTJSA-N His-Ser-Leu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O PZAJPILZRFPYJJ-SRVKXCTJSA-N 0.000 description 1
- 101000856022 Homo sapiens Complement decay-accelerating factor Proteins 0.000 description 1
- 101000961414 Homo sapiens Membrane cofactor protein Proteins 0.000 description 1
- 101000740205 Homo sapiens Sal-like protein 1 Proteins 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- PJLLMGWWINYQPB-PEFMBERDSA-N Ile-Asn-Gln Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N PJLLMGWWINYQPB-PEFMBERDSA-N 0.000 description 1
- UKTUOMWSJPXODT-GUDRVLHUSA-N Ile-Asn-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N1CCC[C@@H]1C(=O)O)N UKTUOMWSJPXODT-GUDRVLHUSA-N 0.000 description 1
- HVWXAQVMRBKKFE-UGYAYLCHSA-N Ile-Asp-Asp Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CC(=O)O)C(=O)O)N HVWXAQVMRBKKFE-UGYAYLCHSA-N 0.000 description 1
- HUORUFRRJHELPD-MNXVOIDGSA-N Ile-Leu-Glu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N HUORUFRRJHELPD-MNXVOIDGSA-N 0.000 description 1
- NZGTYCMLUGYMCV-XUXIUFHCSA-N Ile-Lys-Arg Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N NZGTYCMLUGYMCV-XUXIUFHCSA-N 0.000 description 1
- GVNNAHIRSDRIII-AJNGGQMLSA-N Ile-Lys-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)O)N GVNNAHIRSDRIII-AJNGGQMLSA-N 0.000 description 1
- JODPUDMBQBIWCK-GHCJXIJMSA-N Ile-Ser-Asn Chemical compound [H]N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(O)=O JODPUDMBQBIWCK-GHCJXIJMSA-N 0.000 description 1
- QGXQHJQPAPMACW-PPCPHDFISA-N Ile-Thr-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)O)N QGXQHJQPAPMACW-PPCPHDFISA-N 0.000 description 1
- WCNWGAUZWWSYDG-SVSWQMSJSA-N Ile-Thr-Ser Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)O)N WCNWGAUZWWSYDG-SVSWQMSJSA-N 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 206010061216 Infarction Diseases 0.000 description 1
- PMGDADKJMCOXHX-UHFFFAOYSA-N L-Arginyl-L-glutamin-acetat Natural products NC(=N)NCCCC(N)C(=O)NC(CCC(N)=O)C(O)=O PMGDADKJMCOXHX-UHFFFAOYSA-N 0.000 description 1
- FADYJNXDPBKVCA-UHFFFAOYSA-N L-Phenylalanyl-L-lysin Natural products NCCCCC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FADYJNXDPBKVCA-UHFFFAOYSA-N 0.000 description 1
- 125000000415 L-cysteinyl group Chemical group O=C([*])[C@@](N([H])[H])([H])C([H])([H])S[H] 0.000 description 1
- 229930195714 L-glutamate Natural products 0.000 description 1
- LHSGPCFBGJHPCY-UHFFFAOYSA-N L-leucine-L-tyrosine Natural products CC(C)CC(N)C(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 LHSGPCFBGJHPCY-UHFFFAOYSA-N 0.000 description 1
- SENJXOPIZNYLHU-UHFFFAOYSA-N L-leucyl-L-arginine Natural products CC(C)CC(N)C(=O)NC(C(O)=O)CCCN=C(N)N SENJXOPIZNYLHU-UHFFFAOYSA-N 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- CNNQBZRGQATKNY-DCAQKATOSA-N Leu-Arg-Cys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CS)C(=O)O)N CNNQBZRGQATKNY-DCAQKATOSA-N 0.000 description 1
- QUAAUWNLWMLERT-IHRRRGAJSA-N Leu-Arg-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CC(C)C)C(O)=O QUAAUWNLWMLERT-IHRRRGAJSA-N 0.000 description 1
- VCSBGUACOYUIGD-CIUDSAMLSA-N Leu-Asn-Asp Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O VCSBGUACOYUIGD-CIUDSAMLSA-N 0.000 description 1
- BPANDPNDMJHFEV-CIUDSAMLSA-N Leu-Asp-Ala Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(O)=O BPANDPNDMJHFEV-CIUDSAMLSA-N 0.000 description 1
- MMEDVBWCMGRKKC-GARJFASQSA-N Leu-Asp-Pro Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N1CCC[C@@H]1C(=O)O)N MMEDVBWCMGRKKC-GARJFASQSA-N 0.000 description 1
- QCSFMCFHVGTLFF-NHCYSSNCSA-N Leu-Asp-Val Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O QCSFMCFHVGTLFF-NHCYSSNCSA-N 0.000 description 1
- WIDZHJTYKYBLSR-DCAQKATOSA-N Leu-Glu-Glu Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O WIDZHJTYKYBLSR-DCAQKATOSA-N 0.000 description 1
- AVEGDIAXTDVBJS-XUXIUFHCSA-N Leu-Ile-Arg Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O AVEGDIAXTDVBJS-XUXIUFHCSA-N 0.000 description 1
- KOSWSHVQIVTVQF-ZPFDUUQYSA-N Leu-Ile-Asp Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(O)=O)C(O)=O KOSWSHVQIVTVQF-ZPFDUUQYSA-N 0.000 description 1
- HRTRLSRYZZKPCO-BJDJZHNGSA-N Leu-Ile-Ser Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(O)=O HRTRLSRYZZKPCO-BJDJZHNGSA-N 0.000 description 1
- RZXLZBIUTDQHJQ-SRVKXCTJSA-N Leu-Lys-Asp Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(O)=O RZXLZBIUTDQHJQ-SRVKXCTJSA-N 0.000 description 1
- NHRINZSPIUXYQZ-DCAQKATOSA-N Leu-Met-Cys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CS)C(=O)O)N NHRINZSPIUXYQZ-DCAQKATOSA-N 0.000 description 1
- INCJJHQRZGQLFC-KBPBESRZSA-N Leu-Phe-Gly Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)NCC(O)=O INCJJHQRZGQLFC-KBPBESRZSA-N 0.000 description 1
- DRWMRVFCKKXHCH-BZSNNMDCSA-N Leu-Phe-Leu Chemical compound CC(C)C[C@H]([NH3+])C(=O)N[C@H](C(=O)N[C@@H](CC(C)C)C([O-])=O)CC1=CC=CC=C1 DRWMRVFCKKXHCH-BZSNNMDCSA-N 0.000 description 1
- CHJKEDSZNSONPS-DCAQKATOSA-N Leu-Pro-Ser Chemical compound [H]N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O CHJKEDSZNSONPS-DCAQKATOSA-N 0.000 description 1
- XOWMDXHFSBCAKQ-SRVKXCTJSA-N Leu-Ser-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC(C)C XOWMDXHFSBCAKQ-SRVKXCTJSA-N 0.000 description 1
- ZJZNLRVCZWUONM-JXUBOQSCSA-N Leu-Thr-Ala Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(O)=O ZJZNLRVCZWUONM-JXUBOQSCSA-N 0.000 description 1
- LINKCQUOMUDLKN-KATARQTJSA-N Leu-Thr-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(C)C)N)O LINKCQUOMUDLKN-KATARQTJSA-N 0.000 description 1
- VJGQRELPQWNURN-JYJNAYRXSA-N Leu-Tyr-Glu Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCC(O)=O)C(O)=O VJGQRELPQWNURN-JYJNAYRXSA-N 0.000 description 1
- QESXLSQLQHHTIX-RHYQMDGZSA-N Leu-Val-Thr Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O QESXLSQLQHHTIX-RHYQMDGZSA-N 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 108091036060 Linker DNA Proteins 0.000 description 1
- SJNZALDHDUYDBU-IHRRRGAJSA-N Lys-Arg-Lys Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCCCN)C(O)=O SJNZALDHDUYDBU-IHRRRGAJSA-N 0.000 description 1
- ABHIXYDMILIUKV-CIUDSAMLSA-N Lys-Asn-Asn Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O ABHIXYDMILIUKV-CIUDSAMLSA-N 0.000 description 1
- IWWMPCPLFXFBAF-SRVKXCTJSA-N Lys-Asp-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O IWWMPCPLFXFBAF-SRVKXCTJSA-N 0.000 description 1
- SSYOBDBNBQBSQE-SRVKXCTJSA-N Lys-Cys-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(O)=O SSYOBDBNBQBSQE-SRVKXCTJSA-N 0.000 description 1
- NNCDAORZCMPZPX-GUBZILKMSA-N Lys-Gln-Ser Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CO)C(=O)O)N NNCDAORZCMPZPX-GUBZILKMSA-N 0.000 description 1
- NDORZBUHCOJQDO-GVXVVHGQSA-N Lys-Gln-Val Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C(C)C)C(O)=O NDORZBUHCOJQDO-GVXVVHGQSA-N 0.000 description 1
- ZXEUFAVXODIPHC-GUBZILKMSA-N Lys-Glu-Asn Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O ZXEUFAVXODIPHC-GUBZILKMSA-N 0.000 description 1
- LLSUNJYOSCOOEB-GUBZILKMSA-N Lys-Glu-Asp Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O LLSUNJYOSCOOEB-GUBZILKMSA-N 0.000 description 1
- IMAKMJCBYCSMHM-AVGNSLFASA-N Lys-Glu-Lys Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(O)=O)CCCCN IMAKMJCBYCSMHM-AVGNSLFASA-N 0.000 description 1
- VEGLGAOVLFODGC-GUBZILKMSA-N Lys-Glu-Ser Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O VEGLGAOVLFODGC-GUBZILKMSA-N 0.000 description 1
- XFOAWKDQMRMCDN-ULQDDVLXSA-N Lys-Phe-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CCCCN)CC1=CC=CC=C1 XFOAWKDQMRMCDN-ULQDDVLXSA-N 0.000 description 1
- ZJSZPXISKMDJKQ-JYJNAYRXSA-N Lys-Phe-Glu Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](CCC(O)=O)C(O)=O)CC1=CC=CC=C1 ZJSZPXISKMDJKQ-JYJNAYRXSA-N 0.000 description 1
- SQXZLVXQXWILKW-KKUMJFAQSA-N Lys-Ser-Phe Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O SQXZLVXQXWILKW-KKUMJFAQSA-N 0.000 description 1
- 101710146216 Membrane cofactor protein Proteins 0.000 description 1
- BXNZDLVLGYYFIB-FXQIFTODSA-N Met-Asn-Cys Chemical compound CSCC[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CS)C(=O)O)N BXNZDLVLGYYFIB-FXQIFTODSA-N 0.000 description 1
- JQECLVNLAZGHRQ-CIUDSAMLSA-N Met-Asp-Gln Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(O)=O)CCC(N)=O JQECLVNLAZGHRQ-CIUDSAMLSA-N 0.000 description 1
- GWADARYJIJDYRC-XGEHTFHBSA-N Met-Thr-Ser Chemical compound CSCC[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(O)=O GWADARYJIJDYRC-XGEHTFHBSA-N 0.000 description 1
- DBTDEFJAFBUGPP-UHFFFAOYSA-N Methanethial Chemical compound S=C DBTDEFJAFBUGPP-UHFFFAOYSA-N 0.000 description 1
- XZFYRXDAULDNFX-UHFFFAOYSA-N N-L-cysteinyl-L-phenylalanine Natural products SCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 XZFYRXDAULDNFX-UHFFFAOYSA-N 0.000 description 1
- 108010079364 N-glycylalanine Proteins 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 1
- 101100342977 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) leu-1 gene Proteins 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- HCTXJGRYAACKOB-SRVKXCTJSA-N Phe-Asn-Asp Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CC(=O)O)C(=O)O)N HCTXJGRYAACKOB-SRVKXCTJSA-N 0.000 description 1
- HHOOEUSPFGPZFP-QWRGUYRKSA-N Phe-Asn-Gly Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(O)=O HHOOEUSPFGPZFP-QWRGUYRKSA-N 0.000 description 1
- LDSOBEJVGGVWGD-DLOVCJGASA-N Phe-Asp-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 LDSOBEJVGGVWGD-DLOVCJGASA-N 0.000 description 1
- ZENDEDYRYVHBEG-SRVKXCTJSA-N Phe-Asp-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 ZENDEDYRYVHBEG-SRVKXCTJSA-N 0.000 description 1
- RIYZXJVARWJLKS-KKUMJFAQSA-N Phe-Asp-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 RIYZXJVARWJLKS-KKUMJFAQSA-N 0.000 description 1
- IDUCUXTUHHIQIP-SOUVJXGZSA-N Phe-Gln-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CC2=CC=CC=C2)N)C(=O)O IDUCUXTUHHIQIP-SOUVJXGZSA-N 0.000 description 1
- MPFGIYLYWUCSJG-AVGNSLFASA-N Phe-Glu-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 MPFGIYLYWUCSJG-AVGNSLFASA-N 0.000 description 1
- AKJAKCBHLJGRBU-JYJNAYRXSA-N Phe-Glu-His Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)N AKJAKCBHLJGRBU-JYJNAYRXSA-N 0.000 description 1
- DVOCGBNHAUHKHJ-DKIMLUQUSA-N Phe-Ile-Leu Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O DVOCGBNHAUHKHJ-DKIMLUQUSA-N 0.000 description 1
- CWFGECHCRMGPPT-MXAVVETBSA-N Phe-Ile-Ser Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(O)=O CWFGECHCRMGPPT-MXAVVETBSA-N 0.000 description 1
- XDMMOISUAHXXFD-SRVKXCTJSA-N Phe-Ser-Asp Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(O)=O XDMMOISUAHXXFD-SRVKXCTJSA-N 0.000 description 1
- BONHGTUEEPIMPM-AVGNSLFASA-N Phe-Ser-Glu Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(O)=O BONHGTUEEPIMPM-AVGNSLFASA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- WWAQEUOYCYMGHB-FXQIFTODSA-N Pro-Asn-Asn Chemical compound NC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H]1CCCN1 WWAQEUOYCYMGHB-FXQIFTODSA-N 0.000 description 1
- WECYCNFPGZLOOU-FXQIFTODSA-N Pro-Asn-Cys Chemical compound C1C[C@H](NC1)C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CS)C(=O)O WECYCNFPGZLOOU-FXQIFTODSA-N 0.000 description 1
- MGDFPGCFVJFITQ-CIUDSAMLSA-N Pro-Glu-Asp Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O MGDFPGCFVJFITQ-CIUDSAMLSA-N 0.000 description 1
- WHNJMTHJGCEKGA-ULQDDVLXSA-N Pro-Phe-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(C)C)C(O)=O WHNJMTHJGCEKGA-ULQDDVLXSA-N 0.000 description 1
- PCWLNNZTBJTZRN-AVGNSLFASA-N Pro-Pro-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H]1NCCC1 PCWLNNZTBJTZRN-AVGNSLFASA-N 0.000 description 1
- KIDXAAQVMNLJFQ-KZVJFYERSA-N Pro-Thr-Ala Chemical compound C[C@@H](O)[C@H](NC(=O)[C@@H]1CCCN1)C(=O)N[C@@H](C)C(O)=O KIDXAAQVMNLJFQ-KZVJFYERSA-N 0.000 description 1
- IALSFJSONJZBKB-HRCADAONSA-N Pro-Tyr-Pro Chemical compound C1C[C@H](NC1)C(=O)N[C@@H](CC2=CC=C(C=C2)O)C(=O)N3CCC[C@@H]3C(=O)O IALSFJSONJZBKB-HRCADAONSA-N 0.000 description 1
- VEUACYMXJKXALX-IHRRRGAJSA-N Pro-Tyr-Ser Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CO)C(O)=O VEUACYMXJKXALX-IHRRRGAJSA-N 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 101000781681 Protobothrops flavoviridis Disintegrin triflavin Proteins 0.000 description 1
- 206010037549 Purpura Diseases 0.000 description 1
- 241001672981 Purpura Species 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 206010038563 Reocclusion Diseases 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 102100037204 Sal-like protein 1 Human genes 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- WDXYVIIVDIDOSX-DCAQKATOSA-N Ser-Arg-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CO)CCCN=C(N)N WDXYVIIVDIDOSX-DCAQKATOSA-N 0.000 description 1
- HBOABDXGTMMDSE-GUBZILKMSA-N Ser-Arg-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(O)=O HBOABDXGTMMDSE-GUBZILKMSA-N 0.000 description 1
- OLIJLNWFEQEFDM-SRVKXCTJSA-N Ser-Asp-Phe Chemical compound OC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 OLIJLNWFEQEFDM-SRVKXCTJSA-N 0.000 description 1
- ZHYMUFQVKGJNRM-ZLUOBGJFSA-N Ser-Cys-Asn Chemical compound OC[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@H](C(O)=O)CC(N)=O ZHYMUFQVKGJNRM-ZLUOBGJFSA-N 0.000 description 1
- DSSOYPJWSWFOLK-CIUDSAMLSA-N Ser-Cys-Leu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(O)=O DSSOYPJWSWFOLK-CIUDSAMLSA-N 0.000 description 1
- GZBKRJVCRMZAST-XKBZYTNZSA-N Ser-Glu-Thr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O GZBKRJVCRMZAST-XKBZYTNZSA-N 0.000 description 1
- IXCHOHLPHNGFTJ-YUMQZZPRSA-N Ser-Gly-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)CNC(=O)[C@H](CO)N IXCHOHLPHNGFTJ-YUMQZZPRSA-N 0.000 description 1
- XXXAXOWMBOKTRN-XPUUQOCRSA-N Ser-Gly-Val Chemical compound [H]N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O XXXAXOWMBOKTRN-XPUUQOCRSA-N 0.000 description 1
- CAOYHZOWXFFAIR-CIUDSAMLSA-N Ser-His-Ser Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CO)C(O)=O CAOYHZOWXFFAIR-CIUDSAMLSA-N 0.000 description 1
- FUMGHWDRRFCKEP-CIUDSAMLSA-N Ser-Leu-Ala Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(O)=O FUMGHWDRRFCKEP-CIUDSAMLSA-N 0.000 description 1
- IUXGJEIKJBYKOO-SRVKXCTJSA-N Ser-Leu-His Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](CO)N IUXGJEIKJBYKOO-SRVKXCTJSA-N 0.000 description 1
- HEUVHBXOVZONPU-BJDJZHNGSA-N Ser-Leu-Ile Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O HEUVHBXOVZONPU-BJDJZHNGSA-N 0.000 description 1
- YUJLIIRMIAGMCQ-CIUDSAMLSA-N Ser-Leu-Ser Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O YUJLIIRMIAGMCQ-CIUDSAMLSA-N 0.000 description 1
- MUJQWSAWLLRJCE-KATARQTJSA-N Ser-Leu-Thr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O MUJQWSAWLLRJCE-KATARQTJSA-N 0.000 description 1
- JLKWJWPDXPKKHI-FXQIFTODSA-N Ser-Pro-Asn Chemical compound C1C[C@H](N(C1)C(=O)[C@H](CO)N)C(=O)N[C@@H](CC(=O)N)C(=O)O JLKWJWPDXPKKHI-FXQIFTODSA-N 0.000 description 1
- PPCZVWHJWJFTFN-ZLUOBGJFSA-N Ser-Ser-Asp Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(O)=O PPCZVWHJWJFTFN-ZLUOBGJFSA-N 0.000 description 1
- SOACHCFYJMCMHC-BWBBJGPYSA-N Ser-Thr-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CO)N)O SOACHCFYJMCMHC-BWBBJGPYSA-N 0.000 description 1
- BDMWLJLPPUCLNV-XGEHTFHBSA-N Ser-Thr-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(O)=O BDMWLJLPPUCLNV-XGEHTFHBSA-N 0.000 description 1
- PQEQXWRVHQAAKS-SRVKXCTJSA-N Ser-Tyr-Asn Chemical compound NC(=O)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CO)N)CC1=CC=C(O)C=C1 PQEQXWRVHQAAKS-SRVKXCTJSA-N 0.000 description 1
- JZRYFUGREMECBH-XPUUQOCRSA-N Ser-Val-Gly Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)NCC(O)=O JZRYFUGREMECBH-XPUUQOCRSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 208000003028 Stuttering Diseases 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- MQCPGOZXFSYJPS-KZVJFYERSA-N Thr-Ala-Arg Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O MQCPGOZXFSYJPS-KZVJFYERSA-N 0.000 description 1
- NJEMRSFGDNECGF-GCJQMDKQSA-N Thr-Ala-Asp Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC(O)=O NJEMRSFGDNECGF-GCJQMDKQSA-N 0.000 description 1
- VFEHSAJCWWHDBH-RHYQMDGZSA-N Thr-Arg-Leu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(O)=O VFEHSAJCWWHDBH-RHYQMDGZSA-N 0.000 description 1
- KRDSCBLRHORMRK-JXUBOQSCSA-N Thr-Lys-Ala Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O KRDSCBLRHORMRK-JXUBOQSCSA-N 0.000 description 1
- SPVHQURZJCUDQC-VOAKCMCISA-N Thr-Lys-Leu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O SPVHQURZJCUDQC-VOAKCMCISA-N 0.000 description 1
- PUEWAXRPXOEQOW-HJGDQZAQSA-N Thr-Met-Gln Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(N)=O)C(O)=O PUEWAXRPXOEQOW-HJGDQZAQSA-N 0.000 description 1
- WRQLCVIALDUQEQ-UNQGMJICSA-N Thr-Phe-Arg Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O WRQLCVIALDUQEQ-UNQGMJICSA-N 0.000 description 1
- NYQIZWROIMIQSL-VEVYYDQMSA-N Thr-Pro-Asn Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(N)=O)C(O)=O NYQIZWROIMIQSL-VEVYYDQMSA-N 0.000 description 1
- NBIIPOKZPUGATB-BWBBJGPYSA-N Thr-Ser-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CS)C(=O)O)N)O NBIIPOKZPUGATB-BWBBJGPYSA-N 0.000 description 1
- IEZVHOULSUULHD-XGEHTFHBSA-N Thr-Ser-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O IEZVHOULSUULHD-XGEHTFHBSA-N 0.000 description 1
- AAZOYLQUEQRUMZ-GSSVUCPTSA-N Thr-Thr-Asn Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@H](C(O)=O)CC(N)=O AAZOYLQUEQRUMZ-GSSVUCPTSA-N 0.000 description 1
- YRJOLUDFVAUXLI-GSSVUCPTSA-N Thr-Thr-Asp Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@H](C(O)=O)CC(O)=O YRJOLUDFVAUXLI-GSSVUCPTSA-N 0.000 description 1
- MFMGPEKYBXFIRF-SUSMZKCASA-N Thr-Thr-Gln Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(N)=O)C(O)=O MFMGPEKYBXFIRF-SUSMZKCASA-N 0.000 description 1
- YOPQYBJJNSIQGZ-JNPHEJMOSA-N Thr-Tyr-Tyr Chemical compound C([C@H](NC(=O)[C@@H](N)[C@H](O)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)C1=CC=C(O)C=C1 YOPQYBJJNSIQGZ-JNPHEJMOSA-N 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 108010000499 Thromboplastin Proteins 0.000 description 1
- 102000002262 Thromboplastin Human genes 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 102000002938 Thrombospondin Human genes 0.000 description 1
- 108060008245 Thrombospondin Proteins 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- HQVKQINPFOCIIV-BVSLBCMMSA-N Trp-Arg-Tyr Chemical compound C([C@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)N)C(O)=O)C1=CC=C(O)C=C1 HQVKQINPFOCIIV-BVSLBCMMSA-N 0.000 description 1
- GRSCONMARGNYHA-PMVMPFDFSA-N Trp-Lys-Phe Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O GRSCONMARGNYHA-PMVMPFDFSA-N 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- DXYWRYQRKPIGGU-BPNCWPANSA-N Tyr-Ala-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 DXYWRYQRKPIGGU-BPNCWPANSA-N 0.000 description 1
- QUILOGWWLXMSAT-IHRRRGAJSA-N Tyr-Gln-Gln Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(O)=O QUILOGWWLXMSAT-IHRRRGAJSA-N 0.000 description 1
- HKYTWJOWZTWBQB-AVGNSLFASA-N Tyr-Glu-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 HKYTWJOWZTWBQB-AVGNSLFASA-N 0.000 description 1
- FBHBVXUBTYVCRU-BZSNNMDCSA-N Tyr-His-Leu Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CN=CN1 FBHBVXUBTYVCRU-BZSNNMDCSA-N 0.000 description 1
- UMSZZGTXGKHTFJ-SRVKXCTJSA-N Tyr-Ser-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 UMSZZGTXGKHTFJ-SRVKXCTJSA-N 0.000 description 1
- GPLTZEMVOCZVAV-UFYCRDLUSA-N Tyr-Tyr-Arg Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O)C1=CC=C(O)C=C1 GPLTZEMVOCZVAV-UFYCRDLUSA-N 0.000 description 1
- DCOOGDCRFXXQNW-ZKWXMUAHSA-N Val-Asn-Cys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CS)C(=O)O)N DCOOGDCRFXXQNW-ZKWXMUAHSA-N 0.000 description 1
- OGNMURQZFMHFFD-NHCYSSNCSA-N Val-Asn-Lys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CCCCN)C(=O)O)N OGNMURQZFMHFFD-NHCYSSNCSA-N 0.000 description 1
- KXUKIBHIVRYOIP-ZKWXMUAHSA-N Val-Asp-Cys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CS)C(=O)O)N KXUKIBHIVRYOIP-ZKWXMUAHSA-N 0.000 description 1
- CELJCNRXKZPTCX-XPUUQOCRSA-N Val-Gly-Ala Chemical compound CC(C)[C@H](N)C(=O)NCC(=O)N[C@@H](C)C(O)=O CELJCNRXKZPTCX-XPUUQOCRSA-N 0.000 description 1
- GVJUTBOZZBTBIG-AVGNSLFASA-N Val-Lys-Arg Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N GVJUTBOZZBTBIG-AVGNSLFASA-N 0.000 description 1
- YQMILNREHKTFBS-IHRRRGAJSA-N Val-Phe-Cys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CS)C(=O)O)N YQMILNREHKTFBS-IHRRRGAJSA-N 0.000 description 1
- UGFMVXRXULGLNO-XPUUQOCRSA-N Val-Ser-Gly Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CO)C(=O)NCC(O)=O UGFMVXRXULGLNO-XPUUQOCRSA-N 0.000 description 1
- VHIZXDZMTDVFGX-DCAQKATOSA-N Val-Ser-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](C(C)C)N VHIZXDZMTDVFGX-DCAQKATOSA-N 0.000 description 1
- PZTZYZUTCPZWJH-FXQIFTODSA-N Val-Ser-Ser Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)O)N PZTZYZUTCPZWJH-FXQIFTODSA-N 0.000 description 1
- JAIZPWVHPQRYOU-ZJDVBMNYSA-N Val-Thr-Thr Chemical compound C[C@H]([C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)O)NC(=O)[C@H](C(C)C)N)O JAIZPWVHPQRYOU-ZJDVBMNYSA-N 0.000 description 1
- JXCOEPXCBVCTRD-JYJNAYRXSA-N Val-Tyr-Arg Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N JXCOEPXCBVCTRD-JYJNAYRXSA-N 0.000 description 1
- DOBHJKVVACOQTN-DZKIICNBSA-N Val-Tyr-Gln Chemical compound NC(=O)CC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)CC1=CC=C(O)C=C1 DOBHJKVVACOQTN-DZKIICNBSA-N 0.000 description 1
- 206010053648 Vascular occlusion Diseases 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000000641 acridinyl group Chemical class C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 230000021917 activation of membrane attack complex Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- KOSRFJWDECSPRO-UHFFFAOYSA-N alpha-L-glutamyl-L-glutamic acid Natural products OC(=O)CCC(N)C(=O)NC(CCC(O)=O)C(O)=O KOSRFJWDECSPRO-UHFFFAOYSA-N 0.000 description 1
- 150000001370 alpha-amino acid derivatives Chemical class 0.000 description 1
- 235000008206 alpha-amino acids Nutrition 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229940114078 arachidonate Drugs 0.000 description 1
- 108010009111 arginyl-glycyl-glutamic acid Proteins 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 108010010430 asparagine-proline-alanine Proteins 0.000 description 1
- 108010069205 aspartyl-phenylalanine Proteins 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- PXXJHWLDUBFPOL-UHFFFAOYSA-N benzamidine Chemical compound NC(=N)C1=CC=CC=C1 PXXJHWLDUBFPOL-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 125000000837 carbohydrate group Chemical group 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 239000000562 conjugate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000003433 contraceptive agent Substances 0.000 description 1
- 230000002254 contraceptive effect Effects 0.000 description 1
- 208000002528 coronary thrombosis Diseases 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012926 crystallographic analysis Methods 0.000 description 1
- 125000006317 cyclopropyl amino group Chemical group 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- FSXRLASFHBWESK-UHFFFAOYSA-N dipeptide phenylalanyl-tyrosine Natural products C=1C=C(O)C=CC=1CC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FSXRLASFHBWESK-UHFFFAOYSA-N 0.000 description 1
- 208000009190 disseminated intravascular coagulation Diseases 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 230000010502 episomal replication Effects 0.000 description 1
- KAQKFAOMNZTLHT-VVUHWYTRSA-N epoprostenol Chemical compound O1C(=CCCCC(O)=O)C[C@@H]2[C@@H](/C=C/[C@@H](O)CCCCC)[C@H](O)C[C@@H]21 KAQKFAOMNZTLHT-VVUHWYTRSA-N 0.000 description 1
- 229960001123 epoprostenol Drugs 0.000 description 1
- 150000002169 ethanolamines Chemical class 0.000 description 1
- 125000000219 ethylidene group Chemical group [H]C(=[*])C([H])([H])[H] 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 210000005002 female reproductive tract Anatomy 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 108010078144 glutaminyl-glycine Proteins 0.000 description 1
- 108010055341 glutamyl-glutamic acid Proteins 0.000 description 1
- 108010049041 glutamylalanine Proteins 0.000 description 1
- 102000035122 glycosylated proteins Human genes 0.000 description 1
- 108091005608 glycosylated proteins Proteins 0.000 description 1
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 1
- XBGGUPMXALFZOT-UHFFFAOYSA-N glycyl-L-tyrosine hemihydrate Natural products NCC(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 XBGGUPMXALFZOT-UHFFFAOYSA-N 0.000 description 1
- 108010033719 glycyl-histidyl-glycine Proteins 0.000 description 1
- 108010028188 glycyl-histidyl-serine Proteins 0.000 description 1
- 108010079413 glycyl-prolyl-glutamic acid Proteins 0.000 description 1
- 108010089804 glycyl-threonine Proteins 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 235000015220 hamburgers Nutrition 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 108010036413 histidylglycine Proteins 0.000 description 1
- 108010025306 histidylleucine Proteins 0.000 description 1
- 108010085325 histidylproline Proteins 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 230000001024 immunotherapeutic effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000007574 infarction Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 108010051673 leucyl-glycyl-phenylalanine Proteins 0.000 description 1
- 108010000761 leucylarginine Proteins 0.000 description 1
- 108010012058 leucyltyrosine Proteins 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 108010044348 lysyl-glutamyl-aspartic acid Proteins 0.000 description 1
- 108010064235 lysylglycine Proteins 0.000 description 1
- 108010054155 lysyllysine Proteins 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000031852 maintenance of location in cell Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000028161 membrane depolarization Effects 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 108020004084 membrane receptors Proteins 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 238000000302 molecular modelling Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 230000003680 myocardial damage Effects 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 239000000863 peptide conjugate Substances 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 108010012581 phenylalanylglutamate Proteins 0.000 description 1
- 108010051242 phenylalanylserine Proteins 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 150000008298 phosphoramidates Chemical class 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-N phosphoramidic acid Chemical group NP(O)(O)=O PTMHPRAIXMAOOB-UHFFFAOYSA-N 0.000 description 1
- 229940012957 plasmin Drugs 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 108010029020 prolylglycine Proteins 0.000 description 1
- 108010053725 prolylvaline Proteins 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 108010014806 prothrombinase complex Proteins 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 108010026333 seryl-proline Proteins 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 201000003624 spinocerebellar ataxia type 1 Diseases 0.000 description 1
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 1
- 238000003153 stable transfection Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000000547 structure data Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003457 sulfones Chemical group 0.000 description 1
- 150000003462 sulfoxides Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- DHCDFWKWKRSZHF-UHFFFAOYSA-N sulfurothioic S-acid Chemical compound OS(O)(=O)=S DHCDFWKWKRSZHF-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 125000002813 thiocarbonyl group Chemical group *C(*)=S 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 230000002537 thrombolytic effect Effects 0.000 description 1
- 230000001732 thrombotic effect Effects 0.000 description 1
- RZWIIPASKMUIAC-VQTJNVASSA-N thromboxane Chemical compound CCCCCCCC[C@H]1OCCC[C@@H]1CCCCCCC RZWIIPASKMUIAC-VQTJNVASSA-N 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 229960001322 trypsin Drugs 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 108010087967 type I signal peptidase Proteins 0.000 description 1
- 108010005834 tyrosyl-alanyl-glycine Proteins 0.000 description 1
- 208000021331 vascular occlusion disease Diseases 0.000 description 1
- 230000002227 vasoactive effect Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000006648 viral gene expression Effects 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 210000004269 weibel-palade body Anatomy 0.000 description 1
- 238000002689 xenotransplantation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/472—Complement proteins, e.g. anaphylatoxin, C3a, C5a
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention is generally in the area of compounds regulating complement-mediated inflammation, and is specifically directed to compounds interacting with assembly of the C5b-9 complex.
- the complement system is a complex interaction of plasma proteins and membrane cofactors which act in a multi-step, multi-protein cascade sequence in conjunction with other immunological systems of the body to provide immunity from intrusion of foreign cells.
- Complement proteins represent up to about 10% of globulins in the normal serum of man and other vertebrates.
- the classic complement pathway involves an initial antibody recognition of, and binding to, an antigenic site (SA) on a target cell.
- SA antigenic site
- This surface bound antibody subsequently reacts with the first component of complement, C1q, forming a C1-antibody complex with Ca +2 , C1r, and C1s which is proteolytically active.
- C1s cleaves C2 and C4 into active components, C2a and C4a.
- the C4b,2a complex is an active protease called C3 convertase, and acts to cleave C3 into C3a and C3b.
- C3b forms a complex with C4b,2a to produce C4b,2a,3b, which cleaves C5 into C5a and C5b.
- C5b combines with C6.
- the C5b,6 complex combines with C7 to form the ternary complex C5b,6,7.
- the C5b,6,7 complex binds C8 at the surface of the cell, which may develop functional membrane lesions and undergo slow lysis.
- lysis of bacteria and other foreign cells is rapidly accelerated.
- C5b-9 proteins of the human plasma complement system have been implicated in non-lytic stimulatory responses from certain human vascular and blood cells.
- the capacity of C5b-9 to modify membrane permeability and to selectively alter ion conductance is thought to elicit these non-lytic responses from human cells.
- assembly of the C5b-9 complex initiates a transient and reversible depolarization of the plasma membrane potential, a rise in cytosolic Ca +2 , metabolic conversion of arachidonate to thromboxane or prostacyclin, and the activation of intracellular protein kinases.
- human platelets exposed to C5b-9 undergo shape changes, secretory fusion of intracellular storage granules with plasma membrane, and the vesiculation of membrane components from the cell surface.
- Human endothelial cells exposed to the human C5b-9 proteins secrete high molecular weight multimers of the platelet adhesion protein, von Willibrand Factor (vWF), and the intracellular granule membrane protein, P-selectin (GMP140), is translocated from the Weibel-Palade body to the endothelial surface.
- vWF von Willibrand Factor
- GMP140 intracellular granule membrane protein
- High molecular weight multimers of vWF have been implicated in the pathogenesis of vaso-occlusive platelet adherence to endothelium and cell surface P-selectin (GMP140) has been implicated in the adherence of inflammatory leukocytes to endothelium.
- This interaction between components of the complement and coagulation systems at the surface of blood platelets and endothelium can generate inflammatory and chemotactic peptides at sites of vascular thrombus formation and may contribute to the altered hemostasis associated with immune disease states.
- immune reactions affecting blood platelets and endothelium can lead to platelet aggregation, the secretion of proteolytic enzymes and vasoactive amines from platelet storage granules, and increase adherence of platelets and leukocytes to the endothelial lining of blood vessels.
- Assembly of the C5b-9 complex is normally limited in plasma by the amount of C5b generated by proteolysis of C5 to its biologically-active fragments C5b and C5a.
- two enzymes of the complement system can cleave C5 to C5a and C5b, the membrane-stabilized enzyme complexes C4b2a and C3bBb (C5-convertases).
- the activity of these two enzymes is normally inhibited on the surface of human blood and vascular membranes by the plasma membrane proteins, “membrane cofactor protein” (CD46), described by Lublin and Atkinson, Current Topics Microbiol. Immunol. 153:123 (1989) and “decay-accelerating factor: (CD55), Medof, et al., J. Exp. Med. 160:1558 (1984).
- C5b-9 Platelet and endothelial cell activation by C5b-9 also has ramifications in autoimmune disorders and other disease states.
- the importance of spontaneous complement activation and the resulting exposure of platelets and endothelium to activated C5b-9 to the evolution of vaso-occlusive disease is underscored by consideration that a) leukocyte infiltration of the subendothelium, which is known to occur in regions of atheromatous degeneration and suggests localized generation of C5a at the vessel wall, is potentially catalyzed by adherent platelets and b) local intravascular complement activation resulting in membrane deposition of C5b-9 complexes accompanies coronary vessel occlusion and may affect the ultimate extent of myocardial damage associated with infarction.
- Plasma membrane constituents reported to exhibit this activity include homologous restriction factor (HRF) (C8-binding protein), as described by Zalman, L. S., et al., Proc. Natl. Acad. Sci., U.S.A. 83, 6975-6979 (1986) and Schonermark, S., et al., J. Immunol. 136, 1772-1776 (1986), and the leukocyte antigen CD59, described by Sugita, Y., et al., J. Biochem. ( Tokyo ) 104, 633-637 (1988); Holguin, M.
- HRF homologous restriction factor
- both HRF and CD59 are tethered to the cell surface by a glycolipid anchor, and are deleted from the membranes of the most hemolytically sensitive erythrocytes that arise in the stem cell disorder paroxysmal nocturnal hemoglobinuria; the activity of both inhibitors is species-restricted, showing selectivity for C8 and C9 that are derived from homologous (i.e. human) serum; and both HRF and CD59 appear to function by inhibiting the activation of C9, decreasing the incorporation of C9 into the membrane C5b-9 complex, and limiting propagation of the C9 homopolymer.
- CD59 antigen is a 18-21 kDa plasma membrane protein that functions as an inhibitor of the C5b-9 membrane attack complex (MAC) of human complement.
- CD59 interacts with both the C8 and C9 components of MAC during its assembly at the cell surface, thereby inhibiting formation of the membrane-inserted C9 homopolymer responsible for MAC cytolytic activity. This serves to protect human blood and vascular cells from injury arising through activation of complement in plasma, as described in U.S. Pat. No. 5,136,916 to Sims and Wiedmer.
- CD59's inhibitory activity is dependent upon the species of origin of C8 and C9, with greatest inhibitory activity observed when C9 is from human or other primates.
- CD59 exerts little or no inhibitory activity towards C8 or C9 of most other species, including rabbit (rb). Because the activity of CD59 is largely restricted to regulating hu C9, and the activity of analogous complement inhibitors expressed by cells of other species is likewise generally selective for homologous C9, xenotypic cells and tissue are particularly susceptible to complement-mediated destruction due to unregulated activity of MAC. This phenomenon underlies hyperacute immune rejection after xenotransplantation.
- CD59 [0013] Analysis of the physical association of CD59 with components of MAC suggested that separate binding sites for CD59 are contained within the ⁇ -chain of hu C8 and within hu C9.
- the complement-inhibitory activity of CD59 is species-selective, and is most effective towards C9 derived from human or other primate plasma.
- the species-selective activity of CD59 was used to map the segment of human C9 that is recognized by this MAC inhibitor, using recombinant rabbit/human C9 chimeras that retain lytic function within the MAC (Husler T, Lockert D H, Kaufman K M, Sodetz J M, Sims P J (1995) J. Biol. Chem 270:3483-3486). These experiments indicated that the CD59 recognition domain was contained between residues 334-415 in human C9, as described in PCT/US96/17940 “C9 Complement Inhibitor” by Oklahoma Medical Research Foundation.
- Compounds can be derived using this basic amino acid sequence and corresponding three dimensional structure within the protein using any of several techniques known to those skilled in the art, including rational drug design using computer data bases and modeling of peptide/protein-ligand binding, antibodies and anti-idiotypic antibodies generated to the proteins or peptides containing this peptide sequence, and modified peptides.
- Those compounds imitating the structure and/or function of the peptide region are referred to herein as “peptidomimetics”, and include small molecules which present the surface exposed side chains in these amino acids in the same relative positions, compounds identified by combinatorial chemistry techniques which bind to the active portions of human C9, as well as modified peptides.
- the compounds can be used to inhibit complement by binding to C9 analogously to CD59, or to maintain complement inhibition, by blocking CD59 binding to C9.
- the compounds can be administered locally or systemically in any suitable carrier in an amount effective to either inhibit complement or block the inhibition of complement, in a patient in need of treatment thereof.
- FIG. 1A shows the alignment of the amino acid sequences of human (hu) and rabbit (rb) CD59 (Sequence ID No. 1 and Sequence ID No. 2, respectively).
- FIG. 1B shows the alignment of the domains of hu and rb CD59.
- FIGS. 2A, 2B, and 2 C are schematics showing the chimeric hu/rb CD59 constructs (FIG. 2A), and graphs of cytolysis (percent release of BCECF Dye versus CD59 per cell (arbitrary fluorescence units) for the human/rabbit chimeras assayed using hu C8/C9 (FIG. 2B) or rb C8/C9 (FIG. 2C).
- FIGS. 3A, 3B, and 3 C are schematics showing the chimeric hu/rb CD59 constructs (FIG. 3A), and graphs of cytolysis (percent release of BCECF Dye versus CD59 per cell (arbitrary fluorescence units) for the human/rabbit chimeras assayed using hu C8/C9 (FIG. 3B) or rb C8/C9 (FIG. 3C).
- FIGS. 4A, 4B, and 4 C are schematics showing the chimeric hu/rb CD59 constructs (FIG. 4A), and graphs of cytolysis (percent release of BCECF Dye versus CD59 per cell (arbitrary fluorescence units) for the human/rabbit chimeras assayed using hu C8/C9 (FIG. 4B) or rb C8/C9 (FIG. 4C).
- FIGS. 5A, 5B, and 5 C are schematics showing the chimeric hu/rb CD59 constructs (FIG. 5A), and graphs of cytolysis (percent release of BCECF Dye versus CD59 per cell (arbitrary fluorescence units) for the human/rabbit chimeras assayed using hu C8/C9 (FIG. 5B) or rb C8/C9 (FIG. 5C).
- FIGS. 6A, 6B, and 6 C are schematics showing the chimeric hu/rb CD59 constructs (FIG. 6A), and graphs of cytolysis (percent release of BCECF Dye versus CD59 per cell (arbitrary fluorescence units) for the human/rabbit chimeras assayed using hu C8/C9 (FIG. 6B) or rb C8/C9 (FIG. 6C).
- FIGS. 7A, 7B, and 7 C are schematics showing the chimeric hu/rb CD59 constructs (FIG. 7A), and graphs of cytolysis (percent release of BCECF Dye versus CD59 per cell (arbitrary fluorescence units) for the human/rabbit chimeras assayed using hu C8/C9 (FIG. 7B) or rb C8/C9 (FIG. 7C).
- FIG. 8 is a sequence alignment of the amino acid sequences for CD59 of human, baboon, African green monkey, owl monkey, marmoset, HVS-15, pig, sheep, rabbit, rat, and mouse origin.
- Human is Sequence ID No. 3
- baboon is Sequence ID No. 4
- African green monkey (Afr grn mnky) is Sequence ID No. 5
- owl monkey is Sequence ID No. 6
- marmoset is Sequence ID No. 7
- HVS-15 is Sequence ID No. 8
- pig is Sequence ID No. 9
- sheep is Sequence ID No. 10
- rabbit is Sequence ID No. 11
- rat is Sequence ID No. 12
- mouse is Sequence ID No. 13.
- FIGS. 9A and 9B are schematics of hu/rb C9 chimeric constructs (FIG. 9A) and a plot of the inhibitory activity of the chimeric C9 constructs (FIG. 9B).
- Bar graph (right panel) summarizes combined results of all experiments measuring the inhibitory activity of CD59 with the recombinant human/rabbit chimeras of C9.
- hemolytic titrations of C9 were performed against C5b-8 chE in the presence and absence of membrane CD59 and the percent reduction of hemolysis due to CD59 (ordinate) was determined, with normalization to that observed for hu C9 (100% inhibition).
- Recombinant C9 chimeras (designated #1-12) contain human (H) or rabbit (R) sequence according to the deduced mature primary structure of hu and rb C9.
- H human
- R rabbit
- the numbering appears discontinuous because of gaps in the alignment of the human and rabbit sequences: 1, R1-338H334-415R425-536; 2, R1-363H359-538; 3, H1-357R363-536; 4, R1-363H359-415R425-536; 5, R1-363H359-391R401-536; 6, R1-400H392-415R425-536; 7, R1-363H359-384R394-536; 8, H1-333R339-424H416-538; 9, H1-357R363-424H416-538; 10, H1-357R363-400H392-538; 11, H1-391R401-424H416-538; 12, H1-357R363-393H385-538.
- FIG. 10 is a schematic representation of the segment of hu C9 identified as containing the CD59 binding site, which according to the proposed domain structure includes: thrombospondin type 1 (TS), LDL-receptor (LDLR), hinge (Hinge), membrane binding (MB), and epidermal growth factor precursor (EGFP) domains. Shaded segment indicates residues 334-415 of hu C9, spanning the putative CD59 binding site.
- the amino acid sequence of this peptide segment (Sequence ID No. 14) is given below, and is shown in an alignment with rb C9 (Sequence ID No. 15) (alignment done for full-length polypeptides with the PALIGN program in PCGENE). Asterisks indicate sequence identity. Dotted lines indicate the Cys 359/384 disulfide of hu C9 and the assumed corresponding internal disulfide in rb C9. Residue numbers refer to the mature proteins.
- FIG. 11 is a graph showing percent inhibitory activity of CD59 is unaffected by disruption of the Cys 359/384 disulfide.
- Recombinant hu C9 was expressed with Cys ⁇ Ala mutation at either residue 384 or at both residues 359/384, and analyzed as described in FIG. 9B.
- Inhibitory activity of CD 59 measured as hemolytic function of each recombinant C9 is expressed as a percentage, relative to that measure for wild-type hu C9 (ordinate).
- Error bars denote mean +S.D., n, indicates number of independent experiments; asterisks indicate significance (p,0.001) compared to hu C9.
- Hu C9 and rb C9 denote the wild type human and rabbit proteins, respectively.
- FIG. 12 is a graph showing CD59 specifically binds hu C9 peptide 359-384.
- Microplates were coated with hu C9 peptide 359-384 coupled to BSA, and specific binding of biotin-CD59 determined in the presence of affinity-purified antibody against hu C9 residues 359-384 ( ⁇ ), or non-immune IgG ( ⁇ ) (micrograms/ml IgG concentration indicated on abscissa). All data were corrected for nonspecific binding of CD59, determined in presence of 20-fold excess of unlabeled CD59. Ordinate denotes absorbance at 405 nm, with correction for nonspecific background. Error bars denote mean +S.D. Data of a single experiment, representative of three so performed.
- FIGS. 13A, 13B, 13 C and 13 D are graphs showing the inhibition of C9-dependent hemolysis by antibody against C9-peptide 359-384.
- Fab of antibody against hu C9 peptide 359-384 ( ⁇ ) was tested for its capacity to inhibit the hemolytic activity of recombinant hu C9 (FIG. 13A), hu/rb C9 chimera #7 (FIG. 13B), recombinant rb C9 (FIG. 13C), or hu/rb C9 chimera #12 (FIG. 13D).
- Residues of human (H) and rabbit (R) sequence in each C9 chimera are indicated in FIG. 9A.
- Compounds can be derived using this basic amino acid sequence and corresponding three dimensional structure within the protein using any of several techniques known to those skilled in the art, including rational drug design using computer data bases and modeling of peptide/protein-ligand binding, antibodies and anti-idiotypic antibodies generated to the proteins or peptides containing this peptide sequence, and modified peptides.
- Those compounds imitating the structure and/or function of the peptide region are referred to herein as “peptidomimetics”, and include small molecules which present the surface exposed side chains in these amino acids in the same relative positions, compounds identified by combinatorial chemistry techniques which bind to the active portions of human C9, as well as modified peptides.
- hu CD59 interacts with a segment of human C9 (hu C9) between residues 334-415, immediately C-terminal to the predicted membrane-inserting domain of C9.
- This segment of C9 contains a region of markedly divergent sequence when hu C9 is compared to C9 of other species, with greatest divergence noted for the peptide segment contained within an internal Cys359-Cys384 disulfide in hu C9.
- Human CD59 shows negligible complement inhibitory activity toward rabbit C5b-9
- rabbit CD 59 shows negligible complement inhibitory activity toward human C5b-9
- Rabbit and human C5b-9 proteins work interchangeably and can assemble into functional lytic C5b-9 complexes.
- Recombinant DNA techniques described in more detail in the Examples, were used to prepare various chimeric rabbit/human proteins to map the specific peptide residues involved in the binding interaction between CD59 and the C8 and C9 components of the C5b-9 complex to determine the sequence contained in CD59 which affords species specificity. It has been discovered that the entire species selective recognition of hu CD59 is encoded by amino acid residues 42-58 of human CD59.
- residues of the mature rb CD59 polypeptide have been renumbered herein commencing with [N-Ser 0 ]-Leu 1 -Met 2 -Cys 3 - etc. FIG. 1). All references to amino acids in rb C59 are based on this re-numbering of residues in the mature polypeptide.
- the active surface exposed side chains that are available to bind C8/C9 were identified from the solution structure of hu CD59, as determined from published NMR data and the knowledge of the active portion of the CD59 molecule. These side chains are the side chains of histidine at position 44, asparagine at position 48, aspartic acid at position 49, threonine at positions 51 and 52, arginine at position 55 and glutamic acid at position 58. Compounds which present the side chains at the same relative positions will behave in a manner similar to hu CD59.
- NMR structures for CD59 are described in deposits by Kieffer et al., Human Complement Regulatory Protein CD59 (Extracellular Region, Residues 1-70) (NMR, 10 Structures), MMDB Id: 891, PDB Id: 1ERH; Kieffer et al., Human Complement Regulatory Protein CD59 (Extracellular Region, Residues 1-70) (NMR, Restrained), MMDB Id: 890, PDB Id: 1ERG; Fletcher et al., CD59 Complexed With Glcnac-Beta-1,4-(Fuc-Alpha-1,6)-Glcnac-Beta-1 (Nmr, 10 Structures), MMDB Id: 498, PDB Id: 1CDS; Fletcher et al., CD59 Complexed With Glcnac-Beta-1,4-Glcnac-Beta-1 (Nmr, 10 Structures), MMDB Id: 497, PDB
- Compounds which bind to the active portion of hu C9 can inhibit complement activity by performing substantially the same role as hu CD59.
- Compounds which bind to the active portion of hu CD59 can block the ability of CD59 to inhibit complement activity.
- chimeric proteins have been made which substitute the critical amino acid residues for binding activity in C9 or CD59 of one species, typically human, into a protein of a different species.
- the examples demonstrate how these chimeric proteins are useful to conduct studies of function and structure, as well as to generate antibodies to the critical regions, as described below.
- the compounds can also be used, for example, for competitive binding assays, combinatorial chemistry to isolate compounds which only bind to the active portion of hu CD59, and as therapeutics, although their therapeutic uses may be limited to non-human animals.
- Antibodies immunoreactive with the hu CD59 peptide (amino acid residues 42-58), the hu C9 peptide (amino acid residues 359-384), or an anti-idiotypic antibody to these antibodies immunoreactive with the CD59 or C9 peptides can be prepared using the techniques described herein.
- mice such as mice may be immunized by administration of an amount of immunogen such as the CD59 peptide, an antibody to the CD59 peptide, the C9 peptide or an antibody to the C9 peptide, effective to produce an immune response.
- a mouse is subcutaneously injected in the back with 100 micrograms of antigen, followed three weeks later with an intraperitoneal injection of 100 micrograms of immunogen with adjuvant, most preferably Freund's complete adjuvant. Additional intraperitoneal injections every two weeks with adjuvant, preferably Freund's incomplete adjuvant, may be necessary until the proper titer in the mouse's blood is achieved.
- a titer of at least 1:5000 is preferred, and a titer of 1:100,000 or more is most preferred.
- the antibodies are raised by standard immunization of rabbits with chimeric rabbit/human CD59 protein in which human CD59 residues 42-58 replace the corresponding residues in the rabbit CD59 polypeptide or chimeric rabbit/human C9 protein in which human C9 residues 359-384 replace the corresponding residues in the rabbit C9 polypeptide, based upon alignment of the human and rabbit protein sequences.
- these antibodies are raised by standard immunization of mice with chimeric mouse/human CD59 protein in which human CD59 residues 42-58 replace the corresponding residues in the mouse CD59 polypeptide, based upon alignment of the human and mouse protein sequences.
- the antibodies can then be purified, for example, by affinity purification on columns containing human CD59.
- a humanized antibody is one in which only the antigen-recognized sites, or complementarity-determining hypervariable regions (CDRs) are of non-human origin, whereas all framework regions (FR) of variable domains are products of human genes. These “humanized” antibodies present a less xenografic rejection stimulus when introduced to a human recipient.
- variable region DNA of a selected animal recombinant anti-idiotypic ScFv is sequenced by the method of Clackson, T., et al., Nature, 352:624-688, 1991.
- animal CDRs are distinguished from animal framework regions (FR) based on locations of the CDRs in known sequences of animal variable genes. Kabat, H. A., et al., Sequences of Proteins of Immunological Interest, 4th Ed. (U.S. Dept.
- the CDRs are grafted onto human heavy chain variable region framework by the use of synthetic oligonucleotides and polymerase chain reaction (PCR) recombination. Codons for the animal heavy chain CDRs, as well as the available human heavy chain variable region framework, are built in four (each 100 bases long) oligonucleotides. Using PCR, a grafted DNA sequence of 400 bases is formed that encodes for the recombinant animal CDR/human heavy chain FR protection.
- PCR polymerase chain reaction
- the immunogenic stimulus presented by the monoclonal antibodies so produced may be further decreased by the use of Pharmacia's (Pharmacia LKB Biotechnology, Sweden) “Recombinant Phage Antibody System” (RPAS), which generates a single-chain Fv fragment (ScFv) which incorporates the complete antigen-binding domain of the antibody.
- RPAS Recombinant Phage Antibody System
- ScFv single-chain Fv fragment
- antibody variable heavy and light chain genes are separately amplified from the hybridoma mRNA and cloned into an expression vector.
- the heavy and light chain domains are co-expressed on the same polypeptide chain after joining with a short linker DNA which codes for a flexible peptide.
- ScFv single-chain Fv fragment
- Antibodies which bind to inactive portions of the peptides will be less effective than antibodies which bind to the active portions.
- an antibody can be bound to the appropriate peptide (hu CD59 or C9), and chimeras containing the active portion of the peptide from the rabbit sequence and the remainder of the peptide containing the human sequence can be used in a competitive binding study. If the chimera is effective at competitively binding with the antibody, the antibody is likely binding to an inactive portion of the peptide. A chimera containing the active portion of the peptide from the human sequence and the inactive portion of the peptide from the rabbit sequence can also be used in a competitive binding study. If the chimera is effective at competitively binding with the antibody, the antibody is likely bound to the active portion of the peptide.
- Molecules with a given function can be selected for from a complex mixture of random molecules in what has been referred to as “in vitro genetics” (Szostak, TIBS 19:89, 1992) or combinatorial chemistry.
- in vitro genetics Szostak, TIBS 19:89, 1992
- combinatorial chemistry One synthesizes a large pool of molecules bearing random and defined sequences and subjects that complex mixture, for example, approximately 10 15 individual sequences in 100 ⁇ g of a 100 nucleotide RNA, to some selection and enrichment process.
- Ellington and Szostak (1990) estimated that 1 in 10 10 RNA molecules folded in such a way as to bind a given ligand. DNA molecules with such ligand-binding behavior have been isolated (Ellington and Szostak, 1992; Bock et al, 1992).
- Identification of compounds which bind the active portion of the hu CD59 and hu C9 can be simplified using the data regarding the active portions of these molecules identified using chimeric molecules.
- the human CD59 or C9 can be bound to a solid support, and interacted with various combinatorial libraries. Those molecules which do not bind these molecules at all are removed immediately by elution with a suitable solvent. Those molecules which bind to inactive portions of the CD59 or C9 molecules can be removed by competitive binding with an excess of a chimeric peptide with the inactive portions represented by human sequences and the active portion represented by the rabbit sequence.
- those compounds which bind to the active portion of the CD59 or C9 will remain bound to the solid support, whereas compounds bound to inactive portions of these molecules will be removed from the column. Finally, those compounds still bound to the column (which are bound to the active portions of these molecules) can be removed, for example, by competitive binding with CD59 or C9, or chimeras including only the active human portion of these molecules. Following removal, these compounds can be identified and their relative binding affinity compared as described above.
- Drugs with the ability to mimic the function of hu CD59 and C9 can be identified using rational drug design.
- the compounds preferably include the surface active functional groups of hu CD59 or C9, or substantially similar groups, in the same or substantially similar orientation, so that the compounds possess the same or similar biological activity.
- the surface active functional groups in CD59 and C9 possess a certain orientation when they are in their active conformations, in part due to their secondary or tertiary structure.
- Rational drug design involves both the identification and chemical modification of suitable compounds which mimic the function of the parent molecules.
- peptidomimetics Compounds that mimic the conformation and desirable features of a particular peptide, e.g., an oligopeptide, but that avoid undesirable features, e.g., flexibility (loss of conformation) and metabolic degradation, are known as “peptidomimetics”.
- Peptidomimetics that have physical conformations which mimic the three dimensional structure of amino acids 359-384 of hu C9 are active in blocking complement inhibition.
- the physical conformation of hu CD59 and C9 are determined, in part, by their primary, secondary and tertiary structure.
- the primary structure of a peptide is defined by the number and precise sequence of amino acids in CD59 or C9.
- the secondary structure is defined by the extent to which the polypeptide chains possess any helical or other stable structure.
- the tertiary structure is defined by the tendency for the polypeptides to undergo extensive coiling or folding to produce a complex, somewhat rigid three-dimensional structure.
- Computer modeling technology allows visualization of the three-dimensional atomic structure of a selected molecule and the rational design of new compounds which will mimic the molecule or which will interact with the molecule.
- the three-dimensional structure can be determined based on data from x-ray crystallographic analyses and/or NMR imaging of the selected molecule, or from ab initio techniques based solely or in part on the primary structure, as described, for example, in U.S. Pat. No. 5,612,895 to Balaji et al.
- the computer graphics systems enable one to predict how a new compound will link to the target molecule and allow experimental manipulation of the structures of the compound and target molecule to perfect binding specificity.
- Data bases including constrained metabolically stable non-peptide moieties may be used to search for and to suggest suitable CD59 or C9 analogs. Searches can be performed using a three dimensional data base for non-peptide (organic) structures (e.g., non-peptide analogs, and/or dipeptide analogs) having three dimensional similarity to the known structure of the active regions of these molecules. See, e.g., the Cambridge Crystal Structure Data Base, Crystallographic Data Center, Lensfield Road, Cambridge, CB2 1EW, England; and Allen, F. H., et al., Acta Crystallogr., B35: 2331-2339 (1979). Alternatively, three dimensional structures generated by other means such as molecular mechanics can be consulted.
- Peptidomimetics can be modified to increase bioavailability.
- the compounds are structurally constrained such that the surface active groups are oriented in the active conformation.
- the compounds can further include chemical modifications that minimize the metabolic degradation of the compounds once they are administered. See, for example, Spatola, A. F. Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins (Weistein, B, Ed.), Vol. 7, pp.
- CD59 and C9 have flexible and rigid portions.
- the flexible portions of the structure can be replaced with suitable bioisosteres or equivalents, so that the active conformation can be maintained.
- bioisostere refers to atoms or groups of atoms which are of similar size to the atom or group of atoms which are to be replaced, wherein the compound containing the replacement atom or group of atoms retains, to a substantial degree, the biological activity of the original, unmodified peptide. See, for example, Nelson, Mautner, and Kuntz, at pp. 227, 271 and 285, respectively, in Burger's Medicinal Chemistry, Part 1, the Basis of Medicinal Chemistry, 4th Edition, M. E. Wolff, ed. (John Wiley & Sons, NY, 1980).
- Suitable substitutions include modifying one or more of the amide bonds by replacing the amide nitrogen with an oxygen atom, or a sulfur atom, or by replacing H at the amide nitrogen with an alkyl, aryl, aralkyl or alkaryl group, producing an N-substituted amide, or by replacing the amide group with a methylene moiety, optionally substituted with one or two alkyl, aryl, aralkyl or alkaryl groups, which can in turn optionally be substituted with various functional groups, such as halogens, carbonyl groups, amines, nitriles, azides, thiols, hydroxy groups, and carboxylic acid groups.
- the alkyl groups are preferably C 1-6 straight, branched or cyclic groups.
- one or more of the amide bonds present in the peptide backbone can be modified, for example, by replacing the amide carbonyl group with a methylene group (optionally substituted as described above), a thiocarbonyl group, a sulfone moiety or a sulfoxide moiety.
- the peptide can be further modified by introducing alkyl, aryl, aralkyl or alkaryl substituents, optionally substituted as described above, at one or more of the alpha-carbon atoms, such that the peptide backbone is unchanged, but additional side chain substituents are present in the chemically modified analog.
- Suitable ⁇ -carbon atom modifications include cyclopropyl groups, ethylidene groups, and primary, secondary or tertiary amines.
- each of these modifications can be introduced into the peptide chain in either orientation (i.e., in the orientation shown, or in the “reverse” orientation).
- various substituents on the amide nitrogen and the ⁇ -carbon can be bound to one another, thereby forming a cyclic structure which is a relatively constrained analog.
- Other constrained, cyclic structures can also be prepared by linking various substituents to form cyclic structures using chemical techniques know to those of skill in the art.
- Other modifications include those described in U.S. Pat. No. 5,612,895 to Balaji et el., the contents of which are hereby incorporated by reference.
- Chemically modified analogs are typically more resistant to enzymatic cleavage than the native peptides from which they are derived because the modified residues are not typically recognized by the enzymes which degrade naturally occurring proteins. Further, the backbone and side chains of peptides can be modified to provide peptidomimetics with reduced conformational flexibility. Accordingly, the possibility that the peptide will adopt conformation(s) other than the specifically desired conformation(s) can be substantially minimized by appropriate modification.
- Nucleotide molecules which bind amino acids 42-58 of hu CD59 can be generated in vitro, and then inserted into cells. Oligonucleotides can be synthesized on an automated synthesizer (e.g., Model 8700 automated synthesizer of Milligen-Biosearch, Burlington, Mass. or ABI Model 380B). (see, e.g., Offensperger et al., 1993 EMBO J.
- an automated synthesizer e.g., Model 8700 automated synthesizer of Milligen-Biosearch, Burlington, Mass. or ABI Model 380B.
- a free amine can be introduced to a 3′ terminal hydroxyl group of oligonucleotides without loss of sequence binding specificity (Orson et al., 1991). Furthermore, more stable triplexes are formed if any cytosines that may be present in the oligonucleotide are methylated, and also if an intercalating agent, such as an acridine derivative, is covalently attached to a 5′ terminal phosphate (e.g., via a pentamethylene bridge); again without loss of sequence specificity (Maher et al., (1989); Grigoriev et al., 1992).
- Other nucleoside modifications that reduce susceptibility to intracellular degradation are well known to those of skill in the art, and are intended to be within the scope of the compositions and methods described herein.
- Methods to produce or synthesize oligonucleotides are well known in the art. Such methods can range from standard enzymatic digestion followed by nucleotide fragment isolation (see e.g., Sambrook et al., Chapters 5, 6) to purely synthetic methods, for example, by the cyanoethyl phosphoramidite method using a Milligen or Beckman System 1Plus DNA synthesizer (see also, Ikuta et al., in Ann. Rev. Biochem. 1984 53, 323-356 (phosphotriester and phosphite-triester methods); Narang et al., in Methods Enzymol., 65, 610-620 (1980) (phosphotriester method).
- Proteins can be expressed recombinantly or naturally and cleaved by enzymatic digest, expressed from a sequence encoding just a peptide, or synthesized using standard techniques. It is a routine matter to make appropriate peptides, test for binding, and then utilize the peptides.
- the peptides are easily prepared by standard techniques. They can also be modified to increase in vivo half-life, by chemical modification of the amino acids or by attachment to a carrier molecule or inert substrate, as discussed above.
- the peptides can also be conjugated to a carrier protein by its N-terminal cysteine by standard procedures such as the commercial Imject kit from Pierce Chemicals or expressed as a fusion protein, which may have increased stability.
- the peptide can also be prepared as a pharmaceutically acceptable acid- or base-addition salt, formed by reaction with inorganic acids such as hydrochloric acid, hydrobromic acid, perchloric acid, nitric acid, thiocyanic acid, sulfuric acid, and phosphoric acid, and organic acids such as formic acid, acetic acid, propionic acid, glycolic acid, lactic acid, pyruvic acid, oxalic acid, malonic acid, succinic acid, maleic acid, and fumaric acid, or by reaction with an inorganic base such as sodium hydroxide, ammonium hydroxide, potassium hydroxide, and organic bases such as mono-, di-, trialkyl and aryl amines and substituted ethanolamines.
- inorganic acids such as hydrochloric acid, hydrobromic acid, perchloric acid, nitric acid, thiocyanic acid, sulfuric acid, and phosphoric acid
- organic acids such as formic acid, acetic acid, propi
- Peptides containing cyclopropyl amino acids, or amino acids derivatized in a similar fashion can also be used. These peptides retain their original activity but have increased half-lives in vivo. Methods known for modifying amino acids, and their use, are known to those skilled in the art, for example, as described in U.S. Pat. No. 4,629,784 to Stammer.
- the compounds described above are preferably administered in a pharmaceutically acceptable vehicle. Suitable pharmaceutical vehicles are known to those skilled in the art.
- the compound will usually be dissolved or suspended in sterile water or saline.
- the compounds can also be administered locally by topical application of a solution, cream, gel, or polymeric material (for example, a PluronicTM, BASF).
- the compound may be administered in liposomes or microspheres (or microparticles). Methods for preparing liposomes and microspheres for administration to a patient are known to those skilled in the art.
- U.S. Pat. No. 4,789,734 describe methods for encapsulating biological materials in liposomes.
- the material is dissolved in an aqueous solution, the appropriate phospholipids and lipids added, along with surfactants if required, and the material dialyzed or sonicated, as necessary.
- a review of known methods is by G. Gregoriadis, Chapter 14. “Liposomes”, Drug Carriers in Biology and Medicine pp. 287-341 (Academic Press, 1979).
- Microspheres formed of polymers or proteins are well known to those skilled in the art, and can be tailored for passage through the gastrointestinal tract directly into the bloodstream. Alternatively, the compound can be incorporated and the microspheres, or composite of microspheres, implanted for slow release over a period of time, ranging from days to months. See, for example, U.S. Pat. Nos. 4,906,474, 4,925,673, and 3,625,214, the contents of which are hereby incorporated by reference.
- compositions described above are that which achieves the desired effect: either to inhibit assembly of the C5b-9 complex by binding to C9 or to bind to the endogenous CD59 to prevent the CD59 from inhibiting assembly of the C5b-9 complex, thereby increasing complement-mediated activation, injury or cytolysis of cells.
- the peptides are generally active when administered parenterally in amounts above about 1 ⁇ g/kg of body weight. Based on extrapolation from other proteins, for treatment of most inflammatory disorders, the dosage range will be between 0.1 to 70 mg/kg of body weight. This dosage will be dependent, in part, on whether one or more peptides are administered. Based on studies with other peptide fragments blocking binding, the IC 50 , the dose of peptide required to inhibit binding by 50%, ranges from about 50 ⁇ M to about 300 ⁇ M, depending on the peptides. These ranges are well within the effective concentrations for the in vivo administration of peptides, based on comparison with the RGD-containing peptides, described, for example, in U.S. Pat. No. 4,792,525 to Ruoshalaghti, et al., used in vivo to alter cell attachment and phagocytosis.
- Inhibition of C5b-9 complex assembly is useful for all disorders characterized by excessive complement activation or complement-mediated cytolysis, including, for example, immune disorders and diseases such as immunovasculitis, rheumatoid arthritis, scleroderma, disseminated intravascular coagulation, lupus, paroxysmal nocturnal hemoglobinuria, thrombotic thrombolytic purpura, vascular occlusion, reocclusion after surgery, coronary thrombosis, and myocardial infarction.
- immune disorders and diseases such as immunovasculitis, rheumatoid arthritis, scleroderma, disseminated intravascular coagulation, lupus, paroxysmal nocturnal hemoglobinuria, thrombotic thrombolytic purpura, vascular occlusion, reocclusion after surgery, coronary thrombosis, and myocardial infarction.
- CD59 Inhibition of CD59 is useful as an adjuvant for tumor therapy and as a contraceptive since its been demonstrated that CD59 protects sperm from rejection by antibody and complement in the female genital tract and that CD59 expressed on human tumor cells protect these cells from complement-mediated lysis.
- Wizard DNA purification kit was from Promega (Madison, Wis.). Advanced KlenTaq enzymes, cDNA library construction kit, Marathon racing kit was from Clontech (Palo Alto, Calif.). Sequenase version 2.0 kit was from Amersham/USB (Cleveland, Ohio). SV-T2 cell line (ATCC163.7) was obtained from American Type Culture Collection (Rockville, Md.). BCECF-AM dye was purchased from Molecular Probes (Eugene, Oreg.). Fetal bovine serum (FBS), calf serum, cell dissociation buffer, L-glutamate, penicillin, streptomycin, trypsin and geneticin were from Sigma.
- FBS Fetal bovine serum
- FBS Fetal bovine serum
- calf serum calf serum
- cell dissociation buffer L-glutamate
- penicillin, streptomycin, trypsin and geneticin were from Sigma.
- FITC-conjugated goat anti-mouse IgG was from Jackson Immunoresearch Laboratory (West grove, Pa.). Rabbit anti-mouse lymphocyte IgG was the product of Inter-Cell Technologies (Hopewell, N.J.).
- Hu CD59 cDNA-PUC18 and murine monoclonal antibody (mab) 9E10 against TAG peptide were generous gifts from Dr. A. L. M. Bothwell (Yale Medical School, New Haven, Conn.).
- Silver stain, Coomasie and BCA protein assay reagents were from Pierce (Rockford, Ill.). All other chemicals were reagent grade or better.
- Fractions containing rb MAC inhibitory activity were pooled and NaCl added to final concentration of 300 mM.
- the pool was applied to 1.6 ⁇ 8-cm phenyl-SepharoseTM column (Sigma) equilibrated with 300 mM NaCl, 0.05% CHAPS, 20 mM Tris, pH 8.0.
- protein was eluted with a linear gradient representing 0.05% to 1% CHAPS, 300 mM to 0 mM NaCl, in 20 mM Tris, pH 8.0.
- the active fractions were pooled and further purified on 0.5 ⁇ 5-cm Mono Q HRTM column (Pharmacia Biotech Inc., Uppsala, Sweden) using a gradient of 0 to 400 mM NaCl in 0.5% CHAPS, 20 mM Tris, pH 7.4. Active fractions were concentrated by step elution on Mono QTM and further purified by SDS PAGE using a 10% NuPAGETM gel (Novex, San Diego, Calif.) run under non-reducing conditions.
- the protein band at 20 kDa (approximately 8 ⁇ g total protein from original 300 ml packed rabbit erythrocytes) was eluted from the gel slice into 0.1% CHAPS, 20 mM Tris, pH 7.4 and inhibitory activity of the eluted protein towards rb MAC confirmed by functional assay. All column chromatography procedures were performed at room temperature on a BioCADTM 20 perfusion chromatography workstation (PerSeptive Biosystems, Framingham, Mass.). N-terminal sequence was then obtained through 40 cycles of Edmann degradation (Protein and Carbohydrate Structure Facility, Univ.
- the sequence of this cDNA clone was deposited at GenBank (Accession number: AF040387) and the deduced amino acid sequence of the predicted ORF is shown in FIG. 1.
- the predicted translation product consists of 124 residues, including a 24-residue signal peptide before the N-terminal Ser 1 of the mature protein.
- the unusual N-terminal Ser 1 of the mature rb CD59 protein was confirmed at both protein and DNA levels (FIG. 1).
- Rb CD59-TAG in pcDNA3 vector was made by replacing the sequence in hu CD59-TAG pcDNA3 with the sequence encoding mature rb CD59 and the rb CD59 C-terminal signal using HindIII and XbaI sites in pcDNA3.
- cDNAs encoding the chimeric hu/rb CD59 constructs depicted in FIG. 2 were prepared using PCR amplification by procedures previously described by Zhou, Q., Zhao, J., Husler, T., and Sims, P. J. (1996) Mol. Immunol. 33, 1127-1134.
- the pcDNA3 plasmids containing hu CD59 sequence or rb CD59 sequence were used as templates to generate the cDNA encoding chimeric CD59 proteins.
- the chimeric cDNA was then inserted into pcDNA3 vector using HindIII and XbaI sites.
- Hu, rb, and hu/rb chimeric CD59-TAG pcDNA3 plasmids were used to transform E. coli strain TOP10. Constructs from independent colonies were sequenced in their entirety in both directions by automated DNA sequencing (Applied Biosystems, Inc.) or by dideoxy-sequencing using a sequenase version 2.0 kit. Plasmids containing the desired constructs without nucleotide error were selected and amplified for expression in the SV-T2 cell line.
- SV-T2 cells were transfected with hu, rb, or chimeric TAG-CD59 pcDNA3 by electroporation as previously described (Zhou, Q., Zhao, J., Hüsler, T., and Sims, P. J. (1996) Mol. Immunol. 33, 1127-1134). After 48 hr, stable transfectants were selected with DMEM complete medium containing 1 mg/ml geneticin for 10 days.
- TAG-CD59 The cell surface expression of each TAG-CD59 construct in transfected SV-T2 cells was quantified by the binding at saturation of mAb 9E10 (against TAG epitope) as previously described by Zhou, Q., Zhao, J., Hüsler, T., and Sims, P. J. (1996) Mol. Immunol. 33, 1127-1134. Following growth to near confluence, cells were detached and incubated for 30 min at 23° C. with mAb 9E10 (100 ⁇ g/ml) in HBSS containing 1% BSA.
- huC5b67 was deposited on the plasma membrane and susceptibility to the lytic activity of either hu C8 and C9 or rb C8 and C9 was measured and compared to identically-treated clones expressing wild-type hu or rb CD59. Briefly, SV-12 cells grown to 80% confluence were washed and loaded with BCECF-AM dye. C5b67 complexes were deposited on the cells using 40% hu C8D serum as complement source.
- MAC-mediated cell lysis was determined from the measured release of BCECF dye from the cytoplasm, with correction for non-specific dye leak from matched controls omitting C8 and C9, as previously described by Zhou, Q., Zhao, J., Hüsler, T., and Sims, P. J. (1996) Mol. Immunol. 33, 1127-1134. Under these conditions, MAC-mediated lysis of the vector-only SV-T2 controls not expressing recombinant CD59 ranged from 75-90%.
- the predicted translation product of cDNA encoding rb CD59 consists of 124 residues, including a 24-residue signal peptide, a predicted GPI attachment site, and a 23-residue signal peptide including a transmembrane domain C-terminal to the predicted transamidase cut site (FIG. 1) (Kinoshita, T., Inoue, N., and Takeda, J. (1995) Adv. Immunol. 60, 57-103, and Gerber, L. D., Kodukula, K., and Udenfriend, S. (1992) J. Biol. Chem. 267, 12168-12173).
- Species-selective activity of human and rabbit CD59 SV-T2 cell lines expressing various levels of cell surface CD59 (hu or rb) were produced through stable transfection with plasmid pcDNA3-TAG-CD59. Each cell line was then tested for its capacity to resist lysis by C5b-9. As has been previously described, cells transfected to express hu CD59 were nearly completely protected from lysis by hu C5b-9 and this protective effect of hu CD59 was not observed when rb C8 and C9 substituted for hu C8 and C9 in the C5b-9 complex (plotted curves in FIG. 2).
- rb CD59 expressed on the surface of this murine cell line conferred a selective resistance to lysis by C5b-9 assembled from rb C8 and C9, whereas virtually no inhibition of the lytic action of MAC was observed when hu C5b-9 components were used.
- MAC-inhibitory function of recombinant CD59 chimeras SV-T2 clones expressing the chimeric constructs were analyzed for their capacity to restrict lysis mediated by MAC. The species selectivity of the complement inhibitory function of each construct was tested using hu versus rb C8 and C9 to assemble the C5b-9 complex. In each case, results for the chimeric constructs were compared to those obtained for transfected SV-T2 cells expressing full-length CD59 (hu or rb) and to vector-transfected SV-T2 cells lacking the CD59 insert (FIG. 2).
- residues 42-58 of hu CD59 contain the segment of the protein that is responsible for its species-restricted MAC-inhibitory function.
- substitution of hu CD59 residues 42-58 into rb CD59 results in a protein that was functionally indistinguishable from hu CD59 whereas the complementary construct (rabbit 42-58 substituted into hu CD59) was functionally indistinguishable from rb CD59.
- residues 43, 45, 46, 47, 53, 54, 56 and 57 are identically conserved between human and rabbit. From the solved solution structure of hu CD59, the side-chains of residue 42 and 50 are buried.
- residues identified in hu CD59 to confer its species-selective interaction with hu C8 ⁇ and C9 i.e., His 44 , Asn 48 , Asp 49 , Thr 51 , Thr 52 , Arg 55 , and Glu 58 ) form a distinct cluster on the non-glycosylated surface of the protein and would presumably be available for a binding function.
- BSA-conjugated hu C9 peptide 359-384, and affinity-purified rabbit IgG against hu C9 peptide 359-384 were custom ordered from Quality Controlled Biochemicals (Hopkinton, Mass.).
- Full-length cDNA for hu C9 was a generous gift from Dr. J. Tschopp (University of Lausanne, Epalinges, Switzerland) and is described by Dupuis, et al., Mol. Immunol. 30, 95-100 (1993).
- Full length cDNA for rb C9 was isolated and cloned into pSVL as reported by Husler, et al., J. Biol. Chem. 270, 3483-3486 (1995).
- Chicken erythrocytes were from Cocalico Biologics, Inc. (Reamstown, Pa.); COS-7 cells were from American Tissue Culture Collection (Rockville, Md.); E. coli strain DH5 ⁇ and Opti-MEM I were from Life Technologies Inc. (Gaithersburg, Md.), Dulbecco's Modified Eagle Medium was from Mediatech Inc. (Herndon, Va.), and heat-inactivated fetal bovine serum was from Biocell (Rancho Dominquez, Calif.). Oligonucleotides were synthesized by the Molecular Biology Core Laboratories, Blood Research Institute.
- MBS 150 mM NaCl, 10 mM MOPS, pH 7.4
- GVBS 150 mM NaCl, 3.3 mM sodium barbital, 0.15 mM CaCl 2 0.5 mM MgCl 2 , 0.1%(w/v) gelatin, pH 7.4
- GVBE 150 mM NaCl, 3.3 mM sodium barbital, 10 mM EDTA, 0.1%(w/v) gelatin, pH 7.4.
- chimeric C9 cDNA's cDNA's coding for hu/rb C9 chimeras were constructed essentially as described by Husler, et al. (1995). In brief, regions of sequence identity were determined from the aligned sequences of rb and hu C9, and used as junctions for chimeric cDNA construction. Based on these alignments, primers for PCR were designed to generate defined segments of rb and hu C9 cDNA's.
- Primers annealing to 5′-or 3′-untranslated sequence with added Xba1 (5′-end) or Sac1 (3′-end) recognition sites were paired with chimeric primers (28-37 bp in length) and used to generate cDNA fragments that contained the desired overlapping sequence at either the 5′-or 3′-ends. These fragments were gel purified, mixed at a 1:1 molar ratio, and used in a second amplification with primers located in the 5′-and 3′-untranslated region to produce full length chimeric C9 cDNA's. Fragments were cloned into the Xba1/Sac1 sites of pSVL for mammalian expression. PCR fidelity was confirmed by sequencing 3′-coding sequence in each construct, starting from the stop codon and continuing through all junctions of rabbit and human sequence. In certain cases, chimeric constructs were further modified by site directed mutagenesis.
- Biotin-CD59 was biotinylated by incubation (1 h, room temperature) with a 20-fold molar excess of NHS-LC-biotin in 10 mM MOPS, 0.1% Nonidet P-40, pH 9.0 followed by exhaustive dialysis against charcoal, as described by Chang, et al. J. Biol. Chem. 269, 26424-26430 (1994).
- the inhibitory activity of CD59 towards each recombinant C9 construct was determined from the reduction in complement lysis of those cells reconstituted with CD59, versus the identically-treated cells omitting CD59, measured at the midpoint of the C9 titration (i.e., 50% hemolysis).
- data for each recombinant C9 construct were normalized to results obtained in each experiment with hu C9.
- CD59 binding to hu C9 peptide 359-384 The specific binding of CD59 to hu C9-derived peptide 359-384 was measured by microtiter plate assay with biotin-CD59, according to modification of published methods of Chang, et al. (1994) and Husler, et al. (1995). Briefly, the BSA-peptide conjugate was adsorbed to 96 well polyvinyl microplates by overnight coating at 5 ⁇ g/ml in 0.1 M sodium bicarbonate, pH 8.5. After blocking with 1% (w/v) BSA, wells were washed and incubated (4 hrs., 37° C.) with between 0.5 and 1 ⁇ g/ml biotin-CD59.
- biotin-CD59 was detected with Vectastain (Vector Labs, Burlingame, Calif.), developed by addition of p-nitrophenyl phosphate (2 mg/ml) and optical density recorded at 405 nm (VMaxMicroplate Reader, Molecular Devices, Inc.). In all experiments, correction was made for background adsorption of biotin-CD59 to BSA-coated wells (no peptide) and for nonspecific binding of biotin-CD59 to peptide, determined in the presence of a 20-fold excess of unlabeled CD59. As a positive control for specific binding, comparison was made in each experiment to wells coated with 2 ⁇ g/ml hu C9.
- the capacity of monospecific antibody against hu C9 peptide 359-384 to compete specific binding of CD59 was determined by prior incubation of the BSA-peptide-coated wells with antibody (2 hrs., between 0 and 100 ⁇ g/ml LgG) before addition of biotin-CD59.
- Inhibition of MAC lysis by antibody against hu C9 peptide 359-384 The capacity of antibody against hu C9 peptide 359-384 to inhibit MAC was determined by hemolytic assay, using the chE target cells described above, omitting CD59. In these experiments, between 0 and 1 mg/ml Fab of antibody against hu C9 peptide 359-384 (or, non-immune antibody control) was added with recombinant C9 (hu, rb, or chimeric), and complement-specific lysis determined.
- C9 chimeras were constructed in which the segment of C9 corresponding to the putative CD59 binding site (residues-334-415 in hu C9; were interchanged between hu and rb C9. These chimeric proteins were then tested for hemolytic activity and for their sensitivity to inhibition by membrane CD59 (FIG. 4). Substitution of hu C9 residues 334-415 into rb C9 (chimera #1) resulted in a protein that was indistinguishable from hu C9 in its sensitivity to inhibition by CD59.
- MAC was assembled using hu C5b67 and rb C8 so as to circumvent known inhibitory interaction of CD59 with hu C8 (Rollins, et al. J. Immunol. 146, 2345-2351 (1991), Ninomiya and Sims J. Biol. Chem. 267, 13675-13680 (1992).
- the segment of hu C9 shown to bind CD59 is immediately C-terminal to the putative membrane-spanning domain of the protein, and corresponds to a segment of polypeptide exhibiting particularly low sequence conversation when hu C9 is aligned to C9 of rabbit or other non-primate species.
- the most prominent divergence of sequence occurs between two cysteines (Cys359-Cys384 in hu C9) that are conserved in the human and rabbit proteins. In hu C9, these cysteines have been shown to form an intrachain disulfide bond (below), as reported by Schaller, et al. J. Protein Chem. 13, 472-473 (1994).
- Cys359/384 disulfide in hu C9 has recently been reported to be highly labile and subject to spontaneous reduction in the native protein, as reported Hatanaka, et al., Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1209, 117-122 (1994). Since the data suggested that residues internal to Cys359/384 contribute in-large-part to species-selective recognition by CD59, the extent to which the CD59 recognition site in C9 is affected by disruption of this bond was examined. Mutant hu C9 was expressed with Ala substitutions at Cys359 and Cys384 and tested for hemolytic activity and for sensitivity to inhibition by CD59. As revealed by data of FIG.
- CD59 is known to bind to C9 after C9 incorporates into the C5b-9 complex, and through this interaction inhibit propagation of membrane-inserted C9 polymer, limiting lytic activity of MAC.
- Fab of antibody raised against the hu C9 peptide 359-384 was tested for its capacity to inhibit the hemolytic activity of the hu C5b-9 complex, under the same condition used to evaluate the inhibitory function of CD59. As shown by the data of FIGS. 8 A-D, this Fab inhibited hemolytic activity of hu C9 (FIG.
- C9 chimera #7 (representing rb C9 containing hu C9 residues 359-384, FIG. 1, FIG. 8B), but had no effect on the hemolytic activity of either rb C9 (FIG. 8C) or chimera #12 (representing substitution of the corresponding segment of rb C9 residues into hu C9; FIG. 1, FIG. 8D).
- chimeras generated by substituting limited segments of hu C9 into rb C9 revealed that the segment of hu C9 between 359-384 uniquely conferred recognition by CD59, and that this interaction was enhanced by C-terminal extension of human sequence to residue 391 (cf. Chimeras #1-7; FIG. 4).
- chimeras generated by replacing these same segments of hu C9 with corresponding rb C9 sequence did not exhibit a complementary decrease in interaction with CD59, except when the segment of rb-derived sequence replaced in hu C9 residues spanning 334-415 (cf. Chimeras #8-12; FIG. 4).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Biology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Rheumatology (AREA)
- Pain & Pain Management (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Hydrogenated Pyridines (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Compounds modulating CD59 mediated complement activity, compositions including these compounds, and methods of making and using the compounds are disclosed, which are based on the identification of the hu CD59 amino acid residues which serve as the binding site for CD59-C9 interactions. These residues correspond to amino acid residues 42-58, and bind to the region of C9 corresponding to human 334-418, more specifically, between amino acid residues 359 and 384. Compounds can be derived using this basic amino acid sequence and corresponding three dimensional structure within the protein using any of several techniques known to those skilled in the art, including rational drug design using computer data bases and modeling of peptide/protein-ligand binding, antibodies and anti-idiotypic antibodies generated to the proteins or peptides containing this peptide sequence, and modified peptides. Those compounds imitating the structure and/or function of the peptide region are referred to herein as “peptidomimetics”, and include small molecules which present the surface exposed side chains in these amino acids in the same relative positions, compounds identified by combinatorial chemistry techniques which bind to the active portions of human C9, as well as modified peptides. The compounds can be used to inhibit complement by binding to C9 analogously to CD59, or to maintain complement inhibition, by blocking CD59 binding to C9. The compounds can be administered locally or systemically in any suitable carrier in an amount effective to either inhibit complement or block the inhibition of complement, in a patient in need of treatment thereof.
Description
- The present invention is generally in the area of compounds regulating complement-mediated inflammation, and is specifically directed to compounds interacting with assembly of the C5b-9 complex.
- The U.S. government has certain rights in this invention by virtue of grant HL36061 from the Heart, Lung and Blood Institute, National Institutes of Health to Peter J. Sims.
- The complement system is a complex interaction of plasma proteins and membrane cofactors which act in a multi-step, multi-protein cascade sequence in conjunction with other immunological systems of the body to provide immunity from intrusion of foreign cells. Complement proteins represent up to about 10% of globulins in the normal serum of man and other vertebrates.
- The classic complement pathway involves an initial antibody recognition of, and binding to, an antigenic site (SA) on a target cell. This surface bound antibody subsequently reacts with the first component of complement, C1q, forming a C1-antibody complex with Ca+2, C1r, and C1s which is proteolytically active. C1s cleaves C2 and C4 into active components, C2a and C4a. The C4b,2a complex is an active protease called C3 convertase, and acts to cleave C3 into C3a and C3b. C3b forms a complex with C4b,2a to produce C4b,2a,3b, which cleaves C5 into C5a and C5b. C5b combines with C6. The C5b,6 complex combines with C7 to form the ternary complex C5b,6,7. The C5b,6,7 complex binds C8 at the surface of the cell, which may develop functional membrane lesions and undergo slow lysis. Upon binding of C9 to the C8 molecules in the C5b,6,7,8 complex, lysis of bacteria and other foreign cells is rapidly accelerated.
- The C5b-9 proteins of the human plasma complement system have been implicated in non-lytic stimulatory responses from certain human vascular and blood cells. The capacity of C5b-9 to modify membrane permeability and to selectively alter ion conductance is thought to elicit these non-lytic responses from human cells. In the case of human blood platelets and vascular endothelium, assembly of the C5b-9 complex initiates a transient and reversible depolarization of the plasma membrane potential, a rise in cytosolic Ca+2, metabolic conversion of arachidonate to thromboxane or prostacyclin, and the activation of intracellular protein kinases. In addition, human platelets exposed to C5b-9 undergo shape changes, secretory fusion of intracellular storage granules with plasma membrane, and the vesiculation of membrane components from the cell surface. Human endothelial cells exposed to the human C5b-9 proteins secrete high molecular weight multimers of the platelet adhesion protein, von Willibrand Factor (vWF), and the intracellular granule membrane protein, P-selectin (GMP140), is translocated from the Weibel-Palade body to the endothelial surface. High molecular weight multimers of vWF have been implicated in the pathogenesis of vaso-occlusive platelet adherence to endothelium and cell surface P-selectin (GMP140) has been implicated in the adherence of inflammatory leukocytes to endothelium.
- These effects of complement proteins C5b-9 on platelet and endothelial cells alter the normal regulation of the enzymes of the plasma coagulation system at these cell surfaces. For example, the generation of platelet membrane microparticles by vesiculation is accompanied by the exposure of membrane binding sites for coagulation factor Va. Binding of factor Va to the platelet plasma membrane and to these membrane microparticle sites initiates assembly of the prothrombinase enzyme complex. This complex in turn accelerates coagulation factor Xa activation of prothrombin to thrombin which promotes plasma clotting. Similarly, C5b-9 binding to the endothelial cell results in the exposure of plasma membrane receptors for the prothrombinase complex, thereby accelerating the generation of thrombin from prothrombin at the endothelial surface.
- This interaction between components of the complement and coagulation systems at the surface of blood platelets and endothelium can generate inflammatory and chemotactic peptides at sites of vascular thrombus formation and may contribute to the altered hemostasis associated with immune disease states. In addition, immune reactions affecting blood platelets and endothelium can lead to platelet aggregation, the secretion of proteolytic enzymes and vasoactive amines from platelet storage granules, and increase adherence of platelets and leukocytes to the endothelial lining of blood vessels.
- Assembly of the C5b-9 complex is normally limited in plasma by the amount of C5b generated by proteolysis of C5 to its biologically-active fragments C5b and C5a. In addition to plasmin and other plasma or cell-derived proteases, two enzymes of the complement system can cleave C5 to C5a and C5b, the membrane-stabilized enzyme complexes C4b2a and C3bBb (C5-convertases). The activity of these two enzymes is normally inhibited on the surface of human blood and vascular membranes by the plasma membrane proteins, “membrane cofactor protein” (CD46), described by Lublin and Atkinson,Current Topics Microbiol. Immunol. 153:123 (1989) and “decay-accelerating factor: (CD55), Medof, et al., J. Exp. Med. 160:1558 (1984).
- Platelet and endothelial cell activation by C5b-9 also has ramifications in autoimmune disorders and other disease states. The importance of spontaneous complement activation and the resulting exposure of platelets and endothelium to activated C5b-9 to the evolution of vaso-occlusive disease is underscored by consideration that a) leukocyte infiltration of the subendothelium, which is known to occur in regions of atheromatous degeneration and suggests localized generation of C5a at the vessel wall, is potentially catalyzed by adherent platelets and b) local intravascular complement activation resulting in membrane deposition of C5b-9 complexes accompanies coronary vessel occlusion and may affect the ultimate extent of myocardial damage associated with infarction.
- There is now considerable evidence that the human erythrocyte membrane as well as the plasma membranes of other human blood cells and vascular endothelium are normally protected from these effects of complement by cell-surface proteins that specifically inhibit activation of the C5b-9 pore upon C9 binding to membrane C5b-8, as reported by Holguin, M. H., et al.,J. Clin. Invest. 84, 7-17 (1989); Sims, P. J., et al., J. Biol. Chem. 264, 19228-19235 (1989); Davies, A., et al., J. Exp. Med. 170, 637-654 (1989); Rollins, S. A., and Sims, P. J. J. Immunol. 144, 3478-3483 (1990); and Hamilton, K. K., et al., Blood 76, 2572-2577 (1990). Plasma membrane constituents reported to exhibit this activity include homologous restriction factor (HRF) (C8-binding protein), as described by Zalman, L. S., et al., Proc. Natl. Acad. Sci., U.S.A. 83, 6975-6979 (1986) and Schonermark, S., et al., J. Immunol. 136, 1772-1776 (1986), and the leukocyte antigen CD59, described by Sugita, Y., et al., J. Biochem. (Tokyo) 104, 633-637 (1988); Holguin, M. H., et al., (1989); Sims, P. J., et al., (1989); Davies, A., (1989); Rollins, S. A., and Sims, P. J. (1990); and Hamilton, K. K., et al., (1990).
- Accumulated evidence suggest that these two proteins exhibit quite similar properties, including the following: both HRF and CD59 are tethered to the cell surface by a glycolipid anchor, and are deleted from the membranes of the most hemolytically sensitive erythrocytes that arise in the stem cell disorder paroxysmal nocturnal hemoglobinuria; the activity of both inhibitors is species-restricted, showing selectivity for C8 and C9 that are derived from homologous (i.e. human) serum; and both HRF and CD59 appear to function by inhibiting the activation of C9, decreasing the incorporation of C9 into the membrane C5b-9 complex, and limiting propagation of the C9 homopolymer. Whereas the molecular identity of CD59 is now well-established, no peptide or cDNA sequence has yet been reported for HRF and its molecular identity remains unresolved (Sugita, Y., et al.,J. Biochem. (Tokyo) 104, 633-637 (1988); Holguin, M. H., et al., (1989); Sims, P. J., et al., (1989); Davies, A. (1989); Rollins, S. A., and Sims, P. J. (1990)).
- Human (hu) CD59 antigen is a 18-21 kDa plasma membrane protein that functions as an inhibitor of the C5b-9 membrane attack complex (MAC) of human complement. CD59 interacts with both the C8 and C9 components of MAC during its assembly at the cell surface, thereby inhibiting formation of the membrane-inserted C9 homopolymer responsible for MAC cytolytic activity. This serves to protect human blood and vascular cells from injury arising through activation of complement in plasma, as described in U.S. Pat. No. 5,136,916 to Sims and Wiedmer. CD59's inhibitory activity is dependent upon the species of origin of C8 and C9, with greatest inhibitory activity observed when C9 is from human or other primates. By contrast, CD59 exerts little or no inhibitory activity towards C8 or C9 of most other species, including rabbit (rb). Because the activity of CD59 is largely restricted to regulating hu C9, and the activity of analogous complement inhibitors expressed by cells of other species is likewise generally selective for homologous C9, xenotypic cells and tissue are particularly susceptible to complement-mediated destruction due to unregulated activity of MAC. This phenomenon underlies hyperacute immune rejection after xenotransplantation.
- Analysis of the physical association of CD59 with components of MAC suggested that separate binding sites for CD59 are contained within the α-chain of hu C8 and within hu C9. The complement-inhibitory activity of CD59 is species-selective, and is most effective towards C9 derived from human or other primate plasma. The species-selective activity of CD59 was used to map the segment of human C9 that is recognized by this MAC inhibitor, using recombinant rabbit/human C9 chimeras that retain lytic function within the MAC (Husler T, Lockert D H, Kaufman K M, Sodetz J M, Sims P J (1995)J. Biol. Chem 270:3483-3486). These experiments indicated that the CD59 recognition domain was contained between residues 334-415 in human C9, as described in PCT/US96/17940 “C9 Complement Inhibitor” by Oklahoma Medical Research Foundation.
- It is apparent that additional or alternative inhibitors of the assembly of the C5b-9 complex would be advantageous in modulation of complement-mediated inflammation. It is also clear that inhibitors which are extremely specific and which are directed to the most critical regions involved in assembly or function of the complex would be most effective as inhibitors of complement-mediated inflammation, with the least likelihood of non-specific side effects.
- It is therefore an object of the present invention to provide a method and materials for specifically modulating complement-mediated inflammation mediated by CD59 binding to C9.
- Compounds modulating CD59 mediated complement activity, compositions including these compounds, and methods of making and using the compounds are disclosed, which are based on the identification of the hu CD59 amino acid residues which serve as the binding site for CD59-C9 interactions. These residues correspond to amino acid residues 42-58, and bind to the region of C9 corresponding to human 334-418, more specifically, between
amino acid residues - The compounds can be used to inhibit complement by binding to C9 analogously to CD59, or to maintain complement inhibition, by blocking CD59 binding to C9. The compounds can be administered locally or systemically in any suitable carrier in an amount effective to either inhibit complement or block the inhibition of complement, in a patient in need of treatment thereof.
- FIG. 1A shows the alignment of the amino acid sequences of human (hu) and rabbit (rb) CD59 (Sequence ID No. 1 and Sequence ID No. 2, respectively). FIG. 1B shows the alignment of the domains of hu and rb CD59.
- FIGS. 2A, 2B, and2C are schematics showing the chimeric hu/rb CD59 constructs (FIG. 2A), and graphs of cytolysis (percent release of BCECF Dye versus CD59 per cell (arbitrary fluorescence units) for the human/rabbit chimeras assayed using hu C8/C9 (FIG. 2B) or rb C8/C9 (FIG. 2C).
- FIGS. 3A, 3B, and3C are schematics showing the chimeric hu/rb CD59 constructs (FIG. 3A), and graphs of cytolysis (percent release of BCECF Dye versus CD59 per cell (arbitrary fluorescence units) for the human/rabbit chimeras assayed using hu C8/C9 (FIG. 3B) or rb C8/C9 (FIG. 3C).
- FIGS. 4A, 4B, and4C are schematics showing the chimeric hu/rb CD59 constructs (FIG. 4A), and graphs of cytolysis (percent release of BCECF Dye versus CD59 per cell (arbitrary fluorescence units) for the human/rabbit chimeras assayed using hu C8/C9 (FIG. 4B) or rb C8/C9 (FIG. 4C).
- FIGS. 5A, 5B, and5C are schematics showing the chimeric hu/rb CD59 constructs (FIG. 5A), and graphs of cytolysis (percent release of BCECF Dye versus CD59 per cell (arbitrary fluorescence units) for the human/rabbit chimeras assayed using hu C8/C9 (FIG. 5B) or rb C8/C9 (FIG. 5C).
- FIGS. 6A, 6B, and6C are schematics showing the chimeric hu/rb CD59 constructs (FIG. 6A), and graphs of cytolysis (percent release of BCECF Dye versus CD59 per cell (arbitrary fluorescence units) for the human/rabbit chimeras assayed using hu C8/C9 (FIG. 6B) or rb C8/C9 (FIG. 6C).
- FIGS. 7A, 7B, and7C are schematics showing the chimeric hu/rb CD59 constructs (FIG. 7A), and graphs of cytolysis (percent release of BCECF Dye versus CD59 per cell (arbitrary fluorescence units) for the human/rabbit chimeras assayed using hu C8/C9 (FIG. 7B) or rb C8/C9 (FIG. 7C).
- FIG. 8 is a sequence alignment of the amino acid sequences for CD59 of human, baboon, African green monkey, owl monkey, marmoset, HVS-15, pig, sheep, rabbit, rat, and mouse origin. Human is Sequence ID No. 3, baboon is Sequence ID No. 4, African green monkey (Afr grn mnky) is Sequence ID No. 5, owl monkey is Sequence ID No. 6, marmoset is Sequence ID No. 7, HVS-15 is Sequence ID No. 8, pig is Sequence ID No. 9, sheep is Sequence ID No. 10, rabbit is Sequence ID No. 11, rat is Sequence ID No. 12, and mouse is Sequence ID No. 13.
- FIGS. 9A and 9B are schematics of hu/rb C9 chimeric constructs (FIG. 9A) and a plot of the inhibitory activity of the chimeric C9 constructs (FIG. 9B). Bar graph (right panel) summarizes combined results of all experiments measuring the inhibitory activity of CD59 with the recombinant human/rabbit chimeras of C9. In each assay, hemolytic titrations of C9 were performed against C5b-8 chE in the presence and absence of membrane CD59 and the percent reduction of hemolysis due to CD59 (ordinate) was determined, with normalization to that observed for hu C9 (100% inhibition). Error bars denote mean +S.D., parentheses indicate number of independent experiments; asterisks (*) indicate significance (p<0.01) when compared to rb C9; pound signs (#) indicate significance (p<0.01) when compared to hu C9. To the left of each data bar, the protein assayed is depicted so as to designate those portions of the polypeptide containing hu C9 (open) or rb C9 (shaded) sequence. Numbers above each construct indicate the junctional hu C9 residue at each transition between human and rabbit protein sequence. Bars designated as human C9 and rabbit C9 denote recombinantly-expressed hu and rb C9, respectively. Recombinant C9 chimeras (designated #1-12) contain human (H) or rabbit (R) sequence according to the deduced mature primary structure of hu and rb C9. In some C9 chimeras, the numbering appears discontinuous because of gaps in the alignment of the human and rabbit sequences: 1, R1-338H334-415R425-536; 2, R1-363H359-538; 3, H1-357R363-536; 4, R1-363H359-415R425-536; 5, R1-363H359-391R401-536; 6, R1-400H392-415R425-536; 7, R1-363H359-384R394-536; 8, H1-333R339-424H416-538; 9, H1-357R363-424H416-538; 10, H1-357R363-400H392-538; 11, H1-391R401-424H416-538; 12, H1-357R363-393H385-538.
- FIG. 10 is a schematic representation of the segment of hu C9 identified as containing the CD59 binding site, which according to the proposed domain structure includes: thrombospondin type 1 (TS), LDL-receptor (LDLR), hinge (Hinge), membrane binding (MB), and epidermal growth factor precursor (EGFP) domains. Shaded segment indicates residues 334-415 of hu C9, spanning the putative CD59 binding site. The amino acid sequence of this peptide segment (Sequence ID No. 14) is given below, and is shown in an alignment with rb C9 (Sequence ID No. 15) (alignment done for full-length polypeptides with the PALIGN program in PCGENE). Asterisks indicate sequence identity. Dotted lines indicate the
Cys 359/384 disulfide of hu C9 and the assumed corresponding internal disulfide in rb C9. Residue numbers refer to the mature proteins. - FIG. 11 is a graph showing percent inhibitory activity of CD59 is unaffected by disruption of the
Cys 359/384 disulfide. Recombinant hu C9 was expressed with Cys→Ala mutation at eitherresidue 384 or at bothresidues 359/384, and analyzed as described in FIG. 9B. Inhibitory activity ofCD 59 measured as hemolytic function of each recombinant C9 is expressed as a percentage, relative to that measure for wild-type hu C9 (ordinate). Error bars denote mean +S.D., n, indicates number of independent experiments; asterisks indicate significance (p,0.001) compared to hu C9. Hu C9 and rb C9 denote the wild type human and rabbit proteins, respectively. - FIG. 12 is a graph showing CD59 specifically binds hu C9 peptide 359-384. Microplates were coated with hu C9 peptide 359-384 coupled to BSA, and specific binding of biotin-CD59 determined in the presence of affinity-purified antibody against hu C9 residues 359-384 (), or non-immune IgG (Δ) (micrograms/ml IgG concentration indicated on abscissa). All data were corrected for nonspecific binding of CD59, determined in presence of 20-fold excess of unlabeled CD59. Ordinate denotes absorbance at 405 nm, with correction for nonspecific background. Error bars denote mean +S.D. Data of a single experiment, representative of three so performed.
- FIGS. 13A, 13B,13C and 13D are graphs showing the inhibition of C9-dependent hemolysis by antibody against C9-peptide 359-384. Fab of antibody against hu C9 peptide 359-384 () was tested for its capacity to inhibit the hemolytic activity of recombinant hu C9 (FIG. 13A), hu/rb C9 chimera #7 (FIG. 13B), recombinant rb C9 (FIG. 13C), or hu/rb C9 chimera #12 (FIG. 13D). Residues of human (H) and rabbit (R) sequence in each C9 chimera are indicated in FIG. 9A. Also shown is data for non-immune antibody Δ(final concentrations indicated on abscissa). In all experiments, C5b-8 chE lacking CD59 served as target cells and hemolysis measured with correction for nonspecific lysis. Data of single experiment, representative of three similar experiments.
- Compounds modulating CD59 mediated complement activity, compositions including these compounds, and methods of making and using the compounds are disclosed, which are based on the identification of the hu CD59 amino acid residues which serve as the binding site for CD59-C9 interactions. These residues correspond to amino acid residues 42-58 (amino acids 42 to 58 of SEQ ID NO:3), and bind to the region of C9 corresponding to human 334-418, more specifically, between
amino acid residues - As described in PCT/US96/17940 “C9 Complement Inhibitor” by Oklahoma Medical Research Foundation, hu CD59 interacts with a segment of human C9 (hu C9) between residues 334-415, immediately C-terminal to the predicted membrane-inserting domain of C9. This segment of C9 contains a region of markedly divergent sequence when hu C9 is compared to C9 of other species, with greatest divergence noted for the peptide segment contained within an internal Cys359-Cys384 disulfide in hu C9.
- Human CD59 shows negligible complement inhibitory activity toward rabbit C5b-9, and
rabbit CD 59 shows negligible complement inhibitory activity toward human C5b-9. Rabbit and human C5b-9 proteins work interchangeably and can assemble into functional lytic C5b-9 complexes. Recombinant DNA techniques, described in more detail in the Examples, were used to prepare various chimeric rabbit/human proteins to map the specific peptide residues involved in the binding interaction between CD59 and the C8 and C9 components of the C5b-9 complex to determine the sequence contained in CD59 which affords species specificity. It has been discovered that the entire species selective recognition of hu CD59 is encoded by amino acid residues 42-58 of human CD59. Although described herein with reference to the amino acid residues of the human proteins, it is understood that there are corresponding regions in other molecules of different origin, and that one skilled in the art would modify molecules of a different species of origin for use in that species in the same manner as described herein with reference to human CD59 and hu C9. - Unless otherwise noted, all references to amino acid positions in CD59 refer to the numbering of amino acids where the first amino acid in mature CD59 is
amino acid number 1. Thus, amino acids 42-58 of CD59 refers to the forty-second through fifty-eighth amino acids of mature CD59. This numbering is used in FIGS. 1A and 8 and SEQ ID NO:3. SEQ ID NO:1 includes the signal peptide sequence. Rabbit CD59 contains an additional Ser residue before the highly-conserved N-terminal Leu1 found in all other CD59 homologues that have been sequenced to date. Therefore, in order to simplify discussion of the aligned residues of hu and rb CD59 in various chimeric constructs, residues of the mature rb CD59 polypeptide have been renumbered herein commencing with [N-Ser0]-Leu1-Met2-Cys3- etc. FIG. 1). All references to amino acids in rb C59 are based on this re-numbering of residues in the mature polypeptide. - The active surface exposed side chains that are available to bind C8/C9 were identified from the solution structure of hu CD59, as determined from published NMR data and the knowledge of the active portion of the CD59 molecule. These side chains are the side chains of histidine at position 44, asparagine at position 48, aspartic acid at position 49, threonine at positions 51 and 52, arginine at
position 55 and glutamic acid at position 58. Compounds which present the side chains at the same relative positions will behave in a manner similar to hu CD59. NMR structures for CD59 are described in deposits by Kieffer et al., Human Complement Regulatory Protein CD59 (Extracellular Region, Residues 1-70) (NMR, 10 Structures), MMDB Id: 891, PDB Id: 1ERH; Kieffer et al., Human Complement Regulatory Protein CD59 (Extracellular Region, Residues 1-70) (NMR, Restrained), MMDB Id: 890, PDB Id: 1ERG; Fletcher et al., CD59 Complexed With Glcnac-Beta-1,4-(Fuc-Alpha-1,6)-Glcnac-Beta-1 (Nmr, 10 Structures), MMDB Id: 498, PDB Id: 1CDS; Fletcher et al., CD59 Complexed With Glcnac-Beta-1,4-Glcnac-Beta-1 (Nmr, 10 Structures), MMDB Id: 497, PDB Id: 1CDR. The 1CDS and 1CDR deposits by Fletcher et al. are preferred. - Compounds which bind to the active portion of hu C9 can inhibit complement activity by performing substantially the same role as hu CD59. Compounds which bind to the active portion of hu CD59 can block the ability of CD59 to inhibit complement activity.
- Compounds Useful as Mimics of hu CD59 and C9
- A. Hu CD59 and C9 Chimeras
- As described in the examples, chimeric proteins have been made which substitute the critical amino acid residues for binding activity in C9 or CD59 of one species, typically human, into a protein of a different species. The examples demonstrate how these chimeric proteins are useful to conduct studies of function and structure, as well as to generate antibodies to the critical regions, as described below. The compounds can also be used, for example, for competitive binding assays, combinatorial chemistry to isolate compounds which only bind to the active portion of hu CD59, and as therapeutics, although their therapeutic uses may be limited to non-human animals.
- B. Antibodies to Amino Acid Residues 42-58 of hu CD59 and amino acid residues 359-384 of hu C9.
- Antibodies immunoreactive with the hu CD59 peptide (amino acid residues 42-58), the hu C9 peptide (amino acid residues 359-384), or an anti-idiotypic antibody to these antibodies immunoreactive with the CD59 or C9 peptides can be prepared using the techniques described herein.
- 1. In vivo Immunization of Animals
- Animals such as mice may be immunized by administration of an amount of immunogen such as the CD59 peptide, an antibody to the CD59 peptide, the C9 peptide or an antibody to the C9 peptide, effective to produce an immune response. Preferably a mouse is subcutaneously injected in the back with 100 micrograms of antigen, followed three weeks later with an intraperitoneal injection of 100 micrograms of immunogen with adjuvant, most preferably Freund's complete adjuvant. Additional intraperitoneal injections every two weeks with adjuvant, preferably Freund's incomplete adjuvant, may be necessary until the proper titer in the mouse's blood is achieved. In order to use the mice for fusion and hybridoma production, a titer of at least 1:5000 is preferred, and a titer of 1:100,000 or more is most preferred.
- In a preferred embodiment, the antibodies are raised by standard immunization of rabbits with chimeric rabbit/human CD59 protein in which human CD59 residues 42-58 replace the corresponding residues in the rabbit CD59 polypeptide or chimeric rabbit/human C9 protein in which human C9 residues 359-384 replace the corresponding residues in the rabbit C9 polypeptide, based upon alignment of the human and rabbit protein sequences. In another embodiment, these antibodies are raised by standard immunization of mice with chimeric mouse/human CD59 protein in which human CD59 residues 42-58 replace the corresponding residues in the mouse CD59 polypeptide, based upon alignment of the human and mouse protein sequences. The antibodies can then be purified, for example, by affinity purification on columns containing human CD59.
- 2. In vitro Immunization
- The technique of in vitro immunization of human lymphocytes is frequently employed to generate a large variety of human monoclonal antibodies. Techniques for in vitro immunization of human lymphocytes are well known to those skilled in the art. See, e.g., T. Inai, et al.,Histochemistry (Germany), 99(5):335-362 (May 1993); A. Mulder, et al., Hum. Immunol., 36(3):186-192 (March 1993); H. Harada, et al., J. Oral Pathol. Med. (Denmark), 22(4):145-152 (April 1993); N. Stauber, et al., J. Immunol. Methods (Netherlands), 161(2):157-168 (May 26, 1993); and S. Venkateswaran, et al., Hybridoma, 11(6) 729-739 (December 1992). These techniques can be used to produce antigen-reactive human monoclonal antibodies, including antigen-specific IgG, and IgM human monoclonal antibodies.
- 3. Humanization of Antibodies
- Since the methods for immunizing animals yield antibody which is not of human origin, the antibodies could elicit an adverse effect if administered to humans. Methods for “humanizing” antibodies, or generating less immunogenic fragments of non-human antibodies, are well known. A humanized antibody is one in which only the antigen-recognized sites, or complementarity-determining hypervariable regions (CDRs) are of non-human origin, whereas all framework regions (FR) of variable domains are products of human genes. These “humanized” antibodies present a less xenografic rejection stimulus when introduced to a human recipient.
- To accomplish humanization of a selected mouse monoclonal antibody, the CDR grafting method described by Daugherty, et al.,Nucl. Acids Res., 19:2471-2476 (1991) may be used. Briefly, the variable region DNA of a selected animal recombinant anti-idiotypic ScFv is sequenced by the method of Clackson, T., et al., Nature, 352:624-688, 1991. Using this sequence, animal CDRs are distinguished from animal framework regions (FR) based on locations of the CDRs in known sequences of animal variable genes. Kabat, H. A., et al., Sequences of Proteins of Immunological Interest, 4th Ed. (U.S. Dept. Health and Human Services, Bethesda, Md., 1987). Once the animal CDRs and FR are identified, the CDRs are grafted onto human heavy chain variable region framework by the use of synthetic oligonucleotides and polymerase chain reaction (PCR) recombination. Codons for the animal heavy chain CDRs, as well as the available human heavy chain variable region framework, are built in four (each 100 bases long) oligonucleotides. Using PCR, a grafted DNA sequence of 400 bases is formed that encodes for the recombinant animal CDR/human heavy chain FR protection.
- The immunogenic stimulus presented by the monoclonal antibodies so produced may be further decreased by the use of Pharmacia's (Pharmacia LKB Biotechnology, Sweden) “Recombinant Phage Antibody System” (RPAS), which generates a single-chain Fv fragment (ScFv) which incorporates the complete antigen-binding domain of the antibody. In the RPAS, antibody variable heavy and light chain genes are separately amplified from the hybridoma mRNA and cloned into an expression vector. The heavy and light chain domains are co-expressed on the same polypeptide chain after joining with a short linker DNA which codes for a flexible peptide. This assembly generates a single-chain Fv fragment (ScFv) which incorporates the complete antigen-binding domain of the antibody. Compared to the intact monoclonal antibody, the recombinant ScFv includes a considerably lower number of epitopes, and thereby presents a much weaker immunogenic stimulus when injected into humans.
- 4. Use of Chimeras to Select Particularly Active Antibodies
- Antibodies which bind to inactive portions of the peptides will be less effective than antibodies which bind to the active portions. One can use the chimeric peptides described above to select particularly preferred antibodies.
- For example, once an antibody is prepared, it can be bound to the appropriate peptide (hu CD59 or C9), and chimeras containing the active portion of the peptide from the rabbit sequence and the remainder of the peptide containing the human sequence can be used in a competitive binding study. If the chimera is effective at competitively binding with the antibody, the antibody is likely binding to an inactive portion of the peptide. A chimera containing the active portion of the peptide from the human sequence and the inactive portion of the peptide from the rabbit sequence can also be used in a competitive binding study. If the chimera is effective at competitively binding with the antibody, the antibody is likely bound to the active portion of the peptide.
- C. Compounds Identified by Combinatorial Chemistry
- Molecules with a given function, catalytic or ligand-binding, can be selected for from a complex mixture of random molecules in what has been referred to as “in vitro genetics” (Szostak,TIBS 19:89, 1992) or combinatorial chemistry. One synthesizes a large pool of molecules bearing random and defined sequences and subjects that complex mixture, for example, approximately 1015 individual sequences in 100 μg of a 100 nucleotide RNA, to some selection and enrichment process. For example, by repeated cycles of affinity chromatography and PCR amplification of the molecules bound to the ligand on the column, Ellington and Szostak (1990) estimated that 1 in 1010 RNA molecules folded in such a way as to bind a given ligand. DNA molecules with such ligand-binding behavior have been isolated (Ellington and Szostak, 1992; Bock et al, 1992).
- Using methodology well known to those of skill in the art, in combination with various combinatorial libraries, one can isolate and characterize those compounds which bind to or interact with the desired target. The relative binding affinity of these compounds can be compared and optimum compounds identified using competitive binding studies which are well known to those of skill in the art.
- Identification of compounds which bind the active portion of the hu CD59 and hu C9 can be simplified using the data regarding the active portions of these molecules identified using chimeric molecules. For example, the human CD59 or C9 can be bound to a solid support, and interacted with various combinatorial libraries. Those molecules which do not bind these molecules at all are removed immediately by elution with a suitable solvent. Those molecules which bind to inactive portions of the CD59 or C9 molecules can be removed by competitive binding with an excess of a chimeric peptide with the inactive portions represented by human sequences and the active portion represented by the rabbit sequence. Those compounds which bind to the active portion of the CD59 or C9 will remain bound to the solid support, whereas compounds bound to inactive portions of these molecules will be removed from the column. Finally, those compounds still bound to the column (which are bound to the active portions of these molecules) can be removed, for example, by competitive binding with CD59 or C9, or chimeras including only the active human portion of these molecules. Following removal, these compounds can be identified and their relative binding affinity compared as described above.
- D. Rational Drug Design
- Drugs with the ability to mimic the function of hu CD59 and C9 can be identified using rational drug design. The compounds preferably include the surface active functional groups of hu CD59 or C9, or substantially similar groups, in the same or substantially similar orientation, so that the compounds possess the same or similar biological activity. The surface active functional groups in CD59 and C9 possess a certain orientation when they are in their active conformations, in part due to their secondary or tertiary structure. Rational drug design involves both the identification and chemical modification of suitable compounds which mimic the function of the parent molecules.
- Compounds that mimic the conformation and desirable features of a particular peptide, e.g., an oligopeptide, but that avoid undesirable features, e.g., flexibility (loss of conformation) and metabolic degradation, are known as “peptidomimetics”. Peptidomimetics that have physical conformations which mimic the three dimensional structure of amino acids 42-58, in particular, which have surface active groups as described herein, are active in inhibiting the formation of the C5b-9 complex. Peptidomimetics that have physical conformations which mimic the three dimensional structure of amino acids 359-384 of hu C9 are active in blocking complement inhibition.
- The physical conformation of hu CD59 and C9 are determined, in part, by their primary, secondary and tertiary structure. The primary structure of a peptide is defined by the number and precise sequence of amino acids in CD59 or C9. The secondary structure is defined by the extent to which the polypeptide chains possess any helical or other stable structure. The tertiary structure is defined by the tendency for the polypeptides to undergo extensive coiling or folding to produce a complex, somewhat rigid three-dimensional structure.
- 1. Computer Modeling Software
- Computer modeling technology allows visualization of the three-dimensional atomic structure of a selected molecule and the rational design of new compounds which will mimic the molecule or which will interact with the molecule. The three-dimensional structure can be determined based on data from x-ray crystallographic analyses and/or NMR imaging of the selected molecule, or from ab initio techniques based solely or in part on the primary structure, as described, for example, in U.S. Pat. No. 5,612,895 to Balaji et al. The computer graphics systems enable one to predict how a new compound will link to the target molecule and allow experimental manipulation of the structures of the compound and target molecule to perfect binding specificity.
- Many databases and computer software programs are known that can be used to design drugs. For example, see Ghoshal et al., “Computer Aids in Drug Design—Highlights” (1996)Pol. J. Pharmacol. 48(4), 359-377; Wendoloski et al., “Biophysical Tools for Structure-Based Drug Design” (1993) Pharmacol. Ther. 60(2), 169-183; Lybrand, “Ligand-Protein Docking and Rational Drug Design” (1995) Curr. Opin. Struct. Biol. 5(2), 224-228; Kleinberg and Wanke, “New Approaches and Technologies in Drug Design and Discovery” (1995) Am. J. Health Syst. Pharm. 52(12), 1323-1336; Kubinyi, “Strategies and Recent Technologies in Drug Discovery” (1995) Pharmazie 50(10), 647-662; Archakov et al., (1996) Vestn. Ross. Akad. Med. Nauk. 1, 60-63; Taylor and Smith, “The Word Wide Web as a Graphical User Interface to Program Macros for Molecular Graphics, Molecular Modeling, and Structure-Based Drug Design” (1996) J. Mol. Graph. 14(5), 291-296; Huang et al., “Development of a Common 3D Pharmacophore for Delta-Opioid Recognition From Peptides and Non-Peptides Using a Novel Computer Program” (1997) J. Comput. Aided Mol. Des. 11(1), 21-78; and Li et al., “A computer Screening Approach to Immunoglobulin Superfamily Structures and Interactions: Discovery of Small Non-Peptidic CD4 Inhibitors and Novel Immunotherapeutics (1997) Proc. Natl. Acad. Sci. USA 94(1), 73-78.
- Data bases including constrained metabolically stable non-peptide moieties may be used to search for and to suggest suitable CD59 or C9 analogs. Searches can be performed using a three dimensional data base for non-peptide (organic) structures (e.g., non-peptide analogs, and/or dipeptide analogs) having three dimensional similarity to the known structure of the active regions of these molecules. See, e.g., the Cambridge Crystal Structure Data Base, Crystallographic Data Center, Lensfield Road, Cambridge, CB2 1EW, England; and Allen, F. H., et al.,Acta Crystallogr., B35: 2331-2339 (1979). Alternatively, three dimensional structures generated by other means such as molecular mechanics can be consulted. See., e.g., Burkert, et al., Molecular Mechanics, American Chemical Society, Washington, D.C. (1982); and Weiner, et al., J. Am. Chem. Soc., 106(3): 765-84 (Eng.) (1984).
- Search algorithms for three dimensional data base comparisons are available in the literature. See, e.g., Cooper, et al.,J. Comput.-Aided Mol. Design, 3: 253-259 (1989) and references cited therein; Brent, et al., J. Comput.-Aided Mol. Design, 2: 311-310 (1988) and references cited therein. Commercial software for such searches is also available from vendors such as Day Light Information Systems, Inc., Irvine, Calif. 92714, and Molecular Design Limited, 2132 Faralton Drive, San Leandro, Calif. 94577. The searching is done in a systematic fashion by simulating or synthesizing analogs having a substitute moiety at every residue level. Preferably, care is taken that replacement of portions of the backbone does not disturb the tertiary structure and that the side chain substitutions are compatible to retain the CD59/C9 interactions.
- 2. Structural Data to be Used with the Modeling Software
- The chimeric studies described herein have determined which amino acids are present in the active binding region in both hu CD59 and C9. With respect to CD59, the active surface exposed side chains that are available to bind C8/C9 were identified from the solution structure of hu CD59, as determined from published NMR data and the knowledge of the active portion of the CD59 molecule. These side chains are the side chains of histidine at position 44, asparagine at position 48, aspartic acid at position 49, threonine at positions 51 and 52, arginine at
position 55 and glutamic acid at position 58. Accordingly, the receptor geometry and active conformation of the active region in hu CD59 is known, by virtue of existing NMR (Nuclear Magnetic Resonance) data. Using the information regarding bond angles and spatial geometry of the critical amino acids, one can use computer programs as described herein to develop peptidomimetics. - Chemically modified analogs of the active portion of hu C9 can also be identified using the techniques described above.
- 3. Chemical Modifications
- Peptidomimetics can be modified to increase bioavailability. Preferably, the compounds are structurally constrained such that the surface active groups are oriented in the active conformation. The compounds can further include chemical modifications that minimize the metabolic degradation of the compounds once they are administered. See, for example, Spatola, A. F.Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins (Weistein, B, Ed.), Vol. 7, pp. 257-357, Marcel Dekker, New York (1983), which describes the use of the methylenethio bioisostere [CH2S] as an amide replacement; and Szelke et al., In Peptides: Structure and Function, Proceedings of the Eighth American Peptide Symposium, (Hruby and Rich, Eds.); pp. 579-582, Pierce Chemical Co., Rockford, Ill. (1983), which describes methyleneamino [CH2NH] and hydroxyethylene [CHOHCH2] bioisosteres.
- CD59 and C9 have flexible and rigid portions. The flexible portions of the structure can be replaced with suitable bioisosteres or equivalents, so that the active conformation can be maintained. As defined herein, the term “bioisostere” refers to atoms or groups of atoms which are of similar size to the atom or group of atoms which are to be replaced, wherein the compound containing the replacement atom or group of atoms retains, to a substantial degree, the biological activity of the original, unmodified peptide. See, for example, Nelson, Mautner, and Kuntz, at pp. 227, 271 and 285, respectively, inBurger's Medicinal Chemistry,
Part 1, the Basis of Medicinal Chemistry, 4th Edition, M. E. Wolff, ed. (John Wiley & Sons, NY, 1980). - Numerous peptide backbone substitutions are known to those of skill in the art which can provide peptidomimetics with improved physical and chemical properties, including enhanced rigidity and chemical and/or metabolic stability. Suitable substitutions include modifying one or more of the amide bonds by replacing the amide nitrogen with an oxygen atom, or a sulfur atom, or by replacing H at the amide nitrogen with an alkyl, aryl, aralkyl or alkaryl group, producing an N-substituted amide, or by replacing the amide group with a methylene moiety, optionally substituted with one or two alkyl, aryl, aralkyl or alkaryl groups, which can in turn optionally be substituted with various functional groups, such as halogens, carbonyl groups, amines, nitriles, azides, thiols, hydroxy groups, and carboxylic acid groups. The alkyl groups are preferably C1-6 straight, branched or cyclic groups. Further, one or more of the amide bonds present in the peptide backbone can be modified, for example, by replacing the amide carbonyl group with a methylene group (optionally substituted as described above), a thiocarbonyl group, a sulfone moiety or a sulfoxide moiety.
- The peptide can be further modified by introducing alkyl, aryl, aralkyl or alkaryl substituents, optionally substituted as described above, at one or more of the alpha-carbon atoms, such that the peptide backbone is unchanged, but additional side chain substituents are present in the chemically modified analog. Suitable α-carbon atom modifications include cyclopropyl groups, ethylidene groups, and primary, secondary or tertiary amines.
- Each of these modifications can be introduced into the peptide chain in either orientation (i.e., in the orientation shown, or in the “reverse” orientation). In addition, various substituents on the amide nitrogen and the α-carbon can be bound to one another, thereby forming a cyclic structure which is a relatively constrained analog. Other constrained, cyclic structures can also be prepared by linking various substituents to form cyclic structures using chemical techniques know to those of skill in the art. Other modifications include those described in U.S. Pat. No. 5,612,895 to Balaji et el., the contents of which are hereby incorporated by reference.
- Chemically modified analogs are typically more resistant to enzymatic cleavage than the native peptides from which they are derived because the modified residues are not typically recognized by the enzymes which degrade naturally occurring proteins. Further, the backbone and side chains of peptides can be modified to provide peptidomimetics with reduced conformational flexibility. Accordingly, the possibility that the peptide will adopt conformation(s) other than the specifically desired conformation(s) can be substantially minimized by appropriate modification.
- Methods of Preparing the Compounds
- Once the desired analog (including backbone and side chain modifications, as appropriate) has been identified, chemical synthesis is undertaken, employing standard synthetic techniques. For a given target compound, the skilled artisan can readily identify suitable synthetic approaches for the preparation of the target compound. Particular techniques for synthesizing certain classes of compounds are described in more detail below.
- 1. Methods of Preparing Nucleotide Molecules
- Nucleotide molecules which bind amino acids 42-58 of hu CD59 can be generated in vitro, and then inserted into cells. Oligonucleotides can be synthesized on an automated synthesizer (e.g., Model 8700 automated synthesizer of Milligen-Biosearch, Burlington, Mass. or ABI Model 380B). (see, e.g., Offensperger et al., 1993EMBO J. 12, 1257-1262 (in vivo inhibition of duck hepatitis B viral replication and gene expression by antisense phosphorothioate oligodeoxynucleotides); Rosenberg et al., PCT WO 93/01286 (synthesis of sulfurthioate oligonucleotides); Agrawal et al., 1988 Proc. Natl.
Acad. Sci. USA 85, 7079-7083 (synthesis of antisense oligonucleoside phosphoramidates and phosphorothioates to inhibit replication of human immunodeficiency virus-1); Sarin et al., 1989 Proc. Natl.Acad. Sci. USA 85, 7448-7794 (synthesis of antisense methylphosphonate oligonucleotides); Shaw et al., 1991 Nucleic Acids Res 19, 747-750 (synthesis of 3′ exonuclease-resistant oligonucleotides containing 3′ terminal phosphoroamidate modifications). - To reduce susceptibility to intracellular degradation, for example by 3′ exonucleases, a free amine can be introduced to a 3′ terminal hydroxyl group of oligonucleotides without loss of sequence binding specificity (Orson et al., 1991). Furthermore, more stable triplexes are formed if any cytosines that may be present in the oligonucleotide are methylated, and also if an intercalating agent, such as an acridine derivative, is covalently attached to a 5′ terminal phosphate (e.g., via a pentamethylene bridge); again without loss of sequence specificity (Maher et al., (1989); Grigoriev et al., 1992). Other nucleoside modifications that reduce susceptibility to intracellular degradation are well known to those of skill in the art, and are intended to be within the scope of the compositions and methods described herein.
- Methods to produce or synthesize oligonucleotides are well known in the art. Such methods can range from standard enzymatic digestion followed by nucleotide fragment isolation (see e.g., Sambrook et al.,
Chapters 5, 6) to purely synthetic methods, for example, by the cyanoethyl phosphoramidite method using a Milligen or Beckman System 1Plus DNA synthesizer (see also, Ikuta et al., in Ann. Rev. Biochem. 1984 53, 323-356 (phosphotriester and phosphite-triester methods); Narang et al., in Methods Enzymol., 65, 610-620 (1980) (phosphotriester method). - 2. Preparation of Peptides
- Proteins can be expressed recombinantly or naturally and cleaved by enzymatic digest, expressed from a sequence encoding just a peptide, or synthesized using standard techniques. It is a routine matter to make appropriate peptides, test for binding, and then utilize the peptides. The peptides are easily prepared by standard techniques. They can also be modified to increase in vivo half-life, by chemical modification of the amino acids or by attachment to a carrier molecule or inert substrate, as discussed above. The peptides can also be conjugated to a carrier protein by its N-terminal cysteine by standard procedures such as the commercial Imject kit from Pierce Chemicals or expressed as a fusion protein, which may have increased stability. Solid phase synthesis described by J. Merrifield, 1964J. Am. Chem. Soc. 85, 2149, used in U.S. Pat. No. 4,792,525, and described in U.S. Pat. No. 4,244,946, wherein a protected alpha-amino acid is coupled to a suitable resin, to initiate synthesis of a peptide starting from the C-terminus of the peptide. Other methods of synthesis are described in U.S. Pat. Nos. 4,305,872 and 4,316,891, the contents of which are hereby incorporated by reference. These methods can be used to synthesize peptides having identical sequence to the receptor proteins described herein, or substitutions or additions of amino acids, which can be screened for activity as described above.
- The peptide can also be prepared as a pharmaceutically acceptable acid- or base-addition salt, formed by reaction with inorganic acids such as hydrochloric acid, hydrobromic acid, perchloric acid, nitric acid, thiocyanic acid, sulfuric acid, and phosphoric acid, and organic acids such as formic acid, acetic acid, propionic acid, glycolic acid, lactic acid, pyruvic acid, oxalic acid, malonic acid, succinic acid, maleic acid, and fumaric acid, or by reaction with an inorganic base such as sodium hydroxide, ammonium hydroxide, potassium hydroxide, and organic bases such as mono-, di-, trialkyl and aryl amines and substituted ethanolamines.
- Peptides containing cyclopropyl amino acids, or amino acids derivatized in a similar fashion, can also be used. These peptides retain their original activity but have increased half-lives in vivo. Methods known for modifying amino acids, and their use, are known to those skilled in the art, for example, as described in U.S. Pat. No. 4,629,784 to Stammer.
- Methods for Evaluating the Compounds for Biological Activity
- After the compounds are synthesized, their biological activity can be evaluated, for example, using competitive binding studies, and iterative refinement of the peptidomimetic (in the case of a constrained analog itself) can then be carried out. Those chemically modified analogs which are biologically active can be employed as peptidomimetics without further modification.
- Compositions Including the Compounds
- The compounds described above are preferably administered in a pharmaceutically acceptable vehicle. Suitable pharmaceutical vehicles are known to those skilled in the art. For parenteral administration, the compound will usually be dissolved or suspended in sterile water or saline. The compounds can also be administered locally by topical application of a solution, cream, gel, or polymeric material (for example, a Pluronic™, BASF). Alternatively, the compound may be administered in liposomes or microspheres (or microparticles). Methods for preparing liposomes and microspheres for administration to a patient are known to those skilled in the art. U.S. Pat. No. 4,789,734 describe methods for encapsulating biological materials in liposomes. Essentially, the material is dissolved in an aqueous solution, the appropriate phospholipids and lipids added, along with surfactants if required, and the material dialyzed or sonicated, as necessary. A review of known methods is by G. Gregoriadis, Chapter 14. “Liposomes”,Drug Carriers in Biology and Medicine pp. 287-341 (Academic Press, 1979). Microspheres formed of polymers or proteins are well known to those skilled in the art, and can be tailored for passage through the gastrointestinal tract directly into the bloodstream. Alternatively, the compound can be incorporated and the microspheres, or composite of microspheres, implanted for slow release over a period of time, ranging from days to months. See, for example, U.S. Pat. Nos. 4,906,474, 4,925,673, and 3,625,214, the contents of which are hereby incorporated by reference.
- Methods of Treatment
- An effective amount of the compositions described above is that which achieves the desired effect: either to inhibit assembly of the C5b-9 complex by binding to C9 or to bind to the endogenous CD59 to prevent the CD59 from inhibiting assembly of the C5b-9 complex, thereby increasing complement-mediated activation, injury or cytolysis of cells.
- The peptides are generally active when administered parenterally in amounts above about 1 μg/kg of body weight. Based on extrapolation from other proteins, for treatment of most inflammatory disorders, the dosage range will be between 0.1 to 70 mg/kg of body weight. This dosage will be dependent, in part, on whether one or more peptides are administered. Based on studies with other peptide fragments blocking binding, the IC50, the dose of peptide required to inhibit binding by 50%, ranges from about 50 μM to about 300 μM, depending on the peptides. These ranges are well within the effective concentrations for the in vivo administration of peptides, based on comparison with the RGD-containing peptides, described, for example, in U.S. Pat. No. 4,792,525 to Ruoshalaghti, et al., used in vivo to alter cell attachment and phagocytosis.
- Inhibition of C5b-9 complex assembly is useful for all disorders characterized by excessive complement activation or complement-mediated cytolysis, including, for example, immune disorders and diseases such as immunovasculitis, rheumatoid arthritis, scleroderma, disseminated intravascular coagulation, lupus, paroxysmal nocturnal hemoglobinuria, thrombotic thrombolytic purpura, vascular occlusion, reocclusion after surgery, coronary thrombosis, and myocardial infarction. Inhibition of CD59 is useful as an adjuvant for tumor therapy and as a contraceptive since its been demonstrated that CD59 protects sperm from rejection by antibody and complement in the female genital tract and that CD59 expressed on human tumor cells protect these cells from complement-mediated lysis.
- Recent evidence suggests that complement inhibitors specifically directed against hu MAC have potential clinical use in preventing hyperacute rejection of transplanted organs and in reducing the pathological consequences of complement activation in various immune and inflammatory diseases. Identification of the specific protein motif that is responsible for the selective inhibitory action of CD59 towards the pore-forming and cytolytic properties of hu MAC allows one to rationally design small molecules that can mimic the protective effect of this natural cell-surface complement inhibitor.
- The present invention will be further understood by reference to the following studies.
- Experimental Procedures
- Materials—Rabbit whole blood and chicken whole blood in ACD were from Cocalico Biologics, Inc. (Reamstown, Pa.). Human serum, rabbit serum, human serum depleted of complement protein C8 (C8D), human complement proteins (C5b7, C8 and C9) and rabbit complement proteins C8 and C9 were purified and assayed as described previously (Hüsler, T., Lockert, D. H., Kaufman, K. M., Sodetz, J. M., and Sims, P. J. (1995)J. Biol. Chem. 270, 3483-3486; Rollins, S. A. and Sims, P. J. (1990) J. Immunol. 144, 3478-3483; Wiedmer, T. and Sims, P. J. (1985) J. Membr. Biol. 84, 249-25827; and Wiedmer, T. and Sims, P. J. (1985) J. Biol. Chem. 260, 8014-8019). 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane-sulphonate (CHAPS), Phenyl methyl sulfonyl fluoride (PMSF), Dimethyl sulfoxide (DMSO) and bovine serum albumin (BSA) were from Sigma (St. Louis, Mo.). Nonidet P-40, and Triton X-100 were from CalBiochem., Inc. (La Jolla, Calif.). Polyoxyethylene 20-soritan monolaurate (Tween 20) was from Fisher Chemical (Fairlawn, N.J.). TA cloning kit, mRNA purification kit, Escherichia coli (E. coli) strain TOP10 and pcDNA3 vectors were obtained from Invitrogen (San Diego, Calif.). All restriction endonucleases were from New England Biolab (Beverly, Mass.). T4 ligase, Hank's balanced salt solution (HBSS), Dulbecco's modified eagle's medium (DMEM) and DNA primers were purchased or synthesized in GIBCO BRL life Technologies (Gaithersburg, Md.). Wizard DNA purification kit was from Promega (Madison, Wis.). Advanced KlenTaq enzymes, cDNA library construction kit, Marathon racing kit was from Clontech (Palo Alto, Calif.). Sequenase version 2.0 kit was from Amersham/USB (Cleveland, Ohio). SV-T2 cell line (ATCC163.7) was obtained from American Type Culture Collection (Rockville, Md.). BCECF-AM dye was purchased from Molecular Probes (Eugene, Oreg.). Fetal bovine serum (FBS), calf serum, cell dissociation buffer, L-glutamate, penicillin, streptomycin, trypsin and geneticin were from Sigma. FITC-conjugated goat anti-mouse IgG was from Jackson Immunoresearch Laboratory (West grove, Pa.). Rabbit anti-mouse lymphocyte IgG was the product of Inter-Cell Technologies (Hopewell, N.J.). Hu CD59 cDNA-PUC18 and murine monoclonal antibody (mab) 9E10 against TAG peptide were generous gifts from Dr. A. L. M. Bothwell (Yale Medical School, New Haven, Conn.). Silver stain, Coomasie and BCA protein assay reagents were from Pierce (Rockford, Ill.). All other chemicals were reagent grade or better.
- Isolation of rabbit CD59—Rabbit erythrocyte ghost membranes were prepared as described for hu CD59 purification, and suspended to a final volume representing 1.5 times the original volume of packed erythrocytes (Davies et al., (1989)J. Exp. Med. 170, 637-654). The ghost suspension was brought to 150 mM NaCl, 1 mM phenylmethyl sulfony fluoride, and 1-butanol added slowly to 20% vol/vol. Following stirring (3 hr at 4° C.) and centrifugation (30 min, 4° C. at 10,000×g), the butanol-saturated aqueous phase was collected, CHAPS added to final 0.1% (v/v), and dialyzed against 20 mM Tris, 0.1% CHAPS, pH 7.4. The dialyzed extract was applied to 2.5×10-cm DEAE Sepharose Fast Flow column (Sigma) equilibrated in the same buffer and eluted with 500 ml of linear NaCl gradient (0-400 mM). Fractions were tested for MAC inhibitory function, using chicken erythrocyte targets cells as described previously, substituting rb C8 and C9 for hu C8 and C9 (Rollins, S. A. and Sims, P. J. (1990) J. Immunol. 144, 3478-3483). Fractions containing rb MAC inhibitory activity were pooled and NaCl added to final concentration of 300 mM. The pool was applied to 1.6×8-cm phenyl-Sepharose™ column (Sigma) equilibrated with 300 mM NaCl, 0.05% CHAPS, 20 mM Tris, pH 8.0. Following washing with the same solution, protein was eluted with a linear gradient representing 0.05% to 1% CHAPS, 300 mM to 0 mM NaCl, in 20 mM Tris, pH 8.0. The active fractions were pooled and further purified on 0.5×5-cm Mono Q HR™ column (Pharmacia Biotech Inc., Uppsala, Sweden) using a gradient of 0 to 400 mM NaCl in 0.5% CHAPS, 20 mM Tris, pH 7.4. Active fractions were concentrated by step elution on Mono Q™ and further purified by SDS PAGE using a 10% NuPAGE™ gel (Novex, San Diego, Calif.) run under non-reducing conditions. The protein band at 20 kDa (approximately 8 μg total protein from original 300 ml packed rabbit erythrocytes) was eluted from the gel slice into 0.1% CHAPS, 20 mM Tris, pH 7.4 and inhibitory activity of the eluted protein towards rb MAC confirmed by functional assay. All column chromatography procedures were performed at room temperature on a
BioCAD™ 20 perfusion chromatography workstation (PerSeptive Biosystems, Framingham, Mass.). N-terminal sequence was then obtained through 40 cycles of Edmann degradation (Protein and Carbohydrate Structure Facility, Univ. of Mich., Ann Arbor, Mich.), yielding S-L-M-C-Y-H-C-L-L-P-S-P-N-C-S-T-V-T-N-C-T-P-N-H-D-A-C-L-T-A-V-S-G-P-R-V-Y-R-Q-C- (Sequence ID No. 16). - Cloning of rabbit CD59 cDNA—Degenerate oligonucleotides were constructed based on peptide sequence and used to amplify a rabbit lymphocyte cDNA library (5′RACE, MARATHON™ Kit, CLONTECH) from which a 200 bp PCR product was obtained. Specific primers based on this 200 bp cDNA were designed and used to amplify the rabbit lymphocyte cDNA library by 3′ RACE. Full-length cDNA of rb CD59 was obtained by linking the PCR products from 5′ and 3′ RACE using PCR. The sequence of this cDNA clone was deposited at GenBank (Accession number: AF040387) and the deduced amino acid sequence of the predicted ORF is shown in FIG. 1. The predicted translation product consists of 124 residues, including a 24-residue signal peptide before the N-terminal Ser1 of the mature protein. The unusual N-terminal Ser1 of the mature rb CD59 protein was confirmed at both protein and DNA levels (FIG. 1).
- Construction of plasmids encoding rabbit/human CD59 chimeras—The 467 bp insert encoding hu CD59 was released from PUC18 using ECORI restriction sites and subcloned into the ECORI site in pcDNA3 expression vector. The vector with correct CD59 cDNA orientation was selected and used as a template for PCR. A 33 bp oligonucleotide (corresponding to the TAG peptide sequence EQKLISEEDLN (Sequence ID No. 17)) was inserted between the leader sequence of CD59 and the N-terminal amino acid (Leu1) of the mature protein using PCR. Rb CD59-TAG in pcDNA3 vector was made by replacing the sequence in hu CD59-TAG pcDNA3 with the sequence encoding mature rb CD59 and the rb CD59 C-terminal signal using HindIII and XbaI sites in pcDNA3. cDNAs encoding the chimeric hu/rb CD59 constructs depicted in FIG. 2 were prepared using PCR amplification by procedures previously described by Zhou, Q., Zhao, J., Husler, T., and Sims, P. J. (1996) Mol. Immunol. 33, 1127-1134. The pcDNA3 plasmids containing hu CD59 sequence or rb CD59 sequence were used as templates to generate the cDNA encoding chimeric CD59 proteins. The chimeric cDNA was then inserted into pcDNA3 vector using HindIII and XbaI sites. Hu, rb, and hu/rb chimeric CD59-TAG pcDNA3 plasmids were used to transform E. coli strain TOP10. Constructs from independent colonies were sequenced in their entirety in both directions by automated DNA sequencing (Applied Biosystems, Inc.) or by dideoxy-sequencing using a sequenase version 2.0 kit. Plasmids containing the desired constructs without nucleotide error were selected and amplified for expression in the SV-T2 cell line.
- Expression of CD59 constructs in SV-72 cells—SV-T2 cells were transfected with hu, rb, or chimeric TAG-CD59 pcDNA3 by electroporation as previously described (Zhou, Q., Zhao, J., Hüsler, T., and Sims, P. J. (1996)Mol. Immunol. 33, 1127-1134). After 48 hr, stable transfectants were selected with DMEM complete medium containing 1 mg/ml geneticin for 10 days. If episomal replication in the transfected cells was desired, 8×106 SV-T2 cells were transfected with 120 μg plasmid DNA by electroporation using Gene Pulse (Bio-rad) at 360 V and 500 μF (Zhou, Q., Zhao, J., Hüsler, T., and Sims, P. J. (1996) Mol. Immunol. 33, 1127-1134). Geneticin-selected cells were stained with mAb 9E10 against TAG epitope followed by FITC-conjugated goat antibody against mouse IgG, and sorted by flow cytometry (FACStar Plus; Becton Dickinson). Individual clones were then obtained by limiting dilution in DMEM containing 0.5 mg/ml geneticin. Comparison was made to clonal cell lines derived by transfection with pcDNA3, lacking insert (vector-only controls).
- Measurement of cell surface TAG-CD59—The cell surface expression of each TAG-CD59 construct in transfected SV-T2 cells was quantified by the binding at saturation of mAb 9E10 (against TAG epitope) as previously described by Zhou, Q., Zhao, J., Hüsler, T., and Sims, P. J. (1996)Mol. Immunol. 33, 1127-1134. Following growth to near confluence, cells were detached and incubated for 30 min at 23° C. with mAb 9E10 (100 μg/ml) in HBSS containing 1% BSA. After washing with HBSS containing 1% BSA, the cells were incubated (20 min at 23° C.) with FITC conjugated goat anti-mouse IgG at a final concentration of 10 μg/ml. The fluorescence was determined by flow cytometry (FACScan, Becton Dickinson) as described previously by Zhou, Q., Zhao, J., Hüsler, T., and Sims, P. J. (1996) Mol. Immunol. 33, 1127-1134.
- Assay of MAC inhibitory function—The complement-inhibitory activity of recombinant CD59 expressed on the transfected SV-T2 cells was evaluated by minor modification of methods previously described (Zhou, Q., Zhao, J., Hüsler, T., and Sims, P. J. (1996)Mol. Immunol. 33, 1127-1134, and Zhao, J., Rollins, S. A., Maher, S. E., Bothwell, A. L., and Sims, P. J. (1991) J. Biol. Chem. 266, 13418-13422). For cell clones expressing each chimeric CD59 construct, huC5b67 was deposited on the plasma membrane and susceptibility to the lytic activity of either hu C8 and C9 or rb C8 and C9 was measured and compared to identically-treated clones expressing wild-type hu or rb CD59. Briefly, SV-12 cells grown to 80% confluence were washed and loaded with BCECF-AM dye. C5b67 complexes were deposited on the cells using 40% hu C8D serum as complement source. After two washes, the C5b67 cells were incubated in serum-free medium with either 2 μM hu C8 and 5 μM hu C9, or with 4 μM rb C8 and 5 μM rb C9. MAC-mediated cell lysis was determined from the measured release of BCECF dye from the cytoplasm, with correction for non-specific dye leak from matched controls omitting C8 and C9, as previously described by Zhou, Q., Zhao, J., Hüsler, T., and Sims, P. J. (1996) Mol. Immunol. 33, 1127-1134. Under these conditions, MAC-mediated lysis of the vector-only SV-T2 controls not expressing recombinant CD59 ranged from 75-90%.
- Results
- Cloning of rabbit CD59—The predicted translation product of cDNA encoding rb CD59 consists of 124 residues, including a 24-residue signal peptide, a predicted GPI attachment site, and a 23-residue signal peptide including a transmembrane domain C-terminal to the predicted transamidase cut site (FIG. 1) (Kinoshita, T., Inoue, N., and Takeda, J. (1995)Adv. Immunol. 60, 57-103, and Gerber, L. D., Kodukula, K., and Udenfriend, S. (1992) J. Biol. Chem. 267, 12168-12173). N-terminal sequencing of protein purified from rabbit erythrocytes and analysis of the signal peptidase cleavage site of the translated cDNA, confirmed that rb CD59 contains an additional Ser residue before the highly-conserved N-terminal Leu1 found in all other CD59 homologues that have been sequenced to date. Therefore, in order to simplify discussion of the aligned residues of hu and rb CD59 in various chimeric constructs, residues of the mature rb CD59 polypeptide have been renumbered commencing with [N-Ser0]-Leu1-Met2-Cys3-etc. (see FIG. 1). All references to amino acids in rb C59 are based on this re-numbering of residues in the mature polypeptide. Whereas Gly76 is a predicted transamidase cut site for GPI attachment, the possibility of cleavage at another residue (e.g., Asp74) cannot be excluded.
- Species-selective activity of human and rabbit CD59—SV-T2 cell lines expressing various levels of cell surface CD59 (hu or rb) were produced through stable transfection with plasmid pcDNA3-TAG-CD59. Each cell line was then tested for its capacity to resist lysis by C5b-9. As has been previously described, cells transfected to express hu CD59 were nearly completely protected from lysis by hu C5b-9 and this protective effect of hu CD59 was not observed when rb C8 and C9 substituted for hu C8 and C9 in the C5b-9 complex (plotted curves in FIG. 2). On the other hand, rb CD59 expressed on the surface of this murine cell line conferred a selective resistance to lysis by C5b-9 assembled from rb C8 and C9, whereas virtually no inhibition of the lytic action of MAC was observed when hu C5b-9 components were used. These data confirm that recombinant rb CD59 shows the same homologous species-selective complement inhibitory function as was inferred from the differential susceptibility of rabbit erythrocytes to lysis by human versus rabbit complement (Houle, J. J. and Hoffmann, E. M. (1984)J. Immunol. 133, 1444-1452, and Houle, J. J., Hoffmann, E. M., and Esser, A. F. (1988)
Blood 71, 287-292). As previously noted for the TAG-huCD59 construct (Zhou, Q., Zhao, J., Husler, T., and Sims, P. J. (1996) Mol. Immunol. 33, 1127-1134), these data also suggest that the TAG-rbCD59 fusion protein retains the properties of native rb CD59 that is expressed in the rabbit erythrocyte membrane - Human-rabbit CD59 chimeras—In order to probe which residues of hu CD59 conferred its ability to selectively inhibit lysis by hu C5b-9, chimeric proteins in which segments of the rb and hu CD59 polypeptides were interchanged were constructed. The choice of constructs reflected (i) identity of amino acid residues exposed on the surface of hu CD59 that were not conserved in the aligned polypeptide sequence of rb CD59, where selection was based on the reported solution structure of the glycosylated protein, utilizing surface residues considered not to be occluded by the N-linked carbohydrate (Fletcher, C. M., Harrison, R. A., Lachmann, P. J., and Neuhaus, D. (1994)
Structure 2, 185-199; Kieffer, B., Driscoll, P. C., Campbell, I. D., Willis, A. C., van der Merwe, P. A., and Davis, S. J. (1994) Biochemistry 33, 4471-4482; and Fletcher, C. M., Harrison, R. A., Lachmann, P. J., and Neuhaus, D. (1993) Protein Sci. 2, 2015-2027); (ii) an attempt to group these various non-conserved amino acid side chains into contiguously-clustered spatial arrays; and (iii) a consideration of prior data relating to potential identity of the active site residues in hu CD59 as deduced from peptide studies, site-directed mutagenesis in the protein, or from analysis of other CD59 chimeras (Bodian, D. L., Davis, S. J., Morgan, B. P., and Rushmere, N. K. (1997) J. Exp. Med. 185, 507-516; Yu, J. H., Dong, S. H., Rushmere, N. K., Morgan, B. P., Abagyan, R., and Tomlinson, S. (1997) Biochemistry 36, 9423-9428; Zhou, Q., Zhao, J., Hüsler, T., and Sims, P. J. (1996) Mol. Immunol. 33, 1127-1134; Yu, J. H., Abagyan, R., Dong, S. H., Gilbert, A., Nussenzweig, V., and Tomlinson, S. (1997) J. Exp. Med. 185, 745-753; Petranka, J., Zhao, J., Norris, J., Tweedy, N. B., Ware, R. E., Sims, P. J., and Rosse, W. F. (1996) Blood Cells Mol. Dis. 22, 281-296; and Nakano, Y., Tozaki, T., Kikuta, N., Tobe, T., Oda, E., Miura, N. -H., Sakamoto, T., and Tomita, M. (1995) Mol. Immunol. 32, 241-247). Based upon these considerations, six hu/rb CD59 chimeras and, the six complementary rb/hu CD59 chimeras were analyzed and constructed so as to replace the surface-exposed side-chains contributed by residues (i) 8, 10, 12, and 14 (chimeras Ch1 and Ch1R; FIG. 2A); (ii) 5, 37, and 38 (chimeras Ch2 and Ch2R; FIG. 2B); (iii)residues 20, 21, 22, and 41 (chimeras Ch3 and Ch3R; FIG. 2C); (iv)residues 60 and 62 (chimeras Ch4 and Ch4R; FIG. 2D); (v) 29, 30, 60, and 62 (chimeras Ch5 and Ch5R; FIG. 2E); or (vi)residues 44, 48, 49, 51, 52, 55, and 58 (chimeras Ch6 and Ch6R; FIG. 2F). Individual clones expressing each of these recombinant proteins were obtained and the expression level on the cell-surface determined from the N-terminal TAG-epitope common to each construct. In each case, two separate clones were expanded for independent assay of MAC-inhibitory function. - MAC-inhibitory function of recombinant CD59 chimeras—SV-T2 clones expressing the chimeric constructs were analyzed for their capacity to restrict lysis mediated by MAC. The species selectivity of the complement inhibitory function of each construct was tested using hu versus rb C8 and C9 to assemble the C5b-9 complex. In each case, results for the chimeric constructs were compared to those obtained for transfected SV-T2 cells expressing full-length CD59 (hu or rb) and to vector-transfected SV-T2 cells lacking the CD59 insert (FIG. 2). As the data of these figures reveal, the species-selective inhibitory function of either hu CD59 or rb CD59 was unaffected by the amino acid substitutions contained in chimeras Ch1/Ch1R, Ch2/Ch2R, Ch4/Ch4R, or Ch5/Ch5R (FIGS. 2A, 2B,2D, and 2E). This indicates that residues 1-19, 29, 30, 37, 38, 60, and 62 of the CD59 polypeptide do not directly contribute to its selective avidity for homologous C8 and C9. The results that were obtained for the Ch1/Ch1R chimeras were consistent with recent observations made with hu CD59/Ly6E chimeras, which had suggested that the N-terminal residues of the hu CD59 polypeptide do not contribute to its MAC-inhibitory function (see Discussion).
- By contrast to results above, substitution of hu CD59 residues 42-58 into rb CD59 resulted in a protein (chimera Ch6) that was functionally indistinguishable from native hu CD59 whereas the complementary construct (rabbit 42-58 substituted in hu CD59; chimera Ch6R) was functionally indistinguishable from rb CD59 (FIG. 2F). These data imply that the amino acid side-chains contributed by residues contained between Phe42-Glu58 in hu CD59 are responsible for the selective avidity of this complement inhibitor for hu MAC (see Discussion). In the case of chimeras Ch3 and Ch3R (FIG. 2C), a partial loss of CD59's complement-inhibitory function was observed. Replacement of residues 20-22 and 41 in rb CD59 with the corresponding residues from hu CD59 reduced rb CD59's inhibitory activity towards MAC assembled with rb C8/C9, but this substitution did not confer upon rb CD59 the capacity to inhibit hu MAC. Similarly, substitution of hu CD59 residues 20-22 and 41 with the corresponding residues from rb CD59 reduced hu CD59's inhibitory activity towards hu MAC, but this substitution did not confer upon hu CD59 the capacity to inhibit MAC assembled with rb C8/C9.
- The data indicates that residues 42-58 of hu CD59 contain the segment of the protein that is responsible for its species-restricted MAC-inhibitory function. As shown in FIG. 2F, substitution of hu CD59 residues 42-58 into rb CD59 results in a protein that was functionally indistinguishable from hu CD59 whereas the complementary construct (rabbit 42-58 substituted into hu CD59) was functionally indistinguishable from rb CD59. Within this portion of the polypeptide,
residues 43, 45, 46, 47, 53, 54, 56 and 57 are identically conserved between human and rabbit. From the solved solution structure of hu CD59, the side-chains ofresidue 42 and 50 are buried. This indicates that the residues of hu CD59 which dictate its selective ability to bind to hu C8 and C9 are localized to a cluster of amino acid side-chains exposed on the surface of the protein that are contributed by His44, Asn48, Asp49, Thr51, Thr52, Arg55, and Glu58. In addition to these residues, data for Ch3/Ch3R (chimeric substitution of residues atposition 20, 21, 22 and 41) indicates that the side-chains of one or more of these residues can also influence the species selectivity of hu CD59 (FIG. 2C). Among these residues, it is noteworthy that the side chain of Lys41 (replaced by Arg41 in rb CD59) projects in close proximity to the side-chain of His44 (replaced by Asp44 in rb CD59), a residue contained within the functionally dominant segment identified by the Ch6/Ch6R chimeras (cf. FIGS. 2C and 2F). The relatively conservative Lys→Arg substitution of a side-chain located in proximity to the functionally-dominant region of the protein, may explain why a relatively small loss of activity towards homologous MAC was observed for the Ch3/Ch3R constructs, and why this was not accompanied by a comparable gain in MAC-inhibitory function towards the heterologous complement proteins. - The residues identified in hu CD59 to confer its species-selective interaction with hu C8α and C9 (i.e., His44, Asn48, Asp49, Thr51, Thr52, Arg55, and Glu58) form a distinct cluster on the non-glycosylated surface of the protein and would presumably be available for a binding function.
- Experimental Procedures
- Materials—Human complement proteins C5b6, C7, C8, and C9, and human erythrocyte membrane glycoprotein CD59 were purified and assayed as described by Davies, et al.Immunol. Res. 12, 258-275 (1993), Wiedmer and Sims, J. Membr. Biol. 84, 249-258 (1985), and Wiedmer and Sims, J. Biol. Chem. 260, 8014-8019 (1984). Hu C9 peptide 359-384 ([allyl-K]-CLGYHLDVSLAFSEISVGAEFNKDD-[allyl-C; Sequence ID No. 18), BSA-conjugated hu C9 peptide 359-384, and affinity-purified rabbit IgG against hu C9 peptide 359-384 were custom ordered from Quality Controlled Biochemicals (Hopkinton, Mass.). Full-length cDNA for hu C9 was a generous gift from Dr. J. Tschopp (University of Lausanne, Epalinges, Switzerland) and is described by Dupuis, et al., Mol. Immunol. 30, 95-100 (1993). Full length cDNA for rb C9 was isolated and cloned into pSVL as reported by Husler, et al., J. Biol. Chem. 270, 3483-3486 (1995). Chicken erythrocytes (chE) were from Cocalico Biologics, Inc. (Reamstown, Pa.); COS-7 cells were from American Tissue Culture Collection (Rockville, Md.); E. coli strain DH5α and Opti-MEM I were from Life Technologies Inc. (Gaithersburg, Md.), Dulbecco's Modified Eagle Medium was from Mediatech Inc. (Herndon, Va.), and heat-inactivated fetal bovine serum was from Biocell (Rancho Dominquez, Calif.). Oligonucleotides were synthesized by the Molecular Biology Core Laboratories, Blood Research Institute. Solutions—MBS: 150 mM NaCl, 10 mM MOPS, pH 7.4; GVBS: 150 mM NaCl, 3.3 mM sodium barbital, 0.15 mM CaCl2 0.5 mM MgCl2, 0.1%(w/v) gelatin, pH 7.4; GVBE:150 mM NaCl, 3.3 mM sodium barbital, 10 mM EDTA, 0.1%(w/v) gelatin, pH 7.4.
- Construction of chimeric C9 cDNA's—cDNA's coding for hu/rb C9 chimeras were constructed essentially as described by Husler, et al. (1995). In brief, regions of sequence identity were determined from the aligned sequences of rb and hu C9, and used as junctions for chimeric cDNA construction. Based on these alignments, primers for PCR were designed to generate defined segments of rb and hu C9 cDNA's. Primers annealing to 5′-or 3′-untranslated sequence with added Xba1 (5′-end) or Sac1 (3′-end) recognition sites were paired with chimeric primers (28-37 bp in length) and used to generate cDNA fragments that contained the desired overlapping sequence at either the 5′-or 3′-ends. These fragments were gel purified, mixed at a 1:1 molar ratio, and used in a second amplification with primers located in the 5′-and 3′-untranslated region to produce full length chimeric C9 cDNA's. Fragments were cloned into the Xba1/Sac1 sites of pSVL for mammalian expression. PCR fidelity was confirmed by sequencing 3′-coding sequence in each construct, starting from the stop codon and continuing through all junctions of rabbit and human sequence. In certain cases, chimeric constructs were further modified by site directed mutagenesis.
- Site Directed Mutagenesis—C9 cDNA in pSVL served as a template for site-directed mutagenesis using the Chameleon mutagenesis kit (Stratagene, La Jolla, Calif.). Mutagenesis was performed using 0.25 pmol of template plasmid, 25 pmol of mutagenic primer and 25 pmol of selection primer, the latter chosen to modify Sal1, Sca1, or Xho1 restriction sites unique to pSVL. The resulting mutagenized plasmids were subject to a minimum of two rounds of selection by restriction digest, and then transformed inE. coli XL1-Blue (Stratagene) for single colony isolation and plasmid purification. In all cases, mutations were confirmed by double stranded sequencing of each purified plasmid.
- Transfection of COS-7 cells—Plasmid DNA used in transfections was obtained from purification over Qiagen-tips (Qiagen Inc., Chatsworth, Calif.). COS-7 cells were transfected using DEAE-dextran, then cultured for 24 h in Dulbecco's Modified Eagle Medium (Mediatech Inc., Herndon, Va.) supplemented with 10% fetal bovine serum, after which this medium was replaced by Opti-MEM I (Life Technologies, Inc., Gaithersburg, Md.). Cell supernatants were harvested after 48-65 h, PMSF (1 mM), benzamidine (1 mM) and EDTA (10 mM) were added and the supernatants concentrated at 4° C. (
Centricon 30, Amicon). - Immunoblotting—C9 in the COS-7 supernatants was analyzed by quantitative dot blotting using murine monoclonal antibody P9-2T as described by Husler, et al. (1995).
- Biotin-CD59—CD59 was biotinylated by incubation (1 h, room temperature) with a 20-fold molar excess of NHS-LC-biotin in 10 mM MOPS, 0.1% Nonidet P-40, pH 9.0 followed by exhaustive dialysis against charcoal, as described by Chang, et al.J. Biol. Chem. 269, 26424-26430 (1994).
- Analysis of the inhibitory function of
CD 59 towards recombinant C9 constructs—Hemolytic activity of each C9 construct was assayed using as target cells chE that were reconstituted with purified hu CD59, as described by Husler, et al., (1995). chE were washed extensively and suspended in GVBS, and the membrane C5b67 complex assembled by mixing cells (1.4×109/ml) with C5b6 (13 μg/ml) followed by addition of C7 (1 μg/ml). After 10 min., the C5b67 chE were diluted to 1.4×108/ml in GVBE and incubated (10 min. 37° C.) with 0 or 750 ng/ml CD59. In each case, the final concentration of Nonidet P-40 was less than 0.002%(v/v). After washing in ice-cold GVBE, 2.8×108 of these cells were incubated (37° C.) in a total volume of 100 μl with 1 ng rb C8 plus, between zero and 50 ng of recombinant C9, serially diluted in Opti-MEM I. Hemolysis was determined after 30 minutes at 37° C., with correction for nonspecific lysis, determined in the absence of C9. In each experiment, the inhibitory activity of CD59 towards each recombinant C9 construct was determined from the reduction in complement lysis of those cells reconstituted with CD59, versus the identically-treated cells omitting CD59, measured at the midpoint of the C9 titration (i.e., 50% hemolysis). In order to directly compare results obtained in experiments performed on different days, data for each recombinant C9 construct were normalized to results obtained in each experiment with hu C9. - CD59 binding to hu C9 peptide 359-384—The specific binding of CD59 to hu C9-derived peptide 359-384 was measured by microtiter plate assay with biotin-CD59, according to modification of published methods of Chang, et al. (1994) and Husler, et al. (1995). Briefly, the BSA-peptide conjugate was adsorbed to 96 well polyvinyl microplates by overnight coating at 5 μg/ml in 0.1 M sodium bicarbonate, pH 8.5. After blocking with 1% (w/v) BSA, wells were washed and incubated (4 hrs., 37° C.) with between 0.5 and 1 μg/ml biotin-CD59. After washing, the bound biotin-CD59 was detected with Vectastain (Vector Labs, Burlingame, Calif.), developed by addition of p-nitrophenyl phosphate (2 mg/ml) and optical density recorded at 405 nm (VMaxMicroplate Reader, Molecular Devices, Inc.). In all experiments, correction was made for background adsorption of biotin-CD59 to BSA-coated wells (no peptide) and for nonspecific binding of biotin-CD59 to peptide, determined in the presence of a 20-fold excess of unlabeled CD59. As a positive control for specific binding, comparison was made in each experiment to wells coated with 2 μg/ml hu C9. The capacity of monospecific antibody against hu C9 peptide 359-384 to compete specific binding of CD59 was determined by prior incubation of the BSA-peptide-coated wells with antibody (2 hrs., between 0 and 100 μg/ml LgG) before addition of biotin-CD59.
- Inhibition of MAC lysis by antibody against hu C9 peptide 359-384—The capacity of antibody against hu C9 peptide 359-384 to inhibit MAC was determined by hemolytic assay, using the chE target cells described above, omitting CD59. In these experiments, between 0 and 1 mg/ml Fab of antibody against hu C9 peptide 359-384 (or, non-immune antibody control) was added with recombinant C9 (hu, rb, or chimeric), and complement-specific lysis determined.
- Results
- C9 chimeras were constructed in which the segment of C9 corresponding to the putative CD59 binding site (residues-334-415 in hu C9; were interchanged between hu and rb C9. These chimeric proteins were then tested for hemolytic activity and for their sensitivity to inhibition by membrane CD59 (FIG. 4). Substitution of hu C9 residues 334-415 into rb C9 (chimera #1) resulted in a protein that was indistinguishable from hu C9 in its sensitivity to inhibition by CD59. Conversely, when this same segment of hu C9 was replaced by the corresponding rb C9 sequence (chimera #8), the resulting chimera was indistinguishable from rb C9 and virtually unaffected by the presence of membrane CD59. In these experiments, MAC was assembled using hu C5b67 and rb C8 so as to circumvent known inhibitory interaction of CD59 with hu C8 (Rollins, et al.J. Immunol. 146, 2345-2351 (1991), Ninomiya and Sims J. Biol. Chem. 267, 13675-13680 (1992).
- As depicted in FIG. 5, the segment of hu C9 shown to bind CD59 is immediately C-terminal to the putative membrane-spanning domain of the protein, and corresponds to a segment of polypeptide exhibiting particularly low sequence conversation when hu C9 is aligned to C9 of rabbit or other non-primate species. The most prominent divergence of sequence occurs between two cysteines (Cys359-Cys384 in hu C9) that are conserved in the human and rabbit proteins. In hu C9, these cysteines have been shown to form an intrachain disulfide bond (below), as reported by Schaller, et al.J. Protein Chem. 13, 472-473 (1994).
- In order to further localize the segment of hu C9 recognized by CD59 and to determine the specific contribution of residues spanning the Cys359/384 disulfide, a series of hu/rb C9 chimeras was constructed by interchanging segments of corresponding hu and rb C9 sequences internal to residues 334-415. Each of these chimeric proteins was expressed and analyzed for MAC hemolytic function, and for sensitivity to inhibition by membrane CD59. All resulting hu/rb C9 chimeras were functionally active as determined by hemolytic titration against chE containing membrane C5b-8. As shown in FIG. 4, analysis of CD59-inhibitory activity towards each of these proteins revealed inhibition of MAC lytic activity by CD59 was unaffected by replacement of all residues N-terminal to Cys359 of hu C9 with corresponding rabbit sequence (chimera #2), whereas replacement of all residues C-terminal to residue 358 of hu C9 with corresponding rabbit sequence (chimera #3) resulted in a protein indistinguishable from rb C9 and only weakly inhibited by CD59. Consistent with the results for chimeras #1-3, substitution of hu C9 residues 359-415 into the corresponding segment of otherwise rb C9 (chimera #4) resulted in a protein that was indistinguishable from hu C9, suggesting that this polypeptide segment of hu C9 (residues 359-415) contains the binding site for CD59.
- To further resolve the segment of hu C9 required for species-selective interaction with CD59, additional chimeras were constructed further truncating the segment of human sequence substituted into rb C9 (chimera #5-7). Data for these chimeras revealed that whereas human residues 359-391 conferred full recognition by CD59 (chimera #5), hu C9 residues 392-415 failed to confer any recognition by CD59 (chimera #5), hu C9 residues 392-415 failed to confer any recognition by CD59 when inserted into an otherwise rb C9 (chimera #6). Truncation of the inserted segment of hu C9 sequence from 359-391 (chimera #5) to 359-384 (chimera #7) was accompanied by a small but significant reduction in inhibition of MAC lytic activity by CD59. These results imply that CD59 directly interacts with the segment of hu C9 contained between residues 359-391, with the peptide segment spanning the intrachain Cys359/384 disulfide substantially contributing to this interaction.
- CD59's interaction with hu C9 was abrogated by replacement of sequence spanning this putative CD59 recognition domain with corresponding rabbit sequence (chimeras #8-12). Replacement of hu C9 residues 334-415 with corresponding rabbit sequence (chimera #8) completely eliminated hu-selective interaction with CD59, as anticipated for results obtained for the complementary construct,
chimera # 1. Nevertheless, when the segment of rb-derived sequence substituted into otherwise hu C9 was further truncated, the resulting chimeras (chimeras #9-12) retained a surprising degree of sensitivity to the inhibitory effects of CD59, characteristic of hu C9. Thus substitution of rabbit sequence for the residues internal to Cys359-384 of hu C9 (chimera #12) did not significantly diminish CD59's capacity to inhibit the lytic activity of C9, while C-terminal extension of the segment of rabbit sequence to residue 415 (chimera #9) did not completely eliminate interaction with CD59. Taken together with results for chimeras #1-5, these data indicate that whereas hu C9 residues 359-391 alone are sufficient to confer recognition by CD59, segments of the polypeptide immediately flanking this segment significantly contribute to the extent to which this binding site is expressed. - The Cys359/384 disulfide in hu C9 has recently been reported to be highly labile and subject to spontaneous reduction in the native protein, as reported Hatanaka, et al.,Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1209, 117-122 (1994). Since the data suggested that residues internal to Cys359/384 contribute in-large-part to species-selective recognition by CD59, the extent to which the CD59 recognition site in C9 is affected by disruption of this bond was examined. Mutant hu C9 was expressed with Ala substitutions at Cys359 and Cys384 and tested for hemolytic activity and for sensitivity to inhibition by CD59. As revealed by data of FIG. 6, disruption of this disulfide bond did not significantly affect the hemolytic activity of the protein nor the capacity of CD59 to specifically inhibit C9 lytic activity. This suggests that the segment of hu C9 forming the CD59 binding site is either conformationally constrained independent of the Cys359-384 disulfide, or, that this binding site is expressed in the primary structure of hu C9, independent of protein folding.
- In order to confirm that the peptide segment spanning hu C9 359-384 can itself mediate interaction with CD59, this 26 residue peptide was synthesized, coupled to BSA, and analyzed for CD59 binding, using biotin-CD59 conjugate in a micro plate assay. As demonstrated by FIG. 7, biotin-CD59 specifically bound to C9 peptide 359-384, and this binding was inhibited by excess unlabeled CD59 or by antibody directed against the peptide.
- CD59 is known to bind to C9 after C9 incorporates into the C5b-9 complex, and through this interaction inhibit propagation of membrane-inserted C9 polymer, limiting lytic activity of MAC. In order to confirm the importance of the peptide segment recognized by CD59 to MAC assembly, Fab of antibody raised against the hu C9 peptide 359-384 was tested for its capacity to inhibit the hemolytic activity of the hu C5b-9 complex, under the same condition used to evaluate the inhibitory function of CD59. As shown by the data of FIGS.8A-D, this Fab inhibited hemolytic activity of hu C9 (FIG. 8A) and C9 chimera #7 (representing rb C9 containing hu C9 residues 359-384, FIG. 1, FIG. 8B), but had no effect on the hemolytic activity of either rb C9 (FIG. 8C) or chimera #12 (representing substitution of the corresponding segment of rb C9 residues into hu C9; FIG. 1, FIG. 8D).
- The experiments show that hu C9 residues 359-391 promote CD59 binding, and that this segment of hu C9 contributes to the species-selective regulation of MAC function, providing an initial clue to the structural motif(s) through which this inhibitor selectively regulates the lytic activity of hu C5b-9 complex. These data further indicate that the capacity of CD59 to optimally interact with this segment of hu C9 is significantly influenced by residues immediately C-terminal to this segment of the C9 polypeptide.
- Whereas the data establish that residues internal to Cys359-Cys384 contribute to recognition by CD59, the disulfide bond between these two Cys is apparently not required either for maintenance of C9's hemolytic activity within MAC, or, for normal regulation of that activity by membrane CD59. These conclusions derived by Cys/Ala mutagenesis in recombinant hu C9 (FIG. 6) are consistent with previous reports indicating: (i) the intrinsic liability of the Cys 359-384 disulfide in C9 purified from hu plasma, where spontaneous reduction of this bond did not appear to alter C9 hemolytic activity, and (ii) that a specific CD59 binding site is retained in reduced and carboxymethylated hu C9, in hu C9-derived peptide fragments, and can be demonstrated forE. Coli fusion proteins contains hu C9-derived sequence spanning residues 359-384. This suggests that the CD59 binding site expressed by this segment of hu C9 reflects interactions between amino acid side chains that do not require formation of the
Cys 359/Cys 384 disulfide bond. - As noted above, chimeras generated by substituting limited segments of hu C9 into rb C9 revealed that the segment of hu C9 between 359-384 uniquely conferred recognition by CD59, and that this interaction was enhanced by C-terminal extension of human sequence to residue 391 (cf. Chimeras #1-7; FIG. 4). Surprisingly, chimeras generated by replacing these same segments of hu C9 with corresponding rb C9 sequence did not exhibit a complementary decrease in interaction with CD59, except when the segment of rb-derived sequence replaced in hu C9 residues spanning 334-415 (cf. Chimeras #8-12; FIG. 4).
-
0 SEQUENCE LISTING (1) GENERAL INFORMATION: (iii) NUMBER OF SEQUENCES: 18 (2) INFORMATION FOR SEQ ID NO: 1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 127 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Human (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: Gly Ile Gln Gly Gly Ser Val Leu Phe Gly Leu Leu Leu Val Leu Ala 1 5 10 15 Val Phe Cys His Ser Gly His Ser Leu Gln Cys Tyr Asn Cys Pro Asn 20 25 30 Pro Thr Ala Asp Cys Lys Thr Ala Val Asn Cys Ser Ser Asp Phe Asp 35 40 45 Ala Cys Leu Ile Thr Lys Ala Gly Leu Gln Val Tyr Asn Lys Cys Trp 50 55 60 Lys Phe Glu His Cys Asn Phe Asn Asp Val Thr Thr Arg Leu Arg Glu 65 70 75 80 Asn Glu Leu Thr Tyr Tyr Cys Cys Lys Lys Asp Leu Cys Asn Phe Asn 85 90 95 Glu Gln Leu Glu Asn Gly Gly Thr Ser Leu Ser Glu Lys Thr Val Leu 100 105 110 Leu Leu Val Thr Pro Phe Leu Ala Ala Ala Trp Ser Leu His Pro 115 120 125 (2) INFORMATION FOR SEQ ID NO: 2: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 124 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Rabbit (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2: Met Thr Ser Arg Gly Val His Leu Leu Leu Arg Leu Leu Phe Leu Leu 1 5 10 15 Ala Val Phe Tyr Ser Ser Asp Ser Ser Leu Met Cys Tyr His Cys Leu 20 25 30 Leu Pro Ser Pro Asn Cys Ser Thr Val Thr Asn Cys Thr Pro Asn His 35 40 45 Asp Ala Cys Leu Thr Ala Val Ser Gly Pro Arg Val Tyr Arg Gln Cys 50 55 60 Trp Arg Tyr Glu Asp Cys Asn Phe Glu Phe Ile Ser Asn Arg Leu Glu 65 70 75 80 Glu Asn Ser Leu Lys Tyr Asn Cys Cys Arg Lys Asp Leu Cys Asn Gly 85 90 95 Pro Glu Asp Asp Gly Thr Ala Leu Thr Gly Arg Thr Val Leu Leu Val 100 105 110 Ala Pro Leu Leu Ala Ala Ala Arg Asn Leu Cys Leu 115 120 (2) INFORMATION FOR SEQ ID NO: 3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 77 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Human (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: Leu Gln Cys Tyr Asn Cys Pro Asn Pro Thr Ala Asp Cys Lys Thr Ala 1 5 10 15 Val Asn Cys Ser Ser Asp Phe Asp Ala Cys Leu Ile Thr Lys Ala Gly 20 25 30 Leu Gln Val Tyr Asn Lys Cys Trp Lys Phe Glu His Cys Asn Phe Asn 35 40 45 Asp Val Thr Thr Arg Leu Arg Glu Asn Glu Leu Thr Tyr Tyr Cys Cys 50 55 60 Lys Lys Asp Leu Cys Asn Phe Asn Glu Gln Leu Glu Asn 65 70 75 (2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 75 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Baboon (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4: Leu Gln Cys Tyr Asn Cys Pro Asn Pro Thr Thr Asn Cys Lys Thr Ala 1 5 10 15 Ile Asn Cys Ser Ser Gly Phe Asp Thr Cys Leu Ile Ala Arg Ala Gly 20 25 30 Leu Gln Val Tyr Asn Gln Cys Trp Lys Phe Ala Asn Cys Asn Phe Asn 35 40 45 Asp Ile Ser Thr Leu Leu Lys Glu Asn Glu Leu Gln Tyr Phe Cys Cys 50 55 60 Lys Glu Asp Leu Cys Asn Glu Gln Leu Glu Asn 65 70 75 (2) INFORMATION FOR SEQ ID NO: 5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 77 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: African green monkey (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: Leu Gln Cys Tyr Asn Cys Pro Asn Pro Thr Thr Asp Cys Lys Thr Ala 1 5 10 15 Ile Asn Cys Ser Ser Gly Phe Asp Thr Cys Leu Ile Ala Arg Ala Gly 20 25 30 Leu Gln Val Tyr Asn Gln Cys Trp Lys Phe Ala Asn Cys Asn Phe Asn 35 40 45 Asp Ile Ser Thr Leu Leu Lys Glu Ser Glu Leu Gln Tyr Phe Cys Cys 50 55 60 Lys Lys Asp Leu Cys Asn Phe Asn Glu Gln Leu Glu Asn 65 70 75 (2) INFORMATION FOR SEQ ID NO: 6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 77 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Owl monkey (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6: Leu Gln Cys Tyr Ser Cys Pro Tyr Pro Thr Thr Gln Cys Thr Met Thr 1 5 10 15 Thr Asn Cys Thr Ser Asn Leu Asp Ser Cys Leu Ile Ala Lys Ala Gly 20 25 30 Ser Arg Val Tyr Tyr Arg Cys Trp Lys Phe Glu Asp Cys Thr Phe Ser 35 40 45 Arg Val Ser Asn Gln Leu Ser Glu Asn Glu Leu Lys Tyr Tyr Cys Cys 50 55 60 Lys Lys Asn Leu Cys Asn Phe Asn Glu Ala Leu Glu Asn 65 70 75 (2) INFORMATION FOR SEQ ID NO: 7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 77 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Marmoset (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7: Leu Gln Cys Tyr Ser Cys Pro Tyr Ser Thr Ala Arg Cys Thr Thr Thr 1 5 10 15 Thr Asn Cys Thr Ser Asn Leu Asp Ser Cys Leu Ile Ala Lys Ala Gly 20 25 30 Leu Arg Val Tyr Tyr Arg Cys Trp Lys Phe Glu Asp Cys Thr Phe Arg 35 40 45 Gln Leu Ser Asn Gln Leu Ser Glu Asn Glu Leu Lys Tyr His Cys Cys 50 55 60 Arg Glu Asn Leu Cys Asn Phe Asn Gly Ile Leu Glu Asn 65 70 75 (2) INFORMATION FOR SEQ ID NO: 8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 75 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8: Leu Gln Cys Tyr Asn Cys Ser His Ser Thr Met Gln Cys Lys Thr Ser 1 5 10 15 Thr Ser Cys Thr Ser Asn Leu Asp Ser Cys Leu Ile Ala Lys Ala Gly 20 25 30 Ser Gly Val Tyr Asn Lys Cys Trp Lys Phe Asp Asp Cys Ser Phe Lys 35 40 45 Arg Ile Ser Asn Gln Leu Ser Glu Thr Gln Leu Lys Tyr His Cys Cys 50 55 60 Lys Lys Asn Leu Cys Asn Val Asn Lys Gly Ile 65 70 75 (2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Pig (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9: Leu Gln Cys Tyr Asn Cys Ile Asn Pro Ala Gly Ser Cys Thr Xaa Xaa 1 5 10 15 Met Asn Cys Ser Tyr Asn Gln Asp Ala Cys Ile Phe Val Xaa Ala Val 20 25 30 Pro Pro Lys Thr 35 (2) INFORMATION FOR SEQ ID NO: 10: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Sheep (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10: Leu Gln Cys Tyr Ser Cys Ile Asn Gln Val Asp Cys Thr Ser Val Ile 1 5 10 15 Asn Cys Thr Xaa Asn Gln Asp Ala Cys Leu Tyr 20 25 (2) INFORMATION FOR SEQ ID NO: 11: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 77 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Rabbit (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11: Ser Leu Met Cys Tyr His Cys Leu Leu Pro Ser Pro Asn Cys Ser Thr 1 5 10 15 Val Thr Asn Cys Thr Pro Asn His Asp Ala Cys Leu Thr Ala Val Ser 20 25 30 Gly Pro Arg Val Tyr Arg Gln Cys Trp Arg Tyr Glu Asp Cys Asn Phe 35 40 45 Glu Phe Ile Ser Asn Arg Leu Glu Glu Asn Ser Leu Lys Tyr Asn Cys 50 55 60 Cys Arg Lys Asp Leu Cys Asn Gly Pro Glu Asp Asp Gly 65 70 75 (2) INFORMATION FOR SEQ ID NO: 12: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 79 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Rat (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12: Leu Arg Cys Tyr Asn Cys Leu Asp Pro Val Ser Ser Cys Lys Thr Asn 1 5 10 15 Ser Thr Cys Ser Pro Asn Leu Asp Ala Cys Leu Val Ala Val Ser Gly 20 25 30 Lys Gln Val Tyr Gln Gln Cys Trp Arg Phe Ser Asp Cys Asn Ala Lys 35 40 45 Phe Ile Leu Ser Arg Leu Glu Ile Ala Asn Val Gln Tyr Arg Cys Cys 50 55 60 Gln Ala Asp Leu Cys Asn Lys Ser Phe Glu Asp Lys Pro Asn Asn 65 70 75 (2) INFORMATION FOR SEQ ID NO: 13: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 74 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Mouse (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13: Leu Thr Cys Tyr His Cys Phe Gln Pro Val Val Ser Ser Cys Asn Met 1 5 10 15 Asn Ser Thr Cys Ser Pro Asp Gln Asp Ser Cys Leu Tyr Ala Val Ala 20 25 30 Gly Met Gln Val Tyr Gln Arg Cys Trp Lys Gln Ser Asp Cys His Gly 35 40 45 Glu Ile Ile Met Asp Gln Leu Glu Glu Thr Lys Leu Lys Phe Arg Cys 50 55 60 Cys Gln Phe Asn Leu Cys Asn Lys Ser Asp 65 70 (2) INFORMATION FOR SEQ ID NO: 14: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 82 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Human (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14: Leu Tyr Glu Leu Ile Tyr Val Leu Asp Lys Ala Ser Met Lys Arg Lys 1 5 10 15 Gly Val Glu Leu Lys Asp Ile Lys Arg Cys Leu Gly Tyr His Leu Asp 20 25 30 Val Ser Leu Ala Phe Ser Glu Ile Ser Val Gly Ala Glu Phe Asn Lys 35 40 45 Asp Asp Cys Val Lys Arg Gly Glu Gly Arg Ala Val Asn Ile Thr Ser 50 55 60 Glu Asn Leu Ile Asp Asp Val Val Ser Leu Ile Arg Gly Gly Thr Arg 65 70 75 80 Lys Tyr (2) INFORMATION FOR SEQ ID NO: 15: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 86 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Rabbit (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15: Arg Tyr Glu Leu Ile Tyr Val Leu Asp Lys Ala Ser Met Lys Glu Lys 1 5 10 15 Gly Ile Glu Leu Asn Asp Ile Lys Lys Cys Leu Gly Phe Asp Leu Asp 20 25 30 Leu Ser Leu Asn Ile Pro Gly Lys Ser Ala Gly Leu Ser Leu Thr Gly 35 40 45 Gln Ala Asn Lys Asn Asn Cys Leu Lys Ser Gly His Gly Asn Ala Val 50 55 60 Asn Ile Thr Arg Ala Asn Leu Ile Asp Asp Val Ile Ser Leu Ile Arg 65 70 75 80 Gly Gly Thr Gln Lys Phe 85 (2) INFORMATION FOR SEQ ID NO: 16: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16: Ser Leu Met Cys Tyr His Cys Leu Leu Pro Ser Pro Asn Cys Ser Thr 1 5 10 15 Val Thr Asn Cys Thr Pro Asn His Asp Ala Cys Leu Thr Ala Val Ser 20 25 30 Gly Pro Arg Val Tyr Arg Gln Cys 35 40 (2) INFORMATION FOR SEQ ID NO: 17: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17: Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn 1 5 10 (2) INFORMATION FOR SEQ ID NO: 18: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18: Lys Cys Leu Gly Tyr His Leu Asp Val Ser Leu Ala Phe Ser Glu Ile 1 5 10 15 Ser Val Gly Ala Glu Phe Asn Lys Asp Asp Cys 20 25
Claims (35)
1. A compound that specifically inhibits the formation of the hu C5b-9 complex selected from the group consisting of molecules structurally mimicking CD59 amino acid residues 42 to 58 when they are in a spatial orientation which inhibits formation of the hu C5b-9 complex, wherein the compound is not hu CD59.
2. The compound of claim 1 , selected from the group consisting of proteins, peptides, nucleic acids, and small molecules which bind specifically to amino acids 359 to 384 of hu C9.
3. The compound of claim 2 , wherein the protein is an antibody.
4. The compound of claim 2 , wherein the protein is a chimeric peptide which includes the amino acids 42 to 58 of the human sequence of CD59.
5. The compound of claim 2 , wherein the peptide is a covalently cyclized peptide comprising hu CD59 amino acid residues 42 to 58.
6. The compound of claim 2 , wherein the composition is a peptide of less than forty amino acids residues including amino acid residues 42 to 58 of hu CD59.
7. The compound of claim 1 , further comprising a pharmaceutically acceptable carrier for administration to patients in need thereof.
8. The compound of claim 1 wherein the compound is a peptidomimetic compound comprising the side chains of hu CD59 amino acid residues His44, Asn48, Asp49, Thr51, Thr52, Arg55, and Glu58 in an equivalent spacial orientation and alignment to that presented on the surface of hu CD59.
9. The compound of claim 8 wherein the spacial orientation and alignment of the side chains of His44, Asn48, Asp49, Thr51, Thr52, Arg55, and Glu58 in the compound are equivalent to the spacial orientation and alignment deduced by NMR structure determination.
10. A method for inhibiting C5b-9 complex assembly comprising administering to a patient in need thereof an effective amount of a composition to increase CD59 inhibition of C5b-9 complex assembly wherein the composition includes a compound selected from the group consisting of molecules structurally mimicking CD59 amino acid residues 42 to 58 which bind to C9 wherein the compound is not hu CD59.
11. The method of claim 10 , wherein the compound is selected from the group consisting of proteins, peptides, nucleic acids, and small molecules which bind specifically to amino acids 359 to 384 of hu C9.
12. The method of claim 11 , wherein the protein is an antibody.
13. The method of claim 11 , wherein the protein is a chimeric peptide which include the amino acids 42 to 58 of the human sequence of CD59.
14. The method of claim 11 , wherein the peptide is a covalently cyclized peptides comprising hu CD59 amino acid residues 42 to 58.
15. The method of claim 11 , wherein the composition is a peptide of less than forty amino acids residues including amino acid residues 42 to 58 of hu CD59.
16. The method of claim 10 , wherein the composition further comprises a pharmaceutically acceptable carrier for administration to patients in need thereof.
17. The method of claim 10 , wherein the patient is in need of suppression of complement-mediated inflammation.
18. The method of claim 10 wherein the compound is a peptidomimetic compound comprising the side chains of hu CD59 amino acid residues His44, Asn48, Asp49, Thr51, Thr52, Arg55, and Glu58 in an equivalent spacial orientation and alignment to that presented on the surface of hu CD59.
19. The method of claim 18 wherein the spacial orientation and alignment of the side chains of His44, Asn48, Asp49, Thr51, Thr52, Arg55, and Glu58 in the compound are equivalent to the spacial orientation and alignment deduced by NMR structure determination.
20. A compound that specifically promotes the formation of the hu C5b-9 complex selected from the group consisting of molecules structurally mimicking C9 amino acid residues 359 to 384 when they are in a spatial orientation which promotes formation of the C5b-9 complex, wherein the compound is not hu C9.
21. The compound of claim 20 , selected from the group consisting of proteins, peptides, nucleic acids, and small molecules which bind specifically to amino acids 42 to 58 of hu CD59.
22. The compound of claim 21 , wherein the protein is an antibody.
23. The compound of claim 21 , wherein the protein is a chimeric peptide which includes the amino acids 359 to 384 of the human sequence of C9.
24. The compound of claim 21 , wherein the peptide is a covalently cyclized peptide comprising hu C9 amino acid residues 359 to 384.
25. The compound of claim 21 , wherein the composition is a peptide of less than forty amino acids residues including amino acid residues 359 to 384 of hu C9.
26. The compound of claim 20 , further comprising a pharmaceutically acceptable carrier for administration to patients in need thereof.
27. A method for specifically promoting hu C5b-9 complex assembly comprising administering to a patient in need thereof an effective amount of a composition to decrease CD59 inhibition of C5b-9 complex assembly wherein the composition comprises a compound selected from the group consisting of molecules structurally mimicking C9 amino acid residues 359 to 384 when they are in a spatial orientation which promotes formation of the complex, wherein the compound is not hu C9.
28. The method of claim 27 , wherein the compound is selected from the group consisting of proteins, peptides, nucleic acids, and small molecules which bind specifically to amino acids 42 to 58 of hu CD59.
29. The method of claim 28 , wherein the protein is an antibody.
30. The method of claim 28 , wherein the protein is a chimeric peptide which include the amino acids 359 to 384 of the human sequence of C9.
31. The method of claim 28 , wherein the peptide is a covalently cyclized peptide comprising hu C9 amino acid residues 359 to 384.
32. The method of claim 28 , wherein the composition is a peptide of less than forty amino acids residues including amino acid residues 359 to 384 of hu C9.
33. The method of claim 27 , wherein the composition further comprises a pharmaceutically acceptable carrier for administration to patients in need thereof.
34. The method of claim 27 , wherein the patient is in need of complement activation.
35. The method of claim 27 , wherein the composition is administered as a adjunct to tumor therapy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/403,340 US20030166565A1 (en) | 1998-02-09 | 2003-03-27 | Compositions and methods to inhibit formation of the C5b-9 complex of complement |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/020,393 US7166568B1 (en) | 1998-02-09 | 1998-02-09 | Compositions and methods to inhibit formation of the C5b-9 complex of complement |
US10/403,340 US20030166565A1 (en) | 1998-02-09 | 2003-03-27 | Compositions and methods to inhibit formation of the C5b-9 complex of complement |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/020,393 Division US7166568B1 (en) | 1998-02-09 | 1998-02-09 | Compositions and methods to inhibit formation of the C5b-9 complex of complement |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030166565A1 true US20030166565A1 (en) | 2003-09-04 |
Family
ID=21798394
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/020,393 Expired - Fee Related US7166568B1 (en) | 1998-02-09 | 1998-02-09 | Compositions and methods to inhibit formation of the C5b-9 complex of complement |
US10/403,340 Abandoned US20030166565A1 (en) | 1998-02-09 | 2003-03-27 | Compositions and methods to inhibit formation of the C5b-9 complex of complement |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/020,393 Expired - Fee Related US7166568B1 (en) | 1998-02-09 | 1998-02-09 | Compositions and methods to inhibit formation of the C5b-9 complex of complement |
Country Status (6)
Country | Link |
---|---|
US (2) | US7166568B1 (en) |
EP (1) | EP1053254A2 (en) |
JP (1) | JP2002502595A (en) |
AU (1) | AU2666899A (en) |
CA (1) | CA2320098A1 (en) |
WO (1) | WO1999040115A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100291024A1 (en) * | 2007-03-30 | 2010-11-18 | Xuebin Qin | Methods and compositions for the treatment of proliferative and pathogenic diseases |
WO2011022472A3 (en) * | 2009-08-18 | 2011-04-21 | President And Fellows Of Harvard College | Methods and compositions for the treatment of proliferative and pathogenic diseases |
WO2014036433A1 (en) * | 2012-08-31 | 2014-03-06 | The Uab Research Foundation | Anti-complement therapy compositions and methods for preserving stored blood |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2004287875B2 (en) | 2003-11-05 | 2011-06-02 | Bausch + Lomb Ireland Limited | Modulators of cellular adhesion |
CA2702984C (en) * | 2007-10-19 | 2017-04-11 | Sarcode Corporation | Compositions and methods for treatment of diabetic retinopathy |
EP2252317B1 (en) * | 2008-02-15 | 2014-04-09 | Tufts University | Treatment of macular degeneration |
US8877896B2 (en) | 2008-02-15 | 2014-11-04 | Tufts University | Compositions, methods and kits for modeling, diagnosing, and treating complement disorders |
CA2843684A1 (en) | 2010-08-13 | 2012-02-16 | Tufts University | Compositions, kits and methods for treatment of macular degeneration using soluble membrane-independent cd59 protein |
WO2013026015A1 (en) | 2011-08-18 | 2013-02-21 | Dana-Farber Cancer Institute, Inc. | Muc1 ligand traps for use in treating cancers |
EP3892291A1 (en) | 2014-08-28 | 2021-10-13 | Tufts University | Compositions, methods and kits for treating complement related disorders |
EP3752176B1 (en) | 2018-02-12 | 2024-08-07 | Trustees of Tufts College | Cd59 for inhibiting inflammasome activation |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3625214A (en) | 1970-05-18 | 1971-12-07 | Alza Corp | Drug-delivery device |
US4244946A (en) | 1979-06-11 | 1981-01-13 | The Salk Institute For Biological Studies | Water-soluble peptides affecting gonadal function |
US4305872A (en) | 1979-10-19 | 1981-12-15 | Kenneth Wingrove | Polypeptide derivatives |
US4316891A (en) | 1980-06-14 | 1982-02-23 | The Salk Institute For Biological Studies | Extended N-terminal somatostatin |
US4792525A (en) | 1982-08-04 | 1988-12-20 | La Jolla Cancer Research Foundation | Tetrapeptide |
CA1216518A (en) | 1982-11-01 | 1987-01-13 | Gail A. Rock | Plasma-free medium for platelet storage |
US4906474A (en) | 1983-03-22 | 1990-03-06 | Massachusetts Institute Of Technology | Bioerodible polyanhydrides for controlled drug delivery |
US4629784A (en) | 1983-08-16 | 1986-12-16 | The University Of Georgia Research Foundation, Inc. | Synthesis of cyclopropane amino acids |
US4916219A (en) | 1985-03-28 | 1990-04-10 | University Of Iowa Research Foundation | Oligosaccharide heparin fragments as inhibitors of complement cascade |
US4789734A (en) | 1985-08-06 | 1988-12-06 | La Jolla Cancer Research Foundation | Vitronectin specific cell receptor derived from mammalian mesenchymal tissue |
US4695460A (en) | 1986-03-19 | 1987-09-22 | American Red Cross | Synthetic, plasma-free, transfusible platelet storage medium |
NL8720442A (en) | 1986-08-18 | 1989-04-03 | Clinical Technologies Ass | DELIVERY SYSTEMS FOR PHARMACOLOGICAL AGENTS. |
US5179198A (en) | 1988-07-11 | 1993-01-12 | Hidechika Okada | Glycoprotein and gene coding therefor |
JP2828148B2 (en) | 1989-04-21 | 1998-11-25 | 山之内製薬株式会社 | Human MACIF active protein gene, expression vector linked to the gene, transformed cell, and human MACIF active protein |
US5135916A (en) | 1989-06-12 | 1992-08-04 | Oklahoma Medical Research Foundation | Inhibition of complement mediated inflammatory response |
US5573940A (en) | 1989-06-12 | 1996-11-12 | Oklahoma Medical Research Foundation | Cells expressing high levels of CD59 |
US5331573A (en) | 1990-12-14 | 1994-07-19 | Balaji Vitukudi N | Method of design of compounds that mimic conformational features of selected peptides |
AU659482B2 (en) | 1991-06-28 | 1995-05-18 | Massachusetts Institute Of Technology | Localized oligonucleotide therapy |
US5627264A (en) | 1994-03-03 | 1997-05-06 | Alexion Pharmaceuticals, Inc. | Chimeric complement inhibitor proteins |
US5843884A (en) | 1995-11-15 | 1998-12-01 | Oklahoma Medical Research Foundation | C9 complement inhibitor |
-
1998
- 1998-02-09 US US09/020,393 patent/US7166568B1/en not_active Expired - Fee Related
-
1999
- 1999-02-09 JP JP2000530543A patent/JP2002502595A/en not_active Withdrawn
- 1999-02-09 CA CA002320098A patent/CA2320098A1/en not_active Abandoned
- 1999-02-09 AU AU26668/99A patent/AU2666899A/en not_active Abandoned
- 1999-02-09 WO PCT/US1999/002802 patent/WO1999040115A2/en not_active Application Discontinuation
- 1999-02-09 EP EP99906850A patent/EP1053254A2/en not_active Withdrawn
-
2003
- 2003-03-27 US US10/403,340 patent/US20030166565A1/en not_active Abandoned
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100291024A1 (en) * | 2007-03-30 | 2010-11-18 | Xuebin Qin | Methods and compositions for the treatment of proliferative and pathogenic diseases |
WO2011022472A3 (en) * | 2009-08-18 | 2011-04-21 | President And Fellows Of Harvard College | Methods and compositions for the treatment of proliferative and pathogenic diseases |
US9163086B2 (en) | 2009-08-18 | 2015-10-20 | President And Fellows Of Harvard College | Methods and compositions for the treatment of proliferative and pathogenic diseases |
WO2014036433A1 (en) * | 2012-08-31 | 2014-03-06 | The Uab Research Foundation | Anti-complement therapy compositions and methods for preserving stored blood |
Also Published As
Publication number | Publication date |
---|---|
JP2002502595A (en) | 2002-01-29 |
WO1999040115A9 (en) | 2000-01-20 |
EP1053254A2 (en) | 2000-11-22 |
CA2320098A1 (en) | 1999-08-12 |
AU2666899A (en) | 1999-08-23 |
WO1999040115A3 (en) | 1999-12-02 |
US7166568B1 (en) | 2007-01-23 |
WO1999040115A2 (en) | 1999-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7317087B2 (en) | Members of the FC receptor homolog gene family (FCRH1-3, 6), related reagents, and uses thereof | |
EP0502892B1 (en) | THE HUMAN C3b/C4b RECEPTOR (CR1) | |
US5695993A (en) | Cloning and regulation of an endothelial cell protein C/activated protein C receptor | |
S. Laursen et al. | Structure, function and control of complement C5 and its proteolytic fragments | |
WO1996005303A9 (en) | Cloning and regulation of an endothelial cell protein c/activated protein c receptor | |
HARRIS et al. | Molecular and functional analysis of mouse decay accelerating factor (CD55) | |
US7166568B1 (en) | Compositions and methods to inhibit formation of the C5b-9 complex of complement | |
US5843884A (en) | C9 complement inhibitor | |
JP2002504369A (en) | Protease-activated receptor 4 and uses thereof. | |
WO1997017987A9 (en) | C9 complement inhibitor | |
US20020123617A1 (en) | Novel immunoglobulin superfamily members of APEX-1, APEX-2 and APEX-3 and uses thereof | |
EP1429650B1 (en) | Alternatively spliced circulating tissue factor | |
US20040006217A1 (en) | Tissue factor protein variants | |
EP0920502B1 (en) | Methods and means for modifying complement activation | |
US7179898B1 (en) | Human vanilloid receptor-like receptor | |
CN100425695C (en) | Novel human Rab GTP enzyme, its coding sequence and application | |
Chen | A new regulatory function for C1 inhibitor | |
US20050244868A1 (en) | Ten-M3 polypeptides and polynucleotides and their methods of use | |
WO2000027420A9 (en) | Compositions and methods for treatment of cancer | |
WO2005094365A2 (en) | Ten-m3 polypeptides and polynucleotides and their methods of use | |
WO2004020459A2 (en) | Secreted proteins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |