US20050113565A1 - Pegylated factor VII glycoforms - Google Patents
Pegylated factor VII glycoforms Download PDFInfo
- Publication number
- US20050113565A1 US20050113565A1 US10/609,701 US60970103A US2005113565A1 US 20050113565 A1 US20050113565 A1 US 20050113565A1 US 60970103 A US60970103 A US 60970103A US 2005113565 A1 US2005113565 A1 US 2005113565A1
- Authority
- US
- United States
- Prior art keywords
- fvii
- factor vii
- preparation according
- factor
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229940012413 factor vii Drugs 0.000 title claims abstract description 208
- 108010023321 Factor VII Proteins 0.000 title claims abstract description 194
- 102100023804 Coagulation factor VII Human genes 0.000 title claims abstract description 190
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 165
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 163
- 229920001184 polypeptide Polymers 0.000 claims abstract description 162
- 238000002360 preparation method Methods 0.000 claims abstract description 140
- 150000002482 oligosaccharides Polymers 0.000 claims abstract description 108
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 claims abstract description 12
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229960001230 asparagine Drugs 0.000 claims abstract description 9
- 235000009582 asparagine Nutrition 0.000 claims abstract description 9
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229920001223 polyethylene glycol Polymers 0.000 claims description 77
- 229920000642 polymer Polymers 0.000 claims description 77
- 238000000034 method Methods 0.000 claims description 70
- 210000004027 cell Anatomy 0.000 claims description 55
- 239000002202 Polyethylene glycol Substances 0.000 claims description 45
- 108010054265 Factor VIIa Proteins 0.000 claims description 42
- 229940012414 factor viia Drugs 0.000 claims description 41
- 125000005629 sialic acid group Chemical group 0.000 claims description 30
- 238000003556 assay Methods 0.000 claims description 28
- 229920001542 oligosaccharide Polymers 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 24
- 108010000499 Thromboplastin Proteins 0.000 claims description 23
- 102000002262 Thromboplastin Human genes 0.000 claims description 23
- 238000006243 chemical reaction Methods 0.000 claims description 22
- 241000282414 Homo sapiens Species 0.000 claims description 21
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 20
- 238000011282 treatment Methods 0.000 claims description 20
- 239000008194 pharmaceutical composition Substances 0.000 claims description 19
- 125000000539 amino acid group Chemical group 0.000 claims description 15
- 238000007792 addition Methods 0.000 claims description 14
- 230000035602 clotting Effects 0.000 claims description 13
- 210000002966 serum Anatomy 0.000 claims description 13
- 230000000694 effects Effects 0.000 claims description 12
- 206010053567 Coagulopathies Diseases 0.000 claims description 11
- 238000006467 substitution reaction Methods 0.000 claims description 11
- 208000032843 Hemorrhage Diseases 0.000 claims description 10
- 230000023555 blood coagulation Effects 0.000 claims description 10
- 238000012217 deletion Methods 0.000 claims description 10
- 230000037430 deletion Effects 0.000 claims description 10
- 230000017854 proteolysis Effects 0.000 claims description 10
- 229920002307 Dextran Polymers 0.000 claims description 9
- 229920001515 polyalkylene glycol Polymers 0.000 claims description 9
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 8
- 208000034158 bleeding Diseases 0.000 claims description 8
- 231100000319 bleeding Toxicity 0.000 claims description 8
- 230000000740 bleeding effect Effects 0.000 claims description 8
- 238000009472 formulation Methods 0.000 claims description 8
- 229920000233 poly(alkylene oxides) Polymers 0.000 claims description 8
- 229920001451 polypropylene glycol Polymers 0.000 claims description 8
- 238000000159 protein binding assay Methods 0.000 claims description 7
- 239000003146 anticoagulant agent Substances 0.000 claims description 6
- 229940127219 anticoagulant drug Drugs 0.000 claims description 6
- 210000003734 kidney Anatomy 0.000 claims description 6
- 208000011580 syndromic disease Diseases 0.000 claims description 6
- 208000032759 Hemolytic-Uremic Syndrome Diseases 0.000 claims description 5
- 206010051379 Systemic Inflammatory Response Syndrome Diseases 0.000 claims description 5
- 230000015271 coagulation Effects 0.000 claims description 5
- 238000005345 coagulation Methods 0.000 claims description 5
- 230000002401 inhibitory effect Effects 0.000 claims description 5
- 208000014674 injury Diseases 0.000 claims description 5
- 230000001404 mediated effect Effects 0.000 claims description 5
- 102000009123 Fibrin Human genes 0.000 claims description 4
- 108010073385 Fibrin Proteins 0.000 claims description 4
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 claims description 4
- 229950003499 fibrin Drugs 0.000 claims description 4
- 229940099816 human factor vii Drugs 0.000 claims description 4
- 210000004072 lung Anatomy 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 208000010125 myocardial infarction Diseases 0.000 claims description 4
- 229920005646 polycarboxylate Polymers 0.000 claims description 4
- 238000001356 surgical procedure Methods 0.000 claims description 4
- 238000002560 therapeutic procedure Methods 0.000 claims description 4
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 claims description 3
- 229940122295 Clotting factor inhibitor Drugs 0.000 claims description 3
- 206010051055 Deep vein thrombosis Diseases 0.000 claims description 3
- 208000037487 Endotoxemia Diseases 0.000 claims description 3
- 201000003542 Factor VIII deficiency Diseases 0.000 claims description 3
- 208000034486 Multi-organ failure Diseases 0.000 claims description 3
- 208000010378 Pulmonary Embolism Diseases 0.000 claims description 3
- 208000006011 Stroke Diseases 0.000 claims description 3
- 201000007023 Thrombotic Thrombocytopenic Purpura Diseases 0.000 claims description 3
- 206010047249 Venous thrombosis Diseases 0.000 claims description 3
- 208000027276 Von Willebrand disease Diseases 0.000 claims description 3
- 239000002671 adjuvant Substances 0.000 claims description 3
- 238000002399 angioplasty Methods 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 3
- 208000009190 disseminated intravascular coagulation Diseases 0.000 claims description 3
- 239000003937 drug carrier Substances 0.000 claims description 3
- 208000009429 hemophilia B Diseases 0.000 claims description 3
- 206010043554 thrombocytopenia Diseases 0.000 claims description 3
- 230000008733 trauma Effects 0.000 claims description 3
- 208000012137 von Willebrand disease (hereditary or acquired) Diseases 0.000 claims description 3
- 206010060906 Dilutional coagulopathy Diseases 0.000 claims description 2
- 206010061218 Inflammation Diseases 0.000 claims description 2
- 206010027476 Metastases Diseases 0.000 claims description 2
- 206010028980 Neoplasm Diseases 0.000 claims description 2
- 206010046274 Upper gastrointestinal haemorrhage Diseases 0.000 claims description 2
- 230000033115 angiogenesis Effects 0.000 claims description 2
- 201000011510 cancer Diseases 0.000 claims description 2
- 201000007386 factor VII deficiency Diseases 0.000 claims description 2
- 201000007219 factor XI deficiency Diseases 0.000 claims description 2
- 230000004054 inflammatory process Effects 0.000 claims description 2
- 208000019423 liver disease Diseases 0.000 claims description 2
- 230000009401 metastasis Effects 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 238000011476 stem cell transplantation Methods 0.000 claims description 2
- 230000004614 tumor growth Effects 0.000 claims description 2
- 208000010718 Multiple Organ Failure Diseases 0.000 claims 2
- 206010069351 acute lung injury Diseases 0.000 claims 2
- 208000029744 multiple organ dysfunction syndrome Diseases 0.000 claims 2
- 239000004952 Polyamide Substances 0.000 claims 1
- 206010043561 Thrombocytopenic purpura Diseases 0.000 claims 1
- 229920002647 polyamide Polymers 0.000 claims 1
- 229920002635 polyurethane Polymers 0.000 claims 1
- 239000004814 polyurethane Substances 0.000 claims 1
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 40
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 30
- 108090000623 proteins and genes Proteins 0.000 description 24
- 235000018102 proteins Nutrition 0.000 description 22
- 102000004169 proteins and genes Human genes 0.000 description 22
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical group OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 21
- -1 succinimidyl Chemical group 0.000 description 20
- 230000004071 biological effect Effects 0.000 description 17
- 102000003838 Sialyltransferases Human genes 0.000 description 16
- 108090000141 Sialyltransferases Proteins 0.000 description 16
- 239000000126 substance Substances 0.000 description 16
- 238000001727 in vivo Methods 0.000 description 15
- 229930182830 galactose Natural products 0.000 description 13
- 102000003886 Glycoproteins Human genes 0.000 description 12
- 108090000288 Glycoproteins Proteins 0.000 description 12
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 11
- 230000005847 immunogenicity Effects 0.000 description 11
- 108010014173 Factor X Proteins 0.000 description 10
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical group CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 10
- 229940012426 factor x Drugs 0.000 description 10
- 230000013595 glycosylation Effects 0.000 description 10
- 238000006206 glycosylation reaction Methods 0.000 description 10
- 239000002773 nucleotide Substances 0.000 description 10
- 239000000370 acceptor Substances 0.000 description 9
- 230000002255 enzymatic effect Effects 0.000 description 9
- 125000003729 nucleotide group Chemical group 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 8
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 8
- 230000006320 pegylation Effects 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- OVRNDRQMDRJTHS-CBQIKETKSA-N N-Acetyl-D-Galactosamine Chemical group CC(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-CBQIKETKSA-N 0.000 description 7
- SQVRNKJHWKZAKO-LUWBGTNYSA-N N-acetylneuraminic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)CC(O)(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-LUWBGTNYSA-N 0.000 description 7
- 102000005348 Neuraminidase Human genes 0.000 description 7
- 108010006232 Neuraminidase Proteins 0.000 description 7
- 238000002835 absorbance Methods 0.000 description 7
- 230000021615 conjugation Effects 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 229940088598 enzyme Drugs 0.000 description 7
- 125000005647 linker group Chemical group 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 108010013773 recombinant FVIIa Proteins 0.000 description 7
- 230000009450 sialylation Effects 0.000 description 7
- 235000002639 sodium chloride Nutrition 0.000 description 7
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical group OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 6
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 6
- 108700023372 Glycosyltransferases Proteins 0.000 description 6
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 6
- IERHLVCPSMICTF-XVFCMESISA-N cytidine 5'-monophosphate Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(O)=O)O1 IERHLVCPSMICTF-XVFCMESISA-N 0.000 description 6
- IERHLVCPSMICTF-UHFFFAOYSA-N cytidine monophosphate Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(COP(O)(O)=O)O1 IERHLVCPSMICTF-UHFFFAOYSA-N 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 125000000524 functional group Chemical group 0.000 description 6
- 102000045442 glycosyltransferase activity proteins Human genes 0.000 description 6
- 108700014210 glycosyltransferase activity proteins Proteins 0.000 description 6
- 238000001155 isoelectric focusing Methods 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 5
- 108010074860 Factor Xa Proteins 0.000 description 5
- 102000002464 Galactosidases Human genes 0.000 description 5
- 108010093031 Galactosidases Proteins 0.000 description 5
- 108060003306 Galactosyltransferase Proteins 0.000 description 5
- 102000030902 Galactosyltransferase Human genes 0.000 description 5
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 5
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 5
- 230000027455 binding Effects 0.000 description 5
- 150000001720 carbohydrates Chemical class 0.000 description 5
- 235000014633 carbohydrates Nutrition 0.000 description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 5
- 230000001747 exhibiting effect Effects 0.000 description 5
- 150000002256 galaktoses Chemical class 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 5
- 238000004949 mass spectrometry Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 229950006780 n-acetylglucosamine Drugs 0.000 description 5
- 239000002777 nucleoside Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 241000282412 Homo Species 0.000 description 4
- OVRNDRQMDRJTHS-RTRLPJTCSA-N N-acetyl-D-glucosamine Chemical compound CC(=O)N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-RTRLPJTCSA-N 0.000 description 4
- 230000004989 O-glycosylation Effects 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 241001415846 Procellariidae Species 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 230000028993 immune response Effects 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- CERZMXAJYMMUDR-UHFFFAOYSA-N neuraminic acid Natural products NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO CERZMXAJYMMUDR-UHFFFAOYSA-N 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 125000006239 protecting group Chemical group 0.000 description 4
- 230000002797 proteolythic effect Effects 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 4
- 241000894007 species Species 0.000 description 4
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 3
- 102100022641 Coagulation factor IX Human genes 0.000 description 3
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 3
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical group O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 3
- 108010076282 Factor IX Proteins 0.000 description 3
- 108010048049 Factor IXa Proteins 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 3
- 102100028123 Macrophage colony-stimulating factor 1 Human genes 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- SQVRNKJHWKZAKO-PFQGKNLYSA-N N-acetyl-beta-neuraminic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-PFQGKNLYSA-N 0.000 description 3
- 108010081778 N-acylneuraminate cytidylyltransferase Proteins 0.000 description 3
- 230000004988 N-glycosylation Effects 0.000 description 3
- 108091000080 Phosphotransferase Proteins 0.000 description 3
- 206010035226 Plasma cell myeloma Diseases 0.000 description 3
- 102000013009 Pyruvate Kinase Human genes 0.000 description 3
- 108020005115 Pyruvate Kinase Proteins 0.000 description 3
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 3
- 108090000190 Thrombin Proteins 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 229930003448 Vitamin K Natural products 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 229940098773 bovine serum albumin Drugs 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 239000001110 calcium chloride Substances 0.000 description 3
- 229910001628 calcium chloride Inorganic materials 0.000 description 3
- 238000005251 capillar electrophoresis Methods 0.000 description 3
- 125000000837 carbohydrate group Chemical group 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 3
- 229960004222 factor ix Drugs 0.000 description 3
- 230000006251 gamma-carboxylation Effects 0.000 description 3
- 239000000017 hydrogel Substances 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 238000004255 ion exchange chromatography Methods 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 201000000050 myeloid neoplasm Diseases 0.000 description 3
- 229940060155 neuac Drugs 0.000 description 3
- 229940112216 novoseven Drugs 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- DTBNBXWJWCWCIK-UHFFFAOYSA-K phosphonatoenolpyruvate Chemical compound [O-]C(=O)C(=C)OP([O-])([O-])=O DTBNBXWJWCWCIK-UHFFFAOYSA-K 0.000 description 3
- 102000020233 phosphotransferase Human genes 0.000 description 3
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 description 3
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 230000006337 proteolytic cleavage Effects 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000001542 size-exclusion chromatography Methods 0.000 description 3
- 239000001632 sodium acetate Substances 0.000 description 3
- 235000017281 sodium acetate Nutrition 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 125000003396 thiol group Chemical group [H]S* 0.000 description 3
- 150000003573 thiols Chemical class 0.000 description 3
- 229960004072 thrombin Drugs 0.000 description 3
- 235000019168 vitamin K Nutrition 0.000 description 3
- 239000011712 vitamin K Substances 0.000 description 3
- 150000003721 vitamin K derivatives Chemical class 0.000 description 3
- 229940046010 vitamin k Drugs 0.000 description 3
- PVVTWNMXEHROIA-UHFFFAOYSA-N 2-(3-hydroxypropyl)-1h-quinazolin-4-one Chemical compound C1=CC=C2NC(CCCO)=NC(=O)C2=C1 PVVTWNMXEHROIA-UHFFFAOYSA-N 0.000 description 2
- BTBWSRPRAGXJJV-UHFFFAOYSA-N 2h-benzotriazole;carbonic acid Chemical compound OC(O)=O.C1=CC=C2NN=NC2=C1 BTBWSRPRAGXJJV-UHFFFAOYSA-N 0.000 description 2
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 2
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 2
- TXCIAUNLDRJGJZ-UHFFFAOYSA-N CMP-N-acetyl neuraminic acid Natural products O1C(C(O)C(O)CO)C(NC(=O)C)C(O)CC1(C(O)=O)OP(O)(=O)OCC1C(O)C(O)C(N2C(N=C(N)C=C2)=O)O1 TXCIAUNLDRJGJZ-UHFFFAOYSA-N 0.000 description 2
- TXCIAUNLDRJGJZ-BILDWYJOSA-N CMP-N-acetyl-beta-neuraminic acid Chemical compound O1[C@@H]([C@H](O)[C@H](O)CO)[C@H](NC(=O)C)[C@@H](O)C[C@]1(C(O)=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(N=C(N)C=C2)=O)O1 TXCIAUNLDRJGJZ-BILDWYJOSA-N 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 108010062466 Enzyme Precursors Proteins 0.000 description 2
- 102000010911 Enzyme Precursors Human genes 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 2
- FDJKUWYYUZCUJX-AJKRCSPLSA-N N-glycoloyl-beta-neuraminic acid Chemical group OC[C@@H](O)[C@@H](O)[C@@H]1O[C@](O)(C(O)=O)C[C@H](O)[C@H]1NC(=O)CO FDJKUWYYUZCUJX-AJKRCSPLSA-N 0.000 description 2
- FDJKUWYYUZCUJX-UHFFFAOYSA-N N-glycolyl-beta-neuraminic acid Natural products OCC(O)C(O)C1OC(O)(C(O)=O)CC(O)C1NC(=O)CO FDJKUWYYUZCUJX-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 101000882917 Penaeus paulensis Hemolymph clottable protein Proteins 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 102000004357 Transferases Human genes 0.000 description 2
- 108090000992 Transferases Proteins 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- 238000005349 anion exchange Methods 0.000 description 2
- 239000008365 aqueous carrier Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 108010057005 beta-galactoside alpha-2,3-sialyltransferase Proteins 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000003114 blood coagulation factor Substances 0.000 description 2
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000003593 chromogenic compound Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001268 conjugating effect Effects 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 239000003405 delayed action preparation Substances 0.000 description 2
- 230000002939 deleterious effect Effects 0.000 description 2
- 238000001212 derivatisation Methods 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 235000011180 diphosphates Nutrition 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 125000000654 isopropylidene group Chemical group C(C)(C)=* 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 210000000865 mononuclear phagocyte system Anatomy 0.000 description 2
- KQTSOJHOCCWAEH-UHFFFAOYSA-N n'-(2,5-dioxopyrrolidin-1-yl)butanediamide Chemical compound NC(=O)CCC(=O)NN1C(=O)CCC1=O KQTSOJHOCCWAEH-UHFFFAOYSA-N 0.000 description 2
- OKXGHXHZNCJMSV-UHFFFAOYSA-N nitro phenyl carbonate Chemical compound [O-][N+](=O)OC(=O)OC1=CC=CC=C1 OKXGHXHZNCJMSV-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229930029653 phosphoenolpyruvate Natural products 0.000 description 2
- 230000036470 plasma concentration Effects 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- BEOOHQFXGBMRKU-UHFFFAOYSA-N sodium cyanoborohydride Chemical compound [Na+].[B-]C#N BEOOHQFXGBMRKU-UHFFFAOYSA-N 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000001226 triphosphate Substances 0.000 description 2
- 235000011178 triphosphate Nutrition 0.000 description 2
- PGOHTUIFYSHAQG-LJSDBVFPSA-N (2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-1-[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]-3-sulfanylpropanoyl]amino]-4-methylsulfanylbutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxybutanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-oxopentanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-oxobutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-carboxybutanoyl]amino]-5-oxopentanoyl]amino]hexanoic acid Chemical compound CSCC[C@H](N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](Cc1cnc[nH]1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(O)=O PGOHTUIFYSHAQG-LJSDBVFPSA-N 0.000 description 1
- VQJHQYFOCBRCGA-DHVFOXMCSA-N (2r,3s,4r,5s)-6-amino-2,3,4,5,6-pentahydroxyhexanal Chemical compound NC(O)[C@@H](O)[C@H](O)[C@H](O)[C@@H](O)C=O VQJHQYFOCBRCGA-DHVFOXMCSA-N 0.000 description 1
- WKZHXNZVPCBZLY-DHVFOXMCSA-N (2r,3s,4r,5s)-6-bromo-2,3,4,5,6-pentahydroxyhexanal Chemical compound OC(Br)[C@@H](O)[C@H](O)[C@H](O)[C@@H](O)C=O WKZHXNZVPCBZLY-DHVFOXMCSA-N 0.000 description 1
- XMQUEQJCYRFIQS-YFKPBYRVSA-N (2s)-2-amino-5-ethoxy-5-oxopentanoic acid Chemical compound CCOC(=O)CC[C@H](N)C(O)=O XMQUEQJCYRFIQS-YFKPBYRVSA-N 0.000 description 1
- PSFLJKJWZHEYMD-LUWBGTNYSA-N (4S,5R,6R)-5-acetamido-6-[(1R,2R)-3-amino-1,2-dihydroxypropyl]-2,4-dihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)CC(O)(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CN PSFLJKJWZHEYMD-LUWBGTNYSA-N 0.000 description 1
- KFEUJDWYNGMDBV-UHFFFAOYSA-N (N-Acetyl)-glucosamin-4-beta-galaktosid Natural products OC1C(NC(=O)C)C(O)OC(CO)C1OC1C(O)C(O)C(O)C(CO)O1 KFEUJDWYNGMDBV-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- XBBVURRQGJPTHH-UHFFFAOYSA-N 2-hydroxyacetic acid;2-hydroxypropanoic acid Chemical compound OCC(O)=O.CC(O)C(O)=O XBBVURRQGJPTHH-UHFFFAOYSA-N 0.000 description 1
- RMDTYRSRQQAEBD-UHFFFAOYSA-N 3-hydroxy-1-[6-(3-hydroxy-2,5-dioxopyrrolidin-1-yl)hexyl]pyrrolidine-2,5-dione Chemical class O=C1C(O)CC(=O)N1CCCCCCN1C(=O)C(O)CC1=O RMDTYRSRQQAEBD-UHFFFAOYSA-N 0.000 description 1
- LZKGFGLOQNSMBS-UHFFFAOYSA-N 4,5,6-trichlorotriazine Chemical compound ClC1=NN=NC(Cl)=C1Cl LZKGFGLOQNSMBS-UHFFFAOYSA-N 0.000 description 1
- QXZGLTYKKZKGLN-UHFFFAOYSA-N 4-(2,5-dioxopyrrolidin-1-yl)oxy-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)ON1C(=O)CCC1=O QXZGLTYKKZKGLN-UHFFFAOYSA-N 0.000 description 1
- MGENHOOGNSKIMH-UHFFFAOYSA-N 4-(3-hydroxy-2,5-dioxopyrrolidin-1-yl)butanoic acid Chemical compound OC1CC(=O)N(CCCC(O)=O)C1=O MGENHOOGNSKIMH-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- 102100029945 Beta-galactoside alpha-2,6-sialyltransferase 1 Human genes 0.000 description 1
- 102100029963 Beta-galactoside alpha-2,6-sialyltransferase 2 Human genes 0.000 description 1
- 101710136188 Beta-galactoside alpha-2,6-sialyltransferase 2 Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- WUMUTJKVTJCTPA-FVDFHLASSA-N C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.CC(=O)N[C@H]1C([C@H](O)[C@H](O)CO)O[C@](O)(C(=O)O)C[C@H]1O.CCC(=O)S.CCC(=O)SC[C@@H](O)[C@@H](O)C1O[C@](C)(C(=O)O)C[C@@H](O)[C@H]1NC(C)=O.CCC(=O)SC[C@@H](O)[C@@H](O)C1O[C@](O)(C(=O)O)C[C@@H](O)[C@H]1NC(C)=O.CCOC(=O)/N=N\C(=O)OCC Chemical compound C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.CC(=O)N[C@H]1C([C@H](O)[C@H](O)CO)O[C@](O)(C(=O)O)C[C@H]1O.CCC(=O)S.CCC(=O)SC[C@@H](O)[C@@H](O)C1O[C@](C)(C(=O)O)C[C@@H](O)[C@H]1NC(C)=O.CCC(=O)SC[C@@H](O)[C@@H](O)C1O[C@](O)(C(=O)O)C[C@@H](O)[C@H]1NC(C)=O.CCOC(=O)/N=N\C(=O)OCC WUMUTJKVTJCTPA-FVDFHLASSA-N 0.000 description 1
- NPPAXOVRXNRBCQ-VYQSDDFASA-N CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC(=O)NC[C@@H](O)[C@@H](O)C1O[C@](C)(C(=O)O)C[C@@H](O)[C@H]1NC(C)=O.CCC.CCC.CCC.COCCOCCSCC1OC([O-])C(O)[C@@H](O)[C@H]1O.[2H][U]P Chemical compound CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC(=O)NC[C@@H](O)[C@@H](O)C1O[C@](C)(C(=O)O)C[C@@H](O)[C@H]1NC(C)=O.CCC.CCC.CCC.COCCOCCSCC1OC([O-])C(O)[C@@H](O)[C@H]1O.[2H][U]P NPPAXOVRXNRBCQ-VYQSDDFASA-N 0.000 description 1
- ZOVZANKENLIXJA-RUWTZWGRSA-L CC1(C)OC2[C@H]3OC(C)(C)O[C@H]3C(C(=O)O)O[C@@H]2O1.COCCOCCNC(=O)C1OC(O)C(O)[C@@H](O)[C@H]1O.COCCOCCS.[H]N1C(=O)C=CN(C2O[C@H](COP(=O)([O-])OP(=O)([O-])OC3OC(C(=O)NCCOCCOC)[C@H](O)[C@H](O)C3O)[C@H](O)[C@@H]2O)C1=O.[Na+].[Na+] Chemical compound CC1(C)OC2[C@H]3OC(C)(C)O[C@H]3C(C(=O)O)O[C@@H]2O1.COCCOCCNC(=O)C1OC(O)C(O)[C@@H](O)[C@H]1O.COCCOCCS.[H]N1C(=O)C=CN(C2O[C@H](COP(=O)([O-])OP(=O)([O-])OC3OC(C(=O)NCCOCCOC)[C@H](O)[C@H](O)C3O)[C@H](O)[C@@H]2O)C1=O.[Na+].[Na+] ZOVZANKENLIXJA-RUWTZWGRSA-L 0.000 description 1
- WXPJYVFBSCTJMV-UKFRLPPSSA-L CC1(C)OC2[C@H]3OC(C)(C)O[C@H]3C(CBr)O[C@@H]2O1.COCCOCCS.COCCOCCSCC1OC(O)C(O)[C@@H](O)[C@H]1O.[H]N1C(=O)C=CN(C2O[C@H](COP(=O)([O-])OP(=O)([O-])OC3OC(CSCCOCCOC)[C@H](O)[C@H](O)C3O)[C@H](O)[C@@H]2O)C1=O.[Na+].[Na+] Chemical compound CC1(C)OC2[C@H]3OC(C)(C)O[C@H]3C(CBr)O[C@@H]2O1.COCCOCCS.COCCOCCSCC1OC(O)C(O)[C@@H](O)[C@H]1O.[H]N1C(=O)C=CN(C2O[C@H](COP(=O)([O-])OP(=O)([O-])OC3OC(CSCCOCCOC)[C@H](O)[C@H](O)C3O)[C@H](O)[C@@H]2O)C1=O.[Na+].[Na+] WXPJYVFBSCTJMV-UKFRLPPSSA-L 0.000 description 1
- GZPHAOQRWDWYLU-GANDARHQSA-N CCCCC(=O)N1C(=O)CCC1=O.CCCCC(=O)NC[C@@H](O)[C@@H](O)C1O[C@](C)(C(=O)O)C[C@@H](O)[C@H]1NC(C)=O.CCCCC(=O)NC[C@@H](O)[C@@H](O)C1O[C@](O)(C(=O)O)C[C@@H](O)[C@H]1NC(C)=O.CCCCC(=O)NC[C@@H](O)[C@@H](O)C1O[C@](OC)(C(=O)OC)C[C@@H](O)[C@H]1NC(C)=O.COC(=O)[C@]1(OC)C[C@@H](O)[C@@H](NC(C)=O)C([C@H](O)[C@H](O)CN)O1.COC(=O)[C@]1(OC)C[C@@H](O)[C@@H](NC(C)=O)C([C@H](O)[C@H](O)CO)O1 Chemical compound CCCCC(=O)N1C(=O)CCC1=O.CCCCC(=O)NC[C@@H](O)[C@@H](O)C1O[C@](C)(C(=O)O)C[C@@H](O)[C@H]1NC(C)=O.CCCCC(=O)NC[C@@H](O)[C@@H](O)C1O[C@](O)(C(=O)O)C[C@@H](O)[C@H]1NC(C)=O.CCCCC(=O)NC[C@@H](O)[C@@H](O)C1O[C@](OC)(C(=O)OC)C[C@@H](O)[C@H]1NC(C)=O.COC(=O)[C@]1(OC)C[C@@H](O)[C@@H](NC(C)=O)C([C@H](O)[C@H](O)CN)O1.COC(=O)[C@]1(OC)C[C@@H](O)[C@@H](NC(C)=O)C([C@H](O)[C@H](O)CO)O1 GZPHAOQRWDWYLU-GANDARHQSA-N 0.000 description 1
- 102100029962 CMP-N-acetylneuraminate-beta-1,4-galactoside alpha-2,3-sialyltransferase Human genes 0.000 description 1
- 102100031974 CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 4 Human genes 0.000 description 1
- VOJBIASMUQTKIN-CHNADMEASA-N COC(=O)C1(OC)C[C@H](O)[C@@H](NC(C)=O)[C@H]([C@H](O)[C@H](O)CN)O1 Chemical compound COC(=O)C1(OC)C[C@H](O)[C@@H](NC(C)=O)[C@H]([C@H](O)[C@H](O)CN)O1 VOJBIASMUQTKIN-CHNADMEASA-N 0.000 description 1
- OHDJCCWKSXXPQQ-SRYFOFJJSA-K COCCOCCC(=O)NC(CCC(=O)NCC1OC(O)C(O)[C@@H](O)[C@H]1O)C(=O)O.COCCOCCC(=O)NC(CCC(=O)O)C(=O)OC.NCC1OC(O)C(O)[C@@H](O)[C@H]1O.O[Na].[H]N1C(=O)C=CN(C2O[C@H](COP(=O)([O-])OP(=O)([O-])OC3OC(CNC(=O)CCC(NC(=O)CCOCCOC)C(=O)O)[C@H](O)[C@H](O)C3O)[C@H](O)[C@@H]2O)C1=O.[Na+].[Na+] Chemical compound COCCOCCC(=O)NC(CCC(=O)NCC1OC(O)C(O)[C@@H](O)[C@H]1O)C(=O)O.COCCOCCC(=O)NC(CCC(=O)O)C(=O)OC.NCC1OC(O)C(O)[C@@H](O)[C@H]1O.O[Na].[H]N1C(=O)C=CN(C2O[C@H](COP(=O)([O-])OP(=O)([O-])OC3OC(CNC(=O)CCC(NC(=O)CCOCCOC)C(=O)O)[C@H](O)[C@H](O)C3O)[C@H](O)[C@@H]2O)C1=O.[Na+].[Na+] OHDJCCWKSXXPQQ-SRYFOFJJSA-K 0.000 description 1
- MWEDFXFSLIYBDL-PMEVEHDVSA-L COCCOCCN1C(=O)C=CC1=O.COCCOCCN1C(=O)CC(SCC2OC(O)C(O)[C@@H](O)[C@H]2O)C1=O.OC1OC(CS)[C@H](O)[C@H](O)C1O.[H]N1C(=O)C=CN([C@@H]2O[C@H](COP(=O)([O-])OP(=O)([O-])OC3OC(CSC4CC(=O)N(CCOCCOC)C4=O)[C@H](O)[C@H](O)C3O)[C@H](O)C2O)C1=O.[Na+].[Na+] Chemical compound COCCOCCN1C(=O)C=CC1=O.COCCOCCN1C(=O)CC(SCC2OC(O)C(O)[C@@H](O)[C@H]2O)C1=O.OC1OC(CS)[C@H](O)[C@H](O)C1O.[H]N1C(=O)C=CN([C@@H]2O[C@H](COP(=O)([O-])OP(=O)([O-])OC3OC(CSC4CC(=O)N(CCOCCOC)C4=O)[C@H](O)[C@H](O)C3O)[C@H](O)C2O)C1=O.[Na+].[Na+] MWEDFXFSLIYBDL-PMEVEHDVSA-L 0.000 description 1
- 101100007328 Cocos nucifera COS-1 gene Proteins 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 238000005698 Diels-Alder reaction Methods 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- 108010071241 Factor XIIa Proteins 0.000 description 1
- 102000006471 Fucosyltransferases Human genes 0.000 description 1
- 108010019236 Fucosyltransferases Proteins 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108060005987 Kallikrein Proteins 0.000 description 1
- 102000001399 Kallikrein Human genes 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 102100030928 Lactosylceramide alpha-2,3-sialyltransferase Human genes 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 238000006957 Michael reaction Methods 0.000 description 1
- 101100300839 Mus musculus Rai14 gene Proteins 0.000 description 1
- YTTRPBWEMMPYSW-HRRFRDKFSA-N N(4)-(beta-N-acetyl-D-glucosaminyl)-L-asparagine Chemical compound CC(=O)N[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1NC(=O)C[C@H]([NH3+])C([O-])=O YTTRPBWEMMPYSW-HRRFRDKFSA-N 0.000 description 1
- 108010046068 N-Acetyllactosamine Synthase Proteins 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- SUHQNCLNRUAGOO-UHFFFAOYSA-N N-glycoloyl-neuraminic acid Natural products OCC(O)C(O)C(O)C(NC(=O)CO)C(O)CC(=O)C(O)=O SUHQNCLNRUAGOO-UHFFFAOYSA-N 0.000 description 1
- FDJKUWYYUZCUJX-KVNVFURPSA-N N-glycolylneuraminic acid Chemical compound OC[C@H](O)[C@H](O)[C@@H]1O[C@](O)(C(O)=O)C[C@H](O)[C@H]1NC(=O)CO FDJKUWYYUZCUJX-KVNVFURPSA-N 0.000 description 1
- 102000016979 Other receptors Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 101800004937 Protein C Proteins 0.000 description 1
- 102000017975 Protein C Human genes 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 1
- 101800001700 Saposin-D Proteins 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 206010043647 Thrombotic Stroke Diseases 0.000 description 1
- HSCJRCZFDFQWRP-ABVWGUQPSA-N UDP-alpha-D-galactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-ABVWGUQPSA-N 0.000 description 1
- HSCJRCZFDFQWRP-UHFFFAOYSA-N Uridindiphosphoglukose Natural products OC1C(O)C(O)C(CO)OC1OP(O)(=O)OP(O)(=O)OCC1C(O)C(O)C(N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-UHFFFAOYSA-N 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 0 [1*]CCC1O[C@@H](OP(C)(=O)OP(C)(=O)OC[C@H]2O[C@@H](N3C=CC(=O)NC3=O)C(O)[C@H]2O)C(C[4*])[C@@H](C[3*])[C@H]1C[2*].[1*]CC[C@@H](C[2*])[C@@H](C[3*])C1O[C@@](C)(OP(C)(=O)OC[C@H]2O[C@@H](N3C=CC(N)=NC3=O)C(O)[C@H]2O)C[C@@H](C[5*])[C@H]1C[4*] Chemical compound [1*]CCC1O[C@@H](OP(C)(=O)OP(C)(=O)OC[C@H]2O[C@@H](N3C=CC(=O)NC3=O)C(O)[C@H]2O)C(C[4*])[C@@H](C[3*])[C@H]1C[2*].[1*]CC[C@@H](C[2*])[C@@H](C[3*])C1O[C@@](C)(OP(C)(=O)OC[C@H]2O[C@@H](N3C=CC(N)=NC3=O)C(O)[C@H]2O)C[C@@H](C[5*])[C@H]1C[4*] 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 150000001266 acyl halides Chemical class 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004115 adherent culture Methods 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- IAJILQKETJEXLJ-RSJOWCBRSA-N aldehydo-D-galacturonic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-RSJOWCBRSA-N 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 102000012086 alpha-L-Fucosidase Human genes 0.000 description 1
- 108010061314 alpha-L-Fucosidase Proteins 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 108010064886 beta-D-galactoside alpha 2-6-sialyltransferase Proteins 0.000 description 1
- 239000012867 bioactive agent Substances 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 229960002713 calcium chloride Drugs 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- LLSDKQJKOVVTOJ-UHFFFAOYSA-L calcium chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Ca+2] LLSDKQJKOVVTOJ-UHFFFAOYSA-L 0.000 description 1
- 229940052299 calcium chloride dihydrate Drugs 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000035071 co-translational protein modification Effects 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical group ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 238000011833 dog model Methods 0.000 description 1
- 238000007336 electrophilic substitution reaction Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 150000002081 enamines Chemical class 0.000 description 1
- 230000009144 enzymatic modification Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010265 fast atom bombardment Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000024924 glomerular filtration Effects 0.000 description 1
- 229930182478 glucoside Natural products 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 125000000404 glutamine group Chemical group N[C@@H](CCC(N)=O)C(=O)* 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 125000000350 glycoloyl group Chemical group O=C([*])C([H])([H])O[H] 0.000 description 1
- 239000007999 glycylglycine buffer Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 108010076477 haematoside synthetase Proteins 0.000 description 1
- 208000031169 hemorrhagic disease Diseases 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 238000006698 hydrazinolysis reaction Methods 0.000 description 1
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- BQINXKOTJQCISL-GRCPKETISA-N keto-neuraminic acid Chemical compound OC(=O)C(=O)C[C@H](O)[C@@H](N)[C@@H](O)[C@H](O)[C@H](O)CO BQINXKOTJQCISL-GRCPKETISA-N 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- RGLRXNKKBLIBQS-XNHQSDQCSA-N leuprolide acetate Chemical compound CC(O)=O.CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 RGLRXNKKBLIBQS-XNHQSDQCSA-N 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- DHRRIBDTHFBPNG-UHFFFAOYSA-L magnesium dichloride hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Cl-].[Cl-] DHRRIBDTHFBPNG-UHFFFAOYSA-L 0.000 description 1
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- TWXDDNPPQUTEOV-FVGYRXGTSA-N methamphetamine hydrochloride Chemical compound Cl.CN[C@@H](C)CC1=CC=CC=C1 TWXDDNPPQUTEOV-FVGYRXGTSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 229960002816 potassium chloride Drugs 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000003805 procoagulant Substances 0.000 description 1
- 229960000856 protein c Drugs 0.000 description 1
- 239000003531 protein hydrolysate Substances 0.000 description 1
- 230000000541 pulsatile effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 229940068953 recombinant fviia Drugs 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 108010005584 serpin-enzyme complex receptor Proteins 0.000 description 1
- 229960004249 sodium acetate Drugs 0.000 description 1
- 229960002668 sodium chloride Drugs 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000003461 sulfonyl halides Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical compound CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 238000012032 thrombin generation assay Methods 0.000 description 1
- 201000005665 thrombophilia Diseases 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 230000001810 trypsinlike Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/48—Hydrolases (3) acting on peptide bonds (3.4)
- A61K38/482—Serine endopeptidases (3.4.21)
- A61K38/4846—Factor VII (3.4.21.21); Factor IX (3.4.21.22); Factor Xa (3.4.21.6); Factor XI (3.4.21.27); Factor XII (3.4.21.38)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/60—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/04—Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/745—Blood coagulation or fibrinolysis factors
- C07K14/755—Factors VIII, e.g. factor VIII C (AHF), factor VIII Ag (VWF)
Definitions
- the present invention relates to compositions comprising Factor VII conjugates having predetermined patterns of glycosylation.
- the proteins involved in the clotting cascade including, e.g., Factor VII, Factor VII, Factor IX, Factor X, and Protein C, are proving to be useful therapeutic agents to treat a variety of pathological conditions. Accordingly, there is an increasing need for formulations comprising these proteins that are pharmaceutically acceptable and exhibit a uniform and predetermined clinical efficacy.
- the clotting proteins are subject to a variety of co- and post-translational modifications, including, e.g., asparagine-linked (N-linked) glycosylation; O-linked glycosylation; and ⁇ -carboxylation of glu residues. These modifications may be qualitatively or quantitatively different when heterologous cells are used as hosts for large-scale production of the proteins. In particular, production in heterologous cells often results in a different array of glycoforms, which are identical polypeptides having different covalently linked oligosaccharide structures.
- NovoSeven® Commercial preparations of human recombinant FVIIa are sold as NovoSeven®.
- NovoSeven® is the only rFVIIa for effective and reliable treatment of bleeding episodes available on the market. Relatively high doses and frequent administration are necessary to reach and sustain the desired therapeutic or prophylactic effect. As a consequence adequate dose regulation is difficult to obtain and the need of frequent intravenous administrations imposes restrictions on the patient's way of living.
- One way of improving the circulation is to ensure that the rate of clearance from the body is reduced.
- variations in the oligosaccharide structure of therapeutic proteins have been linked to, inter alia, in vivo clearance.
- attachment of a chemical moiety to the polypeptide may confer reduced renal clearance to the polypeptide.
- FVII Inactive forms of FVII have been reported.
- the inactivated form is capable of competing with wild type FVII or FVIIa for binding to tissue factor and inhibiting clotting activity.
- the inactivated form of FVIIa is suggested to be used for treatment of patients being in hypercoagulable states, such as patients with sepsis, in risk of myocardial infarction or of thrombotic stroke.
- WO 98/32466 suggests that FVII, among many other proteins, may be PEGylated but does not contain any further information in this respect.
- WO 01/58935 claims conjugates of non-polypeptide moieties (e.g., PEG) with a polypeptide wherein the amino acid sequence differs from that of wild-type FVII in that at least one amino acid residue comprising an attachment group for a non-peptidic moiety has been introduced or removed.
- non-polypeptide moieties e.g., PEG
- the amino acid sequence differs from that of wild-type FVII in that at least one amino acid residue comprising an attachment group for a non-peptidic moiety has been introduced or removed.
- CSF-1 colony stimulating factor-1
- compositions and methods that provide clotting protein preparations, particularly preparations comprising improved recombinant human Factor VII, modified Factor VII, or Factor VII-related polypeptide.
- the present invention relates to methods and compositions that provide these conjugate protein preparations.
- the present invention relates in a first aspect to a preparation comprising a plurality of Factor VII polypeptides or Factor VII-related polypeptides, wherein the polypeptides comprise asparagine-linked and/or serine-linked oligosaccharide chains, and wherein at least one oligosaccharide group is covalently attached to at least one polymeric group.
- the polymeric group is covalently attached to a sialic acid moiety. In another embodiment thereof, the polymeric group is covalently attached to a galactose moiety.
- oligosaccharide chains comprise at least one sialic acid moiety.
- oligosaccharide chains comprise at least one sialic acid moiety, and wherein less than about 25% of the oligosaccharide chains contains at least one uncapped antenna.
- less than about 10% of the oligosaccharide chains contains at least one uncapped antenna.
- less than about 5, preferably less than about 2% of the oligosaccharide chains contain at least one uncapped antenna.
- oligosaccharide chains comprise at least one sialic acid moiety.
- oligosaccharide chains comprise at least one sialic acid moiety.
- the asparagine-linked oligosaccharide chains are located in positions corresponding to amino acid residues Asn-145 and Asn-322 of wild-type human FVIIa ( FIG. 1 ).
- the serine-linked oligosaccharide chains are located in positions corresponding to amino acid residues Ser-52 and Ser-60 of wild-type human FVIIa ( FIG. 1 ).
- the polymers are selected from the group of: polyalkylene oxide (PAO), including polyalkylene glycol (PAG), such as polyethylene glycol (PEG) and polypropylene glycol (PPG), branched PEGs, polyvinyl alcohol (PVA), polycarboxylate, poly-vinylpyrolidone, polyethylene-co-maleic acid anhydride, polystyrene-co-maleic acid anhydride, and dextran, including carboxymethyl-dextran, polyurethaner, polyestre and polyamider.
- PAO polyalkylene oxide
- PAG polyalkylene glycol
- PEG polyethylene glycol
- PPG polypropylene glycol
- PVA polyvinyl alcohol
- PVPVC polycarboxylate
- poly-vinylpyrolidone polyethylene-co-maleic acid anhydride
- polystyrene-co-maleic acid anhydride polystyrene-co-maleic acid anhydride
- dextran including
- the polymer is a polyethylene glycol (PEG);
- the polyethylene glycol is PEG with a molecular weight of 300-100,000 Da, such as about 500-20,000 Da., or about 500-15,000 Da, or 2-15 kDa, or 3-15 kDa, or 3-12 kDa, or about 10 kDa.
- the polypeptide has the amino acid sequence of wild-type Factor VII ( FIG. 1 ). In one embodiment, the polypeptides are wild-type Factor VIIa.
- the Factor VII polypeptides are selected from the group consisting of: S52A-Factor VII, S60A-Factor VII, Factor VII that has been proteolytically cleaved between residues 290 and 291; Factor VII that has been proteolytically cleaved between residues 315 and 316; Factor VII that has been oxidized, L305V-FVII, L305V/M306D/D309S-FVII, L3051-FVII, L305T-FVII, F374P-FVII, V158T/M298Q-FVII, V158D/E296V/M298Q-FVII, K337A-FVII, M298Q-FVII, V158D/M298Q-FVII, L305V/K337A-FVII, V158D/E296V/M298Q/L305V-FVII, V158D/E296V/M/M2
- the Factor VII polypeptides are selected from the list consisting of: Factor VII variants having increased biological activity compared to wild-type FVIIa as disclosed in WO 01/83725, WO 02/22776, WO 02/77218, WO 03/27147, and WO 03/37932; L305V/K337A-FVII, L305V/V158D-FVII, L305V/E296V-FVII, L305V/M298Q-FVII, L305V/V158T-FVII, L305V/K337A/V158T-FVII, L305V/K337A/M298Q-FVII, L305V/K337A/E296V-FVII, L305V/K337A/V158D-FVII, L305V/V158D/M298Q-FVII, L305V/V158D/E296V-FVII, L305V/V158T/M298Q
- the Factor VII-related polypeptides are selected from the group consisting of: R152E-Factor VII, S344A-Factor VII, FFR-Factor VII, and Factor VIIa lacking the Gla domain.
- the Factor VII-related polypeptide exhibit at least about 25%, preferably at least about 50%, more preferably at least about 75% and most preferably at least about 90% of the specific activity of wild-type Factor VIIa that has been produced in the same cell type, when tested in one or more of a clotting assay, proteolysis assay, or TF binding assay as described in the present specification.
- the Factor VII-related polypeptide exhibit less than about 25%, preferably less than about 10%, more preferably less than about 5% and most preferably less than about 1% of the specific activity of wild-type Factor VIIa that has been produced in the same cell type when tested in one or more of a clotting assay, proteolysis assay, or TF binding assay as described in the present specification.
- the conjugated polypeptide exhibits a bioavailability that is at least about 110% of the bioavailability of a reference preparation, such as at least about 120%, or at least about 130%, or at least about 140% of the bioavailability of the reference preparation.
- the conjugated polypeptide is made by enzymatic modification of sialic or galactose moieties in the polypeptide.
- the invention relates to a method of preparing the preparation of claim 1 , the method comprising the step of contacting the oligosaccharide-containing polypeptide with a polymer molecule under conditions in which the at least one polymer molecule is covalently attached to at least one of the oligosaccharide chains of the polypeptides.
- the invention relates to the use of a preparation comprising a plurality of Factor VII polypeptides or Factor VII-related polypeptides, wherein the polypeptides comprise asparagine-linked and/or serine-linked oligosaccharide chains, and wherein at least one oligosaccharide group is covalently attached to at least one polymeric group, for the manufacture of a medicament for treating a Factor VII-responsive syndrome.
- the invention relates to a method for treating a Factor VII-responsive syndrome, the method comprising administering a pharmaceutical formulation comprising the preparation as described in claims 1 - 22 to a patient in need of such treatment, under conditions that result in a decrease in bleeding and/or an increase in blood clotting.
- the syndrome is selected from the group consisting of haemophilia A, haemophilia B, Factor XI deficiency, Factor VII deficiency, thrombocytopenia, von Willebrand's disease, presence of a clotting factor inhibitor, surgery, trauma, anticoagulant therapy, including dilutional coagulopathy, intercranial haemorrhage, stem cell transplantation, upper gastrointestinal bleedings, and liver disease.
- the unwanted blood clotting is associated with a condition selected from the group consisting of: angioplasty, deep vein thrombosis, pulmonary embolism, stroke, disseminated intravascular coagulation (DIC), fibrin deposition in lungs and kidneys associated with gram-negative endotoxemia, and myocardial infarction.
- a condition selected from the group consisting of: angioplasty, deep vein thrombosis, pulmonary embolism, stroke, disseminated intravascular coagulation (DIC), fibrin deposition in lungs and kidneys associated with gram-negative endotoxemia, and myocardial infarction.
- the invention relates to a method for preventing tissue factor mediated reactions, the method comprising administering a pharmaceutical formulation comprising the preparation as described in claims 1 - 22 to a patient in need of such treatment, under conditions effective for inhibiting coagulation.
- the tissue factor mediated reactions are associated with a condition selected from the group consisting of inflammation, cancer, tumour growth, metastasis, angiogenesis, SIRS, ALI, ARDS, MOF, HUS, and TTP
- the present inventors have discovered that preparations of coagulation proteins having glycoform patterns wherein at least one oligosaccharide group is covalently linked to at least one polymeric group, such as, e.g., PEG, exhibit improved functional properties. Accordingly, the present invention relates to methods and compositions that provide these conjugate protein preparations.
- the invention relates to preparations comprising Factor VII polypeptides and Factor VII-related polypeptides having patterns of asparagine-linked (N-linked) and serine-linked (O-linked) oligosaccharides covalently attached to at least one polymeric group.
- the preparations of the invention exhibit altered properties, including, without limitation, improved pharmacokinetic properties, and improved clinical efficacy.
- the invention also encompasses pharmaceutical formulations that comprise these preparations, as well as therapeutic methods that utilize the formulations.
- covalent attachment is meant to encompass that the oligosaccharide moiety and the polymeric molecule is either directly covalently joined to one another, or else is indirectly covalently joined to one another through an intervening moiety or moieties, such as a bridge, spacer, or linkage moiety or moieties.
- conjugate or interchangeably “conjugate polypeptide”, is intended to indicate a heterogeneous (in the sense of composite or chimeric) molecule formed by the covalent attachment of one or more polypeptides to one or more polymer molecules
- polymeric molecule encompasses a molecule that is capable of conjugating to an attachment group of the polypeptide.
- polymer molecule or moiety
- the polymer molecule is linked to the polypeptide part of the conjugate through an attachment group of a oligosaccharide chain of the glycoprotein; preferably, the polymer molecule is attached to a sialic acid moiety capping the oligosaccharide (“sialic acid capping group”) or to a galactose moiety.
- the polymer molecule is a molecule formed by covalent linkage of two or more monomers wherein none of the monomers is an amino acid residue.
- Preferred polymers are polymer molecules selected from the group consisting of polyalkylene oxide (PAO), including polyalkylene glycol (PAG), such as polyethylene glycol (PEG) and polypropylene glycol (PPG), branched PEGs, polyvinyl alcohol (PVA), polycarboxylate, poly-vinylpyrolidone, polyethylene-co-maleic acid anhydride, polystyrene-co-maleic acid anhydride, and dextran, including carboxymethyl-dextran, PEG being particularly preferred.
- PAO polyalkylene oxide
- PAG polyalkylene glycol
- PEG polyethylene glycol
- PPG polypropylene glycol
- PVA polyvinyl alcohol
- PVA polycarboxylate
- poly-vinylpyrolidone polyethylene-co-maleic acid anhydride
- attachment group is intended to indicate a functional group of the oligosaccharide moiety capable of attaching a polymer molecule.
- Useful attachment groups are, for example, amine, hydroxyl, carboxyl, aldehyde, ketone, sulfhydryl, succinimidyl, maleimide, vinylsulfone or haloacetate.
- the attachment group on the oligosaccharide moiety may be activated before reaction with the polymer.
- a group present on the polymer may be activated before reaction with the oligosaccharide moiety.
- the activated group, whether present on the oligosaccharide- or polymer moiety may be in the form of an activated leaving group.
- activated leaving group includes those moieties which are easily displaced in organic- or enzyme-regulated substitution reactions. Activated leaving groups are known in the art, see, for example, Vocadlo et al., In Carbohydrate Chemistry and Biology , Vol 2, Wiley-VCH Verlag, Germany (2000); Kodama et al., Tetrahedron Letters 34:6419 (1993); Lougheed et al., J.Biol. Chem. 274:37717 (1999).
- Reactive groups and classes of reactions useful in practising the present invention are generally those which proceed under relatively mild conditions. These include, but are not limited to nucleophilic substitutions (e.g., reaction of amines and alcohols with acyl halides, active esters), electrophilic substitutions (e.g., enamine reactions) and additions to carbon-carbon and carbon-heteroatom bonds (e.g., Michael reaction, Diels-Alder addition). These and other useful reactions are described in, for example, March, Advanced Organic Chemistry, 3 rd edition, John Wiley & Sons, N.Y. 1985; Hermanson, Bioconjugate Techniques , Academic Press, San Diego, 1996; Feeney et al, Modifications of Proteins , Advances in Chemistry Series, Vol. 198, American Chemical Society, 1982.
- nucleophilic substitutions e.g., reaction of amines and alcohols with acyl halides, active esters
- electrophilic substitutions e.g., enamine reactions
- the reactive functional groups can be chose such that they do not participate in, or interfere with, the reactions necessary to assemble the oligosaccharide and the polymer moiety.
- a reactive functional group can be protected from participating in the reaction by the presence of a protective group.
- useful protecting groups see, for example, Greene et al., Protective groups in Organic Synthesis , John Wiley & Sons, N.Y., 1991.
- naturally occurring glycosylation site is intended to indicate the glycosylation sites at positions Asn-145 (N145), Asn-322 (N322), Ser-52 (S52), and Ser-60 (S60).
- naturally occurring in vivo O-glycosylation site includes the positions S52 and S60
- naturally occurring in vivo N-glycosylation site includes the positions N145 and N322.
- the term “functional in vivo half-life” is used in its normal meaning, i.e., the time at which 50% of the biological activity of the polypeptide or conjugate is still present in the body/target organ, or the time at which the activity of the polypeptide or conjugate is 50% of its initial value.
- “serum half-life” may be determined, i.e., the time at which 50% of the polypeptide or conjugate molecules circulate in the plasma or bloodstream prior to being cleared. Determination of serum-half-life is often more simple than determining functional half-life and the magnitude of serum-half-life is usually a good indication of the magnitude of functional in vivo half-life.
- serum half-life alternatives include plasma half-life, circulating half-life, circulatory half-life, serum clearance, plasma clearance, and clearance half-life.
- the polypeptide or conjugate is cleared by the action of one or more of the reticulo-endothelial system (RES), kidney, spleen, or liver, by tissue factor, SEC receptor, or other receptor-mediated elimination, or by specific or unspecific proteolysis.
- RES reticulo-endothelial system
- tissue factor tissue factor
- SEC receptor or other receptor-mediated elimination
- specific or unspecific proteolysis Normally, clearance depends on size (relative to the cut-off for glomerular filtration), charge, attached carbohydrate chains, and the presence of cellular receptors for the protein.
- the functionality to be retained is normally selected from procoagulant, proteolytic, co-factor binding or receptor binding activity.
- the functional in vivo half-life and the serum half-life may be determined by any suitable method known in the art as further discussed below (see Functional Properties of Fact
- the term “increased” as used about the functional in vivo half-life or plasma half-life is used to indicate that the relevant half-life of the polypeptide or conjugate is statistically significantly increased relative to that of a reference molecule, such as non-conjugated Factor VIIa (e.g., wild-type FVIIa) as determined under comparable conditions.
- a reference molecule such as non-conjugated Factor VIIa (e.g., wild-type FVIIa) as determined under comparable conditions.
- the relevant half-life may be increased by at least about 25%, such as by at lest about 50%, e.g., by at least about 100%, 150%, 200%, 250%, or 500%.
- the preparations of the present invention exhibit a decrease in immunogenicity in a sensitive individual of at least about 10%, preferably at least about 25%, more preferably at least about 40% and most preferably at least about 50%, relative to the immunogenicity for that individual of a reference preparation.
- Factor VIIa The biological activity of Factor VIIa in blood clotting derives from its ability to (i) bind to tissue factor (TF) and (ii) catalyze the proteolytic cleavage of Factor IX or Factor X to produce activated Factor IX or X (Factor IXa or Xa, respectively).
- Factor VIIa biological activity may be quantified by measuring the ability of a preparation to promote blood clotting using Factor VII-deficient plasma and thromboplastin, as described, e.g., in U.S. Pat. No. 5,997,864.
- Factor VIIa biological activity is expressed as the reduction in clotting time relative to a control sample and is converted to “Factor VII units” by comparison with a pooled human serum standard containing 1 unit/ml Factor VII activity.
- Factor VIIa biological activity may be quantified by (i) measuring the ability of Factor VIIa to produce of Factor Xa in a system comprising TF embedded in a lipid membrane and Factor X. (Persson et al., J. Biol. Chem.
- Non-limiting examples of Factor VII-related polypeptides having substantially the same or improved biological activity as wild-type Factor VII include S52A-FVII, S60A-FVII (Iino et al., Arch. Biochem. Biophys.
- Non-limiting examples of Factor VII-related polypeptides having substantially the same or improved biological activity as wild-type Factor VII further include: FVII variants having increased biological activity compared to wild-type FVIIa as disclosed in WO 01/83725, WO 02/22776, WO 02/77218, WO 03/27147, and WO 03/37932, including, without limitation, L305V-FVII, L305V/M306D/D309S-FVII, L3051-FVII, L305T-FVII, F374P-FVII, V158T/M298Q-FVII, V158D/E296V/M298Q-FVII, K337A-FVII, M298Q-FVII, V158D/M298Q-FVII, L305V/K337A-FVII, V158D/E296V/M298Q/L305V-FVII, V158D/E296V/M2
- Non-limiting examples of Factor VII-related polypeptides having substantially reduced or modified biological activity relative to wild-type Factor VII include R152E-FVIIa (Wildgoose et al., Biochem 29:3413-3420, 1990), S344A-FVIIa (Kazama et al., J. Biol. Chem. 270:66-72, 1995), FFR-FVIIa (Hoist et al., Eur. J. Vasc. Endovasc. Surg. 15:515-520, 1998), Factor VIIa lacking the Gla domain, (Nicolaisen et al., FEBS Letts.
- a “pattern” of glycosylation or a glycoform “pattern”, “distribution”, or “spectrum” refers to the representation of particular oligosaccharide structures within a given population of Factor VII polypeptides or Factor VII-related polypeptides.
- Non-limiting examples of such patterns include the relative proportion of oligosaccharide chains that (i) have at least one sialic acid residue; (ii) lack any sialic acid residues (i.e., are neutral in charge); (iii) have at least one terminal galactose residue; (iv) have at least one terminal N-acetylgalactosamine residue; (v) have at least one “uncapped” antenna, i.e., have at least one terminal galactose or N-acetylgalactosamine residue; or (vi) have at least one fucose linked ⁇ 1->3 to an antennary N-acetylglucosamine residue.
- an “oligosaccharide chain” refers to the entire oligosaccharide structure that is covalently linked to a single amino acid residue.
- Factor VII is normally glycosylated at Asn 145 and Asn 322 (N-linked glycosylation) and Ser-52 and Ser-60 (O-linked glycosylation).
- N-linked oligosaccharide chain present on Factor VII produced in a human in situ may be bi-, tri, or tetra-antennary, with each antenna having the structure Neu5Ac( ⁇ 2->3 or ⁇ 2->6)Gal( ⁇ 1->4) GlcNAc linked ( ⁇ 1->2,4, or 6) to a Man residue which is linked ( ⁇ 1->3 or 6) to Man( ⁇ 1->4)GlcNAc( ⁇ 1->4)GlcNAc-Asn.
- Neu5Ac signifies N-acetylneuraminic acid (sialic acid)
- Gal signifies galactose
- GlcNAc signifies N-acetylglucosamine
- Man signifies mannose
- the oligosaccharide chains may also comprise fucose residues, which may be linked a 1->6 to GlcNAc.
- An O-linked oligosaccharide chain present on Factor VII produced in a human in situ is mono-antennary with the Ser-52 antenna having the structure Xyl-Xyl-Glc-Ser or Glc-Ser, and the Ser-60 antenna having the structure Neu5Ac( ⁇ 2->3 or ⁇ 2->6)Gal( ⁇ 1->4)GlcNAc-Fuc-Ser or Fuc-Ser (Fuc signifies fucose, Glc signifies glucose, and Xyl signifies xylose).
- Factor VII may contain oligosaccharide chains having different terminal structures on one or more of their antennae, such as, e.g., lacking sialic acid residues; containing N-glycolylneuraminic acid (Neu5Gc) residues; containing a terminal N-acetylgalactosamine (GalNAc) residue in place of galactose; and the like.
- oligosaccharide chains having different terminal structures on one or more of their antennae such as, e.g., lacking sialic acid residues; containing N-glycolylneuraminic acid (Neu5Gc) residues; containing a terminal N-acetylgalactosamine (GalNAc) residue in place of galactose; and the like.
- Factor VII preparations When produced in, e.g., BHK cells cultured in the presence of calf serum, Factor VII preparations exhibit the following oligosaccharide patterns: 87-93% of the oligosaccharide chains contain at least a single sialic acid residue; 7-13% are neutral (lack any sialic acid); 9-16% contain at least one terminal galactose residue; 19-29% contain at least one terminal N-acetylgalactosamine residue; and 30-39% contain at least one uncapped antenna, i.e., contain at least one terminal galactose or N-acetylgalactosamine residue.
- a Factor VII preparation When produced in other types of cells or under other culturing conditions (in a serum-free, fully chemical defined medium), a Factor VII preparation may exhibit the following oligosaccharide patterns (as disclosed in WO 02/29025):
- the degree of sialylation i.e., the number of sialic acid residues attached to each oligosaccharide chain
- the degree of sialylation can be improved by subjecting the expressed Factor VII or Factor VII-related polypeptide-preparation to in vitro enzymatic treatment with a sialyltransferase and an sialic acid donor molecule, e.g., as described in U.S. Pat. No. 6,399,336.
- substantially all antennas on the oligosaccharide chains may be sialylated (i.e., “capped” with a sialic acid residue).
- the N-glucans on FVII or FVII related polypeptide is also not fully galactosylated, and a galactosylation step involving galactosyl transferase and UDP-galactose donor substrate prior to the sialylation step will improve the sialic acid content of the product.
- the present inventors have produced Factor VII preparations containing oligosaccharide patterns containing at least one polymeric group covalently attached to at least one oligosaccharide group.
- the preparations comprise Factor VII polypeptides or Factor VII-related polypeptides exhibiting one or more of the following glycoform patterns:
- each of (i)-(vi) may represent a distinct glycoform pattern that is encompassed by embodiments of the present invention, i.e., the glycoform pattern of a preparation in accordance with the present invention wherein at least one polymeric group is covalently attached to at least one oligosaccharide may be described by only one of (i)-(vi).
- the glycoform pattern of a preparation encompassed by the invention may be described by more than one of (i)-(vi).
- the preparations of the invention encompass Factor VII or Factor VII-related polypeptides in which more than 99% of the oligosaccharide chains contain at least one sialic acid residue and (a) the sialic acid residues are linked exclusively in an ⁇ 2->3 configuration and/or (b) there are fucose residues linked to core N-acetylglucosamines and/or (c) a detectable number of antenna terminate in N-acetylgalactosamine.
- the invention encompasses preparations comprising wild-type Factor VIIa in which more than 99% of the oligosaccharide chains contain at least one sialic acid residue and the sialic acid residues are linked to galactose exclusively in an ⁇ 2->3 configuration.
- the invention encompasses preparations comprising wild-type Factor VIIa in which more than 99% of the oligosaccharide chains contain at least one sialic acid residue and at least some of the oligosaccharide chains comprise N-acetylgalactosamine.
- the pattern of N-linked and/or O-linked oligosaccharides may be determined using any method known in the art, including, without limitation: high-performance liquid chromatography (HPLC); capillary electrophoresis (CE); nuclear magnetic resonance (NMR); mass spectrometry (MS) using ionization techniques such as fast-atom bombardment, electrospray, or matrix-assisted laser desorption (MALDI); gas chromatography (GC); and treatment with exoglycosidases in conjunction with anion-exchange (AIE)-HPLC, size-exclusion chromatography (SEC), mass spectroscopy (MS), gel electrophoresis (SDS-PAGE, CE-PAGE), isoelectric focusing gels, or iso-electric focusing capillary electrophoresis (CE-IEF) See, e.g., Weber et al., Anal.
- HPLC high-performance liquid chromatography
- CE capillary electrophoresis
- NMR nuclear magnetic
- the resolved species are assigned, e.g., to one of groups (i)-(vi).
- the relative content of each of (i)-(vi) is calculated as the sum of the oligosaccharides assigned to that group relative to the total content of oligosaccharide chains in the sample.
- N-linked oligosaccharide peaks can be resolved from a recombinant Factor VII preparation produced in BHK cells (see, e.g., Klausen et al., Mol. Biotechnol. 9:195, 1998).
- Five of the peaks (designated 1-5 in Klausen et al.) do not contain sialic acid, while eight of the peaks (designated 6, 7, and 10-15) do contain sialic acid.
- sialic acid-containing and sialic acid-lacking chains may depend upon (a) the polypeptide being expressed; (b) the cell type and culture conditions; (c) any modification of glycoform pattern by chemical and/or enzymatic treatment following expression, and (d) the method of analysis that is employed, and that the resulting patterns may vary accordingly.
- the sialic acid-containing oligosaccharides have been resolved from the non-sialic acid-containing oligosaccharides, conventional data analysis programs are used to calculate the area under each peak; the total peak area; and the percentage of the total peak area represented by a particular peak.
- the sum of the areas of sialic acid-containing peaks/total peak area ⁇ 100 yields the % sialylation value for the preparation according to the present invention (i.e., the proportion of oligosaccharide chains having at least one sialic acid residue).
- the % of chains having no sialic acid or at least one galactose or N-acetylglucosamine can be calculated.
- the polymer molecule to be coupled to the polypeptide may be any suitable molecule, such as a natural or synthetic homo-polymer or hetero-polymer, typically with a molecular weight in the range of about 300-100,000 Da, such as about 500-20,000 Da., or about 500-15,000 Da, or 2-15 kDa, or 3-15 kDa, or 3-12 kDa, or about 10 kDa.
- a suitable molecule such as a natural or synthetic homo-polymer or hetero-polymer, typically with a molecular weight in the range of about 300-100,000 Da, such as about 500-20,000 Da., or about 500-15,000 Da, or 2-15 kDa, or 3-15 kDa, or 3-12 kDa, or about 10 kDa.
- homo-polymers examples include polyalcohols (i.e., poly-OH), polyamines (i.e., polyNH2) and polycarboxylic acids (i.e., poly-COOH).
- a hetero-polymer is a polymer comprising different coupling groups such as a hydroxyl group and an amine group.
- suitable polymer molecules include polymer molecules selected from the group consisting of polyalkylene oxide (PAO), including polyalkylene glycol (PAG), such as polyethylene glycol (PEG) and polypropylene glycol (PPG), branched PEGs, polyvinyl alcohol (PVA), polycarboxylate, poly-vinylpyrolidone, polyethylene-co-maleic acid anhydride, polystyrene-comaleic acid anhydride, dextran, including carboxymethyl-dextran, polyurethaner, polyestre and polyamider, or any other polymer suitable for reducing immunicenicity and/or increasing functional in vivo half-life and/or serum-half-life.
- PAO polyalkylene oxide
- PAG polyalkylene glycol
- PEG polyethylene glycol
- PPG polypropylene glycol
- PVA polyvinyl alcohol
- PVA polycarboxylate
- poly-vinylpyrolidone polyethylene-co-maleic acid anhydride
- PEG is the preferred polymer molecule, since it has only few reactive groups capable of cross-linking compared to, e.g., polysaccharides such as dextran.
- mono-functional PEG e.g., methoxypolyethylene glycol (mPEG) is of interest since its coupling chemistry is relatively simple (only one reactive group is available for conjugating with attachment groups on the oligosaccharide). Consequently, the risk of cross-linking is eliminated, the resulting polypeptide conjugates are more homogeneous and the reaction of the polymer molecules with the polypeptide is easier to control.
- the hydroxyl end groups of the polymer molecule must be provided in activated form, i.e. with reactive functional groups (examples of which include primary amino groups, hydrazide (HZ), thiol, succinate (SUC), succinimidyl succinate (SS), succinimidyl succinamide (SSA), succinimidyl proprionate (SPA), succinimidy carboxymethylate (SCM), benzotriazole carbonate (BTC), N-hydroxysuccinimide (NHS), aldehyde, nitrophenylcarbonate (NPC), and tresylate (TRES)).
- reactive functional groups include primary amino groups, hydrazide (HZ), thiol, succinate (SUC), succinimidyl succinate (SS), succinimidyl succinamide (SSA), succinimidyl proprionate (SPA), succinimidy carboxymethylate (SCM), benzotriazole carbonate (BTC), N-hydroxysuccinimide (NHS), al
- Suitable activated polymer molecules are commercially available, e.g. from Shearwater Polymers, Inc., Huntsville, Ala., USA, or from PolyMASC Pharmaceuticals pic, UK.
- the polymer molecules can be activated by conventional methods known in the art, e.g. as disclosed in WO 90/13540.
- Specific examples of activated linear or branched polymer molecules for use in the present invention are described in the Shearwater Polymers, Inc. 1997 and 2000 Catalogs (Functionalized Biocompatible Polymers for Research and pharmaceuticals, Polyethylene Glycol and Derivatives, incorporated herein by reference).
- activated PEG polymers include the following linear PEGs: NHS-PEG (e.g. SPA-PEG, SSPA-PEG, SBA-PEG, SS-PEG, SSA-PEG, SC-PEG, SG-PEG, and SCM-PEG), and NOR-PEG, BTC-PEG, EPOX-PEG, NCO-PEG, NPC-PEG, CDI-PEG, ALD-PEG, TRES-PEG, VS-PEG, IODO-PEG, and MAL-PEG, and branched PEGs such as PEG2-NHS and those disclosed in U.S. Pat. No. 5,932,462 and U.S. Pat. No.
- the conjugation of the oligosaccharide chains of the polypeptide and the activated polymer molecules is conducted by use of any conventional method. Conventional methods are known to the skilled artisan.
- the activation method and/or conjugation chemistry to be used depends on the attachment group(s) of the oligosaccharide(s) as well as the functional groups of the polymer molecule (e.g., being amine, hydroxyl, carboxyl, aldehyde, ketone, sulfhydryl, succinimidyl, maleimide, vinylsulfone or haloacetate).
- the polymer conjugation is designed so as to produce the optimal molecule with respect to the number of polymer molecules attached, the size and form of such molecules (e.g, whether they are linear or branched), and the attachment site(s) in the oligosaccharide chain(s).
- the molecular weight of the polymer to be used may e.g., be chosen on the basis of the desired effect to be achieved. For instance, if the primary purpose of the conjugation is to achieve a conjugate having a high molecular weight (e.g., to reduce renal clearance) it is usually desirable to conjugate as few high molecular weight polymer molecules as possible to obtain the desired molecular weight.
- linker it is also contemplated according to the invention to couple the polymer molecules to the polypeptide through a linker.
- Suitable linkers are well known to the skilled person.
- a preferred example is cyanuric chloride (Abuchowski et al., (1977), J. Biol. Chem., 252, 3578-3581; U.S. Pat. No. 4,179,337; Shafer et al., (1986), J. Polym. Sci. Polym. Chem. Ed., 24, 375-378).
- residual activated polymer molecules are blocked according to methods known in the art, e.g. by addition of primary amine to the reaction mixture, and the resulting inactivated polymer molecules are removed by a suitable method.
- the polypeptide conjugate of the present invention comprises a polymer molecule covalently attached to one of the sialic acid groups located at the terminal end of a oligosaccharide group of a Factor VII polypeptide, where said polymer molecule is the only polymer molecule attached to the polypeptide.
- two polymer molecules are covalently bound to one or more oligosaccharide group(s) of the Factor VII polypeptide; in other embodiments, three, four, five, six, or seven polymer molecules are covalently attached to the Factor VII polypeptide.
- the Factor VII polypeptide is the wild-type FVII or FVIIa polypeptide shown in FIG: 1; in another embodiment, the Factor VII polypeptide is a Factor VII-related polypeptide; in one embodiment thereof, the Factor VII-related polypeptide is a Factor VII amino acid sequence variant.
- such polypeptide conjugates are ones, which comprise a single PEG molecule.
- a linear or branched PEG molecule with a molecular weight of at least about 5 kDa, in particular about 10-25 kDa, such as about 15-25 kDa, e.g. about 20 kDa or about 10 kDa is preferred.
- Factor VII preparations Factor VII, Factor VII variants, or Factor VII-related polypeptides, may be produced using any appropriate host cell that expresses glycosylated Factor VII or Factor VII-related polypeptides (i.e., host cells capable of attaching oligosaccharide groups at the glycosylation sites of the polypeptide).
- Factor VII may also be isolated from plasma from humans or other species.
- the host cells are human cells expressing an endogenous Factor VII gene.
- the endogenous gene may be intact or may have been modified in situ, or a sequence outside the Factor VII gene may have been modified in situ to alter the expression of the endogenous Factor VII gene. Any human cell capable of expressing an endogenous Factor VII gene may be used.
- heterologous host cells are programmed to express human Factor VII from a recombinant gene.
- the host cells may be vertebrate, insect, or fungal cells.
- the cells are mammalian cells capable of the entire spectrum of mammalian N-linked glycosylation; O-linked glycosylation; and ⁇ -carboxylation. See, e.g., U.S. Pat. Nos. 4,784,950.
- Preferred mammalian cell lines include the CHO (ATCC CCL 61), COS-1 (ATCC CRL 1650), baby hamster kidney (BHK) and HEK293 (ATCC CRL 1573; Graham et al., J. Gen. Virol.
- a preferred BHK cell line is the tk ⁇ ts13 BHK cell line (Waechter and Baserga, Proc.Natl.Acad.Sci.USA 79:1106-1110, 1982), hereinafter referred to as BHK 570 cells.
- the BHK 570 cell line is available from the American Type Culture Collection, 12301 Parklawn Dr., Rockville, Md. 20852, under ATCC accession number CRL 10314.
- a tk ⁇ ts13 BHK cell line is also available from the ATCC under accession number CRL 1632.
- Rat Hep I Rat hepatoma; ATCC CRL 1600
- Rat Hep II Rat Hepatoma; ATCC CRL 1548
- TCMK TCC CCL 139
- Human lung ATCC HB 8065
- NCTC 1469 ATCC CCL 9.1
- DUKX cells CHO cell line
- CXB11 cells DUKX cells also referred to as CXB11 cells
- DG44 CHO cell line
- the host cells are CHO cells that have been programmed to co-express both the Factor VII polypeptide of interest (i.e., Factor VII or a Factor-VII-related polypeptide) and another heterologous peptide or polypeptide such as, e.g., a modifying enzyme or a Factor VII fragment.
- the Factor VII polypeptide of interest i.e., Factor VII or a Factor-VII-related polypeptide
- another heterologous peptide or polypeptide such as, e.g., a modifying enzyme or a Factor VII fragment.
- the methods for producing a preparation of Factor VII comprising any of the glycoform patterns described above as (i)-(vi) and methods for optimizing the glycoform distribution of Factor VII and Factor VII-related polypeptides may be carried out by the steps of:
- the methods may further comprise:
- the methods may further comprise
- the variables in the culture conditions that may be altered in step (d1) include, without limitation: the cell of origin, such as, e.g., a cell derived from a different species than originally used; or a mutant or recombinant cell having alterations in one or more glycosyltransferases or glycosidases or other components of the glycosylation apparatus (see, Grabenhorst et al., Glyco - conjugate J. 16:81, 1999; Bragonzi et al., Biochem. Biophys. Acta 1474:273, 2000; Weikert, Nature Biotechnol.
- the cell of origin such as, e.g., a cell derived from a different species than originally used
- a mutant or recombinant cell having alterations in one or more glycosyltransferases or glycosidases or other components of the glycosylation apparatus see, Grabenhorst et al., Glyco - conjugate J. 16:
- the enzymatic treatments that may be used in step (d2) to modify the oligosaccharide pattern of a preparation include, without limitation, treatment with one or more of sialidase (neuramimidase), galactosidase, fucosidase; galactosyl transferase, fucosyl transferase, and/or sialyltransferase, in a sequence and under conditions that achieve a desired modification in the distribution of oligosaccharide chains having particular terminal structures.
- sialidase neutral amino acid
- Glycosyl transferases are commercially available from Calbiochem (La Jolla, Calif.) and glycosidases are commercially available from Glyko, Inc., (Novato, Calif.).
- host cells expressing Factor VII or a related polypeptide are subjected to specific culture conditions in which they secrete glycosylated Factor VII polypeptides having the desired pattern of oligosaccharide structures described above as any of (i)-(vi).
- culture conditions include, without limitation, a reduction in, or complete absence of, serum.
- the host cells are adapted to grow in the absence of serum and are cultured in the absence of serum both in the growth phase and in the production phase.
- Such adaptation procedures are described, e.g., in Scharfenberg, et al., Animal Cell Technology Developments towards the 21 st Century , E. C. Beuvery et al.
- the growth medium that is added to the cells contains no protein or other component that was isolated from an animal tissue or an animal cell culture. See, e.g., Example 1 below.
- a medium suitable for producing Factor VII contains Vitamin K at a concentration between 0.1-50 mg/liter, which is required for ⁇ -carboxylation of glutamine residues in Factor VII.
- the glycoforms are produced by subjecting a preparation of Factor VII or Factor VII-related polypeptides to enzymatic and/or chemical modification of the N-linked and/or O-linked oligosaccharides contained therein, such as subjecting the preparation to modification by a sialyltransferase or a galactosyl transferase, such as described, e.g. in U.S. Pat. No. 6,399,336.
- the N-linked oligosaccharides are modified.
- a sialyltransferase is capable of sialylating a high percentage of acceptor groups (e.g., terminal galactose) on a glycoprotein.
- the desired result is usually obtained by using about 50 mU of sialyltransferase per mg of glycoprotein or less.
- the oligosaccharide chains on a glycoprotein having their glycoform patterns altered by this method will as a result have a greater percentage of terminal galactose residues sialylated than the unaltered polypeptide.
- 100% percent of the terminal galactose residues may be sialylated following use of these methods.
- the methods are typically capable of achieving the desired level of sialylation in about 48 hours or less.
- sialyltransferase will be able to transfer sialic acid to the sequence Gal( ⁇ 1- ⁇ 4)GlcNAc-, the most common penultimate sequence underlying the terminal sialic acid on fully sialylated carbohydrate structures.
- Examples of sialyltransferases that use Gal( ⁇ 1->4)GlcNAc- as an acceptor group are ST3Gal III, ST3Gal IV, and ST3Gal V (attach NeuAc by an ⁇ 2->3 linkage) and ST6Gal I and ST6Gal II (attach NeuAc by an ⁇ 2->6 linkage) (see U.S. Pat. No. 6,399,336).
- sialyltransferase nomenclature is described in Tsuji et al., Glycobiology 6:v-xiv (1996)).
- the silaylation of the glycoprotein is accomplished using, for example, a sialytransferase cycle, which includes a CMP-sialic acid synthetase.
- the CMP-regenerating system in this cycle comprises cytidine monophosphate (CMP), a nucleoside triphosphate, a phosphate donor, a kinase capable of transferring phosphate from the phosphate donor to the nucleoside diphosphates and a nucleoside monophosphate kinase capable of transferring the terminal phosphate from a nucleoside triphosphate to CMP.
- the regenerating system also employs CMP-sialic acid synthetase, which transfers sialic acid to CMP.
- CMP is converted to CDP by nucleoside monophosphate kinase in the presence of added ATP.
- ATP is catalytically regenerated from its byproduct, ADP, by pyruvate kinase (PK) in the presence of added phosphoenolpyruvate (PEP).
- PK pyruvate kinase
- PEP phosphoenolpyruvate
- CDP is further converted to CTP, which conversion is catalyzed by PK in the presence of PEP.
- CTP reacts with sialic acid to form inorganic pyrophosphate (PPi) and CMP-sialic acid, the latter reaction being catalyzed by CMP-sialic acid synthetase.
- PPi inorganic pyrophosphate
- CMP-sialic acid synthetase CMP-sialic acid synthetase.
- the released CMP re-enters the regenerating system to rform CDP, CTP and CMP-sialic acid.
- the formed PPi is scavenged and forms inorganic phosphate as a byproduct. Pyruvate is also a byproduct.
- acceptors for the sialyltransferase will be present on the glycoprotein to be modified.
- Suitable acceptors include, for example, Gal( ⁇ 1->4)GlcNAc-, Gal( ⁇ 1->4)GalNAc-, Gal( ⁇ 1->3)GalNAc-, Gal( ⁇ 1->3)GlcNAc-, Gal( ⁇ 1->6)GlcNAc-, Gal( ⁇ 1->4)Glc- and other acceptors known to those skilled in the art (see, e.g., Paulson et al. (1978) J. Biol. Chem. 253: 5617-5624).
- the receptors are included in the oligosaccharide chains that are attached to asparagine, serine or threonine residues present in a polypeptide.
- the glycoprotein may be “trimmed”, either whole or in part, to expose either an acceptor for the sialyltransferase, or a moiety to which one or more appropriate residues can be added to obtain a suitable acceptor.
- Enzymes such as glycosyltransferases and endoglycosidases are useful for the attaching and trimming reactions.
- the glycoprotein may be “trimmed” by treating it with sialidase to create terminal galactose groups before subjecting the protein to a sialyltransferase cycle, or even further down to the N-acetyl-glucosamine level by further treatment with galactosidases. See, e.g., U.S. Pat. No. 5,272,066 for methods of obtaining polypeptides having suitable acceptors for sialylation.
- oligosaccharides on the Factor VII polypeptide can be covalently attached to the oligosaccharides on the Factor VII polypeptide by either chemical synthesis or enzymatic treatment of the polypeptide with, e.g., modified sialic acid.
- the polymer molecule may also be coupled to the oligosaccharide through a linker.
- Suitable linkers are well known to the skilled person Examples include but are not limited to N-(4-acetylphenyl)mailmide, succimidyl ester activatede malimido derivatives such as commercial available succimidyl 4-malimidobutanoate, 1,6-bismalimidohexanes.
- Various chemical moieties such as the polymer molecules used in working the present invention can be covalently attached to the sialic acid and the thus “modified” (or conjugated) sialic acid subsequently incorporated in the sialyltransferase cycle resulting in the polymer molecule being covalently attached to the glycoprotein.
- the conjugated sialic acid can be made by conventional methods known by the skilled artisan.
- the polymer molecule may also be coupled to the sialic acid through through a linker.
- modified sugar phospho nucleotides of use in practicing the present invention can be substituted according to general formula I and II:
- R1 and R2 is independently a PEG—based polymer with a mass of 1-40.000 kDa.
- R1 is independently a PEG—based polymer with a mass of 1-40.000 kDa.
- amine-, 2-hydroxy- and carboxyl protected neuraminic acid is initially converted in to its 9-amino derivative according to Isecke, R.; Brossmer, R., Tetrahedron 1994, 50(25), 7445-7460, which is further derivatized with PEG-COOH using standard coupling conditions.
- the PEG derivatized product is then deprotected under mild acid conditions, and enzymatically converted into the corresponding nucleotide sugar.
- N-acetyl neuraminic acid is treated with PEG-derivatised thioacids under Mitsunobu conditions, to give a PEG-derivatized N-acetyl neuraminic acid that subsequently is converted into a sugar nucleotide.
- the thiol of a modified galactose reacts with a PEG containing a maleimide moiety.
- the PEG-galactose compound can then be converted to the corresponding nucleotide sugar by either enzymatic or chemical methods.
- a protected 6-bromogalactose (Hodosi, G., Podanyi, B. and Kuszmann, J., Carbohydr. Res., 1992, 230(2), 327-342) reacts with a PEG containing a thiol moiety.
- the isopropylidene groups are removed under acidic conditions.
- the PEG-galactose compound can then be converted to the corresponding nucleotide sugar by either enzymatic or chemical methods.
- a protected galacturonic acid (Godage, Y. S. and Fairbanks, A. J., Tetrahedron Lett., 2000, 41(39), 7589-7594) reacts with a PEG containing an amine moiety.
- the isopropylidene groups are removed under acidic conditions.
- the PEG-galactose compound can then be converted to the corresponding nucleotide sugar by either enzymatic or chemical methods.
- sugar nucleotides such as those described above can be enzymatically transfered on to suitable glycoproteins, such as FVII or FVII-related polypeptide, using natural or mutated glycosyl transferases, which includes by illustration but not limitation: ⁇ 2,3-sialyl transferases, ⁇ 2,6-sialyl transferases or ⁇ 1,4-galactosyl transferases.
- a FVII analogue is treated with sialidase, to produce an asialo FVII analogue, that subsequently is treatment with sialyltransferase and a CMP-SA-PEG analogue according to general formula I, to give a PEG—derivatised FVII analogue.
- a FVII-related polypeptide is treated sequentially first with sialidase and secondly with galactosidase, to produce an asialo agalacto FVII-related polypeptide.
- This analogue is then treated with galactosyltransferase and an UDP-Gal-PEG analogue according to general formula II, to give a PEG—derivatised FVII analogue.
- modified galactose compounds which are covalently bound to a polymer either directly or using a linker moiety are employed.
- a galactosidase By treating the polypeptide with a galactosidase, the attatchment points for the modified galactose compounds are accessed.
- the bond between the modified galactose compounds and the treated polypeptide can be formed by employing the UDP activated form of the modified galactose compounds and a galactosyltransferase.
- UDP activated form of the modified galactose compounds and a galactosyltransferase An exemplary embodiment of this type is illustrated in Scheme 7, in which the black circle represents Factor VII or Factor VII-related polypeptides, and the terminal portion of a few of the carbohydrates are illustrated.
- a “Factor VII preparation” refers to a plurality of Factor VII polypeptides, Factor VIIa polypeptides, or Factor VII-related polypeptides, including variants and chemically modified forms, that have been separated from the cell or reaction medium in which they were synthesized.
- Separation of recombinantly produced polypeptides from their cell of origin may be achieved by any method known in the art, including, without limitation, removal of cell culture medium containing the desired product from an adherent cell culture; centrifugation or filtration to remove non-adherent cells; and the like.
- Storage stability of a Factor VII preparation may be assessed by measuring (a) the time required for 20% of the bioactivity of a preparation to decay when stored as a dry powder at 25° C. and/or (b) the time required for a doubling in the proportion of Factor VIIa aggregates in the preparation.
- the preparations of the invention exhibit an increase of at least about 30%, preferably at least about 60% and more preferably at least about 100%, in the time required for 20% of the bioactivity to decay relative to the time required for the same phenomenon in a reference preparation, when both preparations are stored as dry powders at 25° C.
- Bioactivity measurements may be performed using any of a clotting assay, proteolysis assay, TF-binding assay, or TF-independent thrombin generation assay.
- the preparations of the invention exhibit an increase of at least about 30%, preferably at least about 60%, and more preferably at least about 100%, in the time required for doubling of aggregates relative to a reference preparation, when both preparations are stored as dry powders at 25° C.
- the content of aggregates is determined by gel permeation HPLC on a Protein Pak 300 SW column (7.5 ⁇ 300 mm) (Waters, 80013) as follows. The column is equilibrated with Eluent A (0.2 M ammonium sulfate, 5% isopropanol, pH adjusted to 2.5 with phosphoric acid, and thereafter pH is adjusted to 7.0 with triethylamine), after which 25 ⁇ g of sample is applied to the column.
- Eluent A 0.2 M ammonium sulfate, 5% isopropanol, pH adjusted to 2.5 with phosphoric acid, and thereafter pH is adjusted to 7.0 with triethylamine
- Elution is with Eluent A at a flow rate of 0.5 ml/min for 30 min, and detection is achieved by measuring absorbance at 215 nm.
- the content of aggregates is calculated as the peak area of the Factor VII aggregates/total area of Factor VII peaks (monomer and aggregates).
- the preparations of the present invention exhibit a relative bioavailability of at least about 110%, preferably at least about 120%, more preferably at least about 130% and most preferably at least about 140% of the bioavailability of a reference preparation.
- the bioavailability may be measured in any mammalian species, preferably dogs, and the predetermined times used for calculating AUC may encompass different increments from 10 min-8 h.
- “Half-life” refers to the time required for the plasma concentration of Factor VII potypeptides of Factor VII-related polypeptides to decrease from a particular value to half of that value. Half-life may be determined using the same procedure as for bioavailability. In some embodiments, the preparations of the present invention exhibit an increase in half-life of at least about 0.25 h, preferably at least about 0.5 h, more preferably at least about 1 h, and most preferably at least about 2 h, relative to the half-life of a reference preparation.
- Immunogenicity of a preparation refers to the ability of the preparation, when administered to a human, to elicit a deleterious immune response, whether humoral, cellular, or both.
- Factor VIIa polypeptides and Factor VIIa-related polypeptides are not known to elicit detectable immune responses in humans. Nonetheless, in any human sub-population, there may exist individuals who exhibit sensitivity to particular administered proteins. Immunogenicity may be measured by quantifying the presence of anti-Factor VII antibodies and/or Factor VII-responsive T-cells in a sensitive individual, using conventional methods known in the art.
- Preparations comprising Factor VII-related polypeptides according to the invention, which have substantially reduced bioactivity relative to wild-type Factor VII, may be used as anticoagulants, such as, e.g., in patients undergoing angioplasty or other surgical procedures that may increase the risk of thrombosis or occlusion of blood vessels as occurs, e.g., in restenosis.
- compositions comprising the Factor VII and Factor VII-related preparations according to the present are primarily intended for parenteral administration for prophylactic and/or therapeutic treatment.
- the pharmaceutical compositions are administered parenterally, i.e., intravenously, subcutaneously, or intramuscularly. They may be administered by continuous or pulsatile infusion.
- compositions or formulations comprise a preparation according to the invention in combination with, preferably dissolved in, a pharmaceutically acceptable carrier, preferably an aqueous carrier or diluent.
- a pharmaceutically acceptable carrier preferably an aqueous carrier or diluent.
- aqueous carriers such as water, buffered water, 0.4% saline, 0.3% glycine and the like.
- the preparations of the invention can also be formulated into liposome preparations for delivery or targeting to the sites of injury. Liposome preparations are generally described in, e.g., U.S. Pat. Nos. 4,837,028, 4,501,728, and 4,975,282.
- the compositions may be sterilised by conventional, well-known sterilisation techniques.
- the resulting aqueous solutions may be packaged for use or filtered under aseptic conditions and lyophilised, the lyophilised preparation being combined with a sterile aqueous solution prior to administration.
- the concentration of Factor VII or Factor VII-related polypeptides in these formulations can vary widely, i.e., from less than about 0.5% by weight, usually at or at least about 1% by weight to as much as 15 or 20% by weight and will be selected primarily by fluid volumes, viscosities, etc., in accordance with the particular mode of administration selected.
- a typical pharmaceutical composition for intravenous infusion could be made up to contain 250 ml of sterile Ringer's solution and 10 mg of the preparation.
- Actual methods for preparing parenterally administrable compositions will be known or apparent to those skilled in the art and are described in more detail in, for example, Remington's Pharmaceutical Sciences, 18Th ed., Mack Publishing Company, Easton, Pa. (1990).
- compositions containing the preparations of the present invention can be administered for prophylactic and/or therapeutic treatments.
- compositions are administered to a subject already suffering from a disease, as described above, in an amount sufficient to cure, alleviate or partially arrest the disease and its complications.
- An amount adequate to accomplish this is defined as “therapeutically effective amount”.
- Effective amounts for each purpose will depend on the severity of the disease or injury as well as the weight and general state of the subject. In general, however, the effective amount will range from about 0.05 mg up to about 500 mg of the preparation per day for a 70 kg subject, with dosages of from about 1.0 mg to about 200 mg of the preparation per day being more commonly used. It will be understood that determining an appropriate dosage may be achieved using routine experimentation, by constructing a matrix of values and testing different points in the matrix.
- Local delivery of the preparations of the present invention may be carried out, e.g., by means of a spray, perfusion, double balloon catheters, stent, incorporated into vascular grafts or stents, hydrogels used to coat balloon catheters, or other well established methods.
- the pharmaceutical compositions should provide a quantity of the preparation sufficient to effectively treat the subject.
- compositions of the invention may further comprise other bioactive agents, such as, e.g., non-Factor VII-related coagulants or anticoagulants.
- sustained-release preparations include semi-permeable matrices of solid hydrophobic polymers containing the polypeptide or conjugate, the matrices having a suitable form such as a film or microcapsules.
- sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate) or poly(vinylalcohol)), polylactides, copolymers of L-glutamic acid and ethyl-L-glutamate, non-degradable ethylenevinyl acetate, degradable lactic acid-glycolic acid copolymers such as the ProLease® technology or Lupron Depot@ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-( ⁇ )-3-hydroxybutyric acid.
- polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for long periods such as up to or over 100 days
- certain hydrogels release proteins for shorter time periods.
- encapsulated polypeptides When encapsulated polypeptides remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37° C., resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved.
- stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.
- PEG-CMPSA Polyethylene glycol-CMP-sialic acid
- Factor VIIa with 87-99% content of sialic acid is treated with sialidase, e.g., as described in U.S. Pat. No. 5,272,066, and re-sialylated with sialyltransferase using PEG-CMPSA as donor molecule (e.g., as described in U.S. Pat. No. 6,399,336).
- sialidase e.g., as described in U.S. Pat. No. 5,272,066, and re-sialylated with sialyltransferase using PEG-CMPSA as donor molecule (e.g., as described in U.S. Pat. No. 6,399,336).
- PEG-CMPSA PEG-CMPSA
- CMPSA is added to the reaction mixture to cap any exposed terminal galactose.
- sialic acid 94-100% sialic acid is incorporated; a mean of 1-4 PEG groups are incorporated.
- PEG-CMPSA Polyethylene glycol-CMP sialic acid
- PEG-CMPSA as donor molecule
- CMPSA is added to the reaction mixture to cap any exposed terminal galactose.
- sialic acid 87-100% sialic acid is incorporated; a mean of 0.1-0.5 PEG groups are incorporated.
- CMP-SA-PEG N-Acetyl-O 2 -methyl-9-amino-9-deoxy-neuraminic acid methyl ester (10 mg, 0.031 mmol, prepared according to Isecke, R.; Brossmer, R., Tetrahedron 1994, 50(25), 7445-7460) is dissolved in water (2 ml), and mPEG-SBA (170 mg, 0.03 mmol, 5 kDa, Shearwater 2M450H01)) is added. The mixture is stirred at ambient temperature until completion according to TLC.
- FVIIa (1 mg) dissolved in 1 ml of 0.1 M sodium acetate pH 5.5 is oxidized a level of its glycans at room temperature for 30 min. with 10 mM sodium periodate. The solution is then dialyzed against 100 mM sodium acetate pH 5.5. After dialysis, PEG-C(O)—NHNH 2 (prepared by hydrazinolysis of mPEG-SBA (2 mg, 5 kDa, Shearwater 2M450H01)) is mixed with the oxidized FVIIa, and allowed to react overnight at room temperature with gentle shaking. The FVIIa-PEG conjugate solution thus obtained is dialyzed (dialysis membranes with 10 kDa cut-off) against 100 mM Tris-HCl buffer, pH 7.5 and stored at 4° C.
- the following assays are useful for determining biological activity, half-life and bioavailability of Factor VII and Factor VII-related polypeptides.
- the following method can be used to assay Factor VIIa bioactivity.
- the assay is carried out in a microtiter plate (MaxiSorp, Nunc, Denmark).
- the absorbance at 405 nm is measured continuously in a SpectraMaxTM 340 plate reader (Molecular Devices, USA).
- the absorbance developed during a 20-minute incubation, after subtraction of the absorbance in a blank well containing no enzyme, is used to calculate the ratio between the activities of a test and a reference.
- Factor VIIa The assay is carried out in a microtiter plate (MaxiSor
- the following method can be used to assay Factor VIIa bioactivity.
- the assay is carried out in a microtiter plate (MaxiSorp, Nunc, Denmark).
- Factor VIIa (10 nM) and Factor X (0.8 microM) in 100 ⁇ l 50 mM Hepes, pH 7.4, containing 0.1 M NaCl, 5 mM CaCl 2 and 1 mg/ml bovine serum albumin, are incubated for 15 min.
- Factor X cleavage is then stopped by the addition of 50 ⁇ l 50 mM Hepes, pH 7.4, containing 0.1 M NaCl, 20 mM EDTA and 1 mg/ml bovine serum albumin.
- the amount of Factor Xa generated is measured by addition of the chromogenic substrate Z-D-Arg-Gly-Arg-p-nitroanilide (S-2765, Chromogenix, Sweden), final concentration 0.5 mM.
- the absorbance at 405 nm is measured continuously in a SpectraMaxTM 340 plate reader (Molecular Devices, USA).
- the absorbance developed during 10 minutes, after subtraction of the absorbance in a blank well containing no FVIIa, is used to calculate the ratio between the proteolytic activities of a test and a reference Factor VIIa.
- Measurement of in vivo biological half-life can be carried out in a number of ways as described in the literature.
- An example of an assay for the measurement of in vivo half-life of rFVIIa and variants thereof is described in FDA reference number 96-0597. Briefly, FVIIa clotting activity is measured in plasma drawn prior to and during a 24-hour period after administration of the conjugate, polypeptide or composition. The median apparent volume of distribution at steady state is measured and the median clearance determined.
- Bioavailability may, for example, be measured in a dog model as follows: The experimentis performed as a four leg cross-over study in 12 Beagle dogs divided in four groups. All animals receive a test preparation A and a reference preparation B at a dose of about 90 ⁇ g/kg in a glycylglycine buffer (pH 5.5) containing sodium chloride (2.92 mg/ml), calcium chloride dihydrate (1.47 mg/ml), mannitol (30 mg/ml) and polysorbate 80. Blood samples are withdrawn at 10, 30, and 60 minutes and 2, 3, 4, 6 and 8 hours following the initial administration. Plasma is obtained from the samples and Factor VII is quantified by ELISA.
- Bioavailability of each sample is expressed as the dose-adjusted area under the plasma concentration curve for Factor VII (AUC/dose).
- the relative bioavailability is expressed as the ratio between the mean AUC/dose of the test and reference preparation ⁇ 100 and 90% confidence limits for the relative bioavailability is calculated.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Hematology (AREA)
- Epidemiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- General Chemical & Material Sciences (AREA)
- Diabetes (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Medicinal Preparation (AREA)
Abstract
The invention concerns a preparation comprising a plurality of Factor VII polypeptides or Factor VII-related polypeptides, wherein the polypeptides comprise asparagine-linked and/or serine-linked oligosaccharide chains, and wherein at least one oligosaccharide group is covalently attached to at least one polymeric group.
Description
- This application is a continuation of International Application no. PCT/DK03/00420 filed Jun. 20, 2003 and claims priority under 35 U.S.C. 119 of Danish application no. PA 2002 00964 filed Jun. 21, 2002 and U.S. application Ser. No. 60/394,778 filed Jul. 1, 2002, and claims priority under 35 U.S.C. 120 of international application no. PCT/DK03/00420 filed Jun. 20, 2003, the contents of which are fully incorporated herein by reference.
- The present invention relates to compositions comprising Factor VII conjugates having predetermined patterns of glycosylation.
- Factor VII is a vitamin K-dependent plasma protein synthesized in the liver and secreted into the blood as a single chain glycoprotein with a molecular weight of approximately 50 kDa. The FVII zymogen is converted into an activated form (FVIIa) by proteolytic cleavage. FVIIa in complex with tissue factor (TF) is able to convert both Factor IX and Factor X into their activated forms, followed by reactions leading to rapid thrombin generation and fibrin formation.
- The proteins involved in the clotting cascade, including, e.g., Factor VII, Factor VII, Factor IX, Factor X, and Protein C, are proving to be useful therapeutic agents to treat a variety of pathological conditions. Accordingly, there is an increasing need for formulations comprising these proteins that are pharmaceutically acceptable and exhibit a uniform and predetermined clinical efficacy.
- Because of the many disadvantages of using human plasma as a source of pharmaceutical products, it is preferred to produce these proteins in recombinant systems. The clotting proteins, however, are subject to a variety of co- and post-translational modifications, including, e.g., asparagine-linked (N-linked) glycosylation; O-linked glycosylation; and γ-carboxylation of glu residues. These modifications may be qualitatively or quantitatively different when heterologous cells are used as hosts for large-scale production of the proteins. In particular, production in heterologous cells often results in a different array of glycoforms, which are identical polypeptides having different covalently linked oligosaccharide structures.
- In different systems, variations in the oligosaccharide structure of therapeutic proteins have been linked to, inter alia, changes in immunogenicity and in vivo clearance.
- Besides in vivo clearance also functional in vivo half-life is of importance to the period of time during which the compound is “therapeutically available” in the body.
- The circulating half-life of rFVIIa is about 2.3 hours (“Summary Basis for Approval for NovoSeven©”, FDA reference number 96-0597).
- Commercial preparations of human recombinant FVIIa are sold as NovoSeven®. NovoSeven® is the only rFVIIa for effective and reliable treatment of bleeding episodes available on the market. Relatively high doses and frequent administration are necessary to reach and sustain the desired therapeutic or prophylactic effect. As a consequence adequate dose regulation is difficult to obtain and the need of frequent intravenous administrations imposes restrictions on the patient's way of living.
- A molecule with a longer circulation half-life would decrease the number of necessary administrations. Given the association of current FVII a product with frequent injections, there is a clear need for improved FVII molecules.
- One way of improving the circulation is to ensure that the rate of clearance from the body is reduced. As said, variations in the oligosaccharide structure of therapeutic proteins have been linked to, inter alia, in vivo clearance. Furthermore, attachment of a chemical moiety to the polypeptide may confer reduced renal clearance to the polypeptide.
- Inactive forms of FVII have been reported. The inactivated form is capable of competing with wild type FVII or FVIIa for binding to tissue factor and inhibiting clotting activity. The inactivated form of FVIIa is suggested to be used for treatment of patients being in hypercoagulable states, such as patients with sepsis, in risk of myocardial infarction or of thrombotic stroke.
- WO 98/32466 suggests that FVII, among many other proteins, may be PEGylated but does not contain any further information in this respect.
- WO 01/58935 claims conjugates of non-polypeptide moieties (e.g., PEG) with a polypeptide wherein the amino acid sequence differs from that of wild-type FVII in that at least one amino acid residue comprising an attachment group for a non-peptidic moiety has been introduced or removed.
- U.S. Pat. No. 4,847,325 suggests that colony stimulating factor-1 (CSF-1) could be attached to PEG by reacting PEG derivatives with oxidized CSF-1.
- Thus, there is a need in the art for compositions and methods that provide clotting protein preparations, particularly preparations comprising improved recombinant human Factor VII, modified Factor VII, or Factor VII-related polypeptide.
- It has been found by the present investigators that preparations of Factor VII polypeptides having glycoform patterns which contain at least one oligosaccharide group covalently linked to at least one polymeric group exhibit improved functional properties. Accordingly, the present invention relates to methods and compositions that provide these conjugate protein preparations.
- Accordingly, the present invention relates in a first aspect to a preparation comprising a plurality of Factor VII polypeptides or Factor VII-related polypeptides, wherein the polypeptides comprise asparagine-linked and/or serine-linked oligosaccharide chains, and wherein at least one oligosaccharide group is covalently attached to at least one polymeric group.
- In one embodiment thereof, the polymeric group is covalently attached to a sialic acid moiety. In another embodiment thereof, the polymeric group is covalently attached to a galactose moiety.
- In one embodiment thereof, between about 94-100% of the oligosaccharide chains comprise at least one sialic acid moiety.
- In one embodiment thereof, between about 94-100% of the oligosaccharide chains comprise at least one sialic acid moiety, and wherein less than about 25% of the oligosaccharide chains contains at least one uncapped antenna.
- In one embodiment, less than about 10% of the oligosaccharide chains contains at least one uncapped antenna.
- In one embodiment, less than about 5, preferably less than about 2% of the oligosaccharide chains contain at least one uncapped antenna.
- In one embodiment, between about 96-100% of the oligosaccharide chains comprise at least one sialic acid moiety.
- In one embodiment, between about 98-100% of the oligosaccharide chains comprise at least one sialic acid moiety.
- In one embodiment, the asparagine-linked oligosaccharide chains are located in positions corresponding to amino acid residues Asn-145 and Asn-322 of wild-type human FVIIa (
FIG. 1 ). - In one embodiment, the serine-linked oligosaccharide chains are located in positions corresponding to amino acid residues Ser-52 and Ser-60 of wild-type human FVIIa (
FIG. 1 ). - In one embodiment, the polymers are selected from the group of: polyalkylene oxide (PAO), including polyalkylene glycol (PAG), such as polyethylene glycol (PEG) and polypropylene glycol (PPG), branched PEGs, polyvinyl alcohol (PVA), polycarboxylate, poly-vinylpyrolidone, polyethylene-co-maleic acid anhydride, polystyrene-co-maleic acid anhydride, and dextran, including carboxymethyl-dextran, polyurethaner, polyestre and polyamider.
- In one embodiment, the polymer is a polyethylene glycol (PEG); In one embodiment, the polyethylene glycol is PEG with a molecular weight of 300-100,000 Da, such as about 500-20,000 Da., or about 500-15,000 Da, or 2-15 kDa, or 3-15 kDa, or 3-12 kDa, or about 10 kDa.
- In one embodiment, the polypeptide has the amino acid sequence of wild-type Factor VII (
FIG. 1 ). In one embodiment, the polypeptides are wild-type Factor VIIa. - In one embodiment, the Factor VII polypeptides are selected from the group consisting of: S52A-Factor VII, S60A-Factor VII, Factor VII that has been proteolytically cleaved between
residues 290 and 291; Factor VII that has been proteolytically cleaved betweenresidues 315 and 316; Factor VII that has been oxidized, L305V-FVII, L305V/M306D/D309S-FVII, L3051-FVII, L305T-FVII, F374P-FVII, V158T/M298Q-FVII, V158D/E296V/M298Q-FVII, K337A-FVII, M298Q-FVII, V158D/M298Q-FVII, L305V/K337A-FVII, V158D/E296V/M298Q/L305V-FVII, V158D/E296V/M298Q/K337A-FVII, V158D/E296V/M298Q/L305V/K337A-FVII, K157A-FVII, E296V-FVII, E296V/M298Q-FVII, V158D/E296V-FVII, V158D/M298K-FVII, S336G-FVII; Factor VII-sequence variants wherein the amino acid residue inpositions 290 and/or 291, preferably 290, have been replaced; and Factor VII-sequence variants wherein the amino acid residue inpositions 315 and/or 316, preferably 315, have been replaced. In another embodiment the Factor VII polypeptides are selected from the list consisting of: Factor VII variants having increased biological activity compared to wild-type FVIIa as disclosed in WO 01/83725, WO 02/22776, WO 02/77218, WO 03/27147, and WO 03/37932; L305V/K337A-FVII, L305V/V158D-FVII, L305V/E296V-FVII, L305V/M298Q-FVII, L305V/V158T-FVII, L305V/K337A/V158T-FVII, L305V/K337A/M298Q-FVII, L305V/K337A/E296V-FVII, L305V/K337A/V158D-FVII, L305V/V158D/M298Q-FVII, L305V/V158D/E296V-FVII, L305V/V158T/M298Q-FVII, L305V/V158T/E296V-FVII, L305V/E296V/M298Q-FVII, L305V/V158D/E296V/M298Q-FVII, L305V/V158T/E296V/M298Q-FVII, L305V/V158T/K337A/M298Q-FVII, L305V/V158T/E296V/K337A-FVII, L305V/V158D/K337A/M298Q-FVII, L305V/V158D/E296V/K337A-FVII, L305V/V158D/E296V/M298Q/K337A-FVII, L305V/V158T/E296V/M298Q/K337A-FVII, S314E/K316H-FVII, S314E/K316Q-FVII, S314E/L305V-FVII, S314E/K337A-FVII, S314E/V158D-FVII, 5314E/E296V-FVII, S314E/M298Q-FVII, S314E/V158T-FVII, K316H/L305V-FVII, K316H/K337A-FVII, K316H/V158D-FVII, K316H/E296V-FVII, K316H/M298Q-FVII, K316H/V158T-FVII, K316Q/L305V-FVII, K316Q/K337A-FVII, K316Q/V158D-FVII, K316Q/E296V-FVII, K316Q/M298Q-FVII, K316Q/V158T-FVII, S314E/L305V/K337A-FVII, S314E/L305V/V158D-FVII, S314E/L305V/E296V-FVII, S314E/L305V/M298Q-FVII, S314E/L305V/V158T-FVII, S314E/L305V/K337A/V158T-FVII, S314E/L305V/K337A/M298Q-FVII, S314E/L305V/K337A/E296V-FVII, S314E/L305V/K337A/V158D-FVII, S314E/L305V/V158D/M298Q-FVII, S314E/L305V/V158D/E296V-FVII, S314E/L305V/V158T/M298Q-FVII, S314E/L305V/V158T/E296V-FVII, S314E/L305V/E296V/M298Q-FVII, S314E/L305V/V158D/E296V/M298Q-FVII, S314E/L305V/V158T/E296V/M298Q-FVII, S314E/L305V/V158T/K337A/M298Q-FVII, S314E/L305V/V158T/E296V/K337A-FVII, S314E/L305V/V158D/K337A/M298Q-FVII, S314E/L305V/V158D/E296V/K337A-FVII, S314E/L305V/V158D/E296V/M298Q/K337A-FVII, S314E/L305V/V158T/E296V/M298Q/K337A-FVII, K316H/L305V/K337A-FVII, K316H/L305V/V158D-FVII, K316H/L305V/E296V-FVII, K316H/L305V/M298Q-FVII, K316H/L305V/V158T-FVII, K316H/L305V/K337A/V158T-FVII, K316H/L305V/K337A/M298Q-FVII, K316H/L305V/K337A/E296V-FVII, K316H/L305V/K337A/V158D-FVII, K316H/L305V/V158D/M298Q-FVII, K316H/L305V/V158D/E296V-FVII, K316H/L305V/V158T/M298Q-FVII, K316H/L305V/V158T/E296V-FVII, K316H/L305V/E296V/M298Q-FVII, K316H/L305V/V158D/E296V/M298Q-FVII, K316H/L305V/V158T/E296V/M298Q-FVII, K316H/L305V/V158T/K337A/M298Q-FVII, K316H/L305V/V158T/E296V/K337A-FVII, K316H/L305V/V158D/K337A/M298Q-FVII, K316H/L305V/V158D/E296V/K337A-FVII, K316H/L305V/V158D/E296V/M298Q/K337A-FVII, K316H/L305V/V158T/E296V/M298Q/K337A-FVII, K316Q/L305V/K337A-FVII, K316Q/L305V/V158D-FVII, K316Q/L305V/E296V-FVII, K316Q/L305V/M298Q-FVII, K316Q/L305V/V158T-FVII, K316Q/L305V/K337A/V158T-FVII, K316Q/L305V/K337A/M298Q-FVII, K316Q/L305V/K337A/E296V-FVII, K316Q/L305V/K337A/V158D-FVII, K316Q/L305V/V158D/M298Q-FVII, K316Q/L305V/V158D/E296V-FVII, K316Q/L305V/V158T/M298Q-FVII, K316Q/L305V/V158T/E296V-FVII, K316Q/L305V/E296V/M298Q-FVII, K316Q/L305V/V158D/E296V/M298Q-FVII, K316Q/L305V/V158T/E296V/M298Q-FVII, K316Q/L305V/V158T/K337A/M298Q-FVII, K316Q/L305V/V158T/E296V/K337A-FVII, K316Q/L305V/V158D/K337A/M298Q-FVII, K316Q/L305V/V158D/E296V/K337A-FVII, K316Q/L305V/V158D/E296V/M298Q/K337A-FVII, K316Q/L305V/V158T/E296V/M298Q/K337A-FVII, F374Y/K337A-FVII, F374Y/V158D-FVII, F374Y/E296V-FVII, F374Y/M298Q-FVII, F374Y/V158T-FVII, F374Y/S314E-FVII, F374Y/L305V-FVII, F374Y/L305V/K337A-FVII, F374Y/L305V/V158D-FVII, F374Y/L305V/E296V-FVII, F374Y/L305V/M298Q-FVII, F374Y/L305V/V158T-FVII, F374Y/L305V/5314E-FVII, F374Y/K337A/S314E-FVII, F374Y/K337A/V158T-FVII, F374Y/K337A/M298Q-FVII, F374Y/K337A/E296V-FVII, F374Y/K337A/V158D-FVII, F374Y/V158D/S314E-FVII, F374Y/V158D/M298Q-FVII, F374Y/V158D/E296V-FVII, F374Y/V158T/S314E-FVII, F374Y/V158T/M298Q-FVII, F374Y/V158T/E296V-FVII, F374Y/E296V/S314E-FVII, F374Y/S314E/M298Q-FVII, F374Y/E296V/M298Q-FVII, F374Y/L305V/K337A/V158D-FVII, F374Y/L305V/K337A/E296V-FVII, F374Y/L305V/K337A/M298Q-FVII, F374Y/L305V/K337A/V158T-FVII, F374Y/L305V/K337A/S314E-FVII, F374Y/L305V/V158D/E296V-FVII, F374Y/L305V/V158D/M298Q-FVII, F374Y/L305V/V158D/S314E-FVII, F374Y/L305V/E296V/M298Q-FVII, F374Y/L305V/E296V/V158T-FVII, F374Y/L305V/E296V/S314E-FVII, F374Y/L305V/M298Q/V158T-FVII, F374Y/L305V/M298Q/S314E-FVII, F374Y/L305V/V158T/S314E-FVII, F374Y/K337A/S314E/V158T-FVII, F374Y/K337A/S314E/M298Q-FVII, F374Y/K337A/S314E/E296V-FVII, F374Y/K337A/S314E/V158D-FVII, F374Y/K337A/V158T/M298Q-FVII, F374Y/K337A/V158T/E296V-FVII, F374Y/K337A/M298Q/E296V-FVII, F374Y/K337A/M298Q/V158D-FVII, F374Y/K337A/E296V/V158D-FVII, F374Y/V158D/S314E/M298Q-FVII, F374Y/V158D/S314E/E296V-FVII, F374Y/V158D/M298Q/E296V-FVII, F374Y/V158T/5314E/E296V-FVII, F374Y/V158T/S314E/M298Q-FVII, F374Y/V158T/M298Q/E296V-FVII, F374Y/E296V/S314E/M298Q-FVII, F374Y/L305V/M298Q/K337A/S314E-FVII, F374Y/L305V/E296V/K337A/S314E-FVII, F374Y/E296V/M298Q/K337A/S314E-FVII, F374Y/L305V/E296V/M298Q/K337A-FVII, F374Y/L305V/E296V/M298Q/S314E-FVII, F374Y/V158D/E296V/M298Q/K337A-FVII, F374Y/V158D/E296V/M298Q/S314E-FVII, F374Y/L305V/V158D/K337A/S314E-FVII, F374Y/V158D/M298Q/K337A/S314E-FVII, F374Y/V158D/E296V/K337A/S314E-FVII, F374Y/L305V/V158D/E296V/M298Q-FVII, F374Y/L305V/V158D/M298Q/K337A-FVII, F374Y/L305V/V158D/E296V/K337A-FVII, F374Y/L305V/V158D/M298Q/S314E-FVII, F374Y/L305V/V158D/E296V/S314E-FVII, F374Y/V158T/E296V/M298Q/K337A-FVII, F374Y/V158T/E296V/M298Q/S314E-FVII, F374Y/L305V/V158T/K337A/S314E-FVII, F374Y/V158T/M298Q/K337A/S314E-FVII, F374Y/V158T/E296V/K337A/S314E-FVII, F374Y/L305V/V158T/E296V/M298Q-FVII, F374Y/L305V/V158T/M298Q/K337A-FVII, F374Y/L305V/V158T/E296V/K337A-FVII, F374Y/L305V/V158T/M298Q/S314E-FVII, F374Y/L305V/V158T/E296V/S314E-FVII, F374Y/E296V/M298Q/K337A/V158T/S314E-FVII, F374Y/V158D/E296V/M298Q/K337A/S314E-FVII, F374Y/L305V/V158D/E296V/M298Q/S314E-FVII, F374Y/L305V/E296V/M298Q/V158T/S314E-FVII, F374Y/L305V/E296V/M298Q/K337A/V158T-FVII, F374Y/L305V/E296V/K337A/V158T/S314E-FVII, F374Y/L305V/M298Q/K337A/V158T/S314E-FVII, F374Y/L305V/V158D/E296V/M298Q/K337A-FVII, F374Y/L305V/V158D/E296V/K337A/S314E-FVII, F374Y/L305V/V158D/M298Q/K337A/S314E-FVII, F374Y/L305V/E296V/M298Q/K337A/V158T/S314E-FVII, F374Y/L305V/V158D/E296V/M298Q/K337A/S314E-FVII, S52A-Factor VII, S60A-Factor VII; and P11Q/K33E-FVII, T106N-FVII, K143N/N145T-FVII, V253N-FVII, R290N/A292T-FVII, G291N-FVII, R315N/V317T-FVII, K143N/N145T/R315N/V317T-FVII; FVII having substitutions, additions or deletions in the amino acid sequence from 233Thr to 240Asn, FVII having substitutions, additions or deletions in the amino acid sequence from 304Arg to 329Cys, and FVII having substitutions, deletions, additions in the amino acid sequence Ile153-Arg223. - In one embodiment, the Factor VII-related polypeptides are selected from the group consisting of: R152E-Factor VII, S344A-Factor VII, FFR-Factor VII, and Factor VIIa lacking the Gla domain.
- In one embodiment, the Factor VII-related polypeptide exhibit at least about 25%, preferably at least about 50%, more preferably at least about 75% and most preferably at least about 90% of the specific activity of wild-type Factor VIIa that has been produced in the same cell type, when tested in one or more of a clotting assay, proteolysis assay, or TF binding assay as described in the present specification.
- In one embodiment, the Factor VII-related polypeptide exhibit less than about 25%, preferably less than about 10%, more preferably less than about 5% and most preferably less than about 1% of the specific activity of wild-type Factor VIIa that has been produced in the same cell type when tested in one or more of a clotting assay, proteolysis assay, or TF binding assay as described in the present specification.
- In different embodiments, the conjugated polypeptide exhibits a bioavailability that is at least about 110% of the bioavailability of a reference preparation, such as at least about 120%, or at least about 130%, or at least about 140% of the bioavailability of the reference preparation.
- In one embodiment, the conjugated polypeptide exhibits a serum half-life that is at least about 125% of the half-life of a reference preparation, such as at least about 150%, or at least about 200%, or at least about 250% of the half-life of the reference preparation.
- In one embodiment, the conjugated polypeptide is made by enzymatic modification of sialic or galactose moieties in the polypeptide.
- In a further aspect, the invention relates to a method of preparing the preparation of claim 1, the method comprising the step of contacting the oligosaccharide-containing polypeptide with a polymer molecule under conditions in which the at least one polymer molecule is covalently attached to at least one of the oligosaccharide chains of the polypeptides.
- In a still further aspect, the invention relates to a pharmaceutical composition comprising a preparation as defined in any of claims 1-22 and a pharmaceutically acceptable carrier or adjuvant.
- In a still further aspect, the invention relates to the use of a preparation comprising a plurality of Factor VII polypeptides or Factor VII-related polypeptides, wherein the polypeptides comprise asparagine-linked and/or serine-linked oligosaccharide chains, and wherein at least one oligosaccharide group is covalently attached to at least one polymeric group, for the manufacture of a medicament for treating a Factor VII-responsive syndrome.
- In a still further aspect, the invention relates to a method for treating a Factor VII-responsive syndrome, the method comprising administering a pharmaceutical formulation comprising the preparation as described in claims 1-22 to a patient in need of such treatment, under conditions that result in a decrease in bleeding and/or an increase in blood clotting.
- In one embodiment thereof, the syndrome is selected from the group consisting of haemophilia A, haemophilia B, Factor XI deficiency, Factor VII deficiency, thrombocytopenia, von Willebrand's disease, presence of a clotting factor inhibitor, surgery, trauma, anticoagulant therapy, including dilutional coagulopathy, intercranial haemorrhage, stem cell transplantation, upper gastrointestinal bleedings, and liver disease.
- In a still further aspect, the invention relates to a method for preventing unwanted bleeding, the method comprising administering a pharmaceutical formulation comprising the preparation as described in claims 1-22 to a patient in need of such treatment, under conditions that result in a decrease in bleeding and/or an increase in blood clotting.
- In a still further aspect, the invention relates to a method for preventing unwanted blood clotting, the method comprising administering a pharmaceutical formulation comprising the preparation as described in claims 1-22 to a patient in need of such treatment, under conditions effective for inhibiting coagulation.
- In one embodiment thereof, the unwanted blood clotting is associated with a condition selected from the group consisting of: angioplasty, deep vein thrombosis, pulmonary embolism, stroke, disseminated intravascular coagulation (DIC), fibrin deposition in lungs and kidneys associated with gram-negative endotoxemia, and myocardial infarction.
- In a still further aspect, the invention relates to a method for preventing tissue factor mediated reactions, the method comprising administering a pharmaceutical formulation comprising the preparation as described in claims 1-22 to a patient in need of such treatment, under conditions effective for inhibiting coagulation.
- In one embodiment thereof, the tissue factor mediated reactions are associated with a condition selected from the group consisting of inflammation, cancer, tumour growth, metastasis, angiogenesis, SIRS, ALI, ARDS, MOF, HUS, and TTP
- The present inventors have discovered that preparations of coagulation proteins having glycoform patterns wherein at least one oligosaccharide group is covalently linked to at least one polymeric group, such as, e.g., PEG, exhibit improved functional properties. Accordingly, the present invention relates to methods and compositions that provide these conjugate protein preparations. In particular, the invention relates to preparations comprising Factor VII polypeptides and Factor VII-related polypeptides having patterns of asparagine-linked (N-linked) and serine-linked (O-linked) oligosaccharides covalently attached to at least one polymeric group. The preparations of the invention exhibit altered properties, including, without limitation, improved pharmacokinetic properties, and improved clinical efficacy. The invention also encompasses pharmaceutical formulations that comprise these preparations, as well as therapeutic methods that utilize the formulations.
- As used in the present context, the term “covalent attachment” is meant to encompass that the oligosaccharide moiety and the polymeric molecule is either directly covalently joined to one another, or else is indirectly covalently joined to one another through an intervening moiety or moieties, such as a bridge, spacer, or linkage moiety or moieties.
- The term “conjugate”, or interchangeably “conjugate polypeptide”, is intended to indicate a heterogeneous (in the sense of composite or chimeric) molecule formed by the covalent attachment of one or more polypeptides to one or more polymer molecules
- The term “polymeric molecule”, or interchangeably “polymeric group” or “polymeric moiety” or “polymer molecule”, encompasses a molecule that is capable of conjugating to an attachment group of the polypeptide. When used in the context of a conjugate of the invention it will be understood that the polymer molecule (or moiety) is linked to the polypeptide part of the conjugate through an attachment group of a oligosaccharide chain of the glycoprotein; preferably, the polymer molecule is attached to a sialic acid moiety capping the oligosaccharide (“sialic acid capping group”) or to a galactose moiety.
- The polymer molecule is a molecule formed by covalent linkage of two or more monomers wherein none of the monomers is an amino acid residue. Preferred polymers are polymer molecules selected from the group consisting of polyalkylene oxide (PAO), including polyalkylene glycol (PAG), such as polyethylene glycol (PEG) and polypropylene glycol (PPG), branched PEGs, polyvinyl alcohol (PVA), polycarboxylate, poly-vinylpyrolidone, polyethylene-co-maleic acid anhydride, polystyrene-co-maleic acid anhydride, and dextran, including carboxymethyl-dextran, PEG being particularly preferred.
- The term “attachment group” is intended to indicate a functional group of the oligosaccharide moiety capable of attaching a polymer molecule. Useful attachment groups are, for example, amine, hydroxyl, carboxyl, aldehyde, ketone, sulfhydryl, succinimidyl, maleimide, vinylsulfone or haloacetate.
- The attachment group on the oligosaccharide moiety may be activated before reaction with the polymer. Alternatively, a group present on the polymer may be activated before reaction with the oligosaccharide moiety. The activated group, whether present on the oligosaccharide- or polymer moiety may be in the form of an activated leaving group.
- The term activated leaving group includes those moieties which are easily displaced in organic- or enzyme-regulated substitution reactions. Activated leaving groups are known in the art, see, for example, Vocadlo et al., In Carbohydrate Chemistry and Biology, Vol 2, Wiley-VCH Verlag, Germany (2000); Kodama et al., Tetrahedron Letters 34:6419 (1993); Lougheed et al., J.Biol. Chem. 274:37717 (1999).
- Methods and chemistry for activation of polymers are described in the literature. Commonly used methods for activation of polymers include activation of functional groups with cyanogen bromide, periodate, glutaraldehyde, biepoxides, epichlorohydrin, divinylsulfone, carbodiimide, sulfonyl halides, trichlorotriazine, etc. (see, for example, Taylor (1991), Protein Immobilization, Fundamentals and Applications, Marcel Dekker, N.Y.; Wong (1992), Chemistry of protein Conjugation and Crosslinking, CRC Press, Boca Raton; Hermanson et al., (1993), Immobilized Affinity Ligand Techniques, Academic Press, N.Y.; Dunn et al., Eds. Polymeric Drugs and Drug Delivery Systems, ACS Symposium Series Vol. 469, American Chemical Society, 1991.)
- Reactive groups and classes of reactions useful in practising the present invention are generally those which proceed under relatively mild conditions. These include, but are not limited to nucleophilic substitutions (e.g., reaction of amines and alcohols with acyl halides, active esters), electrophilic substitutions (e.g., enamine reactions) and additions to carbon-carbon and carbon-heteroatom bonds (e.g., Michael reaction, Diels-Alder addition). These and other useful reactions are described in, for example, March, Advanced Organic Chemistry, 3rd edition, John Wiley & Sons, N.Y. 1985; Hermanson, Bioconjugate Techniques, Academic Press, San Diego, 1996; Feeney et al, Modifications of Proteins, Advances in Chemistry Series, Vol. 198, American Chemical Society, 1982.
- The reactive functional groups can be chose such that they do not participate in, or interfere with, the reactions necessary to assemble the oligosaccharide and the polymer moiety. Alternatively, a reactive functional group can be protected from participating in the reaction by the presence of a protective group. For examples of useful protecting groups, see, for example, Greene et al., Protective groups in Organic Synthesis, John Wiley & Sons, N.Y., 1991.
- General approaches for linking carbohydrates to other molecules are known in the literature (see, e.g., Lee et al., Biochemistry 28:1856 (1989); Bhatia et al., Anal. Biochem. 178:408 (1989); Janda et al., J.Am.Chem.Soc. 112:8886 (1990); and Bednarski et al., WO 92/18135.
- The term “naturally occurring glycosylation site” is intended to indicate the glycosylation sites at positions Asn-145 (N145), Asn-322 (N322), Ser-52 (S52), and Ser-60 (S60). In a similar way, the term “naturally occurring in vivo O-glycosylation site” includes the positions S52 and S60, whereas the term “naturally occurring in vivo N-glycosylation site” includes the positions N145 and N322.
- The term “functional in vivo half-life” is used in its normal meaning, i.e., the time at which 50% of the biological activity of the polypeptide or conjugate is still present in the body/target organ, or the time at which the activity of the polypeptide or conjugate is 50% of its initial value. As an alternative to determining functional in vivo half-life, “serum half-life” may be determined, i.e., the time at which 50% of the polypeptide or conjugate molecules circulate in the plasma or bloodstream prior to being cleared. Determination of serum-half-life is often more simple than determining functional half-life and the magnitude of serum-half-life is usually a good indication of the magnitude of functional in vivo half-life. Alternative terms to serum half-life include plasma half-life, circulating half-life, circulatory half-life, serum clearance, plasma clearance, and clearance half-life. The polypeptide or conjugate is cleared by the action of one or more of the reticulo-endothelial system (RES), kidney, spleen, or liver, by tissue factor, SEC receptor, or other receptor-mediated elimination, or by specific or unspecific proteolysis. Normally, clearance depends on size (relative to the cut-off for glomerular filtration), charge, attached carbohydrate chains, and the presence of cellular receptors for the protein. The functionality to be retained is normally selected from procoagulant, proteolytic, co-factor binding or receptor binding activity. The functional in vivo half-life and the serum half-life may be determined by any suitable method known in the art as further discussed below (see Functional Properties of Factor VII Preparations-section).
- The term “increased” as used about the functional in vivo half-life or plasma half-life is used to indicate that the relevant half-life of the polypeptide or conjugate is statistically significantly increased relative to that of a reference molecule, such as non-conjugated Factor VIIa (e.g., wild-type FVIIa) as determined under comparable conditions. For instance the relevant half-life may be increased by at least about 25%, such as by at lest about 50%, e.g., by at least about 100%, 150%, 200%, 250%, or 500%.
- “Immunogenicity” of a preparation refers to the ability of the preparation, when administered to a human, to elicit a deleterious immune response, whether humoral, cellular, or both. Factor VIIa polypeptides and Factor VIIa-related polypeptides are not known to elicit detectable immune responses in humans. Nonetheless, in any human sub-population, there may exist individuals who exhibit sensitivity to particular administered proteins. Immunogenicity may be measured by quantifying the presence of anti-Factor VII antibodies and/or Factor VII-responsive T-cells in a sensitive individual, using conventional methods known in the art. In some embodiments, the preparations of the present invention exhibit a decrease in immunogenicity in a sensitive individual of at least about 10%, preferably at least about 25%, more preferably at least about 40% and most preferably at least about 50%, relative to the immunogenicity for that individual of a reference preparation.
- The term “amino acid residues corresponding to amino acid residues S52, S60, N145, N322 of FIG: 1 (FVII wt.)” is intended to indicate the Asn and Ser amino acid residues corresponding to the sequence of wild-type Factor VII (
FIG. 1 ) when the sequences are aligned. Amino acid sequence homology/identity is conveniently determined from aligned sequences, using a suitable computer program for sequence alignment, such as, e.g., the ClustalW program, version 1.8, 1999 (Thompson et al., 1994, Nucleic Acid Research, 22: 4673-4680). - Factor VII Polypeptides and Factor VII-Related Polypeptides
- The present invention encompasses human Factor VII polypeptides, such as, e.g., those having the amino acid sequence disclosed in U.S. Pat. No. 4,784,950 (wild-type Factor VII). As used herein, “Factor VII” or “Factor VII polypeptide” encompasses wild-type Factor VII, as well as variants of Factor VII exhibiting substantially the same or improved biological activity relative to wild-type Factor VII. The term “Factor VII” is intended to encompass Factor VII polypeptides in their uncleaved (zymogen) form, as well as those that have been proteolytically processed to yield their respective bioactive forms, which may be designated Factor VIIa. Typically, Factor VII is cleaved between residues 152 and 153 to yield Factor VIIa.
- As used herein, “Factor VII-related polypeptides” encompasses polypeptides, including variants, in which the Factor VIIa biological activity has been substantially modified or reduced relative to the activity of wild-type Factor VIIa. These polypeptides include, without limitation, Factor VII or Factor VIIa that has been chemically modified and Factor VII variants into which specific amino acid sequence alterations have been introduced that modify or disrupt the bioactivity of the polypeptide.
- The biological activity of Factor VIIa in blood clotting derives from its ability to (i) bind to tissue factor (TF) and (ii) catalyze the proteolytic cleavage of Factor IX or Factor X to produce activated Factor IX or X (Factor IXa or Xa, respectively). For purposes of the invention, Factor VIIa biological activity may be quantified by measuring the ability of a preparation to promote blood clotting using Factor VII-deficient plasma and thromboplastin, as described, e.g., in U.S. Pat. No. 5,997,864. In this assay, biological activity is expressed as the reduction in clotting time relative to a control sample and is converted to “Factor VII units” by comparison with a pooled human serum standard containing 1 unit/ml Factor VII activity. Alternatively, Factor VIIa biological activity may be quantified by (i) measuring the ability of Factor VIIa to produce of Factor Xa in a system comprising TF embedded in a lipid membrane and Factor X. (Persson et al., J. Biol. Chem. 272:19919-19924, 1997); (ii) measuring Factor X hydrolysis in an aqueous system (see, Example 5 below); (iii) measuring its physical binding to TF using an instrument based on surface plasmon resonance (Persson, FEBS Letts. 413:359-363, 1997) (iv) measuring hydrolysis of a synthetic substrate (see, Example 4 below); and (v) measuring generation of thrombin in a TF-independent in vitro system.
- Factor VII variants having substantially the same or improved biological activity relative to wild-type Factor VIIa encompass those that exhibit at least about 25%, preferably at least about 50%, more preferably at least about 75% and most preferably at least about 90% of the specific activity of wild-type Factor VIIa that has been produced in the same cell type, when tested in one or more of a clotting assay, proteolysis assay, or TF binding assay as described above. Factor VII variants having substantially reduced biological activity relative to wild-type Factor VIIa are those that exhibit less than about 25%, preferably less than about 10%, more preferably less than about 5% and most preferably less than about 1% of the specific activity of wild-type Factor VIIa that has been produced in the same cell type when tested in one or more of a clotting assay, proteolysis assay, or TF binding assay as described above. Factor VII variants having a substantially modified biological activity relative to wild-type Factor VII include, without limitation, Factor VII variants that exhibit TF-independent Factor X proteolytic activity and those that bind TF but do not cleave Factor X.
- Variants of Factor VII, whether exhibiting substantially the same or better bioactivity than wild-type Factor VII, or, alternatively, exhibiting substantially modified or reduced bioactivity relative to wild-type Factor VII, include, without limitation, polypeptides having an amino acid sequence that differs from the sequence of wild-type Factor VII by insertion, deletion, or substitution of one or more amino acids.
- Non-limiting examples of Factor VII-related polypeptides having substantially the same or improved biological activity as wild-type Factor VII include S52A-FVII, S60A-FVII (Iino et al., Arch. Biochem. Biophys. 352:182-192, 1998); L305V-FVII, L305V/M306D/D309S-FVII, L3051-FVII, L305T-FVII, F374P-FVII, V158T/M298Q-FVII, V158D/E296V/M298Q-FVII, K337A-FVII, M298Q-FVII, V158D/M298Q-FVII, L305V/K337A-FVII, V158D/E296V/M298Q/L305V-FVII, V158D/E296V/M298Q/K337A-FVII, V158D/E296V/M298Q/L305V/K337A-FVII, K157A-FVII, E296V-FVII, E296V/M298Q-FVII, V158D/E296V-FVII, V158D/M298K-FVII, and S336G-FVII; FVIIa variants exhibiting increased proteolytic stability as disclosed in U.S. Pat. No. 5,580,560; Factor VIIa that has been proteolytically cleaved between
residues 290 and 291 or betweenresidues 315 and 316 (Mollerup et al., Biotechnol. Bioeng. 48:501-505, 1995); oxidized forms of Factor VIIa (Kornfelt et al., Arch. Biochem. Biophys. 363:43-54, 1999), Factor VII-sequence variants wherein the amino acid residue inpositions 290 and/or 291 (ofFIG. 1 ), preferably 290, have been replaced, and Factor VII-sequence variants wherein the amino acid residue inpositions 315 and/or 316 (ofFIG. 1 ), preferably 315, have been replaced. - Non-limiting examples of Factor VII-related polypeptides having substantially the same or improved biological activity as wild-type Factor VII further include: FVII variants having increased biological activity compared to wild-type FVIIa as disclosed in WO 01/83725, WO 02/22776, WO 02/77218, WO 03/27147, and WO 03/37932, including, without limitation, L305V-FVII, L305V/M306D/D309S-FVII, L3051-FVII, L305T-FVII, F374P-FVII, V158T/M298Q-FVII, V158D/E296V/M298Q-FVII, K337A-FVII, M298Q-FVII, V158D/M298Q-FVII, L305V/K337A-FVII, V158D/E296V/M298Q/L305V-FVII, V158D/E296V/M298Q/K337A-FVII, V158D/E296V/M298Q/L305V/K337A-FVII, K157A-FVII, E296V-FVII, E296V/M298Q-FVII, V158D/E296V-FVII, V158D/M298K-FVII, and S336G-FVII, L305V/K337A-FVII, L305V/V158D-FVII, L305V/E296V-FVII, L305V/M298Q-FVII, L305V/V158T-FVII, L305V/K337A/V158T-FVII, L305V/K337A/M298Q-FVII, L305V/K337A/E296V-FVII, L305V/K337A/V158D-FVII, L305V/V158D/M298Q-FVII, L305V/V158D/E296V-FVII, L305V/V158T/M298Q-FVII, L305V/V158T/E296V-FVII, L305V/E296V/M298Q-FVII, L305V/V158D/E296V/M298Q-FVII, L305V/V158T/E296V/M298Q-FVII, L305V/V158T/K337A/M298Q-FVII, L305V/V158T/E296V/K337A-FVII, L305V/V158D/K337A/M298Q-FVII, L305V/V158D/E296V/K337A-FVII, L305V/V158D/E296V/M298Q/K337A-FVII, L305V/V158T/E296V/M298Q/K337A-FVII, S314E/K316H-FVII, S314E/K316Q-FVII, S314E/L305V-FVII, S314E/K337A-FVII, S314E/V158D-FVII, S314E/E296V-FVII, S314E/M298Q-FVII, S314E/V158T-FVII, K316H/L305V-FVII, K316H/K337A-FVII, K316H/V158D-FVII, K316H/E296V-FVII, K316H/M298Q-FVII, K316H/V158T-FVII, K316Q/L305V-FVII, K316Q/K337A-FVII, K316Q/V158D-FVII, K316Q/E296V-FVII, K316Q/M298Q-FVII, K316Q/V158T-FVII, S314E/L305V/K337A-FVII, S314E/L305V/V158D-FVII, S314E/L305V/E296V-FVII, S314E/L305V/M298Q-FVII, S314E/L305V/V158T-FVII, 5314E/L305V/K337A/V158T-FVII, S314E/L305V/K337A/M298Q-FVII, S314E/L305V/K337A/E296V-FVII, S314E/L305V/K337A/V158D-FVII, S314E/L305V/V158D/M298Q-FVII, S314E/L305V/V158D/E296V-FVII, S314E/L305V/V158T/M298Q-FVII, S314E/L305V/V158T/E296V-FVII, S314E/L305V/E296V/M298Q-FVII, S314E/L305V/V158D/E296V/M298Q-FVII, S314E/L305V/V158T/E296V/M298Q-FVII, S314E/L305V/V158T/K337A/M298Q-FVII, S314E/L305V/V158T/E296V/K337A-FVII, S314E/L305V/V158D/K337A/M298Q-FVII, S314E/L305V/V158D/E296V/K337A-FVII, S314E/L305V/V158D/E296V/M298Q/K337A-FVII, S314E/L305V/V158T/E296V/M298Q/K337A-FVII, K316H/L305V/K337A-FVII, K316H/L305V/V158D-FVII, K316H/L305V/E296V-FVII, K316H/L305V/M298Q-FVII, K316H/L305V/V158T-FVII, K316H/L305V/K337A/V158T-FVII, K316H/L305V/K337A/M298Q-FVII, K316H/L305V/K337A/E296V-FVII, K316H/L305V/K337A/V158D-FVII, K316H/L305V/V158D/M298Q-FVII, K316H/L305V/V158D/E296V-FVII, K316H/L305V/V158T/M298Q-FVII, K316H/L305V/V158T/E296V-FVII, K316H/L305V/E296V/M298Q-FVII, K316H/L305V/V158D/E296V/M298Q-FVII, K316H/L305V/V158T/E296V/M298Q-FVII, K316H/L305V/V158T/K337A/M298Q-FVII, K316H/L305V/V158T/E296V/K337A-FVII, K316H/L305V/V158D/K337A/M298Q-FVII, K316H/L305V/V158D/E296V/K337A-FVII, K316H/L305V/V158D/E296V/M298Q/K337A-FVII, K316H/L305V/V158T/E296V/M298Q/K337A-FVII, K316Q/L305V/K337A-FVII, K316Q/L305V/V158D-FVII, K316Q/L305V/E296V-FVII, K316Q/L305V/M298Q-FVII, K316Q/L305V/V158T-FVII, K316Q/L305V/K337A/V158T-FVII, K316Q/L305V/K337A/M298Q-FVII, K316Q/L305V/K337A/E296V-FVII, K316Q/L305V/K337A/V158D-FVII, K316Q/L305V/V158D/M298Q-FVII, K316Q/L305V/V158D/E296V-FVII, K316Q/L305V/V158T/M298Q-FVII, K316Q/L305V/V158T/E296V-FVII, K316Q/L305V/E296V/M298Q-FVII, K316Q/L305V/V158D/E296V/M298Q-FVII, K316Q/L305V/V158T/E296V/M298Q-FVII, K316Q/L305V/V158T/K337A/M298Q-FVII, K316Q/L305V/V158T/E296V/K337A-FVII, K316Q/L305V/V158D/K337A/M298Q-FVII, K316Q/L305V/V158D/E296V/K337A-FVII, K316Q/L305V/V158D/E296V/M298Q/K337A-FVII, K316Q/L305V/V158T/E296V/M298Q/K337A-FVII, F374Y/K337A-FVII, F374Y/V158D-FVII, F374Y/E296V-FVII, F374Y/M298Q-FVII, F374Y/V158T-FVII, F374Y/S314E-FVII, F374Y/L305V-FVII, F374Y/L305V/K337A-FVII, F374Y/L305V/V158D-FVII, F374Y/L305V/E296V-FVII, F374Y/L305V/M298Q-FVII, F374Y/L305V/V158T-FVII, F374Y/L305V/S314E-FVII, F374Y/K337A/S314E-FVII, F374Y/K337A/V158T-FVII, F374Y/K337A/M298Q-FVII, F374Y/K337A/E296V-FVII, F374Y/K337A/V158D-FVII, F374Y/V158D/S314E-FVII, F374Y/V158D/M298Q-FVII, F374Y/V158D/E296V-FVII, F374Y/V158T/S314E-FVII, F374Y/V158T/M298Q-FVII, F374Y/V158T/E296V-FVII, F374Y/E296V/S314E-FVII, F374Y/S314E/M298Q-FVII, F374Y/E296V/M298Q-FVII, F374Y/L305V/K337A/V158D-FVII, F374Y/L305V/K337A/E296V-FVII, F374Y/L305V/K337A/M298Q-FVII, F374Y/L305V/K337A/V158T-FVII, F374Y/L305V/K337A/S314E-FVII, F374Y/L305V/V158D/E296V-FVII, F374Y/L305V/V158D/M298Q-FVII, F374Y/L305V/V158D/S314E-FVII, F374Y/L305V/E296V/M298Q-FVII, F374Y/L305V/E296V/V158T-FVII, F374Y/L305V/E296V/S314E-FVII, F374Y/L305V/M298Q/V158T-FVII, F374Y/L305V/M298Q/S314E-FVII, F374Y/L305V/V158T/S314E-FVII, F374Y/K337A/S314E/V158T-FVII, F374Y/K337A/S314E/M298Q-FVII, F374Y/K337A/S314E/E296V-FVII, F374Y/K337A/S314E/V158D-FVII, F374Y/K337A/V158T/M298Q-FVII, F374Y/K337A/V158T/E296V-FVII, F374Y/K337A/M298Q/E296V-FVII, F374Y/K337A/M298Q/V158D-FVII, F374Y/K337A/E296V/V158D-FVII, F374Y/V158D/S314E/M298Q-FVII, F374Y/V158D/S314E/E296V-FVII, F374Y/V158D/M298Q/E296V-FVII, F374Y/V158T/S314E/E296V-FVII, F374Y/V158T/S314E/M298Q-FVII, F374Y/V158T/M298Q/E296V-FVII, F374Y/E296V/S314E/M298Q-FVII, F374Y/L305V/M298Q/K337A/S314E-FVII, F374Y/L305V/E296V/K337A/S314E-FVII, F374Y/E296V/M298Q/K337A/S314E-FVII, F374Y/L305V/E296V/M298Q/K337A-FVII, F374Y/L305V/E296V/M298Q/S314E-FVII, F374Y/V158D/E296V/M298Q/K337A-FVII, F374Y/V158D/E296V/M298Q/S314E-FVII, F374Y/L305V/V158D/K337A/S314E-FVII, F374Y/V158D/M298Q/K337A/S314E-FVII, F374Y/V158D/E296V/K337A/S314E-FVII, F374Y/L305V/V158D/E296V/M298Q-FVII, F374Y/L305V/V158D/M298Q/K337A-FVII, F374Y/L305V/V158D/E296V/K337A-FVII, F374Y/L305V/V158D/M298Q/S314E-FVII, F374Y/L305V/V158D/E296V/S314E-FVII, F374Y/V158T/E296V/M298Q/K337A-FVII, F374Y/V158T/E296V/M298Q/S314E-FVII, F374Y/L305V/V 158T/K337A/S314E-FVII, F374Y/V158T/M298Q/K337A/S314E-FVII, F374Y/V158T/E296V/K337A/S314E-FVII, F374Y/L305V/V158T/E296V/M298Q-FVII, F374Y/L305V/V158T/M298Q/K337A-FVII, F374Y/L305V/V158T/E296V/K337A-FVII, F374Y/L305V/V158T/M298Q/5314E-FVII, F374Y/L305V/V158T/E296V/S314E-FVII, F374Y/E296V/M298Q/K337A/V158T/S314E-FVII, F374Y/V158D/E296V/M298Q/K337A/S314E-FVII, F374Y/L305V/V158D/E296V/M298Q/S314E-FVII, F374Y/L305V/E296V/M298Q/V158T/S314E-FVII, F374Y/L305V/E296V/M298Q/K337A/V158T-FVII, F374Y/L305V/E296V/K337A/V158T/S314E-FVII, F374Y/L305V/M298Q/K337A/V158T/S314E-FVII, F374Y/L305V/V158D/E296V/M298Q/K337A-FVII, F374Y/L305V/V158D/E296V/K337A/S314E-FVII, F374Y/L305V/V158D/M298Q/K337A/S314E-FVII, F374Y/L305V/E296V/M298Q/K337A/V158T/S314E-FVII, F374Y/L305V/V158D/E296V/M298Q/K337A/S314E-FVII, S52A-Factor VII, S60A-Factor VII; and P11Q/K33E-FVII, T106N-FVII, K143N/N145T-FVII, V253N-FVII, R290N/A292T-FVII, G291N-FVII, R315N/V317T-FVII, K143N/N145T/R315N/V317T-FVII; FVII having substitutions, additions or deletions in the amino acid sequence from 233Thr to 240Asn, FVII having substitutions, additions or deletions in the amino acid sequence from 304Arg to 329Cys, and FVII having substitutions, deletions, additions in the amino acid sequence Ile153-Arg223.
- Non-limiting examples of Factor VII-related polypeptides having substantially reduced or modified biological activity relative to wild-type Factor VII include R152E-FVIIa (Wildgoose et al., Biochem 29:3413-3420, 1990), S344A-FVIIa (Kazama et al., J. Biol. Chem. 270:66-72, 1995), FFR-FVIIa (Hoist et al., Eur. J. Vasc. Endovasc. Surg. 15:515-520, 1998), Factor VIIa lacking the Gla domain, (Nicolaisen et al., FEBS Letts. 317:245-249, 1993); and Factor VII wherein Lys341 has been replaced by Ala. Non-limiting examples of chemically modified Factor VII polypeptides and sequence variants are described, e.g., in U.S. Pat. No. 5,997,864.
- Glycosylation
- As used herein, a “pattern” of glycosylation or a glycoform “pattern”, “distribution”, or “spectrum” refers to the representation of particular oligosaccharide structures within a given population of Factor VII polypeptides or Factor VII-related polypeptides. Non-limiting examples of such patterns include the relative proportion of oligosaccharide chains that (i) have at least one sialic acid residue; (ii) lack any sialic acid residues (i.e., are neutral in charge); (iii) have at least one terminal galactose residue; (iv) have at least one terminal N-acetylgalactosamine residue; (v) have at least one “uncapped” antenna, i.e., have at least one terminal galactose or N-acetylgalactosamine residue; or (vi) have at least one fucose linked α1->3 to an antennary N-acetylglucosamine residue.
- As used herein, an “oligosaccharide chain” refers to the entire oligosaccharide structure that is covalently linked to a single amino acid residue. Factor VII is normally glycosylated at
Asn 145 and Asn 322 (N-linked glycosylation) and Ser-52 and Ser-60 (O-linked glycosylation). An N-linked oligosaccharide chain present on Factor VII produced in a human in situ may be bi-, tri, or tetra-antennary, with each antenna having the structure Neu5Ac(α2->3 or α2->6)Gal(β1->4) GlcNAc linked (β1->2,4, or 6) to a Man residue which is linked (α1->3 or 6) to Man(β1->4)GlcNAc(β1->4)GlcNAc-Asn. (Neu5Ac signifies N-acetylneuraminic acid (sialic acid), Gal signifies galactose, GlcNAc signifies N-acetylglucosamine, and Man signifies mannose). The oligosaccharide chains may also comprise fucose residues, which may be linked a 1->6 to GlcNAc. - An O-linked oligosaccharide chain present on Factor VII produced in a human in situ is mono-antennary with the Ser-52 antenna having the structure Xyl-Xyl-Glc-Ser or Glc-Ser, and the Ser-60 antenna having the structure Neu5Ac(α2->3 or α2->6)Gal(β1->4)GlcNAc-Fuc-Ser or Fuc-Ser (Fuc signifies fucose, Glc signifies glucose, and Xyl signifies xylose).
- When Factor VII is produced in a human in situ, some of the N-linked oligosaccharide chains lack core fucose residues; all of the chains lack antennary fucose residues; and both of the N-linked chains are almost completely sialylated, i.e., the terminal sugar of each antenna is N-acetyineuraminic acid linked to galactose via an α2->3 or α2->6 linkage.
- When produced in other circumstances, however, Factor VII may contain oligosaccharide chains having different terminal structures on one or more of their antennae, such as, e.g., lacking sialic acid residues; containing N-glycolylneuraminic acid (Neu5Gc) residues; containing a terminal N-acetylgalactosamine (GalNAc) residue in place of galactose; and the like. When produced in, e.g., BHK cells cultured in the presence of calf serum, Factor VII preparations exhibit the following oligosaccharide patterns: 87-93% of the oligosaccharide chains contain at least a single sialic acid residue; 7-13% are neutral (lack any sialic acid); 9-16% contain at least one terminal galactose residue; 19-29% contain at least one terminal N-acetylgalactosamine residue; and 30-39% contain at least one uncapped antenna, i.e., contain at least one terminal galactose or N-acetylgalactosamine residue.
- When produced in other types of cells or under other culturing conditions (in a serum-free, fully chemical defined medium), a Factor VII preparation may exhibit the following oligosaccharide patterns (as disclosed in WO 02/29025):
-
- (i) Between about 94-100% of the oligosaccharide chains contain at least one sialic acid residue, such as, e.g., between about 94-99%, between about 95-98%, or between about 96-97%. In different embodiments, at least about 94%, 95%, 96%, or 97% of the oligosaccharide chains contain at least one sialic acid residue.
- (ii) 6% or less of the oligosaccharide chains are neutral, such as, e.g., between about 1.5-6% or between about 2-4%.
- (iii) Less than about 16%, preferably less than about 10% of the oligosaccharide chains contain at least one terminal galactose, such as, e.g., between about 6-10% or between about 8-9%;
- (iv) Less than about 25%, preferably less than about 10% of the oligosaccharide chains contain at least one terminal GalNAc residue, such as, e.g., between about 6-9% or between about 7-8%;
- (v) Less than about 30, preferably less than about 25% of the oligosaccharide chains contain at least one uncapped antenna, such as, e.g., between about 11-23% or between about 12-18%; and
- (vi) At least about 2%, preferably at least about 5%, more preferably, at least about 10% or 20%; and most preferably, at least about 40%, of the oligosaccharide chains contain at least one fucose linked (α1->3 to an antennary N-acetylglucosamine residue (i.e., an N-acetylglucosamine residue that is linked β1->2,4, or 6 to a Man residue).
- Furthermore, the degree of sialylation (i.e., the number of sialic acid residues attached to each oligosaccharide chain) can be improved by subjecting the expressed Factor VII or Factor VII-related polypeptide-preparation to in vitro enzymatic treatment with a sialyltransferase and an sialic acid donor molecule, e.g., as described in U.S. Pat. No. 6,399,336. In this way, substantially all antennas on the oligosaccharide chains may be sialylated (i.e., “capped” with a sialic acid residue). In some cases, the N-glucans on FVII or FVII related polypeptide is also not fully galactosylated, and a galactosylation step involving galactosyl transferase and UDP-galactose donor substrate prior to the sialylation step will improve the sialic acid content of the product.
- The present inventors have produced Factor VII preparations containing oligosaccharide patterns containing at least one polymeric group covalently attached to at least one oligosaccharide group. In one embodiment thereof, the preparations comprise Factor VII polypeptides or Factor VII-related polypeptides exhibiting one or more of the following glycoform patterns:
-
- (i) Between about 94-100% of the oligosaccharide chains contain at least one sialic acid residue, such as, e.g., between about 94-99%, between about 95-98%, or between about 96-97%. In different embodiments, at least about 94%, 95%, 96%, 97%, 98, or 99% of the oligosaccharide chains contain at least one sialic acid residue.
- (ii) 6% or less of the oligosaccharide chains are neutral, such as, e.g., between about 0.5-6% or between 1.5-6% or between about 2-4% or between 0.5-4% or between 0.5-2%;
- (iii) Less than about 16%, preferably less than about 10% of the oligosaccharide chains contain at least one terminal galactose, such as, e.g., between about 6-10% or between about 8-9%;
- (iv) Less than about 25%, preferably less than about 10% of the oligosaccharide chains contain at least one terminal GalNAc residue, such as, e.g., between about 6-9% or between about 7-8%;
- (v) Less than about 30, preferably less than about 25% of the oligosaccharide chains contain at least one uncapped antenna, such as, e.g., between about 11-23% or between about 12-18%; and
- (vi) At least about 2%, preferably at least about 5%, more preferably at least about 10% or 20%; and most preferably, at least about 40%, of the oligosaccharide chains contain at least one fucose linked α1->3 to an antennary N-acetylglucosamine residue (i.e., an N-acetylglucosamine residue that is linked β1->2,4, or 6 to a Man residue).
- It will be understood that each of (i)-(vi) may represent a distinct glycoform pattern that is encompassed by embodiments of the present invention, i.e., the glycoform pattern of a preparation in accordance with the present invention wherein at least one polymeric group is covalently attached to at least one oligosaccharide may be described by only one of (i)-(vi). Alternatively, the glycoform pattern of a preparation encompassed by the invention may be described by more than one of (i)-(vi).
- Furthermore, a preparation encompassed by the invention may be described by one or more of (i)-(vi) in combination with one or more other structural features. For example, the invention encompasses preparations comprising Factor VII polypeptides or Factor VII-related polypeptides in which the sialic acid residues (Neu5Ac or Neu5Gc) are linked to galactose exclusively in an α2->3 configuration. The invention also encompasses preparations comprising Factor VII polypeptides or Factor VII-related polypeptides that contain fucose linked a 1->6 to a core N-acetylglucosamine and/or fucose linked α1->3 to an antennary N-acetylglucosamine. In one series of embodiments, the preparations of the invention encompass Factor VII or Factor VII-related polypeptides in which more than 99% of the oligosaccharide chains contain at least one sialic acid residue and (a) the sialic acid residues are linked exclusively in an α2->3 configuration and/or (b) there are fucose residues linked to core N-acetylglucosamines and/or (c) a detectable number of antenna terminate in N-acetylgalactosamine. In one embodiment, the invention encompasses preparations comprising wild-type Factor VIIa in which more than 99% of the oligosaccharide chains contain at least one sialic acid residue and the sialic acid residues are linked to galactose exclusively in an α2->3 configuration. In another embodiment, the invention encompasses preparations comprising wild-type Factor VIIa in which more than 99% of the oligosaccharide chains contain at least one sialic acid residue and at least some of the oligosaccharide chains comprise N-acetylgalactosamine.
- The pattern of N-linked and/or O-linked oligosaccharides may be determined using any method known in the art, including, without limitation: high-performance liquid chromatography (HPLC); capillary electrophoresis (CE); nuclear magnetic resonance (NMR); mass spectrometry (MS) using ionization techniques such as fast-atom bombardment, electrospray, or matrix-assisted laser desorption (MALDI); gas chromatography (GC); and treatment with exoglycosidases in conjunction with anion-exchange (AIE)-HPLC, size-exclusion chromatography (SEC), mass spectroscopy (MS), gel electrophoresis (SDS-PAGE, CE-PAGE), isoelectric focusing gels, or iso-electric focusing capillary electrophoresis (CE-IEF) See, e.g., Weber et al., Anal. Biochem. 225:135 (1995); Klausen et al., J. Chromatog. 718:195 (1995); Morris et al., in Mass Spectrometry of Biological Materials, McEwen et al., eds., Marcel Dekker, (1990), pp 137-167; Conboy et al., Biol. Mass Spectrom. 21:397, 1992; Hellerqvist, Meth. Enzymol. 193:554 (1990); Sutton et al., Anal. Biohcem. 318:34 (1994); Harvey et al., Organic Mass Spectrometry 29:752 (1994).
- Following resolution of Factor VII-derived oligosaccharide chains using any of the above methods (or any other method that resolves oligosaccharide chains having different structures), the resolved species are assigned, e.g., to one of groups (i)-(vi). The relative content of each of (i)-(vi) is calculated as the sum of the oligosaccharides assigned to that group relative to the total content of oligosaccharide chains in the sample.
- For example, using AIE-HPLC, 13 or more N-linked oligosaccharide peaks can be resolved from a recombinant Factor VII preparation produced in BHK cells (see, e.g., Klausen et al., Mol. Biotechnol. 9:195, 1998). Five of the peaks (designated 1-5 in Klausen et al.) do not contain sialic acid, while eight of the peaks (designated 6, 7, and 10-15) do contain sialic acid.
- It will be understood that, in a given analysis, the number and distribution of sialic acid-containing and sialic acid-lacking chains may depend upon (a) the polypeptide being expressed; (b) the cell type and culture conditions; (c) any modification of glycoform pattern by chemical and/or enzymatic treatment following expression, and (d) the method of analysis that is employed, and that the resulting patterns may vary accordingly.
- In any case, once the sialic acid-containing oligosaccharides have been resolved from the non-sialic acid-containing oligosaccharides, conventional data analysis programs are used to calculate the area under each peak; the total peak area; and the percentage of the total peak area represented by a particular peak. In this manner, for a given preparation, the sum of the areas of sialic acid-containing peaks/total peak area×100 yields the % sialylation value for the preparation according to the present invention (i.e., the proportion of oligosaccharide chains having at least one sialic acid residue). In a similar manner, the % of chains having no sialic acid or at least one galactose or N-acetylglucosamine can be calculated.
- Polymers
- The polymer molecule to be coupled to the polypeptide may be any suitable molecule, such as a natural or synthetic homo-polymer or hetero-polymer, typically with a molecular weight in the range of about 300-100,000 Da, such as about 500-20,000 Da., or about 500-15,000 Da, or 2-15 kDa, or 3-15 kDa, or 3-12 kDa, or about 10 kDa. When the term “about” is used herein in connection with a certain molecular weight the word “about” indicates an approximate average molecular weight distribution in a given polymer preparation.
- Examples of homo-polymers include polyalcohols (i.e., poly-OH), polyamines (i.e., polyNH2) and polycarboxylic acids (i.e., poly-COOH). A hetero-polymer is a polymer comprising different coupling groups such as a hydroxyl group and an amine group.
- Examples of suitable polymer molecules include polymer molecules selected from the group consisting of polyalkylene oxide (PAO), including polyalkylene glycol (PAG), such as polyethylene glycol (PEG) and polypropylene glycol (PPG), branched PEGs, polyvinyl alcohol (PVA), polycarboxylate, poly-vinylpyrolidone, polyethylene-co-maleic acid anhydride, polystyrene-comaleic acid anhydride, dextran, including carboxymethyl-dextran, polyurethaner, polyestre and polyamider, or any other polymer suitable for reducing immunicenicity and/or increasing functional in vivo half-life and/or serum-half-life. Generally, polyalkyleneglycol-derived polymers are biocompatible, non-toxic, non-antigenic, and non-immunogenic, have various water solubility properties, and are easily secreted from living organisms.
- PEG is the preferred polymer molecule, since it has only few reactive groups capable of cross-linking compared to, e.g., polysaccharides such as dextran. In particular, mono-functional PEG, e.g., methoxypolyethylene glycol (mPEG) is of interest since its coupling chemistry is relatively simple (only one reactive group is available for conjugating with attachment groups on the oligosaccharide). Consequently, the risk of cross-linking is eliminated, the resulting polypeptide conjugates are more homogeneous and the reaction of the polymer molecules with the polypeptide is easier to control.
- To effect covalent attachment of the polymer molecule(s) to the polypeptide, the hydroxyl end groups of the polymer molecule must be provided in activated form, i.e. with reactive functional groups (examples of which include primary amino groups, hydrazide (HZ), thiol, succinate (SUC), succinimidyl succinate (SS), succinimidyl succinamide (SSA), succinimidyl proprionate (SPA), succinimidy carboxymethylate (SCM), benzotriazole carbonate (BTC), N-hydroxysuccinimide (NHS), aldehyde, nitrophenylcarbonate (NPC), and tresylate (TRES)). Suitable activated polymer molecules are commercially available, e.g. from Shearwater Polymers, Inc., Huntsville, Ala., USA, or from PolyMASC Pharmaceuticals pic, UK. Alternatively, the polymer molecules can be activated by conventional methods known in the art, e.g. as disclosed in WO 90/13540. Specific examples of activated linear or branched polymer molecules for use in the present invention are described in the Shearwater Polymers, Inc. 1997 and 2000 Catalogs (Functionalized Biocompatible Polymers for Research and pharmaceuticals, Polyethylene Glycol and Derivatives, incorporated herein by reference).
- Specific examples of activated PEG polymers include the following linear PEGs: NHS-PEG (e.g. SPA-PEG, SSPA-PEG, SBA-PEG, SS-PEG, SSA-PEG, SC-PEG, SG-PEG, and SCM-PEG), and NOR-PEG, BTC-PEG, EPOX-PEG, NCO-PEG, NPC-PEG, CDI-PEG, ALD-PEG, TRES-PEG, VS-PEG, IODO-PEG, and MAL-PEG, and branched PEGs such as PEG2-NHS and those disclosed in U.S. Pat. No. 5,932,462 and U.S. Pat. No. 5,643,575, both of which are incorporated herein by reference. Furthermore, the following publications, incorporated herein by reference, disclose useful polymer molecules and/or PEGylation chemistries: U.S. Pat. No. 5,824,778, U.S. Pat. No. 5,476,653, WO 97/32607, EP 229,108, EP 402,378, U.S. Pat. No. 4,902,502, U.S. Pat. No. 5,281,698, U.S. Pat. No. 5,122,614, U.S. Pat. No. 5,219,564, WO 92/16555, WO 94/04193, WO 94/14758, WO 94/17039, WO 94/18247, WO 94/28024, WO 95/00162, WO 95/11924, W095/13090, WO 95/33490, WO 96/00080, WO 97/18832, WO 98/41562, WO 98/48837, WO 99/32134, WO 99/32139, WO 99/32140, WO 96/40791, WO 98/32466, WO 95/06058, EP 439 508, WO 97/03106, WO 96/21469, WO 95/13312, EP 921 131, U.S. Pat. No. 5,736,625, WO 98/05363, EP 809 996, U.S. Pat. No. 5,629,384, WO 96/41813, WO 96/07670, U.S. Pat. No. 5,473,034, U.S. Pat. No. 5,516,673, EP 605 963, U.S. Pat. No. 30 5,382,657, EP 510 356,
EP 400 472, EP 183 503 and EP 154 316. - The conjugation of the oligosaccharide chains of the polypeptide and the activated polymer molecules is conducted by use of any conventional method. Conventional methods are known to the skilled artisan.
- The skilled person will be aware that the activation method and/or conjugation chemistry to be used depends on the attachment group(s) of the oligosaccharide(s) as well as the functional groups of the polymer molecule (e.g., being amine, hydroxyl, carboxyl, aldehyde, ketone, sulfhydryl, succinimidyl, maleimide, vinylsulfone or haloacetate).
- It will be understood that the polymer conjugation is designed so as to produce the optimal molecule with respect to the number of polymer molecules attached, the size and form of such molecules (e.g, whether they are linear or branched), and the attachment site(s) in the oligosaccharide chain(s). The molecular weight of the polymer to be used may e.g., be chosen on the basis of the desired effect to be achieved. For instance, if the primary purpose of the conjugation is to achieve a conjugate having a high molecular weight (e.g., to reduce renal clearance) it is usually desirable to conjugate as few high molecular weight polymer molecules as possible to obtain the desired molecular weight.
- It is also contemplated according to the invention to couple the polymer molecules to the polypeptide through a linker. Suitable linkers are well known to the skilled person. A preferred example is cyanuric chloride (Abuchowski et al., (1977), J. Biol. Chem., 252, 3578-3581; U.S. Pat. No. 4,179,337; Shafer et al., (1986), J. Polym. Sci. Polym. Chem. Ed., 24, 375-378). Subsequent to the conjugation, residual activated polymer molecules are blocked according to methods known in the art, e.g. by addition of primary amine to the reaction mixture, and the resulting inactivated polymer molecules are removed by a suitable method. Such methods are well known to the skilled person; see, e.g., March, Advanced Organic Chemistry, 3rd edition, John Wiley & Sons, N.Y. 1985; Greene et al., Protective groups in Organic Synthesis, John Wiley & Sons, N.Y., 1991; Taylor (1991), Protein Immobilization, Fundamentals and Applications, Marcel Dekker, N.Y.; Wong (1992), Chemistry of protein Conjugation and Crosslinking, CRC Press, Boca Raton; Hermanson et al., (1993), Immobilized Affinity Ligand Techniques, Academic Press, N.Y.; Dunn et al., Eds. Polymeric Drugs and Drug Delivery Systems, ACS Symposium Series Vol. 469, American Chemical Society, 1991.).
- It will be understood that depending on the circumstances, e.g. the amino acid sequence of the polypeptide, the nature of the activated PEG compound being used and the specific PEGylation conditions, including the molar ratio of PEG to polypeptide, varying degrees of PEGylation may be obtained, with a higher degree of PEGylation generally being obtained with a higher ratio of PEG to polypeptide. The PEGylated polypeptides resulting from any given PEGylation process will, however, normally comprise a stochastic distribution of polypeptide conjugates having slightly different degrees of PEGylation.
- In an interesting embodiment of the invention the polypeptide conjugate of the present invention comprises a polymer molecule covalently attached to one of the sialic acid groups located at the terminal end of a oligosaccharide group of a Factor VII polypeptide, where said polymer molecule is the only polymer molecule attached to the polypeptide. In another embodiment, two polymer molecules are covalently bound to one or more oligosaccharide group(s) of the Factor VII polypeptide; in other embodiments, three, four, five, six, or seven polymer molecules are covalently attached to the Factor VII polypeptide.
- In one embodiment, the Factor VII polypeptide is the wild-type FVII or FVIIa polypeptide shown in FIG: 1; in another embodiment, the Factor VII polypeptide is a Factor VII-related polypeptide; in one embodiment thereof, the Factor VII-related polypeptide is a Factor VII amino acid sequence variant.
- Preferably, such polypeptide conjugates are ones, which comprise a single PEG molecule. In particular, a linear or branched PEG molecule with a molecular weight of at least about 5 kDa, in particular about 10-25 kDa, such as about 15-25 kDa, e.g. about 20 kDa or about 10 kDa is preferred.
- Preferably, in a conjugate of the invention the number and molecular weight of the polymeric molecule is chosen so as that the total molecular weight added by the polymeric molecule is in the range of 5-25 kDa, such as, e.g., in the range of 10-25 kDa, about 5 kDa, about 10 kDa, about 15 kDa, or about 20 kDa.
- Methods for Producing Polymer-Attached Factor VII Preparations having a Predetermined Pattern of Oligosaccharides
- Methods for producing Factor VII preparations: Factor VII, Factor VII variants, or Factor VII-related polypeptides, may be produced using any appropriate host cell that expresses glycosylated Factor VII or Factor VII-related polypeptides (i.e., host cells capable of attaching oligosaccharide groups at the glycosylation sites of the polypeptide). Factor VII may also be isolated from plasma from humans or other species.
- In some embodiments, the host cells are human cells expressing an endogenous Factor VII gene. In these cells, the endogenous gene may be intact or may have been modified in situ, or a sequence outside the Factor VII gene may have been modified in situ to alter the expression of the endogenous Factor VII gene. Any human cell capable of expressing an endogenous Factor VII gene may be used.
- In other embodiments, heterologous host cells are programmed to express human Factor VII from a recombinant gene. The host cells may be vertebrate, insect, or fungal cells. Preferably, the cells are mammalian cells capable of the entire spectrum of mammalian N-linked glycosylation; O-linked glycosylation; and γ-carboxylation. See, e.g., U.S. Pat. Nos. 4,784,950. Preferred mammalian cell lines include the CHO (ATCC CCL 61), COS-1 (ATCC CRL 1650), baby hamster kidney (BHK) and HEK293 (ATCC CRL 1573; Graham et al., J. Gen. Virol. 36:59-72, 1977) cell lines. A preferred BHK cell line is the tk− ts13 BHK cell line (Waechter and Baserga, Proc.Natl.Acad.Sci.USA 79:1106-1110, 1982), hereinafter referred to as BHK 570 cells. The BHK 570 cell line is available from the American Type Culture Collection, 12301 Parklawn Dr., Rockville, Md. 20852, under ATCC accession number CRL 10314. A tk− ts13 BHK cell line is also available from the ATCC under accession number CRL 1632. In addition, a number of other cell lines may be used, including Rat Hep I (Rat hepatoma; ATCC CRL 1600), Rat Hep II (Rat hepatoma; ATCC CRL 1548), TCMK (ATCC CCL 139), Human lung (ATCC HB 8065), NCTC 1469 (ATCC CCL 9.1) and DUKX cells (CHO cell line) (Urlaub and Chasin, Proc. Natl. Acad. Sci. USA 77:4216-4220, 1980). (DUKX cells also referred to as CXB11 cells), and DG44 (CHO cell line) (Cell, 33:405, 1983, and Somatic Cell and Molecular Genetics 12:555, 1986). Also useful are 3T3 cells, Namalwa cells, myelomas and fusions of myelomas with other cells. In a particularly preferred embodiment, the host cells are BHK 21 cells that have been adapted to grow in the absence of serum and have been programmed to express Factor VII. In some embodiments, the cells may be mutant or recombinant cells that express a qualitatively or quantitatively different spectrum of glycosylation enzymes (such as, e.g., glycosyl transferases and/or glycosidases) than the cell type from which they were derived. The cells may also be programmed to express other heterologous peptides or proteins, including, e.g., truncated forms of Factor VII. In one embodiment, the host cells are CHO cells that have been programmed to co-express both the Factor VII polypeptide of interest (i.e., Factor VII or a Factor-VII-related polypeptide) and another heterologous peptide or polypeptide such as, e.g., a modifying enzyme or a Factor VII fragment.
- The methods for producing a preparation of Factor VII comprising any of the glycoform patterns described above as (i)-(vi) and methods for optimizing the glycoform distribution of Factor VII and Factor VII-related polypeptides may be carried out by the steps of:
-
- (a) culturing a cell expressing Factor VII or Factor VII-related polypeptides under a first set of predetermined culture conditions;
- (b) recovering Factor VII or Factor VII-related polypeptides from the culture to obtain a preparation comprising the polypeptides; and
- (c) analyzing the structure of the oligosaccharides linked to the polypeptides to determine a glycoform pattern.
- The methods may further comprise:
-
- (d1) altering the culture conditions of step (a) to achieve a second set of predetermined culture conditions;
- (e1) repeating steps (b)-(d1) until a desired glycoform pattern is achieved;
- (f1) contacting the Factor VII or Factor VII-related polypeptides with a polymer molecule under conditions in which the polymer molecule is covalently attached to the oligosaccharide group of the polypeptide.
- Alternatively, the methods may further comprise
-
- (d2) treating the preparation chemically and/or enzymatically to alter the oligosaccharide structure; and
- (e2) repeating steps (b)-(d2) until a desired glycoform pattern is achieved.
- These methods may further comprise the step of subjecting preparations having predetermined glycoform patterns to at least one test of bioactivity (including, e.g., clotting, Factor X proteolysis, or TF binding) or other functionality (such as, e.g., pharmacokinetic profile or stability), and correlating particular glycoform patterns with particular bioactivity or functionality profiles in order to identify a desired glycoform pattern.
- The variables in the culture conditions that may be altered in step (d1) include, without limitation: the cell of origin, such as, e.g., a cell derived from a different species than originally used; or a mutant or recombinant cell having alterations in one or more glycosyltransferases or glycosidases or other components of the glycosylation apparatus (see, Grabenhorst et al., Glyco-conjugate J. 16:81, 1999; Bragonzi et al., Biochem. Biophys. Acta 1474:273, 2000; Weikert, Nature Biotechnol. 17:1116, 1999); the level of expression of the polypeptide; the metabolic conditions such as, e.g., glucose or glutamine concentration; the absence or presence of serum; the concentration of vitamin K; protein hydrolysates, hormones, trace metals, salts as well as process parameters like temperature, dissolved oxygen level and pH.
- The enzymatic treatments that may be used in step (d2) to modify the oligosaccharide pattern of a preparation include, without limitation, treatment with one or more of sialidase (neuramimidase), galactosidase, fucosidase; galactosyl transferase, fucosyl transferase, and/or sialyltransferase, in a sequence and under conditions that achieve a desired modification in the distribution of oligosaccharide chains having particular terminal structures. Glycosyl transferases are commercially available from Calbiochem (La Jolla, Calif.) and glycosidases are commercially available from Glyko, Inc., (Novato, Calif.).
- In one series of embodiments, host cells expressing Factor VII or a related polypeptide are subjected to specific culture conditions in which they secrete glycosylated Factor VII polypeptides having the desired pattern of oligosaccharide structures described above as any of (i)-(vi). Such culture conditions include, without limitation, a reduction in, or complete absence of, serum. Preferably, the host cells are adapted to grow in the absence of serum and are cultured in the absence of serum both in the growth phase and in the production phase. Such adaptation procedures are described, e.g., in Scharfenberg, et al., Animal Cell Technology Developments towards the 21st Century, E. C. Beuvery et al. (Eds.), Kluwer Academic Publishers, pp. 619-623, 1995 (BHK and CHO cells); Cruz, Biotechnol. Tech. 11:117-120, 1997 (insect cells); Keen, Cytotechnol. 17:203-211, 1995 (myeloma cells); Berg et al., Biotechniques 14:972-978, 1993 (human kidney 293 cells). In a preferred embodiment, the growth medium that is added to the cells contains no protein or other component that was isolated from an animal tissue or an animal cell culture. See, e.g., Example 1 below. Typically, in addition to conventional components, a medium suitable for producing Factor VII contains Vitamin K at a concentration between 0.1-50 mg/liter, which is required for γ-carboxylation of glutamine residues in Factor VII.
- In another series of embodiments, the glycoforms are produced by subjecting a preparation of Factor VII or Factor VII-related polypeptides to enzymatic and/or chemical modification of the N-linked and/or O-linked oligosaccharides contained therein, such as subjecting the preparation to modification by a sialyltransferase or a galactosyl transferase, such as described, e.g. in U.S. Pat. No. 6,399,336. Preferably, the N-linked oligosaccharides are modified. A sialyltransferase is capable of sialylating a high percentage of acceptor groups (e.g., terminal galactose) on a glycoprotein. The desired result is usually obtained by using about 50 mU of sialyltransferase per mg of glycoprotein or less. Typically, the oligosaccharide chains on a glycoprotein having their glycoform patterns altered by this method, will as a result have a greater percentage of terminal galactose residues sialylated than the unaltered polypeptide. Essentially, 100% percent of the terminal galactose residues may be sialylated following use of these methods. The methods are typically capable of achieving the desired level of sialylation in about 48 hours or less. Preferably, for glycosylation of N-linked carbohydrates of glycoproteins the sialyltransferase will be able to transfer sialic acid to the sequence Gal(β1-<4)GlcNAc-, the most common penultimate sequence underlying the terminal sialic acid on fully sialylated carbohydrate structures. Examples of sialyltransferases that use Gal(β1->4)GlcNAc- as an acceptor group are ST3Gal III, ST3Gal IV, and ST3Gal V (attach NeuAc by an α2->3 linkage) and ST6Gal I and ST6Gal II (attach NeuAc by an α2->6 linkage) (see U.S. Pat. No. 6,399,336). (Sialyltransferase nomenclature is described in Tsuji et al., Glycobiology 6:v-xiv (1996)).
- Thus, a mixture of the two enzymes may be of value if both linkages are desired in the final product. In short, the silaylation of the glycoprotein is accomplished using, for example, a sialytransferase cycle, which includes a CMP-sialic acid synthetase. The CMP-regenerating system in this cycle comprises cytidine monophosphate (CMP), a nucleoside triphosphate, a phosphate donor, a kinase capable of transferring phosphate from the phosphate donor to the nucleoside diphosphates and a nucleoside monophosphate kinase capable of transferring the terminal phosphate from a nucleoside triphosphate to CMP. The regenerating system also employs CMP-sialic acid synthetase, which transfers sialic acid to CMP. In the sialylation cycle, CMP is converted to CDP by nucleoside monophosphate kinase in the presence of added ATP. ATP is catalytically regenerated from its byproduct, ADP, by pyruvate kinase (PK) in the presence of added phosphoenolpyruvate (PEP). CDP is further converted to CTP, which conversion is catalyzed by PK in the presence of PEP. CTP reacts with sialic acid to form inorganic pyrophosphate (PPi) and CMP-sialic acid, the latter reaction being catalyzed by CMP-sialic acid synthetase. Following sialylation of the galactosyl glucoside, the released CMP re-enters the regenerating system to rform CDP, CTP and CMP-sialic acid. The formed PPi is scavenged and forms inorganic phosphate as a byproduct. Pyruvate is also a byproduct. Bacause of the self-contained and cyclic character of the method, once all the reactants and enzymes are present, the reaction continues until the first of the substrates (e.g., free NeuAc and PEP, or the acceptor) is consumed. Sialyltransferase cycles are described e.g., in U.S. Pat. No. 5,374,541 and U.S. Pat. No. 6,399,336.
- Acceptors for the sialyltransferase will be present on the glycoprotein to be modified. Suitable acceptors include, for example, Gal(β1->4)GlcNAc-, Gal(β1->4)GalNAc-, Gal(β1->3)GalNAc-, Gal(β1->3)GlcNAc-, Gal(β1->6)GlcNAc-, Gal(β1->4)Glc- and other acceptors known to those skilled in the art (see, e.g., Paulson et al. (1978) J. Biol. Chem. 253: 5617-5624). Typically, the receptors are included in the oligosaccharide chains that are attached to asparagine, serine or threonine residues present in a polypeptide.
- The glycoprotein may be “trimmed”, either whole or in part, to expose either an acceptor for the sialyltransferase, or a moiety to which one or more appropriate residues can be added to obtain a suitable acceptor. Enzymes such as glycosyltransferases and endoglycosidases are useful for the attaching and trimming reactions. By example, the glycoprotein may be “trimmed” by treating it with sialidase to create terminal galactose groups before subjecting the protein to a sialyltransferase cycle, or even further down to the N-acetyl-glucosamine level by further treatment with galactosidases. See, e.g., U.S. Pat. No. 5,272,066 for methods of obtaining polypeptides having suitable acceptors for sialylation.
- Methods for Covalently Attaching Polymer Molecules to the Factor VII Polypeptides:
- Various chemical moieties such as the polymer molecules used in working the present invention can be covalently attached to the oligosaccharides on the Factor VII polypeptide by either chemical synthesis or enzymatic treatment of the polypeptide with, e.g., modified sialic acid. The polymer molecule may also be coupled to the oligosaccharide through a linker. Suitable linkers are well known to the skilled person Examples include but are not limited to N-(4-acetylphenyl)mailmide, succimidyl ester activatede malimido derivatives such as commercial available succimidyl 4-malimidobutanoate, 1,6-bismalimidohexanes.
- Various chemical moieties such as the polymer molecules used in working the present invention can be covalently attached to the sialic acid and the thus “modified” (or conjugated) sialic acid subsequently incorporated in the sialyltransferase cycle resulting in the polymer molecule being covalently attached to the glycoprotein. The conjugated sialic acid can be made by conventional methods known by the skilled artisan. The polymer molecule may also be coupled to the sialic acid through through a linker.
- Chemoenzymatic Derivatisation of FVII and FVII Analogues
-
- Wherein
-
- X are members independently selected from S, O, NH, or a valence bond;
- R1, R2, R3, R4 and R5 are a members independently selected from H, a polymer and linker molecule covalently attached to a polymer, acyl (including acetyl and hydroxyacetyl), and alkyl;
- M+ is a cation selected from Na+, K+, Li+, tetrabutyl ammonium or similar cation.
- In a prefered embodiment, R1 and R2 is independently a PEG—based polymer with a mass of 1-40.000 kDa.
- In a still more prefered embodiment, R1 is independently a PEG—based polymer with a mass of 1-40.000 kDa.
- In an exemplary embodiment, set forth in Scheme 1, amine-, 2-hydroxy- and carboxyl protected neuraminic acid is initially converted in to its 9-amino derivative according to Isecke, R.; Brossmer, R., Tetrahedron 1994, 50(25), 7445-7460, which is further derivatized with PEG-COOH using standard coupling conditions. The PEG derivatized product is then deprotected under mild acid conditions, and enzymatically converted into the corresponding nucleotide sugar.
-
-
- In another exemplary embodiment set forth in Scheme 4,6-amino galactose (Fernandez, J. et al., J. Org. Chem. 1993, 58(19), 5192-5199) reacts with a PEG containing an protected amino acid moiety. The methyl ester is saponified. The PEG-galactose compound can then be converted to the corresponding nucleotide sugar by either enzymatic or chemical methods.
- In another exemplary embodiment set forth in
Scheme 5, a protected 6-bromogalactose (Hodosi, G., Podanyi, B. and Kuszmann, J., Carbohydr. Res., 1992, 230(2), 327-342) reacts with a PEG containing a thiol moiety. The isopropylidene groups are removed under acidic conditions. The PEG-galactose compound can then be converted to the corresponding nucleotide sugar by either enzymatic or chemical methods. - In another exemplary embodiment set forth in Scheme 6, a protected galacturonic acid (Godage, Y. S. and Fairbanks, A. J., Tetrahedron Lett., 2000, 41(39), 7589-7594) reacts with a PEG containing an amine moiety. The isopropylidene groups are removed under acidic conditions. The PEG-galactose compound can then be converted to the corresponding nucleotide sugar by either enzymatic or chemical methods.
- In general, sugar nucleotides such as those described above can be enzymatically transfered on to suitable glycoproteins, such as FVII or FVII-related polypeptide, using natural or mutated glycosyl transferases, which includes by illustration but not limitation: α2,3-sialyl transferases, α2,6-sialyl transferases or β1,4-galactosyl transferases. Depending of the choice of PEG derivatised sugar nucleotide (CMP-SA-PEG or UDP-Gal-PEG), it may be preferably to treat the FVII-related polypeptide with sialidase, galactosidase or both, prior to the reaction with glycosyl transferases and PEG—derivatised sugar nucleotide.
- Thus in one prefered embodiment, a FVII analogue is treated with sialidase, to produce an asialo FVII analogue, that subsequently is treatment with sialyltransferase and a CMP-SA-PEG analogue according to general formula I, to give a PEG—derivatised FVII analogue.
- In another embodiment, a FVII-related polypeptide is treated sequentially first with sialidase and secondly with galactosidase, to produce an asialo agalacto FVII-related polypeptide. This analogue is then treated with galactosyltransferase and an UDP-Gal-PEG analogue according to general formula II, to give a PEG—derivatised FVII analogue.
- In series of embodiments, modified galactose compounds, which are covalently bound to a polymer either directly or using a linker moiety are employed. One can either employ the Factor VII or Factor VII-related polypeptides directly to obtain lower levels of polymer per polypeptide or first treat the Factor VII or Factor VII-related polypeptides with a sialidase, to remove the terminal sialic acids in order to obtain higher levels of polymer per peptide. By treating the polypeptide with a galactosidase, the attatchment points for the modified galactose compounds are accessed. The bond between the modified galactose compounds and the treated polypeptide can be formed by employing the UDP activated form of the modified galactose compounds and a galactosyltransferase. An exemplary embodiment of this type is illustrated in Scheme 7, in which the black circle represents Factor VII or Factor VII-related polypeptides, and the terminal portion of a few of the carbohydrates are illustrated.
Chemical Derivatisation of FVII and FVII Analogues - Chemical oxidation of carbohydrate residues using sodium periodate is an alternative method for preparation of FVII-PEG conjugates. Chemical oxidation of carbohydrate will generally generate multiple of reactive aldehyde groups, each capable of reacting with PEG-nucleophiles such as PEG-hydrazide, PEG-O-hydroxylamine and PEG-amine.
- With PEG-hydrazide and PEG-O-hydroxylamine respectively, stable FVII-PEG-acylhydrazone and FVII-PEG-oxime conjugates can be prepared. With PEG-amines, a less stable Shiff base conjugate forms. This conjugate however can be further stabilized by reduction with sodium cyanoborohydride, whereby a secondary amine linkage is formed. FVII-PEG-acylhydrazone conjugates also can be reduced with sodiumcyanoborohydride whereby N,N′ linked hydrazine conjugates are formed.
- Purification of Glyco-Conjugated Factor VII Preparations
- As used herein, a “Factor VII preparation” refers to a plurality of Factor VII polypeptides, Factor VIIa polypeptides, or Factor VII-related polypeptides, including variants and chemically modified forms, that have been separated from the cell or reaction medium in which they were synthesized.
- Purification of Factor VII Preparations and Conjugates:
- Separation of recombinantly produced polypeptides from their cell of origin may be achieved by any method known in the art, including, without limitation, removal of cell culture medium containing the desired product from an adherent cell culture; centrifugation or filtration to remove non-adherent cells; and the like.
- Optionally, Factor VII polypeptides may be further purified. Purification may be achieved using any method known in the art, including, without limitation, affinity chromatography, such as, e.g., on an anti-Factor VII antibody column (see, e.g., Wakabayashi et al., J. Biol. Chem. 261:11097, 1986; and Thim et al., Biochem. 27:7785, 1988); hydrophobic interaction chromatography; ion-exchange chromatography; size exclusion chromatography; electrophoretic procedures (e.g., preparative isoelectric focusing (IEF), differential solubility (e.g., ammonium sulfate precipitation), or extraction and the like. See, generally, Scopes, Protein Purification, Springer-Verlag, New York, 1982; and Protein Purification, J.-C. Janson and Lars Ryden, editors, VCH Publishers, New York, 1989. Following purification, the preparation preferably contains less than about 10% by weight, more preferably less than about 5% and most preferably less than about 1%, of non-Factor VII proteins derived from the host cell.
- Factor VII and Factor VII-related polypeptides may be activated by proteolytic cleavage, using Factor XIIa or other proteases having trypsin-like specificity, such as, e.g., Factor IXa, kallikrein, Factor Xa, and thrombin. See, e.g., Osterud et al., Biochem. 11:2853 (1972); Thomas, U.S. Pat. No. 4,456,591; and Hedner et al., J. Clin. Invest. 71:1836 (1983). Alternatively, Factor VII may be activated by passing it through an ion-exchange chromatography column, such as Mono Q® (Pharmacia) or the like. The resulting activated Factor VII may then be formulated and administered as described below.
- Functional Properties of Factor VII Preparations
- The preparations according to the invention of Factor VII polypeptides and Factor VII-related polypeptides having predetermined oligosaccharide patterns with covalently attached polymer molecules exhibit improved functional properties relative to reference preparations. The improved functional properties may include, without limitation, a) physical properties such as, e.g., storage stability; b) pharmacokinetic properties such as, e.g., bioavailability and half-life; and c) immunogenicity in humans.
- A reference preparation refers to a preparation comprising a polypeptide that has an amino acid sequence identical to that contained in the preparation of the invention to which it is being compared (such as, e.g., non-conjugated forms of wild-type Factor VII or a particular variant or chemically modified form) but which is not conjugated to any polymer molecule(s) found in the preparation of the invention. For example, reference preparations typically comprise non-conjugated wild-type Factor VII or non-conjugated Factor VII-related polypeptides.
- Storage stability of a Factor VII preparation may be assessed by measuring (a) the time required for 20% of the bioactivity of a preparation to decay when stored as a dry powder at 25° C. and/or (b) the time required for a doubling in the proportion of Factor VIIa aggregates in the preparation.
- In some embodiments, the preparations of the invention exhibit an increase of at least about 30%, preferably at least about 60% and more preferably at least about 100%, in the time required for 20% of the bioactivity to decay relative to the time required for the same phenomenon in a reference preparation, when both preparations are stored as dry powders at 25° C. Bioactivity measurements may be performed using any of a clotting assay, proteolysis assay, TF-binding assay, or TF-independent thrombin generation assay.
- In some embodiments, the preparations of the invention exhibit an increase of at least about 30%, preferably at least about 60%, and more preferably at least about 100%, in the time required for doubling of aggregates relative to a reference preparation, when both preparations are stored as dry powders at 25° C. The content of aggregates is determined by gel permeation HPLC on a
Protein Pak 300 SW column (7.5×300 mm) (Waters, 80013) as follows. The column is equilibrated with Eluent A (0.2 M ammonium sulfate, 5% isopropanol, pH adjusted to 2.5 with phosphoric acid, and thereafter pH is adjusted to 7.0 with triethylamine), after which 25 μg of sample is applied to the column. Elution is with Eluent A at a flow rate of 0.5 ml/min for 30 min, and detection is achieved by measuring absorbance at 215 nm. The content of aggregates is calculated as the peak area of the Factor VII aggregates/total area of Factor VII peaks (monomer and aggregates). - “Bioavailability” refers to the proportion of an administered dose of a Factor VII or Factor VII-related preparation that can be detected in plasma at predetermined times after administration. Typically, bioavailability is measured in test animals by administering a dose of between about 25-250 μg/kg of the preparation; obtaining plasma samples at predetermined times after administration; and determining the content of Factor VII or Factor VII-related polypeptides in the samples using one or more of a clotting assay (or any bioassay), an immunoassay, or an equivalent. The data are typically displayed graphically as [Factor VII] v. time and the bioavailability is expressed as the area under the curve (AUC). Relative bioavailability of a test preparation refers to the ratio between the AUC of the test preparation and that of the reference preparation.
- In some embodiments, the preparations of the present invention exhibit a relative bioavailability of at least about 110%, preferably at least about 120%, more preferably at least about 130% and most preferably at least about 140% of the bioavailability of a reference preparation. The bioavailability may be measured in any mammalian species, preferably dogs, and the predetermined times used for calculating AUC may encompass different increments from 10 min-8 h.
- “Half-life” refers to the time required for the plasma concentration of Factor VII potypeptides of Factor VII-related polypeptides to decrease from a particular value to half of that value. Half-life may be determined using the same procedure as for bioavailability. In some embodiments, the preparations of the present invention exhibit an increase in half-life of at least about 0.25 h, preferably at least about 0.5 h, more preferably at least about 1 h, and most preferably at least about 2 h, relative to the half-life of a reference preparation.
- “Immunogenicity” of a preparation refers to the ability of the preparation, when administered to a human, to elicit a deleterious immune response, whether humoral, cellular, or both. Factor VIIa polypeptides and Factor VIIa-related polypeptides are not known to elicit detectable immune responses in humans. Nonetheless, in any human sub-population, there may exist individuals who exhibit sensitivity to particular administered proteins. Immunogenicity may be measured by quantifying the presence of anti-Factor VII antibodies and/or Factor VII-responsive T-cells in a sensitive individual, using conventional methods known in the art. In some embodiments, the preparations of the present invention exhibit a decrease in immunogenicity in a sensitive individual of at least about 10%, preferably at least about 25%, more preferably at least about 40% and most preferably at least about 50%, relative to the immunogenicity for that individual of a reference preparation.
- Pharmaceutical Compositions
- The preparations of the present invention may be used to treat any Factor VII-responsive syndrome, such as, e.g., bleeding disorders, including, without limitation, those caused by clotting factor deficiencies (e.g., haemophilia A and B or deficiency of coagulation factors XI or VII); by thrombocytopenia or von Willebrand's disease, or by clotting factor inhibitors, or excessive bleeding from any cause. The preparations may also be administered to patients in association with surgery or other trauma or to patients receiving anticoagulant therapy.
- Preparations comprising Factor VII-related polypeptides according to the invention, which have substantially reduced bioactivity relative to wild-type Factor VII, may be used as anticoagulants, such as, e.g., in patients undergoing angioplasty or other surgical procedures that may increase the risk of thrombosis or occlusion of blood vessels as occurs, e.g., in restenosis. Other medical indications for which anticoagulants are prescribed include, without limitation, deep vein thrombosis, pulmonary embolism, stroke, disseminated intravascular coagulation (DIC), fibrin deposition in lungs and kidneys associated with gram-negative endotoxemia, myocardial infarction; Acute Respiratory Distress Syndrome (ARDS), Systemic Inflammatory Response Syndrome (SIRS), Hemolytic Uremic Syndrome (HUS), MOF, and TTP.
- Pharmaceutical compositions comprising the Factor VII and Factor VII-related preparations according to the present are primarily intended for parenteral administration for prophylactic and/or therapeutic treatment. Preferably, the pharmaceutical compositions are administered parenterally, i.e., intravenously, subcutaneously, or intramuscularly. They may be administered by continuous or pulsatile infusion.
- Pharmaceutical compositions or formulations comprise a preparation according to the invention in combination with, preferably dissolved in, a pharmaceutically acceptable carrier, preferably an aqueous carrier or diluent. A variety of aqueous carriers may be used, such as water, buffered water, 0.4% saline, 0.3% glycine and the like. The preparations of the invention can also be formulated into liposome preparations for delivery or targeting to the sites of injury. Liposome preparations are generally described in, e.g., U.S. Pat. Nos. 4,837,028, 4,501,728, and 4,975,282. The compositions may be sterilised by conventional, well-known sterilisation techniques. The resulting aqueous solutions may be packaged for use or filtered under aseptic conditions and lyophilised, the lyophilised preparation being combined with a sterile aqueous solution prior to administration.
- The compositions may contain pharmaceutically acceptable auxiliary substances or adjuvants, including, without limitation, pH adjusting and buffering agents and/or tonicity adjusting agents, such as, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, etc.
- The concentration of Factor VII or Factor VII-related polypeptides in these formulations can vary widely, i.e., from less than about 0.5% by weight, usually at or at least about 1% by weight to as much as 15 or 20% by weight and will be selected primarily by fluid volumes, viscosities, etc., in accordance with the particular mode of administration selected.
- Thus, a typical pharmaceutical composition for intravenous infusion could be made up to contain 250 ml of sterile Ringer's solution and 10 mg of the preparation. Actual methods for preparing parenterally administrable compositions will be known or apparent to those skilled in the art and are described in more detail in, for example, Remington's Pharmaceutical Sciences, 18Th ed., Mack Publishing Company, Easton, Pa. (1990).
- The compositions containing the preparations of the present invention can be administered for prophylactic and/or therapeutic treatments. In therapeutic applications, compositions are administered to a subject already suffering from a disease, as described above, in an amount sufficient to cure, alleviate or partially arrest the disease and its complications. An amount adequate to accomplish this is defined as “therapeutically effective amount”. Effective amounts for each purpose will depend on the severity of the disease or injury as well as the weight and general state of the subject. In general, however, the effective amount will range from about 0.05 mg up to about 500 mg of the preparation per day for a 70 kg subject, with dosages of from about 1.0 mg to about 200 mg of the preparation per day being more commonly used. It will be understood that determining an appropriate dosage may be achieved using routine experimentation, by constructing a matrix of values and testing different points in the matrix.
- Local delivery of the preparations of the present invention, such as, for example, topical application, may be carried out, e.g., by means of a spray, perfusion, double balloon catheters, stent, incorporated into vascular grafts or stents, hydrogels used to coat balloon catheters, or other well established methods. In any event, the pharmaceutical compositions should provide a quantity of the preparation sufficient to effectively treat the subject.
- The pharmaceutical compositions of the invention may further comprise other bioactive agents, such as, e.g., non-Factor VII-related coagulants or anticoagulants.
- Sustained Release Preparations
- Examples of sustained-release preparations include semi-permeable matrices of solid hydrophobic polymers containing the polypeptide or conjugate, the matrices having a suitable form such as a film or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate) or poly(vinylalcohol)), polylactides, copolymers of L-glutamic acid and ethyl-L-glutamate, non-degradable ethylenevinyl acetate, degradable lactic acid-glycolic acid copolymers such as the ProLease® technology or Lupron Depot@ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(−)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for long periods such as up to or over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated polypeptides remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37° C., resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S-S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.
- The following non-limiting examples illustrate certain aspects of the invention.
- Polyethylene glycol-CMP-sialic acid (PEG-CMPSA) is prepared by covalently attaching PEG with mw 10.000 Da to sialic acid.
- Factor VIIa with 87-99% content of sialic acid is treated with sialidase, e.g., as described in U.S. Pat. No. 5,272,066, and re-sialylated with sialyltransferase using PEG-CMPSA as donor molecule (e.g., as described in U.S. Pat. No. 6,399,336). After the PEGylation reaction has reached maximal incorporation, CMPSA is added to the reaction mixture to cap any exposed terminal galactose.
- Incorporation of PEGylated sialic acid is analyzed by SDS-PAGE, CE-PAGE, isoelectric focusing gels, and CE-IEF.
- 94-100% sialic acid is incorporated; a mean of 1-4 PEG groups are incorporated.
- Polyethylene glycol-CMP sialic acid (PEG-CMPSA) is prepared by covalently attaching PEG with mw 10.000 Da to sialic acid.
- Factor VIIa with 87-93% content of sialic acid is treated with sialyltransferase using PEG-CMPSA as donor molecule (e.g., as described in U.S. Pat. No. 6,399,336). After the PEGylation reaction has reached maximal incorporation, CMPSA is added to the reaction mixture to cap any exposed terminal galactose.
- Incorporation of PEGylated sialic acid is analyzed by SDS-PAGE, CE-PAGE, isoelectric focusing gels, and CE-IEF.
- 87-100% sialic acid is incorporated; a mean of 0.1-0.5 PEG groups are incorporated.
-
Pegylated cytidine 5′-monophospho-sialic acid derivative (CMP-SA-PEG): N-Acetyl-O2-methyl-9-amino-9-deoxy-neuraminic acid methyl ester (10 mg, 0.031 mmol, prepared according to Isecke, R.; Brossmer, R., Tetrahedron 1994, 50(25), 7445-7460) is dissolved in water (2 ml), and mPEG-SBA (170 mg, 0.03 mmol, 5 kDa, Shearwater 2M450H01)) is added. The mixture is stirred at ambient temperature until completion according to TLC. The solvent is removed by lyophilization, and the residue redissolved in a 1:1 mixture of methanol and 0.1 M NaOH solution (5 ml). The mixture is stirred at room temperature for 1 h, then passed through a column of Dowex 50W-X8 (H+) resin at 4° C. and lyophilized. The residue is then redissolved in water (5 ml), Dowex 50W-X8 (H+) resin is added and the mixture is stirred until completed by TLC. -
Cytidine 5′-monophospho analogues of sialic acid derivatives of general formula I is in general prepared according to E. S. Simon, M. D. Bednarski and G. M. Whitesides, J.Am.Chem.Soc., 1998, 110, 7159-7163 as described in the following way:Cytidine 5′-monophosphoneuraminic acid synthetase is dissolved in a solution of 9-pegylated N-Acetyl-9-amino-9-deoxy-neuraminic acid (prepared as described above), and added to a solution of CTP. The mixture is adjusted to pH 8.5 and MgCl2.6H2O is added. The reaction is stirred at room temperature, and 1N NaOH is added via a peristaltic pump to keep the pH near 8.5. When 1H-NMR on an aliquot shows completion, the product is isolated by standard ion-exchange chromatography. - FVIIa (1 mg) dissolved in 1 ml of 0.1 M sodium acetate pH 5.5 is oxidized a level of its glycans at room temperature for 30 min. with 10 mM sodium periodate. The solution is then dialyzed against 100 mM sodium acetate pH 5.5. After dialysis, PEG-C(O)—NHNH2 (prepared by hydrazinolysis of mPEG-SBA (2 mg, 5 kDa, Shearwater 2M450H01)) is mixed with the oxidized FVIIa, and allowed to react overnight at room temperature with gentle shaking. The FVIIa-PEG conjugate solution thus obtained is dialyzed (dialysis membranes with 10 kDa cut-off) against 100 mM Tris-HCl buffer, pH 7.5 and stored at 4° C.
- Pharmacological Methods
- The following assays are useful for determining biological activity, half-life and bioavailability of Factor VII and Factor VII-related polypeptides.
- Assay (I)
- In Vitro Hydrolysis Assay
- The following method can be used to assay Factor VIIa bioactivity. The assay is carried out in a microtiter plate (MaxiSorp, Nunc, Denmark). The chromogenic substrate D-Ile-Pro-Arg-p-nitroanilide (S-2288, Chromogenix, Sweden), at a final concentration of 1 mM, is added to Factor VIIa (
final concentration 100 nM) in 50 mM Hepes, pH 7.4, containing 0.1 M NaCl, 5 mM CaCl2 and 1 mg/ml bovine serum albumin. The absorbance at 405 nm is measured continuously in aSpectraMax™ 340 plate reader (Molecular Devices, USA). The absorbance developed during a 20-minute incubation, after subtraction of the absorbance in a blank well containing no enzyme, is used to calculate the ratio between the activities of a test and a reference. Factor VIIa. - Assay (II)
- In Vitro Proteolysis Assay
- The following method can be used to assay Factor VIIa bioactivity. The assay is carried out in a microtiter plate (MaxiSorp, Nunc, Denmark). Factor VIIa (10 nM) and Factor X (0.8 microM) in 100
μl 50 mM Hepes, pH 7.4, containing 0.1 M NaCl, 5 mM CaCl2 and 1 mg/ml bovine serum albumin, are incubated for 15 min. Factor X cleavage is then stopped by the addition of 50μl 50 mM Hepes, pH 7.4, containing 0.1 M NaCl, 20 mM EDTA and 1 mg/ml bovine serum albumin. The amount of Factor Xa generated is measured by addition of the chromogenic substrate Z-D-Arg-Gly-Arg-p-nitroanilide (S-2765, Chromogenix, Sweden), final concentration 0.5 mM. The absorbance at 405 nm is measured continuously in aSpectraMax™ 340 plate reader (Molecular Devices, USA). The absorbance developed during 10 minutes, after subtraction of the absorbance in a blank well containing no FVIIa, is used to calculate the ratio between the proteolytic activities of a test and a reference Factor VIIa. - Assay (III)
- Measurement of Functional In Vivo Half-Life
- Measurement of in vivo biological half-life can be carried out in a number of ways as described in the literature. An example of an assay for the measurement of in vivo half-life of rFVIIa and variants thereof is described in FDA reference number 96-0597. Briefly, FVIIa clotting activity is measured in plasma drawn prior to and during a 24-hour period after administration of the conjugate, polypeptide or composition. The median apparent volume of distribution at steady state is measured and the median clearance determined.
- Assay (IV)
- Bioavailability of Factor VII Polypeptides
- Bioavailability may, for example, be measured in a dog model as follows: The experimentis performed as a four leg cross-over study in 12 Beagle dogs divided in four groups. All animals receive a test preparation A and a reference preparation B at a dose of about 90 μg/kg in a glycylglycine buffer (pH 5.5) containing sodium chloride (2.92 mg/ml), calcium chloride dihydrate (1.47 mg/ml), mannitol (30 mg/ml) and
polysorbate 80. Blood samples are withdrawn at 10, 30, and 60 minutes and 2, 3, 4, 6 and 8 hours following the initial administration. Plasma is obtained from the samples and Factor VII is quantified by ELISA. - Bioavailability of each sample is expressed as the dose-adjusted area under the plasma concentration curve for Factor VII (AUC/dose). The relative bioavailability is expressed as the ratio between the mean AUC/dose of the test and reference preparation×100 and 90% confidence limits for the relative bioavailability is calculated.
Claims (34)
1. A preparation comprising a Factor VII polypeptide or Factor VII-related polypeptide, wherein the polypeptide comprises one or more asparagine-linked and/or serine-linked oligosaccharide chains, and wherein at least one of said oligosaccharide groups is covalently attached to at least one polymeric group.
2. A preparation according to claim 1 , wherein the oligosaccharide to which the polymeric group is attached is a sialic acid moiety.
3. A preparation according to claim 1 , wherein said preparation comprises a plurality of Factor VII polypeptides or Factor VII-related polypeptides and wherein between about 94-100% of the polypeptide-linked oligosaccharide chains in the preparation comprise at least one sialic acid moiety.
4. A preparation according to claim 3 , wherein between about 94-100% of the oligosaccharide chains comprise at least one sialic acid moiety, and wherein less than about 25% of the oligosaccharide chains contain at least one uncapped antenna.
5. A preparation according to claim 4 , wherein less than about 10% of the oligosaccharide chains contain at least one uncapped antenna
6. A preparation according to claim 5 , wherein less than about 5% of the oligosaccharide chains contain at least one uncapped antenna
7. A preparation according claim 4 , wherein between about 96-100% of the oligosaccharide chains comprise at least one sialic acid moiety.
8. A preparation according to claim 7 , wherein between about 98-100% of the oligosaccharide chains comprise at least one sialic acid moiety.
9. A preparation according to claim 1 , wherein the asparagine-linked oligosaccharide chains are located in positions corresponding to amino acid residues Asn-145 and Asn-322 of wild-type human FVIIa (FIG. 1 ).
10. A preparation according to claim 1 , wherein the serine-linked oligosaccharide chains are located in positions corresponding to amino acid residues Ser-52 and Ser-60 of wild-type human FVIIa (FIG. 1 ).
11. A preparation according to claim 1 , wherein the polymer is selected from the group of polyalkylene oxide (PAO), polyalkylene glycol (PAG), polyethylene glycol (PEG), polypropylene glycol (PPG), branched PEGs, polyvinyl alcohol (PVA), polycarboxylate, poly-vinylpyrolidone, polyethylene-co-maleic acid anhydride, polystyrene-co-maleic acid anhydride, dextran, carboxymethyl-dextran, polyurethane, polyesters and polyamides.
12. A preparation according to claim 11 , wherein the polymer is a polyethylene glycol (PEG)
13. A preparation according to claim 12 , wherein the polyethylene glycol is PEG with a molecular weight of 300-100,000 Da.
14. A preparation according to claim 13 , wherein the PEG has a molecular weight of about 500-20,000 Da.
15. A preparation according to claim 14 , wherein the PEG has a molecular weight of about 500-15,000 Da,
16. A preparation according to claim 15 , wherein the PEG has a molecular weight of about 10 kDa.
17. A preparation according to claim 1 , wherein the polypeptide has the amino acid sequence of wild-type human Factor VII (FIG. 1 ).
18. A preparation according to claim 1 , wherein the polypeptide is plasma-derived human Factor VIIa.
19. A preparation according to claim 1 , wherein the Factor VII polypeptide is selected from the group consisting of: S52A-Factor VII, S60A-Factor VII, Factor VII that has been proteolytically cleaved between residues 290 and 291; Factor VII that has been proteolytically cleaved between residues 315 and 316; Factor VII that has been oxidized, L305V-FVII, L305V/M306D/D309S-FVII, L3051-FVII, L305T-FVII, F374P-FVII, V158T/M298Q-FVII, V158D/E296V/M298Q-FVII, K337A-FVII, M298Q-FVII, V158D/M298Q-FVII, L305V/K337A-FVII, V158D/E296V/M298Q/L305V-FVII, V158D/E296V/M298Q/K337A-FVII, V158D/E296V/M298Q/L305V/K337A-FVII, K 157A-FVII, E296V-FVII, E296V/M298Q-FVII, V158D/E296V-FVII, V158D/M298K-FVII, S336G-FVII; Factor VII-sequence variants wherein the amino acid residue in positions 290 and/or 291 have been replaced, Factor VII-sequence variants wherein the amino acid residue in positions 315 and/or 316 have been replaced, and combinations of any of the foregoing.
20. A preparation according to claim 1 , wherein the Factor VII polypeptides are selected from the group consisting of: L305V/K337A-FVII, L305V/V158D-FVII, L305V/E296V-FVII, L305V/M298Q-FVII, L305V/V158T-FVII, L305V/K337A/V158T-FVII, L305V/K337A/M298Q-FVII, L305V/K337A/E296V-FVII, L305V/K337A/V158D-FVII, L305V/V158D/M298Q-FVII, L305V/V158D/E296V-FVII, L305V/V158T/M298Q-FVII, L305V/V158T/E296V-FVII, L305V/E296V/M298Q-FVII, L305V/V158D/E296V/M298Q-FVII, L305V/V158T/E296V/M298Q-FVII, L305V/V158T/K337A/M298Q-FVII, L305V/V158T/E296V/K337A-FVII, L305V/V158D/K337A/M298Q-FVII, L305V/V158D/E296V/K337A-FVII, L305V/V158D/E296V/M298Q/K337A-FVII, L305V/V158T/E296V/M298Q/K337A-FVII, S314E/K316H-FVII, S314E/K316Q-FVII, S314E/L305V-FVII, S314E/K337A-FVII, S314E/V158D-FVII, S314E/E296V-FVII, S314E/M298Q-FVII, S314E/V158T-FVII, K316H/L305V-FVII, K316H/K337A-FVII, K316H/V158D-FVII, K316H/E296V-FVII, K316H/M298Q-FVII, K316H/V158T-FVII, K316Q/L305V-FVII, K316Q/K337A-FVII, K316Q/V158D-FVII, K316Q/E296V-FVII, K316Q/M298Q-FVII, K316Q/V158T-FVII, S314E/L305V/K337A-FVII, S314E/L305V/V158D-FVII, S314E/L305V/E296V-FVII, S314E/L305V/M298Q-FVII, S314E/L305V/V158T-FVII, S314E/L305V/K337A/V158T-FVII, S314E/L305V/K337A/M298Q-FVII, S314E/L305V/K337A/E296V-FVII, S314E/L305V/K337A/V158D-FVII, S314E/L305V/V158D/M298Q-FVII, S314E/L305V/V158D/E296V-FVII, S314E/L305V/V158T/M298Q-FVII, S314E/L305V/V158T/E296V-FVII, S314E/L305V/E296V/M298Q-FVII, S314E/L305V/V158D/E296V/M298Q-FVII, S314E/L305V/V158T/E296V/M298Q-FVII, S314E/L305V/V158T/K337A/M298Q-FVII, S314E/L305V/V158T/E296V/K337A-FVII, S314E/L305V/V158D/K337A/M298Q-FVII, S314E/L305V/V158D/E296V/K337A-FVII, S314E/L305V/V158D/E296V/M298Q/K337A-FVII, S314E/L305V/V158T/E296V/M298Q/K337A-FVII, K316H/L305V/K337A-FVII, K316H/L305V/V158D-FVII, K316H/L305V/E296V-FVII, K316H/L305V/M298Q-FVII, K316H/L305V/V158T-FVII, K316H/L305V/K337A/V158T-FVII, K316H/L305V/K337A/M298Q-FVII, K316H/L305V/K337A/E296V-FVII, K316H/L305V/K337A/V158D-FVII, K316H/L305V/V 158D/M298Q-FVII, K316H/L305V/V158D/E296V-FVII, K316H/L305V/V158T/M298Q-FVII, K316H/L305V/V158T/E296V-FVII, K316H/L305V/E296V/M298Q-FVII, K316H/L305V/V158D/E296V/M298Q-FVII, K316H/L305V/V158T/E296V/M298Q-FVII, K316H/L305V/V158T/K337A/M298Q-FVII, K316H/L305V/V158T/E296V/K337A-FVII, K316H/L305V/V158D/K337A/M298Q-FVII, K316H/L305V/V158D/E296V/K337A-FVII, K316H/L305V/V158D/E296V/M298Q/K337A-FVII, K316H/L305V/V158T/E296V/M298Q/K337A-FVII, K316Q/L305V/K337A-FVII, K316Q/L305V/V158D-FVII, K316Q/L305V/E296V-FVII, K316Q/L305V/M298Q-FVII, K316Q/L305V/V158T-FVII, K316Q/L305V/K337A/V158T-FVII, K316Q/L305V/K337A/M298Q-FVII, K316Q/L305V/K337A/E296V-FVII, K316Q/L305V/K337A/V158D-FVII, K316Q/L305V/V158D/M298Q-FVII, K316Q/L305V/V158D/E296V-FVII, K316Q/L305V/V158T/M298Q-FVII, K316Q/L305V/V158T/E296V-FVII, K316Q/L305V/E296V/M298Q-FVII K316Q/L305V/V158D/E296V/M298Q-FVII, K316Q/L305V/V158T/E296V/M298Q-FVII, K316Q/L305V/V158T/K337A/M298Q-FVII, K316Q/L305V/V158T/E296V/K337A-FVII, K316Q/L305V/V158D/K337A/M298Q-FVII, K316Q/L305V/V158D/E296V/K337A-FVII, K316Q/L305V/V158D/E296V/M298Q/K337A-FVII, K316Q/L305V/V158T/E296V/M298Q/K337A-FVII, F374Y/K337A-FVII, F374Y/V158D-FVII, F374Y/E296V-FVII, F374Y/M298Q-FVII, F374Y/V158T-FVII, F374Y/S314E-FVII, F374Y/L305V-FVII, F374Y/L305V/K337A-FVII, F374Y/L305V/V158D-FVII, F374Y/L305V/E296V-FVII, F374Y/L305V/M298Q-FVII, F374Y/L305V/V158T-FVII, F374Y/L305V/S314E-FVII, F374Y/K337A/S314E-FVII, F374Y/K337A/V158T-FVII, F374Y/K337A/M298Q-FVII, F374Y/K337A/E296V-FVII, F374Y/K337A/V158D-FVII, F374Y/V158D/S314E-FVII, F374Y/V158D/M298Q-FVII, F374Y/V158D/E296V-FVII, F374Y/V158T/S314E-FVII, F374Y/V158T/M298Q-FVII, F374Y/V158T/E296V-FVII, F374Y/E296V/S314E-FVII, F374Y/S314E/M298Q-FVII, F374Y/E296V/M298Q-FVII, F374Y/L305V/K337A/V158D-FVII, F374Y/L305V/K337A/E296V-FVII, F374Y/L305V/K337A/M298Q-FVII, F374Y/L305V/K337A/V158T-FVII, F374Y/L305V/K337A/S314E-FVII, F374Y/L305V/V158D/E296V-FVII, F374Y/L305V/V158D/M298Q-FVII, F374Y/L305V/V158D/S314E-FVII, F374Y/L305V/E296V/M298Q-FVII, F374Y/L305V/E296V/V158T-FVII, F374Y/L305V/E296V/S314E-FVII, F374Y/L305V/M298Q/V158T-FVII, F374Y/L305V/M298Q/S314E-FVII, F374Y/L305V/V158T/S314E-FVII, F374Y/K337A/S314E/V158T-FVII, F374Y/K337A/S314E/M298Q-FVII, F374Y/K337A/S314E/E296V-FVII, F374Y/K337A/S314E/V158D-FVII, F374Y/K337A/V158T/M298Q-FVII, F374Y/K337A/V158T/E296V-FVII, F374Y/K337A/M298Q/E296V-FVII, F374Y/K337A/M298Q/V158D-FVII, F374Y/K337A/E296V/V158D-FVII, F374Y/V158D/S314E/M298Q-FVII, F374Y/V158D/S314E/E296V-FVII, F374Y/V158D/M298Q/E296V-FVII, F374Y/V158T/S314E/E296V-FVII, F374Y/V158T/S314E/M298Q-FVII, F374Y/V158T/M298Q/E296V-FVII, F374Y/E296V/S314E/M298Q-FVII, F374Y/L305V/M298Q/K337A/S314E-FVII, F374Y/L305V/E296V/K337A/S314E-FVII, F374Y/E296V/M298Q/K337A/S314E-FVII, F374Y/L305V/E296V/M298Q/K337A-FVII, F374Y/L305V/E296V/M298Q/S314E-FVII, F374Y/V158D/E296V/M298Q/K337A-FVII, F374Y/V158D/E296V/M298Q/S314E-FVII, F374Y/L305V/V158D/K337A/S314E-FVII, F374Y/V158D/M298Q/K337A/S314E-FVII, F374Y/V158D/E296V/K337A/S314E-FVII, F374Y/L305V/V158D/E296V/M298Q-FVII, F374Y/L305V/V158D/M298Q/K337A-FVII, F374Y/L305V/V158D/E296V/K337A-FVII, F374Y/L305V/V158D/M298Q/S314E-FVII, F374Y/L305V/V158D/E296V/S314E-FVII, F374Y/V158T/E296V/M298Q/K337A-FVII, F374Y/V158T/E296V/M298Q/S314E-FVII, F374Y/L305V/V158T/K337A/S314E-FVII, F374Y/V158T/M298Q/K337A/S314E-FVII, F374Y/V158T/E296V/K337A/S314E-FVII, F374Y/L305V/V158T/E296V/M298Q-FVII, F374Y/L305V/V158T/M298Q/K337A-FVII, F374Y/L305V/V 158T/E296V/K337A-FVII, F374Y/L305V/V158T/M298Q/S314E-FVII, F374Y/L305V/V158T/E296V/S314E-FVII, F374Y/E296V/M298Q/K337A/V158T/S314E-FVII, F374Y/V158D/E296V/M298Q/K337A/S314E-FVII, F374Y/L305V/V158D/E296V/M298Q/S314E-FVII, F374Y/L305V/E296V/M298Q/V158T/S314E-FVII, F374Y/L305V/E296V/M298Q/K337A/V158T-FVII, F374Y/L305V/E296V/K337A/V158T/S314E-FVII, F374Y/L305V/M298Q/K337A/V158T/S314E-FVII, F374Y/L305V/V158D/E296V/M298Q/K337A-FVII, F374Y/L305V/V158D/E296V/K337A/S314E-FVII, F374Y/L305V/V158D/M298Q/K337A/S314E-FVII, F374Y/L305V/E296V/M298Q/K337A/V158T/S314E-FVII, F374Y/L305V/V158D/E296V/M298Q/K337A/S314E-FVII, S52A-Factor VII, S60A-Factor VII; and P11Q/K33E-FVII, T106N-FVII, K143N/N145T-FVII, V253N-FVII, R290N/A292T-FVII, G291N-FVII, R315N/V317T-FVII, K143N/N145T/R315N/V317T-FVII; FVII having substitutions, additions or deletions in the amino acid sequence from 233Thr to 240Asn, FVII having substitutions, additions or deletions in the amino acid sequence from 304Arg to 329Cys, FVII having substitutions, deletions, additions in the amino acid sequence Ile153-Arg223, and combinations of any of the foregoing.
21. A preparation according to claim 1 , wherein the Factor VII-related polypeptides are selected from the group consisting of: R1 52E-Factor VII, S344A-Factor VII, FFR-Factor VII, and Factor VIIa lacking the Gla domain.
22. A preparation according to claim 1 , wherein the Factor VII-related polypeptide exhibits at least about 25% of the specific activity of wild-type Factor VIIa that has been produced in the same cell type, when tested in one or more of a clotting assay, proteolysis assay, or TF binding assay.
23. A preparation according to claim 1 , wherein the Factor VII-related polypeptide exhibits less than about 25% of the specific activity of wild-type Factor VIIa that has been produced in the same cell type when tested in one or more of a clotting assay, proteolysis assay, or TF binding assay.
24. A preparation according to claim 1 , wherein the preparation exhibits a bioavailability that is at least about 110% of the bioavailability of a reference preparation.
25. A preparation according to claim 1 , wherein the preparation exhibits a serum half-life that is at least about 125% of the half-life of a reference preparation.
26. A method for producing a preparation according to claim 1 , said method comprising contacting Factor VII or Factor VII-related polypeptides with a polymer molecule under conditions in which the at least one polymer molecule is covalently attached to at least one of the oligosaccharide chains of the polypeptides.
27. A pharmaceutical formulation comprising (i) a preparation as defined in claim 1 and (ii) a pharmaceutically acceptable carrier or adjuvant.
28. A method for treating a Factor VII-responsive syndrome, the method comprising administering a pharmaceutical formulation as defined in claim 27 to a patient in need of such treatment, under conditions that result in a decrease in bleeding and/or an increase in blood clotting, wherein the formulation comprises Factor VII polypeptides.
29. The method according to claim 28 , wherein the syndrome is selected from the group consisting of haemophilia A, haemophilia B, Factor XI deficiency, Factor VII deficiency, thrombocytopenia, von Willebrand's disease, presence of a clotting factor inhibitor, surgery, trauma, and anticoagulant therapy, including dilutional coagulopathy, intercranial haemorrhage, stem cell transplantation, upper gastrointestinal bleedings, and liver disease.
30. A method for preventing unwanted bleeding, the method comprising administering a pharmaceutical formulation as defined in claim 27 to a patient in need of such treatment, under conditions that result in a decrease in bleeding and/or an increase in blood clotting, wherein the formulation comprises Factor VII polypeptides.
31. A method for preventing unwanted blood clotting, the method comprising administering a pharmaceutical formulation as defined in claim 27 to a patient in need of such treatment, under conditions effective for inhibiting coagulation, wherein the formulation comprises Factor VII-related polypeptides.
32. A method for preventing tissue factor mediated reactions, the method comprising administering a pharmaceutical formulation as defined in claim 27 to a patient in need of such treatment, under conditions effective for inhibiting coagulation, wherein the formulation comprises Factor VII-related polypeptides.
33. A method as defined in claim 31 , wherein the unwanted blood clotting is associated with a condition selected from the group consisting of: angioplasty, deep vein thrombosis, pulmonary embolism, stroke, disseminated intravascular coagulation (DIC), fibrin deposition in lungs and kidneys associated with gram-negative endotoxemia, and myocardial infarction.
34. A method as defined in claim 32 , wherein the tissue factor mediated reactions are associated with a condition selected from the group consisting of inflammation, cancer, tumour growth, metastasis, angiogenesis, Systemic Inflammatory Response Syndrome (SIRS), Acute Lung Injury (ALI), Acute Respiratory Distress Syndrome (ARDS), Multiple Organ Failure (MOF), Hemolytic Uremic Syndrome (HUS), and thrombotic thrombocytopenic purpura (TTP).
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/609,701 US20050113565A1 (en) | 2002-06-21 | 2003-06-30 | Pegylated factor VII glycoforms |
US11/845,175 US20080039373A1 (en) | 2002-06-21 | 2007-08-27 | Pegylated Factor VII Glycoforms |
US12/371,156 US8053410B2 (en) | 2002-06-21 | 2009-02-13 | Pegylated factor VII glycoforms |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA200200964 | 2002-06-21 | ||
DKPA200200964 | 2002-06-21 | ||
US39477802P | 2002-07-01 | 2002-07-01 | |
PCT/DK2003/000420 WO2004000366A1 (en) | 2002-06-21 | 2003-06-20 | Pegylated factor vii glycoforms |
US10/609,701 US20050113565A1 (en) | 2002-06-21 | 2003-06-30 | Pegylated factor VII glycoforms |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DK2003/000420 Continuation WO2004000366A1 (en) | 2002-06-21 | 2003-06-20 | Pegylated factor vii glycoforms |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/845,175 Continuation US20080039373A1 (en) | 2002-06-21 | 2007-08-27 | Pegylated Factor VII Glycoforms |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050113565A1 true US20050113565A1 (en) | 2005-05-26 |
Family
ID=30001775
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/609,701 Abandoned US20050113565A1 (en) | 2002-06-21 | 2003-06-30 | Pegylated factor VII glycoforms |
US11/845,175 Abandoned US20080039373A1 (en) | 2002-06-21 | 2007-08-27 | Pegylated Factor VII Glycoforms |
US12/371,156 Expired - Fee Related US8053410B2 (en) | 2002-06-21 | 2009-02-13 | Pegylated factor VII glycoforms |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/845,175 Abandoned US20080039373A1 (en) | 2002-06-21 | 2007-08-27 | Pegylated Factor VII Glycoforms |
US12/371,156 Expired - Fee Related US8053410B2 (en) | 2002-06-21 | 2009-02-13 | Pegylated factor VII glycoforms |
Country Status (6)
Country | Link |
---|---|
US (3) | US20050113565A1 (en) |
DE (1) | DE60336555D1 (en) |
IL (1) | IL165609A (en) |
MX (1) | MXPA04012496A (en) |
NO (1) | NO20050324L (en) |
ZA (1) | ZA200410005B (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070059275A1 (en) * | 2003-07-25 | 2007-03-15 | Defrees Shawn | Antibody toxin conjugates |
US20080015142A1 (en) * | 2003-12-03 | 2008-01-17 | Defrees Shawn | Glycopegylated Follicle Stimulating Hormone |
US20080221032A1 (en) * | 2006-12-15 | 2008-09-11 | Baxter Healthcare S.A. | Factor VIIa-Polysialic Acid Conjugate Having Prolonged In Vivo Half-Life |
US20080253992A1 (en) * | 2006-10-03 | 2008-10-16 | Neose Technologies, Inc. | Methods for the purification of polypeptide conjugates |
US20080280818A1 (en) * | 2006-07-21 | 2008-11-13 | Neose Technologies, Inc. | Glycosylation of peptides via o-linked glycosylation sequences |
US20090041744A1 (en) * | 2005-06-17 | 2009-02-12 | Novo Nordisk Healthcare A/G | Dimeric and Multimeric FVIIa Compounds |
US20090098103A1 (en) * | 2007-04-13 | 2009-04-16 | Madison Edwin L | Modified factor VII polypeptides and uses thereof |
US20090124544A1 (en) * | 2005-04-08 | 2009-05-14 | Neose Technologies ,Inc. A Delaware Corporation | Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants |
CN101495133A (en) * | 2006-08-01 | 2009-07-29 | Lfb生物科技公司 | Recombinant or transgenic factor VII compositions with a majority of biantennary, disialylated and nonfucosylated glycan structures |
US20090305967A1 (en) * | 2005-08-19 | 2009-12-10 | Novo Nordisk A/S | Glycopegylated factor vii and factor viia |
US20100015684A1 (en) * | 2001-10-10 | 2010-01-21 | Neose Technologies, Inc. | Factor vii: remodeling and glycoconjugation of factor vii |
US20100330645A1 (en) * | 2005-08-19 | 2010-12-30 | Novo Nordisk A/S | One pot desialylation and glycopegylation of therapeutic peptides |
US8053410B2 (en) | 2002-06-21 | 2011-11-08 | Novo Nordisk Health Care A/G | Pegylated factor VII glycoforms |
US8076292B2 (en) | 2001-10-10 | 2011-12-13 | Novo Nordisk A/S | Factor VIII: remodeling and glycoconjugation of factor VIII |
WO2012019128A1 (en) | 2010-08-06 | 2012-02-09 | Genzyme Corporation | Vegf antagonist compositions and uses thereof |
US20120141449A1 (en) * | 2000-04-12 | 2012-06-07 | Delta Biotechnology Limited | Albumin Fusion Proteins |
US8404809B2 (en) | 2005-05-25 | 2013-03-26 | Novo Nordisk A/S | Glycopegylated factor IX |
WO2013140389A1 (en) | 2012-03-22 | 2013-09-26 | Ramot At Tel-Aviv University Ltd. | Plif multimeric peptides and uses thereof |
WO2013156488A3 (en) * | 2012-04-16 | 2014-01-16 | Leverton Licence Holdings Limited | Optimised subcutaneous therapeutic agents |
US8632770B2 (en) | 2003-12-03 | 2014-01-21 | Novo Nordisk A/S | Glycopegylated factor IX |
US8765915B2 (en) | 2006-02-06 | 2014-07-01 | Csl Behring Gmbh | Modified coagulation factor VIIa with extended half-life |
US8791070B2 (en) | 2003-04-09 | 2014-07-29 | Novo Nordisk A/S | Glycopegylated factor IX |
US8791066B2 (en) | 2004-07-13 | 2014-07-29 | Novo Nordisk A/S | Branched PEG remodeling and glycosylation of glucagon-like peptide-1 [GLP-1] |
WO2014118785A1 (en) | 2013-02-04 | 2014-08-07 | Ramot At Tel-Aviv University Ltd. | Generation of cytotoxic tumor specific cell lines and uses thereof |
US8841439B2 (en) | 2005-11-03 | 2014-09-23 | Novo Nordisk A/S | Nucleotide sugar purification using membranes |
US8853161B2 (en) | 2003-04-09 | 2014-10-07 | Novo Nordisk A/S | Glycopegylation methods and proteins/peptides produced by the methods |
US8916360B2 (en) | 2003-11-24 | 2014-12-23 | Novo Nordisk A/S | Glycopegylated erythropoietin |
US9029331B2 (en) | 2005-01-10 | 2015-05-12 | Novo Nordisk A/S | Glycopegylated granulocyte colony stimulating factor |
US9050304B2 (en) | 2007-04-03 | 2015-06-09 | Ratiopharm Gmbh | Methods of treatment using glycopegylated G-CSF |
US9150848B2 (en) | 2008-02-27 | 2015-10-06 | Novo Nordisk A/S | Conjugated factor VIII molecules |
US9200049B2 (en) | 2004-10-29 | 2015-12-01 | Novo Nordisk A/S | Remodeling and glycopegylation of fibroblast growth factor (FGF) |
US9476037B2 (en) | 2008-04-11 | 2016-10-25 | Catalyst Biosciences, Inc. | Factor VII polypeptides that are modified and uses thereof |
US9493499B2 (en) | 2007-06-12 | 2016-11-15 | Novo Nordisk A/S | Process for the production of purified cytidinemonophosphate-sialic acid-polyalkylene oxide (CMP-SA-PEG) as modified nucleotide sugars via anion exchange chromatography |
US11266724B2 (en) | 2019-08-15 | 2022-03-08 | Catalyst Biosciences, Inc. | Modified factor VII polypeptides for subcutaneous administration and on-demand treatment |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7173003B2 (en) | 2001-10-10 | 2007-02-06 | Neose Technologies, Inc. | Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF |
US7795210B2 (en) | 2001-10-10 | 2010-09-14 | Novo Nordisk A/S | Protein remodeling methods and proteins/peptides produced by the methods |
US7214660B2 (en) | 2001-10-10 | 2007-05-08 | Neose Technologies, Inc. | Erythropoietin: remodeling and glycoconjugation of erythropoietin |
MXPA05009726A (en) | 2003-03-14 | 2005-11-04 | Neose Technologies Inc | Branched water-soluble polymers and their conjugates. |
AU2004240553A1 (en) | 2003-05-09 | 2004-12-02 | Neose Technologies, Inc. | Compositions and methods for the preparation of human growth hormone glycosylation mutants |
US7842661B2 (en) | 2003-11-24 | 2010-11-30 | Novo Nordisk A/S | Glycopegylated erythropoietin formulations |
US8633157B2 (en) | 2003-11-24 | 2014-01-21 | Novo Nordisk A/S | Glycopegylated erythropoietin |
US7956032B2 (en) | 2003-12-03 | 2011-06-07 | Novo Nordisk A/S | Glycopegylated granulocyte colony stimulating factor |
ES2560657T3 (en) | 2004-01-08 | 2016-02-22 | Ratiopharm Gmbh | O-linked glycosylation of G-CSF peptides |
US8268967B2 (en) | 2004-09-10 | 2012-09-18 | Novo Nordisk A/S | Glycopegylated interferon α |
RU2460543C2 (en) * | 2006-10-04 | 2012-09-10 | Ново Нордиск А/С | Glycerol linked pegylated sugars and glycopeptides |
US8207112B2 (en) | 2007-08-29 | 2012-06-26 | Biogenerix Ag | Liquid formulation of G-CSF conjugate |
US20100286067A1 (en) * | 2008-01-08 | 2010-11-11 | Biogenerix Ag | Glycoconjugation of polypeptides using oligosaccharyltransferases |
GB201007356D0 (en) | 2010-04-30 | 2010-06-16 | Leverton Licence Holdings Ltd | Conjugated factor VIIa |
WO2012088123A1 (en) * | 2010-12-22 | 2012-06-28 | Nektar Therapeutics | Polymer-factor vii moiety conjugates |
AU2012284055B2 (en) | 2011-07-19 | 2017-09-07 | CellMosaic, Inc. | Sugar alcohol-based crosslinking reagents, macromolecules, therapeutic bioconjugates, and synthetic methods thereof |
CN116655927B (en) * | 2023-07-03 | 2024-12-06 | 甘肃农业大学 | Preparation method of polyethylene glycol-dextran water-in-water emulsion macromolecular stabilizer |
Family Cites Families (205)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1479268A (en) | 1973-07-05 | 1977-07-13 | Beecham Group Ltd | Pharmaceutical compositions |
US4179337A (en) | 1973-07-20 | 1979-12-18 | Davis Frank F | Non-immunogenic polypeptides |
CH596313A5 (en) * | 1975-05-30 | 1978-03-15 | Battelle Memorial Institute | |
US4385260A (en) * | 1975-09-09 | 1983-05-24 | Beckman Instruments, Inc. | Bargraph display |
US4823945A (en) * | 1980-07-07 | 1989-04-25 | The Crowell Corporation | Protective cushioning |
US4414147A (en) | 1981-04-17 | 1983-11-08 | Massachusetts Institute Of Technology | Methods of decreasing the hydrophobicity of fibroblast and other interferons |
JPS57206622A (en) | 1981-06-10 | 1982-12-18 | Ajinomoto Co Inc | Blood substitute |
US4438253A (en) * | 1982-11-12 | 1984-03-20 | American Cyanamid Company | Poly(glycolic acid)/poly(alkylene glycol) block copolymers and method of manufacturing the same |
US4496689A (en) * | 1983-12-27 | 1985-01-29 | Miles Laboratories, Inc. | Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer |
US4565653A (en) * | 1984-03-30 | 1986-01-21 | Pfizer Inc. | Acyltripeptide immunostimulants |
US4879236A (en) | 1984-05-16 | 1989-11-07 | The Texas A&M University System | Method for producing a recombinant baculovirus expression vector |
US5206344A (en) * | 1985-06-26 | 1993-04-27 | Cetus Oncology Corporation | Interleukin-2 muteins and polymer conjugation thereof |
JPS6238172A (en) * | 1985-08-12 | 1987-02-19 | 株式会社 高研 | Production of anti-thrombotic medical material |
US4925796A (en) * | 1986-03-07 | 1990-05-15 | Massachusetts Institute Of Technology | Method for enhancing glycoprotein stability |
IL82834A (en) | 1987-06-09 | 1990-11-05 | Yissum Res Dev Co | Biodegradable polymeric materials based on polyether glycols,processes for the preparation thereof and surgical artiicles made therefrom |
US4904584A (en) * | 1987-12-23 | 1990-02-27 | Genetics Institute, Inc. | Site-specific homogeneous modification of polypeptides |
US5153265A (en) | 1988-01-20 | 1992-10-06 | Cetus Corporation | Conjugation of polymer to colony stimulating factor-1 |
US4847325A (en) | 1988-01-20 | 1989-07-11 | Cetus Corporation | Conjugation of polymer to colony stimulating factor-1 |
GB8810808D0 (en) | 1988-05-06 | 1988-06-08 | Wellcome Found | Vectors |
US5169933A (en) | 1988-08-15 | 1992-12-08 | Neorx Corporation | Covalently-linked complexes and methods for enhanced cytotoxicity and imaging |
US5104651A (en) * | 1988-12-16 | 1992-04-14 | Amgen Inc. | Stabilized hydrophobic protein formulations of g-csf |
EP0401384B1 (en) | 1988-12-22 | 1996-03-13 | Kirin-Amgen, Inc. | Chemically modified granulocyte colony stimulating factor |
US6166183A (en) | 1992-11-30 | 2000-12-26 | Kirin-Amgen, Inc. | Chemically-modified G-CSF |
US5194376A (en) * | 1989-02-28 | 1993-03-16 | University Of Ottawa | Baculovirus expression system capable of producing foreign gene proteins at high levels |
US5324844A (en) | 1989-04-19 | 1994-06-28 | Enzon, Inc. | Active carbonates of polyalkylene oxides for modification of polypeptides |
US5122614A (en) | 1989-04-19 | 1992-06-16 | Enzon, Inc. | Active carbonates of polyalkylene oxides for modification of polypeptides |
US5166322A (en) | 1989-04-21 | 1992-11-24 | Genetics Institute | Cysteine added variants of interleukin-3 and chemical modifications thereof |
US5342940A (en) | 1989-05-27 | 1994-08-30 | Sumitomo Pharmaceuticals Company, Limited | Polyethylene glycol derivatives, process for preparing the same |
US5527527A (en) | 1989-09-07 | 1996-06-18 | Alkermes, Inc. | Transferrin receptor specific antibody-neuropharmaceutical agent conjugates |
US5182107A (en) * | 1989-09-07 | 1993-01-26 | Alkermes, Inc. | Transferrin receptor specific antibody-neuropharmaceutical or diagnostic agent conjugates |
US5672683A (en) | 1989-09-07 | 1997-09-30 | Alkermes, Inc. | Transferrin neuropharmaceutical agent fusion protein |
US5977307A (en) | 1989-09-07 | 1999-11-02 | Alkermes, Inc. | Transferrin receptor specific ligand-neuropharmaceutical agent fusion proteins |
US5154924A (en) | 1989-09-07 | 1992-10-13 | Alkermes, Inc. | Transferrin receptor specific antibody-neuropharmaceutical agent conjugates |
US5032519A (en) | 1989-10-24 | 1991-07-16 | The Regents Of The Univ. Of California | Method for producing secretable glycosyltransferases and other Golgi processing enzymes |
US5580560A (en) | 1989-11-13 | 1996-12-03 | Novo Nordisk A/S | Modified factor VII/VIIa |
AU651573B2 (en) * | 1990-01-29 | 1994-07-28 | Novo Nordisk Health Care Ag | Anticoagulant proteins |
US5324663A (en) | 1990-02-14 | 1994-06-28 | The Regents Of The University Of Michigan | Methods and products for the synthesis of oligosaccharide structures on glycoproteins, glycolipids, or as free molecules, and for the isolation of cloned genetic sequences that determine these structures |
US5595900A (en) | 1990-02-14 | 1997-01-21 | The Regents Of The University Of Michigan | Methods and products for the synthesis of oligosaccharide structures on glycoproteins, glycolipids, or as free molecules, and for the isolation of cloned genetic sequences that determine these structures |
DE4009630C2 (en) * | 1990-03-26 | 1995-09-28 | Reinhard Prof Dr Dr Brossmer | CMP-activated fluorescent sialic acids and processes for their preparation |
US5583042A (en) | 1990-04-16 | 1996-12-10 | Neose Pharmaceuticals, Inc. | Apparatus for the synthesis of saccharide compositions |
US5951972A (en) * | 1990-05-04 | 1999-09-14 | American Cyanamid Company | Stabilization of somatotropins and other proteins by modification of cysteine residues |
US5219564A (en) | 1990-07-06 | 1993-06-15 | Enzon, Inc. | Poly(alkylene oxide) amino acid copolymers and drug carriers and charged copolymers based thereon |
CU22302A1 (en) | 1990-09-07 | 1995-01-31 | Cigb | Codifying nucleotidic sequence for a protein of the external membrane of neisseria meningitidis and the use of that protein in preparing vaccines. |
US5529914A (en) | 1990-10-15 | 1996-06-25 | The Board Of Regents The Univeristy Of Texas System | Gels for encapsulation of biological materials |
US5410016A (en) * | 1990-10-15 | 1995-04-25 | Board Of Regents, The University Of Texas System | Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers |
US5492821A (en) * | 1990-11-14 | 1996-02-20 | Cargill, Inc. | Stabilized polyacrylic saccharide protein conjugates |
US5861374A (en) * | 1991-02-28 | 1999-01-19 | Novo Nordisk A/S | Modified Factor VII |
EP0586549B1 (en) | 1991-05-10 | 2000-09-20 | Genentech, Inc. | Selecting ligand agonists and antagonists |
US5374655A (en) | 1991-06-10 | 1994-12-20 | Alberta Research Council | Methods for the synthesis of monofucosylated oligosaccharides terminating in di-N-acetyllactosaminyl structures |
US5352670A (en) | 1991-06-10 | 1994-10-04 | Alberta Research Council | Methods for the enzymatic synthesis of alpha-sialylated oligosaccharide glycosides |
KR950014915B1 (en) | 1991-06-19 | 1995-12-18 | 주식회사녹십자 | Asialoglycoprotein-conjugated compounds |
US5281698A (en) * | 1991-07-23 | 1994-01-25 | Cetus Oncology Corporation | Preparation of an activated polymer ester for protein conjugation |
US5962294A (en) | 1992-03-09 | 1999-10-05 | The Regents Of The University Of California | Compositions and methods for the identification and synthesis of sialyltransferases |
US5858751A (en) * | 1992-03-09 | 1999-01-12 | The Regents Of The University Of California | Compositions and methods for producing sialyltransferases |
US6037452A (en) * | 1992-04-10 | 2000-03-14 | Alpha Therapeutic Corporation | Poly(alkylene oxide)-Factor VIII or Factor IX conjugate |
US5614184A (en) * | 1992-07-28 | 1997-03-25 | New England Deaconess Hospital | Recombinant human erythropoietin mutants and therapeutic methods employing them |
JP3979678B2 (en) | 1992-08-24 | 2007-09-19 | サントリー株式会社 | Novel glycosyltransferase, gene encoding the same, and method for producing the enzyme |
NZ250375A (en) | 1992-12-09 | 1995-07-26 | Ortho Pharma Corp | Peg hydrazone and peg oxime linkage forming reagents and protein derivatives |
US5202413A (en) * | 1993-02-16 | 1993-04-13 | E. I. Du Pont De Nemours And Company | Alternating (ABA)N polylactide block copolymers |
DE69434749T2 (en) | 1993-03-29 | 2007-04-26 | Kyowa Hakko Kogyo Co., Ltd. | Alpha-1,3-fucosyltransferase |
US5374541A (en) | 1993-05-04 | 1994-12-20 | The Scripps Research Institute | Combined use of β-galactosidase and sialyltransferase coupled with in situ regeneration of CMP-sialic acid for one pot synthesis of oligosaccharides |
WO1994026906A2 (en) | 1993-05-14 | 1994-11-24 | The Upjohn Company | CLONED DNA ENCODING A UDP-GALNAc:POLYPEPTIDE,N-ACETYLGALACTOS AMINYLTRANSFERASE |
US5621039A (en) | 1993-06-08 | 1997-04-15 | Hallahan; Terrence W. | Factor IX- polymeric conjugates |
US5643575A (en) | 1993-10-27 | 1997-07-01 | Enzon, Inc. | Non-antigenic branched polymer conjugates |
US5919455A (en) | 1993-10-27 | 1999-07-06 | Enzon, Inc. | Non-antigenic branched polymer conjugates |
US5446090A (en) | 1993-11-12 | 1995-08-29 | Shearwater Polymers, Inc. | Isolatable, water soluble, and hydrolytically stable active sulfones of poly(ethylene glycol) and related polymers for modification of surfaces and molecules |
US5443953A (en) | 1993-12-08 | 1995-08-22 | Immunomedics, Inc. | Preparation and use of immunoconjugates |
US5369017A (en) | 1994-02-04 | 1994-11-29 | The Scripps Research Institute | Process for solid phase glycopeptide synthesis |
US5605793A (en) * | 1994-02-17 | 1997-02-25 | Affymax Technologies N.V. | Methods for in vitro recombination |
US5837458A (en) | 1994-02-17 | 1998-11-17 | Maxygen, Inc. | Methods and compositions for cellular and metabolic engineering |
US5492841A (en) * | 1994-02-18 | 1996-02-20 | E. I. Du Pont De Nemours And Company | Quaternary ammonium immunogenic conjugates and immunoassay reagents |
US5432059A (en) | 1994-04-01 | 1995-07-11 | Specialty Laboratories, Inc. | Assay for glycosylation deficiency disorders |
US5646113A (en) | 1994-04-07 | 1997-07-08 | Genentech, Inc. | Treatment of partial growth hormone insensitivity syndrome |
US5629384A (en) * | 1994-05-17 | 1997-05-13 | Consiglio Nazionale Delle Ricerche | Polymers of N-acryloylmorpholine activated at one end and conjugates with bioactive materials and surfaces |
US5545553A (en) | 1994-09-26 | 1996-08-13 | The Rockefeller University | Glycosyltransferases for biosynthesis of oligosaccharides, and genes encoding them |
US5834251A (en) | 1994-12-30 | 1998-11-10 | Alko Group Ltd. | Methods of modifying carbohydrate moieties |
US5932462A (en) | 1995-01-10 | 1999-08-03 | Shearwater Polymers, Inc. | Multiarmed, monofunctional, polymer for coupling to molecules and surfaces |
US5922577A (en) | 1995-04-11 | 1999-07-13 | Cytel Corporation | Enzymatic synthesis of glycosidic linkages |
US5876980A (en) * | 1995-04-11 | 1999-03-02 | Cytel Corporation | Enzymatic synthesis of oligosaccharides |
US6030815A (en) * | 1995-04-11 | 2000-02-29 | Neose Technologies, Inc. | Enzymatic synthesis of oligosaccharides |
US5728554A (en) * | 1995-04-11 | 1998-03-17 | Cytel Corporation | Enzymatic synthesis of glycosidic linkages |
US6015555A (en) * | 1995-05-19 | 2000-01-18 | Alkermes, Inc. | Transferrin receptor specific antibody-neuropharmaceutical or diagnostic agent conjugates |
US5824864A (en) | 1995-05-25 | 1998-10-20 | Pioneer Hi-Bred International, Inc. | Maize gene and protein for insect control |
US6127153A (en) | 1995-06-07 | 2000-10-03 | Neose Technologies, Inc. | Method of transferring at least two saccharide units with a polyglycosyltransferase, a polyglycosyltransferase and gene encoding a polyglycosyltransferase |
US5858752A (en) * | 1995-06-07 | 1999-01-12 | The General Hospital Corporation | Fucosyltransferase genes and uses thereof |
US5672662A (en) | 1995-07-07 | 1997-09-30 | Shearwater Polymers, Inc. | Poly(ethylene glycol) and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications |
US5770420A (en) | 1995-09-08 | 1998-06-23 | The Regents Of The University Of Michigan | Methods and products for the synthesis of oligosaccharide structures on glycoproteins, glycolipids, or as free molecules, and for the isolation of cloned genetic sequences that determine these structures |
CA2658039A1 (en) | 1995-09-21 | 1997-03-27 | Genentech, Inc. | Human growth hormone variants |
SE9503380D0 (en) | 1995-09-29 | 1995-09-29 | Pharmacia Ab | Protein derivatives |
US5716812A (en) * | 1995-12-12 | 1998-02-10 | The University Of British Columbia | Methods and compositions for synthesis of oligosaccharides, and the products formed thereby |
EP0888377B1 (en) * | 1996-03-08 | 2007-12-12 | The Regents Of The University Of Michigan | MURINE alpha(1,3)-FUCOSYLTRANSFERASE (Fuc-TVII) |
EP0931097B1 (en) | 1996-10-10 | 2005-09-14 | Neose Technologies, Inc. | Carbohydrate purification using reverse osmosis and nanofiltration |
SK283518B6 (en) | 1996-10-15 | 2003-08-05 | The Liposome Company, Inc. | Peptide-lipid conjugates, liposomes and liposomal drug delivery |
IL129843A0 (en) | 1996-11-08 | 2000-02-29 | Cytel Corp | Improved expression vectors |
ATE263841T1 (en) | 1997-01-16 | 2004-04-15 | Neose Technologies Inc | PRACTICAL IN VITRO SIALYLATION OF RECOMBINANT GLYP PROTEINS |
US5945314A (en) | 1997-03-31 | 1999-08-31 | Abbott Laboratories | Process for synthesizing oligosaccharides |
CA2288992C (en) | 1997-04-30 | 2012-06-12 | Enzon, Inc. | Single-chain antigen-binding proteins capable of glycosylation, production and uses thereof |
US6183738B1 (en) * | 1997-05-12 | 2001-02-06 | Phoenix Pharamacologics, Inc. | Modified arginine deiminase |
US6075134A (en) | 1997-05-15 | 2000-06-13 | The Regents Of The University Of California | Glycoconjugates and methods |
AU8005098A (en) | 1997-06-06 | 1998-12-21 | Governors Of The University Of Alberta, The | Alpha1,3-fucosyltransferase of helicobacter pylori |
US20030027257A1 (en) * | 1997-08-21 | 2003-02-06 | University Technologies International, Inc. | Sequences for improving the efficiency of secretion of non-secreted protein from mammalian and insect cells |
JP3863265B2 (en) * | 1997-10-16 | 2006-12-27 | 富士通株式会社 | Optical receiver and clock extraction circuit |
AU744303B2 (en) | 1997-12-01 | 2002-02-21 | Neose Technologies, Inc. | Enzymatic synthesis of gangliosides |
EP0924298A1 (en) * | 1997-12-18 | 1999-06-23 | Stichting Instituut voor Dierhouderij en Diergezondheid (ID-DLO) | Protein expression in baculovirus vector expression systems |
DE69939033D1 (en) * | 1998-03-12 | 2008-08-14 | Nektar Therapeutics Al Corp | Process for the preparation of polymer conjugates |
EP1091751A4 (en) | 1998-03-25 | 2005-01-19 | Sloan Kettering Institutefor C | Trimeric Antigen O-Linked Glycopeptide Conjugates and Methods for Preparing and Using the same |
US20030166525A1 (en) | 1998-07-23 | 2003-09-04 | Hoffmann James Arthur | FSH Formulation |
US7304150B1 (en) | 1998-10-23 | 2007-12-04 | Amgen Inc. | Methods and compositions for the prevention and treatment of anemia |
DE19852729A1 (en) * | 1998-11-16 | 2000-05-18 | Werner Reutter | Recombinant glycoproteins, processes for their preparation, medicaments containing them and their use |
US6465220B1 (en) | 1998-12-21 | 2002-10-15 | Glycozym Aps | Glycosylation using GalNac-T4 transferase |
US6949372B2 (en) | 1999-03-02 | 2005-09-27 | The Johns Hopkins University | Engineering intracellular sialylation pathways |
US6261805B1 (en) | 1999-07-15 | 2001-07-17 | Boyce Thompson Institute For Plant Research, Inc. | Sialyiation of N-linked glycoproteins in the baculovirus expression vector system |
US6537785B1 (en) | 1999-09-14 | 2003-03-25 | Genzyme Glycobiology Research Institute, Inc. | Methods of treating lysosomal storage diseases |
US6716626B1 (en) * | 1999-11-18 | 2004-04-06 | Chiron Corporation | Human FGF-21 nucleic acids |
US6348558B1 (en) * | 1999-12-10 | 2002-02-19 | Shearwater Corporation | Hydrolytically degradable polymers and hydrogels made therefrom |
WO2001045796A2 (en) * | 1999-12-22 | 2001-06-28 | Shearwater Corporation | Method for the preparation of 1-benzotriazolyl carbonate esters of poly(ethylene glycol) |
US6555660B2 (en) * | 2000-01-10 | 2003-04-29 | Maxygen Holdings Ltd. | G-CSF conjugates |
DE60138364D1 (en) | 2000-02-11 | 2009-05-28 | Bayer Healthcare Llc | CLEANING FACTOR VII OR VIIA CONJUGATE |
US6570040B2 (en) * | 2000-03-16 | 2003-05-27 | The Regents Of The University Of California | Chemoselective ligation |
US6586398B1 (en) | 2000-04-07 | 2003-07-01 | Amgen, Inc. | Chemically modified novel erythropoietin stimulating protein compositions and methods |
US6905683B2 (en) | 2000-05-03 | 2005-06-14 | Novo Nordisk Healthcare A/G | Human coagulation factor VII variants |
US7338932B2 (en) | 2000-05-11 | 2008-03-04 | Glycozym Aps | Methods of modulating functions of polypeptide GalNAc-transferases and of screening test substances to find agents herefor, pharmaceutical compositions comprising such agents and the use of such agents for preparing medicaments |
JP2004528001A (en) * | 2000-05-12 | 2004-09-16 | ネオーズ テクノロジーズ, インコーポレイテッド | Fucosylated recombinant glycopeptides in vitro |
BRPI0110914B8 (en) * | 2000-05-15 | 2021-05-25 | Hoffmann La Roche | 'liquid pharmaceutical composition, process for its preparation and use of a pharmaceutical composition' |
NZ523476A (en) | 2000-06-28 | 2004-04-30 | Glycofi Inc | Methods for humanizing glycosylation of recombinant glycoproteins expressed in lower eukaryotes |
CN100528235C (en) | 2000-12-20 | 2009-08-19 | 霍夫曼-拉罗奇有限公司 | Conjugates of erythropoietin |
US7892730B2 (en) | 2000-12-22 | 2011-02-22 | Sagres Discovery, Inc. | Compositions and methods for cancer |
US6531121B2 (en) * | 2000-12-29 | 2003-03-11 | The Kenneth S. Warren Institute, Inc. | Protection and enhancement of erythropoietin-responsive cells, tissues and organs |
US7235638B2 (en) | 2001-03-22 | 2007-06-26 | Novo Nordisk Healthcare A/G | Coagulation factor VII derivatives |
US20020168323A1 (en) | 2001-05-11 | 2002-11-14 | Igor Gonda | Optimization of the molecular properties and formulation of proteins delivered by inhalation |
KR100453877B1 (en) | 2001-07-26 | 2004-10-20 | 메덱스젠 주식회사 | METHOD OF MANUFACTURING Ig-FUSION PROTEINS BY CONCATAMERIZATION, TNFR/Fc FUSION PROTEINS MANUFACTURED BY THE METHOD, DNA CODING THE PROTEINS, VECTORS INCLUDING THE DNA, AND CELLS TRANSFORMED BY THE VECTOR |
US7052868B2 (en) | 2001-09-27 | 2006-05-30 | Novo Nordisk Healthcare A/G | Human coagulation factor VII polypeptides |
US8008252B2 (en) * | 2001-10-10 | 2011-08-30 | Novo Nordisk A/S | Factor VII: remodeling and glycoconjugation of Factor VII |
US7125843B2 (en) * | 2001-10-19 | 2006-10-24 | Neose Technologies, Inc. | Glycoconjugates including more than one peptide |
US7265085B2 (en) | 2001-10-10 | 2007-09-04 | Neose Technologies, Inc. | Glycoconjugation methods and proteins/peptides produced by the methods |
US7696163B2 (en) * | 2001-10-10 | 2010-04-13 | Novo Nordisk A/S | Erythropoietin: remodeling and glycoconjugation of erythropoietin |
US7399613B2 (en) | 2001-10-10 | 2008-07-15 | Neose Technologies, Inc. | Sialic acid nucleotide sugars |
US7214660B2 (en) | 2001-10-10 | 2007-05-08 | Neose Technologies, Inc. | Erythropoietin: remodeling and glycoconjugation of erythropoietin |
US7795210B2 (en) * | 2001-10-10 | 2010-09-14 | Novo Nordisk A/S | Protein remodeling methods and proteins/peptides produced by the methods |
EP1578771B1 (en) | 2001-10-10 | 2013-03-06 | Novo Nordisk A/S | Remodeling and glycoconjugation of peptides |
US7226903B2 (en) | 2001-10-10 | 2007-06-05 | Neose Technologies, Inc. | Interferon beta: remodeling and glycoconjugation of interferon beta |
US7297511B2 (en) * | 2001-10-10 | 2007-11-20 | Neose Technologies, Inc. | Interferon alpha: remodeling and glycoconjugation of interferon alpha |
US7265084B2 (en) | 2001-10-10 | 2007-09-04 | Neose Technologies, Inc. | Glycopegylation methods and proteins/peptides produced by the methods |
US7173003B2 (en) * | 2001-10-10 | 2007-02-06 | Neose Technologies, Inc. | Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF |
US7179617B2 (en) | 2001-10-10 | 2007-02-20 | Neose Technologies, Inc. | Factor IX: remolding and glycoconjugation of Factor IX |
US7439043B2 (en) | 2001-10-10 | 2008-10-21 | Neose Technologies, Inc. | Galactosyl nucleotide sugars |
US7157277B2 (en) * | 2001-11-28 | 2007-01-02 | Neose Technologies, Inc. | Factor VIII remodeling and glycoconjugation of Factor VIII |
WO2003045980A2 (en) | 2001-11-28 | 2003-06-05 | Neose Technologies, Inc. | Glycopeptide remodeling using amidases |
US7473680B2 (en) * | 2001-11-28 | 2009-01-06 | Neose Technologies, Inc. | Remodeling and glycoconjugation of peptides |
US20060035224A1 (en) * | 2002-03-21 | 2006-02-16 | Johansen Jack T | Purification methods for oligonucleotides and their analogs |
MXPA04012496A (en) * | 2002-06-21 | 2005-09-12 | Novo Nordisk Healthcare Ag | Pegylated factor vii glycoforms. |
HK1079995A1 (en) | 2002-09-05 | 2006-04-21 | The General Hospital Corporation | Modified asialo-interferons and uses thereof |
ATE365794T1 (en) * | 2002-11-08 | 2007-07-15 | Glycozym Aps | METHOD FOR IDENTIFYING AGENTS MODULATING THE FUNCTIONS OF POLYPEPTIDE GALNAC TRANSFERASES, PHARMACEUTICAL COMPOSITIONS COMPRISING SUCH AGENTS AND USE OF SUCH AGENTS FOR THE PRODUCTION OF MEDICINAL PRODUCTS |
JP4412461B2 (en) | 2002-11-20 | 2010-02-10 | 日油株式会社 | Modified bio-related substance, production method thereof and intermediate |
US20050064540A1 (en) * | 2002-11-27 | 2005-03-24 | Defrees Shawn Ph.D | Glycoprotein remodeling using endoglycanases |
EP1424344A1 (en) | 2002-11-29 | 2004-06-02 | Aventis Behring Gesellschaft mit beschränkter Haftung | Modified cDNA factor VIII and its derivates |
DE60228460D1 (en) | 2002-12-13 | 2008-10-02 | Bioceuticals Arzneimittel Ag | Process for the preparation and purification of erythropoietin |
EP2572733A1 (en) * | 2003-02-26 | 2013-03-27 | Nektar Therapeutics | Polymer-factor VIII moiety conjugates |
MXPA05009726A (en) * | 2003-03-14 | 2005-11-04 | Neose Technologies Inc | Branched water-soluble polymers and their conjugates. |
EP1603954A4 (en) | 2003-03-18 | 2006-04-12 | Neose Technologies Inc | Activated forms of water-soluble polymers |
EP1613261A4 (en) * | 2003-04-09 | 2011-01-26 | Novo Nordisk As | INTRACELLULAR FORMATION OF PEPTIDE CONJUGATES |
US20070026485A1 (en) * | 2003-04-09 | 2007-02-01 | Neose Technologies, Inc. | Glycopegylation methods and proteins/peptides produced by the methods |
AU2004240553A1 (en) | 2003-05-09 | 2004-12-02 | Neose Technologies, Inc. | Compositions and methods for the preparation of human growth hormone glycosylation mutants |
WO2005012484A2 (en) * | 2003-07-25 | 2005-02-10 | Neose Technologies, Inc. | Antibody-toxin conjugates |
US20060198819A1 (en) * | 2003-08-08 | 2006-09-07 | Novo Nordisk Healthcare A/G | Use of galactose oxidase for selective chemical conjugation of protractor molecules to proteins of therapeutic interest |
US8633157B2 (en) | 2003-11-24 | 2014-01-21 | Novo Nordisk A/S | Glycopegylated erythropoietin |
US7842661B2 (en) | 2003-11-24 | 2010-11-30 | Novo Nordisk A/S | Glycopegylated erythropoietin formulations |
WO2005051327A2 (en) | 2003-11-24 | 2005-06-09 | Neose Technologies, Inc. | Glycopegylated erythropoietin |
US20080305992A1 (en) | 2003-11-24 | 2008-12-11 | Neose Technologies, Inc. | Glycopegylated erythropoietin |
US20080318850A1 (en) | 2003-12-03 | 2008-12-25 | Neose Technologies, Inc. | Glycopegylated Factor Ix |
US7956032B2 (en) * | 2003-12-03 | 2011-06-07 | Novo Nordisk A/S | Glycopegylated granulocyte colony stimulating factor |
JP2007515410A (en) * | 2003-12-03 | 2007-06-14 | ネオス テクノロジーズ インコーポレイテッド | GlycoPEGylated follicle stimulating hormone |
US20070254836A1 (en) | 2003-12-03 | 2007-11-01 | Defrees Shawn | Glycopegylated Granulocyte Colony Stimulating Factor |
ES2560657T3 (en) | 2004-01-08 | 2016-02-22 | Ratiopharm Gmbh | O-linked glycosylation of G-CSF peptides |
EP1765993A4 (en) | 2004-06-03 | 2008-08-20 | Neose Technologies Inc | SHORTENED ST6GALNACI POLYPEPTIDES AND NUCLEIC ACIDS |
WO2006010143A2 (en) | 2004-07-13 | 2006-01-26 | Neose Technologies, Inc. | Branched peg remodeling and glycosylation of glucagon-like peptide-1 [glp-1] |
WO2006020372A2 (en) | 2004-07-23 | 2006-02-23 | Neose Technologies, Inc. | Enzymatic modification of glycopeptides |
US20090176967A1 (en) | 2004-08-02 | 2009-07-09 | Novo Nordisk Healthcare A/G | Conjugation of FVII |
US20060024286A1 (en) * | 2004-08-02 | 2006-02-02 | Paul Glidden | Variants of tRNA synthetase fragments and uses thereof |
US8268967B2 (en) * | 2004-09-10 | 2012-09-18 | Novo Nordisk A/S | Glycopegylated interferon α |
WO2006035057A1 (en) | 2004-09-29 | 2006-04-06 | Novo Nordisk Health Care Ag | Modified proteins |
DK2586456T3 (en) | 2004-10-29 | 2016-03-21 | Ratiopharm Gmbh | Conversion and glycopegylation of fibroblast growth factor (FGF) |
WO2006066258A2 (en) * | 2004-12-17 | 2006-06-22 | Neose Technologies, Inc. | Lipoconjugation of peptides |
JP2008526864A (en) * | 2005-01-06 | 2008-07-24 | ネオス テクノロジーズ インコーポレイテッド | Sugar linkage using sugar fragments |
CA2593682C (en) | 2005-01-10 | 2016-03-22 | Neose Technologies, Inc. | Glycopegylated granulocyte colony stimulating factor |
JP2008538181A (en) | 2005-03-30 | 2008-10-16 | ネオス テクノロジーズ インコーポレイテッド | Manufacturing method for producing peptides grown in insect cell systems |
WO2006121569A2 (en) | 2005-04-08 | 2006-11-16 | Neose Technologies, Inc. | Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants |
JP5216580B2 (en) * | 2005-05-25 | 2013-06-19 | ノヴォ ノルディスク アー/エス | Glycopegylated factor IX |
WO2006134173A2 (en) | 2005-06-17 | 2006-12-21 | Novo Nordisk Health Care Ag | Selective reduction and derivatization of engineered proteins comprising at least one non-native cysteine |
US20070105755A1 (en) | 2005-10-26 | 2007-05-10 | Neose Technologies, Inc. | One pot desialylation and glycopegylation of therapeutic peptides |
MX2008002395A (en) | 2005-08-19 | 2008-03-18 | Neose Technologies Inc | Glycopegylated factor vii and factor viia. |
WO2007031559A2 (en) * | 2005-09-14 | 2007-03-22 | Novo Nordisk Health Care Ag | Human coagulation factor vii polypeptides |
US20090048440A1 (en) * | 2005-11-03 | 2009-02-19 | Neose Technologies, Inc. | Nucleotide Sugar Purification Using Membranes |
CA2653154A1 (en) | 2006-05-24 | 2007-11-29 | Novo Nordisk Health Care Ag | Prolonged fix analogues and derivatives |
US20080242607A1 (en) | 2006-07-21 | 2008-10-02 | Neose Technologies, Inc. | Glycosylation of peptides via o-linked glycosylation sequences |
ITMI20061624A1 (en) * | 2006-08-11 | 2008-02-12 | Bioker Srl | SINGLE-CONJUGATE SITE-SPECIFIC OF G-CSF |
EP2059527B1 (en) * | 2006-09-01 | 2014-12-03 | Novo Nordisk Health Care AG | Modified glycoproteins |
EP2054521A4 (en) | 2006-10-03 | 2012-12-19 | Novo Nordisk As | METHODS OF PURIFYING CONJUGATES OF POLYPEPTIDES |
RU2460543C2 (en) * | 2006-10-04 | 2012-09-10 | Ново Нордиск А/С | Glycerol linked pegylated sugars and glycopeptides |
US20080207487A1 (en) | 2006-11-02 | 2008-08-28 | Neose Technologies, Inc. | Manufacturing process for the production of polypeptides expressed in insect cell-lines |
PT2144923E (en) | 2007-04-03 | 2013-05-15 | Biogenerix Ag | METHODS OF TREATMENT WITH GLYCOPEGUILED G-CSF |
US20090053167A1 (en) * | 2007-05-14 | 2009-02-26 | Neose Technologies, Inc. | C-, S- and N-glycosylation of peptides |
WO2008154639A2 (en) | 2007-06-12 | 2008-12-18 | Neose Technologies, Inc. | Improved process for the production of nucleotide sugars |
US8207112B2 (en) | 2007-08-29 | 2012-06-26 | Biogenerix Ag | Liquid formulation of G-CSF conjugate |
US20100286067A1 (en) | 2008-01-08 | 2010-11-11 | Biogenerix Ag | Glycoconjugation of polypeptides using oligosaccharyltransferases |
-
2003
- 2003-06-20 MX MXPA04012496A patent/MXPA04012496A/en active IP Right Grant
- 2003-06-20 DE DE60336555T patent/DE60336555D1/en not_active Expired - Lifetime
- 2003-06-30 US US10/609,701 patent/US20050113565A1/en not_active Abandoned
-
2004
- 2004-12-07 IL IL165609A patent/IL165609A/en not_active IP Right Cessation
- 2004-12-10 ZA ZA200410005A patent/ZA200410005B/en unknown
-
2005
- 2005-01-20 NO NO20050324A patent/NO20050324L/en not_active Application Discontinuation
-
2007
- 2007-08-27 US US11/845,175 patent/US20080039373A1/en not_active Abandoned
-
2009
- 2009-02-13 US US12/371,156 patent/US8053410B2/en not_active Expired - Fee Related
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9821039B2 (en) * | 2000-04-12 | 2017-11-21 | Albumedix A/S | Albumin fusion proteins |
US20120141449A1 (en) * | 2000-04-12 | 2012-06-07 | Delta Biotechnology Limited | Albumin Fusion Proteins |
US9849162B2 (en) | 2000-04-12 | 2017-12-26 | Albumedix A/S | Treatment with factor VII-albumin fusion protein |
US8076292B2 (en) | 2001-10-10 | 2011-12-13 | Novo Nordisk A/S | Factor VIII: remodeling and glycoconjugation of factor VIII |
US8008252B2 (en) | 2001-10-10 | 2011-08-30 | Novo Nordisk A/S | Factor VII: remodeling and glycoconjugation of Factor VII |
US20100015684A1 (en) * | 2001-10-10 | 2010-01-21 | Neose Technologies, Inc. | Factor vii: remodeling and glycoconjugation of factor vii |
US8053410B2 (en) | 2002-06-21 | 2011-11-08 | Novo Nordisk Health Care A/G | Pegylated factor VII glycoforms |
US8853161B2 (en) | 2003-04-09 | 2014-10-07 | Novo Nordisk A/S | Glycopegylation methods and proteins/peptides produced by the methods |
US8791070B2 (en) | 2003-04-09 | 2014-07-29 | Novo Nordisk A/S | Glycopegylated factor IX |
US9005625B2 (en) | 2003-07-25 | 2015-04-14 | Novo Nordisk A/S | Antibody toxin conjugates |
US20070059275A1 (en) * | 2003-07-25 | 2007-03-15 | Defrees Shawn | Antibody toxin conjugates |
US8916360B2 (en) | 2003-11-24 | 2014-12-23 | Novo Nordisk A/S | Glycopegylated erythropoietin |
US8632770B2 (en) | 2003-12-03 | 2014-01-21 | Novo Nordisk A/S | Glycopegylated factor IX |
US20080015142A1 (en) * | 2003-12-03 | 2008-01-17 | Defrees Shawn | Glycopegylated Follicle Stimulating Hormone |
US8791066B2 (en) | 2004-07-13 | 2014-07-29 | Novo Nordisk A/S | Branched PEG remodeling and glycosylation of glucagon-like peptide-1 [GLP-1] |
US9200049B2 (en) | 2004-10-29 | 2015-12-01 | Novo Nordisk A/S | Remodeling and glycopegylation of fibroblast growth factor (FGF) |
US10874714B2 (en) | 2004-10-29 | 2020-12-29 | 89Bio Ltd. | Method of treating fibroblast growth factor 21 (FGF-21) deficiency |
US9029331B2 (en) | 2005-01-10 | 2015-05-12 | Novo Nordisk A/S | Glycopegylated granulocyte colony stimulating factor |
US9187546B2 (en) | 2005-04-08 | 2015-11-17 | Novo Nordisk A/S | Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants |
US20090124544A1 (en) * | 2005-04-08 | 2009-05-14 | Neose Technologies ,Inc. A Delaware Corporation | Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants |
US8404809B2 (en) | 2005-05-25 | 2013-03-26 | Novo Nordisk A/S | Glycopegylated factor IX |
US20090041744A1 (en) * | 2005-06-17 | 2009-02-12 | Novo Nordisk Healthcare A/G | Dimeric and Multimeric FVIIa Compounds |
US8911967B2 (en) | 2005-08-19 | 2014-12-16 | Novo Nordisk A/S | One pot desialylation and glycopegylation of therapeutic peptides |
US20100113743A1 (en) * | 2005-08-19 | 2010-05-06 | Novo Nordisk A/S | Glycopegylated factor vii and factor viia |
US20090305967A1 (en) * | 2005-08-19 | 2009-12-10 | Novo Nordisk A/S | Glycopegylated factor vii and factor viia |
US20100330645A1 (en) * | 2005-08-19 | 2010-12-30 | Novo Nordisk A/S | One pot desialylation and glycopegylation of therapeutic peptides |
US8841439B2 (en) | 2005-11-03 | 2014-09-23 | Novo Nordisk A/S | Nucleotide sugar purification using membranes |
US8765915B2 (en) | 2006-02-06 | 2014-07-01 | Csl Behring Gmbh | Modified coagulation factor VIIa with extended half-life |
US9187532B2 (en) | 2006-07-21 | 2015-11-17 | Novo Nordisk A/S | Glycosylation of peptides via O-linked glycosylation sequences |
US20080280818A1 (en) * | 2006-07-21 | 2008-11-13 | Neose Technologies, Inc. | Glycosylation of peptides via o-linked glycosylation sequences |
TWI391400B (en) * | 2006-08-01 | 2013-04-01 | Lfb Biotechnologies | Composition of transgenic factor vii exhibiting in majority biantennary, bisialylated and non fucosylated glycan forms |
CN103397011A (en) * | 2006-08-01 | 2013-11-20 | Lfb生物科技公司 | Recombinant or transgenic factor VII compound having a majority of glycan, biantennary, bisialylated and non-fucosylated forms |
CN101495133A (en) * | 2006-08-01 | 2009-07-29 | Lfb生物科技公司 | Recombinant or transgenic factor VII compositions with a majority of biantennary, disialylated and nonfucosylated glycan structures |
US20090239788A1 (en) * | 2006-08-01 | 2009-09-24 | Lfb Biotechnologies | Recombinant or transgenic factor vii compound having a majority of glycan, biantennary, bisialylated and non-fucosylated forms |
US20080253992A1 (en) * | 2006-10-03 | 2008-10-16 | Neose Technologies, Inc. | Methods for the purification of polypeptide conjugates |
US8969532B2 (en) | 2006-10-03 | 2015-03-03 | Novo Nordisk A/S | Methods for the purification of polypeptide conjugates comprising polyalkylene oxide using hydrophobic interaction chromatography |
US20110064714A1 (en) * | 2006-12-15 | 2011-03-17 | Baxter Healthcare S.A. | Factor viia-polysialic acid conjugate having prolonged in vivo half-life |
US20080221032A1 (en) * | 2006-12-15 | 2008-09-11 | Baxter Healthcare S.A. | Factor VIIa-Polysialic Acid Conjugate Having Prolonged In Vivo Half-Life |
US8637007B2 (en) | 2006-12-15 | 2014-01-28 | Baxter International Inc. | Factor VIIa-polysialic acid conjugate having prolonged in vivo half-life |
EP3323430A1 (en) | 2006-12-15 | 2018-05-23 | Baxalta GmbH | Factor viia-(poly)sialic acid conjugate having prolonged in vivo half-life |
EP2532369A2 (en) | 2006-12-15 | 2012-12-12 | Baxter International Inc | Factor VIIa-(poly)sialic acid conjugate having prolonged in vivo half-life |
US9050304B2 (en) | 2007-04-03 | 2015-06-09 | Ratiopharm Gmbh | Methods of treatment using glycopegylated G-CSF |
US20090098103A1 (en) * | 2007-04-13 | 2009-04-16 | Madison Edwin L | Modified factor VII polypeptides and uses thereof |
US20100166729A9 (en) * | 2007-04-13 | 2010-07-01 | Madison Edwin L | Modified factor VII polypeptides and uses thereof |
US9493499B2 (en) | 2007-06-12 | 2016-11-15 | Novo Nordisk A/S | Process for the production of purified cytidinemonophosphate-sialic acid-polyalkylene oxide (CMP-SA-PEG) as modified nucleotide sugars via anion exchange chromatography |
US9150848B2 (en) | 2008-02-27 | 2015-10-06 | Novo Nordisk A/S | Conjugated factor VIII molecules |
US9476037B2 (en) | 2008-04-11 | 2016-10-25 | Catalyst Biosciences, Inc. | Factor VII polypeptides that are modified and uses thereof |
US10160961B2 (en) | 2008-04-11 | 2018-12-25 | Catalyst Biosciences, Inc. | Factor VII polypeptides that are modified and uses thereof |
US11203749B2 (en) | 2008-04-11 | 2021-12-21 | Catalyst Biosciences, Inc. | Factor VII polypeptides that are modified and uses thereof |
WO2012019128A1 (en) | 2010-08-06 | 2012-02-09 | Genzyme Corporation | Vegf antagonist compositions and uses thereof |
EP3327032A1 (en) | 2010-08-06 | 2018-05-30 | Genzyme Corporation | Vegf antagonist compositions and uses thereof |
WO2013140389A1 (en) | 2012-03-22 | 2013-09-26 | Ramot At Tel-Aviv University Ltd. | Plif multimeric peptides and uses thereof |
GB2516388A (en) * | 2012-04-16 | 2015-01-21 | Cantab Biopharmaceuticals Patents Ltd | Optimised subcutaneous therapeutic agents |
WO2013156488A3 (en) * | 2012-04-16 | 2014-01-16 | Leverton Licence Holdings Limited | Optimised subcutaneous therapeutic agents |
EA033469B1 (en) * | 2012-04-16 | 2019-10-31 | Cantab Biopharmaceuticals Patents Ltd | Subcutaneous administration of blood factor conjugates with polyethylene glycol |
US11351112B2 (en) | 2012-04-16 | 2022-06-07 | Cantab Biopharmaceuticals Patents Limited | Optimised subcutaneous therapeutic agents |
WO2014118785A1 (en) | 2013-02-04 | 2014-08-07 | Ramot At Tel-Aviv University Ltd. | Generation of cytotoxic tumor specific cell lines and uses thereof |
US11266724B2 (en) | 2019-08-15 | 2022-03-08 | Catalyst Biosciences, Inc. | Modified factor VII polypeptides for subcutaneous administration and on-demand treatment |
Also Published As
Publication number | Publication date |
---|---|
MXPA04012496A (en) | 2005-09-12 |
US20080039373A1 (en) | 2008-02-14 |
IL165609A0 (en) | 2006-01-15 |
IL165609A (en) | 2013-04-30 |
US20090227504A1 (en) | 2009-09-10 |
US8053410B2 (en) | 2011-11-08 |
NO20050324L (en) | 2005-03-18 |
DE60336555D1 (en) | 2011-05-12 |
ZA200410005B (en) | 2005-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8053410B2 (en) | Pegylated factor VII glycoforms | |
EP1517710B1 (en) | Pegylated factor vii glycoforms | |
US10844110B2 (en) | O-linked glycoforms of polypeptides and method to manufacture them | |
CN102766668B (en) | The glycosyl type of proconvertin | |
US20100028939A1 (en) | Use of Galactose Oxidase for Selective Chemical Conjugation of Protractor Molecules to Proteins of Therapeutic Interest | |
US20070037966A1 (en) | Hydrophobic interaction chromatography purification of factor VII polypeptides | |
ES2338425T3 (en) | GLA DOMAIN VARIATIONS OF FACTOR VII OR VIIA. | |
US20100056428A1 (en) | Modified proteins | |
US10179905B2 (en) | Factor VII conjugates | |
US20150225711A1 (en) | Factor VII Conjugates | |
ES2361495T3 (en) | VARIATIONS OF FVII OR FVIIA THAT HAVE IMPROVED COAGULATION ACTIVITY. | |
AU2007214306A1 (en) | Factor VII glycoforms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |