US20030182678A1 - Multigene expression vectors for the biosynthesis of products via multienzyme biological pathways - Google Patents
Multigene expression vectors for the biosynthesis of products via multienzyme biological pathways Download PDFInfo
- Publication number
- US20030182678A1 US20030182678A1 US10/215,328 US21532802A US2003182678A1 US 20030182678 A1 US20030182678 A1 US 20030182678A1 US 21532802 A US21532802 A US 21532802A US 2003182678 A1 US2003182678 A1 US 2003182678A1
- Authority
- US
- United States
- Prior art keywords
- nucleic acid
- acid sequence
- promoter
- protein
- recombinant vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000015572 biosynthetic process Effects 0.000 title description 34
- 239000013604 expression vector Substances 0.000 title description 2
- 230000008236 biological pathway Effects 0.000 title 1
- 239000013598 vector Substances 0.000 claims abstract description 187
- 229920000642 polymer Polymers 0.000 claims abstract description 122
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 claims abstract description 99
- 229920000903 polyhydroxyalkanoate Polymers 0.000 claims abstract description 96
- 238000004519 manufacturing process Methods 0.000 claims abstract description 91
- 150000007523 nucleic acids Chemical class 0.000 claims description 256
- 241000196324 Embryophyta Species 0.000 claims description 220
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 193
- 210000004027 cell Anatomy 0.000 claims description 131
- 108090000623 proteins and genes Proteins 0.000 claims description 106
- 238000013518 transcription Methods 0.000 claims description 86
- 230000035897 transcription Effects 0.000 claims description 86
- 238000000034 method Methods 0.000 claims description 57
- 241000219194 Arabidopsis Species 0.000 claims description 53
- 102000004169 proteins and genes Human genes 0.000 claims description 48
- 210000002706 plastid Anatomy 0.000 claims description 47
- 108020004412 RNA 3' Polyadenylation Signals Proteins 0.000 claims description 38
- 102000039446 nucleic acids Human genes 0.000 claims description 37
- 108020004707 nucleic acids Proteins 0.000 claims description 37
- 240000002791 Brassica napus Species 0.000 claims description 34
- 235000006008 Brassica napus var napus Nutrition 0.000 claims description 34
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 claims description 34
- -1 poly(3-hydroxybutyrate) Polymers 0.000 claims description 33
- 102100026105 3-ketoacyl-CoA thiolase, mitochondrial Human genes 0.000 claims description 32
- 108010003902 Acetyl-CoA C-acyltransferase Proteins 0.000 claims description 32
- 108010010718 poly(3-hydroxyalkanoic acid) synthase Proteins 0.000 claims description 32
- QAQREVBBADEHPA-IEXPHMLFSA-N propionyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 QAQREVBBADEHPA-IEXPHMLFSA-N 0.000 claims description 30
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 26
- 108010031100 chloroplast transit peptides Proteins 0.000 claims description 25
- 101710161460 3-oxoacyl-[acyl-carrier-protein] synthase Proteins 0.000 claims description 24
- 229920001577 copolymer Polymers 0.000 claims description 24
- 241000390166 Physaria Species 0.000 claims description 20
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 claims description 18
- 240000000385 Brassica napus var. napus Species 0.000 claims description 18
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 claims description 18
- 235000004977 Brassica sinapistrum Nutrition 0.000 claims description 18
- 108010074633 Mixed Function Oxygenases Proteins 0.000 claims description 16
- 102000008109 Mixed Function Oxygenases Human genes 0.000 claims description 16
- 108010006873 Threonine Dehydratase Proteins 0.000 claims description 16
- 210000001519 tissue Anatomy 0.000 claims description 14
- 240000008042 Zea mays Species 0.000 claims description 13
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 11
- 230000001580 bacterial effect Effects 0.000 claims description 11
- 230000001131 transforming effect Effects 0.000 claims description 11
- QHHKKMYHDBRONY-RMNRSTNRSA-N 3-hydroxybutanoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 QHHKKMYHDBRONY-RMNRSTNRSA-N 0.000 claims description 6
- 244000068988 Glycine max Species 0.000 claims description 6
- 235000010469 Glycine max Nutrition 0.000 claims description 6
- 240000000111 Saccharum officinarum Species 0.000 claims description 6
- 235000007201 Saccharum officinarum Nutrition 0.000 claims description 6
- 241000209140 Triticum Species 0.000 claims description 6
- 235000021307 Triticum Nutrition 0.000 claims description 6
- WIOQNWTZBOQTEU-UHFFFAOYSA-J [5-(6-aminopurin-9-yl)-4-hydroxy-2-[[[[3-hydroxy-2,2-dimethyl-4-oxo-4-[[3-oxo-3-[2-(3-oxopentanoylsulfanyl)ethylamino]propyl]amino]butoxy]-oxidophosphoryl]oxy-oxidophosphoryl]oxymethyl]oxolan-3-yl] phosphate Chemical compound OC1C(OP([O-])([O-])=O)C(COP([O-])(=O)OP([O-])(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCSC(=O)CC(=O)CC)OC1N1C2=NC=NC(N)=C2N=C1 WIOQNWTZBOQTEU-UHFFFAOYSA-J 0.000 claims description 6
- 238000009833 condensation Methods 0.000 claims description 6
- 230000005494 condensation Effects 0.000 claims description 6
- 235000017060 Arachis glabrata Nutrition 0.000 claims description 5
- 244000105624 Arachis hypogaea Species 0.000 claims description 5
- 235000010777 Arachis hypogaea Nutrition 0.000 claims description 5
- 235000018262 Arachis monticola Nutrition 0.000 claims description 5
- 244000020551 Helianthus annuus Species 0.000 claims description 5
- 235000003222 Helianthus annuus Nutrition 0.000 claims description 5
- 235000004431 Linum usitatissimum Nutrition 0.000 claims description 5
- 240000006240 Linum usitatissimum Species 0.000 claims description 5
- 235000002637 Nicotiana tabacum Nutrition 0.000 claims description 5
- 244000061176 Nicotiana tabacum Species 0.000 claims description 5
- 241001520808 Panicum virgatum Species 0.000 claims description 5
- 244000061456 Solanum tuberosum Species 0.000 claims description 5
- 235000002595 Solanum tuberosum Nutrition 0.000 claims description 5
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 5
- OJFDKHTZOUZBOS-CITAKDKDSA-N acetoacetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 OJFDKHTZOUZBOS-CITAKDKDSA-N 0.000 claims description 5
- 235000005822 corn Nutrition 0.000 claims description 5
- 235000020232 peanut Nutrition 0.000 claims description 5
- YYGYPCRWZMLSGK-XMWLYHNJSA-N s-[2-[3-[[(2r)-4-[[[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 3-hydroxypentanethioate Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(O)CC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 YYGYPCRWZMLSGK-XMWLYHNJSA-N 0.000 claims description 5
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 claims description 4
- 230000002074 deregulated effect Effects 0.000 claims description 4
- 230000002538 fungal effect Effects 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 4
- 230000001172 regenerating effect Effects 0.000 claims description 4
- 229920000070 poly-3-hydroxybutyrate Polymers 0.000 claims description 3
- 230000003612 virological effect Effects 0.000 claims description 3
- 238000012258 culturing Methods 0.000 claims description 2
- 229920000520 poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Polymers 0.000 claims description 2
- 229920001013 poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Polymers 0.000 claims description 2
- 229920000071 poly(4-hydroxybutyrate) Polymers 0.000 claims description 2
- 240000004658 Medicago sativa Species 0.000 claims 2
- 238000010348 incorporation Methods 0.000 claims 2
- 230000009466 transformation Effects 0.000 abstract description 53
- 230000001965 increasing effect Effects 0.000 abstract description 16
- 238000002360 preparation method Methods 0.000 abstract description 3
- 238000000844 transformation Methods 0.000 abstract description 3
- 101100173636 Rattus norvegicus Fhl2 gene Proteins 0.000 description 99
- 102000004190 Enzymes Human genes 0.000 description 90
- 108090000790 Enzymes Proteins 0.000 description 90
- 239000013612 plasmid Substances 0.000 description 78
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 54
- 239000005015 poly(hydroxybutyrate) Substances 0.000 description 52
- 101100243777 Dictyostelium discoideum phbB gene Proteins 0.000 description 47
- 101150110984 phaB gene Proteins 0.000 description 47
- 235000018102 proteins Nutrition 0.000 description 45
- 101150048611 phaC gene Proteins 0.000 description 40
- 101100326160 Cupriavidus necator (strain ATCC 17699 / DSM 428 / KCTC 22496 / NCIMB 10442 / H16 / Stanier 337) bktB gene Proteins 0.000 description 37
- 150000001413 amino acids Chemical class 0.000 description 35
- 230000037361 pathway Effects 0.000 description 35
- 235000001014 amino acid Nutrition 0.000 description 34
- 229940024606 amino acid Drugs 0.000 description 33
- 101150095957 ilvA gene Proteins 0.000 description 32
- 108091008146 restriction endonucleases Proteins 0.000 description 32
- 238000005520 cutting process Methods 0.000 description 28
- 235000011331 Brassica Nutrition 0.000 description 26
- 241000219198 Brassica Species 0.000 description 26
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 26
- TYEYBOSBBBHJIV-UHFFFAOYSA-M 2-oxobutanoate Chemical compound CCC(=O)C([O-])=O TYEYBOSBBBHJIV-UHFFFAOYSA-M 0.000 description 25
- 230000014509 gene expression Effects 0.000 description 25
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 24
- 241000589158 Agrobacterium Species 0.000 description 22
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 21
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 20
- 239000004473 Threonine Substances 0.000 description 20
- 230000000694 effects Effects 0.000 description 20
- 239000000463 material Substances 0.000 description 20
- 241000252867 Cupriavidus metallidurans Species 0.000 description 19
- 230000009261 transgenic effect Effects 0.000 description 19
- 238000004458 analytical method Methods 0.000 description 18
- REKYPYSUBKSCAT-UHFFFAOYSA-N 3-hydroxypentanoic acid Chemical compound CCC(O)CC(O)=O REKYPYSUBKSCAT-UHFFFAOYSA-N 0.000 description 17
- 108020004414 DNA Proteins 0.000 description 17
- 102000053602 DNA Human genes 0.000 description 17
- 101100243766 Dictyostelium discoideum phbA gene Proteins 0.000 description 17
- 101150046540 phaA gene Proteins 0.000 description 17
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 16
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 16
- 229960000310 isoleucine Drugs 0.000 description 16
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 16
- 238000003786 synthesis reaction Methods 0.000 description 16
- 235000011293 Brassica napus Nutrition 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 15
- 239000003550 marker Substances 0.000 description 15
- 241000588724 Escherichia coli Species 0.000 description 14
- 238000010276 construction Methods 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 239000000758 substrate Substances 0.000 description 14
- 241000894006 Bacteria Species 0.000 description 13
- 230000001404 mediated effect Effects 0.000 description 13
- 230000035508 accumulation Effects 0.000 description 12
- 238000009825 accumulation Methods 0.000 description 12
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 11
- 102000012751 Pyruvate Dehydrogenase Complex Human genes 0.000 description 11
- 108010090051 Pyruvate Dehydrogenase Complex Proteins 0.000 description 11
- 230000002503 metabolic effect Effects 0.000 description 10
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 9
- 239000005562 Glyphosate Substances 0.000 description 9
- 108700019146 Transgenes Proteins 0.000 description 9
- 238000005119 centrifugation Methods 0.000 description 9
- 229940097068 glyphosate Drugs 0.000 description 9
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 9
- 239000000543 intermediate Substances 0.000 description 9
- 239000002207 metabolite Substances 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 241000219195 Arabidopsis thaliana Species 0.000 description 8
- 108091026890 Coding region Proteins 0.000 description 8
- 108091000039 acetoacetyl-CoA reductase Proteins 0.000 description 8
- 230000035772 mutation Effects 0.000 description 8
- 108010078304 poly-beta-hydroxybutyrate polymerase Proteins 0.000 description 8
- 229920000704 biodegradable plastic Polymers 0.000 description 7
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- 229930195729 fatty acid Natural products 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- 150000004665 fatty acids Chemical class 0.000 description 7
- 238000000855 fermentation Methods 0.000 description 7
- 230000004151 fermentation Effects 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 229920001184 polypeptide Polymers 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 102000004196 processed proteins & peptides Human genes 0.000 description 7
- 230000010076 replication Effects 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 6
- 108700026244 Open Reading Frames Proteins 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 6
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 6
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 238000012512 characterization method Methods 0.000 description 6
- 210000003763 chloroplast Anatomy 0.000 description 6
- 238000010367 cloning Methods 0.000 description 6
- 238000002955 isolation Methods 0.000 description 6
- 229930027917 kanamycin Natural products 0.000 description 6
- 229960000318 kanamycin Drugs 0.000 description 6
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 6
- 229930182823 kanamycin A Natural products 0.000 description 6
- 235000009973 maize Nutrition 0.000 description 6
- 108020004999 messenger RNA Proteins 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- 238000011426 transformation method Methods 0.000 description 6
- 239000004474 valine Substances 0.000 description 6
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 5
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 5
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 5
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 5
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 5
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 5
- 241000209510 Liliopsida Species 0.000 description 5
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 5
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- QWCKQJZIFLGMSD-UHFFFAOYSA-N alpha-aminobutyric acid Chemical compound CCC(N)C(O)=O QWCKQJZIFLGMSD-UHFFFAOYSA-N 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 238000004817 gas chromatography Methods 0.000 description 5
- 230000030279 gene silencing Effects 0.000 description 5
- 238000012226 gene silencing method Methods 0.000 description 5
- 230000002068 genetic effect Effects 0.000 description 5
- 229920001519 homopolymer Polymers 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 238000012269 metabolic engineering Methods 0.000 description 5
- 229940095102 methyl benzoate Drugs 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- WHBMMWSBFZVSSR-UHFFFAOYSA-M 3-hydroxybutyrate Chemical compound CC(O)CC([O-])=O WHBMMWSBFZVSSR-UHFFFAOYSA-M 0.000 description 4
- 239000004475 Arginine Substances 0.000 description 4
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 4
- 108020004705 Codon Proteins 0.000 description 4
- 241000701484 Figwort mosaic virus Species 0.000 description 4
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 4
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 4
- 239000004472 Lysine Substances 0.000 description 4
- 241000219823 Medicago Species 0.000 description 4
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 4
- WHBMMWSBFZVSSR-UHFFFAOYSA-N R3HBA Natural products CC(O)CC(O)=O WHBMMWSBFZVSSR-UHFFFAOYSA-N 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 4
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 4
- 241001464837 Viridiplantae Species 0.000 description 4
- 235000004279 alanine Nutrition 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 4
- 235000009582 asparagine Nutrition 0.000 description 4
- 229960001230 asparagine Drugs 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 230000001851 biosynthetic effect Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000001493 electron microscopy Methods 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 4
- 238000001764 infiltration Methods 0.000 description 4
- 230000037353 metabolic pathway Effects 0.000 description 4
- 230000004060 metabolic process Effects 0.000 description 4
- 238000006140 methanolysis reaction Methods 0.000 description 4
- 229930182817 methionine Natural products 0.000 description 4
- 229960004452 methionine Drugs 0.000 description 4
- 150000004702 methyl esters Chemical group 0.000 description 4
- 210000001938 protoplast Anatomy 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000003252 repetitive effect Effects 0.000 description 4
- 229920002477 rna polymer Polymers 0.000 description 4
- 239000011343 solid material Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- 101150003560 trfA gene Proteins 0.000 description 4
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 3
- RGJOEKWQDUBAIZ-IBOSZNHHSA-N CoASH Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCS)O[C@H]1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-IBOSZNHHSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- 101000937693 Homo sapiens Fatty acid 2-hydroxylase Proteins 0.000 description 3
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- 240000007594 Oryza sativa Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 240000004713 Pisum sativum Species 0.000 description 3
- 235000010582 Pisum sativum Nutrition 0.000 description 3
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 3
- 229940009098 aspartate Drugs 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 229940000635 beta-alanine Drugs 0.000 description 3
- 239000012620 biological material Substances 0.000 description 3
- RGJOEKWQDUBAIZ-UHFFFAOYSA-N coenzime A Natural products OC1C(OP(O)(O)=O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-UHFFFAOYSA-N 0.000 description 3
- 239000005516 coenzyme A Substances 0.000 description 3
- 229940093530 coenzyme a Drugs 0.000 description 3
- 230000002860 competitive effect Effects 0.000 description 3
- 230000002153 concerted effect Effects 0.000 description 3
- 238000009402 cross-breeding Methods 0.000 description 3
- 235000018417 cysteine Nutrition 0.000 description 3
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 3
- KDTSHFARGAKYJN-UHFFFAOYSA-N dephosphocoenzyme A Natural products OC1C(O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 KDTSHFARGAKYJN-UHFFFAOYSA-N 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000806 elastomer Substances 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 229930195712 glutamate Natural products 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 230000008595 infiltration Effects 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 210000003463 organelle Anatomy 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 3
- 108010018089 phosphatidylcholine 12-monooxygenase Proteins 0.000 description 3
- 230000008488 polyadenylation Effects 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 239000013605 shuttle vector Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000001117 sulphuric acid Substances 0.000 description 3
- 235000011149 sulphuric acid Nutrition 0.000 description 3
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 3
- LWTDZKXXJRRKDG-KXBFYZLASA-N (-)-phaseollin Chemical compound C1OC2=CC(O)=CC=C2[C@H]2[C@@H]1C1=CC=C3OC(C)(C)C=CC3=C1O2 LWTDZKXXJRRKDG-KXBFYZLASA-N 0.000 description 2
- 108010020183 3-phosphoshikimate 1-carboxyvinyltransferase Proteins 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 101000580696 Arabidopsis thaliana Ribulose bisphosphate carboxylase small subunit 1A, chloroplastic Proteins 0.000 description 2
- 244000003416 Asparagus officinalis Species 0.000 description 2
- 235000005340 Asparagus officinalis Nutrition 0.000 description 2
- 244000075850 Avena orientalis Species 0.000 description 2
- 235000007319 Avena orientalis Nutrition 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 2
- 240000004585 Dactylis glomerata Species 0.000 description 2
- 101710088194 Dehydrogenase Proteins 0.000 description 2
- 241000234643 Festuca arundinacea Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 240000007377 Petunia x hybrida Species 0.000 description 2
- 241000893896 Physaria fendleri Species 0.000 description 2
- 229920001397 Poly-beta-hydroxybutyrate Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 208000037534 Progressive hemifacial atrophy Diseases 0.000 description 2
- 235000007238 Secale cereale Nutrition 0.000 description 2
- 244000082988 Secale cereale Species 0.000 description 2
- 240000006394 Sorghum bicolor Species 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 101100495747 Stenotrophomonas maltophilia (strain R551-3) groEL gene Proteins 0.000 description 2
- 102000002932 Thiolase Human genes 0.000 description 2
- 108060008225 Thiolase Proteins 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- 235000007244 Zea mays Nutrition 0.000 description 2
- POODSGUMUCVRTR-IEXPHMLFSA-N acryloyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C=C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 POODSGUMUCVRTR-IEXPHMLFSA-N 0.000 description 2
- 108700021044 acyl-ACP thioesterase Proteins 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- 239000007844 bleaching agent Substances 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000005018 casein Substances 0.000 description 2
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 2
- 235000021240 caseins Nutrition 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 2
- 229930002868 chlorophyll a Natural products 0.000 description 2
- NSMUHPMZFPKNMZ-VBYMZDBQSA-M chlorophyll b Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C=O)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 NSMUHPMZFPKNMZ-VBYMZDBQSA-M 0.000 description 2
- 229930002869 chlorophyll b Natural products 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 230000004186 co-expression Effects 0.000 description 2
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 241001233957 eudicotyledons Species 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 230000023266 generation of precursor metabolites and energy Effects 0.000 description 2
- 230000035784 germination Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000003808 methanol extraction Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 108010058731 nopaline synthase Proteins 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 238000012017 passive hemagglutination assay Methods 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 230000008635 plant growth Effects 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 235000021251 pulses Nutrition 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 150000004666 short chain fatty acids Chemical class 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229960000268 spectinomycin Drugs 0.000 description 2
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 239000010414 supernatant solution Substances 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000011715 vitamin B12 Substances 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- MWBWWFOAEOYUST-UHFFFAOYSA-N 2-aminopurine Chemical compound NC1=NC=C2N=CNC2=N1 MWBWWFOAEOYUST-UHFFFAOYSA-N 0.000 description 1
- WTLKTXIHIHFSGU-UHFFFAOYSA-N 2-nitrosoguanidine Chemical compound NC(N)=NN=O WTLKTXIHIHFSGU-UHFFFAOYSA-N 0.000 description 1
- 108010046716 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) Proteins 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 101710146995 Acyl carrier protein Proteins 0.000 description 1
- 102100022089 Acyl-[acyl-carrier-protein] hydrolase Human genes 0.000 description 1
- 240000007241 Agrostis stolonifera Species 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 241001136167 Anaerotignum propionicum Species 0.000 description 1
- 241000219310 Beta vulgaris subsp. vulgaris Species 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- 108010088278 Branched-chain-amino-acid transaminase Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 101710163595 Chaperone protein DnaK Proteins 0.000 description 1
- 101710195281 Chlorophyll a-b binding protein Proteins 0.000 description 1
- 101710143415 Chlorophyll a-b binding protein 1, chloroplastic Proteins 0.000 description 1
- 101710181042 Chlorophyll a-b binding protein 1A, chloroplastic Proteins 0.000 description 1
- 101710091905 Chlorophyll a-b binding protein 2, chloroplastic Proteins 0.000 description 1
- 101710095244 Chlorophyll a-b binding protein 3, chloroplastic Proteins 0.000 description 1
- 101710127489 Chlorophyll a-b binding protein of LHCII type 1 Proteins 0.000 description 1
- 101710184917 Chlorophyll a-b binding protein of LHCII type I, chloroplastic Proteins 0.000 description 1
- 101710102593 Chlorophyll a-b binding protein, chloroplastic Proteins 0.000 description 1
- 108020004638 Circular DNA Proteins 0.000 description 1
- 241000218631 Coniferophyta Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 108010066133 D-octopine dehydrogenase Proteins 0.000 description 1
- YAHZABJORDUQGO-NQXXGFSBSA-N D-ribulose 1,5-bisphosphate Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)C(=O)COP(O)(O)=O YAHZABJORDUQGO-NQXXGFSBSA-N 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108010039731 Fatty Acid Synthases Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 108700037728 Glycine max beta-conglycinin Proteins 0.000 description 1
- 241001509401 Gordonia rubripertincta Species 0.000 description 1
- OWXMKDGYPWMGEB-UHFFFAOYSA-N HEPPS Chemical compound OCCN1CCN(CCCS(O)(=O)=O)CC1 OWXMKDGYPWMGEB-UHFFFAOYSA-N 0.000 description 1
- 101710178376 Heat shock 70 kDa protein Proteins 0.000 description 1
- 101710152018 Heat shock cognate 70 kDa protein Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101001024703 Homo sapiens Nck-associated protein 5 Proteins 0.000 description 1
- 241000209219 Hordeum Species 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 101100288095 Klebsiella pneumoniae neo gene Proteins 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- 108010043135 L-methionine gamma-lyase Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102000019010 Methylmalonyl-CoA Mutase Human genes 0.000 description 1
- 108010051862 Methylmalonyl-CoA mutase Proteins 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- BACYUWVYYTXETD-UHFFFAOYSA-N N-Lauroylsarcosine Chemical compound CCCCCCCCCCCC(=O)N(C)CC(O)=O BACYUWVYYTXETD-UHFFFAOYSA-N 0.000 description 1
- NWBJYWHLCVSVIJ-UHFFFAOYSA-N N-benzyladenine Chemical compound N=1C=NC=2NC=NC=2C=1NCC1=CC=CC=C1 NWBJYWHLCVSVIJ-UHFFFAOYSA-N 0.000 description 1
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 description 1
- 101710202365 Napin Proteins 0.000 description 1
- 102100036946 Nck-associated protein 5 Human genes 0.000 description 1
- 108010025915 Nitrite Reductases Proteins 0.000 description 1
- 241000187654 Nocardia Species 0.000 description 1
- 108091005461 Nucleic proteins Chemical group 0.000 description 1
- 101710089395 Oleosin Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 102000008172 Palmitoyl-CoA Hydrolase Human genes 0.000 description 1
- 101710163504 Phaseolin Proteins 0.000 description 1
- 241000219843 Pisum Species 0.000 description 1
- 108700001094 Plant Genes Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 241000589776 Pseudomonas putida Species 0.000 description 1
- 244000184734 Pyrus japonica Species 0.000 description 1
- 241000316848 Rhodococcus <scale insect> Species 0.000 description 1
- 241000187563 Rhodococcus ruber Species 0.000 description 1
- 241000209051 Saccharum Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 235000007230 Sorghum bicolor Nutrition 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 241000592344 Spermatophyta Species 0.000 description 1
- 235000009337 Spinacia oleracea Nutrition 0.000 description 1
- 244000300264 Spinacia oleracea Species 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 101710154134 Stearoyl-[acyl-carrier-protein] 9-desaturase, chloroplastic Proteins 0.000 description 1
- 101100282571 Stenotrophomonas maltophilia (strain R551-3) gcvP gene Proteins 0.000 description 1
- 101100204859 Stenotrophomonas maltophilia (strain R551-3) pheS gene Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 235000021536 Sugar beet Nutrition 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- COQLPRJCUIATTQ-UHFFFAOYSA-N Uranyl acetate Chemical compound O.O.O=[U]=O.CC(O)=O.CC(O)=O COQLPRJCUIATTQ-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 229920002494 Zein Polymers 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 108040005298 acryloyl-CoA reductase activity proteins Proteins 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000037354 amino acid metabolism Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000008331 benzenesulfonamides Chemical class 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000008238 biochemical pathway Effects 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- HOQPTLCRWVZIQZ-UHFFFAOYSA-H bis[[2-(5-hydroxy-4,7-dioxo-1,3,2$l^{2}-dioxaplumbepan-5-yl)acetyl]oxy]lead Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HOQPTLCRWVZIQZ-UHFFFAOYSA-H 0.000 description 1
- 150000005693 branched-chain amino acids Chemical class 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000007978 cacodylate buffer Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 1
- 229960003669 carbenicillin Drugs 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 230000006652 catabolic pathway Effects 0.000 description 1
- 229960004261 cefotaxime Drugs 0.000 description 1
- AZZMGZXNTDTSME-JUZDKLSSSA-M cefotaxime sodium Chemical compound [Na+].N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 AZZMGZXNTDTSME-JUZDKLSSSA-M 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229950001485 cocarboxylase Drugs 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000000408 embryogenic effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 150000002190 fatty acyls Chemical group 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229920005570 flexible polymer Polymers 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 230000037440 gene silencing effect Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000004110 gluconeogenesis Effects 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 230000034659 glycolysis Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000005213 imbibition Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- VIWKEBOLLIEAIL-FBMOWMAESA-N lactoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C(O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 VIWKEBOLLIEAIL-FBMOWMAESA-N 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 108010083942 mannopine synthase Proteins 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003471 mutagenic agent Substances 0.000 description 1
- 210000004897 n-terminal region Anatomy 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 230000031787 nutrient reservoir activity Effects 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 239000012285 osmium tetroxide Substances 0.000 description 1
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- LWTDZKXXJRRKDG-UHFFFAOYSA-N phaseollin Natural products C1OC2=CC(O)=CC=C2C2C1C1=CC=C3OC(C)(C)C=CC3=C1O2 LWTDZKXXJRRKDG-UHFFFAOYSA-N 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 210000000745 plant chromosome Anatomy 0.000 description 1
- 230000008121 plant development Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229930001119 polyketide Natural products 0.000 description 1
- 150000003881 polyketide derivatives Chemical class 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 108010033058 propionate - CoA ligase Proteins 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000008117 seed development Effects 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 235000021391 short chain fatty acids Nutrition 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000012868 site-directed mutagenesis technique Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- IHQKEDIOMGYHEB-UHFFFAOYSA-M sodium dimethylarsinate Chemical compound [Na+].C[As](C)([O-])=O IHQKEDIOMGYHEB-UHFFFAOYSA-M 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- VNOYUJKHFWYWIR-ITIYDSSPSA-N succinyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 VNOYUJKHFWYWIR-ITIYDSSPSA-N 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- AYEKOFBPNLCAJY-UHFFFAOYSA-O thiamine pyrophosphate Chemical compound CC1=C(CCOP(O)(=O)OP(O)(O)=O)SC=[N+]1CC1=CN=C(C)N=C1N AYEKOFBPNLCAJY-UHFFFAOYSA-O 0.000 description 1
- YXVCLPJQTZXJLH-UHFFFAOYSA-N thiamine(1+) diphosphate chloride Chemical compound [Cl-].CC1=C(CCOP(O)(=O)OP(O)(O)=O)SC=[N+]1CC1=CN=C(C)N=C1N YXVCLPJQTZXJLH-UHFFFAOYSA-N 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 244000045561 useful plants Species 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 239000005019 zein Substances 0.000 description 1
- 229940093612 zein Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
Definitions
- the invention relates to the construction and use of multigene expression vectors useful to enhance production of materials by multienzyme pathways.
- multigene vectors encoding proteins in the polyhydroxyalkanoate biosynthetic pathway is disclosed.
- Metabolic engineering is a process by which the normal metabolism of an organism is altered to change the concentration of normal metabolites, or to create novel metabolites. This process often involves introduction or alteration of numerous enzymatic steps, and thus often requires introduction of multiple genes. An efficient system for introducing and expressing multiple genes is therefore desirable.
- introduction of multiple genes is relatively straightforward in that operons can be constructed to express multiple open reading frames, or multiple complete genes can be expressed from a single plasmid.
- introduction of pathways into plants is more difficult due in part to the complexity of plant genes, the difficulty of constructing vectors harboring multiple genes for expression in plants, and the difficulty of introducing large vectors intact into plants.
- Polyhydroxyalkanoates are bacterial polyesters that accumulate in a wide variety of bacteria. These polymers have properties ranging from stiff and brittle plastics to rubber-like materials, and are biodegradable. Because of these properties, polyhydroxyalkanoates are an attractive source of non-polluting plastics and elastomers.
- Biodegradable plastics in commercial use that possess properties suitable for producing a number of specialty and commodity products (Lindsay, Modern Plastics 2: 62, 1992).
- PHA polyhydroxyalkanoate
- BiopolTM a random copolymer of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV).
- This bioplastic is used to produce biodegradable molded material (e.g., bottles), films, coatings, and in drug release applications.
- BioplTM is produced via a fermentation process employing the bacterium Ralstonia eutropha (Byrom, D. Trends Biotechnol. 5: 246-250, 1987).
- Polyhydroxyalkanoate is a family of polymers composed primarily of R-3-hydroxyalkanoic acids (Anderson, A. J. and Dawes, E. A. Microbiol. Rev. 54: 450-472, 1990; Steinbüchel, A. in Novel Biomaterials from Biological Sources , ed. Byrom, D. (MacMillan, N.Y.), pp. 123-213, 1991); Poirier, Y., Nawrath, C. & Somerville, C. Bio/Technology 13: 143-150, 1995).
- Polyhydroxybutyrate (PHB) is the most well-characterized PHA.
- PHB high molecular weight PHB is found as intracellular inclusions in a wide variety of bacteria (Steinbüchel, A. in Novel Biomaterials from Biological Sources , ed. Byrom, D. (MacMillan, N.Y.), pp. 123-213, 1991). In Ralstonia eutropha , PHB typically accumulates to 80% dry weight with inclusions being typically 0.2-1 ⁇ m in diameter. Small quantity of PHB oligomers of approximately 150 monomer units are also found associated with membranes of bacteria and eukaryotes, where they form channels permeable to calcium (Reusch, R. N., Can. J. Microbiol. 41 (Suppl. 1): 50-54, 1995).
- High molecular weight polyhydroxyalkanoates have the properties of thermoplastics and elastomers. Numerous bacteria and fungi can hydrolyze polyhydroxyalkanoates to monomers and oligomers, which are metabolized as a carbon source. Polyhydroxyalkanoates have accordingly attracted attention as a potential source of renewable and biodegradable plastics and elastomers.
- PHB is a highly crystalline polymer with rather poor physical properties, being relatively stiff and brittle (de Koning, G., Can. J. Microbiol. 41 (Suppl. 1): 303-309, 1995).
- PHA copolymers containing monomer units ranging from 3 to 5 carbons for short-chain-length PHA (SCL-PHA), or 6 to 14 carbons for medium-chain-length PHA (MCL-PHA), are less crystalline and more flexible polymers (de Koning, G., Can. J. Microbiol. 41 (Suppl. 1): 303-309, 1995).
- PHB has been produced in the plant Arabidopsis thaliana expressing the R. eutropha PHB biosynthetic enzymes (Poirier, Y. et al., Science 256: 520-523, 1992; Nawrath, C., et al., Proc. Natl. Acad. Sci. U.S.A. 91: 12760-12764, 1994).
- PHB pathway in the plastids leaves accumulated up to 14% PHB per gram dry weight (Nawrath, C., et al., Proc. Natl. Acad. Sci. U.S.A. 91: 12760-12764, 1994).
- a number of pseudomonads including Pseudomonas putida and Pseudomonas aeruginosa , accumulate MCL-PHAs when cells are grown on alkanoic acids (Anderson, A. J. & Dawes, E. A. Microbiol. Rev. 54: 450-472, 1990; Steinbüchel, A. in Novel Biomaterials from Biological Sources, ed. Byrom, D. (MacMillan, N.Y.), pp. 123-213, 1991; Poirier, Y., Nawrath, C. & Somerville, C. Bio/Technology 13: 143-150, 1995).
- the nature of the PHA produced is related to the substrate used for growth and is typically composed of monomers which are 2 n carbons shorter than the substrate.
- MCL-PHAs are synthesized by the PHA synthase from 3-hydroxyacyl-CoA intermediates generated by the ⁇ -oxidation of alkanoic acids (Huijberts, G. N. M., et al. Appl. Environ. Microbiol. 58: 536-544, 1992; Huijberts, G. N. M., et al., J. Bacteriol. 176: 1661-1666, 1994).
- Serial transformation involves transforming a host cell or plant with the first vector, selecting and characterizing the transformed cell or plant, transforming with the second vector, and so on. This process can become quite laborious and time consuming.
- Parallel transformation followed by crossing involves separately transforming cells with each of the individual vectors, and subsequently mating or crossbreeding the transformed cells or plants to obtain a final cell or plant which contains all of the individual sequences. This is a lengthy process, especially for the crossbreeding of plant lines.
- Batch transformation involves a single transformation event involving all of the individual vectors. A wide array of cells are produced, each containing between none and all of the vectors. While only a single transformation is required, extensive characterization of the resulting cells is necessary. As the number of vectors increases, it is increasingly likely that no cells will be obtained containing all of the vectors. If no desired transformed cells are identified, the transformation must be repeated.
- the invention involves the construction and use of nucleic acid segments and vectors containing multiple sequences encoding members of a biosynthetic pathway.
- the resulting vector allows a single transformation event to produce a transformed cell or plant containing all of the nucleic acid sequences.
- the researcher has total control over the number of copies of each coding sequence within the constructed vector. Single or multiple copies of each coding sequence may easily be designed into the vector.
- An unexpected beneficial result of the invention is that organisms transformed with a multi-enzyme coding vector produce the biosynthetic product in higher yield than organisms produced by serial transformation, parallel transformation with crossing, or batch transformation methods.
- the invention is directed generally towards the construction and use of nucleic acid segments comprising sequences encoding multiple enzymes in a multi-enzyme biosynthetic pathway.
- the biosynthetic pathway may generally be any biosynthetic pathway. Examples of such multi-enzyme biosynthetic pathways are the TCA cycle, polyketide synthesis pathway, carotenoid synthesis, glycolysis, gluconeogenesis, starch synthesis, lignins and related compounds, production of small molecules that serve as pesticides, fungicides, or antibiotics, and polymer synthesis pathways.
- the biosynthetic pathway is a polyhydroxyalkanoate biosynthesis pathway.
- This disclosure describes multigene vectors designed to produce polyhydroxyalkanoate (PHA) in plants. Some of these vectors are designed to produce poly( ⁇ -hydroxybutyrate), and some are designed to produce poly( ⁇ -hydroxybutyrate-co- ⁇ hydroxyvalerate) (Gruys et al., WO 98/00557, 1998). In general, the efficiency of PHA production was dramatically increased when all sequences necessay for a pathway were introduced on the same vector. Herein, construction of these multigene vectors, and their use for polyhydroxyalkanoate production in Arabidopsis thaliana and Brassica napus , and Zea mays is described.
- An embodiment of the present invention is an isolated nucleic acid segment comprising multiple nucleic acid sequences, each encoding a different protein within the biosynthetic pathway.
- the isolated nucleic acid segment comprises a first nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein; a second nucleic acid sequence encoding a ⁇ -ketoacyl reductase protein; and a third nucleic acid sequence encoding a ⁇ -ketothiolase protein.
- the nucleic acid segment may further comprise additional nucleic acid sequences encoding additional proteins such as a threonine deaminase protein or a deregulated threonine deaminase protein.
- An alternative embodiment of the invention is a recombinant vector comprising multiple nucleic acid sequences, each encoding a different protein within the biosynthetic pathway.
- the recombinant vector may be arranged with a single promoter producing a polycistronic RNA transcript from the multiple nucleic acid sequences, or with each nucleic acid sequence being under the control of its own promoter.
- the multiple promoters may be the same or different. It is also possible to have one or more nucleic acid sequence under the control of its own promoter, while other nucleic acid sequences may be jointly under the control of a single promoter producing a polycistronic RNA transcript.
- a recombinant vector placing the biosynthetic pathway nucleic acid sequences under the control of a single promoter preferably comprises operatively linked in the 5′ to 3′ direction: a promoter that directs transcription of the first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence; a first nucleic acid sequence; a second nucleic acid sequence; a third nucleic acid sequence; a 3′ transcription terminator; and a 3′ polyadenylation signal sequence; wherein: the first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence encode different proteins; and the first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence are independently selected from the group consisting of a nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein, a nucleic acid sequence encoding a ⁇ -ketoacyl reductase protein, and a nucleic acid sequence encoding a
- the nucleic acid sequences encoding the biosynthetic pathway enzymes may be in any order relative to each other and the promoter.
- the promoter must be expressed in plastids. It may have either been derived from a plastid, or may have been derived from a bacterium or phage having promoters recognized by the plastid transcription enzymes, or be a synthetic promoter recognized by the plastid transcription enzymes.
- a recombinant vector placing the biosynthetic pathway nucleic acid sequences under the control of multiple promoters preferably comprises a first element comprising operatively linked in the 5′ to 3′ direction: a first promoter that directs transcription of the first nucleic acid sequence; a first nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein; a first 3′ transcription terminator; a first 3′ polyadenylation signal sequence; a second element comprising operatively linked in the 5′ to 3′ direction: a second promoter that directs transcription of the second nucleic acid sequence; a second nucleic acid sequence encoding a ⁇ -ketoacyl reductase protein; a second 3′ transcription terminator; a second 3′ polyadenylation signal sequence; and a third element comprising operatively linked in the 5′ to 3′ direction: a third promoter that directs transcription of the third nucleic acid sequence; a third nucleic acid sequence encoding
- the ⁇ -ketothiolase protein preferably condenses two molecules of acetyl-CoA to produce acetoacetyl-CoA; and condenses acetyl-CoA and propionyl-CoA to produce ⁇ -ketovaleryl-CoA.
- the ⁇ -ketoacyl reductase protein preferably reduces acetoacetyl-CoA to ⁇ -hydroxybutyryl-CoA; and reduces ⁇ -ketovaleryl-CoA to ⁇ -hydroxyvaleryl-CoA.
- the polyhydroxyalkanoate synthase protein is preferably selected from the group consisting of: a polyhydroxyalkanoate synthase protein that incorporates ⁇ -hydroxybutyryl-CoA into P(3HB) polymer; and a polyhydroxyalkanoate synthase protein that incorporates a ⁇ -hydroxybutyryl-CoA and a ⁇ -hydroxyvaleryl-CoA into P(3HB-co-3HV) copolymer.
- the ⁇ -ketothiolase protein may comprise a transit peptide sequence that directs transport of the ⁇ -ketothiolase protein to the plastid.
- the ⁇ -ketoacyl reductase protein may comprise a transit peptide sequence that directs transport of the ⁇ -ketoacyl reductase protein to the plastid.
- the polyhydroxyalkanoate synthase protein may comprise a transit peptide sequence that directs transport of the polyhydroxyalkanoate synthase protein to the plastid.
- the recombinant vector may further comprise a nucleic acid sequence encoding a threonine deaminase protein or a deregulated threonine deaminase protein.
- the first promoter, second promoter, and third promoter are preferably active in plants.
- the first promoter, second promoter, and third promoter are preferably viral promoters.
- the first promoter, second promoter, and third promoter are preferably independently selected from the group consisting of a CMV 35S promoter, an enhanced CMV 35S promoter, maize chlorophyll A/B binding protein promoter, and an FMV 35S promoter. More preferably, the first promoter, second promoter, and third promoter are the CMV 35S promoter.
- the first promoter, second promoter, and third promoter may be tissue specific promoters.
- the first promoter, second promoter, and third promoter may independently be the Lesquerella hydroxylase promoter or the 7S conglycinin promoter, and preferably each is the Lesquerella hydroxylase promoter.
- Transformed host cells may contain a non-integrated recombinant vector or an integrated recombinant vector.
- a transformed host cell may comprise a recombinant vector, wherein the recombinant vector comprises a first element comprising operatively linked in the 5′ to 3′ direction: a first promoter that directs transcription of the first nucleic acid sequence; a first nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein; a first 3′ transcription terminator; a first 3′ polyadenylation signal sequence; a second element comprising operatively linked in the 5′ to 3′ direction: a second promoter that directs transcription of the second nucleic acid sequence; a second nucleic acid sequence encoding a ⁇ -ketoacyl reductase protein; a second 3′ transcription terminator; a second 3′ polyadenylation signal sequence; and a third element comprising operatively linked in the 5′ to 3′ direction a third promoter that directs transcription of the third nucleic acid sequence; a third nucleic acid sequence encoding a ⁇ -ketoth
- the transformed host cell may alternatively contain an integrated nucleic acid segment.
- the transformed host cell may comprise a first element comprising operatively linked in the 5′ to 3′ direction: a first promoter that directs transcription of a first nucleic acid sequence; a first nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein; a first 3′ transcription terminator; a first 3′ polyadenylation signal sequence; a second element comprising operatively linked in the 5′ to 3′ direction: a second promoter that directs transcription of a second nucleic acid sequence; a second nucleic acid sequence encoding a ⁇ -ketoacyl reductase protein; a second 3′ transcription terminator; a second 3′ polyadenylation signal sequence; and a third element comprising operatively linked in the 5′ to 3′ direction: a third promoter that directs transcription of a third nucleic acid sequence; a third nucleic acid sequence encoding a
- the first element, second element, and third element may be cointegrated within a continuous 10 Mb segment of genomic DNA, more preferably within a continuous 5 Mb, 2.5 Mb, 2 Mb, 1.5 Mb, 1 Mb, 500 kb, 250 kb, 100 kb, 50 kb, or 20 kb segment of genomic DNA.
- the first element, second element, and third element may be cointegrated between a left Ti border sequence and a right Ti border sequence. While it is preferable that a recombinant vector contain a single left Ti border sequence and a single right Ti border sequence, the invention encompasses recombinant vectors containing multiple left and/or right Ti border sequences, and the use thereof.
- the host cell may comprise a nucleic acid segment containing nucleic acid sequences encoding enzymes in a biosynthetic pathway, where a single promoter directs transcription of the nucleic acid sequences.
- the transformed host cell may generally be any host cell, and preferably is a bacterial, fungal, or plant cell.
- the bacterial cell is preferably an Escherichia coli cell.
- the fungal cell is preferably a yeast, Saccharomyces cerevisiae, or Schizosaccharomyces pombe cell.
- the plant cell may be a monocot plant cell, a dicot plant cell, an algae cell, or a conifer plant cell.
- the plant cell is preferably a tobacco, wheat, potato, Arabidopsis, corn, soybean, canola, sugar beet, oil seed rape, sunflower, flax, peanut, sugarcane, switchgrass, or alfalfa cell.
- the promoters may be any of the promoters discussed earlier.
- the transformed host cells preferably produce polyhydroxyalkanoate polymer.
- the invention also encompasses transformed plants.
- the transformed plant may contain an integrated set of nucleic acid sequences, or may contain the same set of nucleic acid sequences on a non-integrated vector.
- a preferred embodiment is directed towards a transformed plant comprising a first element comprising operatively linked in the 5′ to 3′ direction: a first promoter that directs transcription of a first nucleic acid sequence; a first nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein; a first 3′ transcription terminator; a first 3′ polyadenylation signal sequence; a second element comprising operatively linked in the 5′ to 3′ direction: a second promoter that directs transcription of a second nucleic acid sequence; a second nucleic acid sequence encoding a ⁇ -ketoacyl reductase protein; a second 3′ transcription terminator; a second 3′ polyadenylation signal sequence; and a third element comprising operatively linked in the 5′ to 3′ direction
- the first element, second element, and third element may be cointegrated within a continuous 10 Mb segment of genomic DNA, more preferably within a continuous 5 Mb, 2.5 Mb, 2 Mb, 1.5 Mb, 1 Mb, 500 kb, 250 kb, 100 kb, 50 kb, or 20 kb segment of genomic DNA.
- the first element, second element, and third element may be cointegrated between a left Ti border sequence and a right Ti border sequence.
- the transformed plant may comprise a nucleic acid segment containing nucleic acid sequences encoding enzymes in a biosynthetic pathway, where a single promoter directs transcription of the nucleic acid sequences.
- the transformed plant may generally be any type of plant, and preferably is a tobacco, wheat, potato, Arabidopsis, corn, soybean, canola, oil seed rape, sunflower, flax, peanut, sugarcane, switchgrass, or alfalfa plant.
- the promoters may be any of the promoters discussed earlier.
- the transformed plant preferably produces polyhydroxyalkanoate polymer.
- the invention also encompasses methods of preparing transformed host cells.
- the methods may produce a transformed host cell having nucleic acid sequences under the control of multiple promoters or under the control of a single promoter.
- the method preferably comprises the steps of selecting a host cell; transforming the selected host cell with a recombinant vector comprising: a first element comprising operatively linked in the 5′ to 3′ direction: a first promoter that directs transcription of the first nucleic acid sequence; a first nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein; a first 3′ transcription terminator; a first 3′ polyadenylation signal sequence; a second element comprising operatively linked in the 5′ to 3′ direction: a second promoter that directs transcription of the second nucleic acid sequence; a second nucleic acid sequence encoding a ⁇ -ketoacyl reductase protein; a second 3′ transcription terminator; a second 3′ polyadenylation signal sequence
- the method of preparing transformed host cells may comprise the steps of selecting a host cell; transforming the selected host cell with a recombinant vector comprising operatively linked in the 5′ to 3′ direction: a promoter that directs transcription of a first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence; a first nucleic acid sequence; a second nucleic acid sequence; a third nucleic acid sequence; a 3′ transcription terminator; and a 3′ polyadenylation signal sequence; and obtaining transformed host cells; wherein: the first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence encode different proteins; the first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence are independently selected from the group consisting of a nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein, a nucleic acid sequence encoding a ⁇ -ketoacyl reductase protein, and
- the promoters may be any of the promoters discussed earlier.
- the methods may produce a transformed plant having nucleic acid sequences under the control of multiple promoters or under the control of a single promoter.
- the method preferably comprises the steps of selecting a host plant cell; transforming the selected host plant cell with a recombinant vector comprising: a first element comprising operatively linked in the 5′ to 3′ direction: a first promoter that directs transcription of a first nucleic acid sequence; a first nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein; a first 3′ transcription terminator; and a first 3′ polyadenylation signal sequence; a second element comprising operatively linked in the 5′ to 3′ direction: a second promoter that directs transcription of a second nucleic acid sequence; a second nucleic acid sequence encoding a ⁇ -ketoacyl reductase protein; a second 3′ transcription terminator; and a second 3′ polyadenylation signal sequence
- the method of preparing a transformed plant may comprise the steps of selecting a host plant cell; transforming the selected host plant cell with a recombinant vector comprising operatively linked in the 5′ to 3′ direction: a promoter that directs transcription of a first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence; a first nucleic acid sequence; a second nucleic acid sequence; a third nucleic acid sequence; a 3′ transcription terminator; and a 3′ polyadenylation signal sequence; obtaining transformed host plant cells; and regenerating the transformed host plant cells to produce transformed plants; wherein: the first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence encode different proteins; the first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence are independently selected from the group consisting of a nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein, a nucleic acid sequence encoding
- the promoters may be any of the promoters discussed earlier.
- the invention is also directed towards methods of producing biomolecules of interest.
- the multiple enzymes in the biosynthetic pathway may lead to the production of materials of commercial and scientific interest.
- the biomolecules are polymers, and more preferably are polyhydroxyalkanoate polymers.
- the methods may comprise obtaining any of the above described transformed host cells or transformed plants, culturing or growing the transformed host cells or transformed plants under conditions suitable for the production of polyhydroxyalkanoate polymer, and recovering polyhydroxyalkanoate polymer.
- the methods may further comprise the addition of nutrients, substrates, or other chemical additives to the growth media or soil to facilitate production of polyhydroxyalkanoate polymer.
- polyhydroxyalkanoate from the transformed host cells or transformed plants without killing the host cells or plants. This may be accomplished, for example, by various solvent extraction methods or by engineering the host cells or plants to secrete the polyhydroxyalkanoate polymer, or by directing production to tissues such as leaves or seeds which may be removed without causing serious injury to the plant.
- the polyhydroxyalkanoate polymer produced is preferably poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(4-hydroxybutyrate), or poly(3-hydroxybutyrate-co-4-hydroxybutyrate).
- repetitive sequences are used in a multi-gene plasmid system, there exists the possibility for gene silencing in subsequent generations of plants. If expression levels are high gene silencing could also occur and would be independent of repetitive elements. Repetitive sequences may include the use of the same promoters, chloroplast peptide encoding sequences, and other genetic elements for each of the multi-gene coding sequences. Gene silencing often manifests itself as a gradual reduction in protein levels, mRNA levels, or biosynthesis product concentrations in subsequent generations of related plants.
- gene silencing is observed, changing the repetitive sequences through the use of diverse genetic elements such as different promoters, leaders, introns, transit peptide sequences, etc., different designed nucleotide sequence, or through mutagenesis of the existing sequence, may be successful in reducing or eliminating the gene silencing effects.
- FIG. 1 Biosynthesis of poly( ⁇ -hydroxybutyrate-co- ⁇ -hydroxyvalerate) (poly(3HB-co-3HV), PHBV) in Ralstonia eutropha.
- FIG. 2 Plant transformation strategies for multi-enzyme metabolic pathway engineering.
- FIG. 3 Plasmid map of pMON25642. A list of the restriction enzyme cutting sites for pMON25642 is provided in Table 10.
- FIG. 4 Plasmid map of pMON10098. A list of the restriction enzyme cutting sites for pMON10098 is provided in Table 11.
- FIG. 5 Plasmid map of pMON969. A list of the restriction enzyme cutting sites for pMON969 is provided in Table 12.
- FIG. 6 Plasmid map of pMON25661. A list of the restriction enzyme cutting sites for pMON25661 is provided in Table 13.
- FIG. 7 Plasmid map of pMON25897. A list of the restriction enzyme cutting sites for pMON25897 is provided in Table 14.
- FIG. 8 Plasmid map of pMON25662. A list of the restriction enzyme cutting sites for pMON25662 is provided in Table 15.
- FIG. 9 Plasmid map of pMON25663. A list of the restriction enzyme cutting sites for pMON25663 is provided in Table 16.
- FIG. 10 Plasmid map of pMON25943. A list of the restriction enzyme cutting sites for pMON25943 is provided in Table 17.
- FIG. 11 Plasmid map of pMON25948. A list of the restriction enzyme cutting sites for pMON25948 is provided in Table 18.
- FIG. 12 Plasmid map of pMON25949. A list of the restriction enzyme cutting sites for pMON25949 is provided in Table 19.
- FIG. 13 Plasmid map of pMON25951. A list of the restriction enzyme cutting sites for pMON25951 is provided in Table 20.
- FIG. 14 Plasmid map of pMON34545. A list of the restriction enzyme cutting sites for pMON34545 is provided in Table 21.
- FIG. 15 Plasmid map of pMON34565. A list of the restriction enzyme cutting sites for pMON34565 is provided in Table 22.
- FIG. 16 Plasmid map of pMON25995. A list of the restriction enzyme cutting sites for pMON25995 is provided in Table 23.
- FIG. 17 Plasmid map of pMON25973. A list of the restriction enzyme cutting sites for pMON25973 is provided in Table 24.
- FIG. 18 Plasmid map of pMON25987. A list of the restriction enzyme cutting sites for pMON25987 is provided in Table 25.
- FIG. 19 Plasmid map of pMON25991. A list of the restriction enzyme cutting sites for pMON25991 is provided in Table 26.
- FIG. 20 Plasmid map of pMON25992. A list of the restriction enzyme cutting sites for pMON25992 is provided in Table 27.
- FIG. 21 Plasmid map of pMON25993. A list of the restriction enzyme cutting sites for pMON25993 is provided in Table 28.
- FIG. 22 Plasmid map of pMON36805. A list of the restriction enzyme cutting sites for pMON36805 is provided in Table 29.
- FIG. 23 Plasmid map of pMON36814. A list of the restriction enzyme cutting sites for pMON36814 is provided in Table 30.
- FIG. 24 Plasmid map of pMON36816. A list of the restriction enzyme cutting sites for pMON36816 is provided in Table 31.
- FIG. 25 Plasmid map of pMON36824. A list of the restriction enzyme cutting sites for pMON36824 is provided in Table 32.
- FIG. 26 Plasmid map of pMON36843. A list of the restriction enzyme cutting sites for pMON36843 is provided in Table 33.
- FIG. 27 Plasmid map of pMON34543. A list of the restriction enzyme cutting sites for pMON34543 is provided in Table 34.
- FIG. 28 Plasmid map of pMON36850. A list of the restriction enzyme cutting sites for pMON36850 is provided in Table 35.
- FIG. 29 Plasmid map of pMON25963. A list of the restriction enzyme cutting sites for pMON25963 is provided in Table 36.
- FIG. 30 Plasmid map of pMON25965. A list of the restriction enzyme cutting sites for pMON25965 is provided in Table 37.
- FIG. 31 Method for creating multi-gene vectors.
- FIG. 32 PHB biosynthetic pathway. PHB production requires the condensation of two acetyl-CoA molecules using a ⁇ -ketothiolase, a D-isomer-specific reduction by acetoacetyl-CoA reductase, and PHB polymerization by PHB synthase. The genes encoding these enzymes are indicated in parentheses.
- FIG. 33 Schematic diagram of multi-gene vector used to transform Brassica napus.
- Vectors were constructed using modular cassettes. Each cassette consists of the Lesquerella hydroxylase promoter (P-Lh), a chloroplast transit peptide (ctp) fused to an open reading frame encoding a PHB synthesis enzyme, and the E9 3′ terminator.
- the plasmid also expresses EPSP synthase to provide resistance to glyphosate, contains bacterial replication origins, and a bacterially-expressed gene encoding resistance to streptomycin and spectinomycin.
- bktB was replaced with phbA. Otherwise, the vectors were identical.
- RB right border of T-DNA
- LB left border of T-DNA.
- FIG. 34 Electron micrographs of Brassica napus plastids. Panel A: Leukoplast from wild type Brassica napus seed. Panel B: Leukoplast from Brassica napus seed producing PHB. Polymer (PHB) and oil bodies (0) are indicated. Note the greatly expanded size of leukoplasts in the PHB-producing line.
- FIG. 35 A pathway designed to produce poly(P-hydroxybutyrate-co- ⁇ -hydroxyvalerate) in the plastids of plants.
- Propionyl-CoA is derived from threonine via threonine deaminase and the pyruvate dehydrogenase complex.
- Acetyl-CoA is drawn from normal intermediary metabolism.
- the pathway requires transformation of the plant with four genes (ilvA, bktB, phbB, and phbC), and relies on endogenous pyruvate dehydrogenase. All enzymes encoded by transgenes are targeted to the plastid using chloroplast transit peptides.
- FIG. 36 Concentrations of selected 2-keto acids and amino acids in control plants and in Arabidopsis expressing threonine deaminase.
- A Comparison of pyruvate and 2-ketobutyrate concentrations in Arabidopsis harboring either a control plasmid or a plasmid expressing wild type E. coli ilvA (threonine deaminase).
- B Comparison of threonine, isoleucine, and 2-ketobutyrate concentrations in Arabidopsis harboring either a control plasmid or a plasmid expressing wild type E. coli ilvA. Note the different scales used in parts (A) and (B).
- FIG. 37 3 C NMR spectra demonstrating poly(P-hydroxybutyrate-co- ⁇ -hydroxyvalerate) copolymer production in transgenic Arabidopsis. Note the presence of signals indicating presence of both 3-hydroxybutyrate and 3-hydroxyvalerate side chains.
- FIG. 38 Analyses of total polymer production, the 3-hydroxyvalerate fraction of the polymer, and the activity of threonine deaminase Brassica oilseeds synthesizing PHBV copolymer. Note the distinct negative correlation between polymer concentration and the 3-HV content of the polymer. Also note that increasing threonine deaminase activity does not lead to increased 3-HV content.
- FIG. 39 Multiple potential routes to produce propionyl-CoA in planta. Most alternative pathways have the potential to produce propionyl-CoA in plants. However, production of propionyl-CoA from threonine provides the most direct route.
- FIG. 40 Bar graph of average % PHA produced from Arabidopsis transformation methods.
- FIG. 41 Bar graph of average % PHA produced from canola transformation methods.
- FIG. 42 Bar graph of maximum % PHA produced from Arabidopsis transformation methods.
- FIG. 43 Bar graph of maximum % PHA produced from canola transformation methods.
- Acyl-ACP thioesterase refers to proteins which catalyze the hydrolysis of acyl-ACP thioesters.
- C-terminal region refers to the region of a peptide, polypeptide, or protein chain from the middle thereof to the end that carries the amino acid having a free a carboxyl group (the C-terminus).
- CoA refers to coenzyme A.
- coding sequence refers to the region of continuous sequential nucleic acid triplets encoding a protein, polypeptide, or peptide sequence.
- encoding DNA refers to chromosomal nucleic acid, plasmid nucleic acid, cDNA, or synthetic nucleic acid which codes on expression for any of the proteins or fusion proteins discussed herein.
- Fatty acyl hydroxylase refers to proteins which catalyze the conversion of fatty acids to hydroxylated fatty acids.
- the term “genome” as it applies to bacteria encompasses both the chromosome and plasmids within a bacterial host cell. Encoding nucleic acids of the present invention introduced into bacterial host cells can therefore be either chromosomally-integrated or plasmid-localized.
- the term “genome” as it applies to plant cells encompasses not only chromosomal DNA found within the nucleus, but organelle DNA found within subcellular components of the cell. Nucleic acids of the present invention introduced into plant cells can therefore be either chromosomally-integrated or organelle-localized.
- Identity refers to the degree of similarity between two nucleic acid or protein sequences.
- An alignment of the two sequences is performed by a suitable computer program.
- a widely used and accepted computer program for performing sequence alignments is CLUSTALW v1.6 (Thompson, et al. Nucl. Acids Res., 22: 4673-4680, 1994).
- the number of matching bases or amino acids is divided by the total number of bases or amino acids, and multiplied by 100 to obtain a percent identity. For example, if two 580 base pair sequences had 145 matched bases, they would be 25 percent identical. If the two compared sequences are of different lengths, the number of matches is divided by the shorter of the two lengths.
- the shorter sequence is less than 150 bases or 50 amino acids in length, the number of matches are divided by 150 (for nucleic acids) or 50 (for proteins); and multiplied by 100 to obtain a percent identity.
- microbe or “microorganism” refer to algae, bacteria, fungi, and protozoa.
- N-terminal region refers to the region of a peptide, polypeptide, or protein chain from the amino acid having a free a amino group to the middle of the chain.
- Nucleic acid refers to ribonucleic acid (RNA) and deoxyribonucleic acid (DNA).
- a “nucleic acid segment” is a nucleic acid molecule that has been isolated free of total genomic DNA of a particular species, or that has been synthesized. Included with the term “nucleic acid segment” are DNA segments, recombinant vectors, plasmids, cosmids, phagemids, phage, viruses, etcetera.
- “Overexpression” refers to the expression of a polypeptide or protein encoded by a DNA introduced into a host cell, wherein said polypeptide or protein is either not normally present in the host cell, or wherein said polypeptide or protein is present in said host cell at a higher level than that normally expressed from the endogenous gene encoding said polypeptide or protein.
- plastid refers to the class of plant cell organelles that includes amyloplasts, chloroplasts, chromoplasts, elaioplasts, eoplasts, etioplasts, leucoplasts, and proplastids. These organelles are self-replicating, and contain what is commonly referred to as the “chloroplast genome,” a circular DNA molecule that ranges in size from about 120 to about 217 kb, depending upon the plant species, and which usually contains an inverted repeat region (Fosket, Plant growth and Development, Academic Press, Inc., San Diego, Calif., p. 132, 1994).
- Polyadenylation signal or “polyA signal” refers to a nucleic acid sequence located 3′ to a coding region that directs the addition of adenylate nuclecotides to the 3′ end of the mRNA transcribed from the coding region.
- polyhydroxyalkanoate (or PHA) synthase refers to enzymes that convert hydroxyacyl-CoAs to polyhydroxyalkanoates and free CoA.
- promoter refers to a nucleic acid sequence, usually found upstream (5′) to a coding sequence, that controls expression of the coding sequence by controlling production of messenger RNA (mRNA) by providing the recognition site for RNA polymerase and/or other factors necessary for start of transcription at the correct site.
- mRNA messenger RNA
- a promoter or promoter region includes variations of promoters derived by means of ligation to various regulatory sequences, random or controlled mutagenesis, and addition or duplication of enhancer sequences.
- the promoter region disclosed herein, and biologically functional equivalents thereof, are responsible for driving the transcription of coding sequences under their control when introduced into a host as part of a suitable recombinant vector, as demonstrated by its ability to produce mRNA.
- Regeneration refers to the process of growing a plant from a plant cell (e.g., plant protoplast or explant).
- Transformation refers to a process of introducing an exogenous nucleic acid sequence (e.g., a vector, recombinant nucleic acid molecule) into a cell or protoplast in which that exogenous nucleic acid is incorporated into a chromosome or is capable of autonomous replication.
- exogenous nucleic acid sequence e.g., a vector, recombinant nucleic acid molecule
- a “transformed cell” is a cell whose nucleic acid has been altered by the introduction of an exogenous nucleic acid molecule into that cell.
- a “transformed plant” or “transgenic plant” is a plant whose nucleic acid has been altered by the introduction of an exogenous nucleic acid molecule into that plant, or by the introduction of an exogenous nucleic acid molecule into a plant cell from which the plant was regenerated or derived.
- Nucleic acid sequences encoding the polyhydroxyalkanoate biosynthetic pathway include: phbA and phbB (GenBank accession number J04987), phbC (GenBank accession number J05003), and bktB (GenBank accession number AF026544).
- Production of PHBV copolymer can be accomplished by also expressing E. coli ilvA (GenBank accession number U00096, overlapping base 3953951:Gruys et al. WO 98/00557).
- the Ti DNA left border sequence is described in Baker, R. F., et al. ( Plant Mol. Biol., 2: 335-350, 1983).
- the Ti DNA right border sequence is described in Depicker et. al. ( J. Mol. App. Genet. 1: 561, 1982).
- Polyhydroxyalkanoates are a form of polyester accumulated by numerous bacterial species as a carbon and energy repository. This class of polymer also has useful thermoplastic properties, and is therefore of interest as a biodegradable plastic.
- Poly( ⁇ -hydroxybutyrate-co- ⁇ -hydroxyvalerate) (poly(3HB-co-3HV), PHBV), a form of PHA, is commercially produced via fermentation of Ralstonia eutropha (FIG. 1). However, it is expected that the cost of production could be dramatically decreased if PHA could be produced in transgenic plants.
- One vector was constructed containing sequences encoding both acetoacetyl-CoA reductase and PHB synthase proteins.
- a second vector was constructed containing a sequence encoding a ⁇ -ketothiolase protein. Two independent transformation events were obtained corresponding to each of these vectors. The complete pathway was assembled into a single plant using traditional cross-breeding methods. In all cases, plants exhibiting Mendelian segregation consistent with transgene insertion at a single locus were chosen. The results of these experiments are shown in Table 2.
- the second strategy pursued was to simultaneously co-transform both plasmids into a single plant (simultaneous co-transformation) and assay the primary transformant for polymer accumulation, or to re-transform plants that already harbored a single vector (serial co-transformation).
- the results of these experiments are summarized in Table 3. Although the activity of enzymes expressed from the encoding sequences was comparable to that reported by Nawrath et al., none of the plants generated reached the polymer levels reportedly achieved in their study. Neither their experiments nor these results correlate enzyme activity with the intracellular concentration of PHA polymer (Nawrath, C. et al., Proc. Natl. Acad. Sci. U.S.A.
- Multigene vectors were constructed containing the entire PHB biosynthetic pathway on a single plasmid.
- Multigene vectors for PHA production in Arabidopsis were constructed from a series of base vectors, each with the desired open reading frame under control of the e35s promoter (Odell, J. T., et al, Nature, 313: 810-812, 1985) and the E9 3′ region (Coruzzi, EMBO J. 3:1671-1679, 1984).
- the first vector in this series, pMON25642 (FIG. 3) harbors phbC under control of the e35s promoter in pMON10098 (FIG.
- pMON969 a vector designed for Agrobacterium-mediated transformation of plants.
- the remaining intermediate vectors are all derived from pMON969 (FIG. 5), a high copy-number vector harboring the e35s promoter and the E9 3′ region.
- Constructs derived from pMON969 include those encoding phbA (pMON25661; FIG. 6), bktB (pMON25897; FIG. 7), phbB (pMON25662; FIG. 8), and ilvA (pMON25663; FIG. 9). From these and similar vectors were derived the final plasmids for transformation of Arabidopsis; pMON25943 (FIG. 10) pMON25948 (FIG.
- Each copy of ilvA contains a SnaBI restriction site, so deletion of a 3155 bp SnaBI restriction fragment from pMON34565 produced plasmid pMON34545, a plasmid with a single copy of ilvA.
- Polymer was extracted from the dried material with 1 mL of chloroform containing 1 ⁇ mol/mL methyl-benzoate standard. The tube was heated to 100° C. for 2.5 hours, solid material was removed by centrifugation, and the supernatant material was subjected to methanolysis. Methanolysis of polymer and gas chromatographic characterization of the methyl-ester residues were performed as described by Slater et al. ( J. Bacteriol. 180:1979-1987, 1998).
- Plant construct # of plants # of plants C4 polymer Vector number description assayed positive (% dry wt.) 25638 7s ctpl phbA 0.024-1.99% 25626 7s ctpl phbC 42 37 0.58% 7s ctpl phbB SD: 0.59% 25638 7s ctpl phbA 0.039-0.053 25741 7s tpss phbC 12 2 0.05% 7s tpss phbB SD: 0.01% 25818 7s ctpl bktB 0.04-1.67% 7s ctpl ilvA w.t.
- the first vector in this series pMON25995 (FIG. 16), harbors phbC under control of P-lh in pMON25973 (FIG. 17), a vector designed for Agrobacterium-mediated transformation of plants.
- the remaining intermediate vectors are all derived from pMON25987 (FIG. 18), a high copy-number vector harboring P-lh and the E9 3′ region.
- Constructs derived from pMON25987 (FIG. 16) include those encoding phbA (pMON25991; FIG. 19), bktB (pMON25992; FIG.
- Another advantage of this approach is that it often allowed restriction enzyme-mediated digestion of the parental plasmids prior to transformation of Escherichia coli with ligation products. This procedure significantly increased the frequency of correct constructs recovered. The final vectors were used for Agrobacterium-mediated transformation of oilseed rape (Fry, J. et al., Plant Cell Rep. 6: 321-325, 1987).
- Plant construct # of plants # of plants C4 polymer Vector number description assayed positive (% dry wt.) 36814 lhydrox ctpl phbC 0.19-4.11% lhydrox ctpl phbA 68 59 AVE: 1.43% lhydrox tpss phbB SD: 1.01% 36816 lhydrox ctpl phbC 225 195 0.02-6.28% lhydrox ctpl bktB AVE: 1.0% lhydrox tpss phbB SD: 1.02% 36824 lhydrox ctpl phbC 185 152 0.10-2.74% lhydrox ctpl bktB AVE: 0.6% lhydrox tpss phbB SD: 0.5% lhydrox ctpl ilvA
- vectors designed to produce PHA in the leaves of maize were constructed. These vectors use the e35s, eFMV, or maize chlorophyll A/B binding protein (P-ChlA/B) promoters, and include the HSP70 intron designed to enhance expression in monocots. All enzymes were fused to the Arabidopsis RuBisCo small subunit transit peptide. Other promoters might also be used. Examples of vectors designed for gene expression in monocots are pMON36843 (FIG. 26), pMON34543 (FIG. 27), and pMON36850 (FIG. 28).
- FIGS. 29 and 30 show plasmids pMON25963 and pMON25965, respectively. These vectors, used together, provide a system for constructing very large vectors. Plasmid pMON25965 provides a shuttle vector by which a gene cassette can be cloned into the NotI restriction sites and thereby be flanked by a series of restriction sites. These restriction sites are relatively rare in many genomes, and thereby of utility for subcloning many genes.
- Plasmid pMON25963 is a binary vector designed for transformation of plants by Agrobacterium. It contains a polylinker with the same sites found flanking the NotI restriction sites of plasmid pMON25965. Using this system, a series of gene “cassettes” can be produced using plasmid pMON25965, and each can be sequentially ligated into plasmid pMON25963.
- FIG. 31 Another strategy for generating multigene vectors and reducing the levels of background caused by vector re-ligation is shown in FIG. 31.
- This strategy could be adapted to accommodate any number of enzymes, depending on the availability of unique restriction sites.
- the directionality of the clone If directionality is not important than clones generated from the ligation into the “shuttle vector” in either orientation could be used. (A ⁇ C or A ⁇ C).
- the starting plasmid used for constructing the large multigene plasmids should be taken into consideration.
- the common plant transformation plasmid pBIN19 (Frisch, D. et al., Plant Mol Biol 27: 405-409, 1995) has a starting size of 11,777 bp.
- plasmid pMON10098 (FIG. 4) has a starting size of 8431 bp.
- the major difference between the two plasmids is the loss of the trfA function which is encoded in trans in Agrobacterium strain ABI. Providing the trfA function in trans allows replication only in the specific strains of Agrobacterium engineered to harbor trfA.
- oriT is not an essential element.
- selection that is functional in plants, Agrobacterium, and Escherichia coli. This could be accomplished by embedding into the plant promoter for the selectable marker a suitable bacterial promoter sequence and a ribosome binding site in proper context with the start codon on the selectable marker. One could also place this selectable marker on the plasmid flanked by its own right and left border sequences.
- selectable marker may be integrated into the plant chromosome unlinked to the genes of interest and potentially removed from subsequent generations.
- plants could be co-transformed by taking the multigene plasmid and cotransforming on a separate plasmid the selectable marker for plants. This would eliminate the cloning of the selectable marker on the multi gene plasmid.
- the selectable marker can be delivered by mixing two different Agrobacterium strains, one containing the multigene plasmid and the other containing the selectable marker, or by using the same Agrobacterium strain but having different isolates containing either the multi gene plasmid or the selectable marker, or by having the selectable marker coexisting in the same Agrobacterium cell with the multigene vector, but on a separate plasmid with a compatible origin of replication.
- An example of an optimal starting plasmid for engineering multiple genes in plants would contain only the minimal essential elements required for replication in Escherichia coli and in Agrobacterium (having all other required functions encoded in trans) as well as a selection scheme that (1) reduces the need for redundancy in the selectable marker, and/or (2) reduces the size of the selectable marker, or (3) removes the necessity of having the plant selectable marker on the multi gene plasmid.
- the promoter used for driving the gene of interest in the multi gene vector should consist of the minimal essential elements required for temporal and spatial expression.
- the termination and polyadenylation signals should also contain only those sequences required for essential function.
- PHA polyhydroxyalkanoates
- PHB polyhydroxyalkanoates
- Arabidopsis thaliana leaves of Arabidopsis thaliana (Nawrath, C., et al., Proc. Natl. Acad. Sci., U.S.A., 91: 12760-12764, 1994).
- Brassica napus oilseed may provide a better system for PHB production because acetyl-CoA, the substrate required in the first step of PHB biosynthesis, is prevalent during fatty acid biosynthesis.
- PHAs Polyhydroxyalkanoates
- PHAs comprise a class of biodegradable polymers which offer an environmentally-sustainable alternative to petroleum based plastics (reviewed by Poirier, Y., et al., Biotechnology, 13: 142-150, 1995).
- the homopolymer Poly( ⁇ -hydroxybutyrate) (PHB) ( ⁇ -hydroxybutyrate) (PHB), a particularly well studied PHA, is normally synthesized by various species of bacteria under conditions where nutrients become limited.
- PHB is stored in granules which can later be mobilized to provide a carbon and energy resource for the bacteria.
- the pathway requires three enzymes: a ⁇ -ketothiolase, an acetoacetyl-CoA reductase, and a PHB synthase (FIG. 32).
- R. eutropha uses least two ⁇ -ketothiolases, PhbA and BktB (Slater, S. C., et al., J. Bact., 180: 1979-1987, 1998), and both of these enzymes were used in this study.
- the acetoacetyl-CoA reductase and PHB synthase are designated PhbB and PhbC, respectively (Peoples, O. P., and Sinskey, A. J., J. Biol. Chem, 264: 15298-15303, 1989; Peoples, O. P., and Sinskey, A. J., J. Biol. Chem., 264: 15293-15297, 1989).
- R. eutropha is fermented commercially for PHA production, but the process is not economically competitive with polymers derived from petroleum. Therefore, novel commercial efforts to produce PHAs focus on using plants as polymer factories. In this respect, our laboratory is considering two model systems: production in leaves and production in seeds. Since acetyl-CoA is a central metabolite for both PHB and fatty acid biosynthesis, and Brassica napus seeds are extremely efficient in oil production, the Brassica seeds seem an optimal environment in which to produce PHB (U.S. Pat. No. 5,502,273). Production of PHB in Arabidopsis thaliana leaves has been achieved using R.
- the work presented here demonstrates polymer production in the seeds of Brassica napus using a multi-gene vector approach.
- a significant advantage to using these multi-gene vectors is that the entire PHA pathway is introduced simultaneously, thereby obviating the need for elaborate crossing strategies and eliminating the problems associated with insertional effects at multiple loci.
- Construction of these multi-gene vectors involved the generation of modular cassettes, each harboring an individual gene. The cassettes were then assembled into a single vector expressing the entire PHB biosynthetic pathway (FIG. 33).
- Each cassette consisted of the Lesquerella fendleri oleate-12 hydroxylase promoter (Broun, P., et al., Plant J., 13: 201-210, 1998), a chloroplast transit peptide fused to the open reading frame of interest (bktB, phbA, phbB, or phbC), and the 3′ termination region of the Pisum sativum rbcSE9 gene (Coruzzi, G., et al., EMBO J., 3: 1671-1679, 1984).
- the Lesquerella promoter contains 2.2 kb of DNA upstream of the coding region for the oleate-12 hydroxylase gene. This promoter was chosen because it is expressed concurrently with the accumulation of storage lipid (Broun, P., et al., Plant J., 13: 201-210, 1998).
- FIGS. 34A and 34B The B. napus line displaying 7.7% polymer was further analyzed by electron microscopy. Micrographs revealed that polymer accumulated within the plastid (FIG. 34 ), and that essentially every plastid contained polymer. Polymer production in the plastids is seemingly well tolerated; the size of the plastid expands to accommodate polymer production (compare FIGS. 34A and 34B). This phenomenon is similar to the size changes observed when amyloplasts accumulate starch, and suggests that plastids will change size to accommodate accumulation of any granular product. Thus, the signal initiating an increase in plastid volume is not specifically linked to accumulation of normal metabolites; rather, the increase is probably initiated simply by physical pressure applied to the plastid membrane.
- a single vector encoding the entire PHB biosynthetic pathway was used for Agrobacterium-mediated transformation of Brassica.
- This vector pMON36814, encodes bktB, phbB, and phbC (FIG. 33).
- Each gene of interest was fused to a chloroplast transit peptide (ctp), so each protein is transported to the seed leukoplast.
- All enzymes were fused to the Arabidopsis RuBisCo small subunit la transit peptide that was previously used for PHB production (Nawrath, C, et al., Proc. Nat. Acad.
- PhbB was fused to the transit peptide from pea RuBisCo small subunit (Cashmore, A. R., eds. Kosuge, T., Meredith C. P., Hollaender, A., (Plenum, N.Y.), 29-38, 1983).
- Each gene is controlled by the promoter from the fatty acid hydroxylase gene of Lesquerella (P-Lh; Broun, P., et al., Plant J., 13: 201-210, 1998), and terminated with the E9 3′ region of the Pisum rbcSE9 gene (Coruzzi, G., et al., EMBO J., 3: 1671-1679, 1984).
- P-Lh directs expression of these genes within the developing seed.
- the selection cassette for pMON36812 and 36814 consisted of the Figwort Mosaic Virus promoter followed by the Petunia RuBisCo small subunit 1a transit peptide, the Petunia EPSP synthase gene (CP4) and nopaline synthase 3′ termination/polyadenylation region (nos3′).
- Transformation of Brassica napus was done as described in Fry, J. et al. ( Plant Cell Rep., 6: 321-325, 1987) using glyphosate for selection.
- Partial imbibition of Brassica seeds was achieved by the slight abrasion of the seed coats, followed by placement for 2 hours onto filter paper moistened with distilled water. The cotyledons of these seeds were then cut into 1 mm 3 pieces and fixed in 4% glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.2 for three hours, with the first 30 minutes under vacuum. The tissue was post-fixed in 1% osmium tetroxide in the above buffer, dehydrated in ethanol and propylene oxide and infiltrated with a 1:1 mixture of Spurr's: EMbed 812 resin. The resin was polymerized at 60° C. for 48 hours.
- the resulting blocks were sectioned on an Leica Ultracut E microtome. Sections 80 nm thick were picked up on formvar/carbon coated copper slot grids. The grids were post-stained with uranyl acetate and lead citrate in an LKB ultrastainer and examined with a JEOL 1200 transmission electron microscope. (All reagents were obtained from Electron Microscopy Sciences, Fort Washington, Pa.).
- Poly(hydroxyalkanoates) are natural polymers with thermoplastic properties.
- One polymer of this class poly( ⁇ -hydroxybutyrate-co- ⁇ -hydroxyvalerate) (PHBV) is currently produced by bacterial fermentation, but the process is not economically competitive with polymer production from petrochemicals.
- PHA production in green plants promises much lower costs, but producing polymer with the appropriate monomer composition is problematic.
- Arabidopsis and Brassica have now been engineered to produce PHBV, a copolymer with commercial applicability. In this Example, polymer production, metabolic intermediate analyses, and pathway dynamics for PHBV synthesis in planta are described.
- PHAs Poly(hydroxyalkanoates)
- PHBs Poly(hydroxyalkanoates)
- PHBV Poly( ⁇ -hydroxybutyrate-co- ⁇ -hydroxyvalerate)
- PHBV is produced commercially by growing Ralstonia eutropha on glucose and propionate (Byrum, D. FEMS Microbiol. Rev. 102: 247-250, 1992), but the cost of this process prohibits large-scale fermentation.
- Production of PHAs via genetic engineering of green plants is expected to reduce costs to economical levels (van der Leij, F. R., and Witholt, B. Can. J. Microbiol. 41(Suppl.1): 222-238, 1995), and production of PHB homopolymer in plants has been demonstrated (Poirier, Y., et al. Science 256: 520-523, 1992; Nawrath, C.; et al. Proc. Natl. Acad Sci. 91: 12760-12764, 1994).
- copolymer production has been problematic, primarily due to the requirement for metabolic precursors other than acetyl-CoA.
- FIG. 35 A pathway designed to engineer PHBV production in the plastids of plants is diagrammed in FIG. 35. Acetyl-CoA is drawn from plastid intermediary metabolism, whereas propionyl-CoA is generated from threonine via 2-ketobutyrate (Gruys et al WO 98/00557; Eschenlauer, A. C., et al. Int. J. Biol. Macromol. 19: 121-130, 1996). This pathway requires transformation of the plant with four separate genes: ilvA, bktB, phbB, and phbC. It also relies on the endogenous plastid pyruvate dehydrogenase complex (PDC).
- PDC endogenous plastid pyruvate dehydrogenase complex
- the threonine deaminase used in these studies is the biosynthetic enzyme IlvA from E. coli (Taillon, B. E., et al. Gene 63: 245-252, 1988).
- the acetoacetyl-CoA reductase (PhbB) and PHB synthase (PhbC) are the same R. eutropha enzymes used in earlier in planta studies (Poirier, Y., et al. Science 256: 520-523, 1992; Nawrath, C.; et al. Proc. Natl. Acad. Sci. 91: 12760-12764, 1994).
- the ⁇ -ketothiolase is BktB from R.
- Conversion of threonine to 2-ketobutyrate by IlvA is the first reaction catalyzed by one of the recombinantly-encoded enzymes.
- IlvA normally catalyzes the initial step in the conversion of threonine to isoleucine, and the enzyme is feedback-inhibited by isoleucine (Umbarger, H. E. Biosynthesis of branched-chain amino acids, pp. 442-457 in Escherichia coli and Salmonella: Cellular and Molecular Biology, Neidhart, F. C., Curtiss, R., Lin, E. C. C., Low, K. B., Magasanik, B., Reznikoff, W.
- FIG. 36 shows profiles of selected 2-ketoacids and amino acids in a control plant, and in transgenic Arabidopsis expressing wild-type ilvA.
- the transgenic plant had elevated levels of both 2-ketobutyrate and isoleucine.
- a high concentration of 2-aminobutyrate was present. Formation of 2-aminobutyrate from 2-ketobutyrate is a freely-reversible reaction, probably catalyzed by the same branched-chain amino acid transaminase that catalyzes the final step in isoleucine biosynthesis (Singh, B.
- the second step in the formation of propionyl-CoA is catalyzed by the plastid pyruvate dehydrogenase complex, which is the sole endogenous enzyme required for PHBV production.
- This enzyme complex normally plays a central role in metabolism by converting pyruvate to acetyl-CoA.
- PDC from isolated Brassica leukoplasts was also capable of converting 2-ketobutyrate to propionyl-CoA.
- PDC was approximately 10-fold less efficient when utilizing 2-ketobutyrate than when utilizing pyruvate; the specific activities were 0.4 units/mg and 3.6 units/mg for 2-ketobutyrate and pyruvate, respectively.
- propionyl-CoA Once propionyl-CoA has been produced, the pathway is identical to that shown to produce PHBV copolymer in recombinant E. Coli (Slater, S., et al. J. Bacteriol. 180: 1979-1987, 1998). Propionyl-CoA is converted to D- ⁇ -hydroxyvaleryl-CoA by BktB and PhbB, and then is polymerized with D- ⁇ -hydroxybutyryl-CoA to form PHBV copolymer. The functionality of the entire pathway in plants is shown in FIG. 37, which shows 1 H-NMR spectra demonstrating the presence of PHBV copolymer in Arabidopsis.
- Production of copolymer to high internal concentrations may require a supplementary route for conversion of 2-ketobutyrate to propionyl-CoA.
- routes include modifying the ⁇ -ketoacid dehydrogenase to more readily accept propionyl-CoA (Inoue H, et al. J. Bacteriol. 179: 3956-3962, 1997; Gruys et al WO 98/00557), expression of an alternative enzyme complex capable of forming propionyl-CoA from 2-ketobutyrate (Kerscher, L. and Oesterhelt, D., Eur. J. Biochem.
- a commercially viable transgenic plant producing PHA polymer from threonine may contain up to six separate transgenes.
- propionyl-CoA can also be achieved through other metabolic pathways, although none presents a straightforward alternative to the threonine derived pathway (FIG. 39).
- propionyl-CoA may be generated from acetyl-CoA using a 5-step pathway, part of which is involved in propionyl-CoA degradation in plants (Goodwin, T. W. and Mercer, E. I. Introduction to Plant Biochemistry. Second Edition. Pergamon Press, Oxford, 1985; Eisenreich, W., et al. Eur. J. Biochem. 215: 619-632, 1993; Preifert, H., and Steinbüchel, A. J. Bacteriol.
- Propionyl-CoA can also be derived from succinyl-CoA using a pathway present in both Rhodococcus ruber and Nocardia corallina (Williams, D. R.,et al. Appl. Microbiol. Biotechnol. 40: 717-723, 1994; Valentin, H. E., and Dennis, D. Appl. Environ. Microbiol. 62: 372-379, 1996).
- This pathway is initiated by methylmalonyl-CoA mutase, an enzyme that requires vitamin B 12 as a cofactor.
- vitamin B 12 is not synthesized in plants (Goodwin, T. W. and Mercer, E. I. Introduction to Plant Biochemistry. Second Edition.
- Rhodococcus and Nocardia also produce minor amounts of 3-hydroxyvaleryl-CoA via a different, uncharacterized route.
- This route may be a link to amino acid metabolism, such as the pathways used by other bacteria and animals to degrade valine and isoleucine (FIG. 39). These pathways might also be engineered in plants, but a large number of genes are required.
- ⁇ -alanine is another potential starting metabolite for the production of propionyl-CoA (Arst, H. N. Jr. Mol. Gen. Genet. 163: 23-27, 1978; Roberts, E., and Bregoff, H. M. J. Biol. Chem. 201: 393-398, 1953; Kupiecki, R. P., and Coon, M. J. J. Biol. Chem. 229: 743-754, 1957).
- ⁇ -alanine normally plays a critical role as a precursor to Coenzyme-A and acyl carrier protein. However, little is known about the concentration and compartmentalization of ⁇ -alanine in plants, and propionyl-CoA may actually be required for its synthesis.
- poly( ⁇ -hydroxybutyrate-co- ⁇ -hydroxyvalerate) copolymer was produced in both Arabidopsis and Brassica by simultaneously accessing amino acid and short-chain fatty acid metabolite pools.
- Brassica all four required transgenes were introduced on a single vector, eliminating the plant crossing normally necessary to assemble a pathway of this size.
- the polymer molecular mass was adequate for commercial purposes, but an apparent metabolic bottleneck in conversion of 2-ketobutyrate to propionyl-CoA suggests that additional engineering may be required to achieve high-level production of polymer with the necessary P-hydroxyvalerate composition.
- All ilvA alleles used herein are derived from the E. coli ilvA gene (Lawther, R. P. et al., Nucl. Acids Res. 11: 2137-2155, 1987) that is harbored in pMON25659 (Gruys et al WO 98/00557).
- the ilvA219 mutation (Eisenstein, E., et al. Biochemistry. 34: 9403-9412, 1995) and ilvA466 mutation (Taillon, B. E., et al. Gene. 63: 245-252, 1988), both originally isolated in Salmonella typhimurium, were introduced into the E. coli gene by oligonucleotide-directed mutagenesis as previously described (Gruys et al. WO 98/00557).
- All transformation vectors are derived from pMON10098, a vector designed for Agrobacterium-mediated transformation of plants that encodes the nptII selectable marker.
- the trfA function is provided in trans by the host bacterium, Agrobacterium tumefaciens ABI.
- A. tumefaciens ABI is Agrobacterium strain GV3101 (Van Larebeke, N., et al. Nature. 252: 169-170, 1974) harboring the helper plasmid pMP9ORK (Koncz, C., and Schell, J. Mol. Gen. Genet. 204: 383-396, 1986).
- All PHA production genes used in this study were initially constructed in intermediate vectors as cassettes including a promoter, a chloroplast transit peptide fused to the gene of interest, and a 3′ control region. In every case, the gene cassette is flanked by Not I restriction sites, plus several additional unique restriction sites. Each cassette was excised from it's intermediate vector using appropriate restriction enzymes, and sequentially ligated into the recombinant vector for plant transformation.
- Arabidopsis was transformed with either pMON15715, an ilvA-negative control vector, or pMON25668, which expresses both phbA and wild-type ilvA from e35S promoters.
- Plasmid pMON25678 encodes resistance to glyphosate
- pMON25812 encodes resistance to kanamycin. Both plasmids were simultaneously used for Agrobacterium-mediated Arabidopsis transformation (Bechtold N., et al. Comptes Rendus Acad. Sci. Paris Sciences Serie III Sciences de la Vie. 316: 1194-1199, 1993), and transformants were selected on both glyphosate and kanamycin as follows.
- Arabidopsis thaliana Columbia plants were grown in Metro Mix 200 in 2.5 in. pots covered with a mesh screen. Sown seed was vernalized for 5 days and germinated under conditions of 16 hours light/8 hours dark at 20° C. to 22° C., 75% humidity. Plants were watered and fertilized twice weekly with 1 ⁇ 2X Peters 20-20-20 until infiltration.
- a 1:50 dilution of an overnight culture of Agrobacterium tumefaciens ABI strain was grown at 28° C. in YEP containing Spectinomycin 100 mg/L, Streptomycin, 100 mg/L, Chloramphenicol 25 mg/L, and Kanamycin 50 mg/L. Each culture contained a different ABI construct. After 16-20 hours the Agrobacterium cultures were concentrated by centrifugation.
- the dessicator was then sealed with a vacuum and the seed remained in the dessicator overnight.
- Sterilized seeds from co-infiltrated plants were placed on media containing MS Basal Salts 4.3 g/L, Gamborg's B-5 (500 ⁇ ) 2.0 g/L, glucose 10 g/L, MES 0.5 g/L, and 8 g/L phytagar with carbenicillin 250 mg/L, cefotaxime 100 mg/L, kanamycin 60 mg/L and 4 mM glyphosate.
- the seed was germinated at 26° C., 20 hours light/4 hours dark. Transformants were transferred to soil and covered with a germination dome for one week. The plants were grown in plant growth conditions described above.
- PhbB was fused to the transit peptide from pea RuBisCo small subunit (Cashmore, A. R. Nuclear genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase. pp. 29-38 in Genetic Engineering of Plants, Kosuge, T., Meredith, C. P., Hollaender, A. (eds.). Plenum, N.Y., 1983). Each gene is controlled by the promoter from the fatty acid hydroxylase gene of Lesquerella (P-Lh; Broun, P., et al. Plant J. 13: 201-210, 1998), and the E9 3′ region (Coruzzi, G., et al.
- Leukoplasts were isolated essentially as described by Kang and Rawsthome ( Plant J. 6: 795-805, 1994). Isolated leucoplasts were lysed by sonication and debris removed by centrifugation at 10,000 ⁇ g for 10 minutes. The crude extract was desalted using Pharmacia NAP-5 columns and the protein concentrations determined by the Bradford method (Bradford, M. Anal. Biochem. 72: 248-254, 1976). Five to 50 ⁇ L were added to assay mix which contained final concentrations of: 100 mM EPPS, pH 8.0; 5 mM MgCl 2 ; 2.4 mM coenzyme-A; 1.5 mM NAD + ; and 0.2 mM TPP (cocarboxylase).
- the reaction was initiated with addition of either pyruvate or 2-ketobutyrate substrates to final concentrations of 1.5 mM and 30 mM, respectively.
- 14 C labeled pyruvate and 2-ketobutyrate were spiked into both substrates.
- the reactions were quenched with 30 ⁇ L of 10% formic acid after 2 to 30 minutes.
- 100 ⁇ L of the reaction was injected onto a Beckman Ultrasphere HPLC column (5 ⁇ M, 4.6 mm ⁇ 15 cm) and eluted with 1 mL/minute gradient of solvent A (50 mM ammonium acetate buffer pH 6.0 containing 5% acetonitrile) going from 0 to 40 % solvent B (acetonitrile) in 15 minutes.
- solvent A 50 mM ammonium acetate buffer pH 6.0 containing 5% acetonitrile
- the reaction was followed by monitoring absorbance of CoA-derived products at 230 and 260 nm using a photodiode array detector. Use of radioisotope flow detector allowed confirmation of both substrate and product peak identities. The percent conversion of added substrates was used to determine the specific activities of the extracts. One unit equals one nmol product produced per minute per mg protein in extract.
- Polymer was extracted from the dried material with 1 mL of chloroform containing 3 ⁇ mol/mL methyl-benzoate standard and 1 mL of methanol/sulphuric acid (85:15, v/v).
- the tube was heated to 100° C. for exactly 2.5 hours, and the solid material was removed by centrifugation.
- the solution was cooled, 1 mL water was added, and the liquid was mixed using a vortex mixer.
- the organic and aqueous phases were separated by centrifugation at 1,600 ⁇ g for ten minutes.
- the chloroform layer was transferred to a clean test tube and vigorously mixed with approximately 200 mg of silica gel. Solid material was removed by centrifugation, and the supernatant material was subjected to gas chromatography.
- Plant promoter sequences can be constitutive or inducible, environmentally- or developmentally-regulated, or cell- or tissue-specific. Often-used constitutive promoters include the CaMV 35S promoter (Odell et al., Nature 313: 810-812, 1985), the enhanced CaMV 35S promoter, the Figwort Mosaic Virus (FMV) promoter (Richins, R. D. et al., Nucleic Acids Res. 20: 8451-8466, 1987), the mannopine synthase (mas) promoter, the nopaline synthase (nos) promoter, and the octopine synthase (ocs) promoter.
- CaMV 35S promoter Odell et al., Nature 313: 810-812, 1985
- the enhanced CaMV 35S promoter the Figwort Mosaic Virus (FMV) promoter
- FMV Figwort Mosaic Virus
- Useful inducible promoters include promoters induced by salicylic acid or polyacrylic acids (PR-1, Willians , S. W. et al, Biotechnology 10: 540-543, 1992), induced by application of safeners (substituted benzenesulfonamide herbicides, Hershey, H. P. and Stoner, T. D., Plant Mol. Biol. 17: 679-690, 1991), heat-shock promoters (Ou-Lee et al., Proc. Natl. Acad. Sci. U.S.A. 83: 6815-6819, 1986; Ainley, W. M. et al., Plant Mol. Biol.
- tissue-specific, developmentally-regulated promoters include the ⁇ -conglycinin 7S promoter (Doyle, J. J. et al., J. Biol. Chem.
- Plant functional promoters useful for preferential expression in seed plastids include those from plant storage protein genes and from genes involved in fatty acid biosynthesis in oilseeds. Examples of such promoters include the 5′ regulatory regions from such genes as napin (Kridl et al., Seed Sci. Res. 1: 209-219, 1991), phaseolin, zein, soybean trypsin inhibitor, ACP, stearoyl-ACP desaturase, and oleosin. Seed-specific gene regulation is discussed in EP 0 255 378. Promoter hybrids can also be constructed to enhance transcriptional activity (Comai, L. and Moran, P. M., U.S. Pat. No. 5,106,739, issued Apr. 21, 1992), or to combine desired transcriptional activity and tissue specificity.
- a variety of different methods can be employed to introduce such vectors into plant protoplasts, cells, callus tissue, leaf discs, meristems, etcetera, to generate transgenic plants, including Agrobacterium-mediated transformation, particle gun delivery, microinjection, electroporation, polyethylene glycol mediated protoplast transformation, liposome-mediated transformation, etc. (reviewed in Potrykus, Ann. Rev. Plant Physiol. Plant Mol. Biol. 42: 205-225, 1991).
- transgenic plants comprising cells containing and expressing DNAs encoding enzymes facilitating PHA biosynthesis can be produced by transforming plant cells with a DNA construct as described above via any of the foregoing methods; selecting plant cells that have been transformed on a selective medium; regenerating plant cells that have been transformed to produce differentiated plants; and selecting a transformed plant which expresses the enzyme-encoding nucleotide sequence.
- Particularly useful plants for polyhydroxyalkanoate production include those that produce carbon substrates which can be employed for polyhydroxyalkanoate biosynthesis, including tobacco, wheat, potato, Arabidopsis, and high oil seed plants such as corn, soybean, canola, oil seed rape, sunflower, flax, peanut, sugarcane, switchgrass, and alfalfa.
- the host plant of choice does not produce the requisite fatty acid substrates in sufficient quantities, it can be modified, for example by mutagenesis or genetic transformation, to block or modulate the glycerol ester and fatty acid biosynthesis or degradation pathways so that it accumulates the appropriate substrates for polyhydroxyalkanoate production.
- Expression of enzymes such as acyl-ACP thioesterase, fatty acyl hydroxylase, and yeast MFP may serve to increase the flux of substrates in the peroxysome, leading to higher levels of polyhydroxyalkanoate biosynthesis.
- Variations in the nucleic acid sequence encoding a fusion protein may lead to mutant protein sequences that display equivalent or superior enzymatic characteristics when compared to the sequences disclosed herein.
- This invention accordingly encompasses nucleic acid sequences which are similar to the sequences disclosed herein, protein sequences which are similar to the sequences disclosed herein, and the nucleic acid sequences that encode them. Mutations may include deletions, insertions, truncations, substitutions, fusions, and the like.
- Mutations to a nucleic acid sequence may be introduced in either a specific or random manner, both of which are well known to those of skill in the art of molecular biology.
- Random or non-specific mutations may be generated by chemical agents (for a general review, see Singer and Kusmierek, Ann. Rev. Biochem. 52: 655-693, 1982) such as nitrosoguanidine (Cerda-Olmedo et al., J. Mol. Biol. 33: 705-719, 1968; Guerola, et al. Nature New Biol. 230: 122-125, 1971) and 2-aminopurine (Rogan -and Bessman, J. Bacteriol. 103: 622-633, 1970), or by biological methods such as passage through mutator strains (Greener et al. Mol. Biotechnol. 7: 189-195, 1997).
- Nucleic acid hybridization is a technique well known to those of skill in the art of DNA manipulation.
- the hybridization properties of a given pair of nucleic acids is an indication of their similarity or identity.
- Mutated nucleic acid sequences may be selected for their similarity to the disclosed nucleic acid sequences on the basis of their hybridization to the disclosed sequences.
- Low stringency conditions may be used to select sequences with multiple mutations.
- High stringency conditions may be used to select for nucleic acid sequences with higher degrees of identity to the disclosed sequences.
- Conditions employed may include about 0.02 M to about 0.15 M sodium chloride, about 0.5% to about 5% casein, about 0.02% SDS and/or about 0.1% N-laurylsarcosine, about 0.001 M to about 0.03 M sodium citrate, at temperatures between about 50° C. and about 70° C. More preferably, high stringency conditions are 0.02 M sodium chloride, 0.5% casein, 0.02% SDS, 0.001 M sodium citrate, at a temperature of 50° C.
- Certain amino acids may be substituted for other amino acids in a protein sequence without appreciable loss of enzymatic activity. It is thus contemplated that various changes may be made in the peptide sequences of the disclosed protein sequences, or their corresponding nucleic acid sequences without appreciable loss of the biological activity.
- the hydropathic index of amino acids may be considered.
- the importance of the hydropathic amino acid index in conferring interactive biological function on a protein is generally understood in the art (Kyte and Doolittle, J. Mol. Biol., 157: 105-132, 1982). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like.
- Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics. These are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine ( ⁇ 0.4); threonine ( ⁇ 0.7); serine ( ⁇ 0.8); tryptophan ( ⁇ 0.9); tyrosine ( ⁇ 1.3); proline ( ⁇ 1.6); histidine ( ⁇ 3.2); glutamate/glutamine/aspartate/asparagine ( ⁇ 3.5); lysine ( ⁇ 3.9); and arginine ( ⁇ 4.5).
- hydrophilicity values have been assigned to amino acids: arginine/lysine (+3.0); aspartate/glutamate (+3.0 ⁇ 1); serine (+0.3); asparagine/glutamine (+0.2); glycine (0); threonine ( ⁇ 0.4); proline ( ⁇ 0.5 ⁇ 1); alanine/histidine ( ⁇ 0.5); cysteine ( ⁇ 1.0); methionine ( ⁇ 1.3); valine ( ⁇ 1.5); leucine/isoleucine ( ⁇ 1.8); tyrosine ( ⁇ 2.3); phenylalanine ( ⁇ 2.5); and tryptophan ( ⁇ 3.4).
- an amino acid may be substituted by another amino acid having a similar hydrophilicity score and still result in a protein with similar biological activity, i.e., still obtain a biologically functional protein.
- substitution of amino acids whose hydropathic indices are within ⁇ 2 is preferred, those within ⁇ 1 are more preferred, and those within ⁇ 0.5 are most preferred.
- amino acid substitutions are therefore based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like.
- Exemplary substitutions which take various of the foregoing characteristics into consideration are well known to those of skill in the art and include: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine, and isoleucine. Changes which are not expected to be advantageous may also be used if these resulted in functional fusion proteins.
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
The use of multigene vectors for the preparation of transformed host cells and plants is disclosed. Multigene vectors reduce the number of transformations required, and leads to increased production of polyhydroxyalkanoate polymer in the resulting transformed host cells and plants.
Description
- This application is based on U.S. Provisional Application No. 60/123,015, filed Mar. 5, 1999.
- The invention relates to the construction and use of multigene expression vectors useful to enhance production of materials by multienzyme pathways. In particular, the construction and use of multigene vectors encoding proteins in the polyhydroxyalkanoate biosynthetic pathway is disclosed.
- Metabolic engineering is a process by which the normal metabolism of an organism is altered to change the concentration of normal metabolites, or to create novel metabolites. This process often involves introduction or alteration of numerous enzymatic steps, and thus often requires introduction of multiple genes. An efficient system for introducing and expressing multiple genes is therefore desirable. In prokaryotes such asEscherichia coli, introduction of multiple genes is relatively straightforward in that operons can be constructed to express multiple open reading frames, or multiple complete genes can be expressed from a single plasmid. However, introduction of pathways into plants is more difficult due in part to the complexity of plant genes, the difficulty of constructing vectors harboring multiple genes for expression in plants, and the difficulty of introducing large vectors intact into plants.
- Polyhydroxyalkanoates are bacterial polyesters that accumulate in a wide variety of bacteria. These polymers have properties ranging from stiff and brittle plastics to rubber-like materials, and are biodegradable. Because of these properties, polyhydroxyalkanoates are an attractive source of non-polluting plastics and elastomers.
- Currently, there are approximately a dozen biodegradable plastics in commercial use that possess properties suitable for producing a number of specialty and commodity products (Lindsay,Modern Plastics 2: 62, 1992). One such biodegradable plastic in the polyhydroxyalkanoate (PHA) family that is commercially important is Biopol™, a random copolymer of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV). This bioplastic is used to produce biodegradable molded material (e.g., bottles), films, coatings, and in drug release applications. Biopl™ is produced via a fermentation process employing the bacterium Ralstonia eutropha (Byrom, D. Trends Biotechnol. 5: 246-250, 1987). (R. eutropha was formerly designated Alcaligenes eutrophus [Yabuuchi et al., Microbiol. Immunol. 39:897-904, 1995]). The current market price is $6-7/lb, and the annual production is 1,000 tons. By best estimates, this price can be reduced only about 2-fold via fermentation (Poirier, Y. et al., Bio/Technology 13: 142, 1995). Competitive synthetic plastics such as polypropylene and polyethylene cost about 35-45¢/lb (Layman, Chem. & Eng. News, p. 10 (Oct. 31, 1994). The annual global demand for polyethylene alone is about 37 million metric tons (Poirier, Y. et al., Int. J. Biol. Macromol. 17: 7-12, 1995). It is therefore likely that the cost of producing P(3HB-co-3HV) by microbial fermentation will restrict its use to low-volume specialty applications.
- Polyhydroxyalkanoate (PHA) is a family of polymers composed primarily of R-3-hydroxyalkanoic acids (Anderson, A. J. and Dawes, E. A.Microbiol. Rev. 54: 450-472, 1990; Steinbüchel, A. in Novel Biomaterials from Biological Sources, ed. Byrom, D. (MacMillan, N.Y.), pp. 123-213, 1991); Poirier, Y., Nawrath, C. & Somerville, C. Bio/Technology 13: 143-150, 1995). Polyhydroxybutyrate (PHB) is the most well-characterized PHA. High molecular weight PHB is found as intracellular inclusions in a wide variety of bacteria (Steinbüchel, A. in Novel Biomaterials from Biological Sources, ed. Byrom, D. (MacMillan, N.Y.), pp. 123-213, 1991). In Ralstonia eutropha, PHB typically accumulates to 80% dry weight with inclusions being typically 0.2-1 μm in diameter. Small quantity of PHB oligomers of approximately 150 monomer units are also found associated with membranes of bacteria and eukaryotes, where they form channels permeable to calcium (Reusch, R. N., Can. J. Microbiol. 41 (Suppl. 1): 50-54, 1995). High molecular weight polyhydroxyalkanoates have the properties of thermoplastics and elastomers. Numerous bacteria and fungi can hydrolyze polyhydroxyalkanoates to monomers and oligomers, which are metabolized as a carbon source. Polyhydroxyalkanoates have accordingly attracted attention as a potential source of renewable and biodegradable plastics and elastomers. PHB is a highly crystalline polymer with rather poor physical properties, being relatively stiff and brittle (de Koning, G., Can. J. Microbiol. 41 (Suppl. 1): 303-309, 1995). In contrast, PHA copolymers containing monomer units ranging from 3 to 5 carbons for short-chain-length PHA (SCL-PHA), or 6 to 14 carbons for medium-chain-length PHA (MCL-PHA), are less crystalline and more flexible polymers (de Koning, G., Can. J. Microbiol. 41 (Suppl. 1): 303-309, 1995).
- PHB has been produced in the plantArabidopsis thaliana expressing the R. eutropha PHB biosynthetic enzymes (Poirier, Y. et al., Science 256: 520-523, 1992; Nawrath, C., et al., Proc. Natl. Acad. Sci. U.S.A. 91: 12760-12764, 1994). In plants expressing the PHB pathway in the plastids, leaves accumulated up to 14% PHB per gram dry weight (Nawrath, C., et al., Proc. Natl. Acad. Sci. U.S.A. 91: 12760-12764, 1994). High-level synthesis of PHB in plants opened the possibility of utilizing agricultural crops as a suitable system for the production of polyhydroxyalkanoates on a large scale and at low cost (Poirier, Y. et al., Bio/Technology 13: 143-150, 1995; Poirier, Y. et al., FEMS Microbiol. Rev. 103: 237-246, 1992; Nawrath, C., et al. Molecular Breeding 1: 105-22, 1995). PHB was also shown to be synthesized in insect cells expressing a mutant fatty acid synthase (Williams, M. D., et al., Appl. Environ. Microbiol. 62: 2540-2546, 1996), and in yeast expressing the R. eutropha PHB synthase (Leaf, T. A., et al. Microbiol. 142: 1169-1180, 1996).
- A number of pseudomonads, includingPseudomonas putida and Pseudomonas aeruginosa, accumulate MCL-PHAs when cells are grown on alkanoic acids (Anderson, A. J. & Dawes, E. A. Microbiol. Rev. 54: 450-472, 1990; Steinbüchel, A. in Novel Biomaterials from Biological Sources, ed. Byrom, D. (MacMillan, N.Y.), pp. 123-213, 1991; Poirier, Y., Nawrath, C. & Somerville, C. Bio/Technology 13: 143-150, 1995). The nature of the PHA produced is related to the substrate used for growth and is typically composed of monomers which are 2 n carbons shorter than the substrate. These studies indicate that MCL-PHAs are synthesized by the PHA synthase from 3-hydroxyacyl-CoA intermediates generated by the β-oxidation of alkanoic acids (Huijberts, G. N. M., et al. Appl. Environ. Microbiol. 58: 536-544, 1992; Huijberts, G. N. M., et al., J. Bacteriol. 176: 1661-1666, 1994).
- Chen et al. (Nature Biotech., 16: 1060-1064, 1998; reviewed by Gelvin, S. B., Nature Biotech., 16: 1009-1010, 1998) describes the cobombardment of embryogenic rice tissues with a mixture of 14 different pUC based plasmids. Integration of multiple transgenes was observed to occur at one or two genetic loci.
- Creating a transgenic host cell or plant that produces multiple enzymes within a biosynthetic pathway is often a daunting task. Individual vectors must be created for each enzyme. Transformation of the host cell or plant is typically accomplished by one of three general methods: serial transformation, parallel transformation followed by crossing, or batch transformation. Each method has serious practical drawbacks.
- Serial transformation involves transforming a host cell or plant with the first vector, selecting and characterizing the transformed cell or plant, transforming with the second vector, and so on. This process can become quite laborious and time consuming.
- Parallel transformation followed by crossing involves separately transforming cells with each of the individual vectors, and subsequently mating or crossbreeding the transformed cells or plants to obtain a final cell or plant which contains all of the individual sequences. This is a lengthy process, especially for the crossbreeding of plant lines.
- Batch transformation involves a single transformation event involving all of the individual vectors. A wide array of cells are produced, each containing between none and all of the vectors. While only a single transformation is required, extensive characterization of the resulting cells is necessary. As the number of vectors increases, it is increasingly likely that no cells will be obtained containing all of the vectors. If no desired transformed cells are identified, the transformation must be repeated.
- An additional concern with all three of these methods is that they do not allow any control over the relative copy numbers of the individual vectors in the transformed cell or plant. It would be desirable to have a transformation method that permits control of the relative copy numbers of the individual sequences in the transformed cell or plant, and also coordinates the positional effect of the insertion locus.
- There exists a need for improved materials and methods for the preparation of transgenic organisms transformed with multiple nucleic acid sequences encoding members of a multi-enzyme biosynthetic pathway.
- The invention involves the construction and use of nucleic acid segments and vectors containing multiple sequences encoding members of a biosynthetic pathway. The resulting vector allows a single transformation event to produce a transformed cell or plant containing all of the nucleic acid sequences. Furthermore, the researcher has total control over the number of copies of each coding sequence within the constructed vector. Single or multiple copies of each coding sequence may easily be designed into the vector.
- An unexpected beneficial result of the invention is that organisms transformed with a multi-enzyme coding vector produce the biosynthetic product in higher yield than organisms produced by serial transformation, parallel transformation with crossing, or batch transformation methods.
- The invention is directed generally towards the construction and use of nucleic acid segments comprising sequences encoding multiple enzymes in a multi-enzyme biosynthetic pathway. The biosynthetic pathway may generally be any biosynthetic pathway. Examples of such multi-enzyme biosynthetic pathways are the TCA cycle, polyketide synthesis pathway, carotenoid synthesis, glycolysis, gluconeogenesis, starch synthesis, lignins and related compounds, production of small molecules that serve as pesticides, fungicides, or antibiotics, and polymer synthesis pathways. Preferably, the biosynthetic pathway is a polyhydroxyalkanoate biosynthesis pathway.
- This disclosure describes multigene vectors designed to produce polyhydroxyalkanoate (PHA) in plants. Some of these vectors are designed to produce poly(β-hydroxybutyrate), and some are designed to produce poly(β-hydroxybutyrate-co-βhydroxyvalerate) (Gruys et al., WO 98/00557, 1998). In general, the efficiency of PHA production was dramatically increased when all sequences necessay for a pathway were introduced on the same vector. Herein, construction of these multigene vectors, and their use for polyhydroxyalkanoate production inArabidopsis thaliana and Brassica napus, and Zea mays is described.
- An embodiment of the present invention is an isolated nucleic acid segment comprising multiple nucleic acid sequences, each encoding a different protein within the biosynthetic pathway. Preferably, the isolated nucleic acid segment comprises a first nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein; a second nucleic acid sequence encoding a β-ketoacyl reductase protein; and a third nucleic acid sequence encoding a β-ketothiolase protein. The nucleic acid segment may further comprise additional nucleic acid sequences encoding additional proteins such as a threonine deaminase protein or a deregulated threonine deaminase protein.
- An alternative embodiment of the invention is a recombinant vector comprising multiple nucleic acid sequences, each encoding a different protein within the biosynthetic pathway. The recombinant vector may be arranged with a single promoter producing a polycistronic RNA transcript from the multiple nucleic acid sequences, or with each nucleic acid sequence being under the control of its own promoter. The multiple promoters may be the same or different. It is also possible to have one or more nucleic acid sequence under the control of its own promoter, while other nucleic acid sequences may be jointly under the control of a single promoter producing a polycistronic RNA transcript.
- A recombinant vector placing the biosynthetic pathway nucleic acid sequences under the control of a single promoter preferably comprises operatively linked in the 5′ to 3′ direction: a promoter that directs transcription of the first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence; a first nucleic acid sequence; a second nucleic acid sequence; a third nucleic acid sequence; a 3′ transcription terminator; and a 3′ polyadenylation signal sequence; wherein: the first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence encode different proteins; and the first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence are independently selected from the group consisting of a nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein, a nucleic acid sequence encoding a β-ketoacyl reductase protein, and a nucleic acid sequence encoding a β-ketothiolase protein. The nucleic acid sequences encoding the biosynthetic pathway enzymes may be in any order relative to each other and the promoter. The promoter must be expressed in plastids. It may have either been derived from a plastid, or may have been derived from a bacterium or phage having promoters recognized by the plastid transcription enzymes, or be a synthetic promoter recognized by the plastid transcription enzymes.
- A recombinant vector placing the biosynthetic pathway nucleic acid sequences under the control of multiple promoters preferably comprises a first element comprising operatively linked in the 5′ to 3′ direction: a first promoter that directs transcription of the first nucleic acid sequence; a first nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein; a first 3′ transcription terminator; a first 3′ polyadenylation signal sequence; a second element comprising operatively linked in the 5′ to 3′ direction: a second promoter that directs transcription of the second nucleic acid sequence; a second nucleic acid sequence encoding a β-ketoacyl reductase protein; a second 3′ transcription terminator; a second 3′ polyadenylation signal sequence; and a third element comprising operatively linked in the 5′ to 3′ direction: a third promoter that directs transcription of the third nucleic acid sequence; a third nucleic acid sequence encoding a β-ketothiolase protein; a third 3′ transcription terminator; and a third 3′ polyadenylation signal sequence. The β-ketothiolase protein preferably condenses two molecules of acetyl-CoA to produce acetoacetyl-CoA; and condenses acetyl-CoA and propionyl-CoA to produce β-ketovaleryl-CoA. The β-ketoacyl reductase protein preferably reduces acetoacetyl-CoA to β-hydroxybutyryl-CoA; and reduces β-ketovaleryl-CoA to β-hydroxyvaleryl-CoA. The polyhydroxyalkanoate synthase protein is preferably selected from the group consisting of: a polyhydroxyalkanoate synthase protein that incorporates β-hydroxybutyryl-CoA into P(3HB) polymer; and a polyhydroxyalkanoate synthase protein that incorporates a β-hydroxybutyryl-CoA and a β-hydroxyvaleryl-CoA into P(3HB-co-3HV) copolymer. The β-ketothiolase protein may comprise a transit peptide sequence that directs transport of the β-ketothiolase protein to the plastid. The β-ketoacyl reductase protein may comprise a transit peptide sequence that directs transport of the β-ketoacyl reductase protein to the plastid. The polyhydroxyalkanoate synthase protein may comprise a transit peptide sequence that directs transport of the polyhydroxyalkanoate synthase protein to the plastid. The recombinant vector may further comprise a nucleic acid sequence encoding a threonine deaminase protein or a deregulated threonine deaminase protein. The first promoter, second promoter, and third promoter are preferably active in plants. The first promoter, second promoter, and third promoter are preferably viral promoters. The first promoter, second promoter, and third promoter are preferably independently selected from the group consisting of a
CMV 35S promoter, anenhanced CMV 35S promoter, maize chlorophyll A/B binding protein promoter, and anFMV 35S promoter. More preferably, the first promoter, second promoter, and third promoter are theCMV 35S promoter. The first promoter, second promoter, and third promoter may be tissue specific promoters. The first promoter, second promoter, and third promoter may independently be the Lesquerella hydroxylase promoter or the 7S conglycinin promoter, and preferably each is the Lesquerella hydroxylase promoter. - An alternative embodiment is directed towards transformed host cells. Transformed host cells may contain a non-integrated recombinant vector or an integrated recombinant vector.
- A transformed host cell may comprise a recombinant vector, wherein the recombinant vector comprises a first element comprising operatively linked in the 5′ to 3′ direction: a first promoter that directs transcription of the first nucleic acid sequence; a first nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein; a first 3′ transcription terminator; a first 3′ polyadenylation signal sequence; a second element comprising operatively linked in the 5′ to 3′ direction: a second promoter that directs transcription of the second nucleic acid sequence; a second nucleic acid sequence encoding a β-ketoacyl reductase protein; a second 3′ transcription terminator; a second 3′ polyadenylation signal sequence; and a third element comprising operatively linked in the 5′ to 3′ direction a third promoter that directs transcription of the third nucleic acid sequence; a third nucleic acid sequence encoding a β-ketothiolase protein; a third 3′ transcription terminator; and a third 3′ polyadenylation signal sequence.
- The transformed host cell may alternatively contain an integrated nucleic acid segment. Preferably, the transformed host cell may comprise a first element comprising operatively linked in the 5′ to 3′ direction: a first promoter that directs transcription of a first nucleic acid sequence; a first nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein; a first 3′ transcription terminator; a first 3′ polyadenylation signal sequence; a second element comprising operatively linked in the 5′ to 3′ direction: a second promoter that directs transcription of a second nucleic acid sequence; a second nucleic acid sequence encoding a β-ketoacyl reductase protein; a second 3′ transcription terminator; a second 3′ polyadenylation signal sequence; and a third element comprising operatively linked in the 5′ to 3′ direction: a third promoter that directs transcription of a third nucleic acid sequence; a third nucleic acid sequence encoding a β-ketothiolase protein; a third 3′ transcription terminator; and a third 3′ polyadenylation signal sequence. The first element, second element, and third element may be cointegrated within a continuous 10 Mb segment of genomic DNA, more preferably within a continuous 5 Mb, 2.5 Mb, 2 Mb, 1.5 Mb, 1 Mb, 500 kb, 250 kb, 100 kb, 50 kb, or 20 kb segment of genomic DNA. Alternatively, the first element, second element, and third element may be cointegrated between a left Ti border sequence and a right Ti border sequence. While it is preferable that a recombinant vector contain a single left Ti border sequence and a single right Ti border sequence, the invention encompasses recombinant vectors containing multiple left and/or right Ti border sequences, and the use thereof.
- Alternatively, the host cell may comprise a nucleic acid segment containing nucleic acid sequences encoding enzymes in a biosynthetic pathway, where a single promoter directs transcription of the nucleic acid sequences.
- The transformed host cell may generally be any host cell, and preferably is a bacterial, fungal, or plant cell. The bacterial cell is preferably anEscherichia coli cell. The fungal cell is preferably a yeast, Saccharomyces cerevisiae, or Schizosaccharomyces pombe cell. The plant cell may be a monocot plant cell, a dicot plant cell, an algae cell, or a conifer plant cell. The plant cell is preferably a tobacco, wheat, potato, Arabidopsis, corn, soybean, canola, sugar beet, oil seed rape, sunflower, flax, peanut, sugarcane, switchgrass, or alfalfa cell.
- The promoters may be any of the promoters discussed earlier. The transformed host cells preferably produce polyhydroxyalkanoate polymer.
- The invention also encompasses transformed plants. The transformed plant may contain an integrated set of nucleic acid sequences, or may contain the same set of nucleic acid sequences on a non-integrated vector. A preferred embodiment is directed towards a transformed plant comprising a first element comprising operatively linked in the 5′ to 3′ direction: a first promoter that directs transcription of a first nucleic acid sequence; a first nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein; a first 3′ transcription terminator; a first 3′ polyadenylation signal sequence; a second element comprising operatively linked in the 5′ to 3′ direction: a second promoter that directs transcription of a second nucleic acid sequence; a second nucleic acid sequence encoding a β-ketoacyl reductase protein; a second 3′ transcription terminator; a second 3′ polyadenylation signal sequence; and a third element comprising operatively linked in the 5′ to 3′ direction: a third promoter that directs transcription of a third nucleic acid sequence; a third nucleic acid sequence encoding a β-ketothiolase protein; a third 3′ transcription terminator; and a third 3′ polyadenylation signal sequence. The first element, second element, and third element may be cointegrated within a continuous 10 Mb segment of genomic DNA, more preferably within a continuous 5 Mb, 2.5 Mb, 2 Mb, 1.5 Mb, 1 Mb, 500 kb, 250 kb, 100 kb, 50 kb, or 20 kb segment of genomic DNA. Alternatively, the first element, second element, and third element may be cointegrated between a left Ti border sequence and a right Ti border sequence.
- Alternatively, the transformed plant may comprise a nucleic acid segment containing nucleic acid sequences encoding enzymes in a biosynthetic pathway, where a single promoter directs transcription of the nucleic acid sequences.
- The transformed plant may generally be any type of plant, and preferably is a tobacco, wheat, potato, Arabidopsis, corn, soybean, canola, oil seed rape, sunflower, flax, peanut, sugarcane, switchgrass, or alfalfa plant.
- The promoters may be any of the promoters discussed earlier. The transformed plant preferably produces polyhydroxyalkanoate polymer.
- The invention also encompasses methods of preparing transformed host cells. The methods may produce a transformed host cell having nucleic acid sequences under the control of multiple promoters or under the control of a single promoter. The method preferably comprises the steps of selecting a host cell; transforming the selected host cell with a recombinant vector comprising: a first element comprising operatively linked in the 5′ to 3′ direction: a first promoter that directs transcription of the first nucleic acid sequence; a first nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein; a first 3′ transcription terminator; a first 3′ polyadenylation signal sequence; a second element comprising operatively linked in the 5′ to 3′ direction: a second promoter that directs transcription of the second nucleic acid sequence; a second nucleic acid sequence encoding a β-ketoacyl reductase protein; a second 3′ transcription terminator; a second 3′ polyadenylation signal sequence; and a third element comprising operatively linked in the 5′ to 3′ direction: a third promoter that directs transcription of the third nucleic acid sequence; a third nucleic acid sequence encoding a β-ketothiolase protein; a third 3′ transcription terminator; and a third 3′ polyadenylation signal sequence; and obtaining transformed host cells; wherein the transformed host cells produce polyhydroxyalkanoate polymer.
- Alternatively, the method of preparing transformed host cells may comprise the steps of selecting a host cell; transforming the selected host cell with a recombinant vector comprising operatively linked in the 5′ to 3′ direction: a promoter that directs transcription of a first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence; a first nucleic acid sequence; a second nucleic acid sequence; a third nucleic acid sequence; a 3′ transcription terminator; and a 3′ polyadenylation signal sequence; and obtaining transformed host cells; wherein: the first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence encode different proteins; the first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence are independently selected from the group consisting of a nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein, a nucleic acid sequence encoding a β-ketoacyl reductase protein, and a nucleic acid sequence encoding a β-ketothiolase protein; and the transformed host cells produce polyhydroxyalkanoate polymer.
- The promoters may be any of the promoters discussed earlier.
- Also disclosed are methods for preparing transformed plants. The methods may produce a transformed plant having nucleic acid sequences under the control of multiple promoters or under the control of a single promoter. The method preferably comprises the steps of selecting a host plant cell; transforming the selected host plant cell with a recombinant vector comprising: a first element comprising operatively linked in the 5′ to 3′ direction: a first promoter that directs transcription of a first nucleic acid sequence; a first nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein; a first 3′ transcription terminator; and a first 3′ polyadenylation signal sequence; a second element comprising operatively linked in the 5′ to 3′ direction: a second promoter that directs transcription of a second nucleic acid sequence; a second nucleic acid sequence encoding a β-ketoacyl reductase protein; a second 3′ transcription terminator; and a second 3′ polyadenylation signal sequence; and a third element comprising operatively linked in the 5′ to 3′ direction: a third promoter that directs transcription of a third nucleic acid sequence; a third nucleic acid sequence encoding a β-ketothiolase protein; a third 3′ transcription terminator; and a third 3′ polyadenylation signal sequence; obtaining transformed host plant cells; and regenerating the transformed host plant cells to produce transformed plants, wherein the transformed plants produce polyhydroxyalkanoate polymer.
- Alternatively, the method of preparing a transformed plant may comprise the steps of selecting a host plant cell; transforming the selected host plant cell with a recombinant vector comprising operatively linked in the 5′ to 3′ direction: a promoter that directs transcription of a first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence; a first nucleic acid sequence; a second nucleic acid sequence; a third nucleic acid sequence; a 3′ transcription terminator; and a 3′ polyadenylation signal sequence; obtaining transformed host plant cells; and regenerating the transformed host plant cells to produce transformed plants; wherein: the first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence encode different proteins; the first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence are independently selected from the group consisting of a nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein, a nucleic acid sequence encoding a β-ketoacyl reductase protein, and a nucleic acid sequence encoding a β-ketothiolase protein; and the transformed plants produce polyhydroxyalkanoate polymer.
- The promoters may be any of the promoters discussed earlier.
- The invention is also directed towards methods of producing biomolecules of interest. The multiple enzymes in the biosynthetic pathway may lead to the production of materials of commercial and scientific interest. Preferably, the biomolecules are polymers, and more preferably are polyhydroxyalkanoate polymers. The methods may comprise obtaining any of the above described transformed host cells or transformed plants, culturing or growing the transformed host cells or transformed plants under conditions suitable for the production of polyhydroxyalkanoate polymer, and recovering polyhydroxyalkanoate polymer. The methods, may further comprise the addition of nutrients, substrates, or other chemical additives to the growth media or soil to facilitate production of polyhydroxyalkanoate polymer. In a preferred embodiment, it is possible to extract the polyhydroxyalkanoate from the transformed host cells or transformed plants without killing the host cells or plants. This may be accomplished, for example, by various solvent extraction methods or by engineering the host cells or plants to secrete the polyhydroxyalkanoate polymer, or by directing production to tissues such as leaves or seeds which may be removed without causing serious injury to the plant. The polyhydroxyalkanoate polymer produced is preferably poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(4-hydroxybutyrate), or poly(3-hydroxybutyrate-co-4-hydroxybutyrate).
- If repetitive sequences are used in a multi-gene plasmid system, there exists the possibility for gene silencing in subsequent generations of plants. If expression levels are high gene silencing could also occur and would be independent of repetitive elements. Repetitive sequences may include the use of the same promoters, chloroplast peptide encoding sequences, and other genetic elements for each of the multi-gene coding sequences. Gene silencing often manifests itself as a gradual reduction in protein levels, mRNA levels, or biosynthesis product concentrations in subsequent generations of related plants. If gene silencing is observed, changing the repetitive sequences through the use of diverse genetic elements such as different promoters, leaders, introns, transit peptide sequences, etc., different designed nucleotide sequence, or through mutagenesis of the existing sequence, may be successful in reducing or eliminating the gene silencing effects.
- The following figures form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.
- FIG. 1: Biosynthesis of poly(β-hydroxybutyrate-co-β-hydroxyvalerate) (poly(3HB-co-3HV), PHBV) inRalstonia eutropha.
- FIG. 2: Plant transformation strategies for multi-enzyme metabolic pathway engineering.
- FIG. 3: Plasmid map of pMON25642. A list of the restriction enzyme cutting sites for pMON25642 is provided in Table 10.
- FIG. 4: Plasmid map of pMON10098. A list of the restriction enzyme cutting sites for pMON10098 is provided in Table 11.
- FIG. 5: Plasmid map of pMON969. A list of the restriction enzyme cutting sites for pMON969 is provided in Table 12.
- FIG. 6: Plasmid map of pMON25661. A list of the restriction enzyme cutting sites for pMON25661 is provided in Table 13.
- FIG. 7: Plasmid map of pMON25897. A list of the restriction enzyme cutting sites for pMON25897 is provided in Table 14.
- FIG. 8: Plasmid map of pMON25662. A list of the restriction enzyme cutting sites for pMON25662 is provided in Table 15.
- FIG. 9: Plasmid map of pMON25663. A list of the restriction enzyme cutting sites for pMON25663 is provided in Table 16.
- FIG. 10: Plasmid map of pMON25943. A list of the restriction enzyme cutting sites for pMON25943 is provided in Table 17.
- FIG. 11: Plasmid map of pMON25948. A list of the restriction enzyme cutting sites for pMON25948 is provided in Table 18.
- FIG. 12: Plasmid map of pMON25949. A list of the restriction enzyme cutting sites for pMON25949 is provided in Table 19.
- FIG. 13: Plasmid map of pMON25951. A list of the restriction enzyme cutting sites for pMON25951 is provided in Table 20.
- FIG. 14: Plasmid map of pMON34545. A list of the restriction enzyme cutting sites for pMON34545 is provided in Table 21.
- FIG. 15: Plasmid map of pMON34565. A list of the restriction enzyme cutting sites for pMON34565 is provided in Table 22.
- FIG. 16: Plasmid map of pMON25995. A list of the restriction enzyme cutting sites for pMON25995 is provided in Table 23.
- FIG. 17: Plasmid map of pMON25973. A list of the restriction enzyme cutting sites for pMON25973 is provided in Table 24.
- FIG. 18: Plasmid map of pMON25987. A list of the restriction enzyme cutting sites for pMON25987 is provided in Table 25.
- FIG. 19: Plasmid map of pMON25991. A list of the restriction enzyme cutting sites for pMON25991 is provided in Table 26.
- FIG. 20: Plasmid map of pMON25992. A list of the restriction enzyme cutting sites for pMON25992 is provided in Table 27.
- FIG. 21: Plasmid map of pMON25993. A list of the restriction enzyme cutting sites for pMON25993 is provided in Table 28.
- FIG. 22: Plasmid map of pMON36805. A list of the restriction enzyme cutting sites for pMON36805 is provided in Table 29.
- FIG. 23: Plasmid map of pMON36814. A list of the restriction enzyme cutting sites for pMON36814 is provided in Table 30.
- FIG. 24: Plasmid map of pMON36816. A list of the restriction enzyme cutting sites for pMON36816 is provided in Table 31.
- FIG. 25: Plasmid map of pMON36824. A list of the restriction enzyme cutting sites for pMON36824 is provided in Table 32.
- FIG. 26: Plasmid map of pMON36843. A list of the restriction enzyme cutting sites for pMON36843 is provided in Table 33.
- FIG. 27: Plasmid map of pMON34543. A list of the restriction enzyme cutting sites for pMON34543 is provided in Table 34.
- FIG. 28: Plasmid map of pMON36850. A list of the restriction enzyme cutting sites for pMON36850 is provided in Table 35.
- FIG. 29: Plasmid map of pMON25963. A list of the restriction enzyme cutting sites for pMON25963 is provided in Table 36.
- FIG. 30: Plasmid map of pMON25965. A list of the restriction enzyme cutting sites for pMON25965 is provided in Table 37.
- FIG. 31: Method for creating multi-gene vectors.
- FIG. 32: PHB biosynthetic pathway. PHB production requires the condensation of two acetyl-CoA molecules using a β-ketothiolase, a D-isomer-specific reduction by acetoacetyl-CoA reductase, and PHB polymerization by PHB synthase. The genes encoding these enzymes are indicated in parentheses.
- FIG. 33: Schematic diagram of multi-gene vector used to transformBrassica napus. Vectors were constructed using modular cassettes. Each cassette consists of the Lesquerella hydroxylase promoter (P-Lh), a chloroplast transit peptide (ctp) fused to an open reading frame encoding a PHB synthesis enzyme, and the
E9 3′ terminator. The plasmid also expresses EPSP synthase to provide resistance to glyphosate, contains bacterial replication origins, and a bacterially-expressed gene encoding resistance to streptomycin and spectinomycin. In pMON36814, bktB was replaced with phbA. Otherwise, the vectors were identical. RB, right border of T-DNA; LB, left border of T-DNA. - FIG. 34: Electron micrographs ofBrassica napus plastids. Panel A: Leukoplast from wild type Brassica napus seed. Panel B: Leukoplast from Brassica napus seed producing PHB. Polymer (PHB) and oil bodies (0) are indicated. Note the greatly expanded size of leukoplasts in the PHB-producing line.
- FIG. 35: A pathway designed to produce poly(P-hydroxybutyrate-co-β-hydroxyvalerate) in the plastids of plants. Propionyl-CoA is derived from threonine via threonine deaminase and the pyruvate dehydrogenase complex. Acetyl-CoA is drawn from normal intermediary metabolism. The pathway requires transformation of the plant with four genes (ilvA, bktB, phbB, and phbC), and relies on endogenous pyruvate dehydrogenase. All enzymes encoded by transgenes are targeted to the plastid using chloroplast transit peptides.
- FIG. 36: Concentrations of selected 2-keto acids and amino acids in control plants and in Arabidopsis expressing threonine deaminase. (A) Comparison of pyruvate and 2-ketobutyrate concentrations in Arabidopsis harboring either a control plasmid or a plasmid expressing wild typeE. coli ilvA (threonine deaminase). (B) Comparison of threonine, isoleucine, and 2-ketobutyrate concentrations in Arabidopsis harboring either a control plasmid or a plasmid expressing wild type E. coli ilvA. Note the different scales used in parts (A) and (B).
- FIG. 37:3C NMR spectra demonstrating poly(P-hydroxybutyrate-co-β-hydroxyvalerate) copolymer production in transgenic Arabidopsis. Note the presence of signals indicating presence of both 3-hydroxybutyrate and 3-hydroxyvalerate side chains.
- FIG. 38: Analyses of total polymer production, the 3-hydroxyvalerate fraction of the polymer, and the activity of threonine deaminase Brassica oilseeds synthesizing PHBV copolymer. Note the distinct negative correlation between polymer concentration and the 3-HV content of the polymer. Also note that increasing threonine deaminase activity does not lead to increased 3-HV content.
- FIG. 39: Multiple potential routes to produce propionyl-CoA in planta. Most alternative pathways have the potential to produce propionyl-CoA in plants. However, production of propionyl-CoA from threonine provides the most direct route.
- FIG. 40: Bar graph of average % PHA produced from Arabidopsis transformation methods.
- FIG. 41: Bar graph of average % PHA produced from canola transformation methods.
- FIG. 42: Bar graph of maximum % PHA produced from Arabidopsis transformation methods.
- FIG. 43: Bar graph of maximum % PHA produced from canola transformation methods.
- The following definitions are provided in order to aid those skilled in the art in understanding the detailed description of the present invention.
- “Acyl-ACP thioesterase” refers to proteins which catalyze the hydrolysis of acyl-ACP thioesters.
- “C-terminal region” refers to the region of a peptide, polypeptide, or protein chain from the middle thereof to the end that carries the amino acid having a free a carboxyl group (the C-terminus).
- “CoA” refers to coenzyme A.
- The phrases “coding sequence”, “open reading frame”, and “structural sequence” refer to the region of continuous sequential nucleic acid triplets encoding a protein, polypeptide, or peptide sequence.
- The term “encoding DNA” or “encoding nucleic acid” refers to chromosomal nucleic acid, plasmid nucleic acid, cDNA, or synthetic nucleic acid which codes on expression for any of the proteins or fusion proteins discussed herein.
- “Fatty acyl hydroxylase” refers to proteins which catalyze the conversion of fatty acids to hydroxylated fatty acids.
- The term “genome” as it applies to bacteria encompasses both the chromosome and plasmids within a bacterial host cell. Encoding nucleic acids of the present invention introduced into bacterial host cells can therefore be either chromosomally-integrated or plasmid-localized. The term “genome” as it applies to plant cells encompasses not only chromosomal DNA found within the nucleus, but organelle DNA found within subcellular components of the cell. Nucleic acids of the present invention introduced into plant cells can therefore be either chromosomally-integrated or organelle-localized.
- “Identity” refers to the degree of similarity between two nucleic acid or protein sequences. An alignment of the two sequences is performed by a suitable computer program. A widely used and accepted computer program for performing sequence alignments is CLUSTALW v1.6 (Thompson, et al.Nucl. Acids Res., 22: 4673-4680, 1994). The number of matching bases or amino acids is divided by the total number of bases or amino acids, and multiplied by 100 to obtain a percent identity. For example, if two 580 base pair sequences had 145 matched bases, they would be 25 percent identical. If the two compared sequences are of different lengths, the number of matches is divided by the shorter of the two lengths. For example, if there were 100 matched amino acids between 200 and a 400 amino acid proteins, they are 50 percent identical with respect to the shorter sequence. If the shorter sequence is less than 150 bases or 50 amino acids in length, the number of matches are divided by 150 (for nucleic acids) or 50 (for proteins); and multiplied by 100 to obtain a percent identity.
- The terms “microbe” or “microorganism” refer to algae, bacteria, fungi, and protozoa.
- “N-terminal region” refers to the region of a peptide, polypeptide, or protein chain from the amino acid having a free a amino group to the middle of the chain.
- “Nucleic acid” refers to ribonucleic acid (RNA) and deoxyribonucleic acid (DNA).
- A “nucleic acid segment” is a nucleic acid molecule that has been isolated free of total genomic DNA of a particular species, or that has been synthesized. Included with the term “nucleic acid segment” are DNA segments, recombinant vectors, plasmids, cosmids, phagemids, phage, viruses, etcetera.
- “Overexpression” refers to the expression of a polypeptide or protein encoded by a DNA introduced into a host cell, wherein said polypeptide or protein is either not normally present in the host cell, or wherein said polypeptide or protein is present in said host cell at a higher level than that normally expressed from the endogenous gene encoding said polypeptide or protein.
- The term “plastid” refers to the class of plant cell organelles that includes amyloplasts, chloroplasts, chromoplasts, elaioplasts, eoplasts, etioplasts, leucoplasts, and proplastids. These organelles are self-replicating, and contain what is commonly referred to as the “chloroplast genome,” a circular DNA molecule that ranges in size from about 120 to about 217 kb, depending upon the plant species, and which usually contains an inverted repeat region (Fosket, Plant growth and Development, Academic Press, Inc., San Diego, Calif., p. 132, 1994).
- “Polyadenylation signal” or “polyA signal” refers to a nucleic acid sequence located 3′ to a coding region that directs the addition of adenylate nuclecotides to the 3′ end of the mRNA transcribed from the coding region.
- The term “polyhydroxyalkanoate (or PHA) synthase” refers to enzymes that convert hydroxyacyl-CoAs to polyhydroxyalkanoates and free CoA.
- The term “promoter” or “promoter region” refers to a nucleic acid sequence, usually found upstream (5′) to a coding sequence, that controls expression of the coding sequence by controlling production of messenger RNA (mRNA) by providing the recognition site for RNA polymerase and/or other factors necessary for start of transcription at the correct site. As contemplated herein, a promoter or promoter region includes variations of promoters derived by means of ligation to various regulatory sequences, random or controlled mutagenesis, and addition or duplication of enhancer sequences. The promoter region disclosed herein, and biologically functional equivalents thereof, are responsible for driving the transcription of coding sequences under their control when introduced into a host as part of a suitable recombinant vector, as demonstrated by its ability to produce mRNA.
- “Regeneration” refers to the process of growing a plant from a plant cell (e.g., plant protoplast or explant).
- “Transformation” refers to a process of introducing an exogenous nucleic acid sequence (e.g., a vector, recombinant nucleic acid molecule) into a cell or protoplast in which that exogenous nucleic acid is incorporated into a chromosome or is capable of autonomous replication.
- A “transformed cell” is a cell whose nucleic acid has been altered by the introduction of an exogenous nucleic acid molecule into that cell.
- A “transformed plant” or “transgenic plant” is a plant whose nucleic acid has been altered by the introduction of an exogenous nucleic acid molecule into that plant, or by the introduction of an exogenous nucleic acid molecule into a plant cell from which the plant was regenerated or derived.
- The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventors to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.
- Nucleic acid sequences encoding the polyhydroxyalkanoate biosynthetic pathway include: phbA and phbB (GenBank accession number J04987), phbC (GenBank accession number J05003), and bktB (GenBank accession number AF026544). Production of PHBV copolymer can be accomplished by also expressingE. coli ilvA (GenBank accession number U00096, overlapping base 3953951:Gruys et al. WO 98/00557). The Ti DNA left border sequence is described in Baker, R. F., et al. (Plant Mol. Biol., 2: 335-350, 1983). The Ti DNA right border sequence is described in Depicker et. al. (J. Mol. App. Genet. 1: 561, 1982).
- Polyhydroxyalkanoates are a form of polyester accumulated by numerous bacterial species as a carbon and energy repository. This class of polymer also has useful thermoplastic properties, and is therefore of interest as a biodegradable plastic. Poly(β-hydroxybutyrate-co-β-hydroxyvalerate) (poly(3HB-co-3HV), PHBV), a form of PHA, is commercially produced via fermentation ofRalstonia eutropha (FIG. 1). However, it is expected that the cost of production could be dramatically decreased if PHA could be produced in transgenic plants. The first attempts at PHA production in plants utilized transgenic Arabidopsis expressing the three genes required for the homopolymer poly-β-hydroxybutyrate (PHB) (Nawrath, C. et al., Proc. Natl. Acad. Sci. U.S.A. 91: 12760-12764, 1994). In this work, the authors transformed Arabidopsis plants with three independent gene cassettes and crossed the plants using traditional breeding methods. They reported PHB production up to 14% of the cell dry weight. However, this method took a significant amount of time before the three gene pathway could be assembled. In addition, the plants did not maintain a stable phb+ phenotype, as determined by our analysis of the progeny of these original plants (Table 1). This problem may be due to co-suppression (Finnegan, J., and D. McElroy. Bio/Technology. 12: 883-888, 1994), or to segregation of high-producing insertions in the progeny. The plants produced by Nawrath et al. were not fully characterized genetically, although it is known that all contained multiple insertions of the transgenes.
TABLE 1 Enzyme activity and polymer data of progeny of Nawrath Arabidopsis lines. Specific activities Western results % plant line [protein] thiolase reductase PhbA PhbB PhbC polymer number (mg/mL) (u/mg) (u/mg) thiolase reductase synthase (C4) 134 0.158 0.027 0.069 + + − 0.041% 140 0.189 0.026 0.019 + + − 0.068% 151 0.377 0.042 0.045 + + + 0.038% 159 0.127 0.025 0.009 − − + 0.053% 168 0.216 0.018 0.034 + + + 0.070% 175 0.186 0.010 0.028 + − − 0.043% 177 0.166 0.026 0.000 + − − 0.043% 203 0.144 0.030 0.043 − + + 0.034% 228 0.250 0.038 0.021 + + + 0.048% 240 0.192 0.023 0.010 NA NA NA 0.045% - One vector was constructed containing sequences encoding both acetoacetyl-CoA reductase and PHB synthase proteins. A second vector was constructed containing a sequence encoding a β-ketothiolase protein. Two independent transformation events were obtained corresponding to each of these vectors. The complete pathway was assembled into a single plant using traditional cross-breeding methods. In all cases, plants exhibiting Mendelian segregation consistent with transgene insertion at a single locus were chosen. The results of these experiments are shown in Table 2.
- The second strategy pursued was to simultaneously co-transform both plasmids into a single plant (simultaneous co-transformation) and assay the primary transformant for polymer accumulation, or to re-transform plants that already harbored a single vector (serial co-transformation). The results of these experiments are summarized in Table 3. Although the activity of enzymes expressed from the encoding sequences was comparable to that reported by Nawrath et al., none of the plants generated reached the polymer levels reportedly achieved in their study. Neither their experiments nor these results correlate enzyme activity with the intracellular concentration of PHA polymer (Nawrath, C. et al.,Proc. Natl. Acad. Sci. U.S.A. 91: 12760-12764, 1994).
TABLE 2 Polymer data for Arabidopsis crosses. Vector Plant construct # of lines # of lines C4 polymer Number description assayed positive (% cell dry wt.) 25640 e35s ctpl phbA 0.01-1.55% 25665 e35s ctpl phbC 11 10 AVE: 0.651% e35s ctpl phbB SD: 0.596% 25640 e35s ctpl phbA 0.03-0.047% 25739 e35s ctpl phbB 20 12 AVE: 0.178% e35s ctpl nocC SD: 0.163% 25785 e35s ctpl bktB 0.04-0.88% 25665 e35s ctpl phbC 11 11 AVE: 0.354% e35s ctpl phbB SD: 0.199% 25785 e35s ctpl bktB 0.03-0.21% 25739 e35s ctpl phbB 24 9 AVE: 0.065% e35s ctpl nocC SD: 0.053% 25801 e35s ctpl bktB 0.02-0.04% e35s ctpl ilvA466 8 3 AVE: 0.029% 25665 e35s ctpl phbC SD: 0.0095% e35s ctpl phbB 25801 e35s ctpl bktB 0.03-0.091% e35s ctpl ilvA466 17 9 AVE: 0.044% 25739 e35s ctpl phbB SD: 0.022% e35s ctpl nocC 25812 e35s ctpl bktB 0.03-0.102% e35s ctpl ilvA w.t. 3 3 AVE: 0.073% 25665 e35s ctpl phbC SD: 0.035% e35s ctpl phbB 25812 e35s ctpl bktB 0.02-0.11% e35s ctpl ilvA w.t. 10 7 AVE: 0.064% 25739 e35s ctpl phbB SD: 0.031% e35s ctpl nocC -
TABLE 3 Polymer data for re-transformed and co-transformed Arabidopsis. Vector Plant construct # of lines # of lines C4 polymer Number description assayed positive (% cell dry wt.) 25665 e35s ctpl phbC 0.03-0.81% e35s ctpl phbB 14 6 AVE: 0.25% RE/25880 e35s ctpl bktB SD: 0.29% e35s ctpl ilvA w.t. 25665 e35s ctpl phbC e35s ctpl phbB 5 0 NA RE/25881 e35s ctpl bktB e35s ctpl ilvA219 25665 e35s ctpl phbC 0.02-0.33% e35s ctpl phbB 23 4 AVE: 0.16% RE/25882 e35s ctpl bktB SD: 1.3% e35s ctpl ilvA466 25785 e35s ctpl bktB 0.02-1.67% 25678 e35s ctpl phbB 21 8 AVE: 0.50% e35s ctpl phbC SD: 0.64% 25785 e35s ctpl bktB 0.01-0.72% 25740 e35s ctpl phbB 27 18 AVE: 0.11 e35s ctpl nocC SD: 0.15 25801 e35s ctpl bktB 0.646-0.715% e35s ctpl ilvA466 2 1 AVE: 0.681 25678 e35s ctpl phbB SD: 0.049% e35s ctpl phbC 25801 e35s ctpl bktB 0.02-0.17 e35s ctpl ilvA466 28 16 AVE: 0.083% 25740 e35s ctpl phbB SD: 0.050% e35s ctpl nocC 25812 e35s ctpl bktB 0.63-1.65% e35s ctpl ilvA w.t. 3 3* AVE: 1.191% 25678 e35s ctpl phbB SD: 0.463% e35s ctpl phbC 25812 e35s ctpl bktB 0.02-0.20% e35s ctpl ilvA w.t. 30 9 AVE: 0.112% 25740 e35s ctpl phbB SD: 0.053% e35s ctpl nocC - In an attempt to increase the speed and simplicity of genetic analysis, multigene vectors were constructed containing the entire PHB biosynthetic pathway on a single plasmid. Multigene vectors for PHA production in Arabidopsis were constructed from a series of base vectors, each with the desired open reading frame under control of the e35s promoter (Odell, J. T., et al,Nature, 313: 810-812, 1985) and the
E9 3′ region (Coruzzi, EMBO J. 3:1671-1679, 1984). The first vector in this series, pMON25642 (FIG. 3), harbors phbC under control of the e35s promoter in pMON10098 (FIG. 4), a vector designed for Agrobacterium-mediated transformation of plants. The remaining intermediate vectors are all derived from pMON969 (FIG. 5), a high copy-number vector harboring the e35s promoter and theE9 3′ region. Constructs derived from pMON969 include those encoding phbA (pMON25661; FIG. 6), bktB (pMON25897; FIG. 7), phbB (pMON25662; FIG. 8), and ilvA (pMON25663; FIG. 9). From these and similar vectors were derived the final plasmids for transformation of Arabidopsis; pMON25943 (FIG. 10) pMON25948 (FIG. 11), pMON25949 (FIG. 12), pMON25951 (FIG. 13), and pMON34545 (FIG. 14). All cloning procedures were performed using standard ligation techniques (Sambrook, J., et al, “Molecular cloning: A laboratory manual,” Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), except that ligation of NotI-cut pMON25949 with the ilvA-containing NotI restriction fragment of pMON25663 produced plasmid pMON34565 (FIG. 15), that serendipitously contained two copies of the ilvA fragment. Each copy of ilvA contains a SnaBI restriction site, so deletion of a 3155 bp SnaBI restriction fragment from pMON34565 produced plasmid pMON34545, a plasmid with a single copy of ilvA. - The final vectors, pMON25943, pMON25948, pMON25949, pMON25951, and pMON34545 were used for Agrobacterium-mediated transformation of Arabidopsis (Bechtold N., et al.Comptes Rendus Acad. Sci. Paris Sciences Serie III Sciences de la Vie. 94-1199, 1993). This approach has proven successful in generating lines with the highest levels of PHB obtained to date in our laboratory. PHA production in the planats resulting from the first four of these vectors is summarized in Table 4. Data from pMON34545 transformations will be obtained. All of the data in Table 4 were derived from heterozygous plants, and the polymer concentration may increase once the plants are brought to homozygosity. For example, one plant that produced about 7% PHB by dry weight when heterozygous produced polymer up to 13% when homozygous.
TABLE 4 Polymer results from Arabidopsis derived from multigene vectors. Plant construct # of lines # of lines C4 polymer Vector number description assayed positive (% cell dry wt.) e35s ctpl phbC 0.11-2.94% 25943 e35s ctp2 phbB 34 28 AVE: 1.13% e35s ctpl bktB SD: 0.65% e35s ctpl phbC 0.01-7.63% 25948 e35s etpl phbA 53 46 AVE: 2.08% e35s etpl phbB SD: 1.56% e35s ctpl phbC 0.02-7.74% 25949 e35s ctp2 bktB 35 30 AVE: 1.82% e35s ctpl phbB SD: 1.39% e35s ctpl phbC 0.20-3.78% 25951 e35s ctpl bktB 12 11 AVE: 1.60% e35s ctpl phbB SD: 1.04% - These results demonstrate that use of a multigene vector provides consistently higher levels of polymer production than were achieved using multiple vectors. The striking beneficial results in polymer production obtained from the use of multigene vectors are visually displayed in FIGS.40 and 42.
- There are several possible explanations for the increased levels of polymer present in the multigene vector transformants. One explanation derives from the fact that it was possible to generate more independent lines with the multigene vectors, and the screening of more plants allowed detection of the relatively rare high-producing lines. This is one clear advantage of having the entire pathway on a single vector, but the distribution of polymer production in plants produced by the various methods suggests that numbers alone do not account for the increased polymer production of multigene vectors. It is also possible that having a metabolic pathway genetically linked at a single integration locus is more metabolically favorable due to some level of concerted gene expression and/or mRNA metabolism. This phenomenon is common in bacteria, but there are not many examples of clustering genes in plants for concerted gene expression. Another possibility is that the high local concentration of promoters may lead to locally high levels of transcription factors. Still another possibility is that having the genes tightly linked may reduce gene silencing, or co-suppression, in certain cases.
- For isolation of polymer from Arabidopsis, stems and leaves were harvested and dehydrated by lyophilization for approximately 36 hours. The material was ground to a fine powder, and 100 mg of powder was treated with 10 mL CLOROX bleach (CLOROX is a registered trademark of The Clorox Company, Oakland, Calif.) for 1 hour with shaking at room temperature. The extract was subjected to centrifugation at 2700× g for 10 minutes at 4° C., and the supernatant solutions was carefully removed. Ten
mL 100% methanol were added, the solution was mixed by vortexing, and then centrifuged again. After a second, identical methanol extraction, the material was allowed to dry overnight. Polymer was extracted from the dried material with 1 mL of chloroform containing 1 μmol/mL methyl-benzoate standard. The tube was heated to 100° C. for 2.5 hours, solid material was removed by centrifugation, and the supernatant material was subjected to methanolysis. Methanolysis of polymer and gas chromatographic characterization of the methyl-ester residues were performed as described by Slater et al. (J. Bacteriol. 180:1979-1987, 1998). - Production of polyhydroxyalkanoate has also been accomplished within the seed of canola (oil seed rape). Initial efforts followed essentially the same strategy as the initial Arabidopsis strategy. That is, one vector carried the sequences encoding acetoacetyl-CoA reductase and PHA synthase proteins, while another carried the sequence encoding a β-ketothiolase protein. However the 7s promoter, which is expressed primarily in the seed, replaced the 35s promoter that was used in the Arabidopsis constructs. These 7s promoter vectors were used to transform oilseed rape, homozygous lines were crossed, and PHB accumulation was assayed in the resulting lines (Table 5). A number of lines that produce PHB were identified, but all produced relatively low concentrations of polymer, with the best lines containing about 2% polymer by dry weight.
TABLE 5 Polymer results for canola crosses. Plant construct # of plants # of plants C4 polymer Vector number description assayed positive (% dry wt.) 25638 7s ctpl phbA 0.024-1.99% 25626 7s ctpl phbC 42 37 0.58% 7s ctpl phbB SD: 0.59% 25638 7s ctpl phbA 0.039-0.053 25741 7s tpss phbC 12 2 0.05% 7s tpss phbB SD: 0.01% 25818 7s ctpl bktB 0.04-1.67% 7s ctpl ilvA w.t. 22 17 AVE: 0.61% 25626 7s ctpl phbC SD: 0.43% 7s ctpl phbB 25818 7s ctpl bktB 7s ctpl ilvA w.t. 15 0 NA 25741 7s tpss phbC 7s tpss phbB 25820 7s ctpl bktB 0.26-0.72% 7s ctpl ilvA466 19 12 AVE: 0.51% 25626 7s ctpl phbC SD: 0.16% 7s ctpl phbB 25820 7s ctpl bktB 7s ctpl ilvA466 7 0 NA 25741 7s tpss phbC 7s tpss phbB - Large vectors for expression of multiple genes have also been used to produce polyhydroxyalkanoate in the seeds of canola (oil seed rape). In this case, the promoter was derived from the fatty acid hydroxylase gene of Lesquerella (P-lh) (Broun, P. and C. Somerville.Plant Physiol. 113: 933-942, 1997), which is expressed primarily within the developing seed. A series of vectors, each expressing the entire PHA biosynthesis pathway, was used for transformation of oilseed rape. The multigene vectors were constructed from a series of base vectors, each with the desired open reading frame under control of the Lesquerella hydroxylase promoter (P-lh; Broun, P. and Somerville, C. R. Plant Physiol., 113: 933-942, 1987) and the
E9 3′ region. The first vector in this series, pMON25995 (FIG. 16), harbors phbC under control of P-lh in pMON25973 (FIG. 17), a vector designed for Agrobacterium-mediated transformation of plants. The remaining intermediate vectors are all derived from pMON25987 (FIG. 18), a high copy-number vector harboring P-lh and theE9 3′ region. Constructs derived from pMON25987 (FIG. 16) include those encoding phbA (pMON25991; FIG. 19), bktB (pMON25992; FIG. 20), phbB (pMON25993; FIG. 21), and ilvA (pMON36805; FIG. 22). These intermediate vectors were used to construct the final vectors for oilseed rape transformation; pMON36814 (FIG. 23), pMON36816 (FIG. 24), and pMON36824 (FIG. 25). - Construction of the multigene vectors for oilseed rape was not as straightforward as was the construction of the Arabidopsis vectors. This was primarily due to the large size of the promoter (P-lh is about 2.2 kb), and the resulting larger size of the multigene vector intermediates. As the vectors increased in size, it was found to be most efficient to perform ligations of two similar sized fragments, rather than one large vector and one small incoming fragment. In addition, it was desirable to avoid partial digests of the large vectors, and to perform cloning in which opposite ends of an individual fragment were not compatible. A number of intermediate vectors were constructed specifically to allow cloning in this manner. Another advantage of this approach is that it often allowed restriction enzyme-mediated digestion of the parental plasmids prior to transformation ofEscherichia coli with ligation products. This procedure significantly increased the frequency of correct constructs recovered. The final vectors were used for Agrobacterium-mediated transformation of oilseed rape (Fry, J. et al., Plant Cell Rep. 6: 321-325, 1987).
- The results of oilseed rape transformation with the multigene vectors are shown in Table 6. There are two primary points of interest in these data. First, multigene vectors larger than 26 kb were successfully constructed and used to transform oilseed rape, with a very low percentage of the plants failing to produce polymer. Second, the distribution of polymer concentrations among multigene vector transformants is higher than that of the plants derived from two separate 7s vectors.
TABLE 6 Polymer results from canola transformed with multigene vectors. Plant construct # of plants # of plants C4 polymer Vector number description assayed positive (% dry wt.) 36814 lhydrox ctpl phbC 0.19-4.11% lhydrox ctpl phbA 68 59 AVE: 1.43% lhydrox tpss phbB SD: 1.01% 36816 lhydrox ctpl phbC 225 195 0.02-6.28% lhydrox ctpl bktB AVE: 1.0% lhydrox tpss phbB SD: 1.02% 36824 lhydrox ctpl phbC 185 152 0.10-2.74% lhydrox ctpl bktB AVE: 0.6% lhydrox tpss phbB SD: 0.5% lhydrox ctpl ilvA - The comparative results for PHA production in canola are graphically presented in FIGS.41 and 43. The beneficial results obtained from the use of multigene vectors compared to results obtained from traditional methods is visually impressive.
- Since the promoters used in these two vectors sets (those containing the 7s promoter and those containing the Lesquerella hydroxylase promoter) are different, it cannot be distinguished whether it was the Lesquerella promoter or the use of a single vector that led to the increased polymer concentration. However, it is clear that the single vector approach is viable for seed expression of enzymes, including those required for PHA biosynthesis. In addition, the increased speed of plant construction and analysis using a single vector is a clear benefit.
- For isolation of polymer from canola seed, seeds were ground to a fine powder with a mortar and pestle. Approximately 200 mg of each sample were extracted two times with 10 mL each of hexane for 1 hour at 60° C., then two times with 10 mL each of 100% methanol for one hour at 60° C. This procedure removed oil from the seed. The material was allowed to dry completely overnight. Polymer was extracted from the dried material with 1 mL of chloroform containing 1 μmol/mL methylbenzoate standard. The tube was heated to 100° C. for 5 hours, solid material was removed by centrifugation, and the supernatant material was subjected to methanolysis. Methanolysis of polymer and gas chromatographic characterization of the methyl-ester residues were performed as described by Slater et al. (J. Bacteriol. 180: 1979-1987, 1998).
- For reasons described above, multigene vectors will also be desirable for expression of multi-enzyme metabolic pathways in monocots. Therefore, vectors designed to produce PHA in the leaves of maize were constructed. These vectors use the e35s, eFMV, or maize chlorophyll A/B binding protein (P-ChlA/B) promoters, and include the HSP70 intron designed to enhance expression in monocots. All enzymes were fused to the Arabidopsis RuBisCo small subunit transit peptide. Other promoters might also be used. Examples of vectors designed for gene expression in monocots are pMON36843 (FIG. 26), pMON34543 (FIG. 27), and pMON36850 (FIG. 28). These vectors have been used to transform maize, and polymer was analyzed as described above for Arabidopsis. Polymer production is summarized in Table 7.
TABLE 7 Polymer production in maize using multigene vectors. Plant construct # of plants # of plants C4 polymer Vector number description assayed positive (% dry wt.) 36843 P-e35S phbC 1.14-4.81% P-e35S phbA 93 11 AVE: 1.84% P-e35S phbB SD: 1.04% 34543 P-eFMV phbC 34 34 0.15-2.95% P-eFMV phbA AVE: 0.7% P-eFMV phbB SD: 0.9% 36850 P-ChlA/B, phbC 132 78 0.1-5.66% P-ChlA/B, phbA AVE: 1.72% P-ChlA/B, phbB SD: 1.17% - Since multigene vectors are optimal for producing high levels of PHB, and this strategy is potentially optimal for expression of other multiple step pathways, a simple method to produce very large, multigene vectors is preferred. FIGS. 29 and 30 show plasmids pMON25963 and pMON25965, respectively. These vectors, used together, provide a system for constructing very large vectors. Plasmid pMON25965 provides a shuttle vector by which a gene cassette can be cloned into the NotI restriction sites and thereby be flanked by a series of restriction sites. These restriction sites are relatively rare in many genomes, and thereby of utility for subcloning many genes. Plasmid pMON25963 is a binary vector designed for transformation of plants by Agrobacterium. It contains a polylinker with the same sites found flanking the NotI restriction sites of plasmid pMON25965. Using this system, a series of gene “cassettes” can be produced using plasmid pMON25965, and each can be sequentially ligated into plasmid pMON25963.
- In practice, a series of vectors similar to pMON25965, but having smaller polylinkers, will be preferred. Specifically, this series of vectors would have a single NotI (or similar enzyme) restriction site flanked by one or several other restriction enzyme sites. By ligating cassettes flanked by large portions of the pMON25965 polylinker into pMON25963, relatively large inverted repeats of polylinker DNA are formed. These inverted repeats are unstable inEscherichia coli, and plasmids harboring them do not replicate efficiently. Thus, diminishing the size of the polylinker in the shuttle vector can increase the probability of recovering stable recombinants.
- Another strategy for generating multigene vectors and reducing the levels of background caused by vector re-ligation is shown in FIG. 31. This strategy could be adapted to accommodate any number of enzymes, depending on the availability of unique restriction sites. One can easily design such a polylinker to accommodate one's cloning needs. As the vector becomes larger, one will want to have a larger homologous overlap for the ligation process or choose restriction endonucleases producing ends that are very easily ligated, and not self-compatible. By following the cloning procedure outlined in FIG. 31, one can also control the directionality of the clone. If directionality is not important than clones generated from the ligation into the “shuttle vector” in either orientation could be used. (A←C or A→C).
- As with any multigene vector strategy, the starting plasmid used for constructing the large multigene plasmids should be taken into consideration. The common plant transformation plasmid pBIN19 (Frisch, D. et al.,Plant Mol Biol 27: 405-409, 1995) has a starting size of 11,777 bp. In contrast plasmid pMON10098 (FIG. 4) has a starting size of 8431 bp. The major difference between the two plasmids is the loss of the trfA function which is encoded in trans in Agrobacterium strain ABI. Providing the trfA function in trans allows replication only in the specific strains of Agrobacterium engineered to harbor trfA. It has been shown by Figurski and Helinski (Proc. Natl. Acad. Sci. U.S.A. 76: 1648-1652, 1979) that replication factors can function in trans. By providing the minimal origins of replication required for maintenance in both Escherichia coli and Agrobacterium the starting size of the initial plasmid can be reduced significantly.
- Other possibilities to reduce the size of the starting plasmid would be to delete oriT since this sequence is required for conjugational transfer only. If electroporation is used to introduce the plasmid into Agrobacterium, oriT is not an essential element. Another possibility would be to use selection that is functional in plants, Agrobacterium, andEscherichia coli. This could be accomplished by embedding into the plant promoter for the selectable marker a suitable bacterial promoter sequence and a ribosome binding site in proper context with the start codon on the selectable marker. One could also place this selectable marker on the plasmid flanked by its own right and left border sequences. This may allow for the selectable marker to be integrated into the plant chromosome unlinked to the genes of interest and potentially removed from subsequent generations. Alternatively, plants could be co-transformed by taking the multigene plasmid and cotransforming on a separate plasmid the selectable marker for plants. This would eliminate the cloning of the selectable marker on the multi gene plasmid. The selectable marker can be delivered by mixing two different Agrobacterium strains, one containing the multigene plasmid and the other containing the selectable marker, or by using the same Agrobacterium strain but having different isolates containing either the multi gene plasmid or the selectable marker, or by having the selectable marker coexisting in the same Agrobacterium cell with the multigene vector, but on a separate plasmid with a compatible origin of replication.
- One can also envision reducing the size of the selectable marker being used by using a trans complementation strategy. For example, one could transform a plant with a portion of a NptII gene that expresses a partial protein. If the transformation plasmid carries the complementary portion of the NptII protein, both fragments of the NptII protein may interact to confer resistance to kanamycin. This is analogous to the α-complementation strategy used for creating functional β-galactosidase (reviewed by Zabin, I.Mol. Cell. Biochem. 49: 87-96, 1982).
- An example of an optimal starting plasmid for engineering multiple genes in plants would contain only the minimal essential elements required for replication inEscherichia coli and in Agrobacterium (having all other required functions encoded in trans) as well as a selection scheme that (1) reduces the need for redundancy in the selectable marker, and/or (2) reduces the size of the selectable marker, or (3) removes the necessity of having the plant selectable marker on the multi gene plasmid. The promoter used for driving the gene of interest in the multi gene vector should consist of the minimal essential elements required for temporal and spatial expression. The termination and polyadenylation signals should also contain only those sequences required for essential function.
- Using plants as factories is attractive for the production of biodegradable plastics since current fermentation technology used for the commercial production of polyhydroxyalkanoates (PHA) is prohibitively expensive. The simplest PHA, poly-β-hydroxybutyrate (PHB), has previously been produced in leaves ofArabidopsis thaliana (Nawrath, C., et al., Proc. Natl. Acad. Sci., U.S.A., 91: 12760-12764, 1994). Brassica napus oilseed, however, may provide a better system for PHB production because acetyl-CoA, the substrate required in the first step of PHB biosynthesis, is prevalent during fatty acid biosynthesis. Three enzymatic activities are needed to synthesize the PHB polymer: a β-ketothiolase, an acetoacetyl-CoA reductase and a PHB synthase. Genes from the bacterium Ralstonia eutropha encoding these enzymes were independently engineered behind the seed-specific Lesquerella fendleri oleate- 12 hydroxylase promoter in a modular fashion. The gene cassettes were sequentially transferred into a single, multi-gene vector which was used to transform Brassica napus. PHB accumulated in leukoplasts to levels as high as 7.7% of seed dry weight. Electron microscopy analyses indicate that leukoplasts from these plants are distorted, yet intact, and appear to expand in response to polymer accumulation.
- Polyhydroxyalkanoates (PHAs) comprise a class of biodegradable polymers which offer an environmentally-sustainable alternative to petroleum based plastics (reviewed by Poirier, Y., et al.,Biotechnology, 13: 142-150, 1995). The homopolymer Poly(β-hydroxybutyrate) (PHB), a particularly well studied PHA, is normally synthesized by various species of bacteria under conditions where nutrients become limited. PHB is stored in granules which can later be mobilized to provide a carbon and energy resource for the bacteria.
- One of the best-studied pathways for PHB synthesis is derived from the bacteriumRalstonia eutropha (Slater, S. C., et al, J. Bacteriol., 170: 4431-4436, 1988; Schubert, P., et al., J. Bact., 170: 5837-47, 1988; Peoples, O. P., and Sinskey, A. J., J. Biol. Chem., 264: 15298-15303, 1989; Peoples, O. P., and Sinskey, A. J., J. Biol. Chem., 264: 15293-15297, 1989). The pathway requires three enzymes: a β-ketothiolase, an acetoacetyl-CoA reductase, and a PHB synthase (FIG. 32). R. eutropha uses least two β-ketothiolases, PhbA and BktB (Slater, S. C., et al., J. Bact., 180: 1979-1987, 1998), and both of these enzymes were used in this study. The acetoacetyl-CoA reductase and PHB synthase are designated PhbB and PhbC, respectively (Peoples, O. P., and Sinskey, A. J., J. Biol. Chem, 264: 15298-15303, 1989; Peoples, O. P., and Sinskey, A. J., J. Biol. Chem., 264: 15293-15297, 1989).
-
- The work presented here demonstrates polymer production in the seeds ofBrassica napus using a multi-gene vector approach. A significant advantage to using these multi-gene vectors is that the entire PHA pathway is introduced simultaneously, thereby obviating the need for elaborate crossing strategies and eliminating the problems associated with insertional effects at multiple loci. Construction of these multi-gene vectors involved the generation of modular cassettes, each harboring an individual gene. The cassettes were then assembled into a single vector expressing the entire PHB biosynthetic pathway (FIG. 33). Each cassette consisted of the Lesquerella fendleri oleate-12 hydroxylase promoter (Broun, P., et al., Plant J., 13: 201-210, 1998), a chloroplast transit peptide fused to the open reading frame of interest (bktB, phbA, phbB, or phbC), and the 3′ termination region of the Pisum sativum rbcSE9 gene (Coruzzi, G., et al., EMBO J., 3: 1671-1679, 1984). The Lesquerella promoter contains 2.2 kb of DNA upstream of the coding region for the oleate-12 hydroxylase gene. This promoter was chosen because it is expressed concurrently with the accumulation of storage lipid (Broun, P., et al., Plant J., 13: 201-210, 1998).
- Expression of the PHB pathway inB. napus was achieved using Agrobacterium-mediated transformation, and glyphosate selection was used to identify transgenic events (Fry, J., et al., Plant Cell Rep., 6: 321-325, 1987). The T-DNA transferred into the plants from these experiments exceeded 16 kilobases in size. The co-expression rate of genes from the multi-gene vectors in Brassica seeds was high, with 87% of the glyphosate resistant plants also producing polymer. Polymer levels ranged from 0.02-7.7% for the transgenic plants carrying pMON36814 (R. eutropha phbA, phbB, phbC) and 0.02-6.3% for those carrying pMON36816 (R. eutropha bktB, phbB and phbC). The vast majority of plants producing polymer fall within the 0-3.0% polymer range (Table 8) and all polymer-producing lines generated viable seed.
TABLE 8 Polymer results from canola multigene vector transformations. Genetic # of plants # of plants C4 polymer Vector elements assayed positive (% dry wt.) p-Lh, phbC 0.02%-7.68% 36814 p-Lh, phbA 208 180 Avg: 1.73% p-Lh, phbB SD: 1.45% p-Lh, phbC 0.02%-6.28% 36816 p-Lh, bktB 225 195 Avg: 1.00% p-Lh, phbB SD: 1.02% - TheB. napus line displaying 7.7% polymer was further analyzed by electron microscopy. Micrographs revealed that polymer accumulated within the plastid (FIG. 34), and that essentially every plastid contained polymer. Polymer production in the plastids is seemingly well tolerated; the size of the plastid expands to accommodate polymer production (compare FIGS. 34A and 34B). This phenomenon is similar to the size changes observed when amyloplasts accumulate starch, and suggests that plastids will change size to accommodate accumulation of any granular product. Thus, the signal initiating an increase in plastid volume is not specifically linked to accumulation of normal metabolites; rather, the increase is probably initiated simply by physical pressure applied to the plastid membrane.
- These results demonstrate that PHA accumulation is possible in an oilseed system. Commercial oilseed PHA production will require approximately twice the amount of PHA accumulation achieved here. Moreover, commercial success will rely on the development of an integrated processing system to extract PHA, oil, and meal from the seeds. We believe that increases in PHA accumulation can be obtained using alternative promoters that are stronger and expressed for a longer duration during seed development. Other concerns regarding the feasibility of PHA production in planta largely revolve around the metabolic effects of PHA production in oilseeds. Specifically, analysis of the effect of PHA production on oil yield will be of particular interest, since both are derived from acetyl-CoA and produced simultaneously. Any untoward effect of PHA production on oil yield or seed quality will impact negatively on the economic feasibility of usingB. napus as a commercial system.
- Vector Construction and Plant Transformation
- A single vector encoding the entire PHB biosynthetic pathway was used for Agrobacterium-mediated transformation of Brassica. This vector, pMON36814, encodes bktB, phbB, and phbC (FIG. 33). Each gene of interest was fused to a chloroplast transit peptide (ctp), so each protein is transported to the seed leukoplast. All enzymes were fused to the Arabidopsis RuBisCo small subunit la transit peptide that was previously used for PHB production (Nawrath, C, et al.,Proc. Nat. Acad. Sci., 91: 12760-12764, 1994) except PhbB was fused to the transit peptide from pea RuBisCo small subunit (Cashmore, A. R., eds. Kosuge, T., Meredith C. P., Hollaender, A., (Plenum, N.Y.), 29-38, 1983). Each gene is controlled by the promoter from the fatty acid hydroxylase gene of Lesquerella (P-Lh; Broun, P., et al., Plant J., 13: 201-210, 1998), and terminated with the
E9 3′ region of the Pisum rbcSE9 gene (Coruzzi, G., et al., EMBO J., 3: 1671-1679, 1984). P-Lh directs expression of these genes within the developing seed. The selection cassette for pMON36812 and 36814 consisted of the Figwort Mosaic Virus promoter followed by the Petunia RuBisCo small subunit 1a transit peptide, the Petunia EPSP synthase gene (CP4) andnopaline synthase 3′ termination/polyadenylation region (nos3′). - Transformation ofBrassica napus was done as described in Fry, J. et al. (Plant Cell Rep., 6: 321-325, 1987) using glyphosate for selection.
- Polymer Analysis
- For isolation of polymer from canola seed, seeds were ground to a fine powder with a mortar and pestle. Approximately 200 mg of each sample were extracted two times in a glass tube with 10 mL each of hexane for 1 hour at 60° C., then two times with 10 mL each of 100% methanol for one hour at 60° C. This procedure removes oil from the seed. The material was allowed to dry completely overnight. Polymer was extracted from the dried material with 1 mL of chloroform containing 3 μmol/mL methyl-benzoate standard. The tube was heated to 100° C. for 5 hours and the samples were cooled. One mL methanol/sulphuric acid (85:15, v/v) was added, and the mixture was heated to 100° C. for exactly 2.5 hours. The solution was cooled, extracted with water and subjected to gas chromatography. Gas chromatographic characterization of the methyl-ester residues was performed as described by (Slater, S., et al.,J. Bact., 180: 1979-1987, 1998) except that the temperature gradient was performed as follows: the initial temperature of 70° C. was held for 6 minutes, then the temperature was increased by 30° C. per minute to 130° C. Finally, the temperature was increased by 50° C. per minute to 300° C. and held at 300° C. for 5 minutes.
- Electron Microscopy
- Partial imbibition of Brassica seeds was achieved by the slight abrasion of the seed coats, followed by placement for 2 hours onto filter paper moistened with distilled water. The cotyledons of these seeds were then cut into 1 mm3 pieces and fixed in 4% glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.2 for three hours, with the first 30 minutes under vacuum. The tissue was post-fixed in 1% osmium tetroxide in the above buffer, dehydrated in ethanol and propylene oxide and infiltrated with a 1:1 mixture of Spurr's: EMbed 812 resin. The resin was polymerized at 60° C. for 48 hours. The resulting blocks were sectioned on an Leica Ultracut E microtome.
Sections 80 nm thick were picked up on formvar/carbon coated copper slot grids. The grids were post-stained with uranyl acetate and lead citrate in an LKB ultrastainer and examined with aJEOL 1200 transmission electron microscope. (All reagents were obtained from Electron Microscopy Sciences, Fort Washington, Pa.). - Poly(hydroxyalkanoates) are natural polymers with thermoplastic properties. One polymer of this class, poly(β-hydroxybutyrate-co-β-hydroxyvalerate) (PHBV) is currently produced by bacterial fermentation, but the process is not economically competitive with polymer production from petrochemicals. PHA production in green plants promises much lower costs, but producing polymer with the appropriate monomer composition is problematic. By redirecting metabolic pools of both short-chain fatty acids and amino acids, Arabidopsis and Brassica have now been engineered to produce PHBV, a copolymer with commercial applicability. In this Example, polymer production, metabolic intermediate analyses, and pathway dynamics for PHBV synthesis in planta are described.
- Poly(hydroxyalkanoates) (PHAs) are a class of polymers accumulated by numerous bacterial species as carbon and energy reserves. These polymers have thermoplastic properties, and have received much attention as biodegradable alternatives to petrochemical plastics (Anderson, A. J., and Dawes, E. A.Microbiol. Rev. 54: 450-472, 1990). While the homopolymer poly(β-hydroxybutyrate) (PHB) is somewhat brittle, many copolymers such as poly(β-hydroxybutyrate-co-β-hydroxyvalerate) (PHBV) are more flexible due to reduced crystallinity, and suitable for many commercial applications.
- The biochemical pathways for PHB and PHBV production are essentially identical, differing only in the initial metabolites. PHB synthesis is initiated by condensation of two acetyl-CoA molecules, whereas PHBV synthesis requires the additional condensation of acetyl-CoA with propionyl-CoA. Following condensation, the products are reduced by a D-isomer specific acetoacetyl-CoA reductase, and the resulting β-hydroxy products are polymerized by PHB synthase (Anderson, A. J., and Dawes, E. A.Microbiol. Rev. 54: 450-472, 1990; Steinbüchel and Schlegel, Mol. Microbiol. 5(3):535-42, 1991).
- PHBV is produced commercially by growingRalstonia eutropha on glucose and propionate (Byrum, D. FEMS Microbiol. Rev. 102: 247-250, 1992), but the cost of this process prohibits large-scale fermentation. Production of PHAs via genetic engineering of green plants is expected to reduce costs to economical levels (van der Leij, F. R., and Witholt, B. Can. J. Microbiol. 41(Suppl.1): 222-238, 1995), and production of PHB homopolymer in plants has been demonstrated (Poirier, Y., et al. Science 256: 520-523, 1992; Nawrath, C.; et al. Proc. Natl. Acad Sci. 91: 12760-12764, 1994). However copolymer production has been problematic, primarily due to the requirement for metabolic precursors other than acetyl-CoA.
- Here we report metabolic engineering of plants to produce PHBV copolymer. By expressing four distinct transgenes and diverting metabolic pools of acetyl-CoA and threonine, copolymer was produced inArabidopsis thaliana, and in the seeds of Brassica napus (oilseed rape). PHBV copolymer production opens the use of green plants as factories for commercial, environmentally-sustainable production of biodegradable plastics.
- Results: A Pathway for Poly(β-hydroxybutyrate-co-β-hydroxyvalerate) Production in Plants
- A pathway designed to engineer PHBV production in the plastids of plants is diagrammed in FIG. 35. Acetyl-CoA is drawn from plastid intermediary metabolism, whereas propionyl-CoA is generated from threonine via 2-ketobutyrate (Gruys et al WO 98/00557; Eschenlauer, A. C., et al.Int. J. Biol. Macromol. 19: 121-130, 1996). This pathway requires transformation of the plant with four separate genes: ilvA, bktB, phbB, and phbC. It also relies on the endogenous plastid pyruvate dehydrogenase complex (PDC). The threonine deaminase used in these studies is the biosynthetic enzyme IlvA from E. coli (Taillon, B. E., et al. Gene 63: 245-252, 1988). The acetoacetyl-CoA reductase (PhbB) and PHB synthase (PhbC) are the same R. eutropha enzymes used in earlier in planta studies (Poirier, Y., et al. Science 256: 520-523, 1992; Nawrath, C.; et al. Proc. Natl. Acad. Sci. 91: 12760-12764, 1994). The β-ketothiolase is BktB from R. eutropha (Slater, S., et al. J. Bacteriol. 180: 1979-1987, 1998). Previous work on PHB production in plants used the R. eutropha PhbA β-ketothiolase. However, PhbA cannot efficiently synthesize β-ketovaleryl-CoA, whereas BktB produces both β-ketovaleryl-CoA and acetoacetyl-CoA.
- Metabolic Engineering of Arabidopsis and Brassica
- Polymer production was studied in bothArabidopsis thaliana leaves and Brassica napus seeds. For PHBV production in Arabidopsis, two separate vectors were constructed. Plasmid pMON25678 encodes phbB and phbC, and plasmid pMON25812 encodes bktB and ilvA. Transgenic Arabidopsis were generated by simultaneous Agrobacterium-mediated transformation with both vectors, and subsequent selection on both glyphosate and kanamycin. All genes were controlled by the e35S promoter (Odell, J. T., et al. Nature 313: 810-812, 1985), leading to polymer production throughout the plant. In Brassica, all four genes in the transgenic pathway were expressed from a single vector, pMON36824, and polymer production was directed to the seeds by the Lesquerella hydroxylase promoter (Broun, P., et al. Plant J. 13: 201-210, 1998).
- Previous work on PHA production in plants has shown that polymer is produced efficiently and that phenotypic effects on the plant are minimized when PHA production occurs in the chloroplasts (Nawrath, C. et al.Proc. Natl. Acad. Sci. 91: 12760-12764, 1994). The plastids are the site for synthesis of both oil, which is derived from acetyl-CoA, and threonine which is used to produce propionyl-CoA. In both Arabidopsis and Brassica, the PHA biosynthesis enzymes were targeted to the plastids using chloroplast transit peptides. In photosynthetic tissues of Arabidopsis the proteins are targeted to the chloroplasts, whereas in Brassica seeds the enzymes are targeted to the leucoplasts.
- Generation of Propionyl-CoA from Threonine
- Conversion of threonine to 2-ketobutyrate by IlvA is the first reaction catalyzed by one of the recombinantly-encoded enzymes. IlvA normally catalyzes the initial step in the conversion of threonine to isoleucine, and the enzyme is feedback-inhibited by isoleucine (Umbarger, H. E. Biosynthesis of branched-chain amino acids, pp. 442-457 inEscherichia coli and Salmonella: Cellular and Molecular Biology, Neidhart, F. C., Curtiss, R., Lin, E. C. C., Low, K. B., Magasanik, B., Reznikoff, W. S., Riley, M., Schaechter, M., and Umbarger, H. E. (eds.).ASM Press, Washington, D.C., 1996). However, ilvA mutants with diminished sensitivity to isoleucine have been described and two such mutants, ilvA466 (Pledger, W. J., and Umbarger, H. E. J. Bacteriol. 114: 183-194, 1973; Taillon, B. E., et al. Gene 63: 245-252, 1988) and ilvA219 (Burns, R. O., et al. J. Biol. Chem. 254: 1074-1079, 1979; Eisenstein, E., et al. Biochemistry 34: 9403-9412, 1995), were used along with wild-type ilvA in these studies. IlvA466 is partially sensitive to feedback inhibition by isoleucine, and IlvA219 is essentially insensitive (Pledger, W. J., and Umbarger, H. E. J. Bacteriol. 114: 195-207, 1973; LaRossa, R. A., et al. J. Bacteriol. 169: 1372-1378, 1987).
- Both Arabidopsis and Brassica were initially transformed with separate vectors expressing wild-type ilvA, ilvA466, and ilvA219. In both organisms, no fertile transformants expressing ilvA219 were recovered, indicating that expression of completely isoleucine-insensitive IlvA is lethal. In Arabidopsis, plants expressing ilvA466 were recovered at a very low frequency, whereas Brassica tolerated ilvA466 rather well. This result may be due to the seed-specific nature of the Lesquerella promoter. Transformants expressing wild-type ilvA were efficiently recovered in both Arabidopsis and Brassica.
- In order to monitor the metabolic effects of IlvA in transgenic plants, metabolites likely to be effected by this enzyme were analyzed. FIG. 36 shows profiles of selected 2-ketoacids and amino acids in a control plant, and in transgenic Arabidopsis expressing wild-type ilvA. As expected, the transgenic plant had elevated levels of both 2-ketobutyrate and isoleucine. In addition, a high concentration of 2-aminobutyrate was present. Formation of 2-aminobutyrate from 2-ketobutyrate is a freely-reversible reaction, probably catalyzed by the same branched-chain amino acid transaminase that catalyzes the final step in isoleucine biosynthesis (Singh, B. K. (1999) Biosynthesis of Valine, Leucine and Isoleucine. In: Singh, B. K. (ed.) Plant Amino Acids: Biochemistry and Biotechnology. Marcel Dekker, Inc., New York, pp.227-247, 1998). Although transgenic plants expressing ilvA contained more 2-ketobutyrate than did wild-type plants, the 2-ketobutyrate concentration was still below that of pyruvate. Most 2-ketobutyrate was apparently diverted to produce 2-aminobutyrate and isoleucine. The concentration of free threonine in a plant expressing ilvA decreased by only about 15%, suggesting that threonine synthesis was sufficiently robust to compensate for the diversion of threonine through 2-ketobutyrate. Similar analyses were performed on the seeds from control and transgenic Brassica, and essentially the same results were obtained. In plants expressing ilvA, isoleucine, 2-ketobutyrate, and 2-aminobutyrate concentrations were elevated, and free threonine was only marginally decreased (K. Gruys et al., unpublished data).
- The second step in the formation of propionyl-CoA is catalyzed by the plastid pyruvate dehydrogenase complex, which is the sole endogenous enzyme required for PHBV production. This enzyme complex normally plays a central role in metabolism by converting pyruvate to acetyl-CoA. We found that PDC from isolated Brassica leukoplasts was also capable of converting 2-ketobutyrate to propionyl-CoA. However, PDC was approximately 10-fold less efficient when utilizing 2-ketobutyrate than when utilizing pyruvate; the specific activities were 0.4 units/mg and 3.6 units/mg for 2-ketobutyrate and pyruvate, respectively.
- Synthesis of PHBV Copolymer
- Once propionyl-CoA has been produced, the pathway is identical to that shown to produce PHBV copolymer in recombinantE. Coli (Slater, S., et al. J. Bacteriol. 180: 1979-1987, 1998). Propionyl-CoA is converted to D-β-hydroxyvaleryl-CoA by BktB and PhbB, and then is polymerized with D-β-hydroxybutyryl-CoA to form PHBV copolymer. The functionality of the entire pathway in plants is shown in FIG. 37, which shows 1H-NMR spectra demonstrating the presence of PHBV copolymer in Arabidopsis. We also obtained 13C-NMR demonstrating PHBV copolymer production in Brassica, and all these data have been corroborated by coupled gas chromatography-mass spectrometry (data not shown). The molecular weight of PHBV isolated from Brassica seeds was approximately 1×106, with a polydispersity index of 2.4. These parameters are suitable for commercial applications.
- Although copolymer was made in both Arabidopsis and Brassica, the 3-hydroxyvalerate component varied with the in vivo polymer concentration. The polymer composition in Brassica seeds distinctly showed a negative correlation between the 3-hydroxyvalerate content of the polymer and total polymer production (FIG. 38). Threonine deaminase activity also negatively correlated with 3-HV content (FIG. 38), a somewhat surprising result considering the role of IlvA in the production of 3-HV. However, we have consistently found that introduction of vectors encoding multiple genes leads to a general, concerted expression of all encoded enzymes. Thus, elevated IlvA activity is consistent with elevated polymer production.
- Discussion
- The use of green plants as industrial factories will often require significant changes in plant metabolism, so metabolic engineering of multi-step pathways will become an important technology in “green chemistry” efforts. In this study, production of the PHA copolymer PHBV has been accomplished using a combination of endogenous and transgene-encoded enzymes. The pathway consists of five separate enzymes, four being encoded as transgenes. In the case of Brassica, all four genes were successfully introduced on a single vector.
- Commercial application of this technology will rest on two primary metabolic issues: 1) can polymer be produced in planta to concentrations amenable to economical polymer extraction? and 2) as the polymer concentration increases, can the appropriate monomer composition be maintained? We expect that polymer concentrations in planta will need to reach at least 15% of dry weight for economical production to be feasible. PHB homopolymer concentrations near 15% have been reported (Nawrath, C. et al.Proc. Natl. Acad. Sci. 91: 12760-12764, 1994) and have also been achieved in our laboratory (data not shown). Thus, high-level PHB production appears technically attainable.
- Production of PHBV copolymer has been accomplished in this study, although all plants produced copolymer at levels below 3% of plant tissue dry weight. The next challenge is high-level production of copolymer, and the data in FIG. 38 show that additional work is required to maintain the 3-hydroxyvalerate composition at high polymer concentrations. Specifically, as polymer production increased, the 3-hydroxyvalerate fraction of the polymer decreased, and increasing threonine deaminase expression did not effect this correlation. These data suggest a metabolic bottleneck in the provision of 3-hydroxyvalerate to PHA synthase. The BktB, PhbB, PhbC pathway efficiently synthesizes PHBV copolymer (Slater, S., et al.J. Bacteriol. 180: 1979-1987, 1998), and production of 2-ketobutyrate in planta is efficient, as estimated from the elevated levels of 2-ketobutyrate, 2-aminobutyrate and isoleucine (FIG. 36). Thus, the metabolic bottleneck must exist at the conversion of 2-ketobutyrate to propionyl-CoA by the pyruvate dehydrogenase complex. As noted above, the PDC strongly prefers pyruvate as a substrate, and this difference is compounded in vivo by the concentration ratio of pyruvate to 2-ketobutyrate (FIG. 36). Pyruvate dehydrogenase apparently cannot effectively compete for 2-ketobutyrate so propionyl-CoA synthesis is limited..
- Production of copolymer to high internal concentrations may require a supplementary route for conversion of 2-ketobutyrate to propionyl-CoA. There are several ways to bypass the PDC or supplement its activity, but all will require additional transgenes. These routes include modifying the α-ketoacid dehydrogenase to more readily accept propionyl-CoA (Inoue H, et al.J. Bacteriol. 179: 3956-3962, 1997; Gruys et al WO 98/00557), expression of an alternative enzyme complex capable of forming propionyl-CoA from 2-ketobutyrate (Kerscher, L. and Oesterhelt, D., Eur. J. Biochem. 116: 587-594, 1981), or co-expression of a propionyl-CoA dehydrogenase (Horswill et al; Mitsky et al., unpublished data) with a propionyl-CoA synthetase or CoA transferase (Gruys et al WO 98/00557; Valentin et al, manuscript in preparation). Thus, a commercially viable transgenic plant producing PHA polymer from threonine may contain up to six separate transgenes.
- Synthesis of propionyl-CoA can also be achieved through other metabolic pathways, although none presents a straightforward alternative to the threonine derived pathway (FIG. 39). For instance, propionyl-CoA may be generated from acetyl-CoA using a 5-step pathway, part of which is involved in propionyl-CoA degradation in plants (Goodwin, T. W. and Mercer, E. I. Introduction to Plant Biochemistry. Second Edition. Pergamon Press, Oxford, 1985; Eisenreich, W., et al.Eur. J. Biochem. 215: 619-632, 1993; Preifert, H., and Steinbüchel, A. J. Bacteriol. 174: 6590-6599, 1992; Podkowinski, J., et al. Proc. Natl. Acad. Sci. USA 93: 1870-1874, 1996; Sun, J., et al. Plant Physiol. 115: 1371-1383, 1997; Horswill A. R., and Escalante-Semerena J. C. J. Bacteriol. 179: 928-940, 1997; Gruys et al, unpublished data). Conversion of acrylyl-CoA to propionyl-CoA is potentially problematic, but an appropriate enzyme may be available from Chroroflexus aurantiacus (Eisenreich, W., et al. Eur. J. Biochem. 215: 619-632, 1993). Propionyl-CoA can also be derived from succinyl-CoA using a pathway present in both Rhodococcus ruber and Nocardia corallina (Williams, D. R.,et al. Appl. Microbiol. Biotechnol. 40: 717-723, 1994; Valentin, H. E., and Dennis, D. Appl. Environ. Microbiol. 62: 372-379, 1996). This pathway is initiated by methylmalonyl-CoA mutase, an enzyme that requires vitamin B12 as a cofactor. However, vitamin B12 is not synthesized in plants (Goodwin, T. W. and Mercer, E. I. Introduction to Plant Biochemistry. Second Edition. Pergamon Press, Oxford, 1985). Rhodococcus and Nocardia also produce minor amounts of 3-hydroxyvaleryl-CoA via a different, uncharacterized route. This route may be a link to amino acid metabolism, such as the pathways used by other bacteria and animals to degrade valine and isoleucine (FIG. 39). These pathways might also be engineered in plants, but a large number of genes are required.
- Several other amino acids can be used to produce propionyl-CoA. Methionine, like threonine, generates 2-ketobutyrate during catabolism. This conversion is catalyzed by L-methionine γ-lyase in a reaction that also produces ammonia and methanethiol (Tanaka, H., et al.Enzyme Microb. Technol. 7: 530-537, 1985). The effect of methanethiol production on plants is unknown, and supplementation of PDC activity would still be required to efficiently produce propionyl-CoA. Another pathway, present in Clostridium propionicum, converts alanine to propionyl-CoA via lactic acid, lactyl-CoA and acrylyl-CoA (Schweiger, G., and Buckel, W. FEBS Lett. 171: 79-84, 1984; Cardon, B. P., and Barker, H. A. Arch. Biochem. Biophys. 12: 165-180, 1947). However, none of the required genes has been cloned, and some of the necessary enzymes are oxygen sensitive (Hofmeister, A. E. M., and Buckel, W. Eur. J. Biochem. 206: 547-552, 1992; Kuchta, R. D., and Abeles, R. H. J. Biol. Chem. 260: 13181-13189, 1985). β-alanine is another potential starting metabolite for the production of propionyl-CoA (Arst, H. N. Jr. Mol. Gen. Genet. 163: 23-27, 1978; Roberts, E., and Bregoff, H. M. J. Biol. Chem. 201: 393-398, 1953; Kupiecki, R. P., and Coon, M. J. J. Biol. Chem. 229: 743-754, 1957). β-alanine normally plays a critical role as a precursor to Coenzyme-A and acyl carrier protein. However, little is known about the concentration and compartmentalization of β-alanine in plants, and propionyl-CoA may actually be required for its synthesis.
- In summary, poly(β-hydroxybutyrate-co-β-hydroxyvalerate) copolymer was produced in both Arabidopsis and Brassica by simultaneously accessing amino acid and short-chain fatty acid metabolite pools. In Brassica, all four required transgenes were introduced on a single vector, eliminating the plant crossing normally necessary to assemble a pathway of this size. The polymer molecular mass was adequate for commercial purposes, but an apparent metabolic bottleneck in conversion of 2-ketobutyrate to propionyl-CoA suggests that additional engineering may be required to achieve high-level production of polymer with the necessary P-hydroxyvalerate composition.
- Generation of IlvA Mutants
- All ilvA alleles used herein are derived from theE. coli ilvA gene (Lawther, R. P. et al., Nucl. Acids Res. 11: 2137-2155, 1987) that is harbored in pMON25659 (Gruys et al WO 98/00557). The ilvA219 mutation (Eisenstein, E., et al. Biochemistry. 34: 9403-9412, 1995) and ilvA466 mutation (Taillon, B. E., et al. Gene. 63: 245-252, 1988), both originally isolated in Salmonella typhimurium, were introduced into the E. coli gene by oligonucleotide-directed mutagenesis as previously described (Gruys et al. WO 98/00557).
- Plasmid Construction and Transformation ofArabidopsis Thaliana and Brassica Napus
- All transformation vectors are derived from pMON10098, a vector designed for Agrobacterium-mediated transformation of plants that encodes the nptII selectable marker. The trfA function is provided in trans by the host bacterium,Agrobacterium tumefaciens ABI. A. tumefaciens ABI is Agrobacterium strain GV3101 (Van Larebeke, N., et al. Nature. 252: 169-170, 1974) harboring the helper plasmid pMP9ORK (Koncz, C., and Schell, J. Mol. Gen. Genet. 204: 383-396, 1986).
- All PHA production genes used in this study were initially constructed in intermediate vectors as cassettes including a promoter, a chloroplast transit peptide fused to the gene of interest, and a 3′ control region. In every case, the gene cassette is flanked by Not I restriction sites, plus several additional unique restriction sites. Each cassette was excised from it's intermediate vector using appropriate restriction enzymes, and sequentially ligated into the recombinant vector for plant transformation.
- For metabolite analysis, Arabidopsis was transformed with either pMON15715, an ilvA-negative control vector, or pMON25668, which expresses both phbA and wild-type ilvA from e35S promoters.
- For production of PHBV in Arabidopsis, two separate plasmids were used.
- The first vector encoded both phbB and phbC (pMON25678), and the second vector encoded both bktB and ilvA (pMON25812). All genes were controlled by the e35S promoter (Odell, J. T., et al.Nature. 313: 810-812, 1995) and the
E9 3′ region (Coruzzi, G., et al. EMBO J. 3: 1671-1679, 1984). All enzymes were fused to the Arabidopsis RuBisCo small subunit la transit peptide that was previously used for PHB production (Nawrath, C., et al. Proc. Natl. Acad. Sci. 91: 12760-12764, 1994). Plasmid pMON25678 encodes resistance to glyphosate, whereas pMON25812 encodes resistance to kanamycin. Both plasmids were simultaneously used for Agrobacterium-mediated Arabidopsis transformation (Bechtold N., et al. Comptes Rendus Acad. Sci. Paris Sciences Serie III Sciences de la Vie. 316: 1194-1199, 1993), and transformants were selected on both glyphosate and kanamycin as follows. -
Metro Mix 200 in 2.5 in. pots covered with a mesh screen. Sown seed was vernalized for 5 days and germinated under conditions of 16 hours light/8 hours dark at 20° C. to 22° C., 75% humidity. Plants were watered and fertilized twice weekly with ½X Peters 20-20-20 until infiltration. - A 1:50 dilution of an overnight culture ofAgrobacterium tumefaciens ABI strain was grown at 28° C. in
YEP containing Spectinomycin 100 mg/L, Streptomycin, 100 mg/L, Chloramphenicol 25 mg/L, and Kanamycin 50 mg/L. Each culture contained a different ABI construct. After 16-20 hours the Agrobacterium cultures were concentrated by centrifugation. The supernatant was discarded and the cell pellets were dried and resuspended in infiltration medium (MS Basal Salts 0.5%, Gamborg's B-5Vitamins 1%,Sucrose 5%, MES 0.5 g/L, pH 5.7) with 0.44 nM benzylaminopurine (10 μL of a 1.0 mg/L stock in DMSO per liter) and 0.02% Silwet L-77 to an OD600 of 0.8. For co-infiltrations each culture was resuspended as described above and 150 mL each of two cultures were combined for a total of 300 mL. - Plants were soaked in water 30 minutes prior to infiltration. Inverted plants were placed into the cultures and vacuum infiltrated at 27 in. Hg for 10 minutes. The plants were placed on their sides in a diaper-lined tray and covered with a germination dome for one day. The pots were then turned upright and were not watered for five days. Infiltrated plants were grown to maturity as described above. Ripe seeds were harvested and sterilized. Harvested seed was placed in a 15 mL Corning tube and sterilized. The tubes containing seed were placed on their sides with lids loosened in a vacuum dessicator containing a beaker of Clorox and 1:100 hydrochloric acid. The dessicator was then sealed with a vacuum and the seed remained in the dessicator overnight. Sterilized seeds from co-infiltrated plants were placed on media containing MS Basal Salts 4.3 g/L, Gamborg's B-5 (500×) 2.0 g/L, glucose 10 g/L, MES 0.5 g/L, and 8 g/L phytagar with carbenicillin 250 mg/L,
cefotaxime 100 mg/L, kanamycin 60 mg/L and 4 mM glyphosate. The seed was germinated at 26° C., 20 hours light/4 hours dark. Transformants were transferred to soil and covered with a germination dome for one week. The plants were grown in plant growth conditions described above. - For transformation ofBrassica napus, a single vector encoding the entire PHBV biosynthesis pathway was used. This vector, pMON36824, encodes bktB, phbB, phbC, and ilvA466 (FIG. 3). As with the Arabidopsis vectors, each gene of interest was fused to a chloroplast transit peptide, so each protein is transported to the seed leukoplast. All enzymes were fused to the Arabidopsis RuBisCo small subunit 1 a transit peptide that was previously used for PHB production (Nawrath, C. et al. Proc. Natl. Acad. Sci. 91: 12760-12764, 1994), except PhbB was fused to the transit peptide from pea RuBisCo small subunit (Cashmore, A. R. Nuclear genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase. pp. 29-38 in Genetic Engineering of Plants, Kosuge, T., Meredith, C. P., Hollaender, A. (eds.). Plenum, N.Y., 1983). Each gene is controlled by the promoter from the fatty acid hydroxylase gene of Lesquerella (P-Lh; Broun, P., et al. Plant J. 13: 201-210, 1998), and the
E9 3′ region (Coruzzi, G., et al. EMBO J. 3: 1671-1679, 1984). P-Lh directs expression of these genes within the developing seed. Transformation of Brassica was performed as described by Fry et al. (Plant Cell Rep. 6: 321-325, 1987), and transformants were selected on glyphosate. - Isolation of Brassica Seed Leukoplasts and Analysis of Pyruvate Dehydrogenase Complex Activity
- Leukoplasts were isolated essentially as described by Kang and Rawsthome (Plant J. 6: 795-805, 1994). Isolated leucoplasts were lysed by sonication and debris removed by centrifugation at 10,000× g for 10 minutes. The crude extract was desalted using Pharmacia NAP-5 columns and the protein concentrations determined by the Bradford method (Bradford, M. Anal. Biochem. 72: 248-254, 1976). Five to 50 μL were added to assay mix which contained final concentrations of: 100 mM EPPS, pH 8.0; 5 mM MgCl2; 2.4 mM coenzyme-A; 1.5 mM NAD+; and 0.2 mM TPP (cocarboxylase). The reaction was initiated with addition of either pyruvate or 2-ketobutyrate substrates to final concentrations of 1.5 mM and 30 mM, respectively. To aid in analysis and ensure peak identities, 14C labeled pyruvate and 2-ketobutyrate were spiked into both substrates. The reactions were quenched with 30 μL of 10% formic acid after 2 to 30 minutes. 100 μL of the reaction was injected onto a Beckman Ultrasphere HPLC column (5 μM, 4.6 mm×15 cm) and eluted with 1 mL/minute gradient of solvent A (50 mM ammonium acetate buffer pH 6.0 containing 5% acetonitrile) going from 0 to 40 % solvent B (acetonitrile) in 15 minutes. The reaction was followed by monitoring absorbance of CoA-derived products at 230 and 260 nm using a photodiode array detector. Use of radioisotope flow detector allowed confirmation of both substrate and product peak identities. The percent conversion of added substrates was used to determine the specific activities of the extracts. One unit equals one nmol product produced per minute per mg protein in extract.
- Amino Acid and 2-Ketoacid Analysis
- Amino Acid analysis was performed by Dr. Donald Willis at Ralston Analytical Laboratories, essentially as described by Willis (J. Chromatog. 408: 217-225, 1987).
- Extraction and Gas Chromatography Analysis of Polymer from Arabidopsis
- For isolation of polymer from Arabidopsis, stems and leaves were harvested and dehydrated by lyophilization for approximately 36 hours. The material was ground to a fine powder, and 100 mg of powder was treated with 10 mL Clorox bleach for 1 hour with shaking at room temperature. The extract was subjected to centrifugation at 1,600× g for ten minutes, and the supernatant solutions was carefully removed. Ten
mL 100% methanol were added, the solution was mixed by vortex, and then centrifuged again. After a second, identical, methanol extraction, the material was allowed to dry overnight. Polymer was extracted from the dried material with 1 mL of chloroform containing 3 μmol/mL methyl-benzoate standard and 1 mL of methanol/sulphuric acid (85:15, v/v). The tube was heated to 100° C. for exactly 2.5 hours, and the solid material was removed by centrifugation. The solution was cooled, 1 mL water was added, and the liquid was mixed using a vortex mixer. The organic and aqueous phases were separated by centrifugation at 1,600× g for ten minutes. The chloroform layer was transferred to a clean test tube and vigorously mixed with approximately 200 mg of silica gel. Solid material was removed by centrifugation, and the supernatant material was subjected to gas chromatography. Gas chromatographic characterization of the methyl-ester residues was performed as described by Slater et al. (J. Bacteriol. 180: 1979-1987, 1998), except that the temperature gradient was performed as follows. The initial temperature of 70° C. was held for 6 minutes, then the temperature was increased by 30° C. per minute to 130° C. Finally, the temperature was increased by 50° C. per minute to 300° C. and held at 300° C. for 5 minutes. - Extraction and Gas Chromatography Analysis of Polymer from Brassica seeds
- For isolation of polymer from canola seed, seeds were ground to a fine powder with a mortar and pestle. Approximately 200 mg of each sample were extracted two times in a glass tube with 10 mL each of hexane for 1 hour at 60° C., then two times with 10 mL each of 100% methanol for one hour at 60° C. This procedure removes oil from the seed. The material was allowed to dry to completion overnight. Polymer was extracted from the dried material with 1 mL of chloroform containing 3 μmol/mL methyl-benzoate standard. The tube was heated to 100° C. for 5 hours and the samples were cooled. One mL methanol/sulphuric acid (85:15, v/v) was added, and the mixture was heated to 100° C. for exactly 2.5 hours. The solution was cooled, extracted with water and subjected to gas chromatography as described above.
- Characterization of Polymer by Nuclear Magnetic Resonance Spectroscopy and Gel Permeation Chromatography
- Nuclear magnetic resonance (NMR) studies were done using a Varian Unity 500 MHz spectrometer. Proton spectra were obtained on a Varian pfg 5 mm probe at 30° C. from PHA samples of approximately 20 mg dissolved in 1 mL deuterochloroform. Acquisitions were taken at a 90° pulse, 2.3 s acquisition time, 30 s delay, collecting 65 k data points and 16 accumulations. Chemical shifts were referenced to CHCl3 (δ=7.24 ppm). The 13C{1H} spectra (125 MHz) were taken at 30° C. on a
Nalorac 3 mm 13C probe containing a solution of approximately 10 mg PHA in 200 μL deuterochloroform. The spectra were obtained using 30° pulses, 1.5 s acquisition time, zero delay, 131 k data points and 55,296 accumulations. Chemical shifts were measured relative to CHCl3 (δ=77.0 ppm). - Gel permeation chromatography was performed according to Koizumi et al. (J. M. S. Pure Appl. Chem. A32: 759-774,1995).
- Plant promoter sequences can be constitutive or inducible, environmentally- or developmentally-regulated, or cell- or tissue-specific. Often-used constitutive promoters include the
CaMV 35S promoter (Odell et al., Nature 313: 810-812, 1985), theenhanced CaMV 35S promoter, the Figwort Mosaic Virus (FMV) promoter (Richins, R. D. et al., Nucleic Acids Res. 20: 8451-8466, 1987), the mannopine synthase (mas) promoter, the nopaline synthase (nos) promoter, and the octopine synthase (ocs) promoter. Useful inducible promoters include promoters induced by salicylic acid or polyacrylic acids (PR-1, Willians , S. W. et al, Biotechnology 10: 540-543, 1992), induced by application of safeners (substituted benzenesulfonamide herbicides, Hershey, H. P. and Stoner, T. D., Plant Mol. Biol. 17: 679-690, 1991), heat-shock promoters (Ou-Lee et al., Proc. Natl. Acad. Sci. U.S.A. 83: 6815-6819, 1986; Ainley, W. M. et al., Plant Mol. Biol. 14: 949-967, 1990), a nitrate-inducible promoter derived from the spinach nitrite reductase gene (Back, E. et al., Plant Mol. Biol. 17: 9-18, 1991), hormone-inducible promoters (Yamaguchi-Shinozaki, K. et al., Plant Mol. Biol. 15: 905-912, 1990; Kares et al., Plant Mol. Biol. 15: 905-912, 1990), and light-inducible promoters associated with the small subunit of RuBP carboxylase and LHCP gene families (Kuhlemeier et al., Plant Cell 1: 471-478, 1989; Feinbaum, R. L. et al., Mol. Gen. Genet. 226: 449-456, 1991; Weisshaar, B. et al., EMBO J. 10: 1777-1786, 1991; Lam, E. and Chua, N. H., J. BioL Chem. 266: 17131-17135, 1990; Castresana, C. et al., EMBO J. 7: 1929-1936, 1988; Schulze-Lefert, P. et al., EMBO J. 8: 651-656, 1989). Examples of useful tissue-specific, developmentally-regulated promoters include the β-conglycinin 7S promoter (Doyle, J. J. et al., J. Biol. Chem. 261: 9228-9238, 1986; Slighton and Beachy, Planta 172: 356, 1987), and seed-specific promoters (Knutzon, D. S. et al., Proc. Natl. Acad. Sci. U.S.A. 89: 2624-2628, 1992; Bustos, M. M. et al., EMBO J. 10: 1469-1479, 1991; Lam, E. and Chua, N. H., Science 248: 471-474, 1991; Stayton et al., Aust. J. Plant. Physiol. 18: 507, 1991). Plant functional promoters useful for preferential expression in seed plastids include those from plant storage protein genes and from genes involved in fatty acid biosynthesis in oilseeds. Examples of such promoters include the 5′ regulatory regions from such genes as napin (Kridl et al., Seed Sci. Res. 1: 209-219, 1991), phaseolin, zein, soybean trypsin inhibitor, ACP, stearoyl-ACP desaturase, and oleosin. Seed-specific gene regulation is discussed inEP 0 255 378. Promoter hybrids can also be constructed to enhance transcriptional activity (Comai, L. and Moran, P. M., U.S. Pat. No. 5,106,739, issued Apr. 21, 1992), or to combine desired transcriptional activity and tissue specificity. - Plant Transformation and Regeneration
- A variety of different methods can be employed to introduce such vectors into plant protoplasts, cells, callus tissue, leaf discs, meristems, etcetera, to generate transgenic plants, including Agrobacterium-mediated transformation, particle gun delivery, microinjection, electroporation, polyethylene glycol mediated protoplast transformation, liposome-mediated transformation, etc. (reviewed in Potrykus,Ann. Rev. Plant Physiol. Plant Mol. Biol. 42: 205-225, 1991). In general, transgenic plants comprising cells containing and expressing DNAs encoding enzymes facilitating PHA biosynthesis can be produced by transforming plant cells with a DNA construct as described above via any of the foregoing methods; selecting plant cells that have been transformed on a selective medium; regenerating plant cells that have been transformed to produce differentiated plants; and selecting a transformed plant which expresses the enzyme-encoding nucleotide sequence.
- Specific methods for transforming a wide variety of dicots and obtaining transgenic plants are well documented in the literature (Gasser and Fraley,Science 244: 1293-1299, 1989; Fisk and Dandekar, Scientia Horticulturae 55: 5-36, 1993; Christou, Agro Food Industry Hi Tech, p.17 (1994); and the references cited therein).
- Successful transformation and plant regeneration have been reported in the monocots as follows: asparagus (Asparagus officinalis; Bytebier et al., Proc. Natl. Acad. Sci. U.S.A. 84: 5345-5349, 1987); barley (Hordeum vulgarae; Wan and Lemaux, Plant Physiol. 104: 37-48, 1994); maize (Zea mays; Rhodes, C. A. et al., Science 240: 204-207, 1988; Gordon-Kamm et al., Plant Cell 2: 603-618, 1990; Fromm, M. E. et al., Bio/Technology 8: 833-839, 1990; Koziel et al., Bio/Technology 11: 194-200, 1993); oats (Avena sativa; Somers et al., Bio/Technology 10: 1589-1594, 1992); orchardgrass (Dactylis glomerata; Horn et al., Plant Cell Rep. 7: 469-472, 1988); rice (Oryza sativa, including indica and japonica varieties; Toriyama et al., Bio/Technology 6: 10, 1988; Zhang et al., Plant Cell Rep. 7: 379-384, 1988; Luo and Wu, Plant Mol. Biol. Rep. 6: 165, 1988; Zhang and Wu, Theor. Appl. Genet. 76: 835, 1988; Christou et al., Bio/Technology 9: 957-962, 1991); rye (Secale cereale; De la Pena et al., Nature 325: 274-276, 1987); sorghum (Sorghum bicolor; Casas, A. M. et al., Proc. Natl. Acad. Sci. U.S.A. 90: 11212-11216, 1993); sugar cane (Saccharum spp.; Bower and Birch, Plant J. 2: 409-416, 1992); tall fescue (Festuca arundinacea; Wang, Z. Y. et al., Bio/Technology 10: 691-696, 1992); turfgrass (Agrostis palustris; Zhong et al., Plant Cell Rep. 13: 1-6, 1993); wheat (Triticum aestivum; Vasil et al., Bio/Technology 10: 667-674, 1992; Weeks, T. et al., Plant Physiol. 102: 1077-1084, 1993; Becker et al., Plant J. 5: 299-307, 1994), and alfalfa (Masoud, S. A. et al., Transgen. Res. 5: 313, 1996).
- Particularly useful plants for polyhydroxyalkanoate production include those that produce carbon substrates which can be employed for polyhydroxyalkanoate biosynthesis, including tobacco, wheat, potato, Arabidopsis, and high oil seed plants such as corn, soybean, canola, oil seed rape, sunflower, flax, peanut, sugarcane, switchgrass, and alfalfa.
- If the host plant of choice does not produce the requisite fatty acid substrates in sufficient quantities, it can be modified, for example by mutagenesis or genetic transformation, to block or modulate the glycerol ester and fatty acid biosynthesis or degradation pathways so that it accumulates the appropriate substrates for polyhydroxyalkanoate production. Expression of enzymes such as acyl-ACP thioesterase, fatty acyl hydroxylase, and yeast MFP may serve to increase the flux of substrates in the peroxysome, leading to higher levels of polyhydroxyalkanoate biosynthesis.
- Variations in the nucleic acid sequence encoding a fusion protein may lead to mutant protein sequences that display equivalent or superior enzymatic characteristics when compared to the sequences disclosed herein. This invention accordingly encompasses nucleic acid sequences which are similar to the sequences disclosed herein, protein sequences which are similar to the sequences disclosed herein, and the nucleic acid sequences that encode them. Mutations may include deletions, insertions, truncations, substitutions, fusions, and the like.
- Mutations to a nucleic acid sequence may be introduced in either a specific or random manner, both of which are well known to those of skill in the art of molecular biology. A myriad of site-directed mutagenesis techniques exist, typically using oligonucleotides to introduce mutations at specific locations in a nucleic acid sequence. Examples include single strand rescue (Kunkel, T.Proc. Natl. Acad Sci. U.S.A., 82: 488-492, 1985), unique site elimination (Deng and Nickloff, Anal. Biochem. 200: 81, 1992), nick protection (Vandeyar, et al. Gene 65: 129-133, 1988), and PCR (Costa, et al. Methods Mol. Biol. 57: 31-44, 1996). Random or non-specific mutations may be generated by chemical agents (for a general review, see Singer and Kusmierek, Ann. Rev. Biochem. 52: 655-693, 1982) such as nitrosoguanidine (Cerda-Olmedo et al., J. Mol. Biol. 33: 705-719, 1968; Guerola, et al. Nature New Biol. 230: 122-125, 1971) and 2-aminopurine (Rogan -and Bessman, J. Bacteriol. 103: 622-633, 1970), or by biological methods such as passage through mutator strains (Greener et al. Mol. Biotechnol. 7: 189-195, 1997).
- Nucleic acid hybridization is a technique well known to those of skill in the art of DNA manipulation. The hybridization properties of a given pair of nucleic acids is an indication of their similarity or identity. Mutated nucleic acid sequences may be selected for their similarity to the disclosed nucleic acid sequences on the basis of their hybridization to the disclosed sequences. Low stringency conditions may be used to select sequences with multiple mutations. One may wish to employ conditions such as about 0.15 M to about 0.9 M sodium chloride, at temperatures ranging from about 20° C. to about 55° C. High stringency conditions may be used to select for nucleic acid sequences with higher degrees of identity to the disclosed sequences. Conditions employed may include about 0.02 M to about 0.15 M sodium chloride, about 0.5% to about 5% casein, about 0.02% SDS and/or about 0.1% N-laurylsarcosine, about 0.001 M to about 0.03 M sodium citrate, at temperatures between about 50° C. and about 70° C. More preferably, high stringency conditions are 0.02 M sodium chloride, 0.5% casein, 0.02% SDS, 0.001 M sodium citrate, at a temperature of 50° C.
- Modification and changes may be made in the sequence of the proteins of the present invention and the nucleic acid segments which encode them and still obtain a functional molecule that encodes a protein with desirable properties. The following is a discussion based upon changing the amino acid sequence of a protein to create an equivalent, or possibly an improved, second-generation molecule. The amino acid changes may be achieved by changing the codons of the nucleic acid sequence, according to the codons given in Table 9.
TABLE 9 Codon degeneracies of amino acids Three Amino acid One letter letter Codons Alanine A Ala GCA GCC GCG GCT Cysteine C Cys TGC TGT Aspartic acid D Asp GAC GAT Glutamic acid E Glu GAA GAG Phenylalanine F Phe TTC TTT Glycine G Gly GGA GGC GGG GGT Histidine H His CAC CAT Isoleucine I Ile ATA ATC ATT Lysine K Lys AAA AAG Leucine L Leu TTA TTG CTA CTC CTG CTT Methionine M Met ATG Asparagine N Asn AAC AAT Proline P Pro CCA CCC CCG CCT Glutamine Q Gln CAA CAG Arginine R Arg AGA AGG CGA CGC CGG CGT Serine S Ser AGC AGT TCA TCC TCG TCT Threonine T Thr ACA ACC ACG ACT Valine V Val GTA GTC GTG GTT Tryptophan W Trp TGG Tyrosine Y Tyr TAC TAT - Certain amino acids may be substituted for other amino acids in a protein sequence without appreciable loss of enzymatic activity. It is thus contemplated that various changes may be made in the peptide sequences of the disclosed protein sequences, or their corresponding nucleic acid sequences without appreciable loss of the biological activity.
- In making such changes, the hydropathic index of amino acids may be considered. The importance of the hydropathic amino acid index in conferring interactive biological function on a protein is generally understood in the art (Kyte and Doolittle,J. Mol. Biol., 157: 105-132, 1982). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like.
- Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics. These are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (−0.4); threonine (−0.7); serine (−0.8); tryptophan (−0.9); tyrosine (−1.3); proline (−1.6); histidine (−3.2); glutamate/glutamine/aspartate/asparagine (−3.5); lysine (−3.9); and arginine (−4.5).
- It is known in the art that certain amino acids may be substituted by other amino acids having a similar hydropathic index or score and still result in a protein with similar biological activity, i.e., still obtain a biologically functional protein. In making such changes, the substitution of amino acids whose hydropathic indices are within ±2 is preferred, those within ±1 are more preferred, and those within ±0.5 are most preferred.
- It is also understood in the art that the substitution of like amino acids may be made effectively on the basis of hydrophilicity. U.S. Pat. No. 4,554,101 (Hopp, T. P., issued Nov. 19, 1985) states that the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with a biological property of the protein. The following hydrophilicity values have been assigned to amino acids: arginine/lysine (+3.0); aspartate/glutamate (+3.0±1); serine (+0.3); asparagine/glutamine (+0.2); glycine (0); threonine (−0.4); proline (−0.5±1); alanine/histidine (−0.5); cysteine (−1.0); methionine (−1.3); valine (−1.5); leucine/isoleucine (−1.8); tyrosine (−2.3); phenylalanine (−2.5); and tryptophan (−3.4).
- It is understood that an amino acid may be substituted by another amino acid having a similar hydrophilicity score and still result in a protein with similar biological activity, i.e., still obtain a biologically functional protein. In making such changes, the substitution of amino acids whose hydropathic indices are within ±2 is preferred, those within ±1 are more preferred, and those within ±0.5 are most preferred.
- As outlined above, amino acid substitutions are therefore based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. Exemplary substitutions which take various of the foregoing characteristics into consideration are well known to those of skill in the art and include: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine, and isoleucine. Changes which are not expected to be advantageous may also be used if these resulted in functional fusion proteins.
- All of the compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the methods described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention.
TABLE 10 RESTRICTION SITES FROM FIG. 3 ENZYME CUT SITE Notl 693 Xhol 702 BsaAl 1510 Rsrll 1722 Xhol 2170 Dral 2817 BsaAl 4975 Dral 5980 Dral 5999 BsaAl 7195 Dral 7677 Dral 7754 Bglll 8440 Rsrll 8998 Bglll 9296 Ascl 9851 SexAl 9917 BsaAl 9933 Sfil 10387 Sbfl 10535 EcoRl 10594 -
TABLE 11 RESTRICTION SITES FROM FIG. 4 ENZYME CUT SITE Notl 678 Xhol 687 BsaAl 1497 Rsrll 1709 Xhol 2157 Dral 2804 BsaAl 4924 Dral 5929 Dral 5948 BsaAl 7144 Dral 7626 Dral 7703 Bglll 8389 EcoRl 8413 -
TABLE 12 RESTRICTION SITES FROM FIG. 5 ENZYME CUT SITE BsaAl 411 Notl 878 Bglll 1541 EcoRl 1555 Smal 1573 Smal 2240 Srfl 2240 Notl 2244 Dral 3368 Dral 3387 Dral 4079 -
TABLE 13 RESTRICTION SITES FROM FIG. 6 ENZYME CUT SITE BsaAl 411 Notl 878 Bglll 1541 BsaAl 2185 EcoRl 3094 EcoRl 3126 Smal 3144 Smal 3811 Srfl 3811 Notl 3815 Dral 4939 Dral 4958 Dral 5650 -
TABLE 14 RESTRICTION SITES FROM FIG. 7 ENZYME CUT SITE BsaAl 411 Notl 878 Bglll 1541 BsaAl 2019 Sbfl 2150 BsaAl 2523 Sbfl 2789 EcoRl 3083 Smal 3101 Smal 3768 Srfl 3768 Notl 3772 Dral 4896 Dral 4915 Dral 5607 -
TABLE 15 RESTRICTION SITES FROM FIG. 8 ENZYME CUT SITE BsaAl 411 Notl 878 Bglll 1541 Sfil 2259 EcoRl 2603 EcoRl 2635 Smal 2653 Smal 3320 Srfl 3320 Notl 3324 Dral 4448 Dral 4467 Dral 5159 -
TABLE 16 RESTRICTION SITES FROM FIG. 9 ENZYME CUT SITE BsaAl 411 Notl 878 Bglll 1541 BsaAl 3070 EcoRl 3131 BsaAl 3183 Smal 4029 Srfl 4029 Notl 4033 Dral 5157 Dral 5176 Dral 5868 -
TABLE 17 RESTRICTION SITES FROM FIG. 10 ENZYME CUT SITE Notl 693 Hindlll 704 EcoRV 1241 Bglll 1356 Hindlll 1362 Hindlll 1374 Sphl 1678 Sfil 2118 Ncol 2166 EcoRl 2462 Smal 2480 BamHl 2486 Smal 3147 Notl 3151 Hindlll 3162 EcoRV 3699 Bglll 3814 Hindlll 3820 Hindlll 3832 Sphl 4136 BspHl 4138 Ncol 5005 EcoRl 5356 Smal 5374 BamHl 5380 Smal 6041 Notl 6045 Xhol 6054 Sphl 6963 Ncol 6990 Xhol 7522 BspHl 11293 BspHl 11793 Sphl 12986 Hindlll 13143 EcoRV 13677 Bglll 13792 Sphl 13971 Sphl 14061 Ncol 14066 EcoRV 14277 Ncol 14321 Bglll 14648 SexAl 15269 Sfil 15739 EcoRl 15946 BamHl 15964 -
TABLE 18 RESTRICTION SITES FROM FIG. 11 ENZYME CUT SITE Notl 693 Hindlll 704 EcoRV 1241 Bglll 1356 Sphl 1535 Sphl 1625 Ncol 1630 Apal 2508 EcoRl 2909 EcoRl 2941 Smal 2959 BamHl 2965 Smal 3626 Notl 3630 Hindlll 3641 EcoRV 4178 Bglll 4293 Sphl 4472 Sphl 4562 Ncol 4567 Sfil 5011 Ncol 5059 EcoRl 5355 EcoRl 5387 Smal 5405 BamHl 5411 Smal 6072 Notl 6076 Xhol 6085 Sphl 6994 Ncol 7021 Xhol 7553 BspHl 11324 BspHl 11824 Sphl 13017 Hindll 13174 EcoRV 13708 Bglll 13823 Sphl 14002 Sphl 14092 Ncol 14097 EcoRV 14308 Ncol 14352 Bglll 14679 SexAl 15300 Sfil 15770 EcoRl 15977 BamHl 15995 -
TABLE 19 RESTRICTION SITES FROM FIG. 12 ENZYME CUT SITE Notl 693 Bglll 1356 BsaAl 1834 Sbfl 1965 BsaAl 2338 Sbfl 2604 EcoRl 2898 Smal 2916 Smal 3583 Srfl 3583 Notl 3587 Bglll 4250 Sfil 4968 EcoRl 5312 EcoRl 5344 Smal 5362 Smal 6029 Srfl 6029 Notl 6033 Xhol 6042 BsaAl 6850 Rsrll 7062 Xhol 7510 Dral 8157 BsaAl 10315 Dral 11320 Dral 11339 BsaAl 12535 Dral 13017 Dral 13094 Bglll 13780 Rsrll 14338 Bglll 14636 Ascl 15191 SexAl 15257 BsaAl 15273 Sfil 15727 Sbfl 15875 EcoRl 15934 -
TABLE 20 RESTRICTION SITES FROM FIG. 13 ENZYME CUT SITE Notl 693 Hindlll 704 EcoRV 1241 Bglll 1356 Sphl 1535 Sphl 1625 Ncol 2497 Hindlll 2938 EcoRV 2946 EcoRl 2950 EcoRl 2982 Smal 3000 BamHl 3006 Smal 3667 Notl 3671 Hindlll 3682 EcoRV 4219 Bglll 4334 Sphl 4513 Sphl 4603 Ncol 4608 Sfil 5052 Ncol 5100 EcoRl 5396 EcoRl 5428 Smal 5446 BamHl 5452 Smal 6113 Notl 6117 Xhol 6126 Sphl 7035 Ncol 7062 Xhol 7594 BspHl 11365 BspHl 11865 Sphl 13058 Hindlll 13215 EcoRV 13749 Bglll 13864 Sphl 14043 Sphl 14133 Ncol 14138 EcoRV 14349 Ncol 14393 Bglll 14720 SexAl 15341 Sfil 15811 EcoRl 16018 BamHl 16036 -
TABLE 21 RESTRICTION SITES FROM FIG. 14 ENZYME CUT SITE Notl 693 Hindlll 704 EcoRV 1241 Bglll 1356 Sphl 1535 Sphl 1625 Ncol 1630 EcoRl 2946 SnaBl 2998 Ncol 3032 EcoRV 3179 BamHl 3183 Smal 3844 Notl 3848 Hindlll 3859 EcoRV 4396 Bglll 4511 Hindlll 4517 Hindlll 4529 Sphl 4833 BspHl 4835 Ncol 5702 EcoRl 6053 Smal 6071 BamHl 6077 Smal 6738 Notl 6742 Hindlll 6753 EcoRV 7290 Bgll 7405 Sphl 7584 Sphl 7674 Ncol 7679 Sfil 8123 Ncol 8171 EcoRl 8467 EcoRl 8499 Smal 8517 BamHl 8523 Smal 9184 Notl 9188 Xhol 9197 Sphl 10106 Ncol 10133 Xhol 10665 BspHl 14436 BspHl 14936 Sphl 16129 Hindll 16286 EcoRV 16820 Bglll 16935 Sphl 17114 Sphl 17204 Ncol 17209 EcoRV 17420 Ncol 17464 Bglll 17791 SexAl 18412 Sfil 18882 EcoRl 19089 BamHl 19107 -
TABLE 22 RESTRICTION SITES FROM FIG. 15 ENZYME CUT SITE Notl 693 Hindlll 704 EcoRV 1241 Bglll 1356 Sphl 1535 Sphl 1625 Ncol 1630 EcoRl 2946 SnaBl 2998 Ncol 3032 EcoRV 3179 BamHl 3183 Smal 3844 Notl 3848 Hindlll 3859 EcoRV 4396 Bglll 4511 Sphl 4690 Sphl 4780 Ncol 4785 EcoRl 6101 SnaBl 6153 Ncol 6187 EcoRV 6334 BamHl 6338 Smal 6999 Notl 7003 Hindlll 7014 EcoRV 7551 Bglll 7666 Hindlll 7672 Hindlll 7684 Sphl 7988 BspHl 7990 Ncol 8857 EcoRl 9208 Smal 9226 BamHl 9232 Smal 9893 Notl 9897 Hindlll 9908 EcoRV 10445 Bglll 10560 Sphl 10739 Sphl 10829 Ncol 10834 Sfil 11278 Ncol 11326 EcoRl 11622 EcoRl 11654 Smal 11672 BamHl 11678 Smal 12339 Notl 12343 Xhol 12352 Sphl 13261 Ncol 13288 Xhol 13820 BspHl 17591 BspHl 18091 Sphl 19284 Hindlll 19441 EcoRV 19975 Bglll 20090 Sphl 20269 Sphl 20359 Ncol 20364 EcoRV 20575 Ncol 20619 Bglll 20946 SexAl 21567 Sfil 22037 EcoRl 22244 BamHl 22262 -
TABLE 23 RESTRICTION SITES FROM FIG. 16 ENZYME CUT SITE Notl 678 Spel 685 BsaAl 693 SanDl 698 Rsrll 705 SexAl 711 Pacl 722 Sgfl 730 Sfil 741 Ascl 748 Sbfl 760 Smal 766 Srfl 766 Dral 774 Swal 774 Xhol 779 Dral 1426 BsaAl 3546 Dral 4551 Dral 4570 BsaAl 5766 Dral 6248 Dral 6325 Dral 6424 Pacl 7426 Dral 7887 BsaAl 8144 BsaAl 8164 Dral 8394 Bglll 8582 Rsrll 9140 Bglll 9438 Ascl 9993 SexAl 10059 BsaAl 10075 Sfil 10529 Sbfl 10677 EcoRl 10736 -
TABLE 24 RESTRICTION SITES FROM FIG. 17 ENZYME CUT SITE Notl 678 Spel 685 BsaAl 693 SanDl 698 Rsrll 705 SexAl 711 Pacl 722 Sgfl 730 Sfil 741 Ascl 748 Sbfl 760 Smal 766 Srfl 766 Dral 774 Swal 774 Xhol 779 Dral 1426 BsaAl 3546 Dral 4551 Dral 4570 BsaAl 5766 Dral 6248 Dral 6325 Dral 6424 Pacl 7426 Dral 7887 BsaAl 8144 BsaAl 8164 Dral 8394 Bglll 8582 EcoRl 8606 -
TABLE 25 RESTRICTION SITES FROM FIG. 18 ENZYME CUT SITE BsaAl 411 Notl 878 Dral 951 Pacl 1953 Dral 2414 BsaAl 2671 BsaAl 2691 Dral 2921 Bglll 3109 EcoRl 3123 Smal 3141 Smal 3808 Srfl 3808 Notl 3812 Dral 4936 Dral 4955 Dral 5647 -
TABLE 26 RESTRICTION SITES FROM FIG. 19 ENZYME CUT SITE BsaAl 411 Notl 878 Dral 951 Pacl 1953 Dral 2414 BsaAl 2671 BsaAl 2691 Dral 2921 Bglll 3109 BsaAl 3753 EcoRl 4662 Smal 4680 Smal 5347 Srfl 5347 Notl 5351 Dral 6475 Dral 6494 Dral 7186 -
TABLE 27 RESTRICTION SITES FROM FIG. 20 ENZYME CUT SITE Notl 878 Hindlll 889 Sphl 1041 Pacl 1953 BspHl 2613 BspHl 2736 Bglll 3109 Sphl 3288 Sphl 3378 Ncol 4250 Hindlll 4691 EcoRV 4699 EcoRl 4703 Smal 4721 BamHl 4727 Smal 5388 Notl 5392 BspHl 6477 BspHl 7485 BspHl 7590 -
TABLE 28 RESTRICTION SITES FROM FIG. 21 ENZYME CUT SITE Xhol 271 Dral 280 Swal 280 Smal 288 Srfl 288 Sbfl 298 Ascl 302 Sfil 316 Sgfl 326 Pacl 334 SexAl 338 Rsrll 346 SanDl 353 BsaAl 361 Spel 365 Notl 372 Dral 445 Pacl 1447 Dral 1908 BsaAl 2165 BsaAl 2185 Dral 2415 Spel 2609 Smal 2867 Sfil 3315 EcoRl 3608 Smal 3626 Smal 4293 Srfl 4293 Notl 4297 Spel 4304 BsaAl 4312 SanDl 4317 Rsrll 4324 SexAl 4330 Pacl 4341 Sgfl 4349 Sfil 4361 Ascl 4368 Sbfl 4380 Smal 4386 Srfl 4386 Dral 4394 Swal 4394 Dral 5388 Dral 5407 Dral 6099 -
TABLE 29 RESTRICTION SITES FROM FIG. 22 ENZYME CUT SITE BsaAl 411 Notl 878 Dral 951 Pacl 1953 Dral 2414 BsaAl 2671 BsaAl 2691 Dral 2921 Bglll 3109 BsaAl 4638 EcoRl 4699 BsaAl 4751 Smal 5597 Srfl 5597 Notl 5601 Dral 6725 Dral 6744 Dral 7436 -
TABLE 30 RESTRICTION SITES FROM FIG. 23 ENZYME CUT SITE ENZYME CUT SITE ENZYME CUT SITE Notl 678 Spel 7388 Notl 11596 Hindlll 689 EcoRV 7413 BspHl 15339 Sphl 841 Sphl 7573 BspHl 15839 Pacl 1753 Smal 7646 Sphl 17032 BspHl 2413 Sfil 8094 Hindlll 17189 BspHl 2536 Ncol 8142 Sphl 17341 Bglll 2909 EcoRl 8387 Pacl 18253 Sphl 3088 Smal 8405 BspHl 18913 Sphl 3178 BamHl 8411 BspHl 19036 Ncol 3183 BamHl 9358 Bglll 19409 Apal 4061 EcoRl 9376 Sphl 19588 EcoRl 4462 BspHl 10162 Sphl 19678 Smal 4480 Ncol 10435 Ncol 19683 BamHl 4486 BamHl 10546 EcoRV 19894 Smal 5147 Ncol 10558 Ncol 19938 Notl 5151 Sfil 10569 Bglll 20265 Hindlll 5162 Sphl 10757 SexAl 20886 Sphl 5314 Bglll 10980 Sfil 21356 Pacl 6226 EcoRl 11052 EcoRl 21563 BspHl 6886 EcoRl 11455 BamHl 21581 BspHl 7009 Hindlll 11585 -
TABLE 31 RESTRICTION SITES FROM FIG. 24 ENZYME CUT SITE ENZYME CUT SITE ENZYME CUT SITE Notl 678 BspHl 7050 Hindlll 11626 Hindlll 689 Spel 7429 Notl 11637 Sphl 841 EcoRV 7454 BspHl 15380 Pacl 1753 Sphl 7614 BspHl 15880 BspHl 2413 Smal 7687 Sphl 17073 BspHl 2536 Sfil 8135 Hindlll 17230 Bglll 2909 Ncol 8183 Sphl 17382 Sphl 3088 EcoRl 8428 Pacl 18294 Sphl 3178 Smal 8446 BspHl 18954 Ncol 4050 BamHl 8452 BspHl 19077 Hindlll 4491 BamHl 9399 Bglll 19450 EcoRV 4499 EcoRl 9417 Sphl 19629 EcoRI 4503 BspHl 10203 Sphl 19719 Smal 4521 Ncol 10476 Ncol 19724 BamHl 4527 BamHl 10587 EcoRV 19935 Smal 5188 Ncol 10599 Ncol 19979 Notl 5192 Sfil 10610 Bglll 20306 Hindlll 5203 Sphl 10798 SexAl 20927 Sphl 5355 Bglll 11021 Sfil 21397 Pacl 6267 EcoRl 11093 EcoRl 21604 BspHl 6927 EcoRl 11496 BamHl 21622 -
TABLE 32 RESTRICTION SITES FROM FIG. 25 ENZYME CUT SITE ENZYME CUT SITE ENZYME CUT SITE Notl 678 EcoRl 9013 Sphl 15521 Hindlll 689 EcoRV 9246 Bglll 15744 Sphl 841 BamHl 9250 EcoRl 15816 Pacl 1753 Smal 9911 EcoRl 16219 BspHl 2413 Notl 9915 Hindlll 16349 BspHl 2536 Hindlll 9926 Notl 16360 Bglll 2909 Sphl 10078 BspHl 20103 Sphl 3088 Pacl 10990 BspHl 20603 Sphl 3178 BspHl 11650 Sphl 21796 Ncol 4050 BspHl 11773 Hindlll 21953 Hindlll 4491 Spel 12152 Sphl 22105 EcoRV 4499 EcoRV 12177 Pacl 23017 EcoRl 4503 Sphl 12337 BspHl 23677 Smal 4521 Smal 12410 BspHl 23800 BamHl 4527 Sfil 12858 Bglll 24173 Smal 5188 Ncol 12906 Sphl 24352 Notl 5192 EcoRl 13151 Sphl 24442 Hindlll 5203 Smal 13169 Ncol 24447 Sphl 5355 BamHl 13175 EcoRV 24658 Pacl 6267 BamHl 14122 Ncol 24702 BspHl 6927 EcoRl 14140 Bglll 25029 BspHl 7050 BspHl 14926 SexAl 25650 Bglll 7423 Ncol 15199 Sfil 26120 Sphl 7602 BamHl 15310 EcoRl 26327 Sphl 7692 Ncol 15322 BamHl 26345 Ncol 7697 Sfil 15333 -
TABLE 33 RESTRICTION SITES FROM FIG. 26 ENZYME CUT SITE ENZYME CUT SITE ENZYME CUT SITE Bglll 649 EcoRl 6440 Dral 8098 Dral 1202 Smal 6712 BsaAl 8190 Dral 1278 Notl 6717 BsaAl 8731 BsaAl 1370 Spel 6724 Rsrll 8943 Sfil 2185 BsaAl 6732 EcoRl 9280 EcoRl 2529 SanDl 6737 Dral 10201 Smal 2801 Rsrll 6744 BsaAl 12321 Notl 2806 SexAl 6750 Dral 13326 Bglll 3468 Pacl 6761 Dral 13345 Dral 4021 Sgfl 6769 BsaAl 14541 Dral 4097 Sfil 6780 Dral 15023 BsaAl 4189 Ascl 6787 Dral 15100 Rsrll 4844 Sbfl 6799 Bglll 15786 Bglll 5142 Smal 6805 Dral 16339 Ascl 5697 Srfl 6805 Dral 16415 SexAl 5763 Dral 6813 BsaAl 16507 BsaAl 5779 Swal 6813 BsaAl 17248 Sfil 6233 Bglll 7469 EcoRl 18157 Sbfl 6381 Dral 8022 -
TABLE 34 RESTRICTION SITES FROM FIG. 27 ENZYME CUT SITE EcoRV 637 BglII 752 EcoRV 2829 HindIII 8420 BglII 9445 EcoRV 12082 HindIII 12086 BglIII 13111 EcoRV 15257 NotI 15268 BglII 16310 EcoRV 17613 BglII 17984 EcoRV 19548 NotI 19559 -
TABLE 35 RESTRICTION SITES FROM FIG. 28 ENZYME CUT SITE ENZYME CUT SITE EcoRV 637 EcoRV 14937 EcoRV 2829 NotI 14948 HindIII 8420 EcoRV 17133 EcoRV 11922 EcoRV 19068 HindIII 11926 NotI 19079 -
TABLE 36 RESTRICTION SITES FROM FIG. 29 ENZYME CUT SITE ENZYME CUT SITE ENZYME CUT SITE Notl 678 Ascl 748 BsaAl 3546 Spel 685 Sbfl 760 Dral 4551 BsaAl 693 Smal 766 Dral 4570 SanDl 698 Srfl 766 BsaAl 5766 Rsrll 705 Dral 774 Dral 6248 SexAl 711 Swal 774 Dral 6325 Pacl 722 Xhol 779 Bglll 7011 Sgfl 730 Dral 1426 EcoRl 7035 Sfil 741 -
TABLE 37 RESTRICTION SITES FROM FIG. 30 ENZYME CUT SITE ENZYME CUT SITE ENZYME CUT SITE Xhol 271 BsaAl 361 SexAl 1771 Dral 280 Spel 365 Pacl 1782 Swal 280 Notl 372 Sgfl 1790 Smal 288 Smal 380 Sfil 1802 Srfl 288 Srfl 380 Ascl 1809 Sbfl 298 Smal 1047 Sbfl 1821 Ascl 302 EcoRl 1061 Smal 1827 Sfil 316 Bglll 1075 Srfl 1827 Sgfl 326 Notl 1738 Dral 1835 Pacl 334 Spel 1745 Swal 1835 SexAl 338 BsaAl 1753 Dral 2829 Rsrll 346 SanDl 1758 Dral 2848 SanDl 353 Rsrll 1765 Dral 3540
Claims (47)
1. An isolated nucleic acid segment comprising:
a first nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein;
a second nucleic acid sequence encoding a β-ketoacyl reductase protein; and
a third nucleic acid sequence encoding a β-ketothiolase protein.
2. The isolated nucleic acid segment of claim 1 , further comprising a fourth nucleic acid sequence encoding a threonine deaminase protein.
3. The isolated nucleic acid segment of claim 1 , further comprising a fourth nucleic acid sequence encoding a deregulated threonine deaminase protein.
4. The isolated nucleic acid segment of claim 1 , wherein:
the first nucleic acid sequence further encodes a chloroplast transit peptide;
the second nucleic acid sequence further encodes a chloroplast transit peptide; and
the third nucleic acid sequence further encodes a chloroplast transit peptide.
5. A recombinant vector comprising operatively linked in the 5′ to 3′ direction:
a promoter that directs transcription of a first nucleic acid sequence, a second nucleic acid sequence, and a third nucleic acid sequence;
a first nucleic acid sequence;
a second nucleic acid sequence;
a third nucleic acid sequence;
a 3′ transcription terminator; and
a 3′ polyadenylation signal sequence; wherein:
the first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence encode different proteins; and
the first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence are independently selected from the group consisting of a nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein, a nucleic acid sequence encoding a β-ketoacyl reductase protein, and a nucleic acid sequence encoding a β-ketothiolase protein.
6. The recombinant vector of claim 5 , wherein the promoter directs transcription of the first nucleic acid sequence, the second nucleic acid sequence, and the third nucleic acid sequence in plants.
7. The recombinant vector of claim 5 , wherein the promoter is a viral promoter.
8. The recombinant vector of claim 5 , wherein the promoter is a CMV 35S promoter, an enhanced CMV 35S promoter, or an FMV 35S promoter.
9. The recombinant vector of claim 5 , wherein the promoter is an enhanced CMV 35S promoter.
10. The recombinant vector of claim 5 , wherein the promoter is a tissue specific promoter.
11. The recombinant vector of claim 5 , wherein the promoter is a Lesquerella hydroxylase promoter or a 7S conglycinin promoter.
12. The recombinant vector of claim 5 , wherein the promoter is a Lesquerella hydroxylase promoter.
13. The recombinant vector of claim 5 , wherein:
the first nucleic acid sequence further encodes a chloroplast transit peptide;
the second nucleic acid sequence further encodes a chloroplast transit peptide; and
the third nucleic acid sequence further encodes a chloroplast transit peptide.
14. A recombinant vector comprising:
a first element comprising operatively linked in the 5′ to 3′ direction:
a first promoter that directs transcription of a first nucleic acid sequence;
a first nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein;
a first 3′ transcription terminator; and
a first 3′ polyadenylation signal sequence;
a second element comprising operatively linked in the 5′ to 3′ direction:
a second promoter that directs transcription of a second nucleic acid sequence;
a second nucleic acid sequence encoding a β-ketoacyl reductase protein;
a second 3′ transcription terminator; and
a second 3′ polyadenylation signal sequence; and
a third element comprising operatively linked in the 5′ to 3′ direction:
a third promoter that directs transcription of a third nucleic acid sequence;
a third nucleic acid sequence encoding a β-ketothiolase protein;
a third 3′ transcription terminator; and
a third 3′ polyadenylation signal sequence.
15. The recombinant vector of claim 14 , wherein the β-ketothiolase protein:
catalyzes the condensation of two molecules of acetyl-CoA to produce acetoacetyl-CoA; and
catalyzes the condensation of acetyl-CoA and propionyl-CoA to produce β-ketovaleryl-CoA.
16. The recombinant vector of claim 14 , wherein the β-ketoacyl reductase protein:
catalyzes the reduction of acetoacetyl-CoA to β-hydroxybutyryl-CoA; and
catalyzes the reduction of β-ketovaleryl-CoA to β-hydroxyvaleryl-CoA.
17. The recombinant vector of claim 14 , wherein the polyhydroxyalkanoate synthase protein is selected from the group consisting of:
a polyhydroxyalkanoate synthase protein that catalyzes the incorporation of β-hydroxybutyryl-CoA into P(3HB) polymer; and
a polyhydroxyalkanoate synthase protein that catalyzes the incorporation of β-hydroxybutyryl-CoA and β-hydroxyvaleryl-CoA into P(3HB-co-3HV) copolymer.
18. The recombinant vector of claim 14 , wherein:
the β-ketothiolase protein comprises a transit peptide sequence that directs transport of the β-ketothiolase protein to the plastid;
the β-ketoacyl reductase protein comprises a transit peptide sequence that directs transport of the β-ketoacyl reductase protein to the plastid; and
the polyhydroxyalkanoate synthase protein comprises a transit peptide sequence that directs transport of the polyhydroxyalkanoate synthase protein to the plastid.
19. The recombinant vector of claim 14 , further comprising a nucleic acid sequence encoding a threonine deaminase protein.
20. The recombinant vector of claim 14 , further comprising a nucleic acid sequence encoding a deregulated threonine deaminase protein.
21. The recombinant vector of claim 14 , wherein:
the first promoter directs transcription of the first nucleic acid sequence in plants;
the second promoter directs transcription of the second nucleic acid sequence in plants; and
the third promoter directs transcription of the third nucleic acid sequence in plants.
22. The recombinant vector of claim 14 , wherein the first promoter, second promoter, and third promoter are viral promoters.
23. The recombinant vector of claim 14 , wherein:
the first promoter is a CMV 35S promoter, an enhanced CMV 35S promoter, or an FMV 35S promoter;
the second promoter is a CMV 35S promoter, an enhanced CMV 35S promoter, or an FMV 35S promoter; and
the third promoter is a CMV 35S promoter, an enhanced CMV 35S promoter, or an FMV 35S promoter.
24. The recombinant vector of claim 14 , wherein:
the first promoter is an enhanced CMV 35S promoter;
the second promoter is an enhanced CMV 35S promoter; and
the third promoter is an enhanced CMV 35S promoter.
25. The recombinant vector of claim 14 , wherein:
the first promoter is a tissue specific promoter;
the second promoter is a tissue specific promoter; and
the third promoter is a tissue specific promoter.
26. The recombinant vector of claim 14 , wherein:
the first promoter is a Lesquerella hydroxylase promoter or a 7S conglycinin promoter;
the second promoter is a Lesquerella hydroxylase promoter or a 7S conglycinin promoter; and
the third promoter is a Lesquerella hydroxylase promoter or a 7S conglycinin promoter.
27. The recombinant vector of claim 14 , wherein:
the first promoter is a Lesquerella hydroxylase promoter;
the second promoter is a Lesquerella hydroxylase promoter; and
the third promoter is a Lesquerella hydroxylase promoter.
28. The recombinant vector of claim 14 , wherein:
the first nucleic acid sequence further encodes a chloroplast transit peptide;
the second nucleic acid sequence further encodes a chloroplast transit peptide; and
the third nucleic acid sequence further encodes a chloroplast transit peptide.
29. A transformed host cell comprising a recombinant vector, wherein the recombinant vector comprises:
a first element comprising operatively linked in the 5′ to 3′ direction:
a first promoter that directs transcription of a first nucleic acid sequence;
a first nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein;
a first 3′ transcription terminator; and
a first 3′ polyadenylation signal sequence;
a second element comprising operatively linked in the 5′ to 3′ direction:
a second promoter that directs transcription of a second nucleic acid sequence;
a second nucleic acid sequence encoding a β-ketoacyl reductase protein;
a second 3′ transcription terminator; and
a second 3′ polyadenylation signal sequence; and
a third element comprising operatively linked in the 5′ to 3′ direction:
a third promoter that directs transcription of a third nucleic acid sequence;
a third nucleic acid sequence encoding a β-ketothiolase protein;
a third 3′ transcription terminator; and
a third 3′ polyadenylation signal sequence.
30. The transformed host cell of claim 29 , wherein the transformed host cell is a bacterial cell.
31. The transformed host cell of claim 29 , wherein the transformed host cell is a fungal cell.
32. The transformed host cell of claim 29 , wherein the transformed host cell is a plant cell.
33. The transformed host cell of claim 29 , wherein:
the first nucleic acid sequence further encodes a chloroplast transit peptide;
the second nucleic acid sequence further encodes a chloroplast transit peptide; and
the third nucleic acid sequence further encodes a chloroplast transit peptide.
34. A transformed host cell comprising:
a first element comprising operatively linked in the 5′ to 3′ direction:
a first promoter that directs transcription of a first nucleic acid sequence;
a first nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein;
a first 3′ transcription terminator; and
a first 3′ polyadenylation signal sequence;
a second element comprising operatively linked in the 5′ to 3′ direction:
a second promoter that directs transcription of a second nucleic acid sequence;
a second nucleic acid sequence encoding a β-ketoacyl reductase protein;
a second 3′ transcription terminator; and
a second 3′ polyadenylation signal sequence; and
a third element comprising operatively linked in the 5′ to 3′ direction:
a third promoter that directs transcription of a third nucleic acid sequence;
a third nucleic acid sequence encoding a β-ketothiolase protein;
a third 3′ transcription terminator; and
a third 3′ polyadenylation signal sequence;
wherein the first element, second element, and third element are cointegrated between a single left Ti border sequence and a single right Ti border sequence.
35. The transformed host cell of claim 34 , wherein the transformed host cell is a fungal cell.
36. The transformed host cell of claim 34 , wherein the transformed host cell is a plant cell.
37. The transformed host cell of claim 34 , wherein the transformed host cell is a tobacco, wheat, potato, Arabidopsis, corn, soybean, canola, oil seed rape, sunflower, flax, peanut, sugarcane, switchgrass, or alfalfa cell.
38. The transformed host cell of claim 34 , wherein:
the first nucleic acid sequence further encodes a chloroplast transit peptide;
the second nucleic acid sequence further encodes a chloroplast transit peptide; and
the third nucleic acid sequence further encodes a chloroplast transit peptide.
39. A transformed plant comprising:
a first element comprising operatively linked in the 5′ to 3′ direction:
a first promoter that directs transcription of a first nucleic acid sequence;
a first nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein;
a first 3′ transcription terminator; and
a first 3′ polyadenylation signal sequence;
a second element comprising operatively linked in the 5′ to 3′ direction:
a second promoter that directs transcription of a second nucleic acid sequence;
a second nucleic acid sequence encoding a β-ketoacyl reductase protein;
a second 3′ transcription terminator; and
a second 3′ polyadenylation signal sequence; and
a third element comprising operatively linked in the 5′ to 3′ direction:
a third promoter that directs transcription of a third nucleic acid sequence;
a third nucleic acid sequence encoding a β-ketothiolase protein;
a third 3′ transcription terminator; and
a third 3′ polyadenylation signal sequence;
wherein the first element, second element, and third element are cointegrated between a single left Ti border sequence and a single right Ti border sequence.
40. The transformed plant of claim 39 , wherein the transformed plant is a tobacco, wheat, potato, Arabidopsis, corn, soybean, canola, oil seed rape, sunflower, flax, peanut, sugarcane, switchgrass, or alfalfa plant.
41. The transformed plant of claim 39 , wherein:
the first nucleic acid sequence further encodes a chloroplast transit peptide;
the second nucleic acid sequence further encodes a chloroplast transit peptide; and
the third nucleic acid sequence further encodes a chloroplast transit peptide.
42. A method of preparing transformed host cells, the method comprising:
selecting a host cell;
transforming the selected host cell with a recombinant vector comprising:
a first element comprising operatively linked in the 5′ to 3′ direction:
a first promoter that directs transcription of the first nucleic acid sequence;
a first nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein;
a first 3′ transcription terminator; and
a first 3′ polyadenylation signal sequence;
a second element comprising operatively linked in the 5′ to 3′ direction:
a second promoter that directs transcription of the second nucleic acid sequence;
a second nucleic acid sequence encoding a β-ketoacyl reductase protein;
a second 3′ transcription terminator; and
a second 3′ polyadenylation signal sequence; and
a third element comprising operatively linked in the 5′ to 3′ direction:
a third promoter that directs transcription of the third nucleic acid sequence;
a third nucleic acid sequence encoding a β-ketothiolase protein;
a third 3′ transcription terminator; and
a third 3′ polyadenylation signal sequence; and
obtaining transformed host cells; wherein the transformed host cells produce polyhydroxyalkanoate polymer.
43. A method of preparing transformed host cells, the method comprising:
selecting a host cell;
transforming the selected host cell with a recombinant vector comprising
operatively linked in the 5′ to 3′ direction:
a promoter that directs transcription of a first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence;
a first nucleic acid sequence;
a second nucleic acid sequence;
a third nucleic acid sequence;
a 3′ transcription terminator; and
a 3′ polyadenylation signal sequence; and
obtaining transformed host cells; wherein:
the first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence encode different proteins;
the first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence are independently selected from the group consisting of a nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein, a nucleic acid sequence
regenerating the transformed host plant cells to produce transformed plants; wherein:
the first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence encode different proteins;
the first nucleic acid sequence, second nucleic acid sequence, and third nucleic acid sequence are independently selected from the group consisting of a nucleic acid sequence encoding a polyhydroxyalkanoate synthase protein, a nucleic acid sequence encoding a β-ketoacyl reductase protein, and a nucleic acid sequence encoding a β-ketothiolase protein; and
the transformed plants produce polyhydroxyalkanoate polymer.
46. A method of producing polyhydroxyalkanoate comprising:
obtaining the transformed host cell of claim 29 or claim 34;
culturing the transformed host cell under conditions suitable for the production of polyhydroxyalkanoate; and
recovering polyhydroxyalkanoate from the transformed host cell.
47. The method of claim 46 , wherein the polyhydroxyalkanoate is poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), or poly(3-hydroxybutyrate-co-4-hydroxybutyrate).
48. A method of producing polyhydroxyalkanoate comprising:
obtaining the transformed plant of claim 39;
growing the transformed plant under conditions suitable for the production of polyhydroxyalkanoate; and
recovering polyhydroxyalkanoate from the transformed plant.
49. The method of claim 48 , wherein the polyhydroxyalkanoate is poly(3-hydroxybutyrate), poly(3-hydroxyvalerate), or poly(3-hydroxybutyrate-co-3-hydroxyvalerate).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/215,328 US20030182678A1 (en) | 1999-03-05 | 2002-08-08 | Multigene expression vectors for the biosynthesis of products via multienzyme biological pathways |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12301599P | 1999-03-05 | 1999-03-05 | |
US09/517,978 US6448473B1 (en) | 1999-03-05 | 2000-03-03 | Multigene expression vectors for the biosynthesis of products via multienzyme biological pathways |
US10/215,328 US20030182678A1 (en) | 1999-03-05 | 2002-08-08 | Multigene expression vectors for the biosynthesis of products via multienzyme biological pathways |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/517,978 Division US6448473B1 (en) | 1999-03-05 | 2000-03-03 | Multigene expression vectors for the biosynthesis of products via multienzyme biological pathways |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030182678A1 true US20030182678A1 (en) | 2003-09-25 |
Family
ID=22406237
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/517,978 Expired - Lifetime US6448473B1 (en) | 1999-03-05 | 2000-03-03 | Multigene expression vectors for the biosynthesis of products via multienzyme biological pathways |
US10/215,328 Abandoned US20030182678A1 (en) | 1999-03-05 | 2002-08-08 | Multigene expression vectors for the biosynthesis of products via multienzyme biological pathways |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/517,978 Expired - Lifetime US6448473B1 (en) | 1999-03-05 | 2000-03-03 | Multigene expression vectors for the biosynthesis of products via multienzyme biological pathways |
Country Status (4)
Country | Link |
---|---|
US (2) | US6448473B1 (en) |
EP (1) | EP1159435A1 (en) |
AU (1) | AU3516100A (en) |
WO (1) | WO2000052183A1 (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080199926A1 (en) * | 2007-01-22 | 2008-08-21 | Burgard Anthony P | Methods and Organisms for Growth-Coupled Production of 3-Hydroxypropionic Acid |
US20090155866A1 (en) * | 2007-08-10 | 2009-06-18 | Burk Mark J | Methods for the synthesis of olefins and derivatives |
US20090191593A1 (en) * | 2008-01-22 | 2009-07-30 | Genomatica, Inc. | Methods and organisms for utilizing synthesis gas or other gaseous carbon sources and methanol |
US20090275097A1 (en) * | 2008-03-05 | 2009-11-05 | Jun Sun | Primary alcohol producing organisms |
US20090275096A1 (en) * | 2008-05-01 | 2009-11-05 | Genomatica, Inc. | Microorganisms for the production of methacrylic acid |
US20090305364A1 (en) * | 2008-03-27 | 2009-12-10 | Genomatica, Inc. | Microorganisms for the production of adipic acid and other compounds |
US20100009419A1 (en) * | 2008-06-17 | 2010-01-14 | Burk Mark J | Microorganisms and methods for the biosynthesis of fumarate, malate, and acrylate |
US20100021978A1 (en) * | 2008-07-23 | 2010-01-28 | Genomatica, Inc. | Methods and organisms for production of 3-hydroxypropionic acid |
WO2010057022A1 (en) * | 2008-11-14 | 2010-05-20 | Genomatica, Inc. | Microorganisms for the production of methyl ethyl ketone and 2-butanol |
US20100304453A1 (en) * | 2008-12-16 | 2010-12-02 | Genomatica, Inc. | Microorganisms and methods for conversion of syngas and other carbon sources to useful products |
US20110014668A1 (en) * | 2009-05-15 | 2011-01-20 | Osterhout Robin E | Organisms for the production of cyclohexanone |
US20110097767A1 (en) * | 2009-10-23 | 2011-04-28 | Priti Pharkya | Microorganisms for the production of aniline |
US20110207185A1 (en) * | 2010-01-29 | 2011-08-25 | Osterhout Robin E | Microorganisms and methods for the biosynthesis of p-toluate and terephthalate |
US8048661B2 (en) | 2010-02-23 | 2011-11-01 | Genomatica, Inc. | Microbial organisms comprising exogenous nucleic acids encoding reductive TCA pathway enzymes |
US8268607B2 (en) | 2009-12-10 | 2012-09-18 | Genomatica, Inc. | Methods and organisms for converting synthesis gas or other gaseous carbon sources and methanol to 1,3-butanediol |
US8377666B2 (en) | 2009-10-13 | 2013-02-19 | Genomatica, Inc. | Microorganisms for the production of 1,4-butanediol, 4-hydroxybutanal, 4-hydroxybutyryl-coa, putrescine and related compounds, and methods related thereto |
US8377680B2 (en) | 2009-05-07 | 2013-02-19 | Genomatica, Inc. | Microorganisms and methods for the biosynthesis of adipate, hexamethylenediamine and 6-aminocaproic acid |
WO2013028915A3 (en) * | 2011-08-24 | 2013-04-11 | Novozymes, Inc. | Methods for obtaining positive transformants of a filamentous fungal host cell |
US8420375B2 (en) | 2009-06-10 | 2013-04-16 | Genomatica, Inc. | Microorganisms and methods for carbon-efficient biosynthesis of MEK and 2-butanol |
US8445244B2 (en) | 2010-02-23 | 2013-05-21 | Genomatica, Inc. | Methods for increasing product yields |
US8580543B2 (en) | 2010-05-05 | 2013-11-12 | Genomatica, Inc. | Microorganisms and methods for the biosynthesis of butadiene |
US8715957B2 (en) | 2010-07-26 | 2014-05-06 | Genomatica, Inc. | Microorganisms and methods for the biosynthesis of aromatics, 2,4-pentadienoate and 1,3-butadiene |
US8715971B2 (en) | 2009-09-09 | 2014-05-06 | Genomatica, Inc. | Microorganisms and methods for the co-production of isopropanol and 1,4-butanediol |
US8945876B2 (en) | 2011-11-23 | 2015-02-03 | University Of Hawaii | Auto-processing domains for polypeptide expression |
US8993285B2 (en) | 2009-04-30 | 2015-03-31 | Genomatica, Inc. | Organisms for the production of isopropanol, n-butanol, and isobutanol |
US9017983B2 (en) | 2009-04-30 | 2015-04-28 | Genomatica, Inc. | Organisms for the production of 1,3-butanediol |
US9023636B2 (en) | 2010-04-30 | 2015-05-05 | Genomatica, Inc. | Microorganisms and methods for the biosynthesis of propylene |
US9562241B2 (en) | 2009-08-05 | 2017-02-07 | Genomatica, Inc. | Semi-synthetic terephthalic acid via microorganisms that produce muconic acid |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7227057B2 (en) | 1997-06-03 | 2007-06-05 | Chromatin, Inc. | Plant centromere compositions |
US7235716B2 (en) | 1997-06-03 | 2007-06-26 | Chromatin, Inc. | Plant centromere compositions |
US7193128B2 (en) | 1997-06-03 | 2007-03-20 | Chromatin, Inc. | Methods for generating or increasing revenues from crops |
US7119250B2 (en) | 1997-06-03 | 2006-10-10 | The University Of Chicago | Plant centromere compositions |
WO2000052183A1 (en) * | 1999-03-05 | 2000-09-08 | Monsanto Technology Llc | Multigene expression vectors for the biosynthesis of products via multienzyme biological pathways |
CN1468313A (en) * | 2000-08-24 | 2004-01-14 | �����ɷ� | Novel constructs and their use in metabolic pathway engineering |
BR0312602A (en) * | 2002-07-11 | 2005-05-24 | Of Sugar Experiment Stations B | Method for modulating the levels of a metabolic or biosynthetic product in a plant, vector, genetically modified cell, genetically modified plant, seeds or other reproductive material, product, and bioreactor system. |
US7078234B2 (en) | 2002-12-18 | 2006-07-18 | Monsanto Technology Llc | Maize embryo-specific promoter compositions and methods for use thereof |
BRPI0408896A (en) | 2003-03-28 | 2006-04-25 | Monsanto Technology Llc | plant promoters for use in early seed development |
KR101152423B1 (en) | 2003-12-17 | 2012-06-05 | 산토리 홀딩스 가부시키가이샤 | Arachidonic acid-containing plant and utilization of the same |
US20060041961A1 (en) | 2004-03-25 | 2006-02-23 | Abad Mark S | Genes and uses for pant improvement |
EP2357243B1 (en) | 2004-04-22 | 2018-12-12 | Commonwealth Scientific and Industrial Research Organisation | Synthesis of long-chain polyunsaturated fatty acids by recombinant cells |
US7807849B2 (en) | 2004-04-22 | 2010-10-05 | Commonwealth Scientific And Industrial Research Organisation | Synthesis of long-chain polyunsaturated fatty acids by recombinant cells |
US20060075522A1 (en) | 2004-07-31 | 2006-04-06 | Jaclyn Cleveland | Genes and uses for plant improvement |
EP3059306A1 (en) | 2005-01-12 | 2016-08-24 | Monsanto Technology LLC | Genes and uses for plant improvement |
US7732680B2 (en) * | 2005-03-16 | 2010-06-08 | Metabolix, Inc. | Chemically inducible expression of biosynthetic pathways |
US8034994B2 (en) | 2005-04-19 | 2011-10-11 | Basf Plant Science Gmbh | Starchy-endosperm and/or germinating embryo-specific expression in mono-cotyledonous plants |
WO2008025068A1 (en) | 2006-08-29 | 2008-03-06 | Commonwealth Scientific And Industrial Research Organisation | Synthesis of fatty acids |
AU2008229076B2 (en) | 2007-03-16 | 2014-05-15 | Genomatica, Inc. | Compositions and methods for the biosynthesis of 1,4-butanediol and its precursors |
US7947483B2 (en) | 2007-08-10 | 2011-05-24 | Genomatica, Inc. | Methods and organisms for the growth-coupled production of 1,4-butanediol |
WO2009145840A2 (en) * | 2008-04-04 | 2009-12-03 | Massachusetts Institute Of Technology | Cellular production of hydroxyvalerates from levulinate |
US8487159B2 (en) * | 2008-04-28 | 2013-07-16 | Metabolix, Inc. | Production of polyhydroxybutyrate in switchgrass |
AU2009291825B2 (en) | 2008-09-10 | 2016-05-05 | Genomatica, Inc. | Microorganisms for the production of 1,4-butanediol |
BR122021003836B1 (en) * | 2008-11-18 | 2022-02-01 | Commonwealth Scientific And Industrial Research Organisation | Isolated and/or exogenous non-naturally occurring polynucleotide, vector and method for producing oil containing unsaturated fatty acids |
WO2010057271A1 (en) * | 2008-11-21 | 2010-05-27 | Sugar Industry Innovation Pty Ltd | Polyhydroxyalkanoate production in plant peroxisomes |
KR20120038433A (en) | 2009-06-04 | 2012-04-23 | 게노마티카 인코포레이티드 | Process of separating components of a fermentation broth |
AU2010256428B2 (en) | 2009-06-04 | 2016-02-11 | Genomatica, Inc. | Microorganisms for the production of 1,4-butanediol and related methods |
US9096909B2 (en) | 2009-07-23 | 2015-08-04 | Chromatin, Inc. | Sorghum centromere sequences and minichromosomes |
EP2477477A1 (en) | 2009-09-15 | 2012-07-25 | Metabolix, Inc. | Generation of high polyhydroxybutrate producing oilseeds |
US8937214B2 (en) * | 2009-10-23 | 2015-01-20 | Monsanto Technology Llc | Methods and compositions for expression of transgenes in plants |
WO2011066076A1 (en) | 2009-11-25 | 2011-06-03 | Genomatica, Inc. | Microorganisms and methods for the coproduction of 1,4-butanediol and gamma-butyrolactone |
WO2013184602A2 (en) | 2012-06-04 | 2013-12-12 | Genomatica, Inc. | Microorganisms and methods for production of 4-hydroxybutyrate, 1,4-butanediol and related compounds |
CA2876519C (en) | 2012-06-15 | 2020-09-15 | Commonwealth Scientific And Industrial Research Organisation | Production of long chain polyunsaturated fatty acids in plant cells |
WO2015089587A1 (en) | 2013-12-18 | 2015-06-25 | Commonwealth Scientific And Industrial Research Organisation | Lipid comprising long chain polyunsaturated fatty acids |
EP3160482A4 (en) | 2014-06-27 | 2018-02-14 | Commonwealth Scientific and Industrial Research Organisation | Lipid comprising docosapentaenoic acid |
BR112018014639A2 (en) * | 2016-01-27 | 2018-12-11 | Total Raffinage Chimie | multiple gene expression in microalgae |
US12428655B2 (en) | 2021-05-28 | 2025-09-30 | Kimberly-Clark Worldwide, Inc. | Bioreactor and process for forming polyhydroxybutyrate directly from depolymerized polyhydroxybutyrate |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5519164A (en) * | 1990-02-01 | 1996-05-21 | Hoechst Aktiengesellschaft | Expression of a multigene RNA having self-splicing activity |
US5569595A (en) * | 1991-09-27 | 1996-10-29 | Center For Innovative Technology | Production of poly-β-hydroxybutyrate in prokaryotic host cells |
US5650555A (en) * | 1991-07-19 | 1997-07-22 | Board Of Trustees Operating Michigan State University | Transgenic plants producing polyhydroxyalkanoates |
US5942660A (en) * | 1996-03-13 | 1999-08-24 | Monsanto Company | Methods of optimizing substrate pools and biosynthesis of poly-β-hydroxybutyrate-co-poly-β-hydroxyvalerate in bacteria and plants |
US5965793A (en) * | 1995-09-20 | 1999-10-12 | Monsanto Company, Inc. | Strong early seed-specific gene regulatory region |
US6117658A (en) * | 1997-02-13 | 2000-09-12 | James Madison University | Methods of making polyhydroxyalkanoates comprising 4-hydroxybutyrate monomer units |
US6448473B1 (en) * | 1999-03-05 | 2002-09-10 | Monsanto Technology Llc | Multigene expression vectors for the biosynthesis of products via multienzyme biological pathways |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5371002A (en) | 1989-06-07 | 1994-12-06 | James Madison University | Method of production of poly-beta-hydroxyalkanoate copolymers |
DK0482077T3 (en) | 1989-07-10 | 1999-06-28 | Massachusetts Inst Technology | Process for the preparation of polyester biopolymers |
GB9108756D0 (en) * | 1991-04-24 | 1991-06-12 | Ici Plc | Production of polyalkanoate in plants |
US5610041A (en) | 1991-07-19 | 1997-03-11 | Board Of Trustees Operating Michigan State University | Processes for producing polyhydroxybutyrate and related polyhydroxyalkanoates in the plastids of higher plants |
US5958745A (en) | 1996-03-13 | 1999-09-28 | Monsanto Company | Methods of optimizing substrate pools and biosynthesis of poly-β-hydroxybutyrate-co-poly-β-hydroxyvalerate in bacteria and plants |
DE19704045A1 (en) | 1997-02-04 | 1998-08-06 | Buna Sow Leuna Olefinverb Gmbh | Microbial process for the preparation of polyhydroxyalkanoates |
EP0958367B1 (en) * | 1997-03-03 | 2005-06-08 | Metabolix, Inc. | Methods for the biosynthesis of polyesters |
-
2000
- 2000-03-03 WO PCT/US2000/005931 patent/WO2000052183A1/en not_active Application Discontinuation
- 2000-03-03 EP EP00913785A patent/EP1159435A1/en not_active Withdrawn
- 2000-03-03 US US09/517,978 patent/US6448473B1/en not_active Expired - Lifetime
- 2000-03-03 AU AU35161/00A patent/AU3516100A/en not_active Abandoned
-
2002
- 2002-08-08 US US10/215,328 patent/US20030182678A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5519164A (en) * | 1990-02-01 | 1996-05-21 | Hoechst Aktiengesellschaft | Expression of a multigene RNA having self-splicing activity |
US5650555A (en) * | 1991-07-19 | 1997-07-22 | Board Of Trustees Operating Michigan State University | Transgenic plants producing polyhydroxyalkanoates |
US5569595A (en) * | 1991-09-27 | 1996-10-29 | Center For Innovative Technology | Production of poly-β-hydroxybutyrate in prokaryotic host cells |
US5891686A (en) * | 1993-03-24 | 1999-04-06 | Center For Innovative Technology | Method of production of poly-β-hydroxyalkanoate copolymers |
US5965793A (en) * | 1995-09-20 | 1999-10-12 | Monsanto Company, Inc. | Strong early seed-specific gene regulatory region |
US5942660A (en) * | 1996-03-13 | 1999-08-24 | Monsanto Company | Methods of optimizing substrate pools and biosynthesis of poly-β-hydroxybutyrate-co-poly-β-hydroxyvalerate in bacteria and plants |
US6117658A (en) * | 1997-02-13 | 2000-09-12 | James Madison University | Methods of making polyhydroxyalkanoates comprising 4-hydroxybutyrate monomer units |
US6448473B1 (en) * | 1999-03-05 | 2002-09-10 | Monsanto Technology Llc | Multigene expression vectors for the biosynthesis of products via multienzyme biological pathways |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080199926A1 (en) * | 2007-01-22 | 2008-08-21 | Burgard Anthony P | Methods and Organisms for Growth-Coupled Production of 3-Hydroxypropionic Acid |
US8673601B2 (en) | 2007-01-22 | 2014-03-18 | Genomatica, Inc. | Methods and organisms for growth-coupled production of 3-hydroxypropionic acid |
US20090155866A1 (en) * | 2007-08-10 | 2009-06-18 | Burk Mark J | Methods for the synthesis of olefins and derivatives |
US8026386B2 (en) | 2007-08-10 | 2011-09-27 | Genomatica, Inc. | Methods for the synthesis of olefins and derivatives |
US10550411B2 (en) | 2008-01-22 | 2020-02-04 | Genomatica, Inc. | Methods and organisms for utilizing synthesis gas or other gaseous carbon sources and methanol |
US9885064B2 (en) | 2008-01-22 | 2018-02-06 | Genomatica, Inc. | Methods and organisms for utilizing synthesis gas or other gaseous carbon sources and methanol |
US9051552B2 (en) | 2008-01-22 | 2015-06-09 | Genomatica, Inc. | Methods and organisms for utilizing synthesis gas or other gaseous carbon sources and methanol |
US8697421B2 (en) | 2008-01-22 | 2014-04-15 | Genomatica, Inc. | Methods and organisms for utilizing synthesis gas or other gaseous carbon sources and methanol |
US8691553B2 (en) | 2008-01-22 | 2014-04-08 | Genomatica, Inc. | Methods and organisms for utilizing synthesis gas or other gaseous carbon sources and methanol |
US20110195461A1 (en) * | 2008-01-22 | 2011-08-11 | Butk Mark J | Methods and organisms for utilizing synthesis gas or other gaseous carbon sources and methanol |
US7803589B2 (en) | 2008-01-22 | 2010-09-28 | Genomatica, Inc. | Methods and organisms for utilizing synthesis gas or other gaseous carbon sources and methanol |
US8323950B2 (en) | 2008-01-22 | 2012-12-04 | Genomatica, Inc. | Methods and organisms for utilizing synthesis gas or other gaseous carbon sources and methanol |
US20090191593A1 (en) * | 2008-01-22 | 2009-07-30 | Genomatica, Inc. | Methods and organisms for utilizing synthesis gas or other gaseous carbon sources and methanol |
US20110223637A1 (en) * | 2008-01-22 | 2011-09-15 | Genomatica, Inc. | Methods and organisms for utilizing synthesis gas or other gaseous carbon sources and methanol |
US9260729B2 (en) | 2008-03-05 | 2016-02-16 | Genomatica, Inc. | Primary alcohol producing organisms |
US10208320B2 (en) | 2008-03-05 | 2019-02-19 | Genomatica, Inc. | Primary alcohol producing organisms |
US7977084B2 (en) | 2008-03-05 | 2011-07-12 | Genomatica, Inc. | Primary alcohol producing organisms |
US11613767B2 (en) | 2008-03-05 | 2023-03-28 | Genomatica, Inc. | Primary alcohol producing organisms |
US20090275097A1 (en) * | 2008-03-05 | 2009-11-05 | Jun Sun | Primary alcohol producing organisms |
US20090305364A1 (en) * | 2008-03-27 | 2009-12-10 | Genomatica, Inc. | Microorganisms for the production of adipic acid and other compounds |
US8062871B2 (en) | 2008-03-27 | 2011-11-22 | Genomatica, Inc. | Microorganisms for the production of adipic acid and other compounds |
US8088607B2 (en) | 2008-03-27 | 2012-01-03 | Genomatica, Inc. | Microorganisms for the production of adipic acid and other compounds |
US7799545B2 (en) | 2008-03-27 | 2010-09-21 | Genomatica, Inc. | Microorganisms for the production of adipic acid and other compounds |
US20110195466A1 (en) * | 2008-03-27 | 2011-08-11 | Genomatica, Inc. | Microorganisms for the production of adipic acid and other compounds |
US20090275096A1 (en) * | 2008-05-01 | 2009-11-05 | Genomatica, Inc. | Microorganisms for the production of methacrylic acid |
US8241877B2 (en) | 2008-05-01 | 2012-08-14 | Genomatica, Inc. | Microorganisms for the production of methacrylic acid |
US8129154B2 (en) | 2008-06-17 | 2012-03-06 | Genomatica, Inc. | Microorganisms and methods for the biosynthesis of fumarate, malate, and acrylate |
US20100009419A1 (en) * | 2008-06-17 | 2010-01-14 | Burk Mark J | Microorganisms and methods for the biosynthesis of fumarate, malate, and acrylate |
US20100021978A1 (en) * | 2008-07-23 | 2010-01-28 | Genomatica, Inc. | Methods and organisms for production of 3-hydroxypropionic acid |
WO2010057022A1 (en) * | 2008-11-14 | 2010-05-20 | Genomatica, Inc. | Microorganisms for the production of methyl ethyl ketone and 2-butanol |
US20100304453A1 (en) * | 2008-12-16 | 2010-12-02 | Genomatica, Inc. | Microorganisms and methods for conversion of syngas and other carbon sources to useful products |
US8129155B2 (en) | 2008-12-16 | 2012-03-06 | Genomatica, Inc. | Microorganisms and methods for conversion of syngas and other carbon sources to useful products |
US9017983B2 (en) | 2009-04-30 | 2015-04-28 | Genomatica, Inc. | Organisms for the production of 1,3-butanediol |
US8993285B2 (en) | 2009-04-30 | 2015-03-31 | Genomatica, Inc. | Organisms for the production of isopropanol, n-butanol, and isobutanol |
US8377680B2 (en) | 2009-05-07 | 2013-02-19 | Genomatica, Inc. | Microorganisms and methods for the biosynthesis of adipate, hexamethylenediamine and 6-aminocaproic acid |
US20110014668A1 (en) * | 2009-05-15 | 2011-01-20 | Osterhout Robin E | Organisms for the production of cyclohexanone |
US8663957B2 (en) | 2009-05-15 | 2014-03-04 | Genomatica, Inc. | Organisms for the production of cyclohexanone |
US8420375B2 (en) | 2009-06-10 | 2013-04-16 | Genomatica, Inc. | Microorganisms and methods for carbon-efficient biosynthesis of MEK and 2-butanol |
US9562241B2 (en) | 2009-08-05 | 2017-02-07 | Genomatica, Inc. | Semi-synthetic terephthalic acid via microorganisms that produce muconic acid |
US10041093B2 (en) | 2009-08-05 | 2018-08-07 | Genomatica, Inc. | Semi-synthetic terephthalic acid via microorganisms that produce muconic acid |
US10415063B2 (en) | 2009-08-05 | 2019-09-17 | Genomatica, Inc. | Semi-synthetic terephthalic acid via microorganisms that produce muconic acid |
US8715971B2 (en) | 2009-09-09 | 2014-05-06 | Genomatica, Inc. | Microorganisms and methods for the co-production of isopropanol and 1,4-butanediol |
US8377666B2 (en) | 2009-10-13 | 2013-02-19 | Genomatica, Inc. | Microorganisms for the production of 1,4-butanediol, 4-hydroxybutanal, 4-hydroxybutyryl-coa, putrescine and related compounds, and methods related thereto |
US10167477B2 (en) | 2009-10-23 | 2019-01-01 | Genomatica, Inc. | Microorganisms and methods for the production of aniline |
US10612029B2 (en) | 2009-10-23 | 2020-04-07 | Genomatica, Inc. | Microorganisms and methods for the production of aniline |
US20110097767A1 (en) * | 2009-10-23 | 2011-04-28 | Priti Pharkya | Microorganisms for the production of aniline |
US8268607B2 (en) | 2009-12-10 | 2012-09-18 | Genomatica, Inc. | Methods and organisms for converting synthesis gas or other gaseous carbon sources and methanol to 1,3-butanediol |
US20110207185A1 (en) * | 2010-01-29 | 2011-08-25 | Osterhout Robin E | Microorganisms and methods for the biosynthesis of p-toluate and terephthalate |
US10385344B2 (en) | 2010-01-29 | 2019-08-20 | Genomatica, Inc. | Microorganisms and methods for the biosynthesis of (2-hydroxy-3methyl-4-oxobutoxy) phosphonate |
US8637286B2 (en) | 2010-02-23 | 2014-01-28 | Genomatica, Inc. | Methods for increasing product yields |
US8048661B2 (en) | 2010-02-23 | 2011-11-01 | Genomatica, Inc. | Microbial organisms comprising exogenous nucleic acids encoding reductive TCA pathway enzymes |
US8445244B2 (en) | 2010-02-23 | 2013-05-21 | Genomatica, Inc. | Methods for increasing product yields |
US9023636B2 (en) | 2010-04-30 | 2015-05-05 | Genomatica, Inc. | Microorganisms and methods for the biosynthesis of propylene |
US8580543B2 (en) | 2010-05-05 | 2013-11-12 | Genomatica, Inc. | Microorganisms and methods for the biosynthesis of butadiene |
US8715957B2 (en) | 2010-07-26 | 2014-05-06 | Genomatica, Inc. | Microorganisms and methods for the biosynthesis of aromatics, 2,4-pentadienoate and 1,3-butadiene |
US10793882B2 (en) | 2010-07-26 | 2020-10-06 | Genomatica, Inc. | Microorganisms and methods for the biosynthesis of aromatics, 2,4-pentadienoate and 1,3-butadiene |
US10190109B2 (en) | 2011-08-24 | 2019-01-29 | Novoyzmes, Inc. | Methods for obtaining positive transformants of a filamentous fungal host cell |
AU2012298713B2 (en) * | 2011-08-24 | 2017-11-23 | Novozymes, Inc. | Methods for obtaining positive transformants of a filamentous fungal host cell |
US9404101B2 (en) | 2011-08-24 | 2016-08-02 | Novozymes, Inc. | Methods for obtaining positive transformants of a filamentous fungal host cell |
WO2013028915A3 (en) * | 2011-08-24 | 2013-04-11 | Novozymes, Inc. | Methods for obtaining positive transformants of a filamentous fungal host cell |
US10647972B2 (en) | 2011-08-24 | 2020-05-12 | Novozymes, Inc. | Methods for obtaining positive transformants of a filamentous fungal host cell |
US8945876B2 (en) | 2011-11-23 | 2015-02-03 | University Of Hawaii | Auto-processing domains for polypeptide expression |
Also Published As
Publication number | Publication date |
---|---|
AU3516100A (en) | 2000-09-21 |
WO2000052183A1 (en) | 2000-09-08 |
US6448473B1 (en) | 2002-09-10 |
EP1159435A1 (en) | 2001-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6448473B1 (en) | Multigene expression vectors for the biosynthesis of products via multienzyme biological pathways | |
US7192753B2 (en) | Modified threonine deaminase | |
US5958745A (en) | Methods of optimizing substrate pools and biosynthesis of poly-β-hydroxybutyrate-co-poly-β-hydroxyvalerate in bacteria and plants | |
US6228623B1 (en) | Polyhydroxyalkanoates of narrow molecular weight distribution prepared in transgenic plants | |
US5942660A (en) | Methods of optimizing substrate pools and biosynthesis of poly-β-hydroxybutyrate-co-poly-β-hydroxyvalerate in bacteria and plants | |
US6117658A (en) | Methods of making polyhydroxyalkanoates comprising 4-hydroxybutyrate monomer units | |
JP2009225794A (en) | Dna sequence useful for production of polyhydroxyalkanoate | |
WO1995005472A2 (en) | Processes for producing polyhydroxybutyrate and related polyhydroxyalkanoates in the plastids of higher plants | |
US20030113884A1 (en) | Methods for the biosynthesis of polyesters | |
AU5499100A (en) | Plant multi-gene expression constructs | |
WO1999035278A1 (en) | Biosynthesis of medium chain length polyhydroxyalkanoates | |
JP2009291204A (en) | Modification of fatty acid metabolism in plant | |
US6773917B1 (en) | Use of DNA encoding plastid pyruvate dehydrogenase and branched chain oxoacid dehydrogenase components to enhance polyhydroxyalkanoate biosynthesis in plants | |
Arai et al. | Plastid targeting of polyhydroxybutyrate biosynthetic pathway in tobacco | |
AU5250299A (en) | Enzymes for biopolymer production | |
AU771433B2 (en) | Polyhydroxyalkanoate biosynthesis associated proteins and coding region in bacillus megaterium | |
WO2000040730A1 (en) | POLYHYDROXYALKANOATE BIOSYNTHESIS ASSOCIATED PROTEINS AND CODING REGION IN $i(BACILLUS MEGATERIUM) | |
Ye et al. | Construction of plant seed-specific expression vectors pSCB and pSCAB and the obtainment of transgenic Brassica napus H165 expressing poly-3-hydroxybutyrate synthetic genes | |
HK1115410A (en) | Chemically inducible expression of biosynthetic pathways |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |