US20030166731A1 - Method of treating hair loss using diphenylether derivatives - Google Patents
Method of treating hair loss using diphenylether derivatives Download PDFInfo
- Publication number
- US20030166731A1 US20030166731A1 US10/373,471 US37347103A US2003166731A1 US 20030166731 A1 US20030166731 A1 US 20030166731A1 US 37347103 A US37347103 A US 37347103A US 2003166731 A1 US2003166731 A1 US 2003166731A1
- Authority
- US
- United States
- Prior art keywords
- group
- lower alkyl
- hydrogen
- hydroxy
- aryl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 201000004384 Alopecia Diseases 0.000 title claims abstract description 36
- 230000003676 hair loss Effects 0.000 title claims abstract description 29
- 208000024963 hair loss Diseases 0.000 title claims abstract description 27
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 102
- 239000000203 mixture Substances 0.000 claims description 57
- 125000000217 alkyl group Chemical group 0.000 claims description 50
- 239000001257 hydrogen Substances 0.000 claims description 39
- 229910052739 hydrogen Inorganic materials 0.000 claims description 39
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 26
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 21
- 230000000699 topical effect Effects 0.000 claims description 19
- 150000002431 hydrogen Chemical group 0.000 claims description 18
- 150000002148 esters Chemical class 0.000 claims description 17
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 14
- 125000004423 acyloxy group Chemical group 0.000 claims description 13
- 150000001408 amides Chemical class 0.000 claims description 13
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 13
- 229910052736 halogen Inorganic materials 0.000 claims description 12
- 150000002367 halogens Chemical class 0.000 claims description 12
- 125000003118 aryl group Chemical group 0.000 claims description 9
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 9
- 150000003839 salts Chemical class 0.000 claims description 8
- 150000003949 imides Chemical class 0.000 claims description 5
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 claims description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 150000004677 hydrates Chemical class 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 230000003779 hair growth Effects 0.000 abstract description 22
- 241000124008 Mammalia Species 0.000 abstract description 11
- 230000001737 promoting effect Effects 0.000 abstract description 8
- 239000003937 drug carrier Substances 0.000 abstract 1
- -1 alkali metal salts Chemical class 0.000 description 46
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 27
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 27
- 238000006243 chemical reaction Methods 0.000 description 26
- 241000700159 Rattus Species 0.000 description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 20
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 18
- 230000000694 effects Effects 0.000 description 18
- 238000011282 treatment Methods 0.000 description 18
- SOWBFZRMHSNYGE-UHFFFAOYSA-N oxamic acid Chemical compound NC(=O)C(O)=O SOWBFZRMHSNYGE-UHFFFAOYSA-N 0.000 description 17
- 239000000243 solution Substances 0.000 description 17
- 238000012360 testing method Methods 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 210000003491 skin Anatomy 0.000 description 15
- 239000003981 vehicle Substances 0.000 description 14
- 0 *C.[1*]C.[2*]C.[3*]C.[4*]C.[5*]C([6*])(C)*C1=CC=C([W]C2=CC=CC=C2)C=C1 Chemical compound *C.[1*]C.[2*]C.[3*]C.[4*]C.[5*]C([6*])(C)*C1=CC=C([W]C2=CC=CC=C2)C=C1 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 230000003698 anagen phase Effects 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 11
- 125000003545 alkoxy group Chemical group 0.000 description 11
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 11
- 238000003556 assay Methods 0.000 description 11
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 11
- 230000003797 telogen phase Effects 0.000 description 11
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 10
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 239000000969 carrier Substances 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 235000019441 ethanol Nutrition 0.000 description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 8
- 239000000741 silica gel Substances 0.000 description 8
- 229910002027 silica gel Inorganic materials 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- ZFMITUMMTDLWHR-UHFFFAOYSA-N Minoxidil Chemical compound NC1=[N+]([O-])C(N)=CC(N2CCCCC2)=N1 ZFMITUMMTDLWHR-UHFFFAOYSA-N 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 229960004756 ethanol Drugs 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000012044 organic layer Substances 0.000 description 7
- 229960004063 propylene glycol Drugs 0.000 description 7
- 235000013772 propylene glycol Nutrition 0.000 description 7
- 238000012384 transportation and delivery Methods 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 206010048610 Cardiotoxicity Diseases 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 6
- 229930006000 Sucrose Natural products 0.000 description 6
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical class IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 206010068168 androgenetic alopecia Diseases 0.000 description 6
- 231100000259 cardiotoxicity Toxicity 0.000 description 6
- 239000003086 colorant Substances 0.000 description 6
- 239000002552 dosage form Substances 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 239000003623 enhancer Substances 0.000 description 6
- 239000000796 flavoring agent Substances 0.000 description 6
- 235000013355 food flavoring agent Nutrition 0.000 description 6
- 210000004209 hair Anatomy 0.000 description 6
- 229960003632 minoxidil Drugs 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 235000019198 oils Nutrition 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000005720 sucrose Substances 0.000 description 6
- 239000005495 thyroid hormone Substances 0.000 description 6
- 229940036555 thyroid hormone Drugs 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- KKCIOUWDFWQUBT-AWEZNQCLSA-N L-thyronine Chemical compound C1=CC(C[C@H](N)C(O)=O)=CC=C1OC1=CC=C(O)C=C1 KKCIOUWDFWQUBT-AWEZNQCLSA-N 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 229920002472 Starch Polymers 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000037396 body weight Effects 0.000 description 5
- 125000001589 carboacyl group Chemical group 0.000 description 5
- 125000002837 carbocyclic group Chemical group 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000004587 chromatography analysis Methods 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 235000019698 starch Nutrition 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 4
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 4
- 239000001768 carboxy methyl cellulose Substances 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 4
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical class C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- DBEPLOCGEIEOCV-WSBQPABSSA-N finasteride Chemical compound N([C@@H]1CC2)C(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](C(=O)NC(C)(C)C)[C@@]2(C)CC1 DBEPLOCGEIEOCV-WSBQPABSSA-N 0.000 description 4
- 235000003599 food sweetener Nutrition 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 210000003780 hair follicle Anatomy 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 239000002502 liposome Substances 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 235000019341 magnesium sulphate Nutrition 0.000 description 4
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000600 sorbitol Substances 0.000 description 4
- 235000010356 sorbitol Nutrition 0.000 description 4
- 238000005556 structure-activity relationship Methods 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 239000003765 sweetening agent Substances 0.000 description 4
- 239000000454 talc Substances 0.000 description 4
- 235000012222 talc Nutrition 0.000 description 4
- 229910052623 talc Inorganic materials 0.000 description 4
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 3
- 208000024172 Cardiovascular disease Diseases 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 229930105110 Cyclosporin A Natural products 0.000 description 3
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 3
- 108010036949 Cyclosporine Proteins 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 229930195725 Mannitol Natural products 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 235000021355 Stearic acid Nutrition 0.000 description 3
- 150000001242 acetic acid derivatives Chemical class 0.000 description 3
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 235000010443 alginic acid Nutrition 0.000 description 3
- 239000000783 alginic acid Substances 0.000 description 3
- 229920000615 alginic acid Polymers 0.000 description 3
- 229960001126 alginic acid Drugs 0.000 description 3
- 150000004781 alginic acids Chemical class 0.000 description 3
- 125000003282 alkyl amino group Chemical group 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- RBHJBMIOOPYDBQ-UHFFFAOYSA-N carbon dioxide;propan-2-one Chemical compound O=C=O.CC(C)=O RBHJBMIOOPYDBQ-UHFFFAOYSA-N 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 210000000748 cardiovascular system Anatomy 0.000 description 3
- 239000004359 castor oil Substances 0.000 description 3
- 229960001777 castor oil Drugs 0.000 description 3
- 235000019438 castor oil Nutrition 0.000 description 3
- 230000003778 catagen phase Effects 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 229960001265 ciclosporin Drugs 0.000 description 3
- SASYSVUEVMOWPL-NXVVXOECSA-N decyl oleate Chemical compound CCCCCCCCCCOC(=O)CCCCCCC\C=C/CCCCCCCC SASYSVUEVMOWPL-NXVVXOECSA-N 0.000 description 3
- 238000005370 electroosmosis Methods 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 229960004039 finasteride Drugs 0.000 description 3
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 230000031774 hair cycle Effects 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 239000000594 mannitol Substances 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- 230000003061 melanogenesis Effects 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- 229940055577 oleyl alcohol Drugs 0.000 description 3
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 3
- 238000007911 parenteral administration Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 229940002612 prodrug Drugs 0.000 description 3
- 239000000651 prodrug Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 239000008159 sesame oil Substances 0.000 description 3
- 235000011803 sesame oil Nutrition 0.000 description 3
- 239000002453 shampoo Substances 0.000 description 3
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 3
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- QMMJWQMCMRUYTG-UHFFFAOYSA-N 1,2,4,5-tetrachloro-3-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=C(Cl)C(Cl)=CC(Cl)=C1Cl QMMJWQMCMRUYTG-UHFFFAOYSA-N 0.000 description 2
- NNZRVXTXKISCGS-UHFFFAOYSA-N 1-methoxy-2-propan-2-ylbenzene Chemical compound COC1=CC=CC=C1C(C)C NNZRVXTXKISCGS-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 description 2
- CRBJBYGJVIBWIY-UHFFFAOYSA-N 2-isopropylphenol Chemical compound CC(C)C1=CC=CC=C1O CRBJBYGJVIBWIY-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- ZCTQGTTXIYCGGC-UHFFFAOYSA-N Benzyl salicylate Chemical compound OC1=CC=CC=C1C(=O)OCC1=CC=CC=C1 ZCTQGTTXIYCGGC-UHFFFAOYSA-N 0.000 description 2
- 238000011735 C3H mouse Methods 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XUIIKFGFIJCVMT-GFCCVEGCSA-N D-thyroxine Chemical compound IC1=CC(C[C@@H](N)C(O)=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-GFCCVEGCSA-N 0.000 description 2
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 2
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- CMBYOWLFQAFZCP-UHFFFAOYSA-N Hexyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCCCCCC CMBYOWLFQAFZCP-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 102000011845 Iodide peroxidase Human genes 0.000 description 2
- 108010036012 Iodide peroxidase Proteins 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229920000289 Polyquaternium Polymers 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 2
- 229960004150 aciclovir Drugs 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 125000004442 acylamino group Chemical group 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- POJWUDADGALRAB-UHFFFAOYSA-N allantoin Chemical compound NC(=O)NC1NC(=O)NC1=O POJWUDADGALRAB-UHFFFAOYSA-N 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- KVYGGMBOZFWZBQ-UHFFFAOYSA-N benzyl nicotinate Chemical compound C=1C=CN=CC=1C(=O)OCC1=CC=CC=C1 KVYGGMBOZFWZBQ-UHFFFAOYSA-N 0.000 description 2
- 125000001584 benzyloxycarbonyl group Chemical class C(=O)(OCC1=CC=CC=C1)* 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- FUWUEFKEXZQKKA-UHFFFAOYSA-N beta-thujaplicin Chemical compound CC(C)C=1C=CC=C(O)C(=O)C=1 FUWUEFKEXZQKKA-UHFFFAOYSA-N 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- XSIFPSYPOVKYCO-UHFFFAOYSA-N butyl benzoate Chemical compound CCCCOC(=O)C1=CC=CC=C1 XSIFPSYPOVKYCO-UHFFFAOYSA-N 0.000 description 2
- DHAZIUXMHRHVMP-UHFFFAOYSA-N butyl tetradecanoate Chemical compound CCCCCCCCCCCCCC(=O)OCCCC DHAZIUXMHRHVMP-UHFFFAOYSA-N 0.000 description 2
- 235000011132 calcium sulphate Nutrition 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 229960000541 cetyl alcohol Drugs 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- 210000004207 dermis Anatomy 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- ALOUNLDAKADEEB-UHFFFAOYSA-N dimethyl sebacate Chemical compound COC(=O)CCCCCCCCC(=O)OC ALOUNLDAKADEEB-UHFFFAOYSA-N 0.000 description 2
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 2
- 230000002500 effect on skin Effects 0.000 description 2
- 239000003974 emollient agent Substances 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- RGXWDWUGBIJHDO-UHFFFAOYSA-N ethyl decanoate Chemical compound CCCCCCCCCC(=O)OCC RGXWDWUGBIJHDO-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- SHZIWNPUGXLXDT-UHFFFAOYSA-N ethyl hexanoate Chemical compound CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 2
- MMXKVMNBHPAILY-UHFFFAOYSA-N ethyl laurate Chemical compound CCCCCCCCCCCC(=O)OCC MMXKVMNBHPAILY-UHFFFAOYSA-N 0.000 description 2
- MMKRHZKQPFCLLS-UHFFFAOYSA-N ethyl myristate Chemical compound CCCCCCCCCCCCCC(=O)OCC MMKRHZKQPFCLLS-UHFFFAOYSA-N 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 229940124563 hair growth stimulant Drugs 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 229940100463 hexyl laurate Drugs 0.000 description 2
- 239000003906 humectant Substances 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000000411 inducer Substances 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 229940093629 isopropyl isostearate Drugs 0.000 description 2
- XUGNVMKQXJXZCD-UHFFFAOYSA-N isopropyl palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC(C)C XUGNVMKQXJXZCD-UHFFFAOYSA-N 0.000 description 2
- 229940075495 isopropyl palmitate Drugs 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 150000002772 monosaccharides Chemical class 0.000 description 2
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 229940060184 oil ingredients Drugs 0.000 description 2
- 239000006186 oral dosage form Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- NEOZOXKVMDBOSG-UHFFFAOYSA-N propan-2-yl 16-methylheptadecanoate Chemical compound CC(C)CCCCCCCCCCCCCCC(=O)OC(C)C NEOZOXKVMDBOSG-UHFFFAOYSA-N 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 238000003797 solvolysis reaction Methods 0.000 description 2
- 238000012453 sprague-dawley rat model Methods 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229940034208 thyroxine Drugs 0.000 description 2
- XUIIKFGFIJCVMT-UHFFFAOYSA-N thyroxine-binding globulin Natural products IC1=CC(CC([NH3+])C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-UHFFFAOYSA-N 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 235000010487 tragacanth Nutrition 0.000 description 2
- 239000000196 tragacanth Substances 0.000 description 2
- 229940116362 tragacanth Drugs 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- 229940086542 triethylamine Drugs 0.000 description 2
- 239000002691 unilamellar liposome Substances 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- NOOLISFMXDJSKH-KXUCPTDWSA-N (-)-Menthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@H]1O NOOLISFMXDJSKH-KXUCPTDWSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- WJTCHBVEUFDSIK-NWDGAFQWSA-N (2r,5s)-1-benzyl-2,5-dimethylpiperazine Chemical compound C[C@@H]1CN[C@@H](C)CN1CC1=CC=CC=C1 WJTCHBVEUFDSIK-NWDGAFQWSA-N 0.000 description 1
- MEJYDZQQVZJMPP-ULAWRXDQSA-N (3s,3ar,6r,6ar)-3,6-dimethoxy-2,3,3a,5,6,6a-hexahydrofuro[3,2-b]furan Chemical compound CO[C@H]1CO[C@@H]2[C@H](OC)CO[C@@H]21 MEJYDZQQVZJMPP-ULAWRXDQSA-N 0.000 description 1
- RGCVYEOTYJCNOS-UHFFFAOYSA-N (4-cyano-2-methylphenyl)boronic acid Chemical compound CC1=CC(C#N)=CC=C1B(O)O RGCVYEOTYJCNOS-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-NMQOAUCRSA-N 1,2-dideuteriooxyethane Chemical compound [2H]OCCO[2H] LYCAIKOWRPUZTN-NMQOAUCRSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- FILVIKOEJGORQS-UHFFFAOYSA-N 1,5-dimethylpyrrolidin-2-one Chemical compound CC1CCC(=O)N1C FILVIKOEJGORQS-UHFFFAOYSA-N 0.000 description 1
- RLPSARLYTKXVSE-UHFFFAOYSA-N 1-(1,3-thiazol-5-yl)ethanamine Chemical compound CC(N)C1=CN=CS1 RLPSARLYTKXVSE-UHFFFAOYSA-N 0.000 description 1
- AZUXKVXMJOIAOF-UHFFFAOYSA-N 1-(2-hydroxypropoxy)propan-2-ol Chemical compound CC(O)COCC(C)O AZUXKVXMJOIAOF-UHFFFAOYSA-N 0.000 description 1
- ZFPGARUNNKGOBB-UHFFFAOYSA-N 1-Ethyl-2-pyrrolidinone Chemical compound CCN1CCCC1=O ZFPGARUNNKGOBB-UHFFFAOYSA-N 0.000 description 1
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- HBXWUCXDUUJDRB-UHFFFAOYSA-N 1-octadecoxyoctadecane Chemical compound CCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCC HBXWUCXDUUJDRB-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- LGEZTMRIZWCDLW-UHFFFAOYSA-N 14-methylpentadecyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCC(C)C LGEZTMRIZWCDLW-UHFFFAOYSA-N 0.000 description 1
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 1
- YQTCQNIPQMJNTI-UHFFFAOYSA-N 2,2-dimethylpropan-1-one Chemical group CC(C)(C)[C]=O YQTCQNIPQMJNTI-UHFFFAOYSA-N 0.000 description 1
- HDIFHQMREAYYJW-FMIVXFBMSA-N 2,3-dihydroxypropyl (e)-12-hydroxyoctadec-9-enoate Chemical compound CCCCCCC(O)C\C=C\CCCCCCCC(=O)OCC(O)CO HDIFHQMREAYYJW-FMIVXFBMSA-N 0.000 description 1
- CIVCELMLGDGMKZ-UHFFFAOYSA-N 2,4-dichloro-6-methylpyridine-3-carboxylic acid Chemical compound CC1=CC(Cl)=C(C(O)=O)C(Cl)=N1 CIVCELMLGDGMKZ-UHFFFAOYSA-N 0.000 description 1
- FNORUNUDZNWQFF-UHFFFAOYSA-N 2,6-dimethyl-4-nitrophenol Chemical compound CC1=CC([N+]([O-])=O)=CC(C)=C1O FNORUNUDZNWQFF-UHFFFAOYSA-N 0.000 description 1
- PACBIGNRUWABMA-UHFFFAOYSA-N 2-(2,3-dihydro-1,3-benzothiazol-2-yl)-6-dodecyl-4-methylphenol Chemical compound CCCCCCCCCCCCC1=CC(C)=CC(C2SC3=CC=CC=C3N2)=C1O PACBIGNRUWABMA-UHFFFAOYSA-N 0.000 description 1
- FLPJVCMIKUWSDR-UHFFFAOYSA-N 2-(4-formylphenoxy)acetamide Chemical compound NC(=O)COC1=CC=C(C=O)C=C1 FLPJVCMIKUWSDR-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- CCFWAONPPYWNDM-UHFFFAOYSA-N 2-ethylhexyl nonanoate Chemical compound CCCCCCCCC(=O)OCC(CC)CCCC CCFWAONPPYWNDM-UHFFFAOYSA-N 0.000 description 1
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 1
- OJIBJRXMHVZPLV-UHFFFAOYSA-N 2-methylpropyl hexadecanoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(C)C OJIBJRXMHVZPLV-UHFFFAOYSA-N 0.000 description 1
- SGRCVQDBWHCTIS-UHFFFAOYSA-N 2-nonanoyloxypropyl nonanoate Chemical compound CCCCCCCCC(=O)OCC(C)OC(=O)CCCCCCCC SGRCVQDBWHCTIS-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- VRUFTFZZSSSPML-UHFFFAOYSA-N 3-hydroxyoxolane-2-carbaldehyde Chemical compound OC1CCOC1C=O VRUFTFZZSSSPML-UHFFFAOYSA-N 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- AMEMLELAMQEAIA-UHFFFAOYSA-N 6-(tert-butyl)thieno[3,2-d]pyrimidin-4(3H)-one Chemical compound N1C=NC(=O)C2=C1C=C(C(C)(C)C)S2 AMEMLELAMQEAIA-UHFFFAOYSA-N 0.000 description 1
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- NAKFRQULMGLXBT-UHFFFAOYSA-N 6-methoxyquinolin-8-ol Chemical compound N1=CC=CC2=CC(OC)=CC(O)=C21 NAKFRQULMGLXBT-UHFFFAOYSA-N 0.000 description 1
- JRLTTZUODKEYDH-UHFFFAOYSA-N 8-methylquinoline Chemical group C1=CN=C2C(C)=CC=CC2=C1 JRLTTZUODKEYDH-UHFFFAOYSA-N 0.000 description 1
- POJWUDADGALRAB-PVQJCKRUSA-N Allantoin Natural products NC(=O)N[C@@H]1NC(=O)NC1=O POJWUDADGALRAB-PVQJCKRUSA-N 0.000 description 1
- 244000144927 Aloe barbadensis Species 0.000 description 1
- 235000002961 Aloe barbadensis Nutrition 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical class [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 235000003911 Arachis Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 239000004358 Butane-1, 3-diol Substances 0.000 description 1
- NDKYEUQMPZIGFN-UHFFFAOYSA-N Butyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCCCC NDKYEUQMPZIGFN-UHFFFAOYSA-N 0.000 description 1
- ZGQYQPKRDWBJOJ-UHFFFAOYSA-N CC(C)C1=C(O)C=CC(OC2=C(I)C=C(NC(=O)C(=O)O)C=C2I)=C1.CC1=CC([N+](=O)[O-])=CC(C)=C1O.COC(=O)C(=O)NC1=CC(I)=C(OC2=CC(C(C)C)=C(OC)C=C2)C(I)=C1.COC1=C(C(C)C)C=C(OC2=C(I)C=C(N)C=C2I)C=C1.COC1=C(C(C)C)C=C(OC2=C(I)C=C([N+](=O)[O-])C=C2I)C=C1.COC1=C(C(C)C)C=C([IH+])C=C1 Chemical compound CC(C)C1=C(O)C=CC(OC2=C(I)C=C(NC(=O)C(=O)O)C=C2I)=C1.CC1=CC([N+](=O)[O-])=CC(C)=C1O.COC(=O)C(=O)NC1=CC(I)=C(OC2=CC(C(C)C)=C(OC)C=C2)C(I)=C1.COC1=C(C(C)C)C=C(OC2=C(I)C=C(N)C=C2I)C=C1.COC1=C(C(C)C)C=C(OC2=C(I)C=C([N+](=O)[O-])C=C2I)C=C1.COC1=C(C(C)C)C=C([IH+])C=C1 ZGQYQPKRDWBJOJ-UHFFFAOYSA-N 0.000 description 1
- PRRSWHZOLGHBQC-UHFFFAOYSA-N CC(C)C1=C(O)C=CC=C1.CC1=CC(NC(=O)C(=O)O)=CC(C)=C1OC1=CC(C(C)C)=C(O)C=C1.CC1=CC([N+](=O)[O-])=CC(C)=C1O.COC(=O)C(=O)NC1=CC(C)=C(OC2=CC(C(C)C)=C(OC)C=C2)C(C)=C1.COC1=C(C(C)C)C=C(OC2=C(C)C=C(N)C=C2C)C=C1.COC1=C(C(C)C)C=C(OC2=C(C)C=C([N+](=O)[O-])C=C2C)C=C1.COC1=C(C(C)C)C=C([IH+])C=C1.COC1=C(C(C)C)C=CC=C1 Chemical compound CC(C)C1=C(O)C=CC=C1.CC1=CC(NC(=O)C(=O)O)=CC(C)=C1OC1=CC(C(C)C)=C(O)C=C1.CC1=CC([N+](=O)[O-])=CC(C)=C1O.COC(=O)C(=O)NC1=CC(C)=C(OC2=CC(C(C)C)=C(OC)C=C2)C(C)=C1.COC1=C(C(C)C)C=C(OC2=C(C)C=C(N)C=C2C)C=C1.COC1=C(C(C)C)C=C(OC2=C(C)C=C([N+](=O)[O-])C=C2C)C=C1.COC1=C(C(C)C)C=C([IH+])C=C1.COC1=C(C(C)C)C=CC=C1 PRRSWHZOLGHBQC-UHFFFAOYSA-N 0.000 description 1
- RWPYQLCFSRMJMV-UHFFFAOYSA-N COC(=O)C(=O)NC1=CC(C)=C(OC2=CC(C(C)C)=C(OC)C=C2)C(C)=C1.COC1=C(C(C)C)C=C(OC2=C(C)C=C(NC(=O)C(=O)O)C=C2C)C=C1 Chemical compound COC(=O)C(=O)NC1=CC(C)=C(OC2=CC(C(C)C)=C(OC)C=C2)C(C)=C1.COC1=C(C(C)C)C=C(OC2=C(C)C=C(NC(=O)C(=O)O)C=C2C)C=C1 RWPYQLCFSRMJMV-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 240000004160 Capsicum annuum Species 0.000 description 1
- 235000008534 Capsicum annuum var annuum Nutrition 0.000 description 1
- 235000007862 Capsicum baccatum Nutrition 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- DBAKFASWICGISY-BTJKTKAUSA-N Chlorpheniramine maleate Chemical compound OC(=O)\C=C/C(O)=O.C=1C=CC=NC=1C(CCN(C)C)C1=CC=C(Cl)C=C1 DBAKFASWICGISY-BTJKTKAUSA-N 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- SNPLKNRPJHDVJA-ZETCQYMHSA-N D-panthenol Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCCO SNPLKNRPJHDVJA-ZETCQYMHSA-N 0.000 description 1
- 229920000727 Decyl polyglucose Polymers 0.000 description 1
- YUXIBTJKHLUKBD-UHFFFAOYSA-N Dibutyl succinate Chemical compound CCCCOC(=O)CCC(=O)OCCCC YUXIBTJKHLUKBD-UHFFFAOYSA-N 0.000 description 1
- ZDQWESQEGGJUCH-UHFFFAOYSA-N Diisopropyl adipate Chemical compound CC(C)OC(=O)CCCCC(=O)OC(C)C ZDQWESQEGGJUCH-UHFFFAOYSA-N 0.000 description 1
- UVGTXNPVQOQFQW-UHFFFAOYSA-N Disophenol Chemical compound OC1=C(I)C=C([N+]([O-])=O)C=C1I UVGTXNPVQOQFQW-UHFFFAOYSA-N 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- GYCKQBWUSACYIF-UHFFFAOYSA-N Ethyl salicylate Chemical compound CCOC(=O)C1=CC=CC=C1O GYCKQBWUSACYIF-UHFFFAOYSA-N 0.000 description 1
- 229920003134 Eudragit® polymer Polymers 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 1
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 1
- 101000741445 Homo sapiens Calcitonin Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- XUIIKFGFIJCVMT-LBPRGKRZSA-N L-thyroxine Chemical compound IC1=CC(C[C@H]([NH3+])C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-LBPRGKRZSA-N 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 229920002884 Laureth 4 Polymers 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 239000004909 Moisturizer Substances 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- MMOXZBCLCQITDF-UHFFFAOYSA-N N,N-diethyl-m-toluamide Chemical compound CCN(CC)C(=O)C1=CC=CC(C)=C1 MMOXZBCLCQITDF-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241000772415 Neovison vison Species 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- DRUKNYVQGHETPO-UHFFFAOYSA-N Nonanedioic acid dimethyl ester Natural products COC(=O)CCCCCCCC(=O)OC DRUKNYVQGHETPO-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004146 Propane-1,2-diol Substances 0.000 description 1
- 102000003923 Protein Kinase C Human genes 0.000 description 1
- 108090000315 Protein Kinase C Proteins 0.000 description 1
- ODHCTXKNWHHXJC-GSVOUGTGSA-N Pyroglutamic acid Natural products OC(=O)[C@H]1CCC(=O)N1 ODHCTXKNWHHXJC-GSVOUGTGSA-N 0.000 description 1
- 241000220010 Rhode Species 0.000 description 1
- 206010039921 Selenium deficiency Diseases 0.000 description 1
- 102000008114 Selenoproteins Human genes 0.000 description 1
- 108010074686 Selenoproteins Proteins 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 1
- 240000006474 Theobroma bicolor Species 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- GZZMEFFUSRGCNW-UHFFFAOYSA-N [Br].[Br] Chemical compound [Br].[Br] GZZMEFFUSRGCNW-UHFFFAOYSA-N 0.000 description 1
- AWXVRFCTSCMHBS-UHFFFAOYSA-N [H]N(C(=O)C(=O)O)C1=CC(Cl)=C(OC2=CC(C(C)C)=C(O)C=C2)C(Cl)=C1 Chemical compound [H]N(C(=O)C(=O)O)C1=CC(Cl)=C(OC2=CC(C(C)C)=C(O)C=C2)C(Cl)=C1 AWXVRFCTSCMHBS-UHFFFAOYSA-N 0.000 description 1
- NSEVMXOMZYBONZ-UHFFFAOYSA-N [H]N(C(=O)C(=O)OC)C1=CC(Cl)=C(OC2=CC(C(C)C)=C(O)C=C2)C(Cl)=C1 Chemical compound [H]N(C(=O)C(=O)OC)C1=CC(Cl)=C(OC2=CC(C(C)C)=C(O)C=C2)C(Cl)=C1 NSEVMXOMZYBONZ-UHFFFAOYSA-N 0.000 description 1
- 210000000683 abdominal cavity Anatomy 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 229940048299 acetylated lanolin alcohols Drugs 0.000 description 1
- ODHCTXKNWHHXJC-UHFFFAOYSA-N acide pyroglutamique Natural products OC(=O)C1CCC(=O)N1 ODHCTXKNWHHXJC-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 125000003302 alkenyloxy group Chemical group 0.000 description 1
- 125000005194 alkoxycarbonyloxy group Chemical group 0.000 description 1
- 125000001118 alkylidene group Chemical group 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- 229960000458 allantoin Drugs 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 235000011399 aloe vera Nutrition 0.000 description 1
- 231100000360 alopecia Toxicity 0.000 description 1
- TUFYVOCKVJOUIR-UHFFFAOYSA-N alpha-Thujaplicin Natural products CC(C)C=1C=CC=CC(=O)C=1O TUFYVOCKVJOUIR-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 210000002376 aorta thoracic Anatomy 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000005333 aroyloxy group Chemical group 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 229940116224 behenate Drugs 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- 229950004580 benzyl nicotinate Drugs 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 125000000649 benzylidene group Chemical group [H]C(=[*])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- ZFMQKOWCDKKBIF-UHFFFAOYSA-N bis(3,5-difluorophenyl)phosphane Chemical compound FC1=CC(F)=CC(PC=2C=C(F)C=C(F)C=2)=C1 ZFMQKOWCDKKBIF-UHFFFAOYSA-N 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 1
- 229960003773 calcitonin (salmon synthetic) Drugs 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- FAPWYRCQGJNNSJ-UBKPKTQASA-L calcium D-pantothenic acid Chemical compound [Ca+2].OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O.OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O FAPWYRCQGJNNSJ-UBKPKTQASA-L 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229960002079 calcium pantothenate Drugs 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000001728 capsicum frutescens Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 229940074979 cetyl palmitate Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 239000007910 chewable tablet Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 229940099898 chlorophyllin Drugs 0.000 description 1
- 235000019805 chlorophyllin Nutrition 0.000 description 1
- 229940046978 chlorpheniramine maleate Drugs 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000000000 cycloalkoxy group Chemical group 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 239000007933 dermal patch Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical class O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- RISLXYINQFKFRL-UHFFFAOYSA-N dibutyl nonanedioate Chemical compound CCCCOC(=O)CCCCCCCC(=O)OCCCC RISLXYINQFKFRL-UHFFFAOYSA-N 0.000 description 1
- LBXQUCHUHCBNTC-UHFFFAOYSA-N dibutyl octanedioate Chemical compound CCCCOC(=O)CCCCCCC(=O)OCCCC LBXQUCHUHCBNTC-UHFFFAOYSA-N 0.000 description 1
- 229960002097 dibutylsuccinate Drugs 0.000 description 1
- HCQHIEGYGGJLJU-UHFFFAOYSA-N didecyl hexanedioate Chemical compound CCCCCCCCCCOC(=O)CCCCC(=O)OCCCCCCCCCC HCQHIEGYGGJLJU-UHFFFAOYSA-N 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- 229940014772 dimethyl sebacate Drugs 0.000 description 1
- MIMDHDXOBDPUQW-UHFFFAOYSA-N dioctyl decanedioate Chemical compound CCCCCCCCOC(=O)CCCCCCCCC(=O)OCCCCCCCC MIMDHDXOBDPUQW-UHFFFAOYSA-N 0.000 description 1
- XWVQUJDBOICHGH-UHFFFAOYSA-N dioctyl nonanedioate Chemical compound CCCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCC XWVQUJDBOICHGH-UHFFFAOYSA-N 0.000 description 1
- 229960000525 diphenhydramine hydrochloride Drugs 0.000 description 1
- XFKBBSZEQRFVSL-UHFFFAOYSA-N dipropan-2-yl decanedioate Chemical compound CC(C)OC(=O)CCCCCCCCC(=O)OC(C)C XFKBBSZEQRFVSL-UHFFFAOYSA-N 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- WSDISUOETYTPRL-UHFFFAOYSA-N dmdm hydantoin Chemical compound CC1(C)N(CO)C(=O)N(CO)C1=O WSDISUOETYTPRL-UHFFFAOYSA-N 0.000 description 1
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 1
- QQQMUBLXDAFBRH-UHFFFAOYSA-N dodecyl 2-hydroxypropanoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)O QQQMUBLXDAFBRH-UHFFFAOYSA-N 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000003821 enantio-separation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- 229930182833 estradiol Natural products 0.000 description 1
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 1
- 229960004667 ethyl cellulose Drugs 0.000 description 1
- 235000010944 ethyl methyl cellulose Nutrition 0.000 description 1
- 239000001761 ethyl methyl cellulose Substances 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 229940005667 ethyl salicylate Drugs 0.000 description 1
- SFNALCNOMXIBKG-UHFFFAOYSA-N ethylene glycol monododecyl ether Chemical compound CCCCCCCCCCCCOCCO SFNALCNOMXIBKG-UHFFFAOYSA-N 0.000 description 1
- 125000000816 ethylene group Chemical class [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229960002428 fentanyl Drugs 0.000 description 1
- IVLVTNPOHDFFCJ-UHFFFAOYSA-N fentanyl citrate Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C=1C=CC=CC=1N(C(=O)CC)C(CC1)CCN1CCC1=CC=CC=C1 IVLVTNPOHDFFCJ-UHFFFAOYSA-N 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000008369 fruit flavor Substances 0.000 description 1
- 229910000286 fullers earth Inorganic materials 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- YVIVRJLWYJGJTJ-UHFFFAOYSA-N gamma-Valerolactam Chemical compound CC1CCC(=O)N1 YVIVRJLWYJGJTJ-UHFFFAOYSA-N 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 229960005150 glycerol Drugs 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 230000003659 hair regrowth Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- PXDJXZJSCPSGGI-UHFFFAOYSA-N hexadecanoic acid hexadecyl ester Natural products CCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCCCC PXDJXZJSCPSGGI-UHFFFAOYSA-N 0.000 description 1
- OHMBHFSEKCCCBW-UHFFFAOYSA-N hexane-2,5-diol Chemical compound CC(O)CCC(C)O OHMBHFSEKCCCBW-UHFFFAOYSA-N 0.000 description 1
- 108091008039 hormone receptors Proteins 0.000 description 1
- 238000001794 hormone therapy Methods 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 229940045644 human calcitonin Drugs 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 239000003752 hydrotrope Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 description 1
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 235000013847 iso-butane Nutrition 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 229940078545 isocetyl stearate Drugs 0.000 description 1
- 229960004592 isopropanol Drugs 0.000 description 1
- 229940033357 isopropyl laurate Drugs 0.000 description 1
- 229940074928 isopropyl myristate Drugs 0.000 description 1
- 229940089456 isopropyl stearate Drugs 0.000 description 1
- BWHLPLXXIDYSNW-UHFFFAOYSA-N ketorolac tromethamine Chemical compound OCC(N)(CO)CO.OC(=O)C1CCN2C1=CC=C2C(=O)C1=CC=CC=C1 BWHLPLXXIDYSNW-UHFFFAOYSA-N 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 229940061515 laureth-4 Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 210000005240 left ventricle Anatomy 0.000 description 1
- 229950008325 levothyroxine Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 210000001349 mammary artery Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000001525 mentha piperita l. herb oil Substances 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 235000006109 methionine Nutrition 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 229940073584 methylene chloride Drugs 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000001333 moisturizer Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 1
- 229940078812 myristyl myristate Drugs 0.000 description 1
- 229940078555 myristyl propionate Drugs 0.000 description 1
- YWFWDNVOPHGWMX-UHFFFAOYSA-N n,n-dimethyldodecan-1-amine Chemical compound CCCCCCCCCCCCN(C)C YWFWDNVOPHGWMX-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 238000011580 nude mouse model Methods 0.000 description 1
- OXGBCSQEKCRCHN-UHFFFAOYSA-N octadecan-2-ol Chemical compound CCCCCCCCCCCCCCCCC(C)O OXGBCSQEKCRCHN-UHFFFAOYSA-N 0.000 description 1
- KSCKTBJJRVPGKM-UHFFFAOYSA-N octan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCCCCCC[O-].CCCCCCCC[O-].CCCCCCCC[O-].CCCCCCCC[O-] KSCKTBJJRVPGKM-UHFFFAOYSA-N 0.000 description 1
- YYZUSRORWSJGET-UHFFFAOYSA-N octanoic acid ethyl ester Natural products CCCCCCCC(=O)OCC YYZUSRORWSJGET-UHFFFAOYSA-N 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229940101267 panthenol Drugs 0.000 description 1
- 239000011619 pantothenol Substances 0.000 description 1
- 235000020957 pantothenol Nutrition 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- GTCCGKPBSJZVRZ-UHFFFAOYSA-N pentane-2,4-diol Chemical compound CC(O)CC(C)O GTCCGKPBSJZVRZ-UHFFFAOYSA-N 0.000 description 1
- 239000007967 peppermint flavor Substances 0.000 description 1
- 235000019477 peppermint oil Nutrition 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229940100467 polyvinyl acetate phthalate Drugs 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- 150000003140 primary amides Chemical class 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- XEIOPEQGDSYOIH-MURFETPASA-N propan-2-yl (9z,12z)-octadeca-9,12-dienoate Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(=O)OC(C)C XEIOPEQGDSYOIH-MURFETPASA-N 0.000 description 1
- ZPWFUIUNWDIYCJ-UHFFFAOYSA-N propan-2-yl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC(C)C ZPWFUIUNWDIYCJ-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229940117382 propecia Drugs 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 210000005241 right ventricle Anatomy 0.000 description 1
- 229940107889 rogaine Drugs 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 108010068072 salmon calcitonin Proteins 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 229910001495 sodium tetrafluoroborate Inorganic materials 0.000 description 1
- CRPCXAMJWCDHFM-UHFFFAOYSA-M sodium;5-oxopyrrolidine-2-carboxylate Chemical compound [Na+].[O-]C(=O)C1CCC(=O)N1 CRPCXAMJWCDHFM-UHFFFAOYSA-M 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 238000013222 sprague-dawley male rat Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229960004274 stearic acid Drugs 0.000 description 1
- 210000001562 sternum Anatomy 0.000 description 1
- 210000003270 subclavian artery Anatomy 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 238000012385 systemic delivery Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 1
- BORJONZPSTVSFP-UHFFFAOYSA-N tetradecyl 2-hydroxypropanoate Chemical compound CCCCCCCCCCCCCCOC(=O)C(C)O BORJONZPSTVSFP-UHFFFAOYSA-N 0.000 description 1
- YRZGMTHQPGNLEK-UHFFFAOYSA-N tetradecyl propionate Chemical compound CCCCCCCCCCCCCCOC(=O)CC YRZGMTHQPGNLEK-UHFFFAOYSA-N 0.000 description 1
- DZKXJUASMGQEMA-UHFFFAOYSA-N tetradecyl tetradecanoate Chemical compound CCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCC DZKXJUASMGQEMA-UHFFFAOYSA-N 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 108090000721 thyroid hormone receptors Proteins 0.000 description 1
- 102000004217 thyroid hormone receptors Human genes 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229940098465 tincture Drugs 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 238000013271 transdermal drug delivery Methods 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229930007845 β-thujaplicin Natural products 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/40—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
- A61K8/44—Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/14—Drugs for dermatological disorders for baldness or alopecia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q7/00—Preparations for affecting hair growth
Definitions
- the present invention relates to methods for treating hair loss in mammals, including arresting and/or reversing hair loss and promoting hair growth.
- Hair loss is a common problem which occurs, for example, through natural processes or is often chemically promoted through the use of certain therapeutic drugs designed to alleviate conditions such as cancer. Often such hair loss is accompanied by lack of hair regrowth which causes partial or full baldness.
- hair growth occurs by a cycle of activity which involves alternating periods of growth and rest. This cycle is often divided into three main stages which are known as anagen, catagen, and telogen. Anagen is the growth phase of the cycle and may be characterized by penetration of the hair follicle deep into the dermis with rapid proliferation of cells which are differentiating to form hair. The next phase is catagen, which is a transitional stage marked by the cessation of cell division, and during which the hair follicle regresses through the dermis and hair growth is ceased.
- anagen is the growth phase of the cycle and may be characterized by penetration of the hair follicle deep into the dermis with rapid proliferation of cells which are differentiating to form hair.
- catagen is a transitional stage marked by the cessation of cell division, and during which the hair follicle regresses through the dermis and hair growth is ceased.
- telogen is often characterized as the resting stage during which the regressed follicle contains a germ with tightly packed dermal papilla cells.
- the initiation of a new anagen phase is caused by rapid cell proliferation in the germ, expansion of the dermal papilla, and elaboration of basement membrane components.
- hair growth ceases, most of the hair follicles reside in telogen and anagen is not engaged, thus causing the onset of full or partial baldness.
- T4 the thyroid hormone known as thyroxine
- T3 thyronine
- Selenium deficiency causes a decrease in T3 levels due to a decrease in deiodinase I activity; this reduction in T3 levels is strongly associated with hair loss.
- hair growth is a reported side effect of administration of T4. See, e.g., Berman, “Peripheral Effects of L-Thyroxine on Hair Growth and Coloration in Cattle”, Journal of Endocrinology, Vol. 20, pp.
- T3 and T4 have been the subject of several patent publications relating to treatment of hair loss. See, e.g., Fischer et al., DE 1,617,477, published Jan. 8, 1970; Mortimer, GB 2,138,286, published Oct. 24, 1984; and Lindenbaum, WO 96/25943, assigned to Life Medical Sciences, Inc., published Aug. 29, 1996.
- T3 and/or T4 to treat hair loss is not practicable because these thyroid hormones are also known to induce significant cardiotoxicity. See, e.g., Walker et al., U.S. Pat. No. 5,284,971, assigned to Syntex, issued Feb. 8, 1994 and Emmett et al., U.S. Pat. No. 5,061,798, assigned to Smith Kline & French Laboratories, issued Oct. 29, 1991. Surprisingly, however, the present inventors have discovered biphenyl derivatives which promote hair growth without inducing cardiotoxicity.
- the present inventors have surprisingly discovered that the biphenyl derivatives useful in the present invention interact strongly with hair-selective thyroid hormone receptors but interact less strongly, or not at all, with heart-selective hormone receptors. These unique properties are, of course, not shared with T3 and/or T4. Accordingly, the biphenyl derivatives described for use in the methods and compositions herein are cardiac-sparing compounds useful for treating hair loss, including arresting and/or reversing hair loss and promoting hair growth.
- the present invention relates to methods for treating hair loss comprising administering a cardiac-sparing compound which has been found by the present inventors to be particularly useful for treating hair loss in mammals, including arresting and/or reversing hair loss and promoting hair growth.
- the compounds utilized in the present method are biphenyl derivatives having the structure:
- the present invention relates to methods of using compounds and compositions which are particularly useful for treating hair loss in mammals, including arresting and/or reversing hair loss and promoting hair growth.
- the present inventors have also surprisingly discovered that the preferred compounds are cardiac-sparing.
- the preferred compounds useful in the method of the present invention are therefore, as defined herein below, cardiac-sparing.
- variable, moiety, group, or the like occurs more than one time in any variable or structure, its definition at each occurrence is independent of its definition at every other occurrence.
- salt is a cationic salt formed at any acidic (e.g., carboxyl) group, or an anionic salt formed at any basic (e.g., amino) group.
- Preferred cationic salts include the alkali metal salts (such as, for example, sodium and potassium), alkaline earth metal salts (such as, for example, magnesium and calcium), and organic salts.
- Preferred anionic salts include the halides (such as, for example, chloride salts). Such acceptable salts must, when administered, be appropriate for mammalian use.
- alkyl is a saturated, straight or branched chain monovalent hydrocarbon radical. Unless otherwise specified, alkyls have from 1 to about 10 carbon atoms (C 1 -C 10 ). Preferred alkyls include, for example, methyl, ethyl, propyl, iso-propyl, tert-butyl, n-butyl, sec-butyl, and iso-butyl.
- aryl is a carbocyclic or heterocyclic aryl.
- Carbocyclic aryl is optionally substituted phenyl or optionally substituted naphthyl.
- Heterocyclic aryl is optionally substituted phenyl or optionally substituted naphthyl, having at least one heteroatom (N, O, or S) making up the aryl ring.
- aryl-lower alkyl is aryl substituted by at least one alkyl, lower alkoxy, lower alkanoyloxy, or trifluoromethyl.
- biohydrolyzable amides are amides of the compounds used in the present invention which do not interfere with the activity of the compound, or that are readily converted in vivo by a mammalian subject to yield an active compound.
- biohydrolyzable esters are esters of the compounds used in the present invention which do not interfere with the activity of the compound, or that are readily converted in vivo by a mammalian subject to yield an active compound.
- biohydrolyzable imides are imides of the compounds used in the present invention which do not interfere with the activity of the compound, or that are readily converted in vivo by a mammalian subject to yield an active compound.
- cycloalkyl refers to a saturated cyclic hydrocarbon radical, preferably C 5 -C 7 cycloalkyl. Most preferably, a cycloalkyl is cyclopentyl or cyclohexyl.
- cycloalkyl-lower alkyl is cycloalkyl substituted by at least one alkyl, lower alkoxy, lower alkanoyloxy, or trifluoromethyl.
- Non-limiting examples of cycloalkyl-lower alkyl include 1- or 2-(cyclopentyl or cyclohexyl)ethyl; 1-, 2-, or 3-(cyclopentyl) or cyclohexyl)propyl; or 1-, 2-, 3-, or 4-(cyclopentyl or cyclohexyl)butyl.
- halogen refers to chlorine, bromine, iodine, and fluorine, preferably fluorine and chlorine.
- lower in connection with organic radicals or compounds defines such with up to and including 7, preferably up to an including 4, and most preferably one or two carbon atoms.
- the “lower” radical or compound may be straight or branched.
- “pharmaceutically acceptable” means suitable for use in a human or other mammal.
- safe and effective amount of a compound means an amount that is effective to exhibit biological activity, preferably wherein the biological activity is arresting and/or reversing hair loss or promoting hair growth, at the site(s) of activity in a mammalian subject, without undue adverse side effects (such as toxicity, irritation, or allergic response), commensurate with a reasonable benefit/risk ratio when used in the manner of this invention.
- Acyl is preferably lower alkanoyl, carbocyclic aryl-lower alkanoyl, or carbocyclic aroyl.
- Lower alkanoyl is preferably acetyl, propionyl, butyryl, or pivaloyl.
- Lower alkyanoyloxy is preferably acetoxy, pivaloyloxy, or propionyloxy.
- the present invention relates to methods of treating hair loss comprising administering a composition comprising a compound having the structure:
- R is selected from the group consisting of hydrogen, hydroxy, esterified hydroxy, and etherified hydroxy
- R 1 , R 2 , and R 4 are each, independently, selected from the group consisting of hydrogen, halogen, trifluoromethyl, and lower alkyl;
- R 3 is selected from the group consisting of halogen, trifluoromethyl, lower alkyl, aryl, aryl-lower alkyl, cycloalkyl, cycloalkyl-lower alkyl, and:
- R 8 is selected from the group consisting of hydrogen, lower alkyl, aryl, cycloalkyl, aryl-lower alkyl, and cycloalkyl-lower alkyl;
- R 9 is selected from the group consisting of hydroxy and acyloxy
- R 10 is selected from the group consisting of hydrogen and lower alkyl; or wherein R 9 and R 10 together represent oxo;
- W is selected from the group consisting of —O— and —S—;
- X is selected from the group consisting of —NR 7 , S, and O;
- R 5 is selected from the group consisting of hydrogen, lower alkyl, and aryl-lower alkyl and R 6 is hydrogen; or wherein R 5 and R 6 are together oxo, provided that X is —NR 7 ;
- R 7 is selected from the group consisting of hydrogen and lower alkyl
- (k) Z is selected from the group consisting of carboxyl and carboxyl derivatized as a pharmaceutically acceptable ester or amide.
- the R moiety is selected from hydrogen, hydroxy, esterified hydroxy, and etherified hydroxy.
- esterified hydroxy refers to acyloxy, e.g., acyloxy derived from an organic carboxylic acid.
- Preferred esterified hydroxy include lower alkanoyloxy, aroyloxy, and aryl-lower alkanoyloxy.
- etherified hydroxy preferably represents lower alkoxy, lower alkenyloxy, C 5 -C 7 cycloalkyloxy, carbocyclic aryl-lower alkoxy, tetrahydropyranyloxy, C 5 -C 7 cycloalkyl-lower alkoxy, and the like.
- the R moiety is selected from hydroxy, esterified hydroxy, and etherified hydroxy. Even more preferably, the R moiety is selected from hydroxy, lower alkanoyloxy, lower alkoxy, and tetrahydropyranyloxy. Most preferably, the R moiety is hydroxy.
- the R moiety substitutes at the 4′ position as shown herein.
- R 1 , R 2 , and R 4 are each, independently, selected from hydrogen, halogen, trifluoromethyl and lower alkyl.
- R 1 and R 2 are each, independently, selected from halogen, trifluoromethyl, and C 1 -C 3 alkyl. More preferably, R 1 and R 2 are each, independently, selected from halogen and C 1 -C 3 alkyl. Still more preferably, R 1 and R 2 are each, independently, selected from chlorine and methyl. Preferably, R 1 and R 2 are equivalent. Most preferably, R 1 and R 2 are each methyl.
- R 4 is preferably hydrogen.
- R 1 substitutes at the 3 position as shown herein.
- R 2 substitutes at the 5 position as shown herein.
- R 4 substitutes at the 5′ position as shown herein.
- R 3 moiety is selected from halogen, trifluoromethyl, lower alkyl, aryl, aryl-lower alkyl, cycloalkyl-lower alkyl, and:
- R 8 is selected from hydrogen, lower alkyl, aryl, cycloalkyl, aryl-lower alkyl, and cycloalkyl-lower alkyl.
- R 9 is selected from hydroxy and acyloxy.
- acyloxy is —O-acyl, wherein acyl is preferably selected from lower alkanoyl, carbocyclic aryl-lower alkanoyl, and carbocyclic aroyl.
- R 10 is selected from hydrogen and lower alkyl; or wherein R 9 and R 10 together represent oxo (doubly-bonded oxygen).
- the R 3 moiety is selected from lower alkyl, aryl-lower alkyl, cycloalkyl-lower alkyl and
- the R 3 moiety is selected from iso-propyl, benzyl, benzyl substituted with halogen, and trifluoromethyl. Most preferably, R 3 is iso-propyl.
- R 3 moiety preferably substitutes at the 3′ position as shown herein.
- W is selected from —O— and —S—. Most preferably, W is —O—.
- X is selected from —NR 7 —, —S—, and —O—.
- X is —NR 7 — or —O—.
- X is —NR 7 —.
- R 5 is selected from hydrogen, lower alkyl, and aryl-lower alkyl.
- R 6 is hydrogen. Alternatively, and most preferably, R 5 and R 6 are, together, an oxo moiety ( ⁇ O).
- R 7 is selected from hydrogen and lower alkyl. Most preferably, R 7 is hydrogen.
- Z is selected from carboxyl (—CO 2 H) and carboxyl derivatized as a pharmaceutically acceptable ester or amide.
- a “carboxyl derivatized as a pharmaceutically acceptable ester” represents esterified carboxyl, preferably a prodrug ester which is convertible by solvolysis or under physiological conditions to the corresponding free carboxylic acid.
- a “carboxyl derivatized as a pharmaceutically acceptable amide” represents carboxyl which has been functionalized as an amide, preferably a prodrug amide which is convertible by solvolysis or under physiological conditions to the corresponding free carboxylic acid.
- the amide may be a primary amide, i.e., —C( ⁇ O)NH 2 .
- Z is selected from carboxyl and carboxyl derivatized as a pharmaceutically acceptable ester. Most preferably, Z is carboxyl.
- Preferred carboxyl derivatized as a pharmaceutically acceptable ester include lower alkoxycarbonyl; (amino, acylamino, mono- or di-lower alkylamino)-lower alkoxycarbonyl; carboxy-lower alkoxycarbonyl, e.g., ⁇ -carboxy-lower alkoxycarbonyl; lower alkoxycarbonyl-lower alkoxycarbonyl, e.g., ⁇ -lower alkoxycarbonyl-lower alkoxycarbonyl; ⁇ -(di-lower alkylamino, amino, mono-lower alkylamino, morpholino, piperidino, pyrrolidino, 1-lower alkyl-piperazino)-carbonyl-lower alkoxycarbonyl; carbocyclic and heterocyclic aryl-lower alkoxycarbonyl, preferably optionally (halo, lower alkyl or lower alkoxy)-substit
- Carboxyl derivatized as a pharmaceutically acceptable prodrug ester is most preferably C 1 -C 4 alkoxycarbonyl, benzyloxycarbonyl optionally substituted on phenyl by lower alkyl, lower alkoxy, halo or trifluoromethyl, 1-(C 2 -C 4 -alkanoyloxy)-ethoxycarbonyl, (2,2-dimethyl-1,3-dioxolan4-yl)-methoxycarbonyl, 5-indanyloxycarbonyl, 1-(C 1 -C 4 -alkoxycarbonyloxy)-ethoxycarbonyl or 3-pyridylmethoxycarbonyl.
- Carboxyl derivatized as a pharmaceutically acceptable amide is preferably carbamoyl or N-substituted carbamoyl, preferably lower alkylamino carbamoyl, arylamino carbamoyl, di-lower alkylamino carbamoyl, morpholino carbamoyl, N-lower alkylpiperazino carbamoyl, pyrrolidino carbamoyl, piperidino carbamoyl, (amino or acylamino)-lower alkylamino carbamoyl or aryl-lower alkylamino carbamoyl.
- Preferred compounds of the present invention include those wherein X is —NR 7 and R 5 and R 6 are together oxo. Such compounds are represented as:
- R 1 R 2 Y R 7 1 hydrogen hydrogen hydroxy hydrogen 2 iodine iodine hydroxy hydrogen 3 bromine bromine hydroxy hydrogen 4 bromine bromine NH 2 hydrogen 5 bromine bromine NH—CH 3 hydrogen 6 chlorine chlorine hydroxy hydrogen 7 fluorine fluorine hydroxy hydrogen 8 methyl methyl hydroxy hydrogen 9 methyl methyl NH 2 hydrogen 10 methyl methyl hydroxy methyl 11 iso-propyl iso-propyl hydroxy hydrogen 12 methyl methyl O—CH 2 —CH 3 hydrogen 13 methyl methyl O—CH 2 -phenyl hydrogen
- the present invention relates to methods of treating hair loss by administering a compound having a structure as described herein.
- the compound utilized in the present invention will be cardiac-sparing.
- Compounds (test compounds) may be tested for their ability to induce anagen and their lack of cardiotoxicity (cardiac-sparing) using the following methods.
- other methods well-known in the art may be used (but with the term “cardiac-sparing” being defined according to the method disclosed herein below).
- the cardiotoxicity assay measures the potential of a test compound to adversely affect the cardiovascular system.
- thyroid hormone T3 damages the cardiovascular system, the heart enlarges.
- T3 thyroid hormone
- Klein and Ojamaa “Thyroid Hormone and the Cardiovascular System”, Current Opinion in Endocrinology and Diabetes, Vol. 4, pp.341-346 (1997); and Klemperer et al., “Thyroid Hormone Therapy and Cardiovascular Disease”, Progress in Cardiovascular Diseases, Vol. 37 (4), pp. 329-336 (1996).
- This increases the weight of the heart relative to whole body weight.
- the cardiotoxicity assay herein below is used to test compounds for potentially adverse cardiac effects by measuring their effect on the heart-to-body weight ratio.
- Two groups each of six male Sprague Dawley rats (Harlan Sprague Dawley, Inc., Indianapolis, Ind.) (each weighing from approximately 220 grams to 235 grams) are utilized.
- the first group is a vehicle control group and the second group is a test compound group.
- the length of the assay is 30 days, with treatment of vehicle or test compound in vehicle daily for 28 of those days as described below.
- each rat Prior to initiation of the assay, each rat is allowed to acclimate to standard environmental conditions for 5 days. Each rat receives food (standard rat chow diet) and water ad libitum 5 days prior to initiation of the assay as well as to termination of the study.
- the vehicle is 91:9 (v:v) propylene glycol:ethanol.
- the test compound is prepared at a concentration of 500 ⁇ g/mL in the vehicle.
- each rat is weighed on day 1 of the assay. Dosage calculations are then performed: each rat will be administered daily a dosing solution of vehicle or test compound in vehicle (depending on whether the rat is in the vehicle control group or the test compound group, respectively) at 500 ⁇ L of dosing solution per kg of rat. For rats in the test compound group, this corresponds to a dose of 250 ⁇ g of test compound per kg of rat.
- Day 2 is the first day of treatment with dosing solution for both groups. Body weights are taken for each rat on days 3, 5, 8, 10, 12, 15, 17, 19, 22, 24, 26, and 29 prior to dosing for that day; for each rat, the dosing solutions are recalculated and administered accordingly upon change in body weight.
- Treatment occurs once daily in the morning on days 2 through 29, inclusive, for each rat in each group.
- the dosing solution is administered subcutaneously between the shoulders of the rat such that the injection sites are rotated in this area.
- the hearts of each rat are then excised as follows. An incision is made to expose the abdominal cavity. The rib cage is carefully cut at the sternum with small scissors, such that the heart and lungs are exposed. With small scissors and forceps, the vessels connected to the heart are cut away from the heart. These vessels include the caudal vena cava, left cranial vena cava (pulmonary trunk), right cranial vena cava, thoracic aorta, right subclavian artery, internal thoracic artery and vein, and any other small attachments. The heart is then immediately taken out intact, including the left and right auricles and left and right ventricles. Immediately thereafter, any excess tissue is trimmed away, the heart is lightly blotted on a paper towel until no more blood is visibly left behind on the paper towel, and the heart is weighed.
- the heart weight is divided by the body weight after euthanization for each rat to give the heart/body ratio.
- the heart/body ratios for each rat in the vehicle control group are added together and divided by 6 (i.e., the total number of rats in the group) to give RV (ratio for vehicle control group).
- RV ratio for vehicle control group
- RT ratio for test compound group
- the index C is then calculated by dividing RT by RV.
- the test compound is cardiac-sparing.
- C is less than 1.2, more preferably less than 1.15, and most preferably less than 1.1.
- T3 and T4 are not cardiac-sparing.
- the Telogen Conversion Assay measures the potential of a test compound to convert mice in the resting stage of the hair growth cycle (“telogen”), to the growth stage of the hair growth cycle (“anagen”).
- telogen there are three principal phases of the hair growth cycle: anagen, catagen, and telogen. It is believed that there is a longer telogen period in C3H mice (Harlan Sprague Dawley, Inc., Indianapolis, Ind.) from approximately 40 days of age until about 75 days of age, when hair growth is synchronized. It is believed that after 75 days of age, hair growth is no longer synchronized. Wherein about 40 day-old mice with dark fur (brown or black) are used in hair growth experiments, melanogenesis occurs along with hair (fur) growth wherein the topical application of hair growth inducers are evaluated.
- the Telogen Conversion Assay herein below is used to screen compounds for potential hair growth by measuring melanogenesis.
- Three groups of 44 day-old C3H mice are utilized: a vehicle control group, a positive control group, and a test compound group, wherein the test compound group is administered a compound used in the method of the present invention.
- the length of the assay is at least 19 days with 15 treatment days (wherein the treatment days occur Mondays through Fridays).
- Day 1 is the first day of treatment. Most studies will end on Day 19, but a few may be carried out to Day 24 if the melanogenesis response looks positive, but occurs slowly.
- a typical study design is shown in Table 1 below, Typical dosage concentrations are set forth in Table 1, however the skilled artisan will readily understand that such concentrations may be modified.
- mice are treated topically Monday through Friday on their lower back (base of tail to the lower rib).
- a pipettor and tip are used to deliver 400 ⁇ L to each mouse's back.
- the 400 ⁇ L application is applied slowly while moving hair on the mouse to allow the application to reach the skin.
- the compounds used in the methods of the present invention are prepared according to procedures which are well-known to those ordinarily skilled in the art.
- the starting materials used in preparing the compounds are known, made by known methods, or are commercially available as a starting material.
- the compounds of the present invention may have one or more chiral centers. As a result, one may selectively prepare one optical isomer, including diastereomers and enantiomers, over another, for example by chiral starting materials, catalysts or solvents, or may prepare both stereoisomers or both optical isomers, including diastereomers and enantiomers at once (a racemic mixture). Since the compounds of the invention may exist as racemic mixtures, mixtures of optical isomers, including diastereomers and enantiomers, may be separated using known methods, such as through the use of, for example, chiral salts and chiral chromatography.
- one optical isomer including a diastereomer and enantiomer, or a stereoisomer
- both optical isomers including diastereomers and enantiomers, or stereoisomers substantially free of the other are disclosed and claimed as well.
- the material is then taken up in 15 mL acetic anhydride and cooled to ⁇ 10° C. To this cooled solution is added dropwise a solution of 2-isopropyl anisole (1a; 7.43 g) in 35 mL acetic anhydride and 5 mL trifluoroacetic acid. The reaction is allowed to stand in a refrigerator for about 16 hours. After allowing the reaction to return to room temperature for 3 hours, the reaction is concentrated under high vacuum. The residue is taken up in 25 mL methanol, 25 mL 10% sodium bisulfite, and 188 mL 2M sodium tetrafluoroborate. The mixture is stirred vigorously for 30 minutes and the supernatant is decanted off. To the residue is added 200 mL hexane and it is stirred for an additional 30 minutes. The solid is collected, washed with hexane, and dried under vacuum to afford 1b.
- the product is eluted using a step gradient, 2 ⁇ 15 mL 25:75 acetonitrile:water, 1 ⁇ 15 mL 35:65 acetonitrile:water, 1 ⁇ 15 mL 40:60 acetonitrile:water, 2 ⁇ 15 mL 45:55 acetonitrile:water, and 1 ⁇ 15 mL 50:50 acetonitrile:water to afford 1e.
- Example 2 The compound of Example 2 is synthesized as described in Yokoyama et al., “Synthesis and Structure-Activity Relationships of Oxamic Acid and Acetic Acid Derivative Related to L-Thyronine”, Journal of Medicinal Chemistry, Vol. 38, pp. 695-707 (1995).
- Example 3 The compound of Example 3 is synthesized as described in Yokoyama et al., U.S. Pat. No. 5,401,772, assigned to Ciba-Geigy Corp., issued Mar. 28, 1995.
- N-[3,5-dimethyl-4-(4′-methoxy-3′-isopropylphenoxy)phenyl]oxamate Methyl N-[3,5-dimethyl-4-(4′-methoxy-3′-isopropylphenoxy)phenyl]oxamate (prepared as described in Example 1d) (750 mg) is dissolved in 12 mL methanol and 2.2 ML 1 N sodium hydroxide is added. The sample is reacted overnight. The mixture is concentrated under reduced pressure. To the mixture is added 25 mL water and 15 mL ethyl acetate, followed by 5 mL 1 N HCl.
- the mixture is transferred to a separatory funnel and an additional 35 mL ethyl acetate is added.
- the organic layer is separated and the aqueous phase is extracted once with 15 mL ethyl acetate and once with 10 mL ethyl acetate.
- the organic layers are combined, washed with 25 mL saturated sodium chloride, and dried over magnesium sulfate. The solution is filtered and concentrated under reduced pressure to afford 5.
- the methods of the present invention are performed by administering to a mammal (preferably a human) a compound having a structure as described herein and, preferably, a pharmaceutically-acceptable or cosmetically-acceptable carrier.
- the compounds herein may be used for the treatment of such conditions as treating hair loss in mammals, including arresting and/or reversing hair loss and promoting hair growth. Such conditions may manifest themselves in, for example, alopecia, including male pattern baldness and female pattern baldness.
- the compounds of the present invention are, as defined herein, cardiac-sparing.
- the compounds are formulated into pharmaceutical or cosmetic compositions for use in treatment or prophylaxis of conditions such as the foregoing.
- Standard pharmaceutical formulation techniques are used, such as those disclosed in Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa. (1990).
- a compound having a structure as described herein is administered per day for systemic administration. It is understood that these dosage ranges are by way of example only, and that daily administration can be adjusted depending on various factors. The specific dosage of the compound to be administered, as well as the duration of treatment, and whether the treatment is topical or systemic are interdependent.
- the dosage and treatment regimen will also depend upon such factors as the specific compound used, the treatment indication, the efficacy of the compound, the personal attributes of the subject (such as, for example, weight, age, sex, and medical condition of the subject), compliance with the treatment regimen, and the presence and severity of any side effects of the treatment.
- the subject compounds are co-administered with a pharmaceutically-acceptable or cosmetically-acceptable carrier (herein collectively described as “carrier”).
- carrier means one or more compatible solid or liquid filler diluents or encapsulating substances which are suitable for administration to a mammal.
- compatible means that the components of the composition are capable of being commingled with a compound of the present invention, and with each other, in a manner such that there is no interaction which would substantially reduce the efficacy of the composition under ordinary use situations.
- Carriers must, of course, be of sufficiently high purity and sufficiently low toxicity to render them suitable for administration to the animal, preferably mammal (most preferably human), being treated.
- the carrier can itself be inert or it can possess pharmaceutical and/or cosmetic benefits of its own.
- compositions of this invention may be in any of a variety of forms, suitable (for example) for oral, rectal, topical, nasal, ocular or parenteral administration. Of these, topical and/or oral administration are especially preferred with topical being most preferred.
- a variety of carriers well-known in the art may be used. These include solid or liquid fillers, diluents, hydrotropes, surface-active agents, and encapsulating substances.
- Optional pharmaceutically-active or cosmetically-active materials may be included which do not substantially interfere with the activity of the compound of the present invention.
- the amount of carrier employed in conjunction with the compound is sufficient to provide a practical quantity of material for administration per unit dose of the compound.
- substances which can serve as carriers or components thereof are sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose, and methyl cellulose; powdered tragacanth; malt; gelatin; talc; solid lubricants, such as stearic acid and magnesium stearate; calcium sulfate; vegetable oils, such as peanut oil, cottonseed oil, sesame oil, olive oil, corn oil and oil of theobroma; polyols such as propylene glycol, glycerine, sorbitol, mannitol, and polyethylene glycol; alginic acid; emulsifiers, such as the TWEENS; wetting agents, such sodium lauryl sulfate; coloring agents; flavoring agents; tableting agents, stabilizers; antioxidants; preservatives; pyrogen-free water; is
- carriers for systemic administration include sugars, starches, cellulose and its derivatives, malt, gelatin, talc, calcium sulfate, vegetable oils, synthetic oils, polyols, alginic acid, phosphate buffer solutions, emulsifiers, isotonic saline, and pyrogen-free water.
- Preferred carriers for parenteral administration include propylene glycol, ethyl oleate, pyrrolidone, ethanol, and sesame oil.
- the carrier, in compositions for parenteral administration comprises at least about 90% by weight of the total composition.
- oral dosage forms can be used, including such solid forms as tablets, capsules, granules and bulk powders. These oral forms comprise a safe and effective amount, usually at least about 5%, and preferably from about 25% to about 50%, of a compound used in the present invention. Tablets can be compressed, tablet triturates, enteric-coated, sugar-coated, film-coated, or multiple-compressed, containing suitable binders, lubricants, diluents, disintegrating agents, coloring agents, flavoring agents, flow-inducing agents, and melting agents.
- Liquid oral dosage forms include aqueous solutions, emulsions, suspensions, solutions and/or suspensions reconstituted from non-effervescent granules, and effervescent preparations reconstituted from effervescent granules, containing suitable solvents, preservatives, emulsifying agents, suspending agents, diluents, sweeteners, melting agents, coloring agents and flavoring agents.
- Tablets typically comprise conventional pharmaceutically-compatible adjuvants as inert diluents, such as calcium carbonate, sodium carbonate, mannitol, lactose and cellulose; binders such as starch, gelatin and sucrose; disintegrants such as starch, alginic acid and croscarmelose; lubricants such as magnesium stearate, stearic acid and talc. Glidants such as silicon dioxide can be used to improve flow characteristics of the powder mixture. Coloring agents, such as the FD&C dyes, can be added for appearance.
- inert diluents such as calcium carbonate, sodium carbonate, mannitol, lactose and cellulose
- binders such as starch, gelatin and sucrose
- disintegrants such as starch, alginic acid and croscarmelose
- lubricants such as magnesium stearate, stearic acid and talc.
- Glidants such as silicon dioxide can be used to improve flow characteristics
- Sweeteners and flavoring agents such as aspartame, saccharin, menthol, peppermint, and fruit flavors, are useful adjuvants for chewable tablets.
- Capsules typically comprise one or more solid diluents disclosed above. The selection of carrier components depends on secondary considerations like taste, cost, and shelf stability, which are not critical for the purposes of the subject invention, and can be readily made by a person skilled in the art.
- Orally administered compositions also include liquid solutions, emulsions, suspensions, powders, granules, elixirs, tinctures, syrups, and the like.
- the carriers suitable for preparation of such compositions are well known in the art.
- Typical components of carriers for syrups, elixirs, emulsions and suspensions include ethanol, glycerol, propylene glycol, polyethylene glycol, liquid sucrose, sorbitol and water.
- typical suspending agents include methyl cellulose, sodium carboxymethyl cellulose, AVICEL RC-591, tragacanth and sodium alginate; typical wetting agents include lecithin and polysorbate 80; and typical preservatives include methyl paraben and sodium benzoate.
- Peroral liquid compositions may also contain one or more components such as sweeteners, flavoring agents and colorants disclosed above.
- compositions may also be coated by conventional methods, typically with pH or time-dependent coatings, such that the subject compound is released in the gastrointestinal tract in the vicinity of the desired topical application, or at various times to extend the desired action.
- dosage forms typically include, but are not limited to, one or more of cellulose acetate phthalate, polyvinylacetate phthalate, hydroxypropyl methyl cellulose phthalate, ethyl cellulose, Eudragit coatings, waxes and shellac.
- compositions useful for attaining systemic delivery of the subject compounds include sublingual, buccal and nasal dosage forms.
- Such compositions typically comprise one or more of soluble filler substances such as sucrose, sorbitol and mannitol; and binders such as acacia, microcrystalline cellulose, carboxymethyl cellulose and hydroxypropyl methyl cellulose. Glidants, lubricants, sweeteners, colorants, antioxidants and flavoring agents disclosed above may also be included.
- the compounds of the present invention may also be topically administered.
- the carrier of the topical composition preferably aids penetration of the present compounds into the skin to reach the environment of the hair follicle.
- Topical compositions of the present invention may be in any form including, for example, solutions, oils, creams, ointments, gels, lotions, shampoos, leave-on and rinse-out hair conditioners, milks, cleansers, moisturizers, sprays, skin patches, and the like.
- Topical compositions containing the active compound can be admixed with a variety of carrier materials well known in the art, such as, for example, water, alcohols, aloe vera gel, allantoin, glycerine, vitamin A and E oils, mineral oil, propylene glycol, PPG-2 myristyl propionate, and the like.
- carrier materials such as, for example, water, alcohols, aloe vera gel, allantoin, glycerine, vitamin A and E oils, mineral oil, propylene glycol, PPG-2 myristyl propionate, and the like.
- compositions suitable for use in topical carriers include, for example, emollients, solvents, humectants, thickeners and powders. Examples of each of these types of materials, which can be used singly or as mixtures of one or more materials, are as follows:
- Emollients such as stearyl alcohol, glyceryl monoricinoleate, glyceryl monostearate, propane-1,2-diol, butane-1,3-diol, mink oil, cetyl alcohol, iso-propyl isostearate, stearic acid, iso-butyl palmitate, isocetyl stearate, oleyl alcohol, isopropyl laurate, hexyl laurate, decyl oleate, octadecan-2-ol, isocetyl alcohol, cetyl palmitate, dimethylpolysiloxane, di-n-butyl sebacate, iso-propyl myristate, iso-propyl palmitate, iso-propyl stearate, butyl stearate, polyethylene glycol, triethylene glycol, lanolin, sesame oil, coconut oil, arachis oil, castor oil, ace
- the compounds used in the present invention may also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles.
- Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine or phosphatidylcholines.
- a preferred formulation for topical delivery of the present compounds utilizes liposomes such as described in Dowton et al., “Influence of Liposomal Composition on Topical Delivery of Encapsulated Cyclosporin A: I. An in vitro Study Using Hairless Mouse Skin”, S.T.P. Pharma Sciences, Vol. 3, pp.
- the compounds of the present invention may also be administered by iontophoresis. See, e.g., internet site www.unipr.it/arpa/dipfarm/erasmus/erasm14.html; Banga et al., “Hydrogel-based Iontotherapeutic Delivery Devices for Transdermal Delivery of Peptide/Protein Drugs”, Pharm. Res., Vol. 10 (5), pp. 697-702 (1993); Ferry, “Theoretical Model of Iontophoresis Utilized in Transdermal Drug Delivery”, Pharmaceutical Acta Helvetiae, Vol 70, pp.
- compositions used in the present invention may also optionally comprise an activity enhancer.
- the activity enhancer can be chosen from a wide variety of molecules which can function in different ways to enhance hair growth effects of a compound of the present invention.
- Particular classes of activity enhancers include other hair growth stimulants and penetration enhancers.
- Non-limiting examples of other hair growth stimulants which may be used in the compositions herein, including both systemic and topical compositions, include, for example, benzalkonium chloride, benzethonium chloride, phenol, estradiol, diphenhydramine hydrochloride, chlorpheniramine maleate, chlorophyllin derivatives, cholesterol, salicylic acid, cysteine, methionine, red pepper tincture, benzyl nicotinate, D,L-menthol, peppermint oil, calcium pantothenate, panthenol, castor oil, hinokitiol, prednisolone, resorcinol, monosaccharides and esterified monosaccharides, chemical activators of protein kinase C enzymes, glycosaminoglycan chain cellular uptake inhibitors, inhibitors of glycosidase activity, glycosaminoglycanase inhibitors, esters of pyroglutamic acid, hex
- Non-limiting examples of penetration enhancers which may be used in the compositions herein include, for example, 2-methyl propan-2-ol, propan-2-ol, ethyl-2-hydroxypropanoate, hexan-2,5-diol, POE(2) ethyl ether, di(2-hydroxypropyl) ether, pentan-2,4-diol, acetone, POE(2) methyl ether, 2-hydroxypropionic acid, 2-hydroxyoctanoic acid, propan-l-ol, 1,4-dioxane, tetrahydrofuran, butan-1,4-diol, propylene glycol dipelargonate, polyoxypropylene 15 stearyl ether, octyl alcohol, POE ester of oleyl alcohol, oleyl alcohol, lauryl alcohol, dioctyl adipate, dicapryl adipate, di-isopropyl adipate
- the compounds used in the present methods can be administered alone or as mixtures, and the compositions may further include additional drugs or excipients as appropriate for the indication.
- kits comprising a compound and/or composition herein and information and/or instructions by words, pictures, and/or the like, that use of the kit will provide treatment for hair loss in mammals (particularly humans) including, for example, arresting and/or reversing hair loss and/or promoting hair growth.
- the kit may comprise a compound and/or composition herein and information and/or instructions regarding methods of application of the compound and/or composition, preferably with the benefit of treating hair loss in mammals.
- composition for topical administration comprising: Component Amount Compound of Example 1 5% Ethanol 57% Propylene Glycol 19% Dimethyl Isosorbide 19%
- a human male subject suffering from male pattern baldness is treated by a method of this invention. Specifically, for 6 weeks, the above composition is daily administered topically to the subject.
- a composition for topical administration is made according to the method of Dowton et al., “Influence of Liposomal Composition on Topical Delivery of Encapsulated Cyclosporin A: I. An in vitro Study Using Hairless Mouse Skin”, S.T.P. Pharma Sciences, Vol. 3, pp. 404-407 (1993), using 3,5-Example 1 in lieu of cyclosporin A and using the Novasome 1 for the non-ionic liposomal formulation.
- a human male subject suffering from male pattern baldness is treated each day with the above composition. Specifically, for 6 weeks, the above composition is administered topically to the subject.
- a shampoo comprising: Component Ex. C-1 Ex. C-2 Ex. C-3 Ex. C-4 Ammonium Lauryl 11.5% 11.5% 9.5% 7.5% Sulfate Ammonium Laureth 4% 3% 2% 2% Sulfate Cocamide MEA 2% 2% 2% 2% Ethylene Glycol 2% 2% 2% 2% Distearate Cetyl Alcohol 2% 2% 2% 2% 2% Stearyl Alcohol 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% Glycerin 1% 1% 1% 1% Polyquaternium 10 0.5% 0.25% — — Polyquaternium 24 — — 0.5% 0.25% Sodium Chloride 0.1% 0.1% 0.1% 0.1% 0.1% Sucrose Polyesters of 3% 3% — — Cottonate Fatty Acid Sucrose Polyesters of 2% 3% — — Behenate Fatty Acid Polydimethyl Siloxane — — 3% 2% Cocaminopropyl Betaine — 1% 3% 3% Lauryl Dimethyl Amine 1.5%
- a human subject suffering from male pattern baldness is treated by a method of this invention. Specifically, for 12 weeks, the above shampoo is used daily by the subject.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Dermatology (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Cosmetics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The present disclosure describes methods for treating hair loss in mammals, including arresting and/or reversing hair loss and promoting hair growth. The methods comprise administering a cardiac-sparing compound having a structure of formula (I) as described herein and a pharmaceutically-acceptable carrier.
Description
- The present invention relates to methods for treating hair loss in mammals, including arresting and/or reversing hair loss and promoting hair growth.
- Hair loss is a common problem which occurs, for example, through natural processes or is often chemically promoted through the use of certain therapeutic drugs designed to alleviate conditions such as cancer. Often such hair loss is accompanied by lack of hair regrowth which causes partial or full baldness.
- As is well-known in the art, hair growth occurs by a cycle of activity which involves alternating periods of growth and rest. This cycle is often divided into three main stages which are known as anagen, catagen, and telogen. Anagen is the growth phase of the cycle and may be characterized by penetration of the hair follicle deep into the dermis with rapid proliferation of cells which are differentiating to form hair. The next phase is catagen, which is a transitional stage marked by the cessation of cell division, and during which the hair follicle regresses through the dermis and hair growth is ceased. The next phase, telogen, is often characterized as the resting stage during which the regressed follicle contains a germ with tightly packed dermal papilla cells. At telogen, the initiation of a new anagen phase is caused by rapid cell proliferation in the germ, expansion of the dermal papilla, and elaboration of basement membrane components. Wherein hair growth ceases, most of the hair follicles reside in telogen and anagen is not engaged, thus causing the onset of full or partial baldness.
- There have been many attempts in the literature to invoke the regrowth of hair by, for example, the promotion or prolongation of anagen. Currently, there are two drugs approved by the United States Food and Drug Administration for the treatment of male pattern baldness: topical minoxidil (marketed as Rogaine® by Pharmacia & Upjohn), and oral finasteride (marketed as Propecia® by Merck & Co., Inc.). For several reasons, however, including safety concerns and/or lack of efficacy, the search for efficacious hair growth inducers is ongoing.
- Interestingly, it is known that the thyroid hormone known as thyroxine (“T4”) converts to thyronine (“T3”) in human skin by deiodinase I, a selenoprotein. Selenium deficiency causes a decrease in T3 levels due to a decrease in deiodinase I activity; this reduction in T3 levels is strongly associated with hair loss. Consistent with this observation, hair growth is a reported side effect of administration of T4. See, e.g., Berman, “Peripheral Effects of L-Thyroxine on Hair Growth and Coloration in Cattle”, Journal of Endocrinology, Vol. 20, pp. 282-292 (1960); and Gunaratnam, “The Effects of Thyroxine on Hair Growth in the Dog”, J. Small Anim. Pract., Vol. 27, pp. 17-29 (1986). Furthermore, T3 and T4 have been the subject of several patent publications relating to treatment of hair loss. See, e.g., Fischer et al., DE 1,617,477, published Jan. 8, 1970; Mortimer, GB 2,138,286, published Oct. 24, 1984; and Lindenbaum, WO 96/25943, assigned to Life Medical Sciences, Inc., published Aug. 29, 1996.
- Unfortunately, however, administration of T3 and/or T4 to treat hair loss is not practicable because these thyroid hormones are also known to induce significant cardiotoxicity. See, e.g., Walker et al., U.S. Pat. No. 5,284,971, assigned to Syntex, issued Feb. 8, 1994 and Emmett et al., U.S. Pat. No. 5,061,798, assigned to Smith Kline & French Laboratories, issued Oct. 29, 1991. Surprisingly, however, the present inventors have discovered biphenyl derivatives which promote hair growth without inducing cardiotoxicity. Consistent with this discovery, but without intending to be limited by theory, the present inventors have surprisingly discovered that the biphenyl derivatives useful in the present invention interact strongly with hair-selective thyroid hormone receptors but interact less strongly, or not at all, with heart-selective hormone receptors. These unique properties are, of course, not shared with T3 and/or T4. Accordingly, the biphenyl derivatives described for use in the methods and compositions herein are cardiac-sparing compounds useful for treating hair loss, including arresting and/or reversing hair loss and promoting hair growth.
- The present invention relates to methods for treating hair loss comprising administering a cardiac-sparing compound which has been found by the present inventors to be particularly useful for treating hair loss in mammals, including arresting and/or reversing hair loss and promoting hair growth. The compounds utilized in the present method are biphenyl derivatives having the structure:
- and pharmaceutically acceptable salts, hydrates, and biohydrolyzable amides, esters, and imides thereof, wherein R, R 1, R2, R3, R4, R5, R6, R7, X, W, and Z are defined herein.
- The present invention relates to methods of using compounds and compositions which are particularly useful for treating hair loss in mammals, including arresting and/or reversing hair loss and promoting hair growth.
- In addition to discovering that the present compounds are useful for treating hair loss, the present inventors have also surprisingly discovered that the preferred compounds are cardiac-sparing. The preferred compounds useful in the method of the present invention are therefore, as defined herein below, cardiac-sparing.
- Publications and patents are referred to throughout this disclosure. All references cited herein are hereby incorporated by reference.
- All percentages, ratios, and proportions used herein are by weight unless otherwise specified.
- In the description of the invention various embodiments and/or individual features are disclosed. As will be apparent to the ordinarily skilled practitioner all combinations of such embodiments and features are possible and can result in preferred executions of the invention.
- As used herein, wherein any variable, moiety, group, or the like occurs more than one time in any variable or structure, its definition at each occurrence is independent of its definition at every other occurrence.
- The following is a list of definitions for terms used herein:
- As used herein “salt” is a cationic salt formed at any acidic (e.g., carboxyl) group, or an anionic salt formed at any basic (e.g., amino) group. Many such salts are known in the art. Preferred cationic salts include the alkali metal salts (such as, for example, sodium and potassium), alkaline earth metal salts (such as, for example, magnesium and calcium), and organic salts. Preferred anionic salts include the halides (such as, for example, chloride salts). Such acceptable salts must, when administered, be appropriate for mammalian use.
- As used herein, “alkyl” is a saturated, straight or branched chain monovalent hydrocarbon radical. Unless otherwise specified, alkyls have from 1 to about 10 carbon atoms (C 1-C10). Preferred alkyls include, for example, methyl, ethyl, propyl, iso-propyl, tert-butyl, n-butyl, sec-butyl, and iso-butyl.
- As used herein, the term “aryl” is a carbocyclic or heterocyclic aryl. Carbocyclic aryl is optionally substituted phenyl or optionally substituted naphthyl. Heterocyclic aryl is optionally substituted phenyl or optionally substituted naphthyl, having at least one heteroatom (N, O, or S) making up the aryl ring.
- As used herein, the term “aryl-lower alkyl” is aryl substituted by at least one alkyl, lower alkoxy, lower alkanoyloxy, or trifluoromethyl.
- As used herein, “biohydrolyzable amides” are amides of the compounds used in the present invention which do not interfere with the activity of the compound, or that are readily converted in vivo by a mammalian subject to yield an active compound.
- As used herein, “biohydrolyzable esters” are esters of the compounds used in the present invention which do not interfere with the activity of the compound, or that are readily converted in vivo by a mammalian subject to yield an active compound.
- As used herein, “biohydrolyzable imides” are imides of the compounds used in the present invention which do not interfere with the activity of the compound, or that are readily converted in vivo by a mammalian subject to yield an active compound.
- As used herein “cycloalkyl” refers to a saturated cyclic hydrocarbon radical, preferably C 5-C7 cycloalkyl. Most preferably, a cycloalkyl is cyclopentyl or cyclohexyl.
- As used herein, the term “cycloalkyl-lower alkyl” is cycloalkyl substituted by at least one alkyl, lower alkoxy, lower alkanoyloxy, or trifluoromethyl. Non-limiting examples of cycloalkyl-lower alkyl include 1- or 2-(cyclopentyl or cyclohexyl)ethyl; 1-, 2-, or 3-(cyclopentyl) or cyclohexyl)propyl; or 1-, 2-, 3-, or 4-(cyclopentyl or cyclohexyl)butyl.
- As used herein “halogen”, “halo”, or the like refers to chlorine, bromine, iodine, and fluorine, preferably fluorine and chlorine.
- As used herein, the term “lower” in connection with organic radicals or compounds defines such with up to and including 7, preferably up to an including 4, and most preferably one or two carbon atoms. The “lower” radical or compound may be straight or branched.
- As used herein, “pharmaceutically acceptable” means suitable for use in a human or other mammal.
- As used herein, “safe and effective amount of a compound” (or composition, or the like) means an amount that is effective to exhibit biological activity, preferably wherein the biological activity is arresting and/or reversing hair loss or promoting hair growth, at the site(s) of activity in a mammalian subject, without undue adverse side effects (such as toxicity, irritation, or allergic response), commensurate with a reasonable benefit/risk ratio when used in the manner of this invention.
- Acyl is preferably lower alkanoyl, carbocyclic aryl-lower alkanoyl, or carbocyclic aroyl.
- Lower alkanoyl is preferably acetyl, propionyl, butyryl, or pivaloyl.
- Lower alkyanoyloxy is preferably acetoxy, pivaloyloxy, or propionyloxy.
-
- and pharmaceutically acceptable salts, hydrates, and biohydrolyzable amides, esters, and imides thereof, wherein:
- (a) R is selected from the group consisting of hydrogen, hydroxy, esterified hydroxy, and etherified hydroxy;
- (b) R 1, R2, and R4 are each, independently, selected from the group consisting of hydrogen, halogen, trifluoromethyl, and lower alkyl;
-
- (d) R 8 is selected from the group consisting of hydrogen, lower alkyl, aryl, cycloalkyl, aryl-lower alkyl, and cycloalkyl-lower alkyl;
- (e) R 9 is selected from the group consisting of hydroxy and acyloxy;
- (f) R 10 is selected from the group consisting of hydrogen and lower alkyl; or wherein R9 and R10 together represent oxo;
- (g) W is selected from the group consisting of —O— and —S—;
- (h) X is selected from the group consisting of —NR 7, S, and O;
- (i) R 5 is selected from the group consisting of hydrogen, lower alkyl, and aryl-lower alkyl and R6 is hydrogen; or wherein R5 and R6 are together oxo, provided that X is —NR7;
- (j) R 7 is selected from the group consisting of hydrogen and lower alkyl; and
- (k) Z is selected from the group consisting of carboxyl and carboxyl derivatized as a pharmaceutically acceptable ester or amide.
- The compounds useful in the method herein are further described in Yokoyama et al., U.S. Pat. No. 5,401,772, assigned to Ciba-Geigy Corp., issued Mar. 28, 1995; Yokoyama et al., EP 0,580,550, assigned to Ciba-Geigy Corp., published Jan. 26, 1994; and Yokoyama et al., “Synthesis and Structure-Activity Relationships of Oxamic Acid and Acetic Acid Derivative Related to L-Thyronine”, Journal of Medicinal Chemistry, Vol. 38, pp. 695-707 (1995). However, for convenience, the compounds are more fully described herein below:
- The R Moiety
- The R moiety is selected from hydrogen, hydroxy, esterified hydroxy, and etherified hydroxy. As used herein “esterified hydroxy” refers to acyloxy, e.g., acyloxy derived from an organic carboxylic acid. Preferred esterified hydroxy include lower alkanoyloxy, aroyloxy, and aryl-lower alkanoyloxy. As used herein, “etherified hydroxy” preferably represents lower alkoxy, lower alkenyloxy, C 5-C7 cycloalkyloxy, carbocyclic aryl-lower alkoxy, tetrahydropyranyloxy, C5-C7 cycloalkyl-lower alkoxy, and the like.
- More preferably, the R moiety is selected from hydroxy, esterified hydroxy, and etherified hydroxy. Even more preferably, the R moiety is selected from hydroxy, lower alkanoyloxy, lower alkoxy, and tetrahydropyranyloxy. Most preferably, the R moiety is hydroxy.
- Preferably, the R moiety substitutes at the 4′ position as shown herein.
- The R 1, R2, R4 Moieties
- R 1, R2, and R4 are each, independently, selected from hydrogen, halogen, trifluoromethyl and lower alkyl.
- Preferably, R 1 and R2 are each, independently, selected from halogen, trifluoromethyl, and C1-C3 alkyl. More preferably, R1 and R2 are each, independently, selected from halogen and C1-C3 alkyl. Still more preferably, R1 and R2 are each, independently, selected from chlorine and methyl. Preferably, R1 and R2 are equivalent. Most preferably, R1 and R2 are each methyl.
- R 4 is preferably hydrogen.
- Preferably, R 1 substitutes at the 3 position as shown herein. Preferably, R2 substitutes at the 5 position as shown herein. Preferably, R4 substitutes at the 5′ position as shown herein.
- The R 3 Moiety
-
- R 8 is selected from hydrogen, lower alkyl, aryl, cycloalkyl, aryl-lower alkyl, and cycloalkyl-lower alkyl. R9 is selected from hydroxy and acyloxy. As used herein, the term “acyloxy” is —O-acyl, wherein acyl is preferably selected from lower alkanoyl, carbocyclic aryl-lower alkanoyl, and carbocyclic aroyl. R10 is selected from hydrogen and lower alkyl; or wherein R9 and R10 together represent oxo (doubly-bonded oxygen).
-
- More preferably, the R 3 moiety is selected from iso-propyl, benzyl, benzyl substituted with halogen, and trifluoromethyl. Most preferably, R3 is iso-propyl.
- The R 3 moiety preferably substitutes at the 3′ position as shown herein.
- The W Moiety
- W is selected from —O— and —S—. Most preferably, W is —O—.
- The X Moiety
- X is selected from —NR 7—, —S—, and —O—. Preferably, X is —NR7— or —O—. Most preferably, X is —NR7—.
- The R 5 and R6 Moieties
- R 5 is selected from hydrogen, lower alkyl, and aryl-lower alkyl. R6 is hydrogen. Alternatively, and most preferably, R5 and R6 are, together, an oxo moiety (═O).
- The R 7 Moiety
- R 7 is selected from hydrogen and lower alkyl. Most preferably, R7 is hydrogen.
- The Z Moiety
- Z is selected from carboxyl (—CO 2H) and carboxyl derivatized as a pharmaceutically acceptable ester or amide. As used herein, a “carboxyl derivatized as a pharmaceutically acceptable ester” represents esterified carboxyl, preferably a prodrug ester which is convertible by solvolysis or under physiological conditions to the corresponding free carboxylic acid. Similarly, a “carboxyl derivatized as a pharmaceutically acceptable amide” represents carboxyl which has been functionalized as an amide, preferably a prodrug amide which is convertible by solvolysis or under physiological conditions to the corresponding free carboxylic acid. The amide may be a primary amide, i.e., —C(═O)NH2.
- Preferably, Z is selected from carboxyl and carboxyl derivatized as a pharmaceutically acceptable ester. Most preferably, Z is carboxyl.
- Preferred carboxyl derivatized as a pharmaceutically acceptable ester include lower alkoxycarbonyl; (amino, acylamino, mono- or di-lower alkylamino)-lower alkoxycarbonyl; carboxy-lower alkoxycarbonyl, e.g., α-carboxy-lower alkoxycarbonyl; lower alkoxycarbonyl-lower alkoxycarbonyl, e.g., α-lower alkoxycarbonyl-lower alkoxycarbonyl; α-(di-lower alkylamino, amino, mono-lower alkylamino, morpholino, piperidino, pyrrolidino, 1-lower alkyl-piperazino)-carbonyl-lower alkoxycarbonyl; carbocyclic and heterocyclic aryl-lower alkoxycarbonyl, preferably optionally (halo, lower alkyl or lower alkoxy)-substituted benzyloxycarbonyl, or pyridylmethoxycarbonyl; 1-(hydroxy, lower alkanoyloxy or lower alkoxy)-lower alkoxycarbonyl, e.g., pivaloyloxymethoxycarbonyl; (hydroxy, lower alkanoyloxy or lower alkoxy)-lower alkoxymethoxycarbonyl; 1-(lower alkoxycarbonyloxy)-lower alkoxycarbonyl; 5-indanyloxycarbonyl; 3-phthalidoxycarbonyl and (lower alkyl, lower alkoxy or halo)-substituted 3-phthalidoxycarbonyl; dibydroxypropyloxycarbonyl wherein hydroxy groups are free or are protected in the form of ketals, e.g., a lower alkylidene, a benzylidene or a 5- or 6-membered cycloalkylidene derivative, preferably (2,2-dimethyl-1,3-dioxolan4-yl)-methoxycarbonyl.
- Carboxyl derivatized as a pharmaceutically acceptable prodrug ester is most preferably C 1-C4 alkoxycarbonyl, benzyloxycarbonyl optionally substituted on phenyl by lower alkyl, lower alkoxy, halo or trifluoromethyl, 1-(C2-C4-alkanoyloxy)-ethoxycarbonyl, (2,2-dimethyl-1,3-dioxolan4-yl)-methoxycarbonyl, 5-indanyloxycarbonyl, 1-(C1-C4-alkoxycarbonyloxy)-ethoxycarbonyl or 3-pyridylmethoxycarbonyl.
- Carboxyl derivatized as a pharmaceutically acceptable amide is preferably carbamoyl or N-substituted carbamoyl, preferably lower alkylamino carbamoyl, arylamino carbamoyl, di-lower alkylamino carbamoyl, morpholino carbamoyl, N-lower alkylpiperazino carbamoyl, pyrrolidino carbamoyl, piperidino carbamoyl, (amino or acylamino)-lower alkylamino carbamoyl or aryl-lower alkylamino carbamoyl.
-
- An even more preferred compound of this structure is wherein W is —O—.
-
- An even more preferred compound of this structure is wherein W is —O—.
- Other preferred compounds useful in the present invention are described in Yokoyama et al., “Synthesis and Structure—Activity Relationships of Oxamic Acid and Acetic Derivatives Related to L-Thyronine”, Journal of Medicinal Chemistry, Vol. 38, pp. 695-707 (1995). These compounds are further described in Table 1 below:
TABLE 1 Example No. R1 R2 Y R7 1 hydrogen hydrogen hydroxy hydrogen 2 iodine iodine hydroxy hydrogen 3 bromine bromine hydroxy hydrogen 4 bromine bromine NH2 hydrogen 5 bromine bromine NH—CH3 hydrogen 6 chlorine chlorine hydroxy hydrogen 7 fluorine fluorine hydroxy hydrogen 8 methyl methyl hydroxy hydrogen 9 methyl methyl NH2 hydrogen 10 methyl methyl hydroxy methyl 11 iso-propyl iso-propyl hydroxy hydrogen 12 methyl methyl O—CH2—CH3 hydrogen 13 methyl methyl O—CH2-phenyl hydrogen - The present invention relates to methods of treating hair loss by administering a compound having a structure as described herein. Preferably, the compound utilized in the present invention will be cardiac-sparing. Compounds (test compounds) may be tested for their ability to induce anagen and their lack of cardiotoxicity (cardiac-sparing) using the following methods. Alternatively, other methods well-known in the art may be used (but with the term “cardiac-sparing” being defined according to the method disclosed herein below).
- Cardiotoxicity Assay:
- The cardiotoxicity assay measures the potential of a test compound to adversely affect the cardiovascular system. As thyroid hormone (T3) damages the cardiovascular system, the heart enlarges. See, e.g., Gomberg-Maitland et al., “Thyroid hormone and Cardiovascular Disease”, American Heart Journal, Vol. 135(2), pp. 187-196 (1998); Klein and Ojamaa, “Thyroid Hormone and the Cardiovascular System”, Current Opinion in Endocrinology and Diabetes, Vol. 4, pp.341-346 (1997); and Klemperer et al., “Thyroid Hormone Therapy and Cardiovascular Disease”, Progress in Cardiovascular Diseases, Vol. 37 (4), pp. 329-336 (1996). This increases the weight of the heart relative to whole body weight. The cardiotoxicity assay herein below is used to test compounds for potentially adverse cardiac effects by measuring their effect on the heart-to-body weight ratio.
- Two groups each of six male Sprague Dawley rats (Harlan Sprague Dawley, Inc., Indianapolis, Ind.) (each weighing from approximately 220 grams to 235 grams) are utilized. The first group is a vehicle control group and the second group is a test compound group. The length of the assay is 30 days, with treatment of vehicle or test compound in vehicle daily for 28 of those days as described below.
- Prior to initiation of the assay, each rat is allowed to acclimate to standard environmental conditions for 5 days. Each rat receives food (standard rat chow diet) and water ad libitum 5 days prior to initiation of the assay as well as to termination of the study.
- The vehicle is 91:9 (v:v) propylene glycol:ethanol. The test compound is prepared at a concentration of 500 μg/mL in the vehicle.
- Each rat is weighed on day 1 of the assay. Dosage calculations are then performed: each rat will be administered daily a dosing solution of vehicle or test compound in vehicle (depending on whether the rat is in the vehicle control group or the test compound group, respectively) at 500 μL of dosing solution per kg of rat. For rats in the test compound group, this corresponds to a dose of 250 μg of test compound per kg of rat.
- Day 2 is the first day of treatment with dosing solution for both groups. Body weights are taken for each rat on days 3, 5, 8, 10, 12, 15, 17, 19, 22, 24, 26, and 29 prior to dosing for that day; for each rat, the dosing solutions are recalculated and administered accordingly upon change in body weight.
- Treatment occurs once daily in the morning on days 2 through 29, inclusive, for each rat in each group. For each treatment, the dosing solution is administered subcutaneously between the shoulders of the rat such that the injection sites are rotated in this area.
- On day 30 in the morning, the rats of each group are euthanized with CO 2 from dry ice. Each rat is immediately weighed for total body weight.
- The hearts of each rat are then excised as follows. An incision is made to expose the abdominal cavity. The rib cage is carefully cut at the sternum with small scissors, such that the heart and lungs are exposed. With small scissors and forceps, the vessels connected to the heart are cut away from the heart. These vessels include the caudal vena cava, left cranial vena cava (pulmonary trunk), right cranial vena cava, thoracic aorta, right subclavian artery, internal thoracic artery and vein, and any other small attachments. The heart is then immediately taken out intact, including the left and right auricles and left and right ventricles. Immediately thereafter, any excess tissue is trimmed away, the heart is lightly blotted on a paper towel until no more blood is visibly left behind on the paper towel, and the heart is weighed.
- The heart weight is divided by the body weight after euthanization for each rat to give the heart/body ratio. The heart/body ratios for each rat in the vehicle control group are added together and divided by 6 (i.e., the total number of rats in the group) to give RV (ratio for vehicle control group). Similarly, the heart/body ratios for each rat in the test compound group are added together and divided by 6 to give RT (ratio for test compound group).
- The index C is then calculated by dividing RT by RV. As defined herein, where C is less than 1.3, the test compound is cardiac-sparing. Preferably, C is less than 1.2, more preferably less than 1.15, and most preferably less than 1.1. In accordance with this method, T3 and T4 are not cardiac-sparing.
- Telogen Conversion Assay:
- The Telogen Conversion Assay measures the potential of a test compound to convert mice in the resting stage of the hair growth cycle (“telogen”), to the growth stage of the hair growth cycle (“anagen”).
- Without intending to be limited by theory, there are three principal phases of the hair growth cycle: anagen, catagen, and telogen. It is believed that there is a longer telogen period in C3H mice (Harlan Sprague Dawley, Inc., Indianapolis, Ind.) from approximately 40 days of age until about 75 days of age, when hair growth is synchronized. It is believed that after 75 days of age, hair growth is no longer synchronized. Wherein about 40 day-old mice with dark fur (brown or black) are used in hair growth experiments, melanogenesis occurs along with hair (fur) growth wherein the topical application of hair growth inducers are evaluated. The Telogen Conversion Assay herein below is used to screen compounds for potential hair growth by measuring melanogenesis.
- Three groups of 44 day-old C3H mice are utilized: a vehicle control group, a positive control group, and a test compound group, wherein the test compound group is administered a compound used in the method of the present invention. The length of the assay is at least 19 days with 15 treatment days (wherein the treatment days occur Mondays through Fridays). Day 1 is the first day of treatment. Most studies will end on Day 19, but a few may be carried out to Day 24 if the melanogenesis response looks positive, but occurs slowly. A typical study design is shown in Table 1 below, Typical dosage concentrations are set forth in Table 1, however the skilled artisan will readily understand that such concentrations may be modified.
TABLE 1 Group Animal Concen- Application Length of # # Compound traton volume Study 1 1-10 Test 0.1% in 400 μL 19 or 24 Compound vehicle* topical days 2 11-20 Positive 0.01% in 400 μL 19 or 24 Control vehicle* topical days (T3) * 3 21-30 Vehicle** N/A 400 μL 19 or 24 topical days - The mice are treated topically Monday through Friday on their lower back (base of tail to the lower rib). A pipettor and tip are used to deliver 400 μL to each mouse's back. The 400 μL application is applied slowly while moving hair on the mouse to allow the application to reach the skin.
- While each treatment is being applied to the mouse topically, a visual grade of from 0 to 4 will be given to the skin color in the application area of each animal. As a mouse converts from telogen to anagen, its skin color will become more bluish-black. As indicated in Table 2, the grades 0 to 4 represent the following visual observations as the skin progresses from white to bluish-black.
TABLE 2 Visual Observation Grade Whitish Skin Color 0 Skin is light gray (indication 1 of initiation of anagen) Appearance of Blue Spots 2 Blue Spots are aggregating to form 3 one large blue area Skin is dark blue (almost black) 4 with color covering majority of treatment area (indication of mouse in full anagen) - The compounds used in the methods of the present invention are prepared according to procedures which are well-known to those ordinarily skilled in the art. The starting materials used in preparing the compounds are known, made by known methods, or are commercially available as a starting material.
- It is recognized that the ordinarily skilled artisan in the art of organic chemistry can readily carry out standard manipulations of organic compounds without further direction. Examples of such manipulations are discussed in standard texts such as J. March, Advanced Organic Chemistry, John Wiley & Sons (1992).
- The ordinarily skilled artisan will readily appreciate that certain reactions are best carried out when other functionalities are masked or protected in the compound, thus increasing the yield of the reaction and/or avoiding any undesirable side reactions. Often, the artisan utilizes protecting groups to accomplish such increased yields or to avoid the undesired reactions. These reactions are found in the literature and are also well within the scope of the skilled artisan. Examples of many such manipulations can be found in, for example, T. Greene, Protecting Groups in Organic Synthesis, John Wiley & Sons (1981).
- The compounds of the present invention may have one or more chiral centers. As a result, one may selectively prepare one optical isomer, including diastereomers and enantiomers, over another, for example by chiral starting materials, catalysts or solvents, or may prepare both stereoisomers or both optical isomers, including diastereomers and enantiomers at once (a racemic mixture). Since the compounds of the invention may exist as racemic mixtures, mixtures of optical isomers, including diastereomers and enantiomers, may be separated using known methods, such as through the use of, for example, chiral salts and chiral chromatography.
- In addition, it is recognized that one optical isomer, including a diastereomer and enantiomer, or a stereoisomer, may have favorable properties over the other. Thus, when disclosing and claiming the invention, when one racemic mixture is disclosed, it is clearly contemplated that both optical isomers, including diastereomers and enantiomers, or stereoisomers substantially free of the other are disclosed and claimed as well.
- The syntheses of the compounds useful in the present invention are described in the art. Accordingly, the ordinarily skilled artisan will be able to prepare the compounds described herein. For further guidance, the syntheses of the present compounds are described in Yokoyama et al., U.S. Pat. No. 5,401,772, assigned to Ciba-Geigy Corp., issued Mar. 28, 1995; Yokoyama et al., EP 0,580,550, assigned to Ciba-Geigy Corp., published Jan. 26, 1994; and Yokoyama et al., “Synthesis and Structure-Activity Relationships of Oxamic Acid and Acetic Acid Derivative Related to L-Thyronine”, Journal of Medicinal Chemistry, Vol. 38, pp. 695-707 (1995).
- For example, the following describes the synthesis of illustrative compounds utilized in the present invention.
-
- 1a. 2-isopropyl anisole: Potassium hydroxide (5.6 g) is added to 13.4 mL acetone followed by 2-isopropylphenol (13.6 g). After the potassium hydroxide is dissolved, methyl iodide (14.2 g) is added. The reaction is refluxed for about 16 hours. 150 mL of water is added. This reaction is extracted 3 times with 100 mL diethyl ether. The organic layer is extracted twice with 100 mL 10% sodium hydroxide in water, once with 100 mL water, and once with 100 mL saturated ammonium chloride. After drying over magnesium sulfate, the organic solution is dried over MgSO 4, filtered, and concentrated under reduced pressure. The material is fractionally distilled under reduced pressure to afford 1a.
- 1b. Bis(3-isopropyl-4-methoxyphenyl)iodonium Tetrafluoroborate: Acetic anhydride (7 mL) is cooled to −15° C. in a dry ice acetone bath. Fuming nitric acid (5.4 mL) is added dropwise. Iodine (2.5 g) is added in one piece followed by dropwise addition of 4.7 mL trifluoroacetic acid. After 20 minutes, the reaction is removed from the bath and stirred at room temperature for 30 minutes. After the iodine has dissolved, the reaction is sparged to remove nitrogen oxides and then concentrated under vacuum. The material is then taken up in 15 mL acetic anhydride and cooled to −10° C. To this cooled solution is added dropwise a solution of 2-isopropyl anisole (1a; 7.43 g) in 35 mL acetic anhydride and 5 mL trifluoroacetic acid. The reaction is allowed to stand in a refrigerator for about 16 hours. After allowing the reaction to return to room temperature for 3 hours, the reaction is concentrated under high vacuum. The residue is taken up in 25 mL methanol, 25 mL 10% sodium bisulfite, and 188 mL 2M sodium tetrafluoroborate. The mixture is stirred vigorously for 30 minutes and the supernatant is decanted off. To the residue is added 200 mL hexane and it is stirred for an additional 30 minutes. The solid is collected, washed with hexane, and dried under vacuum to afford 1b.
- 1c. 2′,6′-dimethyl-3-isopropyl-4-methoxy-4′-nitrodiphenyl ether: Bis(3-isopropyl-4-methoxyphenyl)iodonium tetrafluoroborate (1b; 3 g) is weighed and taken up in 7.7 mL dichloromethane and 0.5 g copper bronze is added. The mixture is cooled in an ice water bath. A solution of 2,6-dimethyl-4-nitrophenol (0.65 g) and triethylamine (0.44 g) in 5.2 mL dichloromethane is added dropwise. The reaction is placed in the dark and stirred for 5 days. At this time, the reaction is filtered through celite and concentrated under reduced pressure. Purification of the product by chromatography on silica gel followed by crystallization from hexane:ethyl acetate affords 1c.
- 1d. Methyl N-[3,5-dimethyl-4-(4′-methoxy-3′-isopropylphenoxy)phenyl]oxamate: 2′,6′-dimethyl-3-isopropyl-4-methoxy-4′-nitrodiphenyl ether (1c; 0.51 g) is dissolved in 20 mL ethanol and 60 mg of 10% palladium on carbon is added. The reaction is hydrogenated for 3 hours, then filtered through celite and concentrated under reduced pressure. Dimethyl oxamate (3 g), is added to the residue and the reaction is heated to 120° C. for 4 hours. The reaction mixture is concentrated under reduced pressure and purified by chromatography on silica gel to afford 1d.
- 1e. N-[3,5-dimethyl-4-(4′-hydroxy-3′-isopropylphenoxy)phenyl]oxamate: Methyl N-[3,5-dimethyl-4-(4′-methoxy-3′-isopropylphenoxy)phenyl]oxamate (1d; 350 mg) is dissolved in 3.5 mL dichloromethane and cooled in a dry ice acetone bath. To this solution is dropwise added 2 mL boron tribromide (1 M in dichloromethane). The reaction is stirred about 16 hours and is allowed to reach ambient temperature. At this time, the reaction is poured onto 10 mL ice and water. To this mixture is added 10 mL ethyl acetate. The organic layer is separated and the aqueous phase is extracted twice with 10 mL ethyl acetate. The organic layers are combined, dried over magnesium sulfate, and concentrated under reduced pressure. The material is dissolved in 1:1 acetonitrile:water and loaded onto a column containing 5 g C 18-derivatized silica gel and equilibrated with water. The product is eluted using a step gradient, 2×15 mL 25:75 acetonitrile:water, 1×15 mL 35:65 acetonitrile:water, 1×15 mL 40:60 acetonitrile:water, 2×15 mL 45:55 acetonitrile:water, and 1×15 mL 50:50 acetonitrile:water to afford 1e.
-
- The compound of Example 2 is synthesized as described in Yokoyama et al., “Synthesis and Structure-Activity Relationships of Oxamic Acid and Acetic Acid Derivative Related to L-Thyronine”, Journal of Medicinal Chemistry, Vol. 38, pp. 695-707 (1995).
-
- The compound of Example 3 is synthesized as described in Yokoyama et al., U.S. Pat. No. 5,401,772, assigned to Ciba-Geigy Corp., issued Mar. 28, 1995.
-
- 4a. 2′,6′-diiodo-3-isopropyl-4-methoxy-4′-nitrodiphenyl ether: Bis(3-isopropyl-4-methoxyphenyl)iodonium tetrafluoroborate (prepared as described in Example 1b) (3 g) is weighed is taken up in 7.7 mL dichloromethane and 0.5 g copper bronze is added. The mixture is cooled in an ice water bath. A solution of 2,6-diiodo-4-nitrophenol (1.53 g) and triethyl amine (0.43 g) in 5 mL dichloromethane is added dropwise. The reaction is placed in the dark and stirred for 5 days. At this time, 25 mL methanol is added to the reaction and is filtered through a plug of silica gel. The silica gel is washed with an additional 5 mL of methanol and the filtrate is concentrated under reduced pressure. Purification of the product by chromatography on silica gel affords 4a.
- 4b. Methyl N-[3,5-diiodo-4-(4′-methoxy-3′-isopropylphenoxy)phenyl]oxamate: 2′,6′-diiodo-3-isopropyl-4-methoxy-4′-nitrodiphenyl ether (4a) (0.62 g) is dissolved in 20 mL ethanol and 2 mL N,N-dimethylformamide and 40 mg of 10% palladium on carbon is added. The reaction is hydrogenated for 4 hours, then filtered through celite and concentrated under reduced pressure. Dimethyl oxamate (3 g) is added to the residue and the reaction is heated to 120° C. for 3 hours. The reaction mixture is concentrated under reduced pressure and purified by chromatography on silica gel to afford 4b.
- 4c. N-[3,5-diiodo 4(4′-hydroxy-3′-isopropylphenoxy)phenyl]oxamate: Methyl N-[3,5-diiodo-4-4′-methoxy-3′-isopropylphenoxy)phenyl]oxamate (4b) (62 mg) is dissolved in 1 mL dichloromethane and cooled in a dry ice acetone bath. To this solution is added 0.2 mL boron tribromide (1 M in dichloromethane). The reaction is stirred for about 16 hours and allowed to reach room temperature. The reaction is poured onto 10 mL ice and water. To this mixture is added 10 mL ethyl acetate. The organic layer is separated and the aqueous phase is extracted a second time with 10 mL ethyl acetate. The organic layers are combined, washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure. Purification of the product by chromatography on silica gel affords 4c.
-
- 5. N-[3,5-dimethyl-4-(4′-methoxy-3′-isopropylphenoxy)phenyl]oxamate: Methyl N-[3,5-dimethyl-4-(4′-methoxy-3′-isopropylphenoxy)phenyl]oxamate (prepared as described in Example 1d) (750 mg) is dissolved in 12 mL methanol and 2.2 ML 1 N sodium hydroxide is added. The sample is reacted overnight. The mixture is concentrated under reduced pressure. To the mixture is added 25 mL water and 15 mL ethyl acetate, followed by 5 mL 1 N HCl. The mixture is transferred to a separatory funnel and an additional 35 mL ethyl acetate is added. The organic layer is separated and the aqueous phase is extracted once with 15 mL ethyl acetate and once with 10 mL ethyl acetate. The organic layers are combined, washed with 25 mL saturated sodium chloride, and dried over magnesium sulfate. The solution is filtered and concentrated under reduced pressure to afford 5.
- The methods of the present invention are performed by administering to a mammal (preferably a human) a compound having a structure as described herein and, preferably, a pharmaceutically-acceptable or cosmetically-acceptable carrier.
- The compounds herein may be used for the treatment of such conditions as treating hair loss in mammals, including arresting and/or reversing hair loss and promoting hair growth. Such conditions may manifest themselves in, for example, alopecia, including male pattern baldness and female pattern baldness.
- Preferably the compounds of the present invention are, as defined herein, cardiac-sparing.
- Preferably, in the methods of the present invention, the compounds are formulated into pharmaceutical or cosmetic compositions for use in treatment or prophylaxis of conditions such as the foregoing. Standard pharmaceutical formulation techniques are used, such as those disclosed in Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa. (1990).
- Typically, from about 5 mg to about 3000 mg, more preferably from about 5 mg to about 1000 mg, more preferably from about 10 mg to about 100 mg, of a compound having a structure as described herein is administered per day for systemic administration. It is understood that these dosage ranges are by way of example only, and that daily administration can be adjusted depending on various factors. The specific dosage of the compound to be administered, as well as the duration of treatment, and whether the treatment is topical or systemic are interdependent. The dosage and treatment regimen will also depend upon such factors as the specific compound used, the treatment indication, the efficacy of the compound, the personal attributes of the subject (such as, for example, weight, age, sex, and medical condition of the subject), compliance with the treatment regimen, and the presence and severity of any side effects of the treatment.
- According to the present invention, the subject compounds are co-administered with a pharmaceutically-acceptable or cosmetically-acceptable carrier (herein collectively described as “carrier”). The term “carrier”, as used herein, means one or more compatible solid or liquid filler diluents or encapsulating substances which are suitable for administration to a mammal. The term “compatible”, as used herein, means that the components of the composition are capable of being commingled with a compound of the present invention, and with each other, in a manner such that there is no interaction which would substantially reduce the efficacy of the composition under ordinary use situations. Carriers must, of course, be of sufficiently high purity and sufficiently low toxicity to render them suitable for administration to the animal, preferably mammal (most preferably human), being treated. The carrier can itself be inert or it can possess pharmaceutical and/or cosmetic benefits of its own.
- The compositions of this invention may be in any of a variety of forms, suitable (for example) for oral, rectal, topical, nasal, ocular or parenteral administration. Of these, topical and/or oral administration are especially preferred with topical being most preferred. Depending upon the particular route of administration desired, a variety of carriers well-known in the art may be used. These include solid or liquid fillers, diluents, hydrotropes, surface-active agents, and encapsulating substances. Optional pharmaceutically-active or cosmetically-active materials may be included which do not substantially interfere with the activity of the compound of the present invention. The amount of carrier employed in conjunction with the compound is sufficient to provide a practical quantity of material for administration per unit dose of the compound. Techniques and compositions for making dosage forms useful in the methods of this invention are described in the following references: Modern Pharmaceutics, Chapters 9 and 10, Banker & Rhodes, eds. (1979); Lieberman et al., Pharmaceutical Dosage Forms: Tablets (1981); and Ansel, Introduction to Pharmaceutical Dosage Forms, 2nd Ed., (1976).
- Some examples of substances which can serve as carriers or components thereof are sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose, and methyl cellulose; powdered tragacanth; malt; gelatin; talc; solid lubricants, such as stearic acid and magnesium stearate; calcium sulfate; vegetable oils, such as peanut oil, cottonseed oil, sesame oil, olive oil, corn oil and oil of theobroma; polyols such as propylene glycol, glycerine, sorbitol, mannitol, and polyethylene glycol; alginic acid; emulsifiers, such as the TWEENS; wetting agents, such sodium lauryl sulfate; coloring agents; flavoring agents; tableting agents, stabilizers; antioxidants; preservatives; pyrogen-free water; isotonic saline; and phosphate buffer solutions.
- The choice of a carrier to be used in conjunction with the subject compound is typically determined by the way the compound is to be administered.
- In particular, carriers for systemic administration include sugars, starches, cellulose and its derivatives, malt, gelatin, talc, calcium sulfate, vegetable oils, synthetic oils, polyols, alginic acid, phosphate buffer solutions, emulsifiers, isotonic saline, and pyrogen-free water. Preferred carriers for parenteral administration include propylene glycol, ethyl oleate, pyrrolidone, ethanol, and sesame oil. Preferably, the carrier, in compositions for parenteral administration, comprises at least about 90% by weight of the total composition.
- Various oral dosage forms can be used, including such solid forms as tablets, capsules, granules and bulk powders. These oral forms comprise a safe and effective amount, usually at least about 5%, and preferably from about 25% to about 50%, of a compound used in the present invention. Tablets can be compressed, tablet triturates, enteric-coated, sugar-coated, film-coated, or multiple-compressed, containing suitable binders, lubricants, diluents, disintegrating agents, coloring agents, flavoring agents, flow-inducing agents, and melting agents. Liquid oral dosage forms include aqueous solutions, emulsions, suspensions, solutions and/or suspensions reconstituted from non-effervescent granules, and effervescent preparations reconstituted from effervescent granules, containing suitable solvents, preservatives, emulsifying agents, suspending agents, diluents, sweeteners, melting agents, coloring agents and flavoring agents.
- The carriers suitable for the preparation of unit dosage forms for oral administration are well-known in the art. Tablets typically comprise conventional pharmaceutically-compatible adjuvants as inert diluents, such as calcium carbonate, sodium carbonate, mannitol, lactose and cellulose; binders such as starch, gelatin and sucrose; disintegrants such as starch, alginic acid and croscarmelose; lubricants such as magnesium stearate, stearic acid and talc. Glidants such as silicon dioxide can be used to improve flow characteristics of the powder mixture. Coloring agents, such as the FD&C dyes, can be added for appearance. Sweeteners and flavoring agents, such as aspartame, saccharin, menthol, peppermint, and fruit flavors, are useful adjuvants for chewable tablets. Capsules (including time release and sustained release formulations) typically comprise one or more solid diluents disclosed above. The selection of carrier components depends on secondary considerations like taste, cost, and shelf stability, which are not critical for the purposes of the subject invention, and can be readily made by a person skilled in the art.
- Orally administered compositions also include liquid solutions, emulsions, suspensions, powders, granules, elixirs, tinctures, syrups, and the like. The carriers suitable for preparation of such compositions are well known in the art. Typical components of carriers for syrups, elixirs, emulsions and suspensions include ethanol, glycerol, propylene glycol, polyethylene glycol, liquid sucrose, sorbitol and water. For a suspension, typical suspending agents include methyl cellulose, sodium carboxymethyl cellulose, AVICEL RC-591, tragacanth and sodium alginate; typical wetting agents include lecithin and polysorbate 80; and typical preservatives include methyl paraben and sodium benzoate. Peroral liquid compositions may also contain one or more components such as sweeteners, flavoring agents and colorants disclosed above.
- Such compositions may also be coated by conventional methods, typically with pH or time-dependent coatings, such that the subject compound is released in the gastrointestinal tract in the vicinity of the desired topical application, or at various times to extend the desired action. Such dosage forms typically include, but are not limited to, one or more of cellulose acetate phthalate, polyvinylacetate phthalate, hydroxypropyl methyl cellulose phthalate, ethyl cellulose, Eudragit coatings, waxes and shellac.
- Other compositions useful for attaining systemic delivery of the subject compounds include sublingual, buccal and nasal dosage forms. Such compositions typically comprise one or more of soluble filler substances such as sucrose, sorbitol and mannitol; and binders such as acacia, microcrystalline cellulose, carboxymethyl cellulose and hydroxypropyl methyl cellulose. Glidants, lubricants, sweeteners, colorants, antioxidants and flavoring agents disclosed above may also be included.
- The compounds of the present invention may also be topically administered. The carrier of the topical composition preferably aids penetration of the present compounds into the skin to reach the environment of the hair follicle. Topical compositions of the present invention may be in any form including, for example, solutions, oils, creams, ointments, gels, lotions, shampoos, leave-on and rinse-out hair conditioners, milks, cleansers, moisturizers, sprays, skin patches, and the like.
- Topical compositions containing the active compound can be admixed with a variety of carrier materials well known in the art, such as, for example, water, alcohols, aloe vera gel, allantoin, glycerine, vitamin A and E oils, mineral oil, propylene glycol, PPG-2 myristyl propionate, and the like.
- Other materials suitable for use in topical carriers include, for example, emollients, solvents, humectants, thickeners and powders. Examples of each of these types of materials, which can be used singly or as mixtures of one or more materials, are as follows:
- Emollients, such as stearyl alcohol, glyceryl monoricinoleate, glyceryl monostearate, propane-1,2-diol, butane-1,3-diol, mink oil, cetyl alcohol, iso-propyl isostearate, stearic acid, iso-butyl palmitate, isocetyl stearate, oleyl alcohol, isopropyl laurate, hexyl laurate, decyl oleate, octadecan-2-ol, isocetyl alcohol, cetyl palmitate, dimethylpolysiloxane, di-n-butyl sebacate, iso-propyl myristate, iso-propyl palmitate, iso-propyl stearate, butyl stearate, polyethylene glycol, triethylene glycol, lanolin, sesame oil, coconut oil, arachis oil, castor oil, acetylated lanolin alcohols, petroleum, mineral oil, butyl myristate, isostearic acid, palmitic acid, isopropyl linoleate, lauryl lactate, myristyl lactate, decyl oleate, and myristyl myristate; propellants, such as propane, butane, iso-butane, dimethyl ether, carbon dioxide, and nitrous oxide; solvents, such as ethyl alcohol, methylene chloride, iso-propanol, castor oil, ethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether, dimethyl sulphoxide, dimethyl formamide, tetrahydrofuran; humectants, such as glycerin, sorbitol, sodium 2-pyrrolidone-5-carboxylate, soluble collagen, dibutyl phthalate, and gelatin; and powders, such as chalk, talc, fullers earth, kaolin, starch, gums, colloidal silicon dioxide, sodium polyacrylate, tetra alkyl ammonium smectites, trialkyl aryl ammonium smectites, chemically modified magnesium aluminium silicate, organically modified montmorillonite clay, hydrated aluminium silicate, fumed silica, carboxyvinyl polymer, sodium carboxymethyl cellulose, and ethylene glycol monostearate.
- The compounds used in the present invention may also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine or phosphatidylcholines. A preferred formulation for topical delivery of the present compounds utilizes liposomes such as described in Dowton et al., “Influence of Liposomal Composition on Topical Delivery of Encapsulated Cyclosporin A: I. An in vitro Study Using Hairless Mouse Skin”, S.T.P. Pharma Sciences, Vol. 3, pp. 404-407 (1993); Wallach and Philippot, “New Type of Lipid Vesicle: Novasome®”, Liposome Technology, Vol. 1, pp. 141-156 (1993); Wallach, U.S. Pat. No. 4,911,928, assigned to Micro-Pak, Inc., issued Mar. 27, 1990; and Weiner et al., U.S. Pat. No. 5,834,014, assigned to The University of Michigan and Micro-Pak, Inc., issued Nov. 10, 1998 (with respect to Weiner et al., with a compound as described herein administered in lieu of, or in addition to, minoxidil).
- The compounds of the present invention may also be administered by iontophoresis. See, e.g., internet site www.unipr.it/arpa/dipfarm/erasmus/erasm14.html; Banga et al., “Hydrogel-based Iontotherapeutic Delivery Devices for Transdermal Delivery of Peptide/Protein Drugs”, Pharm. Res., Vol. 10 (5), pp. 697-702 (1993); Ferry, “Theoretical Model of Iontophoresis Utilized in Transdermal Drug Delivery”, Pharmaceutical Acta Helvetiae, Vol 70, pp. 279-287 (1995); Gangarosa et al., “Modem Iontophoresis for Local Drug Delivery”, Int. J. Pharm, Vol. 123, pp. 159-171 (1995); Green et al., “Iontophoretic Delivery of a Series of Tripeptides Across the Skin in vitro”, Pharm. Res., Vol 8, pp. 1121-1127 (1991); Jadoul et al., “Quantification and Localization of Fentanyl and TRH Delivered by Iontophoresis in the Skin”, Int. J. Pharm., Vol. 120, pp. 221-8 (1995); O'Brien et al., “An Updated Review of its Antiviral Activity, Pharmacokinetic Properties and Therapeutic Efficacy”, Drugs, Vol. 37, pp. 233-309 (1989); Parry et al., “Acyclovir Biovailability in Human Skin”, J. Invest. Dermatol., Vol. 98 (6), pp. 856-63 (1992); Santi et al., “Drug Reservoir Composition and Transport of Salmon Calcitonin in Transdermal lontophoresis”, Pharm. Res., Vol 14 (1), pp. 63-66 (1997); Santi et al., “Reverse Iontophoresis—Parameters Determining Electroosmotic Flow: I. pH and Ionic Strength”, J. Control. Release, Vol. 38, pp. 159-165 (1996); Santi et al., “Reverse Iontophoresis—Parameters Determining Electroosmotic Flow: II. Electrode Chamber Formulation”, J. Control. Release, Vol. 42, pp. 29-36 (1996); Rao et al., “Reverse Iontophoresis: Noninvasive Glucose Monitoring in viva in Humans”, Pharm. Res., Vol. 12 (12), pp. 1869-1873 (1995); Thysman et al., “Human Calcitonin Delivery in Rats by Iontophoresis”, J. Pharm. Pharmacol., Vol. 46, pp. 725-730 (1994); and Volpato et al., “Iontophoresis Enhances the Transport of Acyclovir through Nude Mouse Skin by Electrorepulsion and Electroosmosis”, Pharm. Res., Vol. 12 (11), pp. 1623-1627 (1995).
- The compositions used in the present invention may also optionally comprise an activity enhancer. The activity enhancer can be chosen from a wide variety of molecules which can function in different ways to enhance hair growth effects of a compound of the present invention. Particular classes of activity enhancers include other hair growth stimulants and penetration enhancers.
- Non-limiting examples of other hair growth stimulants which may be used in the compositions herein, including both systemic and topical compositions, include, for example, benzalkonium chloride, benzethonium chloride, phenol, estradiol, diphenhydramine hydrochloride, chlorpheniramine maleate, chlorophyllin derivatives, cholesterol, salicylic acid, cysteine, methionine, red pepper tincture, benzyl nicotinate, D,L-menthol, peppermint oil, calcium pantothenate, panthenol, castor oil, hinokitiol, prednisolone, resorcinol, monosaccharides and esterified monosaccharides, chemical activators of protein kinase C enzymes, glycosaminoglycan chain cellular uptake inhibitors, inhibitors of glycosidase activity, glycosaminoglycanase inhibitors, esters of pyroglutamic acid, hexosaccharic acids or acylated hexosaccharic acids, aryl-substituted ethylenes, N-acylated amino acids, and, of course, minoxidil or finasteride. The most preferred activity enhancers are minoxidil and finasteride, most preferably minoxidil.
- Non-limiting examples of penetration enhancers which may be used in the compositions herein include, for example, 2-methyl propan-2-ol, propan-2-ol, ethyl-2-hydroxypropanoate, hexan-2,5-diol, POE(2) ethyl ether, di(2-hydroxypropyl) ether, pentan-2,4-diol, acetone, POE(2) methyl ether, 2-hydroxypropionic acid, 2-hydroxyoctanoic acid, propan-l-ol, 1,4-dioxane, tetrahydrofuran, butan-1,4-diol, propylene glycol dipelargonate, polyoxypropylene 15 stearyl ether, octyl alcohol, POE ester of oleyl alcohol, oleyl alcohol, lauryl alcohol, dioctyl adipate, dicapryl adipate, di-isopropyl adipate, di-isopropyl sebacate, dibutyl sebacate, diethyl sebacate, dimethyl sebacate, dioctyl sebacate, dibutyl suberate, dioctyl azelate, dibenzyl sebacate, dibutyl phthalate, dibutyl azelate, ethyl myristate, dimethyl azelate, butyl myristate, dibutyl succinate, didecyl phthalate, decyl oleate, ethyl caproate, ethyl salicylate, iso-propyl palmitate, ethyl laurate, 2-ethyl-hexyl pelargonate, iso-propyl isostearate, butyl laurate, benzyl benzoate, butyl benzoate, hexyl laurate, ethyl caprate, ethyl caprylate, butyl stearate, benzyl salicylate, 2-hydroxypropanoic acid, 2-hyroxyoctanoic acid, dimethyl sulphoxide, N,N-dimethyl acetamide, N,N-dimethyl formamide, 2-pyrrolidone, 1-methyl-2-pyrrolidone, 5-methyl-2-pyrrolidone, 1,5-dimethyl-2-pyrrolidone, 1-ethyl-2-pyrrolidone, phosphine oxides, sugar esters, tetrahydrofurfural alcohol, urea, diethyl-m-toluamide, and, 1-dodecylazacyloheptan-2-one.
- In all of the foregoing, of course, the compounds used in the present methods can be administered alone or as mixtures, and the compositions may further include additional drugs or excipients as appropriate for the indication.
- The present invention further relates to kits comprising a compound and/or composition herein and information and/or instructions by words, pictures, and/or the like, that use of the kit will provide treatment for hair loss in mammals (particularly humans) including, for example, arresting and/or reversing hair loss and/or promoting hair growth. In addition or in the alternative, the kit may comprise a compound and/or composition herein and information and/or instructions regarding methods of application of the compound and/or composition, preferably with the benefit of treating hair loss in mammals.
- The following examples do not limit the invention, but provide guidance to the skilled artisan to perform the methods of the present invention. In each example, a compound other than the one mentioned may be substituted in the example by another having a structure as described herein with similar results.
- A composition for topical administration is made, comprising:
Component Amount Compound of Example 1 5% Ethanol 57% Propylene Glycol 19% Dimethyl Isosorbide 19% - A human male subject suffering from male pattern baldness is treated by a method of this invention. Specifically, for 6 weeks, the above composition is daily administered topically to the subject.
- A composition for topical administration is made according to the method of Dowton et al., “Influence of Liposomal Composition on Topical Delivery of Encapsulated Cyclosporin A: I. An in vitro Study Using Hairless Mouse Skin”, S.T.P. Pharma Sciences, Vol. 3, pp. 404-407 (1993), using 3,5-Example 1 in lieu of cyclosporin A and using the Novasome 1 for the non-ionic liposomal formulation.
- A human male subject suffering from male pattern baldness is treated each day with the above composition. Specifically, for 6 weeks, the above composition is administered topically to the subject.
- A shampoo is made, comprising:
Component Ex. C-1 Ex. C-2 Ex. C-3 Ex. C-4 Ammonium Lauryl 11.5% 11.5% 9.5% 7.5% Sulfate Ammonium Laureth 4% 3% 2% 2% Sulfate Cocamide MEA 2% 2% 2% 2% Ethylene Glycol 2% 2% 2% 2% Distearate Cetyl Alcohol 2% 2% 2% 2% Stearyl Alcohol 1.2% 1.2% 1.2% 1.2% Glycerin 1% 1% 1% 1% Polyquaternium 10 0.5% 0.25% — — Polyquaternium 24 — — 0.5% 0.25% Sodium Chloride 0.1% 0.1% 0.1% 0.1% Sucrose Polyesters of 3% 3% — — Cottonate Fatty Acid Sucrose Polyesters of 2% 3% — — Behenate Fatty Acid Polydimethyl Siloxane — — 3% 2% Cocaminopropyl Betaine — 1% 3% 3% Lauryl Dimethyl Amine 1.5% 1.5% 1.5% 1.5% Oxide Decyl Polyglucose — — 1% 1% DMDM Hydantoin 0.15% 0.15% 0.15% 0.15% Compound of Example 1 4% — 3% — Compound of Example 2 — 5% — — Compound of Example 3 — — — 4% Minoxidil — — 3% 2% Phenoxyethanol 0.5% 0.5% 0.5% 0.5% Fragrance 0.5% 0.5% 0.5% 0.5% Water q.s q.s. q.s. q.s - A human subject suffering from male pattern baldness is treated by a method of this invention. Specifically, for 12 weeks, the above shampoo is used daily by the subject.
Claims (10)
1. A method of treating hair loss comprising administering a composition comprising a cardiac-sparing compound characterized by the structure:
and pharmaceutically acceptable salts, hydrates, and biohydrolyzable amides, esters, and imides thereof, wherein:
R is selected from the group consisting of hydrogen, hydroxy, esterified hydroxy, and etherified hydroxy;
R1, R2, and R4 are each, independently, selected from the group consisting of hydrogen, halogen, trifluoromethyl and lower alkyl;
R3 is selected from the group consisting of halogen, trifluoromethyl, lower alkyl, aryl, aryl-lower alkyl, cycloalkyl, cycloalkyl-lower alkyl, and:
R8 is selected from the group consisting of hydrogen, lower alkyl, aryl, cycloalkyl, aryl-lower alkyl, and cycloalkyl-lower alkyl;
R9 is selected from the group consisting of hydroxy and acyloxy;
R10 is selected from the group consisting of hydrogen and lower alkyl; with the proviso that R9 and R10 collectively optionally represent oxo;
W is selected from the group consisting of —O— and —S—;
X is selected from the group consisting of —NR7, S, and O;
R5 is selected from the group consisting of hydrogen, lower alkyl, and aryl-lower alkyl and R6 is hydrogen; with the proviso that when X is —NR7, R5 and R6 together are optionally oxo;
R7 is selected from the group consisting of hydrogen and lower alkyl; and
Z is selected from the group consisting of carboxyl and carboxyl derivatized as a pharmaceutically acceptable ester or amide.
2. A method according to claim 1 wherein X is —NR7 and R5 and R6 together are oxo.
3. A method according to any of claims 1 and 2 wherein:
R substitutes on the 4′ position;
R1 substitutes on the 3 position;
R2 substitutes on the 5 position;
R3 substitutes on the 3′ position; and
R4 substitutes on the 5′ position.
4. A method according any of claims 1 and 2 wherein:
W is —O—;
R is selected from the group consisting of hydroxy, esterified hydroxy, and etherified hydroxy;
R4 is hydrogen;
R3 is selected from the group consisting of lower alkyl, aryl-lower alkyl, cycloalkyl-lower alkyl and
and
Z is selected from the group consisting of carboxyl and carboxyl derivatized as a pharmaceutically acceptable ester.
6. A method according claim 5 wherein R7 is selected from the group consisting of hydrogen and C1-C3 alkyl.
7. A method according to any of claims 5 and 6 wherein R is hydroxy.
8. A method according to any of claims 5, 6, and 7 wherein R3 is selected from the group consisting of isopropyl, benzyl, benzyl substituted with halogen, and trifluoromethyl.
9. A method according to any of claims 5, 6, 7, and 8 wherein Z is carboxyl.
10. A method according to any of the preceding claims wherein the administration is topical.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/373,471 US20030166731A1 (en) | 1999-06-01 | 2003-02-24 | Method of treating hair loss using diphenylether derivatives |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13702299P | 1999-06-01 | 1999-06-01 | |
| US09/980,408 US6525094B1 (en) | 1999-06-01 | 2000-03-01 | Method of treating hair loss using diphenylether derivatives |
| US10/373,471 US20030166731A1 (en) | 1999-06-01 | 2003-02-24 | Method of treating hair loss using diphenylether derivatives |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2000/005253 Continuation WO2000072812A1 (en) | 1999-06-01 | 2000-03-01 | Method of treating hair loss using diphenylether derivatives |
| US09/980,408 Continuation US6525094B1 (en) | 1999-06-01 | 2000-03-01 | Method of treating hair loss using diphenylether derivatives |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20030166731A1 true US20030166731A1 (en) | 2003-09-04 |
Family
ID=22475471
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/980,408 Expired - Fee Related US6525094B1 (en) | 1999-06-01 | 2000-03-01 | Method of treating hair loss using diphenylether derivatives |
| US10/373,471 Abandoned US20030166731A1 (en) | 1999-06-01 | 2003-02-24 | Method of treating hair loss using diphenylether derivatives |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/980,408 Expired - Fee Related US6525094B1 (en) | 1999-06-01 | 2000-03-01 | Method of treating hair loss using diphenylether derivatives |
Country Status (8)
| Country | Link |
|---|---|
| US (2) | US6525094B1 (en) |
| EP (1) | EP1185230A1 (en) |
| JP (1) | JP2003500432A (en) |
| AR (1) | AR018698A1 (en) |
| AU (1) | AU3507700A (en) |
| CA (1) | CA2374263A1 (en) |
| MX (1) | MXPA01012493A (en) |
| WO (1) | WO2000072812A1 (en) |
Families Citing this family (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1185230A1 (en) * | 1999-06-01 | 2002-03-13 | University Of Texas Southwestern Medical Center | Method of treating hair loss using diphenylether derivatives |
| US6664291B2 (en) | 2000-03-31 | 2003-12-16 | Pfizer, Inc. | Malonamic acids and derivatives thereof as thyroid receptor ligands |
| DZ3276A1 (en) * | 2000-03-31 | 2001-10-04 | Pfizer Prod Inc | MALONAMIC ACIDS AND DERIVATIVES THEREOF USEFUL AS THYROID RECEPTOR LIGANDS |
| EP1262177B1 (en) * | 2001-05-31 | 2006-08-23 | Pfizer Products Inc. | Medical use of thyromimetic compounds to treat hair loss and compositions |
| US7169564B1 (en) | 2001-06-26 | 2007-01-30 | Anaderm Research Corporation | FKBP51/52 and CyP40-mediated mammalian hair growth |
| KR20040063897A (en) | 2001-09-14 | 2004-07-14 | 툴라릭, 인코포레이티드 | Linked biaryl compounds |
| DE60208132T2 (en) | 2001-09-26 | 2006-07-20 | Pfizer Products Inc., Groton | Indolocarboxylic acid as a thyroid receptor ligand |
| DE10307095A1 (en) * | 2003-02-19 | 2004-09-02 | Merck Patent Gmbh | Evaporation material for the production of high refractive index optical layers |
| US20070287688A1 (en) * | 2003-07-11 | 2007-12-13 | Macro Chem Corporation | Pharmaceutical Compositions for Topical Application |
| JP2007536343A (en) * | 2004-05-05 | 2007-12-13 | ノボ ノルディスク アクティーゼルスカブ | Phenoxyacetic acid derivatives as PPAR agonists |
| US8053598B2 (en) * | 2004-05-05 | 2011-11-08 | High Point Pharmaceuticals, Llc | Compounds, their preparation and use |
| JP2007536341A (en) * | 2004-05-05 | 2007-12-13 | ノボ ノルディスク アクティーゼルスカブ | Phenoxyacetic acid derivatives as PPAR agonists |
| AU2006265172B2 (en) * | 2005-06-30 | 2011-09-15 | Vtv Therapeutics Llc | Phenoxy acetic acids as PPAR delta activators |
| EP1979311B1 (en) | 2005-12-22 | 2012-06-13 | High Point Pharmaceuticals, LLC | Phenoxy acetic acids as ppar delta activators |
| US7943612B2 (en) * | 2006-03-09 | 2011-05-17 | High Point Pharmaceuticals, Llc | Compounds that modulate PPAR activity, their preparation and use |
| FR2923825B1 (en) * | 2007-11-20 | 2013-05-03 | Anaconda Pharma | NOVEL INHIBITORS OF HUMAN PAPILLOMA VIRUS AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING SAME. |
| WO2012176792A1 (en) * | 2011-06-21 | 2012-12-27 | 株式会社アールテック・ウエノ | Pharmaceutical composition for inflammatory diseases, allergic diseases and autoimmune diseases |
| ES2528392T3 (en) | 2012-08-06 | 2015-02-09 | Dr. August Wolff Gmbh & Co. Kg Arzneimittel | Eprotiroma for use in the prevention and / or treatment of hair disorders and compositions thereof |
| CN104193699B (en) * | 2014-08-14 | 2016-05-25 | 嘉兴特科罗生物科技有限公司 | A kind of micromolecular compound and synthetic method and application |
| MX2023001001A (en) | 2020-07-22 | 2023-03-01 | Reneo Pharmaceuticals Inc | Crystalline ppar-delta agonist. |
| WO2023147309A1 (en) | 2022-01-25 | 2023-08-03 | Reneo Pharmaceuticals, Inc. | Use of ppar-delta agonists in the treatment of disease |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5284971A (en) * | 1992-07-16 | 1994-02-08 | Syntex (U.S.A.) Inc. | 4-(3-cyclohexyl-4-hydroxy or-methoxy phenylsulfonyl) 3,5 dibromo phenyl acetic thyromimetic cholesterol-lowering agents |
| US6525094B1 (en) * | 1999-06-01 | 2003-02-25 | The University Of Texas Southwestern Medical Center | Method of treating hair loss using diphenylether derivatives |
Family Cites Families (56)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB859546A (en) | 1956-05-29 | 1961-01-25 | Arthur Alfred Hellbaum | Composition for treatment of the skin |
| US3530146A (en) | 1968-07-01 | 1970-09-22 | American Cyanamid Co | Substituted benzothiophendione compounds |
| NL7003628A (en) | 1969-03-26 | 1970-09-29 | ||
| US3616237A (en) | 1970-06-08 | 1971-10-26 | American Cyanamid Co | Method of preparing thiogriseofulvins |
| US4061791A (en) * | 1975-12-29 | 1977-12-06 | The Upjohn Company | Anti-allergic oxanilate compounds |
| US4323691A (en) | 1979-10-09 | 1982-04-06 | Abbott Laboratories | Hydroxyaminomethyl derivatives of benzoyl di-substituted α-phenoxyalkanoyl esters |
| FR2492830A1 (en) | 1980-10-29 | 1982-04-30 | Sori Soc Rech Ind | NOVEL COMPOUNDS BELONGING TO THE BENZOYL- AND A-HYDROXYBENZYL-PHENYL-OSIDES FAMILY, PROCESS FOR PREPARING THEM AND THEIR THERAPEUTIC APPLICATION |
| FR2500748A1 (en) | 1981-02-27 | 1982-09-03 | Oreal | NOVEL HAIR STAINING COMPOSITION CONTAINING MIXED PLANT POWDER, NATURAL COLORING DYE AND DILUTING AGENT |
| DE3278980D1 (en) | 1982-04-30 | 1988-10-06 | Matsushita Electric Industrial Co Ltd | Magnetic recording medium |
| JPS5941343A (en) | 1982-07-30 | 1984-03-07 | Chisso Corp | Polypropylene resin composition for container of magnetic recording material |
| FR2543434B1 (en) | 1983-04-01 | 1986-03-14 | Muller International Sarl Alba | COMPOSITION AND METHOD FOR DYEING THE PILED SYSTEM. |
| GB2138286B (en) | 1983-04-19 | 1986-10-08 | Dr Christopher Harry Mortimer | Pharmaceutical composition for the treatment of hair loss |
| US4683241A (en) | 1984-05-21 | 1987-07-28 | G. D. Searle & Co. | Phenolic ester derivatives as elastase inhibitors |
| US4771072A (en) | 1985-01-10 | 1988-09-13 | Tanabe Seiyaku Co., Ltd. | Alkoxynaphthalene derivatives |
| JPS61165311A (en) | 1985-01-14 | 1986-07-26 | Takeo Kinji | Hair tonic cosmetic |
| US5061798A (en) | 1985-01-18 | 1991-10-29 | Smith Kline & French Laboratories, Ltd. | Benzyl pyridyl and pyridazinyl compounds |
| JPH0654381B2 (en) | 1985-12-24 | 1994-07-20 | 日本合成ゴム株式会社 | Positive resist for integrated circuit fabrication |
| US4792584A (en) | 1986-05-02 | 1988-12-20 | Asahi Kasei Kogyo Kabushiki Kaisha | Adhesive compositions |
| JPS6310746A (en) | 1986-07-01 | 1988-01-18 | Tanabe Seiyaku Co Ltd | naphthalene derivatives |
| JPS63279246A (en) | 1987-05-12 | 1988-11-16 | Nippon Zeon Co Ltd | Positive photoresist composition |
| AT388372B (en) | 1987-10-08 | 1989-06-12 | Tanabe Seiyaku Co | Novel naphthalene derivatives and pharmaceuticals containing them |
| JPS63146484A (en) | 1987-10-28 | 1988-06-18 | 沖電気工業株式会社 | Method of testing printed wiring board |
| DE3738406A1 (en) * | 1987-11-12 | 1989-05-24 | Henkel Kgaa | SEBOSUPPRESSIVE TOPICAL PREPARATIONS |
| IL91418A (en) | 1988-09-01 | 1997-11-20 | Rhone Poulenc Agrochimie | (hetero) cyclic amide derivatives, process for their preparation and fungicidal compositions containing them |
| PH26342A (en) | 1988-11-29 | 1992-04-29 | Univ Texas | Microbial cellulose modified during synthesis |
| MY105057A (en) | 1989-01-27 | 1994-07-30 | Tanabe Seiyaku Co | A process for preparing naphthalene derivatives |
| JPH02300148A (en) | 1989-05-11 | 1990-12-12 | Tanabe Seiyaku Co Ltd | Method for producing naphthalene derivatives and their synthetic intermediates |
| US5580722A (en) | 1989-07-18 | 1996-12-03 | Oncogene Science, Inc. | Methods of determining chemicals that modulate transcriptionally expression of genes associated with cardiovascular disease |
| CA2063822C (en) | 1989-07-18 | 2006-10-03 | J. Gordon Foulkes | Method of transcriptionally modulating gene expression and of discovering chemicals capable of functioning as gene expression modulators |
| JP2854669B2 (en) | 1990-04-27 | 1999-02-03 | 株式会社 日立製作所 | Optical transmission body and optical transmission system and engine control system using the same |
| JPH0452646A (en) | 1990-06-21 | 1992-02-20 | Mitsubishi Kasei Corp | Coating composition for photoresist |
| AU1347292A (en) | 1991-01-18 | 1992-08-27 | Oncogene Science, Inc. | Methods of transcriptionally modulating gene expression of viral genes and other genes |
| FR2672211B1 (en) | 1991-02-04 | 1993-05-21 | Oreal | PROCESS FOR DYEING KERATINIC FIBERS WITH A MONO- OR DIHYDROXYINDOLE AND A NON-OXIDIZING AROMATIC CARBONYL DERIVATIVE AND DYEING AGENT. |
| JPH04368379A (en) | 1991-06-13 | 1992-12-21 | Natl Sci Council | Antithrombotic therapeutic agent containing a xanthone derivative or its ester as an active ingredient |
| ES2108855T3 (en) * | 1992-07-21 | 1998-01-01 | Ciba Geigy Ag | DERIVATIVES OF OXAMIC ACID AS HYPOCHOLESTEREMIC AGENTS. |
| JPH06172340A (en) | 1992-12-10 | 1994-06-21 | Nippon Mektron Ltd | New compound of xanthone and active oxygen eliminating agent or aldose reductase inhibitor comprising the same as active ingredient |
| JPH09503994A (en) | 1993-03-03 | 1997-04-22 | イーライ・リリー・アンド・カンパニー | Balanoid |
| US6248751B1 (en) * | 1993-05-28 | 2001-06-19 | Gurpreet S. Ahluwalia | Inhibition of hair growth |
| US5547966A (en) * | 1993-10-07 | 1996-08-20 | Bristol-Myers Squibb Company | Aryl urea and related compounds |
| JPH07149614A (en) | 1993-11-30 | 1995-06-13 | Shiseido Co Ltd | Hair tonic agent |
| DE4405469C2 (en) | 1994-02-21 | 1996-11-07 | Ciba Geigy Ag | Process for the production of azo dyes |
| JPH0892082A (en) | 1994-07-20 | 1996-04-09 | Kirin Brewery Co Ltd | Benzophenone derivative having eosinophil function inhibiting activity |
| US5773663A (en) | 1996-05-01 | 1998-06-30 | American Cyanamid Company | Fungicidal methods, compounds and compositions containing benzophenones |
| CZ294096B6 (en) | 1995-01-20 | 2004-10-13 | Americanácyanamidácompany | Benzophenone compounds, process of their preparation, fungicidal agents containing thereof and plant protection method |
| AU4990496A (en) | 1995-02-23 | 1996-09-11 | Life Medical Sciences, Inc. | Compositions and methods for enhancing the growth of hair and restoring hair color |
| JP2936556B2 (en) | 1995-03-31 | 1999-08-23 | 日本製紙株式会社 | Thermal recording medium |
| JP2936557B2 (en) | 1995-03-31 | 1999-08-23 | 日本製紙株式会社 | Thermal recording medium |
| US6221911B1 (en) * | 1995-06-07 | 2001-04-24 | Karo Bio Ab | Uses for thyroid hormone compounds or thyroid hormone-like compounds |
| FR2735367B1 (en) * | 1995-06-19 | 1997-07-18 | Cird Galderma | USE OF LIGANDS SPECIFIC TO RXRS RECEPTORS |
| AU6858996A (en) | 1995-08-28 | 1997-03-19 | Interlab Corporation | Pharmaceutical compositions for the treatment of infectious diseases |
| JPH09313165A (en) | 1996-05-30 | 1997-12-09 | Rikagaku Kenkyusho | Bioreactor general-purpose detector |
| JPH10133427A (en) | 1996-11-05 | 1998-05-22 | Fuji Xerox Co Ltd | Carrier for developing electrostatic latent image, electrostatic latent image developer, and image forming method |
| FR2755965B1 (en) | 1996-11-19 | 1998-12-18 | Cird Galderma | BIAROMATIC COMPOUNDS, PHARMACEUTICAL AND COSMETIC COMPOSITIONS CONTAINING THEM AND USES |
| JPH10158382A (en) | 1996-11-26 | 1998-06-16 | Asahi Chem Ind Co Ltd | Fluoropolymer |
| US5883294A (en) | 1997-06-18 | 1999-03-16 | The Regeants Of The University Of California | Selective thyroid hormone analogs |
| FR2767689B1 (en) * | 1997-08-26 | 1999-10-15 | Oreal | USE OF OXAMATE DERIVATIVES AS DEPIGMENTING AGENTS |
-
2000
- 2000-03-01 EP EP00913677A patent/EP1185230A1/en not_active Withdrawn
- 2000-03-01 MX MXPA01012493A patent/MXPA01012493A/en unknown
- 2000-03-01 JP JP2000620924A patent/JP2003500432A/en active Pending
- 2000-03-01 US US09/980,408 patent/US6525094B1/en not_active Expired - Fee Related
- 2000-03-01 AR ARP000100913A patent/AR018698A1/en not_active Application Discontinuation
- 2000-03-01 CA CA002374263A patent/CA2374263A1/en not_active Abandoned
- 2000-03-01 AU AU35077/00A patent/AU3507700A/en not_active Abandoned
- 2000-03-01 WO PCT/US2000/005253 patent/WO2000072812A1/en not_active Application Discontinuation
-
2003
- 2003-02-24 US US10/373,471 patent/US20030166731A1/en not_active Abandoned
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5284971A (en) * | 1992-07-16 | 1994-02-08 | Syntex (U.S.A.) Inc. | 4-(3-cyclohexyl-4-hydroxy or-methoxy phenylsulfonyl) 3,5 dibromo phenyl acetic thyromimetic cholesterol-lowering agents |
| US6525094B1 (en) * | 1999-06-01 | 2003-02-25 | The University Of Texas Southwestern Medical Center | Method of treating hair loss using diphenylether derivatives |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1185230A1 (en) | 2002-03-13 |
| JP2003500432A (en) | 2003-01-07 |
| CA2374263A1 (en) | 2000-12-07 |
| MXPA01012493A (en) | 2003-09-10 |
| AR018698A1 (en) | 2001-11-28 |
| WO2000072812A1 (en) | 2000-12-07 |
| US6525094B1 (en) | 2003-02-25 |
| AU3507700A (en) | 2000-12-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6525094B1 (en) | Method of treating hair loss using diphenylether derivatives | |
| EP1262177B1 (en) | Medical use of thyromimetic compounds to treat hair loss and compositions | |
| US6307049B1 (en) | Heterocyclic 2-substituted ketoamides | |
| AU3507600A (en) | Substituted biaryl ether compounds | |
| US6300341B1 (en) | 2-substituted heterocyclic sulfonamides | |
| US6646005B1 (en) | Method of treating hair loss using sulfonyl thyromimetic compounds | |
| CA2374262A1 (en) | Method of treating hair loss | |
| US6723717B1 (en) | Sulfur-containing thyroxane derivatives and their use as hair growth promotors | |
| AU3711700A (en) | Biaryl compounds | |
| WO2000051558A1 (en) | Method of treating hair loss using non-immunosuppressive compounds | |
| US6680344B1 (en) | Method of treating hair loss using diphenylmethane derivatives | |
| AU3611500A (en) | Sulfur-containing thyroxane derivatives and their use as hair growth promotors | |
| AU3507800A (en) | Method of treating hair loss using diphenylmethane derivatives | |
| EP1117372A2 (en) | Method of treating hair loss using sulfonamides |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |