US20060035935A1 - Acylated piperidine derivatives as melanocortin-4 receptor agonists - Google Patents
Acylated piperidine derivatives as melanocortin-4 receptor agonists Download PDFInfo
- Publication number
- US20060035935A1 US20060035935A1 US11/239,721 US23972105A US2006035935A1 US 20060035935 A1 US20060035935 A1 US 20060035935A1 US 23972105 A US23972105 A US 23972105A US 2006035935 A1 US2006035935 A1 US 2006035935A1
- Authority
- US
- United States
- Prior art keywords
- alkyl
- independently selected
- phenyl
- substituted
- heteroaryl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108010021436 Type 4 Melanocortin Receptor Proteins 0.000 title abstract description 24
- 150000003053 piperidines Chemical class 0.000 title abstract description 13
- 229940044601 receptor agonist Drugs 0.000 title description 2
- 239000000018 receptor agonist Substances 0.000 title description 2
- 102000001796 Melanocortin 4 receptors Human genes 0.000 title 1
- 238000011282 treatment Methods 0.000 claims abstract description 58
- 201000001881 impotence Diseases 0.000 claims abstract description 41
- 208000010228 Erectile Dysfunction Diseases 0.000 claims abstract description 37
- 102000004378 Melanocortin Receptors Human genes 0.000 claims abstract description 24
- 108090000950 Melanocortin Receptors Proteins 0.000 claims abstract description 24
- 208000008589 Obesity Diseases 0.000 claims abstract description 24
- 235000020824 obesity Nutrition 0.000 claims abstract description 24
- 206010057671 Female sexual dysfunction Diseases 0.000 claims abstract description 21
- 206010012601 diabetes mellitus Diseases 0.000 claims abstract description 17
- 230000004913 activation Effects 0.000 claims abstract description 11
- 150000001875 compounds Chemical class 0.000 claims description 215
- -1 C1-4 alkyliminoyl Chemical group 0.000 claims description 80
- 239000000203 mixture Substances 0.000 claims description 70
- 238000000034 method Methods 0.000 claims description 65
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 63
- 125000001072 heteroaryl group Chemical group 0.000 claims description 45
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 42
- 125000000217 alkyl group Chemical group 0.000 claims description 33
- 150000003839 salts Chemical class 0.000 claims description 30
- 125000001424 substituent group Chemical group 0.000 claims description 26
- 239000001257 hydrogen Substances 0.000 claims description 23
- 229910052739 hydrogen Inorganic materials 0.000 claims description 23
- 125000001624 naphthyl group Chemical group 0.000 claims description 23
- 239000008194 pharmaceutical composition Substances 0.000 claims description 22
- 230000002265 prevention Effects 0.000 claims description 22
- 229910052736 halogen Inorganic materials 0.000 claims description 21
- 150000002367 halogens Chemical class 0.000 claims description 21
- 125000000623 heterocyclic group Chemical group 0.000 claims description 19
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 18
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 claims description 17
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 17
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 16
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 16
- 239000003795 chemical substances by application Substances 0.000 claims description 15
- 206010057672 Male sexual dysfunction Diseases 0.000 claims description 13
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 13
- 239000004480 active ingredient Substances 0.000 claims description 11
- 239000005557 antagonist Substances 0.000 claims description 11
- 208000035475 disorder Diseases 0.000 claims description 11
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 claims description 10
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims description 10
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 9
- 239000003112 inhibitor Substances 0.000 claims description 9
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 claims description 8
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 8
- 125000005842 heteroatom Chemical group 0.000 claims description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- 125000001544 thienyl group Chemical group 0.000 claims description 8
- 125000002950 monocyclic group Chemical group 0.000 claims description 7
- 125000004429 atom Chemical group 0.000 claims description 6
- 201000010099 disease Diseases 0.000 claims description 6
- 125000002883 imidazolyl group Chemical group 0.000 claims description 6
- 125000003373 pyrazinyl group Chemical group 0.000 claims description 6
- 125000003226 pyrazolyl group Chemical group 0.000 claims description 6
- 125000000714 pyrimidinyl group Chemical group 0.000 claims description 6
- ZOOGRGPOEVQQDX-UUOKFMHZSA-N 3',5'-cyclic GMP Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=C(NC2=O)N)=C2N=C1 ZOOGRGPOEVQQDX-UUOKFMHZSA-N 0.000 claims description 5
- 102000004877 Insulin Human genes 0.000 claims description 5
- 108090001061 Insulin Proteins 0.000 claims description 5
- ZOOGRGPOEVQQDX-UHFFFAOYSA-N cyclic GMP Natural products O1C2COP(O)(=O)OC2C(O)C1N1C=NC2=C1NC(N)=NC2=O ZOOGRGPOEVQQDX-UHFFFAOYSA-N 0.000 claims description 5
- 229940125396 insulin Drugs 0.000 claims description 5
- 125000004793 2,2,2-trifluoroethoxy group Chemical group FC(CO*)(F)F 0.000 claims description 4
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 claims description 4
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 claims description 4
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 claims description 4
- 125000004618 benzofuryl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 claims description 4
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 claims description 4
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 claims description 4
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 claims description 4
- 125000003739 carbamimidoyl group Chemical group C(N)(=N)* 0.000 claims description 4
- 125000002541 furyl group Chemical group 0.000 claims description 4
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 claims description 4
- 125000001041 indolyl group Chemical group 0.000 claims description 4
- 125000005956 isoquinolyl group Chemical group 0.000 claims description 4
- 125000001786 isothiazolyl group Chemical group 0.000 claims description 4
- 125000000842 isoxazolyl group Chemical group 0.000 claims description 4
- 125000002098 pyridazinyl group Chemical group 0.000 claims description 4
- 125000005493 quinolyl group Chemical group 0.000 claims description 4
- 125000000335 thiazolyl group Chemical group 0.000 claims description 4
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 claims description 4
- 229940077274 Alpha glucosidase inhibitor Drugs 0.000 claims description 3
- 229940122355 Insulin sensitizer Drugs 0.000 claims description 3
- 102000019280 Pancreatic lipases Human genes 0.000 claims description 3
- 108050006759 Pancreatic lipases Proteins 0.000 claims description 3
- 229940099471 Phosphodiesterase inhibitor Drugs 0.000 claims description 3
- 229940100389 Sulfonylurea Drugs 0.000 claims description 3
- 239000003888 alpha glucosidase inhibitor Substances 0.000 claims description 3
- 230000003579 anti-obesity Effects 0.000 claims description 3
- 239000003136 dopamine receptor stimulating agent Substances 0.000 claims description 3
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 claims description 3
- 229940116369 pancreatic lipase Drugs 0.000 claims description 3
- 239000002571 phosphodiesterase inhibitor Substances 0.000 claims description 3
- 239000002469 receptor inverse agonist Substances 0.000 claims description 3
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims description 2
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 claims description 2
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 claims description 2
- 125000006704 (C5-C6) cycloalkyl group Chemical group 0.000 claims description 2
- 125000006705 (C5-C7) cycloalkyl group Chemical group 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims description 2
- 125000001715 oxadiazolyl group Chemical group 0.000 claims description 2
- 125000004076 pyridyl group Chemical group 0.000 claims description 2
- 125000003831 tetrazolyl group Chemical group 0.000 claims description 2
- 125000001113 thiadiazolyl group Chemical group 0.000 claims description 2
- 125000001425 triazolyl group Chemical group 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims 4
- 229940123031 Beta adrenoreceptor agonist Drugs 0.000 claims 2
- 108090000189 Neuropeptides Proteins 0.000 claims 2
- 102000003797 Neuropeptides Human genes 0.000 claims 2
- 239000000670 adrenergic alpha-2 receptor antagonist Substances 0.000 claims 2
- 239000003555 cannabinoid 1 receptor antagonist Substances 0.000 claims 2
- 229940005501 dopaminergic agent Drugs 0.000 claims 2
- 229940125425 inverse agonist Drugs 0.000 claims 2
- 230000000862 serotonergic effect Effects 0.000 claims 2
- YROXIXLRRCOBKF-UHFFFAOYSA-N sulfonylurea Chemical class OC(=N)N=S(=O)=O YROXIXLRRCOBKF-UHFFFAOYSA-N 0.000 claims 2
- 239000000556 agonist Substances 0.000 abstract description 26
- 102000008316 Type 4 Melanocortin Receptor Human genes 0.000 abstract description 23
- 201000001880 Sexual dysfunction Diseases 0.000 abstract description 5
- 231100000872 sexual dysfunction Toxicity 0.000 abstract description 5
- 230000006806 disease prevention Effects 0.000 abstract description 2
- 208000037765 diseases and disorders Diseases 0.000 abstract description 2
- 101000978418 Homo sapiens Melanocortin receptor 4 Proteins 0.000 abstract 1
- 102000057094 human MC4R Human genes 0.000 abstract 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 208
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 111
- 238000006243 chemical reaction Methods 0.000 description 88
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 78
- 239000000243 solution Substances 0.000 description 55
- 125000004215 2,4-difluorophenyl group Chemical group [H]C1=C([H])C(*)=C(F)C([H])=C1F 0.000 description 51
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 50
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 46
- 238000002360 preparation method Methods 0.000 description 46
- 239000000543 intermediate Substances 0.000 description 43
- 239000011541 reaction mixture Substances 0.000 description 38
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 36
- 235000019439 ethyl acetate Nutrition 0.000 description 35
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 34
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 34
- 0 [1*]N1CC([2*])C(C(=O)N2CCC(C)([Y])CC2)C1 Chemical compound [1*]N1CC([2*])C(C(=O)N2CCC(C)([Y])CC2)C1 0.000 description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 34
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 33
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 33
- 239000012267 brine Substances 0.000 description 32
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 32
- BNRNXUUZRGQAQC-UHFFFAOYSA-N Sildenafil Natural products CCCC1=NN(C)C(C(N2)=O)=C1N=C2C(C(=CC=1)OCC)=CC=1S(=O)(=O)N1CCN(C)CC1 BNRNXUUZRGQAQC-UHFFFAOYSA-N 0.000 description 31
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 31
- 238000001819 mass spectrum Methods 0.000 description 31
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 30
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 30
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 29
- ACYFWRHALJTSCF-UHFFFAOYSA-N CC(=O)NC(C)(C)C Chemical compound CC(=O)NC(C)(C)C ACYFWRHALJTSCF-UHFFFAOYSA-N 0.000 description 27
- 239000000047 product Substances 0.000 description 27
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 25
- 150000001412 amines Chemical class 0.000 description 25
- 238000003786 synthesis reaction Methods 0.000 description 25
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
- 239000002904 solvent Substances 0.000 description 24
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 21
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 21
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 21
- 229910052938 sodium sulfate Inorganic materials 0.000 description 21
- 230000015572 biosynthetic process Effects 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 19
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 19
- 239000000284 extract Substances 0.000 description 19
- 230000004044 response Effects 0.000 description 19
- 239000003039 volatile agent Substances 0.000 description 19
- 239000007832 Na2SO4 Substances 0.000 description 18
- 239000002585 base Substances 0.000 description 18
- 229940079593 drug Drugs 0.000 description 18
- 239000003814 drug Substances 0.000 description 18
- 239000007787 solid Substances 0.000 description 18
- 241001465754 Metazoa Species 0.000 description 17
- 239000002253 acid Substances 0.000 description 17
- 239000000741 silica gel Substances 0.000 description 17
- 229910002027 silica gel Inorganic materials 0.000 description 17
- 238000003756 stirring Methods 0.000 description 17
- 125000001255 4-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1F 0.000 description 16
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 15
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 15
- 229920006395 saturated elastomer Polymers 0.000 description 15
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 14
- 229960003310 sildenafil Drugs 0.000 description 14
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 13
- 238000007792 addition Methods 0.000 description 13
- 235000019441 ethanol Nutrition 0.000 description 13
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 13
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 13
- 239000010410 layer Substances 0.000 description 13
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 13
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 12
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 12
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 12
- 239000012043 crude product Substances 0.000 description 12
- 230000037406 food intake Effects 0.000 description 12
- 235000012631 food intake Nutrition 0.000 description 12
- 239000007788 liquid Substances 0.000 description 12
- 238000000746 purification Methods 0.000 description 12
- 239000000725 suspension Substances 0.000 description 12
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 12
- 241000700159 Rattus Species 0.000 description 11
- 238000005859 coupling reaction Methods 0.000 description 11
- 239000003480 eluent Substances 0.000 description 11
- 238000010828 elution Methods 0.000 description 11
- 235000017557 sodium bicarbonate Nutrition 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 10
- 239000011734 sodium Substances 0.000 description 10
- JDKLPDJLXHXHNV-MFVUMRCOSA-N (3s,6s,9r,12s,15s,23s)-15-[[(2s)-2-acetamidohexanoyl]amino]-9-benzyl-6-[3-(diaminomethylideneamino)propyl]-12-(1h-imidazol-5-ylmethyl)-3-(1h-indol-3-ylmethyl)-2,5,8,11,14,17-hexaoxo-1,4,7,10,13,18-hexazacyclotricosane-23-carboxamide Chemical compound C([C@@H]1C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCNC(=O)C[C@@H](C(N[C@@H](CC=2NC=NC=2)C(=O)N1)=O)NC(=O)[C@@H](NC(C)=O)CCCC)C(N)=O)C1=CC=CC=C1 JDKLPDJLXHXHNV-MFVUMRCOSA-N 0.000 description 9
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 9
- 150000007513 acids Chemical class 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 9
- 239000003937 drug carrier Substances 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 9
- 125000001207 fluorophenyl group Chemical group 0.000 description 9
- 239000000336 melanocortin receptor agonist Substances 0.000 description 9
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 description 9
- DVSMGTYVVKVUCT-UHFFFAOYSA-N CCN1C(=O)OCC1(C)C Chemical compound CCN1C(=O)OCC1(C)C DVSMGTYVVKVUCT-UHFFFAOYSA-N 0.000 description 8
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- 230000009471 action Effects 0.000 description 8
- 150000002148 esters Chemical class 0.000 description 8
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 8
- 108010080780 melanotan-II Proteins 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- 235000019198 oils Nutrition 0.000 description 8
- 239000003960 organic solvent Substances 0.000 description 8
- 102000005962 receptors Human genes 0.000 description 8
- 108020003175 receptors Proteins 0.000 description 8
- 230000001568 sexual effect Effects 0.000 description 8
- 125000004198 2-fluorophenyl group Chemical group [H]C1=C([H])C(F)=C(*)C([H])=C1[H] 0.000 description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 7
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 7
- 239000000908 ammonium hydroxide Substances 0.000 description 7
- 210000004556 brain Anatomy 0.000 description 7
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 7
- 150000001735 carboxylic acids Chemical class 0.000 description 7
- 239000012230 colorless oil Substances 0.000 description 7
- 238000003818 flash chromatography Methods 0.000 description 7
- 150000002431 hydrogen Chemical group 0.000 description 7
- 239000002243 precursor Substances 0.000 description 7
- 239000012047 saturated solution Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- KYWXRBNOYGGPIZ-UHFFFAOYSA-N CC(=O)N1CCOCC1 Chemical compound CC(=O)N1CCOCC1 KYWXRBNOYGGPIZ-UHFFFAOYSA-N 0.000 description 6
- WFRBDWRZVBPBDO-UHFFFAOYSA-N CCCC(C)(C)O Chemical compound CCCC(C)(C)O WFRBDWRZVBPBDO-UHFFFAOYSA-N 0.000 description 6
- FEOIYPLRWRCSMS-UHFFFAOYSA-N CCN1C=NC=N1 Chemical compound CCN1C=NC=N1 FEOIYPLRWRCSMS-UHFFFAOYSA-N 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 206010052005 Psychogenic erectile dysfunction Diseases 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000006352 cycloaddition reaction Methods 0.000 description 6
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 6
- ZCSHNCUQKCANBX-UHFFFAOYSA-N lithium diisopropylamide Chemical compound [Li+].CC(C)[N-]C(C)C ZCSHNCUQKCANBX-UHFFFAOYSA-N 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 239000003607 modifier Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 108090000765 processed proteins & peptides Proteins 0.000 description 6
- 125000006239 protecting group Chemical group 0.000 description 6
- 230000011514 reflex Effects 0.000 description 6
- 238000004007 reversed phase HPLC Methods 0.000 description 6
- 230000000638 stimulation Effects 0.000 description 6
- WJKHJLXJJJATHN-UHFFFAOYSA-N triflic anhydride Chemical compound FC(F)(F)S(=O)(=O)OS(=O)(=O)C(F)(F)F WJKHJLXJJJATHN-UHFFFAOYSA-N 0.000 description 6
- WHNFPRLDDSXQCL-UAZQEYIDSA-N α-msh Chemical class C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(N)=O)NC(=O)[C@H](CO)NC(C)=O)C1=CC=C(O)C=C1 WHNFPRLDDSXQCL-UAZQEYIDSA-N 0.000 description 6
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical compound O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 241000039077 Copula Species 0.000 description 5
- 241000124008 Mammalia Species 0.000 description 5
- LFTLOKWAGJYHHR-UHFFFAOYSA-N N-methylmorpholine N-oxide Chemical compound CN1(=O)CCOCC1 LFTLOKWAGJYHHR-UHFFFAOYSA-N 0.000 description 5
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 5
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 5
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 230000037396 body weight Effects 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 238000002825 functional assay Methods 0.000 description 5
- 238000005984 hydrogenation reaction Methods 0.000 description 5
- 230000001976 improved effect Effects 0.000 description 5
- 239000012442 inert solvent Substances 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 238000001990 intravenous administration Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000012074 organic phase Substances 0.000 description 5
- 229910000027 potassium carbonate Inorganic materials 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 150000003235 pyrrolidines Chemical class 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- 230000036332 sexual response Effects 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 5
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 4
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 4
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 4
- KXKVLQRXCPHEJC-UHFFFAOYSA-N COC(C)=O Chemical compound COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 4
- 230000005526 G1 to G0 transition Effects 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 102400000740 Melanocyte-stimulating hormone alpha Human genes 0.000 description 4
- 101710200814 Melanotropin alpha Proteins 0.000 description 4
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 4
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 4
- 102100027467 Pro-opiomelanocortin Human genes 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 4
- 238000004811 liquid chromatography Methods 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002808 molecular sieve Substances 0.000 description 4
- 231100000252 nontoxic Toxicity 0.000 description 4
- 230000003000 nontoxic effect Effects 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 4
- 230000018052 penile erection Effects 0.000 description 4
- 210000003899 penis Anatomy 0.000 description 4
- MRBDMNSDAVCSSF-UHFFFAOYSA-N phentolamine Chemical compound C1=CC(C)=CC=C1N(C=1C=C(O)C=CC=1)CC1=NCCN1 MRBDMNSDAVCSSF-UHFFFAOYSA-N 0.000 description 4
- 229960001999 phentolamine Drugs 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- DEIYFTQMQPDXOT-UHFFFAOYSA-N sildenafil citrate Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.CCCC1=NN(C)C(C(N2)=O)=C1N=C2C(C(=CC=1)OCC)=CC=1S(=O)(=O)N1CCN(C)CC1 DEIYFTQMQPDXOT-UHFFFAOYSA-N 0.000 description 4
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 239000012258 stirred mixture Substances 0.000 description 4
- 238000007920 subcutaneous administration Methods 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 3
- JVSFQJZRHXAUGT-UHFFFAOYSA-N 2,2-dimethylpropanoyl chloride Chemical compound CC(C)(C)C(Cl)=O JVSFQJZRHXAUGT-UHFFFAOYSA-N 0.000 description 3
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 3
- NCPSWHTZKMXYCJ-UHFFFAOYSA-N 3-(3-phenylprop-2-enyl)-1,3-oxazolidin-2-one Chemical compound O=C1OCCN1CC=CC1=CC=CC=C1 NCPSWHTZKMXYCJ-UHFFFAOYSA-N 0.000 description 3
- 102000006822 Agouti Signaling Protein Human genes 0.000 description 3
- 108010072151 Agouti Signaling Protein Proteins 0.000 description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- LNWWQYYLZVZXKS-UHFFFAOYSA-N CC(=O)N1CCCC1 Chemical compound CC(=O)N1CCCC1 LNWWQYYLZVZXKS-UHFFFAOYSA-N 0.000 description 3
- WSEURCHZECZCGQ-UHFFFAOYSA-N CC(=O)NC(C)(C)CO Chemical compound CC(=O)NC(C)(C)CO WSEURCHZECZCGQ-UHFFFAOYSA-N 0.000 description 3
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N CCC1=CC=CC=C1 Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 3
- CNQGCIXRLGZDSQ-LDYMZIIASA-N C[C@@H]1CNC[C@H]1C1=CC=C(F)C=C1 Chemical compound C[C@@H]1CNC[C@H]1C1=CC=C(F)C=C1 CNQGCIXRLGZDSQ-LDYMZIIASA-N 0.000 description 3
- 241000484025 Cuniculus Species 0.000 description 3
- 238000006228 Dieckmann condensation reaction Methods 0.000 description 3
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 108010069820 Pro-Opiomelanocortin Proteins 0.000 description 3
- 239000000683 Pro-Opiomelanocortin Substances 0.000 description 3
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- UAHFGYDRQSXQEB-LEBBXHLNSA-N afamelanotide Chemical class C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(N)=O)NC(=O)[C@H](CO)NC(C)=O)C1=CC=C(O)C=C1 UAHFGYDRQSXQEB-LEBBXHLNSA-N 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 239000000883 anti-obesity agent Substances 0.000 description 3
- 239000000010 aprotic solvent Substances 0.000 description 3
- 230000037007 arousal Effects 0.000 description 3
- 150000001543 aryl boronic acids Chemical class 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- 239000012148 binding buffer Substances 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- QOPVNWQGBQYBBP-UHFFFAOYSA-N chloroethyl chloroformate Chemical compound CC(Cl)OC(Cl)=O QOPVNWQGBQYBBP-UHFFFAOYSA-N 0.000 description 3
- 235000013985 cinnamic acid Nutrition 0.000 description 3
- 238000004440 column chromatography Methods 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Chemical compound O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 150000002466 imines Chemical class 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 150000007529 inorganic bases Chemical class 0.000 description 3
- 238000007912 intraperitoneal administration Methods 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 230000001802 melanotrophic effect Effects 0.000 description 3
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- RPZAAFUKDPKTKP-UHFFFAOYSA-N n-(methoxymethyl)-1-phenyl-n-(trimethylsilylmethyl)methanamine Chemical compound COCN(C[Si](C)(C)C)CC1=CC=CC=C1 RPZAAFUKDPKTKP-UHFFFAOYSA-N 0.000 description 3
- XBXCNNQPRYLIDE-UHFFFAOYSA-M n-tert-butylcarbamate Chemical compound CC(C)(C)NC([O-])=O XBXCNNQPRYLIDE-UHFFFAOYSA-M 0.000 description 3
- 150000007530 organic bases Chemical class 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000000159 protein binding assay Methods 0.000 description 3
- 230000001107 psychogenic effect Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- ROUYFJUVMYHXFJ-UHFFFAOYSA-N tert-butyl 4-oxopiperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC(=O)CC1 ROUYFJUVMYHXFJ-UHFFFAOYSA-N 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 229930192474 thiophene Natural products 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- 229940094720 viagra Drugs 0.000 description 3
- OLNJKAXRBXUBTB-JYJNAYRXSA-N (2s)-2-[[(2s)-2-[[(2s)-2-acetamido-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-5-(diaminomethylideneamino)pentanoic acid Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N OLNJKAXRBXUBTB-JYJNAYRXSA-N 0.000 description 2
- OJOFMLDBXPDXLQ-VIFPVBQESA-N (4s)-4-benzyl-1,3-oxazolidin-2-one Chemical compound C1OC(=O)N[C@H]1CC1=CC=CC=C1 OJOFMLDBXPDXLQ-VIFPVBQESA-N 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- DHZPTXMPOAJTNM-UHFFFAOYSA-N 2-methyl-n-(trimethylsilylmethyl)propan-2-amine Chemical compound CC(C)(C)NC[Si](C)(C)C DHZPTXMPOAJTNM-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UHFFFAOYSA-N 2-{[3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound OCC1OC(CO)(OC2OC(CO)C(O)C(O)C2O)C(O)C1O CZMRCDWAGMRECN-UHFFFAOYSA-N 0.000 description 2
- OGIYDFVHFQEFKQ-UHFFFAOYSA-N 3-[n-(4,5-dihydro-1h-imidazol-2-ylmethyl)-4-methylanilino]phenol;methanesulfonic acid Chemical compound CS(O)(=O)=O.C1=CC(C)=CC=C1N(C=1C=C(O)C=CC=1)CC1=NCCN1 OGIYDFVHFQEFKQ-UHFFFAOYSA-N 0.000 description 2
- 125000004179 3-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C(Cl)=C1[H] 0.000 description 2
- 125000006306 4-iodophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1I 0.000 description 2
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- CYJRNFFLTBEQSQ-UHFFFAOYSA-N 8-(3-methyl-1-benzothiophen-5-yl)-N-(4-methylsulfonylpyridin-3-yl)quinoxalin-6-amine Chemical compound CS(=O)(=O)C1=C(C=NC=C1)NC=1C=C2N=CC=NC2=C(C=1)C=1C=CC2=C(C(=CS2)C)C=1 CYJRNFFLTBEQSQ-UHFFFAOYSA-N 0.000 description 2
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 2
- WRDABNWSWOHGMS-UHFFFAOYSA-N AEBSF hydrochloride Chemical compound Cl.NCCC1=CC=C(S(F)(=O)=O)C=C1 WRDABNWSWOHGMS-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 108010039627 Aprotinin Proteins 0.000 description 2
- 108010001478 Bacitracin Proteins 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- YSDBJKNOEWSFGA-UHFFFAOYSA-N CC(=O)N1CCN(C)CC1 Chemical compound CC(=O)N1CCN(C)CC1 YSDBJKNOEWSFGA-UHFFFAOYSA-N 0.000 description 2
- BXKUFHNUDPHSAB-UHFFFAOYSA-N CC(C)CN1CCC(C)(C)C1=O Chemical compound CC(C)CN1CCC(C)(C)C1=O BXKUFHNUDPHSAB-UHFFFAOYSA-N 0.000 description 2
- KHAPZTYDMAHFEH-UHFFFAOYSA-N CC(C)CN1CCC1=O Chemical compound CC(C)CN1CCC1=O KHAPZTYDMAHFEH-UHFFFAOYSA-N 0.000 description 2
- GKMWZLGIJKCGOP-BXUZGUMPSA-N CC(C)N1C[C@@H](C)[C@H](C2=CC=C(F)C=C2)C1 Chemical compound CC(C)N1C[C@@H](C)[C@H](C2=CC=C(F)C=C2)C1 GKMWZLGIJKCGOP-BXUZGUMPSA-N 0.000 description 2
- LNJMHEJAYSYZKK-UHFFFAOYSA-N CC1=NC=CC=N1 Chemical compound CC1=NC=CC=N1 LNJMHEJAYSYZKK-UHFFFAOYSA-N 0.000 description 2
- DCLBBTZFNQOFEK-UHFFFAOYSA-N CCN(C(C)C)S(C)(=O)=O Chemical compound CCN(C(C)C)S(C)(=O)=O DCLBBTZFNQOFEK-UHFFFAOYSA-N 0.000 description 2
- ICMYVGUJSCZEMG-UHFFFAOYSA-N CCNC(=O)C(C)(C)C Chemical compound CCNC(=O)C(C)(C)C ICMYVGUJSCZEMG-UHFFFAOYSA-N 0.000 description 2
- XCKSAHYRWCTCRQ-AMVUTOCUSA-N CN1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2)C1 Chemical compound CN1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2)C1 XCKSAHYRWCTCRQ-AMVUTOCUSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 102000018208 Cannabinoid Receptor Human genes 0.000 description 2
- 108050007331 Cannabinoid receptor Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 2
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 206010020710 Hyperphagia Diseases 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 108010044467 Isoenzymes Proteins 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 206010024870 Loss of libido Diseases 0.000 description 2
- 101710151321 Melanostatin Proteins 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- 102400000064 Neuropeptide Y Human genes 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- 102000002072 Non-Receptor Type 1 Protein Tyrosine Phosphatase Human genes 0.000 description 2
- 108010015847 Non-Receptor Type 1 Protein Tyrosine Phosphatase Proteins 0.000 description 2
- 206010052004 Organic erectile dysfunction Diseases 0.000 description 2
- 108010016731 PPAR gamma Proteins 0.000 description 2
- 102000000536 PPAR gamma Human genes 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 2
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 2
- ZPHBZEQOLSRPAK-UHFFFAOYSA-N Phosphoramidon Natural products C=1NC2=CC=CC=C2C=1CC(C(O)=O)NC(=O)C(CC(C)C)NP(O)(=O)OC1OC(C)C(O)C(O)C1O ZPHBZEQOLSRPAK-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- OKJPEAGHQZHRQV-UHFFFAOYSA-N Triiodomethane Natural products IC(I)I OKJPEAGHQZHRQV-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 206010047571 Visual impairment Diseases 0.000 description 2
- 239000003377 acid catalyst Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000001414 amino alcohols Chemical class 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 229940125710 antiobesity agent Drugs 0.000 description 2
- VMWNQDUVQKEIOC-CYBMUJFWSA-N apomorphine Chemical compound C([C@H]1N(C)CC2)C3=CC=C(O)C(O)=C3C3=C1C2=CC=C3 VMWNQDUVQKEIOC-CYBMUJFWSA-N 0.000 description 2
- 229960004046 apomorphine Drugs 0.000 description 2
- 229960004405 aprotinin Drugs 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229960003071 bacitracin Drugs 0.000 description 2
- 229930184125 bacitracin Natural products 0.000 description 2
- CLKOFPXJLQSYAH-ABRJDSQDSA-N bacitracin A Chemical compound C1SC([C@@H](N)[C@@H](C)CC)=N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]1C(=O)N[C@H](CCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCCCC1 CLKOFPXJLQSYAH-ABRJDSQDSA-N 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000003491 cAMP production Effects 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- OOCUOKHIVGWCTJ-UHFFFAOYSA-N chloromethyl(trimethyl)silane Chemical compound C[Si](C)(C)CCl OOCUOKHIVGWCTJ-UHFFFAOYSA-N 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 229940114081 cinnamate Drugs 0.000 description 2
- 229930016911 cinnamic acid Natural products 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- NXQGGXCHGDYOHB-UHFFFAOYSA-L cyclopenta-1,4-dien-1-yl(diphenyl)phosphane;dichloropalladium;iron(2+) Chemical compound [Fe+2].Cl[Pd]Cl.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 NXQGGXCHGDYOHB-UHFFFAOYSA-L 0.000 description 2
- 125000004186 cyclopropylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C1([H])[H] 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- FAMRKDQNMBBFBR-BQYQJAHWSA-N diethyl azodicarboxylate Substances CCOC(=O)\N=N\C(=O)OCC FAMRKDQNMBBFBR-BQYQJAHWSA-N 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 230000004064 dysfunction Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- VDDXQSUSMHZCLS-UHFFFAOYSA-N ethenyl trifluoromethanesulfonate Chemical compound FC(F)(F)S(=O)(=O)OC=C VDDXQSUSMHZCLS-UHFFFAOYSA-N 0.000 description 2
- XBPOBCXHALHJFP-UHFFFAOYSA-N ethyl 4-bromobutanoate Chemical compound CCOC(=O)CCCBr XBPOBCXHALHJFP-UHFFFAOYSA-N 0.000 description 2
- PQJJJMRNHATNKG-UHFFFAOYSA-N ethyl bromoacetate Chemical compound CCOC(=O)CBr PQJJJMRNHATNKG-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 239000012458 free base Substances 0.000 description 2
- 239000007903 gelatin capsule Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 150000002391 heterocyclic compounds Chemical class 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000007327 hydrogenolysis reaction Methods 0.000 description 2
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 2
- 201000001421 hyperglycemia Diseases 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 238000011813 knockout mouse model Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- URPYMXQQVHTUDU-OFGSCBOVSA-N nucleopeptide y Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 URPYMXQQVHTUDU-OFGSCBOVSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- MUMZUERVLWJKNR-UHFFFAOYSA-N oxoplatinum Chemical compound [Pt]=O MUMZUERVLWJKNR-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Chemical group 0.000 description 2
- DHHVAGZRUROJKS-UHFFFAOYSA-N phentermine Chemical compound CC(C)(N)CC1=CC=CC=C1 DHHVAGZRUROJKS-UHFFFAOYSA-N 0.000 description 2
- 239000002590 phosphodiesterase V inhibitor Substances 0.000 description 2
- BWSDNRQVTFZQQD-AYVHNPTNSA-N phosphoramidon Chemical compound O([P@@](O)(=O)N[C@H](CC(C)C)C(=O)N[C@H](CC=1[C]2C=CC=CC2=NC=1)C(O)=O)[C@H]1O[C@@H](C)[C@H](O)[C@@H](O)[C@@H]1O BWSDNRQVTFZQQD-AYVHNPTNSA-N 0.000 description 2
- 108010072906 phosphoramidon Proteins 0.000 description 2
- HYAFETHFCAUJAY-UHFFFAOYSA-N pioglitazone Chemical compound N1=CC(CC)=CC=C1CCOC(C=C1)=CC=C1CC1C(=O)NC(=O)S1 HYAFETHFCAUJAY-UHFFFAOYSA-N 0.000 description 2
- 239000000902 placebo Substances 0.000 description 2
- 229940068196 placebo Drugs 0.000 description 2
- 210000002826 placenta Anatomy 0.000 description 2
- 229910003446 platinum oxide Inorganic materials 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 206010036596 premature ejaculation Diseases 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 239000012264 purified product Substances 0.000 description 2
- 238000006268 reductive amination reaction Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000000837 restrainer Substances 0.000 description 2
- 239000002151 riboflavin Substances 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 230000035946 sexual desire Effects 0.000 description 2
- 230000036299 sexual function Effects 0.000 description 2
- 238000010898 silica gel chromatography Methods 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- BEOOHQFXGBMRKU-UHFFFAOYSA-N sodium cyanoborohydride Chemical compound [Na+].[B-]C#N BEOOHQFXGBMRKU-UHFFFAOYSA-N 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 238000012453 sprague-dawley rat model Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000010254 subcutaneous injection Methods 0.000 description 2
- 239000007929 subcutaneous injection Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 239000011593 sulfur Chemical group 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 230000001839 systemic circulation Effects 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- WOXKDUGGOYFFRN-IIBYNOLFSA-N tadalafil Chemical compound C1=C2OCOC2=CC([C@@H]2C3=C(C4=CC=CC=C4N3)C[C@H]3N2C(=O)CN(C3=O)C)=C1 WOXKDUGGOYFFRN-IIBYNOLFSA-N 0.000 description 2
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 description 2
- OSBSFAARYOCBHB-UHFFFAOYSA-N tetrapropylammonium Chemical compound CCC[N+](CCC)(CCC)CCC OSBSFAARYOCBHB-UHFFFAOYSA-N 0.000 description 2
- YAPQBXQYLJRXSA-UHFFFAOYSA-N theobromine Chemical compound CN1C(=O)NC(=O)C2=C1N=CN2C YAPQBXQYLJRXSA-UHFFFAOYSA-N 0.000 description 2
- 230000004797 therapeutic response Effects 0.000 description 2
- 238000004809 thin layer chromatography Methods 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- UCPYLLCMEDAXFR-UHFFFAOYSA-N triphosgene Chemical compound ClC(Cl)(Cl)OC(=O)OC(Cl)(Cl)Cl UCPYLLCMEDAXFR-UHFFFAOYSA-N 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 230000004393 visual impairment Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- AHOUBRCZNHFOSL-YOEHRIQHSA-N (+)-Casbol Chemical compound C1=CC(F)=CC=C1[C@H]1[C@H](COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-YOEHRIQHSA-N 0.000 description 1
- DBGIVFWFUFKIQN-VIFPVBQESA-N (+)-Fenfluramine Chemical compound CCN[C@@H](C)CC1=CC=CC(C(F)(F)F)=C1 DBGIVFWFUFKIQN-VIFPVBQESA-N 0.000 description 1
- DBGIVFWFUFKIQN-UHFFFAOYSA-N (+-)-Fenfluramine Chemical compound CCNC(C)CC1=CC=CC(C(F)(F)F)=C1 DBGIVFWFUFKIQN-UHFFFAOYSA-N 0.000 description 1
- PDNZJLMPXLQDPL-UHFFFAOYSA-N (1-aminocyclopentyl)methanol Chemical compound OCC1(N)CCCC1 PDNZJLMPXLQDPL-UHFFFAOYSA-N 0.000 description 1
- XUFXOAAUWZOOIT-SXARVLRPSA-N (2R,3R,4R,5S,6R)-5-[[(2R,3R,4R,5S,6R)-5-[[(2R,3R,4S,5S,6R)-3,4-dihydroxy-6-methyl-5-[[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)-1-cyclohex-2-enyl]amino]-2-oxanyl]oxy]-3,4-dihydroxy-6-(hydroxymethyl)-2-oxanyl]oxy]-6-(hydroxymethyl)oxane-2,3,4-triol Chemical compound O([C@H]1O[C@H](CO)[C@H]([C@@H]([C@H]1O)O)O[C@H]1O[C@@H]([C@H]([C@H](O)[C@H]1O)N[C@@H]1[C@@H]([C@@H](O)[C@H](O)C(CO)=C1)O)C)[C@@H]1[C@@H](CO)O[C@@H](O)[C@H](O)[C@H]1O XUFXOAAUWZOOIT-SXARVLRPSA-N 0.000 description 1
- VIJSPAIQWVPKQZ-BLECARSGSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-acetamido-5-(diaminomethylideneamino)pentanoyl]amino]-4-methylpentanoyl]amino]-4,4-dimethylpentanoyl]amino]-4-methylpentanoyl]amino]propanoyl]amino]-5-(diaminomethylideneamino)pentanoic acid Chemical compound NC(=N)NCCC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(C)=O VIJSPAIQWVPKQZ-BLECARSGSA-N 0.000 description 1
- ZGGHKIMDNBDHJB-NRFPMOEYSA-M (3R,5S)-fluvastatin sodium Chemical compound [Na+].C12=CC=CC=C2N(C(C)C)C(\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O)=C1C1=CC=C(F)C=C1 ZGGHKIMDNBDHJB-NRFPMOEYSA-M 0.000 description 1
- VYYACTQOEBMBQB-KGLIPLIRSA-N (3r,4r)-3-(4-fluorophenyl)-1-[(2-methylpropan-2-yl)oxycarbonyl]piperidine-4-carboxylic acid Chemical compound C1N(C(=O)OC(C)(C)C)CC[C@@H](C(O)=O)[C@@H]1C1=CC=C(F)C=C1 VYYACTQOEBMBQB-KGLIPLIRSA-N 0.000 description 1
- GGYWLZFXFKFWKL-GLWNXGLNSA-N (3s,6s,9r,12s,15r,23s)-15-[[(2r)-2-acetamidohexanoyl]amino]-6-[3-(diaminomethylideneamino)propyl]-12-(1h-imidazol-5-ylmethyl)-3-(1h-indol-3-ylmethyl)-9-(naphthalen-2-ylmethyl)-2,5,8,11,14,17-hexaoxo-1,4,7,10,13,18-hexazacyclotricosane-23-carboxamide Chemical compound C([C@H]1C(=O)N[C@H](CC=2C=C3C=CC=CC3=CC=2)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCNC(=O)C[C@H](C(N1)=O)NC(=O)[C@H](NC(C)=O)CCCC)C(N)=O)C1=CNC=N1 GGYWLZFXFKFWKL-GLWNXGLNSA-N 0.000 description 1
- HUFJPORUNMPJRR-GSDHBNRESA-N (4s)-4-benzyl-3-[(3r,4r)-1-benzyl-4-(4-fluorophenyl)pyrrolidine-3-carbonyl]-1,3-oxazolidin-2-one Chemical compound C1=CC(F)=CC=C1[C@H]1[C@@H](C(=O)N2C(OC[C@@H]2CC=2C=CC=CC=2)=O)CN(CC=2C=CC=CC=2)C1 HUFJPORUNMPJRR-GSDHBNRESA-N 0.000 description 1
- CGIVJLORXNGNRL-YRYLYKBFSA-N (4s)-4-benzyl-3-[(e)-3-(4-fluorophenyl)prop-2-enoyl]-1,3-oxazolidin-2-one Chemical compound C1=CC(F)=CC=C1\C=C\C(=O)N1C(=O)OC[C@@H]1CC1=CC=CC=C1 CGIVJLORXNGNRL-YRYLYKBFSA-N 0.000 description 1
- RWIUTHWKQHRQNP-ZDVGBALWSA-N (9e,12e)-n-(1-phenylethyl)octadeca-9,12-dienamide Chemical compound CCCCC\C=C\C\C=C\CCCCCCCC(=O)NC(C)C1=CC=CC=C1 RWIUTHWKQHRQNP-ZDVGBALWSA-N 0.000 description 1
- 125000006570 (C5-C6) heteroaryl group Chemical group 0.000 description 1
- RTHCYVBBDHJXIQ-MRXNPFEDSA-N (R)-fluoxetine Chemical compound O([C@H](CCNC)C=1C=CC=CC=1)C1=CC=C(C(F)(F)F)C=C1 RTHCYVBBDHJXIQ-MRXNPFEDSA-N 0.000 description 1
- BKMMTJMQCTUHRP-VKHMYHEASA-N (S)-2-aminopropan-1-ol Chemical compound C[C@H](N)CO BKMMTJMQCTUHRP-VKHMYHEASA-N 0.000 description 1
- DYLIWHYUXAJDOJ-OWOJBTEDSA-N (e)-4-(6-aminopurin-9-yl)but-2-en-1-ol Chemical compound NC1=NC=NC2=C1N=CN2C\C=C\CO DYLIWHYUXAJDOJ-OWOJBTEDSA-N 0.000 description 1
- FNQJDLTXOVEEFB-UHFFFAOYSA-N 1,2,3-benzothiadiazole Chemical compound C1=CC=C2SN=NC2=C1 FNQJDLTXOVEEFB-UHFFFAOYSA-N 0.000 description 1
- KTZQTRPPVKQPFO-UHFFFAOYSA-N 1,2-benzoxazole Chemical compound C1=CC=C2C=NOC2=C1 KTZQTRPPVKQPFO-UHFFFAOYSA-N 0.000 description 1
- QACMXJJLQXUOPQ-UHFFFAOYSA-N 1,2-dichloroethane;3-(ethyliminomethylideneamino)-n,n-dimethylpropan-1-amine Chemical compound ClCCCl.CCN=C=NCCCN(C)C QACMXJJLQXUOPQ-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- JUXAVSAMVBLDKO-UHFFFAOYSA-N 1-(1-azabicyclo[2.2.2]octan-3-yl)-3-[3-(1h-indol-3-yl)-1-oxo-1-spiro[1,2-dihydroindene-3,4'-piperidine]-1'-ylpropan-2-yl]urea Chemical compound C1N(CC2)CCC2C1NC(=O)NC(C(=O)N1CCC2(C3=CC=CC=C3CC2)CC1)CC1=CNC2=CC=CC=C12 JUXAVSAMVBLDKO-UHFFFAOYSA-N 0.000 description 1
- JNMGJNQZIAVFJE-UHFFFAOYSA-N 1-[(2-methylpropan-2-yl)oxycarbonyl]-2-phenylpyrrolidine-3-carboxylic acid Chemical compound CC(C)(C)OC(=O)N1CCC(C(O)=O)C1C1=CC=CC=C1 JNMGJNQZIAVFJE-UHFFFAOYSA-N 0.000 description 1
- PAJPWUMXBYXFCZ-UHFFFAOYSA-N 1-aminocyclopropanecarboxylic acid Chemical compound OC(=O)C1(N)CC1 PAJPWUMXBYXFCZ-UHFFFAOYSA-N 0.000 description 1
- JZUMPNUYDJBTNO-UHFFFAOYSA-N 1-hydroxybenzotriazole;hydrate Chemical compound O.C1=CC=C2N(O)N=NC2=C1.C1=CC=C2N(O)N=NC2=C1 JZUMPNUYDJBTNO-UHFFFAOYSA-N 0.000 description 1
- ABBVAMUCDQETDO-UHFFFAOYSA-N 1-o-tert-butyl 3-o-ethyl 4-oxopiperidine-1,3-dicarboxylate Chemical compound CCOC(=O)C1CN(C(=O)OC(C)(C)C)CCC1=O ABBVAMUCDQETDO-UHFFFAOYSA-N 0.000 description 1
- WCTXJAXKORIYNA-UHFFFAOYSA-N 1-o-tert-butyl 4-o-ethyl 3-oxopiperidine-1,4-dicarboxylate Chemical compound CCOC(=O)C1CCN(C(=O)OC(C)(C)C)CC1=O WCTXJAXKORIYNA-UHFFFAOYSA-N 0.000 description 1
- LHZFVHKQGVLJLN-UHFFFAOYSA-N 1-o-tert-butyl 4-o-ethyl 5-(trifluoromethylsulfonyloxy)-3,6-dihydro-2h-pyridine-1,4-dicarboxylate Chemical compound CCOC(=O)C1=C(OS(=O)(=O)C(F)(F)F)CN(C(=O)OC(C)(C)C)CC1 LHZFVHKQGVLJLN-UHFFFAOYSA-N 0.000 description 1
- QBSFHOMPPMKXAV-UHFFFAOYSA-N 1-o-tert-butyl 5-o-ethyl 4-(trifluoromethylsulfonyloxy)-3,6-dihydro-2h-pyridine-1,5-dicarboxylate Chemical compound CCOC(=O)C1=C(OS(=O)(=O)C(F)(F)F)CCN(C(=O)OC(C)(C)C)C1 QBSFHOMPPMKXAV-UHFFFAOYSA-N 0.000 description 1
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- 125000004201 2,4-dichlorophenyl group Chemical group [H]C1=C([H])C(*)=C(Cl)C([H])=C1Cl 0.000 description 1
- DAVJMKMVLKOQQC-UHFFFAOYSA-N 2-(2-fluorophenyl)acetonitrile Chemical compound FC1=CC=CC=C1CC#N DAVJMKMVLKOQQC-UHFFFAOYSA-N 0.000 description 1
- GFXQBWUWIQBIKN-UHFFFAOYSA-N 2-[3-fluoro-n-(2-hydroxyethyl)anilino]ethanol Chemical compound OCCN(CCO)C1=CC=CC(F)=C1 GFXQBWUWIQBIKN-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- 229940058020 2-amino-2-methyl-1-propanol Drugs 0.000 description 1
- DUGMCDWNXXFHDE-VZYDHVRKSA-N 2-amino-2-methyl-n-[(2r)-1-(1-methylsulfonylspiro[2h-indole-3,4'-piperidine]-1'-yl)-1-oxo-3-phenylmethoxypropan-2-yl]propanamide;methanesulfonic acid Chemical compound CS(O)(=O)=O.C([C@@H](NC(=O)C(C)(N)C)C(=O)N1CCC2(C3=CC=CC=C3N(C2)S(C)(=O)=O)CC1)OCC1=CC=CC=C1 DUGMCDWNXXFHDE-VZYDHVRKSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- 229940013085 2-diethylaminoethanol Drugs 0.000 description 1
- YEDUAINPPJYDJZ-UHFFFAOYSA-N 2-hydroxybenzothiazole Chemical compound C1=CC=C2SC(O)=NC2=C1 YEDUAINPPJYDJZ-UHFFFAOYSA-N 0.000 description 1
- PPWLAQVKIFDULF-UHFFFAOYSA-N 2-phenyl-1h-pyrrolo[2,3-b]pyridine Chemical compound N1C2=NC=CC=C2C=C1C1=CC=CC=C1 PPWLAQVKIFDULF-UHFFFAOYSA-N 0.000 description 1
- VSWICNJIUPRZIK-UHFFFAOYSA-N 2-piperideine Chemical class C1CNC=CC1 VSWICNJIUPRZIK-UHFFFAOYSA-N 0.000 description 1
- APIXJSLKIYYUKG-UHFFFAOYSA-N 3 Isobutyl 1 methylxanthine Chemical compound O=C1N(C)C(=O)N(CC(C)C)C2=C1N=CN2 APIXJSLKIYYUKG-UHFFFAOYSA-N 0.000 description 1
- 125000004189 3,4-dichlorophenyl group Chemical group [H]C1=C([H])C(Cl)=C(Cl)C([H])=C1* 0.000 description 1
- OQJCTPCZNNLHAG-UHFFFAOYSA-N 3-[(4-cyclohexylpiperidin-1-ium-4-yl)methyl]-4,4-dimethyl-1,3-oxazolidin-2-one;chloride Chemical compound [Cl-].CC1(C)COC(=O)N1CC1(C2CCCCC2)CC[NH2+]CC1 OQJCTPCZNNLHAG-UHFFFAOYSA-N 0.000 description 1
- NNCWFMWIIHDUHL-CLSOAGJSSA-N 3-[[4-cyclohexyl-1-[(3s,4r)-4-(4-fluorophenyl)piperidin-1-ium-3-carbonyl]piperidin-4-yl]methyl]-4,4-dimethyl-1,3-oxazolidin-2-one;2,2,2-trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F.CC1(C)COC(=O)N1CC1(C2CCCCC2)CCN(C(=O)[C@H]2[C@@H](CC[NH2+]C2)C=2C=CC(F)=CC=2)CC1 NNCWFMWIIHDUHL-CLSOAGJSSA-N 0.000 description 1
- INUNLMUAPJVRME-UHFFFAOYSA-N 3-chloropropanoyl chloride Chemical compound ClCCC(Cl)=O INUNLMUAPJVRME-UHFFFAOYSA-N 0.000 description 1
- RRRCPCOJPQLWEP-UHFFFAOYSA-N 3-hydroxytriazolo[4,5-b]pyridine Chemical compound C1=CN=C2N(O)N=NC2=C1.C1=CN=C2N(O)N=NC2=C1 RRRCPCOJPQLWEP-UHFFFAOYSA-N 0.000 description 1
- 125000004207 3-methoxyphenyl group Chemical group [H]C1=C([H])C(*)=C([H])C(OC([H])([H])[H])=C1[H] 0.000 description 1
- MVQVNTPHUGQQHK-UHFFFAOYSA-N 3-pyridinemethanol Chemical compound OCC1=CC=CN=C1 MVQVNTPHUGQQHK-UHFFFAOYSA-N 0.000 description 1
- MZSNHJWFILLXAX-UHFFFAOYSA-N 4-(2-fluorophenyl)-1-methylpiperidin-1-ium-4-carboxylic acid;chloride Chemical compound [Cl-].C1C[NH+](C)CCC1(C(O)=O)C1=CC=CC=C1F MZSNHJWFILLXAX-UHFFFAOYSA-N 0.000 description 1
- OGPMTUJQOQGMNL-UHFFFAOYSA-N 4-(2-fluorophenyl)-1-methylpiperidine-4-carbonitrile Chemical compound C1CN(C)CCC1(C#N)C1=CC=CC=C1F OGPMTUJQOQGMNL-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- ISMMYAZSUSYVQG-ZZXKWVIFSA-N 4-Fluorocinnamic acid Chemical compound OC(=O)\C=C\C1=CC=C(F)C=C1 ISMMYAZSUSYVQG-ZZXKWVIFSA-N 0.000 description 1
- 108700034262 4-Nle-7-Phe-alpha- MSH Proteins 0.000 description 1
- CDIIZULDSLKBKV-UHFFFAOYSA-N 4-chlorobutanoyl chloride Chemical compound ClCCCC(Cl)=O CDIIZULDSLKBKV-UHFFFAOYSA-N 0.000 description 1
- VBZXXLXDVAIWJN-UHFFFAOYSA-N 4-cyclohexyl-4-(propan-2-ylsulfanylmethyl)piperidine;hydrochloride Chemical compound [Cl-].C1CCCCC1C1(CSC(C)C)CC[NH2+]CC1 VBZXXLXDVAIWJN-UHFFFAOYSA-N 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- MVDXXGIBARMXSA-PYUWXLGESA-N 5-[[(2r)-2-benzyl-3,4-dihydro-2h-chromen-6-yl]methyl]-1,3-thiazolidine-2,4-dione Chemical compound S1C(=O)NC(=O)C1CC1=CC=C(O[C@@H](CC=2C=CC=CC=2)CC2)C2=C1 MVDXXGIBARMXSA-PYUWXLGESA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 239000005964 Acibenzolar-S-methyl Substances 0.000 description 1
- 208000002874 Acne Vulgaris Diseases 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 206010002383 Angina Pectoris Diseases 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- XUKUURHRXDUEBC-KAYWLYCHSA-N Atorvastatin Chemical compound C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-KAYWLYCHSA-N 0.000 description 1
- XUKUURHRXDUEBC-UHFFFAOYSA-N Atorvastatin Natural products C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CCC(O)CC(O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-UHFFFAOYSA-N 0.000 description 1
- 125000006847 BOC protecting group Chemical group 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 229940123208 Biguanide Drugs 0.000 description 1
- 208000020084 Bone disease Diseases 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- JQJKUFQHSZTNHM-UHFFFAOYSA-N C.C.C.C.CC(C)(C)OC(=O)N1CCC(CN)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CN2CC(C)(C)C2=O)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CNC(=O)C(C)(C)CCl)(C2CCCCC2)CC1.Cl.[H]N1CCC(CN2CC(C)(C)C2=O)(C2CCCCC2)CC1 Chemical compound C.C.C.C.CC(C)(C)OC(=O)N1CCC(CN)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CN2CC(C)(C)C2=O)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CNC(=O)C(C)(C)CCl)(C2CCCCC2)CC1.Cl.[H]N1CCC(CN2CC(C)(C)C2=O)(C2CCCCC2)CC1 JQJKUFQHSZTNHM-UHFFFAOYSA-N 0.000 description 1
- YPPKLEUESZZOAP-UHFFFAOYSA-N C.C.C.C.CC(C)(C)OC(=O)N1CCC(CN)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CN2CCC2=O)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CNC(=O)CCCl)(C2CCCCC2)CC1.Cl.[H]N1CCC(CN2CCC2=O)(C2CCCCC2)CC1 Chemical compound C.C.C.C.CC(C)(C)OC(=O)N1CCC(CN)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CN2CCC2=O)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CNC(=O)CCCl)(C2CCCCC2)CC1.Cl.[H]N1CCC(CN2CCC2=O)(C2CCCCC2)CC1 YPPKLEUESZZOAP-UHFFFAOYSA-N 0.000 description 1
- LDLOBQIBALHOMV-UHFFFAOYSA-M C.CC(C)(C)OC(=O)N1CCC(CN)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CN2CCCC2=O)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CNC(=O)CCCCl)(C2CCCCC2)CC1.Cl.[H]N1CCC(CN2CCCC2=O)(C2CCCCC2)CC1.[S-2].[SH-3].[SH-] Chemical compound C.CC(C)(C)OC(=O)N1CCC(CN)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CN2CCCC2=O)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CNC(=O)CCCCl)(C2CCCCC2)CC1.Cl.[H]N1CCC(CN2CCCC2=O)(C2CCCCC2)CC1.[S-2].[SH-3].[SH-] LDLOBQIBALHOMV-UHFFFAOYSA-M 0.000 description 1
- YACVYLISHXEDNB-IZLXSDGUSA-N C1([C@H]2[C@@H](CCN(C2)C(=O)OC(C)(C)C)C(=O)N2CCC(CN3C(COC3=O)(C)C)(CC2)C2CCCCC2)=CC=C(F)C=C1 Chemical compound C1([C@H]2[C@@H](CCN(C2)C(=O)OC(C)(C)C)C(=O)N2CCC(CN3C(COC3=O)(C)C)(CC2)C2CCCCC2)=CC=C(F)C=C1 YACVYLISHXEDNB-IZLXSDGUSA-N 0.000 description 1
- AIDVTKSDNRKUQP-UHFFFAOYSA-N C1=CC=NC=C1.C1=CC=NC=C1.C1=CN=CN=C1.C1=CN=CN=C1.C1=CSC=N1.C1=CSC=N1.CC(C)C1=CC=CC=C1.CC(C)COC1=NC=CC=N1.CC(C)CSC1=NC=CC=N1.CC1=CN=CS1.CC1=CSC=N1.CC1=NC=CS1.CCC.CCC.CCC.CCC.CCC.CCC.CCC1=CC=CC=C1.CCC1=NN=C(C)S1.CCC1=NN=CS1.CCC1=NSN=C1.CSC.CSC.CSC Chemical compound C1=CC=NC=C1.C1=CC=NC=C1.C1=CN=CN=C1.C1=CN=CN=C1.C1=CSC=N1.C1=CSC=N1.CC(C)C1=CC=CC=C1.CC(C)COC1=NC=CC=N1.CC(C)CSC1=NC=CC=N1.CC1=CN=CS1.CC1=CSC=N1.CC1=NC=CS1.CCC.CCC.CCC.CCC.CCC.CCC.CCC1=CC=CC=C1.CCC1=NN=C(C)S1.CCC1=NN=CS1.CCC1=NSN=C1.CSC.CSC.CSC AIDVTKSDNRKUQP-UHFFFAOYSA-N 0.000 description 1
- IBRYUSGEMDEQDO-UHFFFAOYSA-J C1=CC=NC=C1.C1=CC=NC=C1.C1=CN=CN=C1.C1=CN=CN=C1.C1=CSC=N1.C1=CSC=N1.CC.CC(C)C1=CC=CC=C1.CC(C)CSC1=NC=CC=N1.CNC(=O)NCCO.CNC(=O)NCCSC.CNC(=O)OC.CNS(=O)(=O)C(C)C.CNS(=O)(=O)C1=CC=CC=C1.CNS(C)(=O)=O.COC(=O)C(C)C.COC(=O)C1=CC=CC=C1.COC(C)=O.C[S-].C[S-].C[S-].C[S-].[CH2-]C.[CH2-]C.[CH2-]C1=CC=CC=C1 Chemical compound C1=CC=NC=C1.C1=CC=NC=C1.C1=CN=CN=C1.C1=CN=CN=C1.C1=CSC=N1.C1=CSC=N1.CC.CC(C)C1=CC=CC=C1.CC(C)CSC1=NC=CC=N1.CNC(=O)NCCO.CNC(=O)NCCSC.CNC(=O)OC.CNS(=O)(=O)C(C)C.CNS(=O)(=O)C1=CC=CC=C1.CNS(C)(=O)=O.COC(=O)C(C)C.COC(=O)C1=CC=CC=C1.COC(C)=O.C[S-].C[S-].C[S-].C[S-].[CH2-]C.[CH2-]C.[CH2-]C1=CC=CC=C1 IBRYUSGEMDEQDO-UHFFFAOYSA-J 0.000 description 1
- NXKPWHMRPFJFBO-UHFFFAOYSA-N C1=CNC=N1.C1=COC=N1.C1=CSC=N1.CC(C)COC1=NC=CC=N1.CC1=CN=CO1.CC1=CN=CS1.CC1=COC=N1.CC1=CSC=N1.CC1=NC=CO1.CC1=NC=CS1.[CH2-]C.[CH2-]C.[CH2-]C.[CH2-]C.[CH2-]C.[CH2-]C.[CH2-]C.[CH2-]C.[CH2-]C.[CH2-]C1=NN=C(C)S1.[CH2-]C1=NN=CS1.[CH2-]C1=NS[SH]=C1.[CH2-]C1=NS[SH]=C1C Chemical compound C1=CNC=N1.C1=COC=N1.C1=CSC=N1.CC(C)COC1=NC=CC=N1.CC1=CN=CO1.CC1=CN=CS1.CC1=COC=N1.CC1=CSC=N1.CC1=NC=CO1.CC1=NC=CS1.[CH2-]C.[CH2-]C.[CH2-]C.[CH2-]C.[CH2-]C.[CH2-]C.[CH2-]C.[CH2-]C.[CH2-]C.[CH2-]C1=NN=C(C)S1.[CH2-]C1=NN=CS1.[CH2-]C1=NS[SH]=C1.[CH2-]C1=NS[SH]=C1C NXKPWHMRPFJFBO-UHFFFAOYSA-N 0.000 description 1
- XKUJBVZSPREBJC-UHFFFAOYSA-N C1=CNC=N1.C1=COC=N1.CC1=CN=CN1.CC1=CN=CO1.CC1=COC=N1.CC1=NC(C(C)C)=NO1.CC1=NC(N)=NO1.CC1=NC=CN1.CC1=NC=CO1.CC1=NN=C(C(C)C)O1.CC1=NOC(C(C)C)=N1.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC1=NSN=C1C.CN1C=NC=N1.NC1=CN=CN1 Chemical compound C1=CNC=N1.C1=COC=N1.CC1=CN=CN1.CC1=CN=CO1.CC1=COC=N1.CC1=NC(C(C)C)=NO1.CC1=NC(N)=NO1.CC1=NC=CN1.CC1=NC=CO1.CC1=NN=C(C(C)C)O1.CC1=NOC(C(C)C)=N1.CCC.CCC.CCC.CCC.CCC.CCC.CCC.CCC1=NSN=C1C.CN1C=NC=N1.NC1=CN=CN1 XKUJBVZSPREBJC-UHFFFAOYSA-N 0.000 description 1
- ZLPONOHCTRYWQG-UHFFFAOYSA-N C1=CSC=N1.CC.CNC(=O)NCCSC.CNC(=O)OC.COC(=O)C(C)C.COC(=O)C1=CC=CC=C1.COC(C)=O.CSC Chemical compound C1=CSC=N1.CC.CNC(=O)NCCSC.CNC(=O)OC.COC(=O)C(C)C.COC(=O)C1=CC=CC=C1.COC(C)=O.CSC ZLPONOHCTRYWQG-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N C=CCC Chemical compound C=CCC VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- VPJYIJCXQQYLFL-WYRMYSACSA-N CB(O)N1CCC([Y])(/C=N/C(C)(C)CO)CC1.CB(O)N1CCC([Y])(CN2C(=O)OCC2(C)C)CC1.CB(O)N1CCC([Y])(CNC(C)(C)CO)CC1.CB(O)N1CCC([Y])(CO)CC1.CC(=O)O.CC(=O)O.CC(C)(N)CO.CC1(C)COC(=O)N1CC1([Y])CCNCC1.Cl.Cl.ClCCl.[H]C(=O)C1([Y])CCN(B(C)O)CC1 Chemical compound CB(O)N1CCC([Y])(/C=N/C(C)(C)CO)CC1.CB(O)N1CCC([Y])(CN2C(=O)OCC2(C)C)CC1.CB(O)N1CCC([Y])(CNC(C)(C)CO)CC1.CB(O)N1CCC([Y])(CO)CC1.CC(=O)O.CC(=O)O.CC(C)(N)CO.CC1(C)COC(=O)N1CC1([Y])CCNCC1.Cl.Cl.ClCCl.[H]C(=O)C1([Y])CCN(B(C)O)CC1 VPJYIJCXQQYLFL-WYRMYSACSA-N 0.000 description 1
- PFKQYEKIFYPQIT-UHFFFAOYSA-N CC(=O)N1CC2CC1CN2.CC(=O)N1CC2CC1CN2C.CC(=O)N1CC2CC1CO2.CN1C(=O)NC(C)(C)C1=O.CN1C(C)(C)CCS1(=O)=O.CN1CCC(C)(C)S1(=O)=O.CN1CCCS1(=O)=O.CN1CCN(C)C1=O Chemical compound CC(=O)N1CC2CC1CN2.CC(=O)N1CC2CC1CN2C.CC(=O)N1CC2CC1CO2.CN1C(=O)NC(C)(C)C1=O.CN1C(C)(C)CCS1(=O)=O.CN1CCC(C)(C)S1(=O)=O.CN1CCCS1(=O)=O.CN1CCN(C)C1=O PFKQYEKIFYPQIT-UHFFFAOYSA-N 0.000 description 1
- IIQBQYXPONDKKG-UHFFFAOYSA-N CC(=O)N1CC2CC1CN2.CC(=O)N1CCNCC1.CC1=CN=CN1.CC1=CN=CN1.CC1=NC(=O)N(C)N1.CC1=NC(=O)NN1.CC1=NC(C(C)C)=NO1.CC1=NC(N)=NO1.CC1=NC=CC=C1.CC1=NC=CN1.CC1=NC=CN1C.CC1=NN(C)N=N1.CC1=NN=C(C(C)C)O1.CC1=NOC(C(C)C)=N1.CN1=CNC(=O)N1.CN1C(=O)OCC1(C)C.CN1C=CN=C1.CN1C=NC=N1.CN1CCC(C)(C)S1(=O)=O.CN1CCNC1=O.CN1CCOC1=O.CN1N=CN=N1.[CH2-]C.[CH2-]C Chemical compound CC(=O)N1CC2CC1CN2.CC(=O)N1CCNCC1.CC1=CN=CN1.CC1=CN=CN1.CC1=NC(=O)N(C)N1.CC1=NC(=O)NN1.CC1=NC(C(C)C)=NO1.CC1=NC(N)=NO1.CC1=NC=CC=C1.CC1=NC=CN1.CC1=NC=CN1C.CC1=NN(C)N=N1.CC1=NN=C(C(C)C)O1.CC1=NOC(C(C)C)=N1.CN1=CNC(=O)N1.CN1C(=O)OCC1(C)C.CN1C=CN=C1.CN1C=NC=N1.CN1CCC(C)(C)S1(=O)=O.CN1CCNC1=O.CN1CCOC1=O.CN1N=CN=N1.[CH2-]C.[CH2-]C IIQBQYXPONDKKG-UHFFFAOYSA-N 0.000 description 1
- PFFRGLKDUWGPHJ-UHFFFAOYSA-N CC(=O)N1CCCC1.CC(=O)N1CCOCC1.CC(=O)N1CCSCC1.CC(=O)NC1=CC=NC=C1.CC(=O)NCC1=CC=CC=C1.CC(N)=O.CCCC(=O)NC.CNC(=O)C(C)C.CNC(=O)C1CCCCC1.CNC(=O)CC(C)C.CNC(=O)NC.CNC(=O)NCCO.CNS(=O)(=O)C(C)C.CNS(=O)(=O)C1=CC=CC=C1.CNS(C)(=O)=O Chemical compound CC(=O)N1CCCC1.CC(=O)N1CCOCC1.CC(=O)N1CCSCC1.CC(=O)NC1=CC=NC=C1.CC(=O)NCC1=CC=CC=C1.CC(N)=O.CCCC(=O)NC.CNC(=O)C(C)C.CNC(=O)C1CCCCC1.CNC(=O)CC(C)C.CNC(=O)NC.CNC(=O)NCCO.CNS(=O)(=O)C(C)C.CNS(=O)(=O)C1=CC=CC=C1.CNS(C)(=O)=O PFFRGLKDUWGPHJ-UHFFFAOYSA-N 0.000 description 1
- OEDQQLJHTPLCLA-UHFFFAOYSA-N CC(=O)N1CCN(C)CC1.CC(=O)N1CCNCC1.CC(=O)N1CCOCC1.CN1C(=O)OCC1(C)C.CN1CCNC1=O.CN1CCOC1=O Chemical compound CC(=O)N1CCN(C)CC1.CC(=O)N1CCNCC1.CC(=O)N1CCOCC1.CN1C(=O)OCC1(C)C.CN1CCNC1=O.CN1CCOC1=O OEDQQLJHTPLCLA-UHFFFAOYSA-N 0.000 description 1
- CDLLMNFLWHKMNF-UHFFFAOYSA-N CC(=O)NC(C)C.CC(=O)NCCO.CC(=O)O.CC(=O)OC(C)C.CC(=O)OCCN(C)C.CC(=O)OCCO.CCCCNC(C)=O.CCCCOC(C)=O.CCCNC(C)=O.CCCOC(C)=O.CCNC(C)=O.CCOC(C)=O.CNC(C)=O.COC(C)=O.COCCOC(C)=O.CSCCNC(C)=O.CSCCOC(C)=O Chemical compound CC(=O)NC(C)C.CC(=O)NCCO.CC(=O)O.CC(=O)OC(C)C.CC(=O)OCCN(C)C.CC(=O)OCCO.CCCCNC(C)=O.CCCCOC(C)=O.CCCNC(C)=O.CCCOC(C)=O.CCNC(C)=O.CCOC(C)=O.CNC(C)=O.COC(C)=O.COCCOC(C)=O.CSCCNC(C)=O.CSCCOC(C)=O CDLLMNFLWHKMNF-UHFFFAOYSA-N 0.000 description 1
- BIJAWQUBRNHZGE-UHFFFAOYSA-N CC(=O)NC1=CC=NC=C1 Chemical compound CC(=O)NC1=CC=NC=C1 BIJAWQUBRNHZGE-UHFFFAOYSA-N 0.000 description 1
- UZJLYRRDVFWSGA-UHFFFAOYSA-N CC(=O)NCC1=CC=CC=C1 Chemical compound CC(=O)NCC1=CC=CC=C1 UZJLYRRDVFWSGA-UHFFFAOYSA-N 0.000 description 1
- DCOFTJWHZSMWQA-UHFFFAOYSA-N CC(=O)O.NC1(C(=O)O)CC1.NC1(CO)CC1 Chemical compound CC(=O)O.NC1(C(=O)O)CC1.NC1(CO)CC1 DCOFTJWHZSMWQA-UHFFFAOYSA-N 0.000 description 1
- TUYIKHZOTHOSQK-DCWQJPKNSA-N CC(C)(C)N1CC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@@H](C2=CC=C(F)C=C2F)C1 Chemical compound CC(C)(C)N1CC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@@H](C2=CC=C(F)C=C2F)C1 TUYIKHZOTHOSQK-DCWQJPKNSA-N 0.000 description 1
- JRKKTRINCFYSIZ-YPKBLRJMSA-N CC(C)(C)N1CC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2)C1.CC(C)(C)NC(=O)C1(C2CCCCC2)CCN(C(=O)C2CN(C(C)(C)C)C[C@H]2C2=CC=C(F)C=C2)CC1.CC(C)(O)CCC1(C2CCCCC2)CCN(C(=O)C2CN(C(C)(C)C)C[C@H]2C2=CC=C(F)C=C2F)CC1.CCOC(=O)C1(C2CCCCC2)CCN(C(=O)C2CN(C(C)(C)C)C[C@H]2C2=CC=C(F)C=C2F)CC1 Chemical compound CC(C)(C)N1CC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2)C1.CC(C)(C)NC(=O)C1(C2CCCCC2)CCN(C(=O)C2CN(C(C)(C)C)C[C@H]2C2=CC=C(F)C=C2)CC1.CC(C)(O)CCC1(C2CCCCC2)CCN(C(=O)C2CN(C(C)(C)C)C[C@H]2C2=CC=C(F)C=C2F)CC1.CCOC(=O)C1(C2CCCCC2)CCN(C(=O)C2CN(C(C)(C)C)C[C@H]2C2=CC=C(F)C=C2F)CC1 JRKKTRINCFYSIZ-YPKBLRJMSA-N 0.000 description 1
- SRRUIQWRRSQQAD-QBHOUYDASA-N CC(C)(C)N1CC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2)C1.O=C(O)C(F)(F)F Chemical compound CC(C)(C)N1CC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2)C1.O=C(O)C(F)(F)F SRRUIQWRRSQQAD-QBHOUYDASA-N 0.000 description 1
- MFRVWAHPELPGIG-DXKBGHCQSA-N CC(C)(C)N1CC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2F)C1.CC(C)(C)N1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2F)C1.CC(C)(C)NC(=O)C1(C2CCCCC2)CCN(C(=O)C2CCN(C(C)(C)C)C[C@H]2C2=CC=C(F)C=C2F)CC1.CC(C)(C)NC(=O)C1(C2CCCCC2)CCN(C(=O)C2CN(C(C)(C)C)C[C@H]2C2=CC=C(F)C=C2F)CC1 Chemical compound CC(C)(C)N1CC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2F)C1.CC(C)(C)N1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2F)C1.CC(C)(C)NC(=O)C1(C2CCCCC2)CCN(C(=O)C2CCN(C(C)(C)C)C[C@H]2C2=CC=C(F)C=C2F)CC1.CC(C)(C)NC(=O)C1(C2CCCCC2)CCN(C(=O)C2CN(C(C)(C)C)C[C@H]2C2=CC=C(F)C=C2F)CC1 MFRVWAHPELPGIG-DXKBGHCQSA-N 0.000 description 1
- ZBZXGFRZWNVVCL-MJQFKXPQSA-N CC(C)(C)N1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(Cl)C=C2)C1.CC(C)N1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(Cl)C=C2)C1.CCN1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(Cl)C=C2)C1.CN1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(Cl)C=C2)C1 Chemical compound CC(C)(C)N1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(Cl)C=C2)C1.CC(C)N1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(Cl)C=C2)C1.CCN1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(Cl)C=C2)C1.CN1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(Cl)C=C2)C1 ZBZXGFRZWNVVCL-MJQFKXPQSA-N 0.000 description 1
- CULMDYSVUZRDHK-OUCBEZLBSA-N CC(C)(C)N1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2)C1.CC(C)(C)NC(=O)C1(C2CCCCC2)CCN(C(=O)C2CCN(C(C)(C)C)C[C@H]2C2=CC=C(F)C=C2)CC1.CC(C)N1CCC(C(=O)N2CCC(C(=O)NC(C)(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2)C1.CC(C)N1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2)C1 Chemical compound CC(C)(C)N1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2)C1.CC(C)(C)NC(=O)C1(C2CCCCC2)CCN(C(=O)C2CCN(C(C)(C)C)C[C@H]2C2=CC=C(F)C=C2)CC1.CC(C)N1CCC(C(=O)N2CCC(C(=O)NC(C)(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2)C1.CC(C)N1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2)C1 CULMDYSVUZRDHK-OUCBEZLBSA-N 0.000 description 1
- CADLMVQVXUHHOM-CPRJBALCSA-N CC(C)(C)N1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2)C1.Cl Chemical compound CC(C)(C)N1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2)C1.Cl CADLMVQVXUHHOM-CPRJBALCSA-N 0.000 description 1
- SWVAHMVLDSTDHK-KEKNWZKVSA-N CC(C)(C)NC(=O)C1(C2=C(F)C=CC=C2)CCN(C(=O)C2CCNC[C@H]2C2=CC=C(F)C=C2)CC1.Cl Chemical compound CC(C)(C)NC(=O)C1(C2=C(F)C=CC=C2)CCN(C(=O)C2CCNC[C@H]2C2=CC=C(F)C=C2)CC1.Cl SWVAHMVLDSTDHK-KEKNWZKVSA-N 0.000 description 1
- IHZCSRPEFLQEFR-UHFFFAOYSA-N CC(C)(C)OC(=O)N1CCC(=O)CC1.CC(C)(C)OC(=O)N1CCC(CC(=O)O)(C2CCCCC2)CC1.CCOC(=O)C(C#N)C1(C2CCCCC2)CCN(C(=O)OC(C)(C)C)CC1.CCOC(=O)CC1(C2CCCCC2)CCN(C(=O)OC(C)(C)C)CC1.Cl.[C-]#[N+]C(C(=O)OCC)=C1CCN(C(=O)OC(C)(C)C)CC1.[H]N1CCC(CC(=O)O)(C2CCCCC2)CC1 Chemical compound CC(C)(C)OC(=O)N1CCC(=O)CC1.CC(C)(C)OC(=O)N1CCC(CC(=O)O)(C2CCCCC2)CC1.CCOC(=O)C(C#N)C1(C2CCCCC2)CCN(C(=O)OC(C)(C)C)CC1.CCOC(=O)CC1(C2CCCCC2)CCN(C(=O)OC(C)(C)C)CC1.Cl.[C-]#[N+]C(C(=O)OCC)=C1CCN(C(=O)OC(C)(C)C)CC1.[H]N1CCC(CC(=O)O)(C2CCCCC2)CC1 IHZCSRPEFLQEFR-UHFFFAOYSA-N 0.000 description 1
- YGUMKSXOVFPRGG-UHFFFAOYSA-N CC(C)(C)OC(=O)N1CCC(C=O)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CNC2(CO)CCCC2)(C2CCCCC2)CC1 Chemical compound CC(C)(C)OC(=O)N1CCC(C=O)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CNC2(CO)CCCC2)(C2CCCCC2)CC1 YGUMKSXOVFPRGG-UHFFFAOYSA-N 0.000 description 1
- OVUATZDTVLPAOX-UHFFFAOYSA-N CC(C)(C)OC(=O)N1CCC(C=O)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CO)(C2CCCCC2)CC1 Chemical compound CC(C)(C)OC(=O)N1CCC(C=O)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CO)(C2CCCCC2)CC1 OVUATZDTVLPAOX-UHFFFAOYSA-N 0.000 description 1
- XJGSWBYNENAOCB-UHFFFAOYSA-N CC(C)(C)OC(=O)N1CCC(C=O)(C2CCCCC2)CC1.CC(C)(CO)NCC1(C2CCCCC2)CCN(C(=O)OC(C)(C)C)CC1.CC(C)(N)CO Chemical compound CC(C)(C)OC(=O)N1CCC(C=O)(C2CCCCC2)CC1.CC(C)(CO)NCC1(C2CCCCC2)CCN(C(=O)OC(C)(C)C)CC1.CC(C)(N)CO XJGSWBYNENAOCB-UHFFFAOYSA-N 0.000 description 1
- HQVMLXXPPAEAJF-UHFFFAOYSA-N CC(C)(C)OC(=O)N1CCC(CC(=O)O)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CC(N)=O)(C2CCCCC2)CC1.CCN1N=CN=C1CC1(C2CCCCC2)CCN(C(=O)OC(C)(C)C)CC1.CCN1N=CN=C1CC1(C2CCCCC2)CCNCC1.[P-3].[PH-2].[PH-4].[PH2-] Chemical compound CC(C)(C)OC(=O)N1CCC(CC(=O)O)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CC(N)=O)(C2CCCCC2)CC1.CCN1N=CN=C1CC1(C2CCCCC2)CCN(C(=O)OC(C)(C)C)CC1.CCN1N=CN=C1CC1(C2CCCCC2)CCNCC1.[P-3].[PH-2].[PH-4].[PH2-] HQVMLXXPPAEAJF-UHFFFAOYSA-N 0.000 description 1
- HFUXWDARJJIIHI-UHFFFAOYSA-N CC(C)(C)OC(=O)N1CCC(CC(=O)O)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CCO)(C2CCCCC2)CC1.CCN(CC)CCC1(C2CCCCC2)CCN(C(=O)OC(C)(C)C)CC1.Cl.Cl.[H]C(=O)CC1(C2CCCCC2)CCN(C(=O)OC(C)(C)C)CC1.[H]N1CCC(CCN(CC)CC)(C2CCCCC2)CC1.[N-3].[N-4].[NH-2].[NH2-] Chemical compound CC(C)(C)OC(=O)N1CCC(CC(=O)O)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CCO)(C2CCCCC2)CC1.CCN(CC)CCC1(C2CCCCC2)CCN(C(=O)OC(C)(C)C)CC1.Cl.Cl.[H]C(=O)CC1(C2CCCCC2)CCN(C(=O)OC(C)(C)C)CC1.[H]N1CCC(CCN(CC)CC)(C2CCCCC2)CC1.[N-3].[N-4].[NH-2].[NH2-] HFUXWDARJJIIHI-UHFFFAOYSA-N 0.000 description 1
- CUDJAQGJGFIYOG-UHFFFAOYSA-N CC(C)(C)OC(=O)N1CCC(CN2C(=O)OCC2(C)C)(C2CCCCC2)CC1.CC(C)(CO)NCC1(C2CCCCC2)CCN(C(=O)OC(C)(C)C)CC1.ClCCl Chemical compound CC(C)(C)OC(=O)N1CCC(CN2C(=O)OCC2(C)C)(C2CCCCC2)CC1.CC(C)(CO)NCC1(C2CCCCC2)CCN(C(=O)OC(C)(C)C)CC1.ClCCl CUDJAQGJGFIYOG-UHFFFAOYSA-N 0.000 description 1
- QVUBDVASJQDNDT-UHFFFAOYSA-N CC(C)(C)OC(=O)N1CCC(CN2C(=O)OCC2(C)C)(C2CCCCC2)CC1.CC1(C)COC(=O)N1CC1(C2CCCCC2)CCNCC1.Cl.ClCCl Chemical compound CC(C)(C)OC(=O)N1CCC(CN2C(=O)OCC2(C)C)(C2CCCCC2)CC1.CC1(C)COC(=O)N1CC1(C2CCCCC2)CCNCC1.Cl.ClCCl QVUBDVASJQDNDT-UHFFFAOYSA-N 0.000 description 1
- HSTSJVRUGYNTOV-UHFFFAOYSA-N CC(C)(C)OC(=O)N1CCC(CN2C(=O)OCC23CC3)(C2CCCCC2)CC1 Chemical compound CC(C)(C)OC(=O)N1CCC(CN2C(=O)OCC23CC3)(C2CCCCC2)CC1 HSTSJVRUGYNTOV-UHFFFAOYSA-N 0.000 description 1
- LSICSIPNJJUNLO-UHFFFAOYSA-N CC(C)(C)OC(=O)N1CCC(CN2C(=O)OCC23CCCC3)(C2CCCCC2)CC1 Chemical compound CC(C)(C)OC(=O)N1CCC(CN2C(=O)OCC23CCCC3)(C2CCCCC2)CC1 LSICSIPNJJUNLO-UHFFFAOYSA-N 0.000 description 1
- IGRBPBAYMSAPMF-XALNPOHLSA-N CC(C)(C)OC(=O)N1CCC(CN2CCC(C)(C)C2=O)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CN2CCCC2=O)(C2CCCCC2)CC1.Cl.[3H-2].[3H-].[H]N1CCC(CN2CCC(C)(C)C2=O)(C2CCCCC2)CC1.[S-2] Chemical compound CC(C)(C)OC(=O)N1CCC(CN2CCC(C)(C)C2=O)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CN2CCCC2=O)(C2CCCCC2)CC1.Cl.[3H-2].[3H-].[H]N1CCC(CN2CCC(C)(C)C2=O)(C2CCCCC2)CC1.[S-2] IGRBPBAYMSAPMF-XALNPOHLSA-N 0.000 description 1
- MIBQBQMNLOSMMN-UHFFFAOYSA-K CC(C)(C)OC(=O)N1CCC(COS(C)(=O)=O)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CS[W])(C2CCCCC2)CC1.Cl.[H]N1CCC(CS[W])(C2CCCCC2)CC1.[O-2].[O-3].[OH-] Chemical compound CC(C)(C)OC(=O)N1CCC(COS(C)(=O)=O)(C2CCCCC2)CC1.CC(C)(C)OC(=O)N1CCC(CS[W])(C2CCCCC2)CC1.Cl.[H]N1CCC(CS[W])(C2CCCCC2)CC1.[O-2].[O-3].[OH-] MIBQBQMNLOSMMN-UHFFFAOYSA-K 0.000 description 1
- BFPIBZMOBUYFBC-UHFFFAOYSA-N CC(C)(C)OC(N(CC1)CCC1(CN(C(C)(C)CO1)C1=O)C1CCCCC1)=O Chemical compound CC(C)(C)OC(N(CC1)CCC1(CN(C(C)(C)CO1)C1=O)C1CCCCC1)=O BFPIBZMOBUYFBC-UHFFFAOYSA-N 0.000 description 1
- BQWPPBGYSIPLNJ-UHFFFAOYSA-N CC(C)C(=O)NC(C)(C)C.CC(C)CCC(C)(C)O.CC(C)CN1C(=O)OCC1(C)C.CC(C)CN1C=NC=N1.CCOC(=O)C(C)C Chemical compound CC(C)C(=O)NC(C)(C)C.CC(C)CCC(C)(C)O.CC(C)CN1C(=O)OCC1(C)C.CC(C)CN1C=NC=N1.CCOC(=O)C(C)C BQWPPBGYSIPLNJ-UHFFFAOYSA-N 0.000 description 1
- LMMYBDKGFYGSIH-DJXPTNANSA-N CC(C)C1=NN(C)C(=O)C1(C)C.CC(C)C1=NN(CC(F)(F)F)C(=O)C1(C)C.CC1=NN=NN1C.CN1C(=O)NC(C)(C)C1=O.CN1C(=O)OCC12CC2.CN1C(=O)OCC12CCCC2.CN1C(C)(C)CCS1(=O)=O.CN1C=CC(N)=N1.CN1CCCS1(=O)=O.CN1CCN(C)C1=O.C[C@H]1COC(=O)N1C Chemical compound CC(C)C1=NN(C)C(=O)C1(C)C.CC(C)C1=NN(CC(F)(F)F)C(=O)C1(C)C.CC1=NN=NN1C.CN1C(=O)NC(C)(C)C1=O.CN1C(=O)OCC12CC2.CN1C(=O)OCC12CCCC2.CN1C(C)(C)CCS1(=O)=O.CN1C=CC(N)=N1.CN1CCCS1(=O)=O.CN1CCN(C)C1=O.C[C@H]1COC(=O)N1C LMMYBDKGFYGSIH-DJXPTNANSA-N 0.000 description 1
- QOVZAIIQVYURMP-OQZIIMTCSA-N CC(C)C1=NN(C)C(=O)C1(C)C.CC(C)C1=NN(CC(F)(F)F)C(=O)C1(C)C.CC1=NN=NN1C.CN1C(=O)OCC12CC2.CN1C(=O)OCC12CCCC2.CN1C=CC(N)=N1.C[C@H]1COC(=O)N1C Chemical compound CC(C)C1=NN(C)C(=O)C1(C)C.CC(C)C1=NN(CC(F)(F)F)C(=O)C1(C)C.CC1=NN=NN1C.CN1C(=O)OCC12CC2.CN1C(=O)OCC12CCCC2.CN1C=CC(N)=N1.C[C@H]1COC(=O)N1C QOVZAIIQVYURMP-OQZIIMTCSA-N 0.000 description 1
- ZIVITNMUUDGAQJ-UHFFFAOYSA-N CC(C)CC(=O)N(C)C1CC1 Chemical compound CC(C)CC(=O)N(C)C1CC1 ZIVITNMUUDGAQJ-UHFFFAOYSA-N 0.000 description 1
- NUMPGZQWNCZFFI-IUCAKERBSA-N CC(C)CC(=O)N1C[C@@H]2C[C@H]1CO2 Chemical compound CC(C)CC(=O)N1C[C@@H]2C[C@H]1CO2 NUMPGZQWNCZFFI-IUCAKERBSA-N 0.000 description 1
- HVYYGVSVAHMQNI-UHFFFAOYSA-N CC(C)CC(=O)NC(C)(C)C Chemical compound CC(C)CC(=O)NC(C)(C)C HVYYGVSVAHMQNI-UHFFFAOYSA-N 0.000 description 1
- PNEXFGQNZBGFFR-UHFFFAOYSA-N CC(C)CC(=O)NCC(F)(F)F Chemical compound CC(C)CC(=O)NCC(F)(F)F PNEXFGQNZBGFFR-UHFFFAOYSA-N 0.000 description 1
- GDRLLCMLTCRUBF-UHFFFAOYSA-N CC(C)CC(=O)NCC1=CN(C)N=C1 Chemical compound CC(C)CC(=O)NCC1=CN(C)N=C1 GDRLLCMLTCRUBF-UHFFFAOYSA-N 0.000 description 1
- VMWNAHZZHSVHQJ-UHFFFAOYSA-N CC(C)CCN1CCC1 Chemical compound CC(C)CCN1CCC1 VMWNAHZZHSVHQJ-UHFFFAOYSA-N 0.000 description 1
- VPXUTZPMWJIVMW-UHFFFAOYSA-N CC(C)CCN1CCCC1 Chemical compound CC(C)CCN1CCCC1 VPXUTZPMWJIVMW-UHFFFAOYSA-N 0.000 description 1
- PWPUPXJJCPIOGY-UHFFFAOYSA-N CC(C)CCN1CCOCC1 Chemical compound CC(C)CCN1CCOCC1 PWPUPXJJCPIOGY-UHFFFAOYSA-N 0.000 description 1
- UFFDTRJUOGRGAF-UHFFFAOYSA-N CC(C)CN1C=NC=N1 Chemical compound CC(C)CN1C=NC=N1 UFFDTRJUOGRGAF-UHFFFAOYSA-N 0.000 description 1
- XDJQXVQBCTUKPE-UHFFFAOYSA-N CC(C)CN1CC(C)(C)C1=O Chemical compound CC(C)CN1CC(C)(C)C1=O XDJQXVQBCTUKPE-UHFFFAOYSA-N 0.000 description 1
- IVUYGANTXQVDDG-UHFFFAOYSA-N CC(C)CN1CCCC1=O Chemical compound CC(C)CN1CCCC1=O IVUYGANTXQVDDG-UHFFFAOYSA-N 0.000 description 1
- WXZSOSHKVAZDMU-UHFFFAOYSA-N CC(C)CS(=O)(=O)C(C)C Chemical compound CC(C)CS(=O)(=O)C(C)C WXZSOSHKVAZDMU-UHFFFAOYSA-N 0.000 description 1
- PPYVUTRAWXRSKH-UHFFFAOYSA-N CC(C)CS(=O)(=O)C1CCC1 Chemical compound CC(C)CS(=O)(=O)C1CCC1 PPYVUTRAWXRSKH-UHFFFAOYSA-N 0.000 description 1
- DNVMKIQZWXGVEF-UHFFFAOYSA-N CC(C)CS(=O)(=O)CC1CC1 Chemical compound CC(C)CS(=O)(=O)CC1CC1 DNVMKIQZWXGVEF-UHFFFAOYSA-N 0.000 description 1
- YGJMTRQIVAZUIQ-UHFFFAOYSA-N CC(C)CS(=O)C(C)C Chemical compound CC(C)CS(=O)C(C)C YGJMTRQIVAZUIQ-UHFFFAOYSA-N 0.000 description 1
- WRJSMKVGIALTPD-UHFFFAOYSA-N CC(C)CS(=O)CC1CC1 Chemical compound CC(C)CS(=O)CC1CC1 WRJSMKVGIALTPD-UHFFFAOYSA-N 0.000 description 1
- ATDYVUAGTYSTHS-UHFFFAOYSA-N CC(C)CS(C)(=O)=O Chemical compound CC(C)CS(C)(=O)=O ATDYVUAGTYSTHS-UHFFFAOYSA-N 0.000 description 1
- UBHUWXOZPBPCFN-UHFFFAOYSA-N CC(C)CS(C)=O Chemical compound CC(C)CS(C)=O UBHUWXOZPBPCFN-UHFFFAOYSA-N 0.000 description 1
- NAPBMSIZYSDRMH-UHFFFAOYSA-N CC(C)CSC(C)C Chemical compound CC(C)CSC(C)C NAPBMSIZYSDRMH-UHFFFAOYSA-N 0.000 description 1
- YEDYDTSDOWTRRL-ARWSPELKSA-N CC(C)N1CC(C(=O)N2CCC(C(=O)NC(C)(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2F)C1.CC(C)N1CC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2F)C1.CCN1CCC(C(=O)N2CCC(C(=O)NC(C)(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2)C1.CCN1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2)C1 Chemical compound CC(C)N1CC(C(=O)N2CCC(C(=O)NC(C)(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2F)C1.CC(C)N1CC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2F)C1.CCN1CCC(C(=O)N2CCC(C(=O)NC(C)(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2)C1.CCN1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2)C1 YEDYDTSDOWTRRL-ARWSPELKSA-N 0.000 description 1
- HOTHAIJMNVCSRE-QBHOUYDASA-N CC(C)N1CC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2)C1.Cl Chemical compound CC(C)N1CC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C=C2)C1.Cl HOTHAIJMNVCSRE-QBHOUYDASA-N 0.000 description 1
- BFDJIXJPLHLBSA-OYUXSGNESA-N CC(C)N1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C(Cl)=C2)C1.CC1(C)COC(=O)N1CC1(C2CCCCC2)CCN(C(=O)C2CCN(C(=N)N)C[C@H]2C2=CC=C(Cl)C=C2)CC1.CCN(CC)C(=O)CC1(C2CCCCC2)CCN(C(=O)C2CN(C(C)(C)C)C[C@H]2C2=CC=C(F)C=C2F)CC1.CCN(CC)CCC1(C2CCCCC2)CCN(C(=O)C2CN(C(C)(C)C)C[C@H]2C2=CC=C(F)C=C2F)CC1 Chemical compound CC(C)N1CCC(C(=O)N2CCC(CN3C(=O)OCC3(C)C)(C3CCCCC3)CC2)[C@H](C2=CC=C(F)C(Cl)=C2)C1.CC1(C)COC(=O)N1CC1(C2CCCCC2)CCN(C(=O)C2CCN(C(=N)N)C[C@H]2C2=CC=C(Cl)C=C2)CC1.CCN(CC)C(=O)CC1(C2CCCCC2)CCN(C(=O)C2CN(C(C)(C)C)C[C@H]2C2=CC=C(F)C=C2F)CC1.CCN(CC)CCC1(C2CCCCC2)CCN(C(=O)C2CN(C(C)(C)C)C[C@H]2C2=CC=C(F)C=C2F)CC1 BFDJIXJPLHLBSA-OYUXSGNESA-N 0.000 description 1
- FLVZGNJGMSGJAY-SKCDSABHSA-N CC1(C)COC(=O)N1CC1(C2CCCCC2)CCN(C(=O)C2CNCC[C@H]2C2=CC=C(F)C=C2)CC1.O=C(O)C(F)(F)F Chemical compound CC1(C)COC(=O)N1CC1(C2CCCCC2)CCN(C(=O)C2CNCC[C@H]2C2=CC=C(F)C=C2)CC1.O=C(O)C(F)(F)F FLVZGNJGMSGJAY-SKCDSABHSA-N 0.000 description 1
- NDQXOTLRJTZGAC-ZYHUDNBSSA-N CC1=CC=C([C@@H]2CNC[C@H]2C)C=C1 Chemical compound CC1=CC=C([C@@H]2CNC[C@H]2C)C=C1 NDQXOTLRJTZGAC-ZYHUDNBSSA-N 0.000 description 1
- HYDFYZRLZZJKBT-UHFFFAOYSA-N CC1=NC(=O)N(C)N1.CC1=NC(=O)NN1.CC1=NC=CC=C1.CC1=NC=CN1C.CC1=NN(C)=NN1.CN1C=CN=C1.CN1N=CC=N1.NN1C=NC(=O)N1 Chemical compound CC1=NC(=O)N(C)N1.CC1=NC(=O)NN1.CC1=NC=CC=C1.CC1=NC=CN1C.CC1=NN(C)=NN1.CN1C=CN=C1.CN1N=CC=N1.NN1C=NC(=O)N1 HYDFYZRLZZJKBT-UHFFFAOYSA-N 0.000 description 1
- IDXPVULRTDDQAI-UHFFFAOYSA-N CCC1(NCC2(C3CCCCC3)CCN(C(=O)OC(C)(C)C)CC2)CC1 Chemical compound CCC1(NCC2(C3CCCCC3)CCN(C(=O)OC(C)(C)C)CC2)CC1 IDXPVULRTDDQAI-UHFFFAOYSA-N 0.000 description 1
- LMIYMQYNXIALQC-UHFFFAOYSA-N CCCS(=O)(=O)CC(C)C Chemical compound CCCS(=O)(=O)CC(C)C LMIYMQYNXIALQC-UHFFFAOYSA-N 0.000 description 1
- UWXQGEVOWRFUMJ-UHFFFAOYSA-N CCCS(=O)CC(C)C Chemical compound CCCS(=O)CC(C)C UWXQGEVOWRFUMJ-UHFFFAOYSA-N 0.000 description 1
- YZCUJPLKGSDCFP-UHFFFAOYSA-N CCCSCC(C)C Chemical compound CCCSCC(C)C YZCUJPLKGSDCFP-UHFFFAOYSA-N 0.000 description 1
- BYVMBKXOLRJXRG-UHFFFAOYSA-N CCN(C(=O)CC(C)C)C(C)C Chemical compound CCN(C(=O)CC(C)C)C(C)C BYVMBKXOLRJXRG-UHFFFAOYSA-N 0.000 description 1
- XZPUOPYOMPHSSK-UHFFFAOYSA-N CCN(C)C(=O)CC(C)C Chemical compound CCN(C)C(=O)CC(C)C XZPUOPYOMPHSSK-UHFFFAOYSA-N 0.000 description 1
- QZMQDHNCNUGQSO-UHFFFAOYSA-N CCN(CC)C(=O)CC(C)C Chemical compound CCN(CC)C(=O)CC(C)C QZMQDHNCNUGQSO-UHFFFAOYSA-N 0.000 description 1
- WTTOXAGDXYQRQX-UHFFFAOYSA-N CCN(CC)C(=O)CC1(C2CCCCC2)CCN(C(=O)OC(C)(C)C)CC1.Cl.[H]N1CCC(CC(=O)N(CC)CC)(C2CCCCC2)CC1 Chemical compound CCN(CC)C(=O)CC1(C2CCCCC2)CCN(C(=O)OC(C)(C)C)CC1.Cl.[H]N1CCC(CC(=O)N(CC)CC)(C2CCCCC2)CC1 WTTOXAGDXYQRQX-UHFFFAOYSA-N 0.000 description 1
- FJPUTKPSUZLWMN-UHFFFAOYSA-N CCN(CC)CCC(C)C Chemical compound CCN(CC)CCC(C)C FJPUTKPSUZLWMN-UHFFFAOYSA-N 0.000 description 1
- BHKFIZNVZTVZOP-UHFFFAOYSA-N CCN(CCC(C)C)C(C)C Chemical compound CCN(CCC(C)C)C(C)C BHKFIZNVZTVZOP-UHFFFAOYSA-N 0.000 description 1
- TVBJEMIPJAVVAS-YFKPBYRVSA-N CCN1C(=O)OC[C@@H]1C Chemical compound CCN1C(=O)OC[C@@H]1C TVBJEMIPJAVVAS-YFKPBYRVSA-N 0.000 description 1
- KWUGUAORPBGVBS-UHFFFAOYSA-N CCN1C=NC=N1.CCN1C=NC=N1 Chemical compound CCN1C=NC=N1.CCN1C=NC=N1 KWUGUAORPBGVBS-UHFFFAOYSA-N 0.000 description 1
- NSPYRFXQDUFQOM-UHFFFAOYSA-N CCN1CCNC1=O Chemical compound CCN1CCNC1=O NSPYRFXQDUFQOM-UHFFFAOYSA-N 0.000 description 1
- VPXUDLPYMCDMGN-ZWNOBZJWSA-N CCN1C[C@@H](C)[C@H](C2=CC=C(F)C=C2)C1 Chemical compound CCN1C[C@@H](C)[C@H](C2=CC=C(F)C=C2)C1 VPXUDLPYMCDMGN-ZWNOBZJWSA-N 0.000 description 1
- BBRSBIBUDCGOJF-UHFFFAOYSA-N CCN1N=CN=C1CC(C)C Chemical compound CCN1N=CN=C1CC(C)C BBRSBIBUDCGOJF-UHFFFAOYSA-N 0.000 description 1
- VMIXWNUWORNDQF-WCSIJFPASA-N CCOC(=O)C1(C2CCCCC2)CCN(C(=O)C2CCNC[C@H]2C2=CC=C(Cl)C=C2)CC1.O=C(O)C(F)(F)F Chemical compound CCOC(=O)C1(C2CCCCC2)CCN(C(=O)C2CCNC[C@H]2C2=CC=C(Cl)C=C2)CC1.O=C(O)C(F)(F)F VMIXWNUWORNDQF-WCSIJFPASA-N 0.000 description 1
- ZQNBVUOLXCBRIO-UHFFFAOYSA-N CCOC(=O)C1(C2CCCCC2)CCN(C(=O)C2CNCC2C2=CC=C(F)C=C2)CC1.O=C(O)C(F)(F)F Chemical compound CCOC(=O)C1(C2CCCCC2)CCN(C(=O)C2CNCC2C2=CC=C(F)C=C2)CC1.O=C(O)C(F)(F)F ZQNBVUOLXCBRIO-UHFFFAOYSA-N 0.000 description 1
- AEXIQPQOFKQACC-UHFFFAOYSA-N CCOC1=NC=CC=N1 Chemical compound CCOC1=NC=CC=N1 AEXIQPQOFKQACC-UHFFFAOYSA-N 0.000 description 1
- RDKKQZIFDSEMNU-UHFFFAOYSA-N CCS(=O)(=O)C(C)C Chemical compound CCS(=O)(=O)C(C)C RDKKQZIFDSEMNU-UHFFFAOYSA-N 0.000 description 1
- NJAKRNRJVHIIDT-UHFFFAOYSA-N CCS(=O)(=O)CC(C)C Chemical compound CCS(=O)(=O)CC(C)C NJAKRNRJVHIIDT-UHFFFAOYSA-N 0.000 description 1
- LPWWDODHRGNZLQ-UHFFFAOYSA-N CCS(=O)CC(C)C Chemical compound CCS(=O)CC(C)C LPWWDODHRGNZLQ-UHFFFAOYSA-N 0.000 description 1
- NZUQQADVSXWVNW-UHFFFAOYSA-N CCSC(C)C Chemical compound CCSC(C)C NZUQQADVSXWVNW-UHFFFAOYSA-N 0.000 description 1
- NEHWMOKJEUOJQR-UHFFFAOYSA-N CCSC1=NC=CC=N1 Chemical compound CCSC1=NC=CC=N1 NEHWMOKJEUOJQR-UHFFFAOYSA-N 0.000 description 1
- OIRKGXWQBSPXLQ-UHFFFAOYSA-N CCSCC(C)C Chemical compound CCSCC(C)C OIRKGXWQBSPXLQ-UHFFFAOYSA-N 0.000 description 1
- GZPRGMVOOWZOTQ-BXKDBHETSA-N COC1=CC=C([C@@H]2CNC[C@H]2C)C=C1 Chemical compound COC1=CC=C([C@@H]2CNC[C@H]2C)C=C1 GZPRGMVOOWZOTQ-BXKDBHETSA-N 0.000 description 1
- UYVGFIKOUAFDOZ-UHFFFAOYSA-N CSCC(C)C Chemical compound CSCC(C)C UYVGFIKOUAFDOZ-UHFFFAOYSA-N 0.000 description 1
- QOBDRXLDHYQDKV-INIZCTEOSA-N C[C@@H](CO)NCC1(C2CCCCC2)CCN(C(=O)OC(C)(C)C)CC1 Chemical compound C[C@@H](CO)NCC1(C2CCCCC2)CCN(C(=O)OC(C)(C)C)CC1 QOBDRXLDHYQDKV-INIZCTEOSA-N 0.000 description 1
- BYYCLCVPOPUWMY-RDTXWAMCSA-N C[C@@H]1CN(CC2=CC=CC=C2)C[C@H]1C1=CC=C(Cl)C=C1 Chemical compound C[C@@H]1CN(CC2=CC=CC=C2)C[C@H]1C1=CC=C(Cl)C=C1 BYYCLCVPOPUWMY-RDTXWAMCSA-N 0.000 description 1
- HFEXFNQMPMZRKF-ZYHUDNBSSA-N C[C@@H]1CNCC[C@H]1C1=CC=CC=C1 Chemical compound C[C@@H]1CNCC[C@H]1C1=CC=CC=C1 HFEXFNQMPMZRKF-ZYHUDNBSSA-N 0.000 description 1
- RFPMNIUXRGTIFN-GMSGAONNSA-N C[C@@H]1CNC[C@H]1C1=CC=C(F)C=C1F Chemical compound C[C@@H]1CNC[C@H]1C1=CC=C(F)C=C1F RFPMNIUXRGTIFN-GMSGAONNSA-N 0.000 description 1
- RNWURHRRQATWCP-MWLCHTKSSA-N C[C@@H]1CNC[C@H]1C1=CC=CC=C1 Chemical compound C[C@@H]1CNC[C@H]1C1=CC=CC=C1 RNWURHRRQATWCP-MWLCHTKSSA-N 0.000 description 1
- CNQGCIXRLGZDSQ-RZZZFEHKSA-N C[C@H](CNC1)C1c(cc1)ccc1F Chemical compound C[C@H](CNC1)C1c(cc1)ccc1F CNQGCIXRLGZDSQ-RZZZFEHKSA-N 0.000 description 1
- JTOHGHLAHPNGMP-INIZCTEOSA-N C[C@H]1COC(=O)N1CC1(C2CCCCC2)CCN(C(=O)OC(C)(C)C)CC1 Chemical compound C[C@H]1COC(=O)N1CC1(C2CCCCC2)CCN(C(=O)OC(C)(C)C)CC1 JTOHGHLAHPNGMP-INIZCTEOSA-N 0.000 description 1
- STTSGYWCWDYXDS-ZDUSSCGKSA-N C[C@H]1COC(=O)N1CC1(C2CCCCC2)CCNCC1.Cl Chemical compound C[C@H]1COC(=O)N1CC1(C2CCCCC2)CCNCC1.Cl STTSGYWCWDYXDS-ZDUSSCGKSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 101500007569 Candida glabrata (strain ATCC 2001 / CBS 138 / JCM 3761 / NBRC 0622 / NRRL Y-65) Metallothionein-2' Proteins 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- HYNBCFLJRQPEDV-UHFFFAOYSA-N Cl.O=C1OCC2(CC2)N1CC1(C2CCCCC2)CCNCC1 Chemical compound Cl.O=C1OCC2(CC2)N1CC1(C2CCCCC2)CCNCC1 HYNBCFLJRQPEDV-UHFFFAOYSA-N 0.000 description 1
- XOMXMIZGEHCHJY-UHFFFAOYSA-N Cl.[H]N1CCC(CN2C(=O)OCC23CCCC3)(C2CCCCC2)CC1 Chemical compound Cl.[H]N1CCC(CN2C(=O)OCC23CCCC3)(C2CCCCC2)CC1 XOMXMIZGEHCHJY-UHFFFAOYSA-N 0.000 description 1
- 229920002911 Colestipol Polymers 0.000 description 1
- 206010010219 Compulsions Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101800000414 Corticotropin Proteins 0.000 description 1
- 102000008064 Corticotropin Receptors Human genes 0.000 description 1
- 108010074311 Corticotropin Receptors Proteins 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 208000005171 Dysmenorrhea Diseases 0.000 description 1
- 206010013935 Dysmenorrhoea Diseases 0.000 description 1
- 239000012594 Earle’s Balanced Salt Solution Substances 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 206010056465 Food craving Diseases 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- HEMJJKBWTPKOJG-UHFFFAOYSA-N Gemfibrozil Chemical compound CC1=CC=C(C)C(OCCCC(C)(C)C(O)=O)=C1 HEMJJKBWTPKOJG-UHFFFAOYSA-N 0.000 description 1
- 239000007821 HATU Substances 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 229910004373 HOAc Inorganic materials 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 101100456320 Homo sapiens NR3C2 gene Proteins 0.000 description 1
- 208000031226 Hyperlipidaemia Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WRYCSMQKUKOKBP-UHFFFAOYSA-N Imidazolidine Chemical compound C1CNCN1 WRYCSMQKUKOKBP-UHFFFAOYSA-N 0.000 description 1
- 206010022489 Insulin Resistance Diseases 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- WQZGKKKJIJFFOK-ZZWDRFIYSA-N L-glucose Chemical compound OC[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@H]1O WQZGKKKJIJFFOK-ZZWDRFIYSA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 102000016267 Leptin Human genes 0.000 description 1
- 108010092277 Leptin Proteins 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 208000007623 Lordosis Diseases 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 238000003820 Medium-pressure liquid chromatography Methods 0.000 description 1
- 229940117029 Melanocortin receptor agonist Drugs 0.000 description 1
- 229940122534 Melanocortin receptor antagonist Drugs 0.000 description 1
- 108010008364 Melanocortins Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241000699673 Mesocricetus auratus Species 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 238000006845 Michael addition reaction Methods 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- PCZOHLXUXFIOCF-UHFFFAOYSA-N Monacolin X Natural products C12C(OC(=O)C(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 PCZOHLXUXFIOCF-UHFFFAOYSA-N 0.000 description 1
- ZSXGLVDWWRXATF-UHFFFAOYSA-N N,N-dimethylformamide dimethyl acetal Chemical compound COC(OC)N(C)C ZSXGLVDWWRXATF-UHFFFAOYSA-N 0.000 description 1
- HTLZVHNRZJPSMI-UHFFFAOYSA-N N-ethylpiperidine Chemical compound CCN1CCCCC1 HTLZVHNRZJPSMI-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 1
- 239000000006 Nitroglycerin Substances 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 102000023984 PPAR alpha Human genes 0.000 description 1
- 108010015181 PPAR delta Proteins 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- AHOUBRCZNHFOSL-UHFFFAOYSA-N Paroxetine hydrochloride Natural products C1=CC(F)=CC=C1C1C(COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-UHFFFAOYSA-N 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 208000018262 Peripheral vascular disease Diseases 0.000 description 1
- 241000700145 Petromus typicus Species 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 241001282135 Poromitra oscitans Species 0.000 description 1
- TUZYXOIXSAXUGO-UHFFFAOYSA-N Pravastatin Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(O)C=C21 TUZYXOIXSAXUGO-UHFFFAOYSA-N 0.000 description 1
- 208000006399 Premature Obstetric Labor Diseases 0.000 description 1
- 206010036600 Premature labour Diseases 0.000 description 1
- 229910019020 PtO2 Inorganic materials 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- YASAKCUCGLMORW-UHFFFAOYSA-N Rosiglitazone Chemical compound C=1C=CC=NC=1N(C)CCOC(C=C1)=CC=C1CC1SC(=O)NC1=O YASAKCUCGLMORW-UHFFFAOYSA-N 0.000 description 1
- 108010021820 SHU 9119 Proteins 0.000 description 1
- RYMZZMVNJRMUDD-UHFFFAOYSA-N SJ000286063 Natural products C12C(OC(=O)C(C)(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 RYMZZMVNJRMUDD-UHFFFAOYSA-N 0.000 description 1
- 229940124639 Selective inhibitor Drugs 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 208000013738 Sleep Initiation and Maintenance disease Diseases 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 102000001494 Sterol O-Acyltransferase Human genes 0.000 description 1
- 108010054082 Sterol O-acyltransferase Proteins 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical class [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- JLRGJRBPOGGCBT-UHFFFAOYSA-N Tolbutamide Chemical compound CCCCNC(=O)NS(=O)(=O)C1=CC=C(C)C=C1 JLRGJRBPOGGCBT-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 102000011016 Type 5 Cyclic Nucleotide Phosphodiesterases Human genes 0.000 description 1
- 108010037581 Type 5 Cyclic Nucleotide Phosphodiesterases Proteins 0.000 description 1
- 102000003425 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- SECKRCOLJRRGGV-UHFFFAOYSA-N Vardenafil Chemical compound CCCC1=NC(C)=C(C(N=2)=O)N1NC=2C(C(=CC=1)OCC)=CC=1S(=O)(=O)N1CCN(CC)CC1 SECKRCOLJRRGGV-UHFFFAOYSA-N 0.000 description 1
- 206010047513 Vision blurred Diseases 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 206010048232 Yawning Diseases 0.000 description 1
- BLGXFZZNTVWLAY-CCZXDCJGSA-N Yohimbine Natural products C1=CC=C2C(CCN3C[C@@H]4CC[C@@H](O)[C@H]([C@H]4C[C@H]33)C(=O)OC)=C3NC2=C1 BLGXFZZNTVWLAY-CCZXDCJGSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- WMJMABVHDMRMJA-UHFFFAOYSA-M [Cl-].[Mg+]C1CCCCC1 Chemical compound [Cl-].[Mg+]C1CCCCC1 WMJMABVHDMRMJA-UHFFFAOYSA-M 0.000 description 1
- WIWQZPUZNDTCMK-KGQXAQPSSA-N [O-]C(=O)C(F)(F)F.CC1(C)COC(=O)N1CC1(C2CCCCC2)CCN(C(=O)[C@H]2[C@@H](C[NH2+]CC2)C=2C=CC(F)=CC=2)CC1 Chemical compound [O-]C(=O)C(F)(F)F.CC1(C)COC(=O)N1CC1(C2CCCCC2)CCN(C(=O)[C@H]2[C@@H](C[NH2+]CC2)C=2C=CC(F)=CC=2)CC1 WIWQZPUZNDTCMK-KGQXAQPSSA-N 0.000 description 1
- 229960002632 acarbose Drugs 0.000 description 1
- XUFXOAAUWZOOIT-UHFFFAOYSA-N acarviostatin I01 Natural products OC1C(O)C(NC2C(C(O)C(O)C(CO)=C2)O)C(C)OC1OC(C(C1O)O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O XUFXOAAUWZOOIT-UHFFFAOYSA-N 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 206010000496 acne Diseases 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- YKIOKAURTKXMSB-UHFFFAOYSA-N adams's catalyst Chemical compound O=[Pt]=O YKIOKAURTKXMSB-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 210000000593 adipose tissue white Anatomy 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 239000000674 adrenergic antagonist Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000001270 agonistic effect Effects 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 102000004305 alpha Adrenergic Receptors Human genes 0.000 description 1
- 108090000861 alpha Adrenergic Receptors Proteins 0.000 description 1
- 239000002160 alpha blocker Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- CBTVGIZVANVGBH-UHFFFAOYSA-N aminomethyl propanol Chemical compound CC(C)(N)CO CBTVGIZVANVGBH-UHFFFAOYSA-N 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003529 anticholesteremic agent Substances 0.000 description 1
- 229940127226 anticholesterol agent Drugs 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 230000036528 appetite Effects 0.000 description 1
- 235000019789 appetite Nutrition 0.000 description 1
- 230000004596 appetite loss Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229960003121 arginine Drugs 0.000 description 1
- 238000006254 arylation reaction Methods 0.000 description 1
- 229960005370 atorvastatin Drugs 0.000 description 1
- IUKQLMGVFMDQDP-UHFFFAOYSA-N azane;piperidine Chemical compound N.C1CCNCC1 IUKQLMGVFMDQDP-UHFFFAOYSA-N 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical compound CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 description 1
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical compound C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- RROBIDXNTUAHFW-UHFFFAOYSA-N benzotriazol-1-yloxy-tris(dimethylamino)phosphanium Chemical compound C1=CC=C2N(O[P+](N(C)C)(N(C)C)N(C)C)N=NC2=C1 RROBIDXNTUAHFW-UHFFFAOYSA-N 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 229940076810 beta sitosterol Drugs 0.000 description 1
- 102000016959 beta-3 Adrenergic Receptors Human genes 0.000 description 1
- 108010014502 beta-3 Adrenergic Receptors Proteins 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- LGJMUZUPVCAVPU-UHFFFAOYSA-N beta-Sitostanol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(CC)C(C)C)C1(C)CC2 LGJMUZUPVCAVPU-UHFFFAOYSA-N 0.000 description 1
- BLGXFZZNTVWLAY-UHFFFAOYSA-N beta-Yohimbin Natural products C1=CC=C2C(CCN3CC4CCC(O)C(C4CC33)C(=O)OC)=C3NC2=C1 BLGXFZZNTVWLAY-UHFFFAOYSA-N 0.000 description 1
- NJKOMDUNNDKEAI-UHFFFAOYSA-N beta-sitosterol Natural products CCC(CCC(C)C1CCC2(C)C3CC=C4CC(O)CCC4C3CCC12C)C(C)C NJKOMDUNNDKEAI-UHFFFAOYSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 150000004283 biguanides Chemical class 0.000 description 1
- 239000012867 bioactive agent Substances 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 125000000319 biphenyl-4-yl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- SIPUZPBQZHNSDW-UHFFFAOYSA-N bis(2-methylpropyl)aluminum Chemical compound CC(C)C[Al]CC(C)C SIPUZPBQZHNSDW-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- UWTDFICHZKXYAC-UHFFFAOYSA-N boron;oxolane Chemical compound [B].C1CCOC1 UWTDFICHZKXYAC-UHFFFAOYSA-N 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229930003827 cannabinoid Natural products 0.000 description 1
- 239000003557 cannabinoid Substances 0.000 description 1
- 125000004452 carbocyclyl group Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 208000015114 central nervous system disease Diseases 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 239000007958 cherry flavor Substances 0.000 description 1
- 239000012320 chlorinating reagent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 230000001906 cholesterol absorption Effects 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 150000001851 cinnamic acid derivatives Chemical class 0.000 description 1
- 210000003029 clitoris Anatomy 0.000 description 1
- KNHUKKLJHYUCFP-UHFFFAOYSA-N clofibrate Chemical compound CCOC(=O)C(C)(C)OC1=CC=C(Cl)C=C1 KNHUKKLJHYUCFP-UHFFFAOYSA-N 0.000 description 1
- 229960001214 clofibrate Drugs 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000037410 cognitive enhancement Effects 0.000 description 1
- GMRWGQCZJGVHKL-UHFFFAOYSA-N colestipol Chemical compound ClCC1CO1.NCCNCCNCCNCCN GMRWGQCZJGVHKL-UHFFFAOYSA-N 0.000 description 1
- 229960002604 colestipol Drugs 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- DOBRDRYODQBAMW-UHFFFAOYSA-N copper(i) cyanide Chemical compound [Cu+].N#[C-] DOBRDRYODQBAMW-UHFFFAOYSA-N 0.000 description 1
- 230000000056 copulatory effect Effects 0.000 description 1
- 210000005226 corpus cavernosum Anatomy 0.000 description 1
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 1
- 229960000258 corticotropin Drugs 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 238000006264 debenzylation reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229960004597 dexfenfluramine Drugs 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 125000004985 dialkyl amino alkyl group Chemical group 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 210000002451 diencephalon Anatomy 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 238000013229 diet-induced obese mouse Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- JMRYOSQOYJBDOI-UHFFFAOYSA-N dilithium;di(propan-2-yl)azanide Chemical compound [Li+].CC(C)[N-]C(C)C.CC(C)N([Li])C(C)C JMRYOSQOYJBDOI-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- UXGNZZKBCMGWAZ-UHFFFAOYSA-N dimethylformamide dmf Chemical compound CN(C)C=O.CN(C)C=O UXGNZZKBCMGWAZ-UHFFFAOYSA-N 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 201000006549 dyspepsia Diseases 0.000 description 1
- 238000003821 enantio-separation Methods 0.000 description 1
- 229950002375 englitazone Drugs 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 230000001856 erectile effect Effects 0.000 description 1
- 230000001257 erectogenic effect Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 238000010931 ester hydrolysis Methods 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- 229930182833 estradiol Natural products 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- WNXKULKEAXAHGH-UHFFFAOYSA-N ethyl 1-tert-butyl-3-oxopiperidine-4-carboxylate Chemical compound CCOC(=O)C1CCN(C(C)(C)C)CC1=O WNXKULKEAXAHGH-UHFFFAOYSA-N 0.000 description 1
- ZIUSEGSNTOUIPT-UHFFFAOYSA-N ethyl 2-cyanoacetate Chemical compound CCOC(=O)CC#N ZIUSEGSNTOUIPT-UHFFFAOYSA-N 0.000 description 1
- VMVUBCKFICINHZ-UHFFFAOYSA-N ethyl 3-oxopiperidin-1-ium-4-carboxylate;chloride Chemical compound Cl.CCOC(=O)C1CCNCC1=O VMVUBCKFICINHZ-UHFFFAOYSA-N 0.000 description 1
- UOLOEZVVPDVAKI-UHFFFAOYSA-N ethyl 4-(tert-butylamino)butanoate Chemical compound CCOC(=O)CCCNC(C)(C)C UOLOEZVVPDVAKI-UHFFFAOYSA-N 0.000 description 1
- VGZVIGXXAOJLGY-UHFFFAOYSA-N ethyl 4-[tert-butyl-(2-ethoxy-2-oxoethyl)amino]butanoate Chemical compound CCOC(=O)CCCN(C(C)(C)C)CC(=O)OCC VGZVIGXXAOJLGY-UHFFFAOYSA-N 0.000 description 1
- MAFQLJCYFMKEJJ-UHFFFAOYSA-N ethyl 4-aminobutanoate Chemical class CCOC(=O)CCCN MAFQLJCYFMKEJJ-UHFFFAOYSA-N 0.000 description 1
- URTKCNOJICAYOL-UHFFFAOYSA-N ethyl 4-cyclohexyl-1-(2-phenylpyrrolidin-1-ium-3-carbonyl)piperidine-4-carboxylate;chloride Chemical compound [Cl-].C1CC(C(=O)OCC)(C2CCCCC2)CCN1C(=O)C1CC[NH2+]C1C1=CC=CC=C1 URTKCNOJICAYOL-UHFFFAOYSA-N 0.000 description 1
- VUFRFHNSRNAQME-UHFFFAOYSA-N ethyl 4-cyclohexyl-1-[1-[(2-methylpropan-2-yl)oxycarbonyl]-2-phenylpyrrolidine-3-carbonyl]piperidine-4-carboxylate Chemical compound C1CC(C(=O)OCC)(C2CCCCC2)CCN1C(=O)C1CCN(C(=O)OC(C)(C)C)C1C1=CC=CC=C1 VUFRFHNSRNAQME-UHFFFAOYSA-N 0.000 description 1
- RUTQXXIUZYUNDQ-UHFFFAOYSA-N ethyl 4-cyclohexylpiperidin-1-ium-4-carboxylate;chloride Chemical compound [Cl-].C1CCCCC1C1(C(=O)OCC)CC[NH2+]CC1 RUTQXXIUZYUNDQ-UHFFFAOYSA-N 0.000 description 1
- RTYXWLMQWSFXNI-UHFFFAOYSA-N ethyl 4-oxopiperidin-1-ium-3-carboxylate;chloride Chemical compound Cl.CCOC(=O)C1CNCCC1=O RTYXWLMQWSFXNI-UHFFFAOYSA-N 0.000 description 1
- MVEAAGBEUOMFRX-UHFFFAOYSA-N ethyl acetate;hydrochloride Chemical compound Cl.CCOC(C)=O MVEAAGBEUOMFRX-UHFFFAOYSA-N 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- FAMRKDQNMBBFBR-UHFFFAOYSA-N ethyl n-ethoxycarbonyliminocarbamate Chemical compound CCOC(=O)N=NC(=O)OCC FAMRKDQNMBBFBR-UHFFFAOYSA-N 0.000 description 1
- WHRIKZCFRVTHJH-UHFFFAOYSA-N ethylhydrazine Chemical compound CCNN WHRIKZCFRVTHJH-UHFFFAOYSA-N 0.000 description 1
- OJCSPXHYDFONPU-UHFFFAOYSA-N etoac etoac Chemical compound CCOC(C)=O.CCOC(C)=O OJCSPXHYDFONPU-UHFFFAOYSA-N 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 210000003499 exocrine gland Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010685 fatty oil Substances 0.000 description 1
- 230000004634 feeding behavior Effects 0.000 description 1
- 230000003031 feeding effect Effects 0.000 description 1
- 201000010255 female reproductive organ cancer Diseases 0.000 description 1
- 229960001582 fenfluramine Drugs 0.000 description 1
- 229960002297 fenofibrate Drugs 0.000 description 1
- YMTINGFKWWXKFG-UHFFFAOYSA-N fenofibrate Chemical compound C1=CC(OC(C)(C)C(=O)OC(C)C)=CC=C1C(=O)C1=CC=C(Cl)C=C1 YMTINGFKWWXKFG-UHFFFAOYSA-N 0.000 description 1
- MQOBSOSZFYZQOK-UHFFFAOYSA-N fenofibric acid Chemical class C1=CC(OC(C)(C)C(O)=O)=CC=C1C(=O)C1=CC=C(Cl)C=C1 MQOBSOSZFYZQOK-UHFFFAOYSA-N 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- RWTNPBWLLIMQHL-UHFFFAOYSA-N fexofenadine Chemical compound C1=CC(C(C)(C(O)=O)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 RWTNPBWLLIMQHL-UHFFFAOYSA-N 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229960002464 fluoxetine Drugs 0.000 description 1
- 229960003765 fluvastatin Drugs 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000001640 fractional crystallisation Methods 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- YRTCKZIKGWZNCU-UHFFFAOYSA-N furo[3,2-b]pyridine Chemical compound C1=CC=C2OC=CC2=N1 YRTCKZIKGWZNCU-UHFFFAOYSA-N 0.000 description 1
- 208000020694 gallbladder disease Diseases 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229960003627 gemfibrozil Drugs 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 210000004392 genitalia Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- ZJJXGWJIGJFDTL-UHFFFAOYSA-N glipizide Chemical compound C1=NC(C)=CN=C1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)NC2CCCCC2)C=C1 ZJJXGWJIGJFDTL-UHFFFAOYSA-N 0.000 description 1
- 229960001381 glipizide Drugs 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229960003711 glyceryl trinitrate Drugs 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000003979 granulating agent Substances 0.000 description 1
- 230000003370 grooming effect Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003324 growth hormone secretagogue Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000007902 hard capsule Substances 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 235000009200 high fat diet Nutrition 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- XGIHQYAWBCFNPY-AZOCGYLKSA-N hydrabamine Chemical compound C([C@@H]12)CC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC[C@@]1(C)CNCCNC[C@@]1(C)[C@@H]2CCC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC1 XGIHQYAWBCFNPY-AZOCGYLKSA-N 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 1
- 239000000852 hydrogen donor Substances 0.000 description 1
- VEIWYFRREFUNRC-UHFFFAOYSA-N hydron;piperidine;chloride Chemical compound [Cl-].C1CC[NH2+]CC1 VEIWYFRREFUNRC-UHFFFAOYSA-N 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 229940071676 hydroxypropylcellulose Drugs 0.000 description 1
- 230000002267 hypothalamic effect Effects 0.000 description 1
- 230000008102 immune modulation Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000003089 intermedin derivative Substances 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 1
- 229940039781 leptin Drugs 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- AHCNXVCAVUYIOU-UHFFFAOYSA-M lithium hydroperoxide Chemical compound [Li+].[O-]O AHCNXVCAVUYIOU-UHFFFAOYSA-M 0.000 description 1
- 235000021266 loss of appetite Nutrition 0.000 description 1
- 208000019017 loss of appetite Diseases 0.000 description 1
- 229960004844 lovastatin Drugs 0.000 description 1
- PCZOHLXUXFIOCF-BXMDZJJMSA-N lovastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-BXMDZJJMSA-N 0.000 description 1
- QLJODMDSTUBWDW-UHFFFAOYSA-N lovastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 QLJODMDSTUBWDW-UHFFFAOYSA-N 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 1
- QZIQJVCYUQZDIR-UHFFFAOYSA-N mechlorethamine hydrochloride Chemical compound Cl.ClCCN(C)CCCl QZIQJVCYUQZDIR-UHFFFAOYSA-N 0.000 description 1
- 239000002865 melanocortin Substances 0.000 description 1
- 210000002752 melanocyte Anatomy 0.000 description 1
- 229950008446 melinamide Drugs 0.000 description 1
- 230000006993 memory improvement Effects 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000037323 metabolic rate Effects 0.000 description 1
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin Chemical compound CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 description 1
- 229960003105 metformin Drugs 0.000 description 1
- RPUZRSYSZMEYNL-UONOGXRCSA-N methyl (3s,4r)-1-tert-butyl-4-(4-fluorophenyl)pyrrolidine-3-carboxylate Chemical compound COC(=O)[C@@H]1CN(C(C)(C)C)C[C@H]1C1=CC=C(F)C=C1 RPUZRSYSZMEYNL-UONOGXRCSA-N 0.000 description 1
- HSNCAEKOZRUMTB-QPJJXVBHSA-N methyl (e)-3-(4-fluorophenyl)prop-2-enoate Chemical compound COC(=O)\C=C\C1=CC=C(F)C=C1 HSNCAEKOZRUMTB-QPJJXVBHSA-N 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- PEECTLLHENGOKU-UHFFFAOYSA-N n,n-dimethylpyridin-4-amine Chemical compound CN(C)C1=CC=NC=C1.CN(C)C1=CC=NC=C1 PEECTLLHENGOKU-UHFFFAOYSA-N 0.000 description 1
- PAFOSBJPNZKHIV-UHFFFAOYSA-N n-(methoxymethyl)-2-methyl-n-(trimethylsilylmethyl)propan-2-amine Chemical compound COCN(C(C)(C)C)C[Si](C)(C)C PAFOSBJPNZKHIV-UHFFFAOYSA-N 0.000 description 1
- GVYAEABNEONMCC-NSLUPJTDSA-N n-tert-butyl-4-(2-fluorophenyl)-1-[(3r,4r)-3-(4-fluorophenyl)piperidin-1-ium-4-carbonyl]piperidine-4-carboxamide;chloride Chemical compound [Cl-].C1([C@@H]2C[NH2+]CC[C@H]2C(=O)N2CCC(CC2)(C(=O)NC(C)(C)C)C=2C(=CC=CC=2)F)=CC=C(F)C=C1 GVYAEABNEONMCC-NSLUPJTDSA-N 0.000 description 1
- RTEJEJLIMPMYEK-UHFFFAOYSA-N n-tert-butyl-4-(2-fluorophenyl)-1-methylpiperidine-4-carboxamide Chemical compound C1CN(C)CCC1(C(=O)NC(C)(C)C)C1=CC=CC=C1F RTEJEJLIMPMYEK-UHFFFAOYSA-N 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- IOMMMLWIABWRKL-WUTDNEBXSA-N nazartinib Chemical compound C1N(C(=O)/C=C/CN(C)C)CCCC[C@H]1N1C2=C(Cl)C=CC=C2N=C1NC(=O)C1=CC=NC(C)=C1 IOMMMLWIABWRKL-WUTDNEBXSA-N 0.000 description 1
- PKWDZWYVIHVNKS-UHFFFAOYSA-N netoglitazone Chemical compound FC1=CC=CC=C1COC1=CC=C(C=C(CC2C(NC(=O)S2)=O)C=C2)C2=C1 PKWDZWYVIHVNKS-UHFFFAOYSA-N 0.000 description 1
- 230000000324 neuroprotective effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 229960004738 nicotinyl alcohol Drugs 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 125000006574 non-aromatic ring group Chemical group 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 239000007968 orange flavor Substances 0.000 description 1
- 229940125636 orexin 1 receptor antagonist Drugs 0.000 description 1
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 description 1
- 229960001243 orlistat Drugs 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical compound [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 description 1
- NXJCBFBQEVOTOW-UHFFFAOYSA-L palladium(2+);dihydroxide Chemical compound O[Pd]O NXJCBFBQEVOTOW-UHFFFAOYSA-L 0.000 description 1
- 238000010651 palladium-catalyzed cross coupling reaction Methods 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 229960002296 paroxetine Drugs 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 238000005897 peptide coupling reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 108091008725 peroxisome proliferator-activated receptors alpha Proteins 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 238000011422 pharmacological therapy Methods 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- ICFJFFQQTFMIBG-UHFFFAOYSA-N phenformin Chemical compound NC(=N)NC(=N)NCCC1=CC=CC=C1 ICFJFFQQTFMIBG-UHFFFAOYSA-N 0.000 description 1
- 229960003243 phenformin Drugs 0.000 description 1
- 229960003562 phentermine Drugs 0.000 description 1
- 229960003056 phentolamine mesylate Drugs 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 208000024335 physical disease Diseases 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229960005095 pioglitazone Drugs 0.000 description 1
- XUWHAWMETYGRKB-UHFFFAOYSA-N piperidin-2-one Chemical compound O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 1
- 229940096701 plain lipid modifying drug hmg coa reductase inhibitors Drugs 0.000 description 1
- 239000003880 polar aprotic solvent Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- LBKJNHPKYFYCLL-UHFFFAOYSA-N potassium;trimethyl(oxido)silane Chemical compound [K+].C[Si](C)(C)[O-] LBKJNHPKYFYCLL-UHFFFAOYSA-N 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 229960002965 pravastatin Drugs 0.000 description 1
- TUZYXOIXSAXUGO-PZAWKZKUSA-N pravastatin Chemical compound C1=C[C@H](C)[C@H](CC[C@@H](O)C[C@@H](O)CC(O)=O)[C@H]2[C@@H](OC(=O)[C@@H](C)CC)C[C@H](O)C=C21 TUZYXOIXSAXUGO-PZAWKZKUSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 208000026440 premature labor Diseases 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- FYPMFJGVHOHGLL-UHFFFAOYSA-N probucol Chemical compound C=1C(C(C)(C)C)=C(O)C(C(C)(C)C)=CC=1SC(C)(C)SC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 FYPMFJGVHOHGLL-UHFFFAOYSA-N 0.000 description 1
- 229960003912 probucol Drugs 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- CKNYWTABPYGPEX-UHFFFAOYSA-N pyrrolidin-1-ium;2,2,2-trifluoroacetate Chemical compound C1CC[NH2+]C1.[O-]C(=O)C(F)(F)F CKNYWTABPYGPEX-UHFFFAOYSA-N 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000013643 reference control Substances 0.000 description 1
- 230000036279 refractory period Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000004648 relaxation of smooth muscle Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000011369 resultant mixture Substances 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 210000001732 sebaceous gland Anatomy 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 235000019615 sensations Nutrition 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 239000003762 serotonin receptor affecting agent Substances 0.000 description 1
- 239000003772 serotonin uptake inhibitor Substances 0.000 description 1
- VGKDLMBJGBXTGI-SJCJKPOMSA-N sertraline Chemical compound C1([C@@H]2CC[C@@H](C3=CC=CC=C32)NC)=CC=C(Cl)C(Cl)=C1 VGKDLMBJGBXTGI-SJCJKPOMSA-N 0.000 description 1
- 229960002073 sertraline Drugs 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- UNAANXDKBXWMLN-UHFFFAOYSA-N sibutramine Chemical compound C=1C=C(Cl)C=CC=1C1(C(N(C)C)CC(C)C)CCC1 UNAANXDKBXWMLN-UHFFFAOYSA-N 0.000 description 1
- 229960004425 sibutramine Drugs 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 229960002639 sildenafil citrate Drugs 0.000 description 1
- 229960002855 simvastatin Drugs 0.000 description 1
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 1
- KZJWDPNRJALLNS-VJSFXXLFSA-N sitosterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@@H](CC)C(C)C)[C@@]1(C)CC2 KZJWDPNRJALLNS-VJSFXXLFSA-N 0.000 description 1
- 229950005143 sitosterol Drugs 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 201000002859 sleep apnea Diseases 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 208000020685 sleep-wake disease Diseases 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000012321 sodium triacetoxyborohydride Substances 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000000707 stereoselective effect Effects 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 201000009032 substance abuse Diseases 0.000 description 1
- 231100000736 substance abuse Toxicity 0.000 description 1
- 208000011117 substance-related disease Diseases 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 229960000835 tadalafil Drugs 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- MPMZVTIDVZJEFM-FKBYEOEOSA-N tert-butyl (3r,4r)-3-[(4s)-4-benzyl-2-oxo-1,3-oxazolidine-3-carbonyl]-4-(4-fluorophenyl)pyrrolidine-1-carboxylate Chemical compound C1([C@H]2[C@H](CN(C2)C(=O)OC(C)(C)C)C(=O)N2C(OC[C@@H]2CC=2C=CC=CC=2)=O)=CC=C(F)C=C1 MPMZVTIDVZJEFM-FKBYEOEOSA-N 0.000 description 1
- ZLVGIJHFXSOLLH-UHFFFAOYSA-N tert-butyl 4-cyclohexyl-4-formylpiperidine-1-carboxylate Chemical compound C1CN(C(=O)OC(C)(C)C)CCC1(C=O)C1CCCCC1 ZLVGIJHFXSOLLH-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- ZXUCBXRTRRIBSO-UHFFFAOYSA-L tetrabutylazanium;sulfate Chemical compound [O-]S([O-])(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC.CCCC[N+](CCCC)(CCCC)CCCC ZXUCBXRTRRIBSO-UHFFFAOYSA-L 0.000 description 1
- WHRNULOCNSKMGB-UHFFFAOYSA-N tetrahydrofuran thf Chemical compound C1CCOC1.C1CCOC1 WHRNULOCNSKMGB-UHFFFAOYSA-N 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- 229960004559 theobromine Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000035924 thermogenesis Effects 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- DBDCNCCRPKTRSD-UHFFFAOYSA-N thieno[3,2-b]pyridine Chemical compound C1=CC=C2SC=CC2=N1 DBDCNCCRPKTRSD-UHFFFAOYSA-N 0.000 description 1
- 229940125670 thienopyridine Drugs 0.000 description 1
- 239000002175 thienopyridine Substances 0.000 description 1
- BRNULMACUQOKMR-UHFFFAOYSA-N thiomorpholine Chemical compound C1CSCCN1 BRNULMACUQOKMR-UHFFFAOYSA-N 0.000 description 1
- 230000000929 thyromimetic effect Effects 0.000 description 1
- 229960005371 tolbutamide Drugs 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 238000011277 treatment modality Methods 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- ILWRPSCZWQJDMK-UHFFFAOYSA-N triethylazanium;chloride Chemical compound Cl.CCN(CC)CC ILWRPSCZWQJDMK-UHFFFAOYSA-N 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- GXPHKUHSUJUWKP-UHFFFAOYSA-N troglitazone Chemical compound C1CC=2C(C)=C(O)C(C)=C(C)C=2OC1(C)COC(C=C1)=CC=C1CC1SC(=O)NC1=O GXPHKUHSUJUWKP-UHFFFAOYSA-N 0.000 description 1
- 229960001641 troglitazone Drugs 0.000 description 1
- GXPHKUHSUJUWKP-NTKDMRAZSA-N troglitazone Natural products C([C@@]1(OC=2C(C)=C(C(=C(C)C=2CC1)O)C)C)OC(C=C1)=CC=C1C[C@H]1SC(=O)NC1=O GXPHKUHSUJUWKP-NTKDMRAZSA-N 0.000 description 1
- 229960000281 trometamol Drugs 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 229960002381 vardenafil Drugs 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
- BLGXFZZNTVWLAY-SCYLSFHTSA-N yohimbine Chemical compound C1=CC=C2C(CCN3C[C@@H]4CC[C@H](O)[C@@H]([C@H]4C[C@H]33)C(=O)OC)=C3NC2=C1 BLGXFZZNTVWLAY-SCYLSFHTSA-N 0.000 description 1
- 229960000317 yohimbine Drugs 0.000 description 1
- AADVZSXPNRLYLV-UHFFFAOYSA-N yohimbine carboxylic acid Natural products C1=CC=C2C(CCN3CC4CCC(C(C4CC33)C(O)=O)O)=C3NC2=C1 AADVZSXPNRLYLV-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/08—Bridged systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/08—Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/10—Drugs for genital or sexual disorders; Contraceptives for impotence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/06—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D211/36—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D211/60—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
- C07D211/62—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals attached in position 4
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/06—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D211/36—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D211/60—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
- C07D211/62—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals attached in position 4
- C07D211/64—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals attached in position 4 having an aryl radical as the second substituent in position 4
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/06—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/06—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
Definitions
- the present invention relates to acylated piperidine derivatives, their synthesis, and their use as melanocortin receptor (MC-R) agonists. More particularly, the compounds of the present invention are selective agonists of the melanocortin-4 receptor (MC4R) and are thereby useful for the treatment of disorders responsive to the activation of MC-4R, such as obesity, diabetes, male sexual dysfunction, and female sexual dysfunction.
- M-R melanocortin receptor
- Pro-opiomelanocortin (POMC) derived peptides are known to affect food intake.
- GPCRs G-protein coupled receptors
- M-R melanocortin receptor
- a specific single MC-R that may be targeted for the control of obesity has not yet been identified, although evidence has been presented that MC-4R signalling is important in mediating feed behavior (S. Q. Giraudo et al., “Feeding effects of hypothalamic injection of melanocortin-4 receptor ligands,” Brain Research, 80: 302-306 (1998)).
- MC-R's Evidence for the involvement of MC-R's in obesity includes: i) the agouti (A vy ) mouse which ectopically expresses an antagonist of the MC-1R, MC-3R and -4R is obese, indicating that blocking the action of these three MC-R's can lead to hyperphagia and metabolic disorders; ii) MC-4R knockout mice (D.
- MC-1R Five distinct MC-R's have thus far been identified, and these are expressed in different tissues.
- MC-1R was initially characterized by dominant gain of function mutations at the Extension locus, affecting coat color by controlling phaeomelanin to eumelanin conversion through control of tyrosinase.
- MC-1R is mainly expressed in melanocytes.
- MC-2R is expressed in the adrenal gland and represents the ACTH receptor.
- MC-3R is expressed in the brain, gut, and placenta and may be involved in the control of food intake and thermogenesis.
- MC-4R is uniquely expressed in the brain, and its inactivation was shown to cause obesity (A.
- MC-5R is expressed in many tissues, including white fat, placenta and exocrine glands. A low level of expression is also observed in the brain. MC-5R knockout mice reveal reduced sebaceous gland lipid production (Chen et al., Cell, 91: 789-798 (1997)).
- Erectile dysfunction denotes the medical condition of inability to achieve penile erection sufficient for successful sexual intercourse.
- impotence is oftentimes employed to describe this prevalent condition.
- Erectile dysfunction can arise from either organic or psychogenic causes, with about 20% of such cases being purely psychogenic in origin. Erectile dysfunction increases from 40% at age 40, to 67% at age 75, with over 75% occurring in men over the age of 50.
- Sildenafil is a selective inhibitor of type V phosphodiesterase (PDE-V), a cyclic-GMP-specific phosphodiesterase isozyme [see R. B. Moreland et al., “Sildenafil: A Novel Inhibitor of Phosphodiesterase Type 5 in Human Corpus Cavernosum Smooth Muscle. Cells,” Life Sci., 62: 309-318 (1998)].
- PDE-V type V phosphodiesterase
- Sildenafil a cyclic-GMP-specific phosphodiesterase isozyme
- Drugs to treat erectile dysfunction act either peripherally or centrally. They are also classified according to whether they “initiate” a sexual response or “facilitate” a sexual response to prior stimulation [for a discussion, see “A Therapeutic Taxonomy of Treatments for Erectile Dysfunction: An Evolutionary Imperative,” Int. J. Impotence Res., 9: 115-121 (1997)]. While sildenafil and phentolamine act peripherally and are considered to be “enhancers” or “facilitators” of the sexual response to erotic stimulation, sildenafil appears to be efficacious in both mild organic and psychogenic erectile dysfunction.
- Sildenafil has an onset of action of 30-60 minutes after an oral dose with the effect lasting about 4 hours, whereas phentolarnine requires 5-30 minutes for onset with a duration of 2 hours. Although sildenafil is effective in a majority of patients, it takes a relatively long time for the compound to show the desired effects. The faster-acting phentolamine appears to be less effective and to have a shorter duration of action than sildenafil. Oral sildenafil is effective in about 70% of men who take it, whereas an adequate response with phentolamine is observed in only 35-40% of patients. Both compounds require erotic stimulation for efficacy.
- sildenafil indirectly increases blood flow in the systemic circulation by enhancing the smooth muscle relaxation effects of nitric oxide, it is contraindicated for patients with unstable heart conditions or cardiovascular disease, in particular patients taking nitrates, such as nitroglycerin, to treat angina.
- Other adverse effects associated with the clinical use of sildenafil include headache, flushing, dyspepsia, and “abnormal vision,” the latter the result of inhibition of the type VI phosphodiesterase isozyme (PDE-VI), a cyclic-GMP-specific phosphodiesterase that is concentrated in the retina.
- “Abnormal vision” is defined as a mild and transient “bluish” tinge to vision, but also an increased sensitivity to light or blurred vision.
- Synthetic melanocortin receptor agonists have been found to initiate erections in men with psychogenic erectile dysfunction [See H. Wessells et al., “Synthetic Melanotropic Peptide Initiates Erections in Men With Psychogenic Erectile Dysfunction: Double-Blind, Placebo Controlled Crossover Study,” J. Urol., 160: 389-393 (1998); Fifteenth American Peptide Symposium, Jun. 14-19, 1997 (Nashville Tenn.)]. Activation of melanocortin receptors of the brain appears to cause normal stimulation of sexual arousal.
- MT-II the centrally acting ⁇ -melanocyte-stimulating hormone analog, melanotan-II
- MT-II is a synthetic cyclic heptapeptide, Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH 2 , which contains the 4-10 melanocortin receptor binding region common to ⁇ -MSH and adrenocorticotropin, but with a lactam bridge.
- MT-II also referred to as PT-14
- PT-14 Erectide®
- TheraTech, Inc. is presently in clinical development by Palatin Technologies, Inc. and TheraTech, Inc. as a non-penile subcutaneous injection formulation. It is considered to be an “initiator” of the sexual response.
- the time to onset of erection with this drug is relatively short (10-20 minutes) with a duration of action approximately 2.5 hours.
- Adverse reactions observed with MT-II include nausea, flushing, loss of appetite, stretching, and yawning and may be the result of activation of MC-1R, MC-2R, MC-3R, and/or MC-5R.
- MT-II must be administered parenterally, such as by subcutaneous, intravenous, or intramuscular route, since it is not absorbed into the systemic circulation when given by the oral route.
- MT-II's erectogenic properties apparently are not limited to cases of psychogenic erectile dysfunction in that men with a variety of organic risk factors developed penile erections upon subcutaneous injection of the compound; moreover, the level of sexual desire was significantly higher after MT-II administration than after placebo [see H. Wessells, “Effect of an Alpha-Melanocyte Stimulating Hormone Analog on Penile Erection and Sexual Desire in Men with Organic Erectile Dysfunction,” Urology, 56: 641-646 (2000)].
- compositions of melanotropic peptides and methods for the treatment of psychogenic erectile dysfunction are disclosed in U.S. Pat. No. 5,576,290, assigned to Competitive Technologies. Methods of stimulating sexual response in females using melanotropic peptides have been disclosed in U.S. Pat. No. 6,051,555.
- Spiropiperidine and piperidine derivatives have been disclosed in WO 99/64002 (16 Dec. 1999); WO 00/74679 (14 Dec. 2000); WO 01/70708 (27 Sep. 2001); WO 01/70337 (27 Sep. 2001); and WO 01/91752 (6 Dec. 2001) as agonists of the melanocortin receptor(s) and particularly as selective agonists of the MC-4R receptor and thereby useful for the treatment of diseases and disorders, such as obesity, diabetes, and sexual dysfunction, including erectile dysfunction and female sexual dysfunction.
- acylated piperidine derivatives which are melanocortin receptor agonists and thereby useful to treat obesity, diabetes, male sexual dysfunction, and female sexual dysfunction.
- the present invention relates to novel 4-substituted N-acylated piperidines of structural formula I:
- acylated piperidine derivatives are effective as melanocortin receptor agonists and are particularly effective as selective melanocortin-4 receptor (MC-4R) agonists. They are therefore useful for the treatment and/or prevention of disorders responsive to the activation of MC-4R, such as obesity, diabetes as well as male and female sexual dysfunction, in particular, male erectile dysfunction.
- the present invention also relates to pharmaceutical compositions comprising the compounds of the present invention and a pharmaceutically acceptable carrier.
- the present invention also relates to methods for the treatment or prevention of disorders, diseases, or conditions responsive to the activation of the melanocortin receptor in a subject in need thereof by administering the compounds and pharmaceutical compositions of the present invention.
- the present invention also relates to methods for the treatment or prevention of obesity, diabetes mellitus, male sexual dysfunction, and female sexual dysfunction by administering the compounds and pharmaceutical compositions of the present invention.
- the present invention also relates to methods for treating erectile dysfunction by administering the compounds and pharmaceutical compositions of the present invention.
- the present invention also relates to methods for treating erectile dysfunction by administering the compounds of the present invention in combination with a therapeutically effective amount of another agent known to be useful to treat the condition.
- the present invention also relates to methods for treating or preventing obesity by administering the compounds of the present invention in combination with a therapeutically effective amount of another agent known to be useful to treat or prevent the condition.
- the present invention also relates to methods for treating or preventing diabetes by administering the compounds of the present invention in combination with a therapeutically effective amount of another agent known to be useful to treat or prevent the condition.
- the present invention relates to 4-substituted N-acylated piperidine derivatives useful as melanocortin receptor agonists, in particular, as selective MC-4R agonists.
- Compounds of the present invention are described by structural formula I: or a pharmaceutically acceptable salt thereof;
- R 1 is selected from the group consisting of hydrogen, C 1-6 alkyl, (CH 2 ) 0-1 C 3-6 cycloalkyl, and (CH 2 ) 0-1 -phenyl; wherein phenyl is unsubstituted or substituted with one to three groups independently selected from R 3 ; and alkyl and cycloalkyl are optionally substituted with one to three groups independently selected from R 3 and oxo.
- R 2 is phenyl or thienyl optionally substituted with one to three groups independently selected from R 3 .
- R 2 is phenyl optionally substituted with one to three groups independently selected from R 3 .
- X is selected from the group consisting of C 1-6 alkyl, (CH 2 ) n -phenyl, (CH 2 ) n -naphthyl, (CH 2 ) n -heteroaryl, (CH 2 ) n -heterocyclyl, (CH 2 ) n C(O)N(R 5 )(R 5 ), (CH 2 ) n CO 2 R 5 , (CH 2 ) n S(O) p R 5 , CH 2 ) n OR 5 , (CH 2 ) n NR 5 C(O)R 5 , and (CH 2 ) n NR 5 SO 2 R 5 ;
- Y is selected from the group consisting of C 1-8 alkyl, C 2-6 alkenyl, (CH 2 )C 3-8 cycloalkyl, (CH 2 )-phenyl, (CH 2 )-naphthyl, (CH 2 )-heterocyclyl, and (CH 2 )-heteroaryl, wherein phenyl, naphthyl, and heteroaryl are optionally substituted with one to three groups independently selected from R 3 ; and CH 2 ) n , alkyl, cycloalkyl, and heterocyclyl are optionally substituted with one to three groups independently selected from R 3 and oxo.
- Y is selected from the group consisting of C 1-8 alkyl, C 2-6 alkenyl, C 5-7 cycloalkyl, and phenyl; wherein phenyl is unsubstituted or substituted with one to three groups independently selected from R 3 ; and alkyl and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from R 3 and oxo.
- Y is cyclohexyl or C 1-6 alkyl; wherein the cyclohexyl and alkyl groups are unsubstituted or substituted with one to three groups independently selected from R 3 and oxo.
- r is 1 or 2 and s is 1.
- the compounds of structural formula I are effective as melanocortin receptor agonists and are particularly effective as selective agonists of MC-4R. They are therefore useful for the treatment and/or prevention of disorders responsive to the activation of MC-4R, such as obesity, diabetes as well as male and/or female sexual dysfunction, in particular, erectile dysfunction, and further in particular, male erectile dysfunction.
- Another aspect of the present invention provides a method for the treatment or prevention of obesity or diabetes in a subject in need thereof which comprises administering to said subject a therapeutically or prophylactically effective amount of a compound of structural formula I.
- Another aspect of the present invention provides a method for the treatment or prevention of male or female sexual dysfunction including erectile dysfunction which comprises administering to a subject in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of structural formula I.
- Another aspect of the present invention provides a pharmaceutical composition
- a pharmaceutical composition comprising a compound of structural formula I and a pharmaceutically acceptable carrier.
- Yet another aspect of the present invention provides a method for the treatment or prevention of male or female sexual dysfunction including erectile dysfunction which comprises administering to a subject in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of structural formula I in combination with a therapeutically effective amount of another agent known to be useful for the treatment of these conditions.
- Yet another aspect of the present invention provides a method for the treatment or prevention of obesity which comprises administering to a subject in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of structural formula I in combination with a therapeutically effective amount of another agent known to be useful for the treatment of this condition.
- alkyl groups specified above are intended to include those alkyl groups of the designated length in either a straight or branched configuration.
- exemplary of such alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tertiary butyl, pentyl, isopentyl, hexyl, isohexyl, and the like.
- halogen is intended to include the halogen atoms fluorine, chlorine, bromine and iodine.
- C 1-4 alkyliminoyl means C 1-3 C( ⁇ NH)—.
- aryl includes phenyl and naphthyl.
- heteroaryl includes mono- and bicyclic aromatic rings containing from 1 to 4 heteroatoms selected from nitrogen, oxygen and sulfur.
- “5- or 6-Membered heteroaryl” represents a monocyclic heteroaromatic ring; examples thereof include thiazole, oxazole, thiophene, furan, pyrrole, imidazole, isoxazole, pyrazole, triazole, thiadiazole, tetrazole, oxadiazole, pyridine, pyridazine, pyrimidine, pyrazine, and the like.
- Bicyclic heteroaromatic rings include, but are not limited to, benzothiadiazole, indole, benzothiophene, benzofuran, benzimidazole, benzisoxazole, benzothiazole, quinoline, benzotriazole, benzoxazole, isoquinoline, purine, furopyridine and thienopyridine.
- 5- or 6-membered carbocyclyl is intended to include non-aromatic rings containing only carbon atoms such as cyclopentyl and cyclohexyl.
- 5 and 6-membered heterocyclyl is intended to include non-aromatic heterocycles containing one to four heteroatoms selected from nitrogen, oxygen and sulfur.
- Examples of a 5 or 6-membered heterocyclyl include piperidine, morpholine, thiamorpholine, pyrrolidine, imidazolidine, tetrahydrofuran, piperazine, and the like.
- NR 4 R 4 may represent NH 2 , NHCH 3 , N(CH 3 )CH 2 CH 3 , and the like.
- mammal in need thereof is a “human in need thereof,” said human being either male or female.
- composition as in pharmaceutical composition, is intended to encompass a product comprising the active ingredient(s), and the inert ingredient(s) that make up the carrier, as well as any product which results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions of one or more of the ingredients.
- pharmaceutical compositions of the present invention encompass any composition made by admixing a compound of the present invention and a pharmaceutically acceptable carrier.
- “Erectile dysfunction” is a disorder involving the failure of a male mammal to achieve erection, ejaculation, or both.
- Symptoms of erectile dysfunction include an inability to achieve or maintain an erection, ejaculatory failure, premature ejaculation, or inability to achieve an orgasm.
- An increase in erectile dysfunction is often associated with age and is generally caused by a physical disease or as a side-effect of drug treatment.
- melanocortin receptor “agonist” is meant an endogenous or drug substance or compound that can interact with a melanocortin receptor and initiate a pharmacological response characteristic of the melanocortin receptor.
- melanocortin receptor “antagonist” is meant a drug or a compound that opposes the melanocortin receptor-associated responses normally induced by another bioactive agent.
- the “agonistic” properties of the compounds of the present invention were measured in the functional assay described below. The functional assay discriminates a melanocortin receptor agonist from a melanocortin receptor antagonist.
- binding affinity is meant the ability of a compound/drug to bind to its biological target, in the the present instance, the ability of a compound of structural formula I to bind to a melanocortin receptor. Binding affinities for the compounds of the present invention were measured in the binding assay described below and are expressed as IC 50 's.
- Effectiveacy describes the relative intensity with which agonists vary in the response they produce even when they occupy the same number of receptors and with the same affinity. Efficacy is the property that enables drugs to produce responses. Properties of compounds/drugs can be categorized into two groups, those which cause them to associate with the receptors (binding affinity) and those that produce a stimulus (efficacy). The term “efficacy” is used to characterize the level of maximal responses induced by agonists. Not all agonists of a receptor are capable of inducing identical levels of maximal responses. Maximal response depends on the efficiency of receptor coupling, that is, from the cascade of events, which, from the binding of the drug to the receptor, leads to the desired biological effect.
- Some of the compounds described herein may exist as tautomers such as keto-enol tautomers.
- the individual tautomers as well as mixtures thereof are encompassed within the compounds of structural formula I.
- Compounds of structural formula I may be separated into their individual diastereoisomers by, for example, fractional crystallization from a suitable solvent, for example methanol or ethyl acetate or a mixture thereof, or via chiral chromatography using an optically active stationary phase.
- Absolute stereochemistry may be determined by X-ray crystallography of crystalline products or crystalline intermediates which are derivatized, if necessary, with a reagent containing an asymmetric center of known absolute configuration.
- any stereoisomer of a compound of the general formula I, IIa, IIb, IIIa, and IIIb may be obtained by stereospecific synthesis using optically pure starting materials or reagents of known absolute configuration.
- salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc, and the like. Particularly preferred are the ammonium, calcium, lithium, magnesium, potassium, and sodium salts.
- Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, and basic ion exchange resins, such as arginine, betaine, caffeine, choline, N,N′-dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2-dimethylarninoethanol, ethanolamine, ethylenediamine, N-ethyl-morpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine, and the like.
- basic ion exchange resins such as
- salts may be prepared from pharmaceutically acceptable non-toxic acids, including inorganic and organic acids.
- acids include acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, formic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, malonic, mucic, nitric, pamoic, pantothenic, phosphoric, propionic, succinic, sulfuric, tartaric, p-toluenesulfonic acid, trifluoroacetic acid, and the like.
- Particularly preferred are citric, fumaric, hydrobromic, hydrochloric, maleic, phosphoric, sulfuric, and tartaric acids.
- Compounds of formula I are melanocortin receptor agonists and as such are useful in the treatment, control or prevention of diseases, disorders or conditions responsive to the activation of one or more of the melanocortin receptors including, but are not limited to, MC-1, MC-2, MC-3, MC-4, or MC-5.
- Such diseases, disorders or conditions include, but are not limited to, obesity (by reducing appetite, increasing metabolic rate, reducing fat intake or reducing carbohydrate craving), diabetes mellitus (by enhancing glucose tolerance, decreasing insulin resistance), hypertension, hyperlipidemia, osteoarthritis, cancer, gall bladder disease, sleep apnea, depression, anxiety, compulsion, neuroses, insomnia/sleep disorder, substance abuse, pain, male and female sexual dysfunction (including impotence, loss of libido and erectile dysfunction), fever, inflanmmation, immunemodulation, rheumatoid arthritis, skin tanning, acne and other skin disorders, neuroprotective and cognitive and memory enhancement including the treatment of Alzheimer's disease.
- Some compounds encompassed by formula I show highly selective affinity for the melanocortin-4 receptor relative to MC-1R, MC-2R, MC-3R, and MC-5R, which makes them especially useful in the prevention and treatment of obesity, as well as male and/or female sexual dysfunction, including erectile dysfunction.
- “Male sexual dysfunction” includes impotence, loss of libido, and erectile dysfunction.
- Erectile dysfunction is a disorder involving the failure of a male mammal to achieve erection, ejaculation, or both. Symptoms of erectile dysfunction include an inability to achieve or maintain an erection, ejaculatory failure, premature ejaculation, or inability to achieve an orgasm.
- An increase in erectile dysfunction and sexual dysfunction can have numerous underlying causes, including but not limited to (1) aging, (b) an underlying physical dysfunction, such as trauma, surgery, and peripheral vascular disease, and (3) side-effects resulting from drug treatment, depression, and other CNS disorders.
- “Female sexual dysfunction” can be seen as resulting from multiple components including dysfunction in desire, sexual arousal, sexual receptivity, and orgasm related to disturbances in the clitoris, vagina, periurethral glans, and other trigger points of sexual function. In particular, anatomic and functional modification of such trigger points may diminish the orgasmic potential in breast cancer and gynecologic cancer patients. Treatment of female sexual dysfunction with an MC-4 receptor agonist can result in improved blood flow, improved lubrication, improved sensation, facilitation of reaching orgasm, reduction in the refractory period between orgasms, and improvements in arousal and desire. In a broader sense, “female sexual dysfunction” also incorporates sexual pain, premature labor, and dysmenorrhea.
- Any suitable route of administration may be employed for providing a mammal, especially a human with an effective dosage of a compound of the present invention.
- oral, rectal, topical, parenteral, ocular, pulmonary, nasal, and the like may be employed.
- Dosage forms include tablets, troches, dispersions, suspensions, solutions, capsules, creams, ointments, aerosols, and the like.
- compounds of Formula I are administered orally or topically.
- the effective dosage of active ingredient employed may vary depending on the particular compound employed, the mode of administration, the condition being treated and the severity of the condition being treated. Such dosage may be ascertained readily by a person skilled in the art.
- the compounds of the present invention are administered at a daily dosage of from about 0.001 milligram to about 100 milligrams per kilogram of animal body weight, preferably given in a single dose or in divided doses two to six times a day, or in sustained release form.
- the total daily dose will generally be from about 0.07 milligrams to about 3500 milligrams. This dosage regimen may be adjusted to provide the optimal therapeutic response.
- the compounds of the present invention are administered at a daily dosage of from about 0.001 milligram to about 100 milligram per kilogram of animal body weight, preferably given in a single dose or in divided doses two to six times a day, or in sustained release form.
- the total daily dose will generally be from about 0.07 milligrams to about 350 milligrams. This dosage regimen may be adjusted to provide the optimal therapeutic response.
- sexual dysfunction compounds of the present invention are given in a dose range of 0.001 milligram to about 100 milligram per kilogram of body weight, preferably as a single dose orally or as a nasal spray.
- Compounds of Formula I may.be used in combination with other drugs that are used in the treatment/prevention/suppression or amelioration of the diseases or conditions for which compounds of Formula I are useful. Such other drugs may be administered, by a route and in an amount commonly used therefor, contemporaneously or sequentially with a compound of Formula I.
- a pharmaceutical composition containing such other drugs in addition to the compound of Formula I is preferred.
- the pharmaceutical compositions of the present invention include those that also contain one or more other active ingredients, in addition to a compound of Formula I.
- Examples of other active ingredients that may be combined with a compound of Formula I for the treatment or prevention of obesity and/or diabetes, either administered separately or in the same pharmaceutical compositions, include, but are not limited to:
- anti-obesity agents examples include “Patent focus on new anti-obesity agents,” Exp. Opin. Ther. Patents, 10: 819-831 (2000); “Novel anti-obesity drugs,” Exp. Opin. Invest. Drugs, 9: 1317-1326 (2000); and “Recent advances in feeding suppressing agents: potential therapeutic strategy for the treatment of obesity, Exp. Pin. Ther. Patents, 11: 1677-1692 (2001).
- the role of neuropeptide Y in obesity is discussed in Exp. Opin. Invest. Drugs, 9: 1327-1346 (2000).
- Cannabinoid receptor ligands are discussed in Exp. Opin. Invest. Drugs, 9: 1553-1571 (2000).
- Examples of other active ingredients that may be combined with a compound of Formula I for the treatment or prevention of male or female sexual dysfunction, in particular, male erectile dysfunction, either administered separately or in the same pharmaceutical compositions include, but are not limited to (a) type V cyclic-GMP-specific phosphodiesterase (PDE-V) inhibitors, including sildenafil and (6R, 12aR)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)-pyrazino[2′,1′:6,1]pyrido[3,4-b]indole-1,4-dione (IC-351); (b) alpha-adrenergic receptor antagonists, including phentolamine and yohimbine or pharmaceutically acceptable salts thereof; (c) dopamine receptor agonists, such as apomorphine or pharmaceutically acceptable salts thereof; and (d) nitric oxide (NO) donors.
- PDE-V type V cycl
- compositions which comprises a compound of Formula I and a pharmaceutically acceptable carrier.
- the pharmaceutical compositions of the present invention comprise a compound of Formula I as an active ingredient or a pharmaceutically acceptable salt thereof, and may also contain a pharmaceutically acceptable carrier and optionally other therapeutic ingredients.
- pharmaceutically acceptable salts refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic bases or acids and organic bases or acids.
- the compounds of Formula I can be combined as the active ingredient in intimate admixture with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques.
- the carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral (including intravenous).
- any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like in the case of oral liquid preparations, such as, for example, suspensions, elixirs and solutions; or carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid preparations such as, for example, powders, hard and soft capsules and tablets, with the solid oral preparations being preferred over the liquid preparations.
- oral liquid preparations such as, for example, suspensions, elixirs and solutions
- carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid preparations such as, for example, powders, hard and soft capsules and tablets, with the solid oral preparations being preferred over the liquid preparation
- tablets and capsules represent the most advantageous oral dosage unit form in which case solid pharmaceutical carriers are obviously employed. If desired, tablets may be coated by standard aqueous or nonaqueous techniques. Such compositions and preparations should contain at least 0.1 percent of active compound. The percentage of active compound in these compositions may, of course, be varied and may conveniently be between about 2 percent to about 60 percent of the weight of the unit. The amount of active compound in such therapeutically useful. compositions is such that an effective dosage will be obtained.
- the active compounds can also be administered intranasally as, for example, liquid drops or spray.
- the tablets, pills, capsules, and the like may also contain a binder such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose or saccharin.
- a dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier such as a fatty oil.
- tablets may be coated with shellac, sugar or both.
- a syrup or elixir may contain, in addition to the active ingredient, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and a flavoring such as cherry or orange flavor.
- Compounds of formula I may also be administered parenterally. Solutions or suspensions of these active compounds can be prepared in water suitably mixed with a surfactant such as hydroxy-propylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols and mixtures thereof in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- the pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi.
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g. glycerol, propylene glycol and liquid polyethylene glycol), suitable mixtures thereof, and vegetable oils.
- the compounds of structural formula I of the present invention can be prepared according to the procedures of the following Schemes and Examples, using appropriate materials and are further exemplified by the following specific examples. Moreover, by utilizing the procedures described in detail in PCT International Application Publications WO 99/64002 (16 Dec. 1999) and WO 00/74679 (14 Dec. 2000), which are incorporated by reference herein in their entirety, in conjunction with the disclosure contained herein, one of ordinary skill in the art can readily prepare additional compounds of the present invention claimed herein.
- the compounds illustrated in the examples are not, however, to be construed as forming the only genus that is considered as the invention.
- the Examples further illustrate details for the preparation of the compounds of the present invention.
- the instant compounds are generally isolated in the form of their pharmaceutically acceptable salts, such as those described previously hereinabove.
- the free amine bases corresponding to the isolated salts can be generated by neutralization with a suitable base, such as aqueous sodium hydrogencarbonate, sodium carbonate, sodium hydroxide, and potassium hydroxide, and extraction of the liberated amine free base into an organic solvent followed by evaporation.
- the amine free base isolated in this manner can be further converted into another pharmaceutically acceptable salt by dissolution in an organic solvent followed by addition of the appropriate acid and subsequent evaporation, precipitation, or crystallization. All temperatures are degrees Celsius unless otherwise noted.
- Mass spectra (MS) were measured by electron-spray ion-mass spectroscopy.
- standard peptide coupling reaction conditions means coupling a carboxylic acid with an amine using an acid activating agent such as EDC, DCC, and BOP in an inert solvent such as methylene chloride in the presence of a catalyst such as HOBT.
- an acid activating agent such as EDC, DCC, and BOP
- an inert solvent such as methylene chloride
- HOBT a catalyst
- protecting groups for the amine and carboxylic acid functionalities to facilitate the desired reaction and minimize undesired reactions is well documented. Conditions required to remove protecting groups are found in standard textbooks such as Greene, T, and Wuts, P. G. M., Protective Groups in Organic Synthesis, John Wiley & Sons, Inc., New York, N.Y., 1991. CBZ and BOC are commonly used protecting groups in organic synthesis, and their removal conditions are known to those skilled in the art.
- CBZ may be removed by catalytic hydrogenation in the presence of a noble metal or its oxide such as palladium on activated carbon in a protic solvent such as methanol or ethanol.
- a noble metal or its oxide such as palladium on activated carbon
- a protic solvent such as methanol or ethanol.
- removal of CBZ groups can also be achieved by treatment with a solution of hydrogen bromide in acetic acid or by treatment with a mixture of TFA and dimethylsulfide.
- Removal of BOC protecting groups is carried out with a strong acid, such as trifluoroacetic acid, hydrochloric acid, or hydrogen chloride gas, in a solvent such as methylene chloride, methanol, or ethyl acetate.
- Reaction Schemes A-L illustrate the methods employed in the synthesis of the compounds of the present invention of structural formula I. All substituents are as defined above unless indicated otherwise.
- Reaction Scheme A illustrates a key step in the synthesis of the novel compounds of structural formula I of the present invention.
- reaction Scheme A the reaction of a 4-substituted piperidine of 1 with a carboxylic acid derivative of formula 2 affords a title compound of structural formula I where R 1 is an N-tert-butoxycarbonyl group (N-BOC).
- the amide bond coupling reaction illustrated in reaction Scheme A is conducted in an appropriate inert solvent such as methylene chloride, dimethylformamide (DMF) or the like and may be performed with a variety of reagents suitable for amide coupling reactions such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) or benzotriazol-1-yloxytripyrrolidinephosphonium hexafluorophosphate (PyBOP).
- Preferred conditions for the amide bond coupling reaction shown in reaction Scheme A are known to those skilled in organic synthesis. Such modifications may include, but are not limited to, the use of basic reagents such as triethylamine (TEA) or N-methylmorpholine (NMM), or the addition of an additive such as 1-hydroxybenzotriazole (HOBt).
- the amide bond coupling shown in reaction Scheme A is usually conducted at temperatures between 0° C. and room temperature” occasionally at elevated temperatures, and the coupling reaction is typically conducted for periods of 1 to 24 hours.
- N-BOC protected compounds of structural formula I are then deprotected under acidic conditions, for instance using trifluoroacetic acid in a solvent like methylene chloride at room temperature.
- Reaction Schemes B-I illustrate methods for the synthesis of the carboxylic acids of general formula 2 that are utilized in the amide bond coupling reaction shown in reaction Scheme A.
- Reaction Schemes J-K illustrate additional methods for the synthesis of 4-substituted piperi dines of general formula 1 that are used in that same step.
- Reaction Scheme B illustrates a preferred method for the synthesis of compounds of general formula 2 wherein r is 2 and s is 1 such that the resulting heterocycle is a 3-aryl-4-piperidine carboxylic acid derivative 10 .
- the synthesis of 10 begins with a conmmercially available ⁇ -keto ester such as 3 .
- a protecting group interchange of an N-BOC group for the N-benzyl group is performed initially.
- a ⁇ -keto ester of formula 3 is subjected to debenzylation by hydrogenolysis using a palladium-on-carbon catalyst in a solvent system such as 1:1 ethanol-water under a hydrogen atmosphere.
- the resulting piperidone 4 is then protected as its tert-butyl carbamate using BOC anhydride in the presence of a base and a suitable solvent.
- BOC anhydride in the presence of a base and a suitable solvent.
- this can be accomplished in a two phase mixture of chloroform and aqueous sodium bicarbonate as shown.
- Incorporation of the 3-aryl substituent is then performed in two steps.
- the ⁇ -keto ester group is converted to the corresponding vinyl triflate 6 using trifluoromethanesulfonic anhydride and an organic base like NN-diisopropylethylamine in an aprotic solvent such as methylene chloride.
- the resulting vinyl triflate 6 is then subjected to a palladium-catalyzed cross-coupling reaction with an aryl boronic acid ( 7 ) using a palladium (II) catalyst such as [1,1′-bis(diphenylphosphino)-ferrocene]dichloropalladium(II).
- a palladium (II) catalyst such as [1,1′-bis(diphenylphosphino)-ferrocene]dichloropalladium(II).
- Preferred conditions for this reaction are the use of a toluene-ethanol-aqueous sodium carbonate solvent system at an elevated temperature, for instance 50-100° C., for a period of 2-24 hours.
- the resulting aryl-substituted tetrahydropyridine derivative 8 can be reduced to a piperidine such as 9 using a variety of known techniques and the method chosen will determine the stereochernical outcome of the product. For instance, hydrogenation of 8 with a palladium on carbon catalyst in a solvent such as ethanol affords cis-3,4-disubstituted piperidines of general formula 9 . Alternatively, a dissolving metal reduction using a metal, such as magnesium in methanol, reduces the double bond of 8 and produces a mixture of both cis and trans 3,4-disubstituted piperidines of formula 9 .
- the resulting mixture of cis and trans diastereoisomers may be separated chromatographically or it may be subsequently epimerized to afford the pure trans isomer of 9 by treating the mixture with a base like sodium methoxide in methanol.
- hydrolysis of either the cis or trans 3-aryl4-piperidine carboxylic ester 9 affords either a cis or trans 3-aryl-4-piperidine carboxylic acid of general formula 10 , corresponding to an acid of general formula 2pee wherein r is 2 and s is 1.
- the cis or trans carboxylic acids of general formula 10 are produced as racemates and either may be resolved to afford enantiomerically pure compounds by methods known in organic synthesis. Preferred methods include resolution by crystallization of diastereoisomeric salts derived from acids 10 and a chiral amine base or the use of chiral stationary phase liquid chromatography columns.
- Reaction Scheme C illustrates a preferred method for the synthesis of compounds of general formula 2 wherein r is 1 and s is 2, such that the resulting heterocycle is a 4-aryl-3-piperidine-carboxylic acid derivative 17 .
- the synthesis of 17 is similar to the one shown in reaction Scheme B, and may begin with either of the commercially available ⁇ -keto esters 11 or 12 . Conversion of one of these starting materials to the N-BOC-protected piperidine 13 is performed as shown and the resulting ⁇ -keto ester is subjected to the two-step arylation protocol previously described to yield 15 .
- A-primary amine 18 bearing a desired R 1 substituent like a tert-butyl group is reacted with ethyl 4-bromobutyrate at elevated temperature in the absence of a solvent to afford the N-substituted ethyl 4-aminobutyrate 19 .
- the amino ester 19 is then alkylated a second time with ethyl bromoacetate in a high boiling inert solvent such as toluene and in the presence of a base such as powdered potassium carbonate.
- the resulting aminodiesters of general formula 20 are then cyclized using an intramolecular Dieckmann reaction to afford piperidines such as 21 .
- the Dieckmann reaction is performed using a strong base such as potassium tert-butoxide or the like, in an aprotic solvent such as THF at temperatures between room temperature and the boiling point of the solvent.
- a strong base such as potassium tert-butoxide or the like
- an aprotic solvent such as THF at temperatures between room temperature and the boiling point of the solvent.
- the resulting 1-substituted-3-ketopiperidine4-carboxylic ester 21 corresponds to a compound of general formula 5 shown in reaction Scheme B, where the BOC group is replaced with the desired R 1 substituent.
- the compounds of general formula 21 may then be converted to compounds of general formula 2 where the R 1 substituent replaces the BOC group using the reaction sequence illustrated in reaction Scheme B.
- reaction Scheme E When it is desirable to synthesize a compound of general formula 17 wherein the BOC group is replaced with a substituent group R 1 , a reaction sequence similar to the one illustrated in reaction Scheme C may be employed as shown in reaction Scheme E.
- An amine 18 bearing the desired R 1 substituent is first subjected to a Michael addition with excess ethyl acrylate in the presence of a solvent such as THF or ethanol.
- the resulting diester 22 is then converted to a 1-substituted4-ketopiperidine-3-carboxylic ester 23 using an intramolecular Dieckmann reaction under conditions similar to those illustrated in reaction Scheme C.
- the substituted piperidine 23 corresponds to a compound of general formula 13 shown in reaction Scheme C, wherein the BOC group is replaced with the desired R 1 substituent.
- the compounds of general formula 23 may then be converted to compounds of general formula 2 where the R 1 substituent replaces the BOC group using the methodology illustrated in reaction Scheme C.
- Reaction Scheme F illustrates a strategy for the synthesis of compounds of general formula 2 when the values of r and s are selected such that the resulting heterocycle is a 3-aryl4-pyrrolidine carboxylic acid derivative ( 29 ).
- the preferred method for the synthesis of compounds of general formula 29 involves the azomethine ylid 3+2 cycloaddition reaction of an azomethine ylid precursor of general formula 25 and a substituted cinnamic ester 24 .
- the azomethine cycloaddition reaction of 24 and 25 affords the 3,4-disubstituted pyrrolidine 26 , and the stereochemical relationship of the substituents on the newly formed pyrrolidine ring is determined by the stereochemistry of the double bond in the cinnamate ester 24.
- the trans ester 24 affords a trans 3,4-disubstituted pyrrolidine of formula 26 as shown.
- the corresponding cis cinnamate ester affords a cis 3,4-disubstituted pyrrolidine of general formula 26 .
- Cis or trans 3-arylpyrrolidine-4-carboxylic esters of general formula 26 may be resolved to afford enantiomerically pure compounds using a method such as resolution by crystallization of the diastereoisomeric salts derived from 26 and a chiral carboxylic acid, or directly by the use of chiral stationary phase liquid chromatography columns.
- Reaction Scheme F illustrates the case where a trans cinnamic ester 24 is converted to a trans 3,4-disubstituted pyrrolidine 26 and its subsequent resolution affords the enantiomerically pure trans pyrrolidine esters 27 and 28 .
- the esters of general formula 26 (or their pure enantiomers 27 and 28 ) are hydrolyzed to the corresponding amino acid hydrochlorides of general formula 29 as shown at the bottom of reaction Scheme F.
- Amino acids of general formula 29 are zwitterionic. Therefore it is in some cases difficult to achieve efficient separation and purification of these compounds from aqueous reactions or workups. In these cases it is preferred to effect the hydrolysis using a reagent such potassium trimethylsilanolate in diethyl ether. Under these conditions the potassium salt of the carboxylic acid is produced which affords an easily isolated precipitate in ether. The resulting salt is then converted to the corresponding amino acid hydrochloride by treatment with excess hydrochloric acid in a suitable solvent such as ethyl acetate. Alternatively, esters such as 26 may be converted directly to the amino acid hydrochlorides 29 under acidic hydrolysis conditions.
- the hydrolysis of the ester 26 is achieved by prolonged reaction with concentrated hydrochloric acid at an elevated temperature. For example, this reaction may be conducted in 8 M hydrochloric acid at reflux overnight. The reaction mixture is then cooled and evaporated in vacuo to afford the amino acid hydrochloride 29 .
- the amino acid hydrochlorides of general formula 29 correspond to an amino acid hydrochloride of general formula 2 wherein both r and s are 1 and may be employed directly in the amide bond coupling step illustrated in reaction Scheme A to produce the compounds of the present invention of structural formula I.
- reaction Scheme G Another preferred method for the synthesis of enantiomerically pure 3-arylpyrrolidine4-carboxylic acid derivatives is illustrated in reaction Scheme G.
- a substituted cinnamic acid of general formula 29 is first derivatized with a chiral auxilliary such as (S)-( ⁇ )4-benzyl-2-oxazolidinone ( 30 ).
- the acylation of chiral auxiliary 30 with cinnamic acids of formula 29 is performed by initial activation of the acid to afford a mixed anhydride.
- acids of general formula 29 are reacted with an acid chloride such as pivaloyl chloride in the presence of a base such as triethylamine and in a suitable aprotic solvent such as THF.
- a base such as triethylamine
- THF a suitable aprotic solvent
- the intermediate cinnamyl-pivaloyl anhydride is converted to the product 31 by reaction with the oxazolidinone 30 in the presence of lithium chloride, an amine base such as triethylamine and in a solvent such as THF, and the reaction is conducted at temperatures between ⁇ 20° C. and room temperature for periods of 1-24 hours.
- the oxazolidinone 30 may be deprotonated with a strong base such as n-butyllithium in THf at low temperatures such as ⁇ 78° C. and then reacted with a mixed anhydride obtained from acid 29 and an acid chloride like pivaloyl chloride as noted above.
- the cinnamyl oxazolidinone of general formula 31 which is produced by either of these methods, is then reacted with the azomethine ylid precursor 25 in a manner similar to that described in reaction Scheme F, and the products of the reaction are the substituted pyrrolidines of general formulas 33 and 34 as shown.
- the products 33 and 34 are diastereoisomers of each other and may therefore be separated by standard methods such as recrystallization or by liquid chromatography on a solid support such as silica gel.
- a cis isomer of the substituted cinnamyl oxazolidinone 31 is produced.
- the products are the diastereoisomeric cis-disubstituted pyrrolidines related to 33 and 34 .
- R 1 substituent in the title compounds of structural formula I is chosen to be a group other than benzyl, it is generally preferable to remove the benzyl group from the substituted pyrrolidine compound at this point, and replace it with a more readily removed protecting group such as an N-BOC group.
- Reaction Scheme H illustrates this process with a generalized 3,4-disubstituted pyrrolidine of formula 32 .
- the preferred method for removal of the N-benzyl group from compounds of general formula 32 will depend upon the identity of the R 3 substituents. If these substituents are unaffected by hydrogenation conditions, then the N-benzyl group may be removed by hydrogenolysis using a palladium on carbon catalyst in a solvent such as ethanol and in the presence of hydrogen gas or a hydrogen donor such as formic acid. Occasionally it may be preferred that one of the substituents R 3 be a halogen or another substituent defined above which would be reactive under hydrogenation conditions. In these cases, the compound of general formula 32 is reacted with 1-chloroethyl chloroformate in an inert solvent such as toluene at temperatures between room temperature and 110° C. (Olafson, R. A.
- the oxazolidinone chiral auxilliary is next hydrolyzed from the pyrrolidines of general formula 36 as shown at the bottom of reaction Scheme H.
- the hydrolysis reaction is accomplished using lithium hydroperoxide generated in situ from lithium hydroxide and 30% aqueous hydrogen peroxide.
- the reaction is typically conducted in a solvent system such as aqueous THF, and the reaction is performed at temperatures between 0° C. and room temperature for a period of 1-6 hours.
- the resulting carboxylic acids of general formula 37 correspond to carboxylic acids of general formula 2 where both r and s are 1.
- the compounds of general formula 37 may then be converted to the compounds of the present invention of structural formula I.
- reaction Scheme D it may occasionally be preferable to incorporate the R 1 substituent into the substituted pyrrolidine of general formula 37 at an earlier stage of the synthesis, for instance when it is desired that R 1 be a tert-butyl group.
- R 1 be a tert-butyl group.
- an azomethine ylid precursor ( 25 ) bearing the desired R 1 substituent in the cycloaddition reactions illustrated in reaction Schemes F and G.
- Reaction Scheme I illustrates the preparation of azomethine precursors of formula 25 starting with amines of general formula 18 .
- Reaction Schemes J and K illustrate additional methods for the synthesis of the 4-substituted piperidines of general formula 1 which are required in the amide bond coupling step illustrated in reaction Scheme A.
- a chlorinating agent such as thionyl chloride at a temperature of 65-78° C., preferably 78° C., for a period of 12-24 hours gives the corresponding ethyl ester derivative 40.
- Ester 40 can be further reacted with a strong reducing agent such lithium aluminum hydride, diisobutylaluminum hydride or equivalent hydride sources in an inert organic solvent such as tetrahydrofuran at 0-25° C. for a period of 2-12 hours to provide alcohol 41 .
- Hydrogenation of the aromatic ring in 41 is effected by treatment with hydrogen at a pressure of 1500 pounds per square inch in an inert solvent such as acidic methanol at a temperature of 100° C. for a period of 15-24 hours.
- Suitable catalysts for this hydrogenation reaction include rhodium on alumina and the product is a cyclohexyl substituted derivative of general formula 42 .
- alcohols of general formula 44 can be converted to the corresponding aldehydes 45 by treatment with a mild oxidizing agent such as tetrapropylammonium perruthenate (TPAP) in catalytic amounts along with a re-oxidant such as 4-methylmorpholine N-oxide (NMMO) in an inert organic solvent such as methylene chloride at a temperature of 0-25° C. for a period of 2-6 hours.
- TPAP tetrapropylammonium perruthenate
- NMMO 4-methylmorpholine N-oxide
- Aldehydes 45 may be condensed with an amine such as 2-amino-2-methyl-1-propanol by mixing the two agents in a solvent such as toluene, benzene or the like along with an acid catalyst such as acetic acid, p-toluenesulfonic acid or the like at refluxing temperature to allow for azeotropic removal of the water formed in the reaction which furnishes imine 46 .
- a solvent such as toluene, benzene or the like
- an acid catalyst such as acetic acid, p-toluenesulfonic acid or the like at refluxing temperature to allow for azeotropic removal of the water formed in the reaction which furnishes imine 46 .
- Reduction of 46 to the amino alcohol 47 can be effected by treatment with hydrogen and an appropriate catalyst such as platinum oxide on carbon, palladium on carbon, palladium hydroxide on carbon or the like with or without an acid catalyst such as acetic acid in an inert organic solvent such as acetic acid, methanol, and ethanol at room temperature for a period of 8-24 hours.
- an appropriate catalyst such as platinum oxide on carbon, palladium on carbon, palladium hydroxide on carbon or the like
- an acid catalyst such as acetic acid in an inert organic solvent such as acetic acid, methanol, and ethanol
- Compound 47 can be converted to the corresponding oxazolidinone 48 by treatment with an appropriate acylating agent such as triphosgene along with an amine base such as N,N-diisopropylethylmine, triethylamine or the like, and a catalyst such as 4-dimethylaminopyridine in an inert organic solvent such as methylene chloride at a temperature of 0-25° C. for a period of 2-4 hours. Finally, deprotection of the piperidine nitrogen by treatment with a protic acid such as hydrochloric acid, trifluoroacetic acid or the like in an inert organic solvent such as methylene chloride at or around room temperature for.a period of 8-24 hours provides the desired amine 49 .
- an appropriate acylating agent such as triphosgene along with an amine base such as N,N-diisopropylethylmine, triethylamine or the like
- a catalyst such as 4-dimethylaminopyridine
- the N-BOC protected compound of structural formula I is first deprotected under acidic conditions for instance by treatment with hydrochloric acid in ethyl acetate or using trifluoroacetic acid in methylene chloride.
- the intermediate imine is then treated with a reducing agent capable of reducing carbon-nitrogen double bonds such as sodium cyanoborohydride or sodium triacetoxyborohydride and an alkylated product of structural formula I is produced.
- PIPERIDINE INTERMEDIATE 12 To a solution of the alcohol (9.41 g, 31.6 mmol) in CH 2 Cl 2 (100 ml) at 0° C. containing molecular sieves (2 g) and 4-methylmorpholine N-oxide (NMMO) (4.449 g, 37.98 mmol) was added TPAP (1.12 g, 3.16 mmol). After stirring the reaction mixture at 0° C. for 0.5 h, the reaction mixture was warmed to room temperature and stirred further for 5 hrs. The reaction mixture was concentrated to half the volume, diluted with hexane (250 ml), filtered through a silica gel pad and concentrated to give pure title compound (9.4 g).
- PIPERIDINE INTERMEDIATE 12 To a solution of the alcohol (9.41 g, 31.6 mmol) in CH 2 Cl 2 (100 ml) at 0° C. containing molecular sieves (2 g) and 4-methylmorpholine N-oxide
- N-2 (0.11 g, 0.35 mmol) in 30 mL of methylene chloride was added diethylamine (0.072 mL, 0.70 mmol) and molecular sieves. After stirring for about 5 min, Na(OAc) 3 BH (0.22 mg, 1.05 mmol) was added and the mixture was stirred for 6 h at room temperature. After filtration of molecular sieves, the mixture was diluted with methylene chloride, washed twice with saturated aqueous NaHCO 3 solution, dried over anhydrous Na 2 SO 4 , filtered, and evaporated to give N-3 (0.080 g).
- ESI-MS Calcd. for C 22 H 42 N 2 O 2 : 366; Found: 367 (M + +1).
- reaction mixture was poured into saturated aqueous sodium bicarbonate and extracted three times with methylene chloride. The combined organic extracts were washed with brine, dried (Na 2 SO 4 ) and concentrated in vacuo. The crude residue was used without further purification in the subsequent reaction.
- Di-tert-butyl-dicarbonate (17.5. g, 80.4 mmol) was added in one portion to a stirred mixture of the crude product of step A (67.0 mmol), sodium bicarbonate (6.20 g, 73.7 rnmol) and sodium chloride (11.7 g, 201 mmol) in water/chloroform (1:2; 300 mL) and the resulting mixture heated at 60° C. for 3 h. After cooling to room temperature, the organic phase was separated and the aqueous phase extracted three times with chloroform. The combined organic extracts were washed with brine, dried (MgSO 4 ) and concentrated in vacuo. The crude residue (27.1 g) was used without further purification in the subsequent reaction.
- Trifluoromethanesulfonic anhydride (12.4 mL, 73.7 mmol) was added over approximately 0.1 h, via syringe, to a stirred solution of the product of step B (27.1 g, 67.0 mmol) and N,N-diisopropylethylamine (14.0 mL, 80.4 mmol) in methylene chloride (250 mL) at ⁇ 78° C. After allowing to warm to ambient temperature overnight, the reaction mixture was quenched with saturated aqueous sodium bicarbonate, poured into water and extracted three times with methylene chloride. The combined organic extracts were washed with brine, dried (MgSO 4 ) and concentrated in vacuo.
- 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.034 g, 0.177 mmol) was added to a stirred mixture of the crude product of step F (0.040 g, 0.118 mmol), 4-cyclohexyl-4-(ethoxycarbonyl)piperidinium chloride (0.049 g, 0.177 mmol), 1-hydroxybenzotriazole (0.024 g, 0.177 mmol) and N-methylmorpholine (0.020 mL, 0.177 mmol) in methylene chloride (0.5 mL) at ambient temperature.
- reaction mixture was poured into water/saturated sodium bicarbonate (1:1) and extracted three times with methylene chloride. The combined organic extracts were washed with brine, dried (Na 2 SO 4 ) and concentrated in vacuo. A saturated solution of hydrochloric acid in ethyl acetate (1.0 mL) was added to a solution of the crude amide in methylene chloride (1.0 mL) at room temperature.
- Sodium triacetoxyborohydride (34.5 mg, 0.163 mmol) was added to a stirred solution of the product of step G (25.0 mg, 54.2 mmol), acetone (23.9 mL, 0.325 mmol) and acetic acid (9.3 mL, 0.163 mmol) in methylene chloride (0.5 mL) at ambient temperature. After 18 h, the reaction mixture was poured into saturated aqueous sodium bicarbonate and extracted three times with methylene chloride. The combined organic extracts were washed with brine, dried (Na 2 SO 4 ) and concentrated in vacuo.
- N-Methyl-bis-(2′-chloroethyl)amine hydrochloride (8.36 g; 43.1 mmol) was suspended in 60 mL of methylene chloride followed by the addition of 1 eq. of triethylamine (6.0 mL). After 45 min, the mixture was filtered on a medium-pore fritted Buchner funnel to remove the triethylammonium chloride salt. The filtrate was concentrated in vacuo resulting in the precipitation of additional salt. The filtration was repeated 2 more times to provide pure N-methyl-bis-(2′-chloroethyl)amine.
- the amine was combined with (2-fluorophenyl)acetonitrile (8.01 g; 43.1 mmol) and tetra-n-butylammonium sulfate (1.46 g; 4.31 mmol) followed by the addition of toluene (15 mL). To this solution was added 12.5 N sodium hydroxide dropwise over 10 min. The reaction mixture was heated to 75° C. until the starting material had been consumed, poured into H 2 O (100 mL) and extracted three times with 200 mL methylene chloride. The combined organic extracts were washed with brine, dried (Na 2 SO 4 ), filtered and concentrated in vacuo.
- Step A The product of Step A (4.5 g; 20.6 mmol) was heated to 135° C. in concentrated hydrochloric acid (25 mL). The volatiles were removed in vacuo which provided the crude product. The residue was suspended in toluene (20 mL) and heated under reduced pressure to remove the toluene. This process was repeated three times which furnished the title compound as a powder.
- step C To a solution of the product of step C (550 mg; 1.88 mmol) in toluene (10 mL) was added 1-chloroethyl chloroformate (1.5 mmol; 1.62mL) and the reaction was heated to reflux for 36 h. The volatiles were removed in vacuo, the crude carbamate was then dissolved in methanol (10 mL) and the resultant solution was heated to reflux for 2 h. The volatiles were removed in vacuo, the crude amine was dissolved in methylene chloride (100 mL) and the solution was washed with a saturated solution of sodium bicarbonate, brine and the compound dried (Na 2 SO 4 ).
- the drying agent was removed by filtration and the volatiles were removed in vacuo to furnish the crude product which was purified on silica gel using a gradient elution (95:5 then 90:10 methylene chloride/methanol (containing 10% v/v ammonium hydroxide) to afford the title compound.
- step D The product of step D (70 mg) was combined with (3R,4R)-1-(tert-butoxycarbonyl)-3-(4-fluorophenyl)piperidine-4-carboxylic acid (0.1971 mmol; 55 mg), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (57 mg) and 1-hydroxybenzotriazole (40 mg) to which methylene chloride (2.5 mL) was added.
- the reaction mixture was maintained at ambient temperature for 24 h.
- the reaction mixture was diluted with methylene chloride (100 mL),washed with a saturated solution of sodium bicarbonate, brine and dried (Na 2 SO 4 ).
- the drying agent was removed by filtration and the volatiles were removed in vacuo to furnish the crude N-BOC protected product which was purified on silica gel (eluted with 50:50 to 75:25 ethyl acetate:hexane).
- the N-BOC protected product was dissolved in ethyl acetate (2 mL) and a saturated solution of hydrogen chloride in ethyl acetate (2 mL) was added.
- the reaction mixture was maintained at ambient temperature for 90 min.
- the volatiles were removed in vacuo, the crude product was triturated twice with diethyl ether, and the purified product was dried in vacuo to provide 55 mg of the title compound [MS: m/z 484 (MH + )].
- Di-tert-butyldicarbonate (21.2 g, 97.0 mmol) was added in one portion to a stirred mixture of the crude product of step A (84.0 mmol), sodium bicarbonate (7.7 g, 92.0 mmol) and sodium chloride (14.7 g, 252 mmol) in water/chloroform (1:2; 300 mL) and the resulting mixture heated at 60° C. for 3 h. After cooling to room temperature, the organic phase was separated and the aqueous phase extracted three times with chloroform. The combined organic extracts were washed with brine, dried (MgSO 4 ) and concentrated in vacuo. The residue (33.8 g) was used without further purification in the subsequent reaction.
- Trifluoromethanesulfonic anhydride (15.5 mL, 92.0 mmol) was added over approximately 0.1 h, via syringe, to a stirred solution of the product of step B (33.8 g, 84.0 mmol) and N,N-diisopropylethylamine (17.6 mL, 101.0 mmol) in methylene chloride (300 mL) at ⁇ 78° C. After allowing to warm to ambient temperature ovemight, the reaction mixture was quenched with saturated aqueous sodium bicarbonate, poured into water and extracted three times with methylene chloride. The combined organic extracts were washed with brine, dried (MgSO 4 ) and concentrated in vacuo.
- reaction mixture was poured into water/saturated sodium bicarbonate (1:1) and extracted three times with methylene chloride. The combined organic extracts were washed with brine, dried (Na 2 SO 4 ) and concentrated in vacuo. A saturated solution of hydrogen chloride in ethyl acetate (1.0 mL) was added to a solution of the crude amide in methylene chloride (1.0 mL) at room temperature.
- the crude residue was diluted with ethyl acetate, washed with 1 N hydrochloric acid, saturated sodium bicarbonate, brine, dried (MgSO 4 ), filtered and concentrated in vacuo.
- the crude product was purified on a silica gel chromatography column eluted with methylene chloride. Evaporation of the purified fractions and drying in vacuo afforded 26.36 g of the title compound.
- step A To a cooled (0° C.) solution of the product of step A (12.667 g; 38.9 mmol) in methylene chloride (110 mL) was added N-(methoxymethyl)-N-(trimethylsilylmethyl)benzylamine (13.866 g; 58.4 mmol) followed by a catalytic amount of trifluoroacetic acid (0.15 mL). After 10 min at 0° C., the reaction was allowed to warm to ambient temperature for 8 h. The reaction mixture was diluted with methylene chloride and washed with saturated saturated sodium bicarbonate, brine, dried (MgSO 4 ), filtered and concentrated in vacuo.
- step B To a suspension of the product of step B (2.0 g; 4.4 mmol) in toluene (20 mL) was added 4 eq of 1-chloroethyl chloroformate (17.5 mmol; 1.33 mL). The reaction was heated to 100° C. for 6 h at which time starting material still remained. Thus, an additional 2 eq. of 1-chloroethyl chloroformate (8.8 mmol; 0.66 mL) was added and heating was resumed for another 20 h. The volatiles were removed in vacuo and the crude carbamate was dissolved in methanol (20 mL). The reaction mixture was heated to 70° C. for 2 h.
- the amine (720 mg; 1.96 mmol) was dissolved in methylene chloride (5 mL) and saturated sodium bicarbonate (5 mL) was added followed by di-tert-butyldicarbonate (533 mg; 2.45 mmol). After 1 h, the mixture was diluted with methylene chloride (100 mL) followed by washing the organic solution with saturated sodium bicarbonate and brine. The organic phase was dried (Na 2 SO 4 ), filtered and concentrated in vacuo. The crude product was purified on silica gel (30% ethyl acetate/hexane) which furnished 840 mg of the title compound.
- the final reaction mixture was maintained at ambient temperature for 48 h.
- the reaction mixture was diluted with methylene chloride (100 mL) followed by washing the organic solution with saturated sodium bicarbonate and brine.
- the organic phase was dried (Na 2 SO 4 ), filtered and concentrated in vacuo to provide the crude N-BOC protected pyrrolidine that was purified on silica gel (50% ethyl acetate/hexane as the elution solvent).
- the crude N-BOC protected pyrrolidine was then dissolved in ethyl acetate (2 mL) followed by the addition of a saturated solution of hydrogen chloride in ethyl acetate (2 mL).
- the reaction mixture was maintained at ambient temperature for 2 h at which time the volatiles were removed in vacuo.
- the crude product was triturated to high purity with diethyl ether which furnished 204 mg of the title compound as a hydrochloride salt.
- step E A solution of the product of step E (100 mg; 0.1916 mmol) in methylene chloride (100 mL) was converted to the free-base by washing with saturated sodium bicarbonate. The organic phase was washed with brine, dried (Na 2 SO 4 ), filtered and the volatiles were removed in vacuo. The residue was dissolved in methylene chloride (2 mL) and cooled to 0° C. Acetone (111 mg; 0.14 mmol) was added, followed by acetic acid (57 mg; 0.9579 mmol) and sodium triacetoxyborohydride (0.575 mmol). The reaction mixture was stirred and allowed to warm to room temperature over 36 h at which time the reaction was quenched with saturated sodium bicarbonate.
- N-tert-Butyl-N-(trimethylsilylmethyl)amine (8.47 g, 53.1 mmol) was added dropwise, over approximately 30 min, via a pressure equalizing addition funnel to a stirred solution of aqueous formaldehyde (5.98 mL of a 37 wt. % solution in water, 79.7 mmol) at 0° C. (ice cooling). After 45 min, methanol (6.45 mL, 159.3 mmol) was added and the resulting solution was saturated with potassium carbonate. After stirring vigorously for approximately 5 h, the aqueous phase was removed. The organic phase was saturated with potassium carbonate and stirred overnight.
- Trifluoroacetic acid 38.9 mL, 0.505 mmol was added to a solution of the product of step B (1.03 g, 5.05 mmol) and methyl (2E)-3-(4-fluorophenyl)prop-2-enoate (1.00 g, 5.05 mmol) in methylene chloride (10 mL) at ambient temperature. After 18 h, the reaction mixture was poured into saturated aqueous sodium bicarbonate and extracted three times with methylene chloride. The combined organic extracts were washed with brine, dried (Na 2 SO 4 ) and concentrated in vacuo.
- step A To a solution of the product of step A (14.2 g; 75.5 mmol) in toluene (150 mL) was added potassium carbonate (20.8 g; 151.1 mmol) and ethyl bromoacetate (18.9 g; 113.3 mmol). The reaction was heated to 120° C. for 24 h. The reaction mixture was cooled to ambient temperature and partitioned between 1 N hydrochloric acid and diethyl ether. The aqueous layer was extracted twice with diethyl ether and the organic layer discarded. The aqueous layer was adjusted to pH 9 with 2.5 N sodium hydroxide and extracted three times with diethyl ether. The combined organic extracts (from the pH 9 aqueous layer) were washed with brine, dried (Na 2 SO 4 ), filtered and concentrated in vacuo to furnish the title compound (19.2 g).
- step B To a solution of the product of step B (14.0 g; 50.9 mmol) in tetrahydrofuran (200 mL) was added 1.05 eq of potassium tert-butoxide (6.0 g; 53.5 mmol). The reaction was maintained at ambient temperature for 2 h and then quenched with a sufficient amount of saturated aqueous ammonium chloride to make the solution pH 8. The tetrahydrofuran was removed in vacuo and the aqueous layer was extracted three times with diethyl ether. The combined organic extracts were washed with brine, dried (Na 2 SO 4 ), filtered and concentrated in vacuo to afford the title compound (7.15 g).
- step C To a cooled ( ⁇ 78° C.) solution of the product of step C (7.15 g; 31.2 mmol) in methylene chloride (100 mL) was added diisopropylethylamine (5.04 g; 39.0 mmol). Triflic anhydride (9.69g; 34.3 mmol) was then added dropwise over 10 min and the reaction mixture was allowed to warm to ambient temperature over 16 h. The mixture was concentrated to about 50% of the initial volume and directly loaded onto silica gel eluted with 50% ethyl acetate/hexane. Evaporation of the purified fractions provided 5.05 g of the title compound.
- step D The product of step D (5.05 g; 14.4 mmol), 2,4-difluorophenylboronic acid (2.85 g; 18.0 mmol) and [1,1′-bis(diphenylphosphino)ferrocene)dichloro-palladium(lI) (0.589 g; 0.7 mmol) were combined and dissolved a 2:1 mixture of toluene:ethanol (54 mL). The reaction was heated to 80° C. followed by the dropwise addition of 2 M aqueous sodium carbonate over 10 min. The reaction was maintained at 80° C. for 2 h. The reaction was quenched with saturated aqueous sodium bicarbonate and the aqueous layer was extracted three times with ethyl acetate.
- step E The product of step E (1 g; 3.1 mmol) was dissolved in ethanol (20 mL) and treated with acetic acid (280 mg; 4.6 mmol) and 20% palladium hydroxide on carbon catalyst (0.760 g). The reaction mixture was stirred for 24 h under 1 atmosphere of hydrogen gas. The reaction was filtered through celite® and the filter cake was rinsed with copious amounts of methanol. The solvents were evaporated and the crude residue was dissolved in methylene chloride. The organic solution was washed with saturated sodium bicarbonate, brine, dried (Na 2 SO 4 ), filtered and concentrated in vacuo.
- the crude residue was purified on silica gel using 10% methanol/methylene chloride to provide predominantly the cis-disubstituted piperidine.
- the cis isomer accumulated from several experiments as described above, (5.5 g; 17.0 mmol) was dissolved in methanol (75 mL) followed by the addition of freshly cut sodium metal (1.27 g; 55.3 mmol).
- the reaction mixture was heated to 70° C. for 12 h.
- the reaction was quenched with saturated aqueous ammonium chloride and the aqueous layer was extracted with ethyl acetate.
- the combined organic extracts were dried (Na 2 SO 4 ), filtered and concentrated in vacuo.
- the crude residue was purified on silica gel (50% ethyl acetate/hexane) which furnished the title compound.
- step F The product of step F (160 mg; 0.515 mmol) was heated to 100° C. in concentrated hydrochloric acid for 16 h. The volatiles were removed in vacuo and the crude residue was suspended in toluene and evaporated to dryness. This process was repeated three times to provide 170 mg of the title compound.
- step G 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (39 mg; 0.204 mmol), 1-hydroxybenzotriazole (28 mg; 0.204 mmol) followed by the dropwise addition of the piperidine solution from the first flask.
- the final reaction mixture was maintained at ambient temperature for 48 h.
- the reaction was diluted with methylene chloride (100 mL) then washed with saturated sodium bicarbonate and brine.
- the mixture was dried (Na 2 SO 4 ), filtered and concentrated in vacuo to provide a crude product that was purified on silica gel (eluted first with 75% ethyl acetate/hexane followed by 95:5 methylene chloride/methanol (containing 10% v/v ammonium hydroxide)).
- the purified product was dissolved in ethyl acetate (2 mL) and converted to the hydrochloride salt by treatment with a saturated solution of hydroogen chloride in ethyl acetate (2 mL).
- the reaction mixture was maintained at ambient temperature for 1 h at which time the volatiles were removed in vacuo.
- the crude hydrochloride salt was triturated to high purity with diethyl ether which furnished 50 mg of the title compound [MS: m/z 574 (MH + )].
- reaction mixture was poured into saturated aqueous sodium bicarbonate and extracted three times with methylene chloride. The combined organic extracts were washed with brine, dried (Na 2 SO 4 ) and concentrated in vacuo. The crude residue was used without further purification in the subsequent reaction.
- the membrane binding assay was used to identify competitive inhibitors of 125 I-NDP-alpha-MSH binding to cloned human MCRs expressed in mouse L- or Chinese hamster ovary (CHO)-cells.
- Cell lines expressing melanocortin receptors were grown in T-180 flasks containing selective medium of the composition: 1 L Dulbecco's modified Eagles Medium (DMEM) with 4.5 g L-glucose, 25 mM Hepes, without sodium pyruvate, (Gibco/BR 1 ); 100 ml 10% heat-inactivated fetal bovine serum (Sigma); 10 mL 10,000 unit/mL penicillin & 10,000 ⁇ g/mL streptomycin (Gibco/BRl); 10 ml 200 mM L-glutamine (Gibco/BRl); 1 mg/mL geneticin (G418) (Gibco/BRl). The cells were grown at 37° C. with CO 2 and humidity control until the desired cell density and cell number was obtained.
- DMEM Dulbecco's modified Eagles Medium
- Gibco/BR 1 100 ml 10% heat-inactivated fetal bovine serum (Sigma); 10 m
- the medium was poured off and 10 mls/monolayer of enzyme-free dissociation media (Specialty Media Inc.) was added.
- the cells were incubated at 37° C. for 10 min or until cells sloughed off when flask was banged against hand.
- the cells were harvested into 200 mL centrifuge tubes and spun at 1000 rpm, 4° C., for 10 min. The supernatant was discarded and the cells were resuspended in 5 mis/monolayer membrane preparation buffer having the composition: 10 mM Tris pH 7.2-7.4; 4 ⁇ g/mL Leupeptin (Sigma); 10 ⁇ M Phosphoramidon (Boehringer Mannheim); 40 ⁇ g/mL Bacitracin (Sigma); 5 ⁇ g/mL Aprotinin (Sigma); 10 mM Pefabloc (Boehringer Mannheim). The cells were homogenized with motor-driven dounce. (Talboy setting 40), using 10 strokes and the homogenate centrifuged at 6,000 rpm, 4° C., for 15 min.
- 5 mis/monolayer membrane preparation buffer having the composition: 10 mM Tris pH 7.2-7.4; 4 ⁇ g/mL Leupeptin (Sigma); 10 ⁇ M Phosphoramidon
- pellets were resuspended in 0.2 mls/monolayer membrane prep buffer and aliquots were placed in tubes (500-1000 ⁇ L/tube) and quick frozen in liquid nitrogen and then stored at ⁇ 80° C.
- Test compounds or unlabelled NDP- ⁇ -MSH was added to 100 ⁇ L of membrane binding buffer to a final concentration of 1 ⁇ M.
- the membrane binding buffer had the composition: 50 mM Tris pH 7.2; 2 mM CaCl 2 ; 1 mM MgCl 2 ; 5 mM KCl; 0.2% BSA; 4 ⁇ g/mL Leupeptin (SIGMA); 10 ⁇ M Phosphoramidon (Boehringer Mannheim); 40 ⁇ g/mL Bacitracin (SIGMA); 5 ⁇ g/mL Aprotinin (SIGMA); and 10 mM Pefabloc (Boehringer Mannheim).
- membrane binding buffer containing 10-40 ⁇ g membrane protein was added, followed by 100 ⁇ M 125I-NDP- ⁇ -MSH to final concentration of 100 pM.
- the resulting mixture was vortexed briefly and incubated for 90-120 min at room temp while shaking.
- the mixture was filtered with Packard Microplate 196 filter apparatus using Packard Unifilter 96-well GF/C filter with 0.1% polyethyleneimine (Sigma).
- the filter was washed (5 times with a total of 10 mL per well) with room temperature of filter wash having the composition: 50 mM Tris-HCl pH 7.2 and 20 mM NaCl.
- the filter was dried, and the bottom sealed and 50 ⁇ L of Packard Microscint-20 was added to each well. The top was sealed and the radioactivity quantitated in a Packard Topcount Microplate Scintillation counter.
- Functional assay Functional cell based assays were developed to discriminate melanocortin receptor agonists from antagonists.
- Cells for example, CHO- or L-cells or other eukaryotic cells
- a human melanocortin receptor see e.g. Yang-Y K; Ollmann-M M; Wilson-B D; Dickinson-C; Yamada-T; Barsh-G S; Gantz-I; Mol-Endocrinol. 1997 Mar; 11(3): 274-80
- Ca and Mg free phosphate buffered saline 14190-136, Life Technologies, Gaithersburg, Md.
- Test compounds were diluted in dimethylsulfoxide (DMSO) (10 ⁇ 5 to 10 ⁇ 10 M) and 0.1 volume of compound solution was added to 0.9 volumes of cell suspension; the final DMSO concentration was 1%. After room temperature incubation for 45 min, cells were lysed by incubation at 100° C. for 5 min to release accumulated cAMP.
- DMSO dimethylsulfoxide
- cAMP was measured in an aliquot of the cell lysate with the Amersham (Arlington Heights, Ill.) cAMP detection assay (RPA556). The amount of cAMP production which resulted from an unknown compound was compared to that amount of cAMP produced in response to alpha-MSH which was defined as a 100 % agonist.
- the EC 50 is defined as the compound concentration which results in half maximal stimulation, when compared to its own maximal level of stimulation.
- Antagonist activity was defined as the ability of a compound to block cAMP production in response to alpha-MSH.
- Solution of test compounds and suspension of receptor containing cells were prepared and mixed as described above; the mixture was incubated for 15 min, and an EC50 dose (approximately 10 nM alpha-MSH) was added to the cells.
- the assay was terminated at 45 min and cAMP quantitated as above. Percent inhibition was determined by comparing the amount of cAMP produced in the presence to that produced in the absence of test compound.
- Rats are gently restrained in a supine position with their anterior torso placed inside a cylinder of adequate size to allow for normal head and paw grooming. For a 400-500 gram rat, the diameter of the cylinder is approximately 8 cm.
- the lower torso and hind limbs are restrained with a non-adhesive material (vetrap).
- An additional piece of vetrap with a hole in it, through which the glans penis will be passed, is fastened over the animal to maintain the preputial sheath in a retracted position. Penile responses will be observed, typically termed ex copula genital reflex tests.
- a series of penile erections will occur spontaneously within a few minutes after sheath retraction.
- the types of normal reflexogenic erectile responses include elongation, engorgement, cup and flip.
- An elongation is classified as an extension of the penile body.
- Engorgement is a dilation of the glans penis.
- a cup is defined as an intense erection where the distal margin of the glans penis momentarily flares open to form a cup.
- a flip is a dorsiflexion of the penile body.
- Baseline and or vehicle evaluations are conducted to determine how and if an animal will respond. Some animals have a long duration until the first response while others are non-responders altogether. During this baseline evaluation latency to first response, number and type of.responses are recorded. The testing time frame is 15 minutes after the first response.
- test compound After a minimum of I day between evaluations, these same animals are administered the test compound at 20 mg/kg and evaluated for penile reflexes. All evaluations are videotaped and scored later. Data are collected and analyzed using paired 2 tailed t-tests to compared baseline and/ or vehicle evaluations to drug treated evaluations for individual animals. Groups of a minimum of 4 animals are utilized to reduce variability.
- mice can be dosed by a number of routes of administration depending on the nature of the study to be performed.
- the routes of administration includes intravenous (IV), intraperitoneal (IP), subcutaneous (SC) and intracerebral ventricular (ICV).
- Rodent assays relevant to female sexual receptivity include the behavioral model of lordosis and direct observations of copulatory activity. There is also a urethrogenital reflex model in anesthetized spinally transected rats for measuring orgasm in both male and female rats. These and other established animal models of female sexual dysfunction are described in McKenna K E et al, A Model For The Study of Sexual Function In Anesthetized Male And Female Rats, Am. J. Physiol. (Regulatory Integrative Comp. Physiol 30): R1276-R1285, 1991; McKenna K E et al, Modulation By Peripheral Serotonin of The Threshold For sexual Reflexes In Female Rats, Pharm. Bioch.
- Representative compounds of the present invention were tested and found to bind to the melanocortin-4 receptor. These compounds were generally found to have IC 50 values less than 2 ⁇ M. Representative compounds of the present invention were also tested in the functional assay and found generally to activate the melanocortin-4 receptor with EC 50 values less than 1 ⁇ M.
- Example 169 is formulated with sufficient finely divided lactose to provide a total amount of 580 to 590 mg to fill a size O hard gelatin capsule.
- Example 174 is formulated with sufficient finely divided lactose to provide a total amount of 580 to 590 mg to fill a size O hard gelatin capsule.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Chemical & Material Sciences (AREA)
- Reproductive Health (AREA)
- Endocrinology (AREA)
- Diabetes (AREA)
- Hematology (AREA)
- Epidemiology (AREA)
- Gynecology & Obstetrics (AREA)
- Obesity (AREA)
- Pregnancy & Childbirth (AREA)
- Child & Adolescent Psychology (AREA)
- Emergency Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Hydrogenated Pyridines (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Certain novel 4-substituted N-acylated piperidine derivatives are agonists of the human melanocortin receptor(s) and, in particular, are selective agonists of the human melanocortin-4 receptor (MC-4R). They are therefore useful for the treatment, control, or prevention of diseases and disorders responsive to the activation of MC-4R, such as obesity, diabetes, sexual dysfunction, including erectile dysfunction and female sexual dysfunction.
Description
- The present invention relates to acylated piperidine derivatives, their synthesis, and their use as melanocortin receptor (MC-R) agonists. More particularly, the compounds of the present invention are selective agonists of the melanocortin-4 receptor (MC4R) and are thereby useful for the treatment of disorders responsive to the activation of MC-4R, such as obesity, diabetes, male sexual dysfunction, and female sexual dysfunction.
- Pro-opiomelanocortin (POMC) derived peptides are known to affect food intake. Several lines of evidence support the notion that the G-protein coupled receptors (GPCRs) of the melanocortin receptor (MC-R) family, several of which are expressed in the brain, are the targets of POMC derived peptides involved in the control of food intake and metabolism. A specific single MC-R that may be targeted for the control of obesity has not yet been identified, although evidence has been presented that MC-4R signalling is important in mediating feed behavior (S. Q. Giraudo et al., “Feeding effects of hypothalamic injection of melanocortin-4 receptor ligands,” Brain Research, 80: 302-306 (1998)).
- Evidence for the involvement of MC-R's in obesity includes: i) the agouti (Avy) mouse which ectopically expresses an antagonist of the MC-1R, MC-3R and -4R is obese, indicating that blocking the action of these three MC-R's can lead to hyperphagia and metabolic disorders; ii) MC-4R knockout mice (D. Huszar et al., Cell, 88: 131-141 (1997)) recapitulate the phenotype of the agouti mouse and these mice are obese; iii) the cyclic heptapeptide MT-II (a non-selective MC-1R, -3R, -4R, and -5R agonist) injected intracerebroventricularly (ICV) in rodents, reduces food intake in several animal feeding models (NPY, ob/ob, agouti, fasted) while ICV injected SHU-9119 (MC-3R and 4R antagonist; MC-1R and -5R agonist) reverses this effect and can induce hyperphagia; iv) chronic intraperitoneal treatment of Zucker fatty rats with an α-NDP-MSH derivative (HP228) has been reported to activate MC-1R, -3R, -4R, and -5R and to attenuate food intake and body weight gain over a 12-week period (I. Corcos et al., “HP228 is a potent agonist of melanocortin receptor-4 and significantly attenuates obesity and diabetes in Zucker fatty rats,” Society for Neuroscience Abstracts, 23: 673 (1997)).
- Five distinct MC-R's have thus far been identified, and these are expressed in different tissues. MC-1R was initially characterized by dominant gain of function mutations at the Extension locus, affecting coat color by controlling phaeomelanin to eumelanin conversion through control of tyrosinase. MC-1R is mainly expressed in melanocytes. MC-2R is expressed in the adrenal gland and represents the ACTH receptor. MC-3R is expressed in the brain, gut, and placenta and may be involved in the control of food intake and thermogenesis. MC-4R is uniquely expressed in the brain, and its inactivation was shown to cause obesity (A. Kask, et al., “Selective antagonist for the melanocortin-4 receptor (HS014) increases food intake in free-feeding rats,” Biochem. Biophys. Res. Commun., 245: 90-93 (1998)). MC-5R is expressed in many tissues, including white fat, placenta and exocrine glands. A low level of expression is also observed in the brain. MC-5R knockout mice reveal reduced sebaceous gland lipid production (Chen et al., Cell, 91: 789-798 (1997)).
- Erectile dysfunction denotes the medical condition of inability to achieve penile erection sufficient for successful sexual intercourse. The term “impotence” is oftentimes employed to describe this prevalent condition. Approximately 140 million men worldwide, and, according to a National Institutes of Health study, about 30 million American men suffer from impotency or erectile dysfunction. It has been estimated that the latter number could rise to 47 million men by the year 2000. Erectile dysfunction can arise from either organic or psychogenic causes, with about 20% of such cases being purely psychogenic in origin. Erectile dysfunction increases from 40% at age 40, to 67% at age 75, with over 75% occurring in men over the age of 50. In spite of the frequent occurrence of this condition, only a small number of patients have received treatment because existing treatment alternatives, such as injection therapies, penile prosthesis implantation, and vacuum pumps, have been uniformly disagreeable [for a discussion, see “ABC of sexual health—erectile dysfunction,” Brit. Med. J. 318: 387-390 (1999)]. Only more recently have more viable treatment modalities become available, in particular orally active agents, such as sildenafil citrate, marketed by Pfizer under the brand name of Viagra®. (See “Emerging pharmacological therapies for erectile dysfunction,” Exp. Opin. Ther. Patents 9: 1689-1696 (1999)). Sildenafil is a selective inhibitor of type V phosphodiesterase (PDE-V), a cyclic-GMP-specific phosphodiesterase isozyme [see R. B. Moreland et al., “Sildenafil: A Novel Inhibitor of Phosphodiesterase Type 5 in Human Corpus Cavernosum Smooth Muscle. Cells,” Life Sci., 62: 309-318 (1998)]. Prior to the introduction of Viagra on the market, less than 10% of patients suffering from erectile dysfunction received treatment. Sildenafil is also being evaluated in the clinic for the treatment of female sexual dysfunction.
- The regulatory approval of Viagra® for the oral treatment of erectile dysfunction has invigorated efforts to discover even more effective methods to treat erectile dysfunction. Several additional selective PDE-V inhibitors are in clinical trials. UK-114542 is a sildenafil backup from Pfizer with supposedly improved properties. Tadalafil or IC-351 (ICOS Corp.) is claimed to have greater selectivity for PDE-V over PDE-VI than sildenafil. Other PDE-V inhibitors include vardenafil from Bayer, M-54033 and M-54018 from Mochida Pharmaceutical Co., and E-4010 from Eisai Co., Ltd.
- Other pharmacological approaches to the treatment of erectile dysfunction have been described [see, e.g., “Latest Findings on the Diagnosis and Treatment of Erectile Dysfunction,” Drug News & Perspectives, 9: 572-575 (1996); “Oral Pharmacotherapy in Erectile Dysfunction,” Current Opinion in Urolog, 7: 349-353 (1997)]. A product under clinical development by Zonagen is an oral formulation of the alpha-adrenoceptor antagonist phentolamine mesylate under the brand name of Vasomax®. Vasomax® is also being evaluated for the treatment of female sexual dysfunction.
- Drugs to treat erectile dysfunction act either peripherally or centrally. They are also classified according to whether they “initiate” a sexual response or “facilitate” a sexual response to prior stimulation [for a discussion, see “A Therapeutic Taxonomy of Treatments for Erectile Dysfunction: An Evolutionary Imperative,” Int. J. Impotence Res., 9: 115-121 (1997)]. While sildenafil and phentolamine act peripherally and are considered to be “enhancers” or “facilitators” of the sexual response to erotic stimulation, sildenafil appears to be efficacious in both mild organic and psychogenic erectile dysfunction. Sildenafil has an onset of action of 30-60 minutes after an oral dose with the effect lasting about 4 hours, whereas phentolarnine requires 5-30 minutes for onset with a duration of 2 hours. Although sildenafil is effective in a majority of patients, it takes a relatively long time for the compound to show the desired effects. The faster-acting phentolamine appears to be less effective and to have a shorter duration of action than sildenafil. Oral sildenafil is effective in about 70% of men who take it, whereas an adequate response with phentolamine is observed in only 35-40% of patients. Both compounds require erotic stimulation for efficacy. Since sildenafil indirectly increases blood flow in the systemic circulation by enhancing the smooth muscle relaxation effects of nitric oxide, it is contraindicated for patients with unstable heart conditions or cardiovascular disease, in particular patients taking nitrates, such as nitroglycerin, to treat angina. Other adverse effects associated with the clinical use of sildenafil include headache, flushing, dyspepsia, and “abnormal vision,” the latter the result of inhibition of the type VI phosphodiesterase isozyme (PDE-VI), a cyclic-GMP-specific phosphodiesterase that is concentrated in the retina. “Abnormal vision” is defined as a mild and transient “bluish” tinge to vision, but also an increased sensitivity to light or blurred vision.
- Synthetic melanocortin receptor agonists (melanotropic peptides) have been found to initiate erections in men with psychogenic erectile dysfunction [See H. Wessells et al., “Synthetic Melanotropic Peptide Initiates Erections in Men With Psychogenic Erectile Dysfunction: Double-Blind, Placebo Controlled Crossover Study,” J. Urol., 160: 389-393 (1998); Fifteenth American Peptide Symposium, Jun. 14-19, 1997 (Nashville Tenn.)]. Activation of melanocortin receptors of the brain appears to cause normal stimulation of sexual arousal. In the above study, the centrally acting α-melanocyte-stimulating hormone analog, melanotan-II (MT-II), exhibited a 75% response rate, similar to results obtained with apomorphine, when injected intramuscularly or subcutaneously to males with psychogenic erectile dysfunction. MT-II is a synthetic cyclic heptapeptide, Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2, which contains the 4-10 melanocortin receptor binding region common to α-MSH and adrenocorticotropin, but with a lactam bridge. It is a non-selective MC-1R, -3R, -4R, and -5R agonist (Dorr et al., Life Sciences, Vol. 58, 1777-1784, 1996). MT-II (also referred to as PT-14) (Erectide®) is presently in clinical development by Palatin Technologies, Inc. and TheraTech, Inc. as a non-penile subcutaneous injection formulation. It is considered to be an “initiator” of the sexual response. The time to onset of erection with this drug is relatively short (10-20 minutes) with a duration of action approximately 2.5 hours. Adverse reactions observed with MT-II include nausea, flushing, loss of appetite, stretching, and yawning and may be the result of activation of MC-1R, MC-2R, MC-3R, and/or MC-5R. MT-II must be administered parenterally, such as by subcutaneous, intravenous, or intramuscular route, since it is not absorbed into the systemic circulation when given by the oral route.
- MT-II's erectogenic properties apparently are not limited to cases of psychogenic erectile dysfunction in that men with a variety of organic risk factors developed penile erections upon subcutaneous injection of the compound; moreover, the level of sexual desire was significantly higher after MT-II administration than after placebo [see H. Wessells, “Effect of an Alpha-Melanocyte Stimulating Hormone Analog on Penile Erection and Sexual Desire in Men with Organic Erectile Dysfunction,” Urology, 56: 641-646 (2000)].
- Compositions of melanotropic peptides and methods for the treatment of psychogenic erectile dysfunction are disclosed in U.S. Pat. No. 5,576,290, assigned to Competitive Technologies. Methods of stimulating sexual response in females using melanotropic peptides have been disclosed in U.S. Pat. No. 6,051,555.
- Spiropiperidine and piperidine derivatives have been disclosed in WO 99/64002 (16 Dec. 1999); WO 00/74679 (14 Dec. 2000); WO 01/70708 (27 Sep. 2001); WO 01/70337 (27 Sep. 2001); and WO 01/91752 (6 Dec. 2001) as agonists of the melanocortin receptor(s) and particularly as selective agonists of the MC-4R receptor and thereby useful for the treatment of diseases and disorders, such as obesity, diabetes, and sexual dysfunction, including erectile dysfunction and female sexual dysfunction.
- Because of the unresolved deficiencies of the various pharmacological agents discussed above, there is a continuing need in the medical arts for improved methods and compositions to treat individuals suffering from psychogenic and/or organic sexual dysfunction. Such methods should have wider applicability, enhanced convenience and ease of compliance, short onset of action, reasonably long duration of action, and minimal side effects with few contraindications, as compared to agents now available.
- It is therefore an object of the present invention to provide acylated piperidine derivatives which are melanocortin receptor agonists and thereby useful to treat obesity, diabetes, male sexual dysfunction, and female sexual dysfunction.
- It is another object of the present invention to provide acylated piperidine derivatives which are selective agonists of the melanocortin4 (MC4R) receptor.
- It is another object of the present invention to provide pharmaceutical compositions comprising the melanocortin receptor agonists of the present invention with a pharmaceutically acceptable carrier.
- It is another object of the present invention to provide methods for the treatment or prevention of disorders, diseases, or conditions responsive to the activation of the melanocortin-4 receptor in a subject in need thereof by administering the compounds and pharmaceutical compositions of the present invention.
- It is another object of the present invention to provide methods for the treatment or prevention of obesity, diabetes mellitus, male sexual dysfunction, and female sexual dysfunction by administering the compounds and pharmaceutical compositions of the present invention to a subject in need thereof.
- It is another object of the present invention to provide methods for the treatment of erectile dysfunction by administering the compounds and pharmaceutical compositions of the present invention to a subject in need thereof.
- These and other objects will become readily apparent from the detailed description that follows.
-
- These acylated piperidine derivatives are effective as melanocortin receptor agonists and are particularly effective as selective melanocortin-4 receptor (MC-4R) agonists. They are therefore useful for the treatment and/or prevention of disorders responsive to the activation of MC-4R, such as obesity, diabetes as well as male and female sexual dysfunction, in particular, male erectile dysfunction.
- The present invention also relates to pharmaceutical compositions comprising the compounds of the present invention and a pharmaceutically acceptable carrier.
- The present invention also relates to methods for the treatment or prevention of disorders, diseases, or conditions responsive to the activation of the melanocortin receptor in a subject in need thereof by administering the compounds and pharmaceutical compositions of the present invention.
- The present invention also relates to methods for the treatment or prevention of obesity, diabetes mellitus, male sexual dysfunction, and female sexual dysfunction by administering the compounds and pharmaceutical compositions of the present invention.
- The present invention also relates to methods for treating erectile dysfunction by administering the compounds and pharmaceutical compositions of the present invention.
- The present invention also relates to methods for treating erectile dysfunction by administering the compounds of the present invention in combination with a therapeutically effective amount of another agent known to be useful to treat the condition.
- The present invention also relates to methods for treating or preventing obesity by administering the compounds of the present invention in combination with a therapeutically effective amount of another agent known to be useful to treat or prevent the condition.
- The present invention also relates to methods for treating or preventing diabetes by administering the compounds of the present invention in combination with a therapeutically effective amount of another agent known to be useful to treat or prevent the condition.
-
- wherein
- r is 1 or 2;
- s is 0, 1,or 2;
- n is 0, 1 or 2;
- p is 0, 1,or 2;
- R1 is selected from the group consisting of
- hydrogen,
- amidino,
- C1-4 alkyliminoyl,
- C1-10 alkyl,
- (CH2)n-C3-7 cycloalkyl,
- (CH2)n-phenyl,
- (CH2)n-naphthyl, and
- (CH2)n-heteroaryl wherein heteroaryl is selected from the group consisting of
- (1) pyridinyl,
- (2) furyl,
- (3) thienyl,
- (4) pyrrolyl,
- (5) oxazolyl,
- (6) thiazolyl,
- (7) imidazolyl,
- (8) pyrazolyl,
- (9) isoxazolyl,
- (10) isothiazolyl,
- (11) pyrimidinyl,
- (12) pyrazinyl,
- (13) pyridazinyl,
- (14) quinolyl,
- (15) isoquinolyl,
- (16) benzimidazolyl,
- (17) benzofuryl,
- (18) benzothienyl,
- (19) indolyl,
- (20) benzthiazolyl, and
- (21) benzoxazolyl;
- in which phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R3; and alkyl and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from R3 and oxo;
R2 is selected from the group consisting of- phenyl,
- naphthyl, and
- heteroaryl wherein heteroaryl is selected from the group consisting of
- (1) pyridinyl,
- (2) furyl,
- (3) thienyl,
- (4) pyrrolyl,
- (5) oxazolyl,
- (6) thiazolyl,
- (7) imidazolyl,
- (8) pyrazolyl,
- (9) isoxazolyl,
- (10) isothiazolyl,
- (11) pyrimidinyl,
- (12) pyrazinyl,
- (13) pyridazinyl,
- (14) quinolyl,
- (15) isoquinolyl,
- (16) benzimidazolyl,
- (17) benzofuryl,
- (18) benzothienyl,
- (19) indolyl,
- (20) benzthiazolyl, and
- (21) benzoxazolyl;
- in which phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R3;
R3 is selected from the group consisting of- C1-6 alkyl,
- (CH2)n-phenyl,
- (CH2)n-naphthyl,
- (CH2)n-heteroaryl,
- (CH2)n-heterocyclyl,
- (CH2)nC3-7 cycloalkyl,
- halogen,
- OR4,
- (CH2)nN(R4)2,
- (CH2)nC≡N,
- CO2R4,
- C(R4)(R4)N(R4)2,
- NO2,
- (CH2)nNR4SO2R4,
- (CH2)nSO2N(R4)2,
- (CH2)nS(O)pR4,
- (CH2)nNR4C(O)N(R4)2,
- (CH2)nC(O)N(R4)2,
- (CH2)nNR4C(O)R4,
- (CH2)nNR4CO2R4,
- CF3,
- CH2CF3,
- OCF3, and
- OCH2CF3;
- in which heteroaryl is as defined above; phenyl, naphthyl, heteroaryl, cycloalkyl, and heterocyclyl are unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C1-4 alkyl, trifluoromethyl, and C1-4 alkoxy; and CH2)n is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C1-4 alkyl;
each R4 is independently selected from the group consisting of- hydrogen,
- C1-6 alkyl,
- (CH2)n-phenyl,
- (CH2)n-naphthyl, and
- (CH2)nC3-7 cycloalkyl;
- wherein cycloalkyl is unsubstituted or substituted with one to three groups independently selected from halogen, C1-4 alkyl, and C1-4 alkoxy;
- or two R4 groups together with the atom to which they are attached form a 4- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and NC1-4 alkyl;
each R5 is independently selected from the group consisting of- hydrogen,
- C1-8 alkyl,
- (CH2)n-phenyl,
- (CH2)n-naphthyl,
- (CH2)n-heteroaryl, and
- (CH2)nC3-7 cycloalkyl;
- wherein heteroaryl is as defined above; phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R3; and alkyl, cycloalkyl, and CH2)n are unsubstituted or substituted with one to three groups independently selected from R3 and oxo; or two R5 groups together with the atom to which they are attached form a 5- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and NC1-4 alkyl;
X is selected from the group consisting of- C1-8 alkyl,
- (CH2)nC3-8 cycloalkyl,
- (CH2)n-phenyl,
- (CH2)n-naphthyl,
- (CH2)n-heteroaryl,
- CH2)nheterocyclyl,
- (CH2)nC≡N,
- (CH2)nCON(R5R5),
- (CH2)nCO2R5,
- (CH2)nCOR5,
- (CH2)nNR5C(O)R5,
- (CH2)nNR5CO2R5,
- (CH2)nNR5C(O)N(R5)2,
- (CH2)nNR5SO2R5,
- (CH2)nS(O)pR5,
- (CH2)nSO2N(R5)(R5),
- CH2)nOR5,
- CH2)nOC(O)R5,
- CH2)nOC(O)OR5,
- CH2)nOC(O)N(R5)2,
- (CH2)nN(R5)(R5), and
- (CH2)nNR5SO2N(R5)(R5);
- wherein heteroaryl is as defined above; phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R3; and alkyl, CH2)n, cycloalkyl, and heterocyclyl are unsubstituted or substituted with one to three groups independently selected from R3 and oxo;
Y is selected from the group consisting of- hydrogen,
- C1-8 alkyl,
- C2-6 alkenyl,
- (CH2)nC3-8 cycloalkyl,
- (CH2)n-phenyl,
- (CH2)n-naphthyl,
- (CH2)n-heteroaryl, and
- (CH2)n-heterocyclyl;
- wherein heteroaryl is as defined above, and phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R3; and alkyl, CH2)n, cycloalkyl, and heterocyclyl are optionally substituted with one to three groups independently selected from R3 and oxo.
- In one embodiment of the compounds of structural formula I, R1 is selected from the group consisting of hydrogen, C1-6 alkyl, (CH2)0-1C3-6 cycloalkyl, and (CH2)0-1-phenyl; wherein phenyl is unsubstituted or substituted with one to three groups independently selected from R3; and alkyl and cycloalkyl are optionally substituted with one to three groups independently selected from R3 and oxo.
- In a second embodiment of the compounds of structural formula I, R2 is phenyl or thienyl optionally substituted with one to three groups independently selected from R3. In a class of this embodiment, R2 is phenyl optionally substituted with one to three groups independently selected from R3.
- In a third embodiment of the compounds of structural formula I, X is selected from the group consisting of C1-6 alkyl, (CH2)n-phenyl, (CH2)n-naphthyl, (CH2)n-heteroaryl, (CH2)n-heterocyclyl, (CH2)nC(O)N(R5)(R5), (CH2)nCO2R5, (CH2)nS(O)pR5, CH2)nOR5, (CH2)nNR5C(O)R5, and (CH2)nNR5SO2R5;
- wherein heteroaryl is as defined above, and phenyl, naphthyl, and heteroaryl are optionally substituted with one to three groups independently selected from R3; alkyl and heterocyclyl are optionally substituted with one to three groups independently selected from R3 and oxo; and the CH2)n group is optionally substituted with one to three groups independently selected from R4, halogen, S(O)pR4, N(R4)2, and OR4. In a class of this embodiment, X is selected from the group consisting of C1-6 alkyl, (CH2)0-1-phenyl, (CH2 0-1-heteroaryl, (CH2 0-1-heterocyclyl, (CH2)0-1NHC(O)R5, (CH2 0-1CO2R5, and (CH2)0-1C(O)N(R5)(R5); wherein phenyl and heteroaryl are optionally substituted with one to three groups independently selected from R3; and alkyl and heterocyclyl are optionally substituted with one to three groups independently selected from R3 and oxo. In a subclass of this class, heteroaryl is selected from the group consisting of pyridyl, pyrazinyl, pyrimidinyl, triazolyl, tetrazolyl, thiadiazolyl, oxadiazolyl, pyrazolyl, and imidazolyl.
- In a fourth embodiment of compounds of formula I, Y is selected from the group consisting of C1-8 alkyl, C2-6 alkenyl, (CH2)C3-8 cycloalkyl, (CH2)-phenyl, (CH2)-naphthyl, (CH2)-heterocyclyl, and (CH2)-heteroaryl, wherein phenyl, naphthyl, and heteroaryl are optionally substituted with one to three groups independently selected from R3; and CH2)n, alkyl, cycloalkyl, and heterocyclyl are optionally substituted with one to three groups independently selected from R3 and oxo. In a class of this embodiment, Y is selected from the group consisting of C1-8 alkyl, C2-6 alkenyl, C5-7 cycloalkyl, and phenyl; wherein phenyl is unsubstituted or substituted with one to three groups independently selected from R3; and alkyl and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from R3 and oxo. In a subclass of this class, Y is cyclohexyl or C1-6 alkyl; wherein the cyclohexyl and alkyl groups are unsubstituted or substituted with one to three groups independently selected from R3 and oxo.
- In yet a further embodiment of compounds of structural formula I, r is 1 or 2 and s is 1.
- In yet a further embodiment of the compounds of the present invention, there are provided compounds of structural formula IIa or IIb of the indicated relative stereochemical configurations having the trans orientation of the R2 and piperidinecarbonyl substituents:
or a pharmaceutically acceptable salt thereof; - wherein
- r is 1 or 2;
- n is 0, 1, or 2;
- p is 0, 1, or 2;
- R1 is hydrogen, amidino, C1-4 alkyliminoyl, C1-6 alkyl, C5-6 cycloalkyl, (CH2)0-1 phenyl, (CH2)0-1 heteroaryl; wherein phenyl and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R3, and alkyl and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from R3 and oxo;
- R2 is phenyl or thienyl optionally substituted with one to three groups independently selected from R3;
R3 is selected from the group consisting of- C1-6 a lkyl,
- (CH2)n-phenyl,
- (CH2)n-naphthyl,
- (CH2)n-heteroaryl,
- (CH2)n-heterocyclyl,
- (CH2)nC3-7 cycloalkyl,
- halogen,
- OR4,
- (CH2)nN(R4)2,
- (CH2)nC≡N,
- CO2R4,
- C(R4)(R4)N(R4)2,
- NO2,
- (CH2)nNR4SO2R4,
- (CH2)nSO2N(R4)2,
- (CH2)nS(O)pR4,
- (CH2)nNR4C(O)N(R4)2,
- (CH2)nC(O)N(R4)2,
- (CH2)nNR4C(O)R4,
- (CH2)nNR4CO2R4,
- CF3,
- CH2CF3,
- OCF3, and
- OCH2CF3;
- in which heteroaryl is as defined above; phenyl, naphthyl, heteroaryl, cycloalkyl, and heterocyclyl are unsubstituted or substituted with one to two substituents independently selected from halogen, hydroxy, C1-4 alkyl, trifluoromethyl, and C1-4 alkoxy; and CH2)n is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C1-4 alkyl;
each R4 is independently selected from the group consisting of- hydrogen,
- C1-8 alkyl, and
- C3-6 cycloalkyl;
- wherein cycloalkyl is unsubstituted or substituted with one to three groups independently selected from halogen, C1-4 alkyl, and C1-4 alkoxy; or two R4 groups together with the atom to which they are attached form a 4- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and NC14 alkyl;
Y is selected from the group consisting of- C1-8 alkyl,
- C2-6 alkenyl,
- (CH2)0-1C3-8 cycloalkyl,
- (CH2)0-1-phenyl,
- (CH2 0-1-naphthyl, and
- (CH2)0-1 -heteroaryl;
- wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R3; and alkyl, (CH2), and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from R3 and oxo; and
X is selected from the group consisting of:- —NH—C(O)CH3 —C(O)N(CH3)2 —C(O)NH-t-Bu
- —CH2SCH(CH3)2; —CH2S(O)CH(CH3)2; —CH2S(O)2CH(CH3)2;
- —C(O)NHCH2CH2N(CH3)2; C(O)CH(CH3)2; —CH2NHCOtBu; —CH2N(CH3)COtBu; —CH2N(iPr)COMe; —CH2N(iPr)SO2Me;
- C(O)NHC(Me)2CH2OMe; C(O)NHC(Me)2CH2OH; -CH2CH2C(Me)2OH;
- CH2CH2NEt2; CH2CONEt2;
- In yet a further embodiment of the compounds of the present invention, there are provided compounds of structural formula IIIa or IIIb of the indicated relative stereochemical configurations having the trans orientation of the phenyl and piperidinecarbonyl substituents:
or a pharmaceutically acceptable salt thereof; - wherein
- r is 1 or 2;
- R1 is hydrogen, C1-4 alkyl, or (CH2)0-1 phenyl;
- each R3 is independently selected from the group consisting of hydrogen, halogen,
- C1-4 alkyl, trifluoromethyl, and C1-4 alkoxy;
- Y is cyclohexyl or phenyl; and
- X is selected from the group consisting of
- CH2CH2NEt2; CH2CONEt2;
- Illustrative but nonlimiting examples of compounds of the present invention that are useful as melanocortin agonists are the following:
or a pharmaceutically acceptable salt thereof.
- Illustrative but nonlimiting examples of compounds of the present invention that are useful as melanocortin agonists are the following:
- The compounds of structural formula I are effective as melanocortin receptor agonists and are particularly effective as selective agonists of MC-4R. They are therefore useful for the treatment and/or prevention of disorders responsive to the activation of MC-4R, such as obesity, diabetes as well as male and/or female sexual dysfunction, in particular, erectile dysfunction, and further in particular, male erectile dysfunction.
- Another aspect of the present invention provides a method for the treatment or prevention of obesity or diabetes in a subject in need thereof which comprises administering to said subject a therapeutically or prophylactically effective amount of a compound of structural formula I.
- Another aspect of the present invention provides a method for the treatment or prevention of male or female sexual dysfunction including erectile dysfunction which comprises administering to a subject in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of structural formula I.
- Another aspect of the present invention provides a pharmaceutical composition comprising a compound of structural formula I and a pharmaceutically acceptable carrier.
- Yet another aspect of the present invention provides a method for the treatment or prevention of male or female sexual dysfunction including erectile dysfunction which comprises administering to a subject in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of structural formula I in combination with a therapeutically effective amount of another agent known to be useful for the treatment of these conditions.
- Yet another aspect of the present invention provides a method for the treatment or prevention of obesity which comprises administering to a subject in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of structural formula I in combination with a therapeutically effective amount of another agent known to be useful for the treatment of this condition.
- Throughout the instant application, the following terms have the indicated meanings:
- The alkyl groups specified above are intended to include those alkyl groups of the designated length in either a straight or branched configuration. Exemplary of such alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tertiary butyl, pentyl, isopentyl, hexyl, isohexyl, and the like.
- The term “halogen” is intended to include the halogen atoms fluorine, chlorine, bromine and iodine.
- The term “C1-4 alkyliminoyl” means C1-3C(═NH)—.
- The term “aryl” includes phenyl and naphthyl.
- The term “heteroaryl” includes mono- and bicyclic aromatic rings containing from 1 to 4 heteroatoms selected from nitrogen, oxygen and sulfur. “5- or 6-Membered heteroaryl” represents a monocyclic heteroaromatic ring; examples thereof include thiazole, oxazole, thiophene, furan, pyrrole, imidazole, isoxazole, pyrazole, triazole, thiadiazole, tetrazole, oxadiazole, pyridine, pyridazine, pyrimidine, pyrazine, and the like. Bicyclic heteroaromatic rings include, but are not limited to, benzothiadiazole, indole, benzothiophene, benzofuran, benzimidazole, benzisoxazole, benzothiazole, quinoline, benzotriazole, benzoxazole, isoquinoline, purine, furopyridine and thienopyridine.
- The term “5- or 6-membered carbocyclyl” is intended to include non-aromatic rings containing only carbon atoms such as cyclopentyl and cyclohexyl.
- The term “5 and 6-membered heterocyclyl” is intended to include non-aromatic heterocycles containing one to four heteroatoms selected from nitrogen, oxygen and sulfur. Examples of a 5 or 6-membered heterocyclyl include piperidine, morpholine, thiamorpholine, pyrrolidine, imidazolidine, tetrahydrofuran, piperazine, and the like.
- Certain of the above defined terms may occur more than once in the above formula and upon such occurrence each term shall be defined independently of the other; thus for example, NR4R4 may represent NH2, NHCH3, N(CH3)CH2CH3, and the like.
- An embodiment of the term “mammal in need thereof” is a “human in need thereof,” said human being either male or female.
- The term “composition”, as in pharmaceutical composition, is intended to encompass a product comprising the active ingredient(s), and the inert ingredient(s) that make up the carrier, as well as any product which results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions of one or more of the ingredients. Accordingly, the pharmaceutical compositions of the present invention encompass any composition made by admixing a compound of the present invention and a pharmaceutically acceptable carrier. “Erectile dysfunction” is a disorder involving the failure of a male mammal to achieve erection, ejaculation, or both. Symptoms of erectile dysfunction include an inability to achieve or maintain an erection, ejaculatory failure, premature ejaculation, or inability to achieve an orgasm. An increase in erectile dysfunction is often associated with age and is generally caused by a physical disease or as a side-effect of drug treatment.
- By a melanocortin receptor “agonist” is meant an endogenous or drug substance or compound that can interact with a melanocortin receptor and initiate a pharmacological response characteristic of the melanocortin receptor. By a melanocortin receptor “antagonist” is meant a drug or a compound that opposes the melanocortin receptor-associated responses normally induced by another bioactive agent. The “agonistic” properties of the compounds of the present invention were measured in the functional assay described below. The functional assay discriminates a melanocortin receptor agonist from a melanocortin receptor antagonist.
- By “binding affinity” is meant the ability of a compound/drug to bind to its biological target, in the the present instance, the ability of a compound of structural formula I to bind to a melanocortin receptor. Binding affinities for the compounds of the present invention were measured in the binding assay described below and are expressed as IC50's.
- “Efficacy” describes the relative intensity with which agonists vary in the response they produce even when they occupy the same number of receptors and with the same affinity. Efficacy is the property that enables drugs to produce responses. Properties of compounds/drugs can be categorized into two groups, those which cause them to associate with the receptors (binding affinity) and those that produce a stimulus (efficacy). The term “efficacy” is used to characterize the level of maximal responses induced by agonists. Not all agonists of a receptor are capable of inducing identical levels of maximal responses. Maximal response depends on the efficiency of receptor coupling, that is, from the cascade of events, which, from the binding of the drug to the receptor, leads to the desired biological effect.
- The functional activities expressed as EC50's and the “agonist efficacy” for the compounds of the present invention at a particular concentration were measured in the functional assay described below.
- Optical Isomers-Diastereomers-Geometric Isomers-Tautomers
- Compounds of structural formula I contain one or more asymmetric centers and can thus occur as racemates and racemic mixtures, single enantiomers, diastereomeric mixtures and individual diastereomers. The present invention is meant to comprehend all such isomeric forms of the compounds of structural formula I.
- Some of the compounds described herein contain olefinic double bonds, and unless specified otherwise, are meant to include both E and Z geometric isomers.
- Some of the compounds described herein may exist as tautomers such as keto-enol tautomers. The individual tautomers as well as mixtures thereof are encompassed within the compounds of structural formula I.
- Compounds of structural formula I may be separated into their individual diastereoisomers by, for example, fractional crystallization from a suitable solvent, for example methanol or ethyl acetate or a mixture thereof, or via chiral chromatography using an optically active stationary phase. Absolute stereochemistry may be determined by X-ray crystallography of crystalline products or crystalline intermediates which are derivatized, if necessary, with a reagent containing an asymmetric center of known absolute configuration.
- Alternatively, any stereoisomer of a compound of the general formula I, IIa, IIb, IIIa, and IIIb may be obtained by stereospecific synthesis using optically pure starting materials or reagents of known absolute configuration.
- Salts
- The term “pharmaceutically acceptable salts” refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic or organic bases and inorganic or organic acids. Salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc, and the like. Particularly preferred are the ammonium, calcium, lithium, magnesium, potassium, and sodium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, and basic ion exchange resins, such as arginine, betaine, caffeine, choline, N,N′-dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2-dimethylarninoethanol, ethanolamine, ethylenediamine, N-ethyl-morpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine, and the like.
- When the compound of the present invention is basic, salts may be prepared from pharmaceutically acceptable non-toxic acids, including inorganic and organic acids. Such acids include acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, formic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, malonic, mucic, nitric, pamoic, pantothenic, phosphoric, propionic, succinic, sulfuric, tartaric, p-toluenesulfonic acid, trifluoroacetic acid, and the like. Particularly preferred are citric, fumaric, hydrobromic, hydrochloric, maleic, phosphoric, sulfuric, and tartaric acids.
- It will be understood that, as used herein, references to the compounds of Formula I are meant to also include the pharmaceutically acceptable salts.
- Utility
- Compounds of formula I are melanocortin receptor agonists and as such are useful in the treatment, control or prevention of diseases, disorders or conditions responsive to the activation of one or more of the melanocortin receptors including, but are not limited to, MC-1, MC-2, MC-3, MC-4, or MC-5. Such diseases, disorders or conditions include, but are not limited to, obesity (by reducing appetite, increasing metabolic rate, reducing fat intake or reducing carbohydrate craving), diabetes mellitus (by enhancing glucose tolerance, decreasing insulin resistance), hypertension, hyperlipidemia, osteoarthritis, cancer, gall bladder disease, sleep apnea, depression, anxiety, compulsion, neuroses, insomnia/sleep disorder, substance abuse, pain, male and female sexual dysfunction (including impotence, loss of libido and erectile dysfunction), fever, inflanmmation, immunemodulation, rheumatoid arthritis, skin tanning, acne and other skin disorders, neuroprotective and cognitive and memory enhancement including the treatment of Alzheimer's disease. Some compounds encompassed by formula I show highly selective affinity for the melanocortin-4 receptor relative to MC-1R, MC-2R, MC-3R, and MC-5R, which makes them especially useful in the prevention and treatment of obesity, as well as male and/or female sexual dysfunction, including erectile dysfunction.
- “Male sexual dysfunction” includes impotence, loss of libido, and erectile dysfunction.
- “Erectile dysfunction” is a disorder involving the failure of a male mammal to achieve erection, ejaculation, or both. Symptoms of erectile dysfunction include an inability to achieve or maintain an erection, ejaculatory failure, premature ejaculation, or inability to achieve an orgasm. An increase in erectile dysfunction and sexual dysfunction can have numerous underlying causes, including but not limited to (1) aging, (b) an underlying physical dysfunction, such as trauma, surgery, and peripheral vascular disease, and (3) side-effects resulting from drug treatment, depression, and other CNS disorders.
- “Female sexual dysfunction” can be seen as resulting from multiple components including dysfunction in desire, sexual arousal, sexual receptivity, and orgasm related to disturbances in the clitoris, vagina, periurethral glans, and other trigger points of sexual function. In particular, anatomic and functional modification of such trigger points may diminish the orgasmic potential in breast cancer and gynecologic cancer patients. Treatment of female sexual dysfunction with an MC-4 receptor agonist can result in improved blood flow, improved lubrication, improved sensation, facilitation of reaching orgasm, reduction in the refractory period between orgasms, and improvements in arousal and desire. In a broader sense, “female sexual dysfunction” also incorporates sexual pain, premature labor, and dysmenorrhea.
- Administration and Dose Ranges
- Any suitable route of administration may be employed for providing a mammal, especially a human with an effective dosage of a compound of the present invention. For example, oral, rectal, topical, parenteral, ocular, pulmonary, nasal, and the like may be employed. Dosage forms include tablets, troches, dispersions, suspensions, solutions, capsules, creams, ointments, aerosols, and the like. Preferably compounds of Formula I are administered orally or topically.
- The effective dosage of active ingredient employed may vary depending on the particular compound employed, the mode of administration, the condition being treated and the severity of the condition being treated. Such dosage may be ascertained readily by a person skilled in the art.
- When treating obesity, in conjunction with diabetes and/or hyperglycemia, or alone, generally satisfactory results are obtained when the compounds of the present invention are administered at a daily dosage of from about 0.001 milligram to about 100 milligrams per kilogram of animal body weight, preferably given in a single dose or in divided doses two to six times a day, or in sustained release form. In the case of a 70 kg adult human, the total daily dose will generally be from about 0.07 milligrams to about 3500 milligrams. This dosage regimen may be adjusted to provide the optimal therapeutic response.
- When treating diabetes mellitus and/or hyperglycemia, as well as other diseases or disorders for which compounds of formula I are useful, generally satisfactory results are obtained when the compounds of the present invention are administered at a daily dosage of from about 0.001 milligram to about 100 milligram per kilogram of animal body weight, preferably given in a single dose or in divided doses two to six times a day, or in sustained release form. In the case of a 70 kg adult human, the total daily dose will generally be from about 0.07 milligrams to about 350 milligrams. This dosage regimen may be adjusted to provide the optimal therapeutic response.
- For the treatment of sexual dysfunction compounds of the present invention are given in a dose range of 0.001 milligram to about 100 milligram per kilogram of body weight, preferably as a single dose orally or as a nasal spray.
- Combination Therapy
- Compounds of Formula I may.be used in combination with other drugs that are used in the treatment/prevention/suppression or amelioration of the diseases or conditions for which compounds of Formula I are useful. Such other drugs may be administered, by a route and in an amount commonly used therefor, contemporaneously or sequentially with a compound of Formula I. When a compound of Formula I is used contemporaneously with one or more other drugs, a pharmaceutical composition containing such other drugs in addition to the compound of Formula I is preferred. Accordingly, the pharmaceutical compositions of the present invention include those that also contain one or more other active ingredients, in addition to a compound of Formula I.
- Examples of other active ingredients that may be combined with a compound of Formula I for the treatment or prevention of obesity and/or diabetes, either administered separately or in the same pharmaceutical compositions, include, but are not limited to:
-
- (a) insulin sensitizers including (i) PPARγ agonists such as the glitazones (e.g. troglitazone, pioglitazone, englitazone, MCC-555, BRL49653 and the like), and compounds disclosed in WO97/27857, 97/28115, 97/28137 and 97/27847; (ii) biguanides such as metformin and phenformin;
- (b) insulin or insulin mimetics;
- (c) sulfonylureas, such as tolbutamide and glipizide;
- (d) α-glucosidase inhibitors (such as acarbose),
- (e) cholesterol lowering agents such as (i) HMG-CoA reductase inhibitors (lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, and other statins), (ii) sequestrants (cholestyranrine, colestipol and a dialkylaminoalkyl derivatives of a cross-linked dextran), (ii) nicotinyl alcohol nicotinic acid or a salt thereof, (iii) proliferator-activater receptor a agonists such as fenofibric acid derivatives (gemfibrozil, clofibrate, fenofibrate and benzafibrate), (iv) inhibitors of cholesterol absorption for example beta-sitosterol and (acyl CoA:cholesterol acyltransferase) inhibitors for example melinamide, (v) probucol, (vi) vitamin E, and (vii) thyromimetics;
- (f) PPARδ agonists, such as those disclosed in WO97/28149;
- (g) anti-obesity serotonergic agents, such as fenfluramine, dexfenfluramine, phentermine, and sibutramine;
- (h) β3-adrenoreceptor agonists;
- (i) pancreatic lipase inhibitors, such as orlistat;
- (j) feeding behavior modifying agents, such as neuropeptideY Y1 and Y5 antagonists, such as those disclosed in WO 97/19682, WO 97/20820, WO 97/20821, WO 97/20822, WO 97/20823, WO 01/14376, and U.S. Pat. No. 6,191,160;
- (k) orexin-1 receptor antagonists;
- (l) PPARα agonists such as described in WO 97/36579 by Glaxo;
- (m) PPARγ antagonists as described in WO97/10813;
- (n) serotonin reuptake inhibitors such as fluoxetine, paroxetine, and sertraline;
- (o) growth hormone secretagogues, such as MK-0677;
- (p) cannabinoid receptor ligands, such as cannabinoid CB1 receptor antagonists or inverse agonists; and
- (q) protein tyrosine phosphatase-1B (PTP-1B) inhibitors.
- Examples of anti-obesity agents that can be employed in combination with a compound of Formula I are disclosed in “Patent focus on new anti-obesity agents,” Exp. Opin. Ther. Patents, 10: 819-831 (2000); “Novel anti-obesity drugs,” Exp. Opin. Invest. Drugs, 9: 1317-1326 (2000); and “Recent advances in feeding suppressing agents: potential therapeutic strategy for the treatment of obesity, Exp. Pin. Ther. Patents, 11: 1677-1692 (2001). The role of neuropeptide Y in obesity is discussed in Exp. Opin. Invest. Drugs, 9: 1327-1346 (2000). Cannabinoid receptor ligands are discussed in Exp. Opin. Invest. Drugs, 9: 1553-1571 (2000).
- Examples of other active ingredients that may be combined with a compound of Formula I for the treatment or prevention of male or female sexual dysfunction, in particular, male erectile dysfunction, either administered separately or in the same pharmaceutical compositions, include, but are not limited to (a) type V cyclic-GMP-specific phosphodiesterase (PDE-V) inhibitors, including sildenafil and (6R, 12aR)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)-pyrazino[2′,1′:6,1]pyrido[3,4-b]indole-1,4-dione (IC-351); (b) alpha-adrenergic receptor antagonists, including phentolamine and yohimbine or pharmaceutically acceptable salts thereof; (c) dopamine receptor agonists, such as apomorphine or pharmaceutically acceptable salts thereof; and (d) nitric oxide (NO) donors.
- Pharmaceutical Compositions
- Another aspect of the present invention provides pharmaceutical compositions which comprises a compound of Formula I and a pharmaceutically acceptable carrier. The pharmaceutical compositions of the present invention comprise a compound of Formula I as an active ingredient or a pharmaceutically acceptable salt thereof, and may also contain a pharmaceutically acceptable carrier and optionally other therapeutic ingredients. The term “pharmaceutically acceptable salts” refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic bases or acids and organic bases or acids.
- The compositions include compositions suitable for oral, rectal, topical, parenteral (including subcutaneous, intramuscular, and intravenous), ocular (ophthalmic), pulmonary (nasal or buccal inhalation), or nasal administration, although the most suitable route in any given case will depend on the nature and severity of the conditions being treated and on the nature of the active ingredient. They may be conveniently presented in unit dosage form and prepared by any of the methods well-known in the art of pharmacy.
- In practical use, the compounds of Formula I can be combined as the active ingredient in intimate admixture with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques. The carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral (including intravenous). In preparing the compositions for oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like in the case of oral liquid preparations, such as, for example, suspensions, elixirs and solutions; or carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid preparations such as, for example, powders, hard and soft capsules and tablets, with the solid oral preparations being preferred over the liquid preparations.
- Because of their ease of administration, tablets and capsules represent the most advantageous oral dosage unit form in which case solid pharmaceutical carriers are obviously employed. If desired, tablets may be coated by standard aqueous or nonaqueous techniques. Such compositions and preparations should contain at least 0.1 percent of active compound. The percentage of active compound in these compositions may, of course, be varied and may conveniently be between about 2 percent to about 60 percent of the weight of the unit. The amount of active compound in such therapeutically useful. compositions is such that an effective dosage will be obtained. The active compounds can also be administered intranasally as, for example, liquid drops or spray.
- The tablets, pills, capsules, and the like may also contain a binder such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose or saccharin. When a dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier such as a fatty oil.
- Various other materials may be present as coatings or to modify the physical form of the dosage unit. For instance, tablets may be coated with shellac, sugar or both. A syrup or elixir may contain, in addition to the active ingredient, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and a flavoring such as cherry or orange flavor.
- Compounds of formula I may also be administered parenterally. Solutions or suspensions of these active compounds can be prepared in water suitably mixed with a surfactant such as hydroxy-propylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols and mixtures thereof in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases, the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g. glycerol, propylene glycol and liquid polyethylene glycol), suitable mixtures thereof, and vegetable oils.
- Preparation of Compounds of the Invention
- The compounds of structural formula I of the present invention can be prepared according to the procedures of the following Schemes and Examples, using appropriate materials and are further exemplified by the following specific examples. Moreover, by utilizing the procedures described in detail in PCT International Application Publications WO 99/64002 (16 Dec. 1999) and WO 00/74679 (14 Dec. 2000), which are incorporated by reference herein in their entirety, in conjunction with the disclosure contained herein, one of ordinary skill in the art can readily prepare additional compounds of the present invention claimed herein. The compounds illustrated in the examples are not, however, to be construed as forming the only genus that is considered as the invention. The Examples further illustrate details for the preparation of the compounds of the present invention. Those skilled in the art will readily understand that known variations of the conditions and processes of the following preparative procedures can be used to prepare these compounds. The instant compounds are generally isolated in the form of their pharmaceutically acceptable salts, such as those described previously hereinabove. The free amine bases corresponding to the isolated salts can be generated by neutralization with a suitable base, such as aqueous sodium hydrogencarbonate, sodium carbonate, sodium hydroxide, and potassium hydroxide, and extraction of the liberated amine free base into an organic solvent followed by evaporation. The amine free base isolated in this manner can be further converted into another pharmaceutically acceptable salt by dissolution in an organic solvent followed by addition of the appropriate acid and subsequent evaporation, precipitation, or crystallization. All temperatures are degrees Celsius unless otherwise noted. Mass spectra (MS) were measured by electron-spray ion-mass spectroscopy.
- The phrase “standard peptide coupling reaction conditions” means coupling a carboxylic acid with an amine using an acid activating agent such as EDC, DCC, and BOP in an inert solvent such as methylene chloride in the presence of a catalyst such as HOBT. The use of protecting groups for the amine and carboxylic acid functionalities to facilitate the desired reaction and minimize undesired reactions is well documented. Conditions required to remove protecting groups are found in standard textbooks such as Greene, T, and Wuts, P. G. M., Protective Groups in Organic Synthesis, John Wiley & Sons, Inc., New York, N.Y., 1991. CBZ and BOC are commonly used protecting groups in organic synthesis, and their removal conditions are known to those skilled in the art. For example, CBZ may be removed by catalytic hydrogenation in the presence of a noble metal or its oxide such as palladium on activated carbon in a protic solvent such as methanol or ethanol. In cases where catalytic hydrogenation is contraindicated due to the presence of other potentially reactive functionalities, removal of CBZ groups can also be achieved by treatment with a solution of hydrogen bromide in acetic acid or by treatment with a mixture of TFA and dimethylsulfide. Removal of BOC protecting groups is carried out with a strong acid, such as trifluoroacetic acid, hydrochloric acid, or hydrogen chloride gas, in a solvent such as methylene chloride, methanol, or ethyl acetate.
- Abbreviations Used in the Description of the Preparation of the Compounds of the Present Invention
BOC (boc) t-butyloxycarbonyl BOP benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate Bu butyl calc. calculated CBZ (Cbz) benzyloxycarbonyl c-hex cyclohexyl c-pen cyclopentyl c-pro cyclopropyl DEAD diethyl azodicarboxylate DIEA diisopropylethylamine DMAP 4-dimethylaminopyridine DMF N,N-dimethylformamide EDC 1-(3-dimethylaminopropyl)3-ethylcarbodiimide HCl eq. equivalent(s) ES-MS electron spray ion-mass spectroscopy Et ethyl EtOAc ethyl acetate HATU N-[(dimethylamino)-1H-1,2,3-triazolo[4,5-b] pyridin-1- ylmethylene]-N-methylmethanaminium hexafluorophosphate N-oxide HOAt 1-hydroxy-7-azabenzotriazole HOBt 1-hydroxybenzotriazole hydrate HPLC high performance liquid chromatography LDA lithium diisopropylamide MC-xR melanocortin receptor(x being a number) Me methyl MF molecular formula MS mass spectrum Ms methanesulfonyl OTf trifluoromethanesulfonyl Ph phenyl Phe phenylalanine Pr propyl prep. prepared PyBrop bromo-tris-pyrrolidino-phosphonium hexafluorophosphate r.t. room temperature TFA trifluoroacetic acid THF tetrahydrofuran TLC thin-layer chromatography. - Reaction Schemes A-L illustrate the methods employed in the synthesis of the compounds of the present invention of structural formula I. All substituents are as defined above unless indicated otherwise.
- Reaction Scheme A illustrates a key step in the synthesis of the novel compounds of structural formula I of the present invention. As shown in reaction Scheme A, the reaction of a 4-substituted piperidine of 1 with a carboxylic acid derivative of formula 2 affords a title compound of structural formula I where R1 is an N-tert-butoxycarbonyl group (N-BOC). The amide bond coupling reaction illustrated in reaction Scheme A is conducted in an appropriate inert solvent such as methylene chloride, dimethylformamide (DMF) or the like and may be performed with a variety of reagents suitable for amide coupling reactions such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) or benzotriazol-1-yloxytripyrrolidinephosphonium hexafluorophosphate (PyBOP). Preferred conditions for the amide bond coupling reaction shown in reaction Scheme A are known to those skilled in organic synthesis. Such modifications may include, but are not limited to, the use of basic reagents such as triethylamine (TEA) or N-methylmorpholine (NMM), or the addition of an additive such as 1-hydroxybenzotriazole (HOBt).
- Alternatively, 4-substituted piperidines of formula 1 may be treated with an active ester or acid chloride derived from carboxylic acid 2 which also affords compounds of structural formula I (R1=BOC). The amide bond coupling shown in reaction Scheme A is usually conducted at temperatures between 0° C. and room temperature” occasionally at elevated temperatures, and the coupling reaction is typically conducted for periods of 1 to 24 hours.
- If it is desired to produce a compound of structural formula I wherein R1 is a hydrogen, the N-BOC protected compounds of structural formula I are then deprotected under acidic conditions, for instance using trifluoroacetic acid in a solvent like methylene chloride at room temperature.
- When it is desired to prepare compounds of structural formula I wherein R1 is not a hydrogen, the compounds of general formula I (R1=H) may be further modified using the methodology described below in reaction Scheme L.
- Reaction Schemes B-I illustrate methods for the synthesis of the carboxylic acids of general formula 2 that are utilized in the amide bond coupling reaction shown in reaction Scheme A. Reaction Schemes J-K illustrate additional methods for the synthesis of 4-substituted piperi dines of general formula 1 that are used in that same step. The compounds of structural formula I in which the R1 substituent is a group other than a hydrogen atom are generally prepared from compounds of structural formula I wherein R=H using a variety of synthetic methods known in the literature of organic synthesis. Specific examples of such transformations are outlined in reaction Schemes and provided in the procedures for the Examples presented below.
- Reaction Scheme B illustrates a preferred method for the synthesis of compounds of general formula 2 wherein r is 2 and s is 1 such that the resulting heterocycle is a 3-aryl-4-piperidine carboxylic acid derivative 10. The synthesis of 10 begins with a conmmercially available β-keto ester such as 3. Generally a protecting group interchange of an N-BOC group for the N-benzyl group is performed initially. Thus a β-keto ester of formula 3 is subjected to debenzylation by hydrogenolysis using a palladium-on-carbon catalyst in a solvent system such as 1:1 ethanol-water under a hydrogen atmosphere. The resulting piperidone 4 is then protected as its tert-butyl carbamate using BOC anhydride in the presence of a base and a suitable solvent. For example, this can be accomplished in a two phase mixture of chloroform and aqueous sodium bicarbonate as shown. Incorporation of the 3-aryl substituent is then performed in two steps. First, the β-keto ester group is converted to the corresponding vinyl triflate 6 using trifluoromethanesulfonic anhydride and an organic base like NN-diisopropylethylamine in an aprotic solvent such as methylene chloride. The resulting vinyl triflate 6 is then subjected to a palladium-catalyzed cross-coupling reaction with an aryl boronic acid (7) using a palladium (II) catalyst such as [1,1′-bis(diphenylphosphino)-ferrocene]dichloropalladium(II). Preferred conditions for this reaction are the use of a toluene-ethanol-aqueous sodium carbonate solvent system at an elevated temperature, for instance 50-100° C., for a period of 2-24 hours. The resulting aryl-substituted tetrahydropyridine derivative 8 can be reduced to a piperidine such as 9 using a variety of known techniques and the method chosen will determine the stereochernical outcome of the product. For instance, hydrogenation of 8 with a palladium on carbon catalyst in a solvent such as ethanol affords cis-3,4-disubstituted piperidines of general formula 9. Alternatively, a dissolving metal reduction using a metal, such as magnesium in methanol, reduces the double bond of 8 and produces a mixture of both cis and trans 3,4-disubstituted piperidines of formula 9. The resulting mixture of cis and trans diastereoisomers may be separated chromatographically or it may be subsequently epimerized to afford the pure trans isomer of 9 by treating the mixture with a base like sodium methoxide in methanol. Finally, hydrolysis of either the cis or trans 3-aryl4-piperidine carboxylic ester 9 affords either a cis or trans 3-aryl-4-piperidine carboxylic acid of general formula 10, corresponding to an acid of general formula 2pee wherein r is 2 and s is 1. The cis or trans carboxylic acids of general formula 10 are produced as racemates and either may be resolved to afford enantiomerically pure compounds by methods known in organic synthesis. Preferred methods include resolution by crystallization of diastereoisomeric salts derived from acids 10 and a chiral amine base or the use of chiral stationary phase liquid chromatography columns.
- Reaction Scheme C illustrates a preferred method for the synthesis of compounds of general formula 2 wherein r is 1 and s is 2, such that the resulting heterocycle is a 4-aryl-3-piperidine-carboxylic acid derivative 17. The synthesis of 17 is similar to the one shown in reaction Scheme B, and may begin with either of the commercially available β-keto esters 11 or 12. Conversion of one of these starting materials to the N-BOC-protected piperidine 13 is performed as shown and the resulting β-keto ester is subjected to the two-step arylation protocol previously described to yield 15. Reduction of the double bond of 15 using conditions appropriate for obtaining either cis or trans 17 is followed by ester hydrolysis which affords either a cis or trans 4-aryl-3-piperidine-carboxylic acid of general formula 17 which corresponds to an acid of general formula 2 wherein r is 1 and s is 2. The cis or trans carboxylic acids of general formula 17 are produced as racemates and either may be resolved to afford enantiomerically pure compounds by methods known in organic synthesis. Preferred methods include resolution by crystallization of diastereoisomeric salts derived from the acids 17 and a chiral amine base or by the use of chiral stationary phase liquid chromatography columns.
- The synthesis of the N-BOC protected carboxylic acids of general formula 10 and 17 illustrated in reaction Schemes B and C are useful for the preparation of title compounds of structural formula I bearing a variety of R1 substituents as noted above. For the synthesis of certain title compounds of structural formula I, for instance when it is desired that R1 be a tert-butyl group, it is preferable to incorporate that R1 substituent at an earlier stage of the synthesis. The synthesis of a 1-substituted-3-ketopiperidine4-carboxylic ester (21) is shown in reaction Scheme D. A-primary amine 18 bearing a desired R1 substituent like a tert-butyl group is reacted with ethyl 4-bromobutyrate at elevated temperature in the absence of a solvent to afford the N-substituted ethyl 4-aminobutyrate 19. The amino ester 19 is then alkylated a second time with ethyl bromoacetate in a high boiling inert solvent such as toluene and in the presence of a base such as powdered potassium carbonate. The resulting aminodiesters of general formula 20 are then cyclized using an intramolecular Dieckmann reaction to afford piperidines such as 21. The Dieckmann reaction is performed using a strong base such as potassium tert-butoxide or the like, in an aprotic solvent such as THF at temperatures between room temperature and the boiling point of the solvent. The resulting 1-substituted-3-ketopiperidine4-carboxylic ester 21 corresponds to a compound of general formula 5 shown in reaction Scheme B, where the BOC group is replaced with the desired R1 substituent. The compounds of general formula 21 may then be converted to compounds of general formula 2 where the R1 substituent replaces the BOC group using the reaction sequence illustrated in reaction Scheme B.
- When it is desirable to synthesize a compound of general formula 17 wherein the BOC group is replaced with a substituent group R1, a reaction sequence similar to the one illustrated in reaction Scheme C may be employed as shown in reaction Scheme E. An amine 18 bearing the desired R1 substituent is first subjected to a Michael addition with excess ethyl acrylate in the presence of a solvent such as THF or ethanol. The resulting diester 22 is then converted to a 1-substituted4-ketopiperidine-3-carboxylic ester 23 using an intramolecular Dieckmann reaction under conditions similar to those illustrated in reaction Scheme C. The substituted piperidine 23 corresponds to a compound of general formula 13 shown in reaction Scheme C, wherein the BOC group is replaced with the desired R1 substituent. The compounds of general formula 23 may then be converted to compounds of general formula 2 where the R1 substituent replaces the BOC group using the methodology illustrated in reaction Scheme C.
- Reaction Scheme F illustrates a strategy for the synthesis of compounds of general formula 2 when the values of r and s are selected such that the resulting heterocycle is a 3-aryl4-pyrrolidine carboxylic acid derivative (29). The preferred method for the synthesis of compounds of general formula 29 involves the azomethine ylid 3+2 cycloaddition reaction of an azomethine ylid precursor of general formula 25 and a substituted cinnamic ester 24. The azomethine cycloaddition reaction of 24 and 25 affords the 3,4-disubstituted pyrrolidine 26, and the stereochemical relationship of the substituents on the newly formed pyrrolidine ring is determined by the stereochemistry of the double bond in the cinnamate ester 24. Thus the trans ester 24 affords a trans 3,4-disubstituted pyrrolidine of formula 26 as shown. The corresponding cis cinnamate ester affords a cis 3,4-disubstituted pyrrolidine of general formula 26. Cis or trans 3-arylpyrrolidine-4-carboxylic esters of general formula 26 may be resolved to afford enantiomerically pure compounds using a method such as resolution by crystallization of the diastereoisomeric salts derived from 26 and a chiral carboxylic acid, or directly by the use of chiral stationary phase liquid chromatography columns. Reaction Scheme F illustrates the case where a trans cinnamic ester 24 is converted to a trans 3,4-disubstituted pyrrolidine 26 and its subsequent resolution affords the enantiomerically pure trans pyrrolidine esters 27 and 28. Finally, the esters of general formula 26 (or their pure enantiomers 27 and 28) are hydrolyzed to the corresponding amino acid hydrochlorides of general formula 29 as shown at the bottom of reaction Scheme F.
- Amino acids of general formula 29 are zwitterionic. Therefore it is in some cases difficult to achieve efficient separation and purification of these compounds from aqueous reactions or workups. In these cases it is preferred to effect the hydrolysis using a reagent such potassium trimethylsilanolate in diethyl ether. Under these conditions the potassium salt of the carboxylic acid is produced which affords an easily isolated precipitate in ether. The resulting salt is then converted to the corresponding amino acid hydrochloride by treatment with excess hydrochloric acid in a suitable solvent such as ethyl acetate. Alternatively, esters such as 26 may be converted directly to the amino acid hydrochlorides 29 under acidic hydrolysis conditions. The hydrolysis of the ester 26 is achieved by prolonged reaction with concentrated hydrochloric acid at an elevated temperature. For example, this reaction may be conducted in 8 M hydrochloric acid at reflux overnight. The reaction mixture is then cooled and evaporated in vacuo to afford the amino acid hydrochloride 29. The amino acid hydrochlorides of general formula 29 correspond to an amino acid hydrochloride of general formula 2wherein both r and s are 1 and may be employed directly in the amide bond coupling step illustrated in reaction Scheme A to produce the compounds of the present invention of structural formula I.
- Another preferred method for the synthesis of enantiomerically pure 3-arylpyrrolidine4-carboxylic acid derivatives is illustrated in reaction Scheme G. In this synthetic method, a substituted cinnamic acid of general formula 29 is first derivatized with a chiral auxilliary such as (S)-(−)4-benzyl-2-oxazolidinone (30). The acylation of chiral auxiliary 30 with cinnamic acids of formula 29 is performed by initial activation of the acid to afford a mixed anhydride. Typically acids of general formula 29 are reacted with an acid chloride such as pivaloyl chloride in the presence of a base such as triethylamine and in a suitable aprotic solvent such as THF. The intermediate cinnamyl-pivaloyl anhydride is converted to the product 31 by reaction with the oxazolidinone 30 in the presence of lithium chloride, an amine base such as triethylamine and in a solvent such as THF, and the reaction is conducted at temperatures between −20° C. and room temperature for periods of 1-24 hours. Alternatively, the oxazolidinone 30 may be deprotonated with a strong base such as n-butyllithium in THf at low temperatures such as −78° C. and then reacted with a mixed anhydride obtained from acid 29 and an acid chloride like pivaloyl chloride as noted above. The cinnamyl oxazolidinone of general formula 31, which is produced by either of these methods, is then reacted with the azomethine ylid precursor 25 in a manner similar to that described in reaction Scheme F, and the products of the reaction are the substituted pyrrolidines of general formulas 33 and 34 as shown. The products 33 and 34 are diastereoisomers of each other and may therefore be separated by standard methods such as recrystallization or by liquid chromatography on a solid support such as silica gel. As discussed above, if the cis isomer of the cinnamic acid of general formula 29 is employed in the first step of reaction Scheme G, then a cis isomer of the substituted cinnamyl oxazolidinone 31 is produced. If such a cis cinnamyl oxazolidinone is then subjected to the azomethine ylid cycloaddition with an azomethine ylid precursor of formula 25, the products are the diastereoisomeric cis-disubstituted pyrrolidines related to 33 and 34.
- The azomethine ylid cycloaddition reactions shown in reaction Schemes F and G are generally conducted with the commercially available azomethine ylid precursor N-(methoxymethyl)-N-(trimethylsilylmethyl)-benzylamine ( 25, R 1=—CH2Ph). When the R1 substituent in the title compounds of structural formula I is chosen to be a group other than benzyl, it is generally preferable to remove the benzyl group from the substituted pyrrolidine compound at this point, and replace it with a more readily removed protecting group such as an N-BOC group. Reaction Scheme H illustrates this process with a generalized 3,4-disubstituted pyrrolidine of formula 32. The preferred method for removal of the N-benzyl group from compounds of general formula 32 will depend upon the identity of the R 3 substituents. If these substituents are unaffected by hydrogenation conditions, then the N-benzyl group may be removed by hydrogenolysis using a palladium on carbon catalyst in a solvent such as ethanol and in the presence of hydrogen gas or a hydrogen donor such as formic acid. Occasionally it may be preferred that one of the substituents R3 be a halogen or another substituent defined above which would be reactive under hydrogenation conditions. In these cases, the compound of general formula 32 is reacted with 1-chloroethyl chloroformate in an inert solvent such as toluene at temperatures between room temperature and 110° C. (Olafson, R. A. et al. J. Org. Chem. 1984, 49, 2081). The toluene is then removed, and the residue is heated in methanol for a period of 15-60 minutes, and the product is the debenzylated pyrrolidine of general formula 35. The resulting pyrrolidine 35 is then protected as its tert-butyl carbamate ( 36) using BOC anhydride in the presence of a base and a suitable solvent. For example, this can be accomplished in a two phase mixture of chloroform and aqueous sodium bicarbonate as shown in reaction Scheme H.
- The oxazolidinone chiral auxilliary is next hydrolyzed from the pyrrolidines of general formula 36 as shown at the bottom of reaction Scheme H. The hydrolysis reaction is accomplished using lithium hydroperoxide generated in situ from lithium hydroxide and 30% aqueous hydrogen peroxide. The reaction is typically conducted in a solvent system such as aqueous THF, and the reaction is performed at temperatures between 0° C. and room temperature for a period of 1-6 hours. The resulting carboxylic acids of general formula 37 correspond to carboxylic acids of general formula 2 where both r and s are 1. Using the methodology presented in reaction Scheme A, the compounds of general formula 37 may then be converted to the compounds of the present invention of structural formula I.
- As noted previously in the discussion of reaction Scheme D, it may occasionally be preferable to incorporate the R1 substituent into the substituted pyrrolidine of general formula 37 at an earlier stage of the synthesis, for instance when it is desired that R1 be a tert-butyl group. In such cases, it is possible to utilize an azomethine ylid precursor (25) bearing the desired R1 substituent in the cycloaddition reactions illustrated in reaction Schemes F and G. Reaction Scheme I illustrates the preparation of azomethine precursors of formula 25 starting with amines of general formula 18. Reaction of the amine of formula 18 with chloromethyltrimethylsilane at high temperature and in the absence of solvent affords the N-trimethylsilylmethyl-substituted amine of general formula 38. Subsequent reaction of 38 with aqueous formaldehyde in the presence of methanol and a base such as potassium carbonate then affords the generalized ylid precursor 25 which can be utilized in the cycloaddition reactions discussed above.
- Reaction Schemes J and K illustrate additional methods for the synthesis of the 4-substituted piperidines of general formula 1 which are required in the amide bond coupling step illustrated in reaction Scheme A. As shown in Reaction Scheme J, treatment of an ethanol solution of carboxylic acid 39, wherein R is hydrogen, C1-C6 alkyl or C1-C3 polyfluoroalkyl, with a chlorinating agent such as thionyl chloride at a temperature of 65-78° C., preferably 78° C., for a period of 12-24 hours gives the corresponding ethyl ester derivative 40. Ester 40 can be further reacted with a strong reducing agent such lithium aluminum hydride, diisobutylaluminum hydride or equivalent hydride sources in an inert organic solvent such as tetrahydrofuran at 0-25° C. for a period of 2-12 hours to provide alcohol 41. Hydrogenation of the aromatic ring in 41 is effected by treatment with hydrogen at a pressure of 1500 pounds per square inch in an inert solvent such as acidic methanol at a temperature of 100° C. for a period of 15-24 hours. Suitable catalysts for this hydrogenation reaction include rhodium on alumina and the product is a cyclohexyl substituted derivative of general formula 42. Protection of the amine as the tert-butyl carbamate by treatment with di-tert-butyl dicarbonate and an amine base such as triethylamine, N,N-diisopropylethylamine or the like in an inert organic solvent such as methanol at room temperature for a period of 10-14 hours gives 43.
- As shown in Reaction Scheme K, alcohols of general formula 44 can be converted to the corresponding aldehydes 45 by treatment with a mild oxidizing agent such as tetrapropylammonium perruthenate (TPAP) in catalytic amounts along with a re-oxidant such as 4-methylmorpholine N-oxide (NMMO) in an inert organic solvent such as methylene chloride at a temperature of 0-25° C. for a period of 2-6 hours. Aldehydes 45 may be condensed with an amine such as 2-amino-2-methyl-1-propanol by mixing the two agents in a solvent such as toluene, benzene or the like along with an acid catalyst such as acetic acid, p-toluenesulfonic acid or the like at refluxing temperature to allow for azeotropic removal of the water formed in the reaction which furnishes imine 46. Reduction of 46 to the amino alcohol 47 can be effected by treatment with hydrogen and an appropriate catalyst such as platinum oxide on carbon, palladium on carbon, palladium hydroxide on carbon or the like with or without an acid catalyst such as acetic acid in an inert organic solvent such as acetic acid, methanol, and ethanol at room temperature for a period of 8-24 hours. Compound 47 can be converted to the corresponding oxazolidinone 48 by treatment with an appropriate acylating agent such as triphosgene along with an amine base such as N,N-diisopropylethylmine, triethylamine or the like, and a catalyst such as 4-dimethylaminopyridine in an inert organic solvent such as methylene chloride at a temperature of 0-25° C. for a period of 2-4 hours. Finally, deprotection of the piperidine nitrogen by treatment with a protic acid such as hydrochloric acid, trifluoroacetic acid or the like in an inert organic solvent such as methylene chloride at or around room temperature for.a period of 8-24 hours provides the desired amine 49.
- Reaction Scheme L illustrates general methods for the elaboration of an R1 substituent following assembly of a compound of structural formula I (wherein R1=BOC) as described in reaction Scheme A. The N-BOC protected compound of structural formula I is first deprotected under acidic conditions for instance by treatment with hydrochloric acid in ethyl acetate or using trifluoroacetic acid in methylene chloride. The resulting heterocyclic compound of structural formula I (R1=H) may then be subjected to one of several alkylation strategies known in organic chemistry. For instance, compounds (I) (R1=H) may be utilized in a reductive amination reaction with a suitable carbonyl containing partner (50). The reductive amination is achieved by initial formation of an imine between the amine of formula I (R1=H) and either an aldehyde or ketone of formula 50. The intermediate imine is then treated with a reducing agent capable of reducing carbon-nitrogen double bonds such as sodium cyanoborohydride or sodium triacetoxyborohydride and an alkylated product of structural formula I is produced. Alternatively, a heterocyclic compound of structural formula (I) (R1=H) may be directly alkylated using an alkylating agent such as 51 in a polar aprotic solvent such as DMF. In this reaction, the substituent Z of compound 51 is a good leaving group such as a halide, mesylate or triflate and the product is the compound of structural formula I bearing the R1 substituent.
Preparation of 4-Substituted Piperidine Intermediates - The preparation of other 4-substituted piperidine intermediates of general formula 1 for coupling with the carboxylic acids of general formula 2 as shown in Scheme A below is disclosed in PCT International Application WO 00/74679 (14 Dec. 2000), which is incorporated by reference herein in its entirety. The preparation of additional 4-substituted piperidine intermediates needed to derive the compounds of the present invention is provided below.
PIPERIDINE INTERMEDIATE 1: - To a solution of 4-cyclohexyl 4-formyl-N-(tertbutyloxycarbonyl)-piperidine (2.56 g, 8.68 mmol) in toluene (100 ml) was added acetic acid (2 ml) and 1-amino-1-cyclopentanemethanol (1.0 g, 8.68 mmol). After refluxing by using a Dean-Stark apparatus for 11 hours, the reaction mixture was concentrated. The residue was dissolved in acetic acid (70 ml) and hydrogenated overnight in the presence of platinum oxide (500 mg) under a balloon atmosphere of hydrogen gas. The catalyst was filtered off and solvent was removed to give a colorless oil, which was dissolved in methanol and made basic by addition of NaOH (5N, 4 ml) and concentrated. The residue was partitioned between water and CH2Cl2, the two layers separated, and the aqueous layer extracted with CH2Cl2. The combined organic extracts were washed with brine, dried over MgSO4 and concentrated to give the title compound as a colorless oil (2.1 g). MS: calc. for C23H42N2O3: 394.3; Found: 395 (M+1), 417 (M+Na).
PIPERIDINE INTERMEDIATE 2: - To a solution of Intermediate 1 (2.1 g, 5.33 mmol) in CH2Cl2 (70 ml) at 0° was added DMAP (0.65 g, 5.33 mmol), DIEA (3.76 ml, 21.3 mmol) followed by slow addition of phosgene (4.1 ml, 8.0 mmol). After stirring the reaction mixture for one hour at 0° C., the ice-water bath was removed and the reaction mixture was continued to stir at room temperature overnight. The mixture was diluted with CH2Cl2, washed with water and brine, dried over MgSO4 and concentrated to give crude product, which was purified by column chromatography on silica gel (2% EtOAc/CH2Cl2 to 5% EtOAc/CH2Cl2) to give the title compound as a white solid (1.2 g). MS: calc. for C24H40N2O4: 420.3; Found: (M+1), (M+Na).
PIPERIDINE INTERMEDIATE 3: - To the Intermediate 2 (1.2 g) was added hydrogen chloride (4.0 M in dioxane). The reaction mixture was stirred at room temperature for 30 minutes and the solvent was removed in vacuo to afford the title compound (1.2 g). MS: calc. for C19H32N2O2: 320.3; Found: 321.1 (M+H).
PIPERIDINE INTERMEDIATE 4: -
-
-
- To a suspension of 1-aminocyclopropane-1-carboxylic acid (2.8 g, 27.7 mmol) in THF (20 ml) was added borane-tetrahydrofuran complex (100 ml, 100 mmol) slowly under nitrogen at room temperature. The reaction mixture was stirred at 70° C. overnight, then cooled to 0° C. After addition of methanol (12.2 ml, 300 mmol), the mixture was allowed to stir for 30 minutes. Then acetic acid (1.6 ml, 27.7 mmol) was added. The reaction mixture was concentrated to provide the title compound as a colorless oil (3.0 g).
PIPERIDINE INTERMEDIATE 8: -
- To a solution of Intermediate 8 (0.8 g, 2.18 mmol) in CH2Cl2 (40 ml) at 00was added DMAP (0.266 g, 2.18 mmol), DIEA (1.52 ml, 8.74 mmol) and triphosgene (0.648 g, 2.18 mmol). After stirring the reaction mixture for one hour at 0° C., the ice-water bath was removed and the reaction mixture was allowed to stir at r.t. overnight. The mixture was diluted with CH2Cl2, washed with water and brine, dried over MgSO4 and concentrated to give crude product, which was purified by column chromatography on silica gel (10% CH2Cl2/EtOAc) to give the title compound as a colorless oil (0.13 g). ESI-MS: calc. for C22H36N2O4: 392; Found: 393 (M+1).
PIPERIDINE INTERMEDIATE 10: -
- To a solution of the alcohol (9.41 g, 31.6 mmol) in CH2Cl2 (100 ml) at 0° C. containing molecular sieves (2 g) and 4-methylmorpholine N-oxide (NMMO) (4.449 g, 37.98 mmol) was added TPAP (1.12 g, 3.16 mmol). After stirring the reaction mixture at 0° C. for 0.5 h, the reaction mixture was warmed to room temperature and stirred further for 5 hrs. The reaction mixture was concentrated to half the volume, diluted with hexane (250 ml), filtered through a silica gel pad and concentrated to give pure title compound (9.4 g).
PIPERIDINE INTERMEDIATE 12: - To a solution of the aldehyde (2 g, 6.7 mmol) in toluene (50 ml) was added acetic acid (500 μl). After stirring the reaction mixture at reflux temperature using Dean Stark apparatus for 8 hrs, the mixture was concentrated and dissolved in acetic acid (30 ml). To the mixture was added PtO2 (500 mg) which was stirred under an atmosphere of H2 overnight. The rection mixture was flushed with nitrogen, filtered and concentrated to give the title compound (2 g).
PIPERIDINE WNTRMEDIATE 13: - To a solution of the amino alcohol (4.96 g, 13.47 mmol) in CH2Cl2 at 0° C. containing DIEA (6.98 g, 53.9 mmol), DMAP (1.64 g, 13.47 mmol) was added slowly a toluene solution of phosgene (1.93M, 10.47 ml, 20.21 mmol). After stirring the reaction mixture for 1 hr at 0° C., the temperature was raised to room temperature and stirred further for 2 hrs. The reaction mixture was diluted with CH2Cl2, washed with water, brine, dried and concentrated. The residue was purified by column chromatography over silica gel (5% EtOAc/CH2Cl2) to give pure product (3.95 g).
PIPERIDINE INTERMEDIATE 14: - To a solution of Intermediate 13 (3.95 g) in CH2Cl2 was added 5 ml of a saturated HCl solution in EtOAc. After stirring the reaction mixture for 30 min at room temperature, the solvent was removed and the residue lyophilized from a benzene/methanol solution to afford the title compound (3.85 g).
PIPERIDINE INTERMEDIATE 15:
Step A: - To a 500-mL round-bottom flask equipped with a Dean Stark trap and magnetic stirrer was added 1-Boc4-piperidone (M-1) (20.0 g, 100 mmol), cyanoacetic acid ethyl ester (10.6 mL, 100 mmol), NH4OAc (0.77 g, 10 mmol), HOAc (0.57 mL, 10 mmol), and benzene (200 mL). The mixture was stirred at reflux temperature overnight. After cooling to room temperature, the volatiles were removed under reduced pressure, and the residue was purified by flash column chromatography with 20% EtOAc in hexane as eluent to give M-2 as white solid (21.6 g). ESI-MS: Calcd. for C15H22N2O4: 294; Found: 317 (M++Na).
- Step B:
- To a suspension of CuCN (3.28 g, 36.3 mmol) in dry THF (100 mL) was added cyclohexylmagnesium chloride (36.6 mL, 73.2 mmol, 2.0 N in ether). The resulting suspension was stirred at −50° C. for 30 min and then warmed up to room temperature. After stirring for 1 h, a solution of compound M-1 (5.40 g, 18.3 mmol) in 50 mL of THF was cannulated into the mixture over 2 min. The mixture was stirred at −50° C. for 1 h and then kept at −25° C. overnight. The mixture was slowly warmed to −10° C. and quenched with saturated aqueous NH4Cl (50 mL) and water (50 mL), extracted with EtOAc (2×250 mL). The combined organic extracts were washed three times with water, 1 N HCl, saturated aqueous NaHCO3, dried over MgSO4, filtered, and evaporated to give compound M-3 as a colorless oil (7.12 g). ESI-MS: Calcd. for C2lH34N2O4: 378; Found: 401 (M++Na).
- Step C:
- A mixture of M-3 (6.91 g, 18.3 mmol), LiCl (1.09 g, 25.6 mmol), water (1.40 mL), and DMSO (100 mL) was stirred at 160° C. for 1 h. After cooling to room temperature, the mixture was poured into water (800 mL) and extracted with Et2O (4×250 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4, filtered, and concentrated. The residue was purified by flash column chromatography with 20% EtOAc in hexane as eluent to give compound M4 as a colorless oil (2.83 g). ESI-MS: Calcd. for C18H30N2O2: 306; Found: 329 (M++Na).
- Step D:
- To a solution of 4.0 N HCl in dioxane (30 mL, 120 mmol) was added M-4 (2.60 g, 8.48 mmol). The mixture was stirred at room temperature for 1 h and the volatiles were removed under reduced pressure. The residue was dissolved in a concentrated HCl (100 mL). The mixture was stirred overnight at reflux temperature. After cooling to room temperature, the volatiles were removed under reduced pressure to give the compound M-5 as a yellow solid (2.42 g). ESI-MS: Calcd. for C13H23NO2: 225; Found: 226 (M++1)
- Step E:
- To a solution of compound M-5 (1.91 g, 8.48 mmol) in dioxane (50 mL) and water (50 mL, containing 5.0 mL 5.0 N NaOH, 25 mmol) was added di-tert-butyl dicarbonate (2.22 g, 10.2 mmol). The mixture was stirred at room temperature for 4 h and the volatiles were removed under reduced pressure. The residue was quenched with a mixture of EtOAc (200 mL) and 1 N HCl (50 mL). The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over anhydrous Na2SO4, filtered, and evaporated to give M-6 as a white solid (2.97 g). ESI-MS: Calcd. for C18H31NO4: 325; Found: 326 (M++1)
- Step F:
- Compound M-6 (1.0 g, 3.07 mmol) was dissolved in 30 mL of methylene chloride, and then diethylamine (0.38 mL, 3.68 mmol), DMAP (0.037 g, 0.307 mmol), EDC (1.18 g, 6.14 mmol) were added. The resulting mixture was stirred at room temperature overnight, and then diluted with 20 mL of CH2Cl2 and washed with 20 mL of 1N HCl solution, 20 mL of saturated NaHCO3 solution, 20 mL of H2O, and 20 mL of saturated NaCl solution. The organic phase was dried over MgSO4, filtered, and evaporated to give M-7 (1.16 g). ESI-MS: Calcd. for C22H40N2O3: 380; Found: 381 (M++1)
- Step G:
- To a solution of 4.0 N HCl in dioxane (30 mL, 120 mmol) was added M-7 (1.16 g, 3.07 mmol). The mixture was stirred at room temperature for 1 h and the volatiles were removed under reduced pressure to give M-8 (0.99 g). ESI-MS: Calcd. for C17H32N2O: 280; Found: 281 (M++1)
PIPERDINE INTERMEDIATE 16:
Step A: - To a solution of M-6 (0.18 g, 0.554 mmol) in 8.0 mL of dry THF was added borane-dimethyl sulfide complex (1.10 mL, 2.0 N in THF, 2.20 mmol). The mixture was stirred overnight and then quenched with MeOH. The volatiles were removed under reduced pressure to give N-1 (0.11 g). ESI-MS: Calcd. for Cl18H33NO3: 311; Found: 334 (M++Na).
- Step B:
- To a suspension of N-1 (0.11 g, 0.347 mmol), 4-methylmorpholine N-oxide (0.049 mg, 0.416 mmol), and molecular sieve in dry methylene chloride (5.0 mL) was added tetrapropylammonium perruthenate (0.012 g, 0.035 mmol). After stirring for 30 min, the mixture was filtered through a pad of silica gel and washed with ether. The organic solution was evaporated to give compound N-2 as an oil (0.11 g). ESI-MS: Calcd. for C18H31NO3: 309; Found: 332 (M++Na).
- Step C:
- To a solution of N-2 (0.11 g, 0.35 mmol) in 30 mL of methylene chloride was added diethylamine (0.072 mL, 0.70 mmol) and molecular sieves. After stirring for about 5 min, Na(OAc)3BH (0.22 mg, 1.05 mmol) was added and the mixture was stirred for 6 h at room temperature. After filtration of molecular sieves, the mixture was diluted with methylene chloride, washed twice with saturated aqueous NaHCO3 solution, dried over anhydrous Na2SO4, filtered, and evaporated to give N-3 (0.080 g). ESI-MS: Calcd. for C22H42N2O2: 366; Found: 367 (M++1).
- Step D:
- To a solution of 4.0 N HCl in dioxane (10 mL, 40 mmol) was added compound N-3 (0.080 g, 0.218 mmol). The mixture was stirred at room temperature for 1 h and the volatiles were removed under reduced pressure to give N-4 (0.075 g). ESI-MS: Calcd. for C17H34N2: 266; Found: 227 (M++1)
PIPERIDINE INTERMEDIATES 17-21:
Step A: - To a stirred solution of tert-butyl 4-cyclohexyl-4-{[(methylsulfonyl)oxy]methyl}piperidine-1-carboxylate (O-1) (3 g, 8.0 mmol) in DMF (30 mL) at room temperature was added sodium 2-methyl-2-propanethiolate (0.78 g, 8.0 mmol). The resultant suspension was stirred at 60° C. for 18 h and then poured into water (150 mL) and extracted with diethyl ether (3×100 mL). The combined organic extracts were washed with brine, dried over Na2SO4 and concentrated. Flash chromatography over silica (5% EtOAc in hexane) yielded O-2 (W=iPr) as a clear colorless oil (2.4 g). Mass Spectrum (ESI): calcd for C20H37NO2S: 355.25; Found: 378 (M++Na).
- Step B:
- To a stirred solution of O-2 (W=iPr) (2.4 g, 6.7 mmol) in methylene chloride (10 mL) at room temperature was added HCl (5N in dioxane) (50 mL). The resultant solution Was stirred at room temperature for 1 h. Volatiles were removed in vacuo to furnish O-3 (W=iPr) as a clear colorless gum (1.9 g). Mass Spectrum (ESI): calcd for C15H29NS: 255.20; Found: 256 (M++1).
- The piperidine intermediates O-3 (W=Me, Et, n-Pr, cyclopropylmethyl, and cyclobutyl) were prepared in an analogous manner to the one described for the preparation of 4-cyclohexyl-4-[(isopropylthio)methyl]piperidinium chloride (O-3, W=iPr).
- O-3 (W=Et): Mass Spectrum (ESI): calcd for C14H27NS: 241.19; Found: 242 (M++1).
- O-3 (W=Me): Mass Spectrum (ESI): calcd for C13H25NS: 227.17; Found: 228 (M++1).
- O-3 (W=n-Pr): Mass Spectrum (ESI): calcd for C15H29NS: 255.20; Found: 256 (M++1).
- O-3 (W=cyclopropylmethyl): Mass Spectrum (ESI): calcd for C16H29NS: 267.20; Found: 268 (M++1).
- O-3 (W=cyclobutylthio): Mass Spectrum (ESI): calcd for C16H29NS: 267.20; Found: 268 (M++1).
PIPERIDINE INTERMEDIATE 22:
Step A: - To a solution of P-1 (0.745 g, 2.072 mmol) in methylene chloride (40 mL) at 0° C. was added DMP (1 mL) followed by the dropwise addition of oxalyl chloride (1.14 mL of 2M solution in methylene chloride, 2.28 mmol). The reaction was warmned to room temperature over one h, then re-cooled to 0° C. before transferring to a rapidly stirring saturated aqueous ammonium hydroxide solution (15 mL). The resulting mixture was then poured into methylene chloride (40 mnL) and diluted with 1N NaOH (40 mL). The layers were separated and the aqueous phase was extracted three times with methylene chloride. The combined organics were then washed with water and brine, dried (sodium sulfate) and the volatiles removed in vacuo. Flash chromatography over silica (25% acetone/methylene chloride) yielded P-2 as a white foam (0.615 g). Mass Spectrum (ESI): calcd for C21H30N2O3: 358.23; Found 359 (M++1).
- Step B:
- A solution of P-2 (0.150 g, 0.84 mmol) in N,N-dimethylformamide dimethyl acetal (1 mL) was refluxed at 120° C. for 2 h, then cooled to room temperature. The reaction was then concentrated and the residue was dissolved in acetic acid (1 mL). Ethyl hydrazine was then added and the reaction was heated at 95° C. for 3.5 h. The volatiles were then removed in vacuo and the reaction was partitioned between sodium bicarbonate and ethyl acetate. The organics were collected, washed with water and brine, dried (sodium sulfate), and the volatiles removed in vacuo. Purification by flash chromatography (0-15% acetone in methylene chloride) yielded P-3 as a pale yellow oil (79 mg). Mass Spectrum (ESI): calcd for C24H34N4O2: 410.27; Found 411 (M++1).
- Step C:
- To a solution of P-3 (79 mg) in methylene chloride was added 30% HBr in acetic acid (5 mL) and the reaction was stirred for two hours. The volatiles were removed, and the reaction was partitioned between 1N NaOH and methylene chloride. The organics were dried (sodium sulfate) and evaporated to afford P-4 as an oil (59 mg). Mass Spectrum (ESI): calcd for C16H28N4: 276.23; Found 277 (M++1).
PIPERIDINE INTERMEDIATE 23:
Step A: - To a stirred solution of Q-1 (1.33 g, 4.5 mmol) in methylene chloride (12 mL) was added DMAP (0.14 g, 1.1 mmol) and 3-chloropivaloyl chloride (0.87 g, 5.6 mmol). The mixture was stirred 1 h, diluted with methylene chloride, washed with 1N HCl, the organic layer dried over MgSO4 and the solvent removed in vacuo to provide 2.1 g of Q-2 as an oil. ESI-MS calc. for C22H39ClN2O3: 414; Found 415 (M+H).
- Step B:
- To a stirred solution of Q-1 (2.25 g, 5.42 mmol) in DMF (15 mL) was added NaH (0.52 g, 21.7 mmol) and heated to 70° C. for 16 h. The mixture was quenched with MeOH and then water. The mixture was concentrated, diluted with EtOAc, washed with 2N HCl, brine, dried over MgSO4 and evaporated. The product was purified by preparative HPLC (C18, 20×100 mm, 50-100% acetonitrile) to provide 850 mg of Q-3 as a yellow solid. ESI-MS calc. for C22H38N2O3: 378; Found 379 (M+H).
- Step C:
-
- Compound R-1 was synthesized in a manner similar as Q-2, but using 3-chloropropionyl chloride. ESI-MS calc. for C20H35ClN2O3: 386; Found 387 (M+H).
- Step B:
- Compound R-2 was synthesized from R-1 in a manner similar as Q-3. ESI-MS caic. for C20H34N2O3: 350; Found 351 (M+H).
- Step C:
-
- Compound S-1 was synthesized in a manner similar as Q-2, but using 4-chlorobutyryl chloride. ESI-MS calc. for C21H37ClN2O3: 400; Found 401 (M+H).
- Step B:
- Compound S-2 was synthesized from S-2 in a manner similar to Q-3. ESI-MS calc. for C21H36N2O3: 364; Found 365 (M+H).
- Step C:
-
- To a stirred solution of S-2 (2.3 g, 6.3 mmol) in THF (20 mL) cooled to −78° C. was added lithium diisopropylamide (LDA) (2M solution in THF) (3 eq) slowly via syringe over 20 min and stirring was continued for 1 h. Iodomethane was added and the mixture was stirred for 1 h. The reaction mixture was warmed to room temperatur and stirring was continued an additional 30 min. Subsequently, the reaction mixture was cooled again to −45° C. and another 1.5 eq. of LDA added, the mixture was stirred 15 min, then an additional 1 eq. of iodomethane was introduced to the reaction mixture and the stirring continued 1 h. The reaction was quenched with water, concentrated and partitioned between EtOAc/2N HCl, washed with brine, dried over MgSO4, filtered and concentrated. The residue was chromatographed (silica, 1:4 EtOAc/hexane) to provide 720 mg of T-1 as a white solid. ESI-MS caic. for C23H40N2O3: 392; Found 393 (M+H).
- Step B:
- Compound T-2 was prepared from T-1 in a manner similar to Q-4. ESI-MS calc. for C18H32N2O: 292; Found 293 (M+H).
- The following Examples are provided to illustrate the invention and are not to be construed as limiting the scope of the invention in any manner.
-
- Preparation of tert-butyl (±)-trans4-({4-cyclohexyl-4-[(4,4-dimethyl-2-oxo-1,3-oxazolidin-3-yl)methyl]piperidin-1-yl}carbonyl)-3-(4-fluorophenyl)piperidine-1-carboxylate
- 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (47.7 mg, 0.249 mmol) was added to a stirred mixture of 4-cyclohexyl-4-[(4,4-dimethyl-2-oxo-1,3-oxazolidin-3-yl)methyl]piperidinium chloride (54.9 mg, 0.166 mmol), (±)-trans-1-(tert-butoxycarbonyl)-3-(4-fluorophenyl)-piperidine-4-carboxylic acid (70.7 mg, 0.216 mmol), 1-hydroxy-benzotriazole (33.6 mg, 0.249 mmol) and N-methylmorpholine (54.8 μL, 0.498 mmol) in methylene chloride (2.1 mL) at ambient temperature. After approximately 18 h, the reaction mixture was poured into saturated aqueous sodium bicarbonate and extracted three times with methylene chloride. The combined organic extracts were washed with brine, dried (Na2SO4) and concentrated in vacuo. The crude residue was used without further purification in the subsequent reaction.
- Step B:
-
- Preparation of (±)-trans-4-({4-cyclohexyl-4-[(4,4-dimethyl-2-oxo-1,3-oxazolidin-3-yl)methyl]piperidin-1-yl}carbonyl)-3-(4-fluorophenyl)piperidinium trifluoroacetate
- A saturated solution of hydrogen chloride in ethyl acetate (2.0 mL) was added to a solution of crude product from step A in methylene chloride (1.0 mL) at room temperature. After 18 h, the volatiles were evaporated in vacuo, and the crude residue purified by preparative reversed phase high pressure liquid chromatography on a YMC Pack Pro C18 column (gradient elution: 0-100% acetonitrile/water as eluent, 0.1% TFA as modifier) to give the title compound as an off-white solid [MS: m/z 500 (MH+)].
- Step C:
-
- Preparation of (±)-trans-4-({4-cyclohexyl-4-[(4,4-dimethyl-2-oxo-1,3-oxazolidin-3-yl)methyl]piperidin-1-yl}carbonyl)-3-(4-fluorophenyl)-1-methylpiperidinium trifluoroacetate
- Sodium cyanoborohydride (12.6 mg, 0.200 mmol) was added to a vigorously stirred suspension of the product of step B (20.0 mg, 0.040 mmol), paraformaldehyde (20.0 mg), 4 Å sieves (20.0 mg) and acetic acid (45.8 μL, 0.800 mmol) in tetrahydrofuran/methanol (1:3, 400 μL) at ambient temperature. After 18 h, the reaction mixture was poured into saturated aqueous sodium bicarbonate and extracted three times with methylene chloride. The combined organic extracts were washed with brine, dried (Na2SO4) and concentrated in vacuo. Purification of the crude residue by preparative reversed phase high pressure liquid chromatography on YMC Pack Pro C18 column (gradient elution; 0-100% acetonitrile/water as eluent, 0.1% TFA as modifier) provided the title compound (12 mg) as an off-white solid (12.0 mg); MS: m/z 514(MH+).
- Following a procedure similar to that described above for Example 1, the following compounds can be prepared:
Relative stereo. Parent Ex. # (3,4) R1 R2 Ion m/z 2 trans (RS,RS) —H 4-fluorophenyl 500 3 trans (S,S) —H 4-fluorophenyl 500 4 trans (R,R) —H 4-fluorophenyl 500 5 trans (RS,RS) —CH2C(O)Ot-Bu 4-fluorophenyl 614 6 trans (RS,RS) —CH2C(O)OH 4-fluorophenyl 558 7 trans (R,R) isopropyl 4-fluorophenyl 542 8 trans (R,R) methyl 4-fluorophenyl 514 9 trans (R,R) n-propyl 4-fluorophenyl 542 10 trans (R,R) ethyl 4-fluorophenyl 528 11 trans (R,R) CH(CH3)CH2OMe 4-fluorophenyl 572 12 trans (RS,RS) —H 4-fluorophenyl 516 13 trans (RS,RS) —H 4-methoxyphenyl 512 14 trans (S,S) methyl 4-chlorophenyl 530 15 trans (R,R) methyl 4-chlorophenyl 530 16 trans (RS,RS) —H 4-methylphenyl 496 17 trans (RS,RS) —H 4-(4′-chloro- 592 phenyl)phenyl 18 trans (RS,RS) isopropyl 4-chlorophenyl 558 19 trans (R,R) isopropyl 4-chlorophenyl 559 20 trans (S,S) isopropyl 4-chlorophenyl 559 21 trans (RS,RS) cyclobutyl 4-chlorophenyl 570 22 trans (RS,RS) n-propyl 4-chlorophenyl 558 23 trans (RS,RS) ethyl 4-chlorophenyl 544 24 trans (R,R) —C(═NH)NH2 4-fluorophenyl 543 25 trans (R,R) —C(═NH)NH2 4-chlorophenyl 559 26 trans (R,R) —CH2CH2NH2 4-chlorophenyl 560 27 trans (R,R) —CH2CH2NH2 4-fluorophenyl 544 28 trans (RS,RS) —H 4-chloro-3- 534 fluorophenyl 29 trans (RS,RS) isopropyl 4-chloro-3- 576 fluorophenyl 30 trans (R,R) —C(═NH)CH3 4-fluorophenyl 541 31 trans (RS,RS) —H 3-chloro-4- 535 fluorophenyl 32 trans (RS,RS) isopropyl 3-chloro-4- 577 fluorophenyl 33 trans (RS,RS) ethyl 3-chloro-4- fluorophenyl 34 trans (RS,RS) —H 2,4-dichloro- 551 phenyl 35 trans (RS,RS) isopropyl 2,4-dichloro- 593 phenyl 36 trans (RS,RS) —H 3,4-dichloro- 551 phenyl 37 trans (RS,RS) isopropyl 3,4-dichloro- 593 phenyl 38 trans (RS,RS) —H 2,4-dichloro- 519 phenyl 39 trans (RS,RS) isopropyl 2,4-dichloro- 561 phenyl 40 trans (RS,RS) ethyl 2,4-dichloro- 546 phenyl 41 trans (RS,RS) —H 3,4-dichloro- 519 phenyl 42 trans (RS,RS) isopropyl 3,4-dichloro- 560 phenyl 43 trans (RS,RS) ethyl 3,4-dichloro- 546 phenyl 44 trans (RS,RS) —H 4-chloro-2- 535 fluorophenyl 45 trans (RS,RS) isopropyl 4-chloro-2- 577 fluorophenyl 46 trans (RS,RS) ethyl 4-chloro-2- 562 fluorophenyl 47 trans (R,R) —CH2CF3 4-chlorophenyl 582 48 trans (R,R) —CH(CH3)CH2CH3 4-fluorophenyl 556 49 trans (RS,RS) —CH2CH2N(CH3)2 4-chlorophenyl 587 -
- Preparation of 4-(ethoxycarbonyl)-3-oxopiperidinium chloride
- A mixture of ethyl 1-benzyl-3-oxopiderine-4-carboxylate hydrochloride (20.0 g, 67.0 mmol) and 10% Pd/C (2.00 g; Degussa Type E101) in ethanol/water (1:1; 300 mL) was hydrogenated at 50 psi for 4 h. The resulting mixture was filtered through celite® and the filtrate evaporated in vacuo to give the title compound as a brown solid (67.0 mmol).
- Step B:
-
- Preparation of 1-tert-butyl 4-ethyl 3-oxopiperidine-1,4-dicarboxylate
- Di-tert-butyl-dicarbonate (17.5. g, 80.4 mmol) was added in one portion to a stirred mixture of the crude product of step A (67.0 mmol), sodium bicarbonate (6.20 g, 73.7 rnmol) and sodium chloride (11.7 g, 201 mmol) in water/chloroform (1:2; 300 mL) and the resulting mixture heated at 60° C. for 3 h. After cooling to room temperature, the organic phase was separated and the aqueous phase extracted three times with chloroform. The combined organic extracts were washed with brine, dried (MgSO4) and concentrated in vacuo. The crude residue (27.1 g) was used without further purification in the subsequent reaction.
- Step C:
-
- Preparation of 1-tert-butyl 4-ethyl 5-{[(trifluoromethyl)-sulfonyl]oxy}-3,6-dihydropyridine-1,4(2H)-dicarboxylate
- Trifluoromethanesulfonic anhydride (12.4 mL, 73.7 mmol) was added over approximately 0.1 h, via syringe, to a stirred solution of the product of step B (27.1 g, 67.0 mmol) and N,N-diisopropylethylamine (14.0 mL, 80.4 mmol) in methylene chloride (250 mL) at −78° C. After allowing to warm to ambient temperature overnight, the reaction mixture was quenched with saturated aqueous sodium bicarbonate, poured into water and extracted three times with methylene chloride. The combined organic extracts were washed with brine, dried (MgSO4) and concentrated in vacuo. Purification of the residue by flash chromatography on silica gel (gradient elution; 0-20% ethyl acetate/hexanes as eluent) afforded the title compound as an amber colored oil (17.6 g).
- Step D:
-
- Preparation of 1-tert-butyl 3-ethyl 4-(4-chlorophenyl)-5,6-dihydropyridine-1,3(2H)-dicarboxylate
- A vigorously stirred suspension of the product of step C (1.00 g, 2.48 mmol), 4-chlorophenylboronic acid (0.427 g, 2.73 mmol) and [1,1′-bis(diphenylphosphino)-ferrocene)dichloropalladium(II) (0.102 g, 0.124 mmol) in toluene/ethanol (3:2; 24.0 mL) was degassed via three vacuum/nitrogen ingress cycles and then heated to approximately 80° C. Aqueous 2 M sodium carbonate (3.10 mL, 6.20 mmol) was added dropwise via syringe and the resulting mixture maintained at reflux overnight. After cooling to ambient temperature, the reaction mixture was diluted with ethyl acetate and filtered through celite®. The filtrate was poured into water and extracted three times with ethyl acetate. The combined organic extracts were washed with brine, dried (MgSO4) and concentrated in vacuo. Purification of the residue by medium pressure liquid chromatography on silica gel (gradient elution; 0-15% ethyl acetate/hexanes as eluent) fumished the title compound as a colorless oil (0.828 g).
- Step E:
-
- Preparation of (±)-1-tert-butyl 3-ethyl 4-(4-chloro-phenyl)piperidine-1,3-dicarboxylate
- Magnesium metal (1.23 g, 51.0 mmol) was added in three portions over approximately 0.3 h to a stirred solution of the product of step D (1.85 g, 5.1 mmol) in methanol (40 mL) at ambient temperature. After stirring overnight, the reaction mixture was poured into 1 N hydrochloric acid (100 mL) and extracted three times with ethyl acetate. The combined organic extracts were washed with saturated sodium bicarbonate, brine, dried (MgSO4) and concentrated in vacuo. Purification of the residue by medium pressure liquid chromatography on silica gel (gradient elution; 0-25% ethyl acetate/hexanes as eluent) provided the title compound (mixture of cis/trans diastereoisomers) as a colorless oil (1.5 g).
- Step F:
-
- Preparation of (±)-7-trans-1-(tert-butoxycarbonyl)-3-(4-chlorophenyl)piperidine4-carboxylic acid
- Excess sodium metal was added to a stirred solution of the product of step E (1.5 g, 4.1 mmol) in methanol (20 mL) at ambient temperature, and the resulting solution heated to 75° C. After approximately 1 h, 5 M sodium hydroxide (5.0 mL) was added and the reaction mixture heated to 100° C. for an additional hour. After cooling to room temperature, the reaction mixture was acidified to pH 5 with 2 N hydrochloric acid and extracted three times with methylene chloride. The combined organic extracts were washed with brine, dried (MgSO4) and concentrated in vacuo, to give the title compound as a colorless solid (1.3 g). The crude product was used without further purification in the subsequent reaction.
- Step G:
-
- Preparation of (±)-trans-3-(4-chlorophenyl)-4-{[4-cyclohexyl-4-(ethoxycarbonyl)piperidin-1-yl]carbonyl}piperidinium trifluoroacetate
- 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.034 g, 0.177 mmol) was added to a stirred mixture of the crude product of step F (0.040 g, 0.118 mmol), 4-cyclohexyl-4-(ethoxycarbonyl)piperidinium chloride (0.049 g, 0.177 mmol), 1-hydroxybenzotriazole (0.024 g, 0.177 mmol) and N-methylmorpholine (0.020 mL, 0.177 mmol) in methylene chloride (0.5 mL) at ambient temperature. After approximately 18 h, the reaction mixture was poured into water/saturated sodium bicarbonate (1:1) and extracted three times with methylene chloride. The combined organic extracts were washed with brine, dried (Na2SO4) and concentrated in vacuo. A saturated solution of hydrochloric acid in ethyl acetate (1.0 mL) was added to a solution of the crude amide in methylene chloride (1.0 mL) at room temperature. After 18 h, the volatiles were evaporated in vacuo, and the crude residue purified by preparative reversed phase high pressure liquid chromatography on YMC Pack Pro C18 phase (gradient elution; 0-100% acetonitrile/water as eluent, 0.1% TFA as modifier) to give the title compound (0.034 g) as an off-white solid [MS: m/z 461 (MH+)].
- Step H:
-
- Preparation of (±)-trans-3-(4-chlorophenyl)4-{[4-cyclohexyl-4-(ethoxycarbonyl)piperidin-1-yl]carbonyl}-1-isopropylpiperidinium trifluoroacetate
- Sodium triacetoxyborohydride (34.5 mg, 0.163 mmol) was added to a stirred solution of the product of step G (25.0 mg, 54.2 mmol), acetone (23.9 mL, 0.325 mmol) and acetic acid (9.3 mL, 0.163 mmol) in methylene chloride (0.5 mL) at ambient temperature. After 18 h, the reaction mixture was poured into saturated aqueous sodium bicarbonate and extracted three times with methylene chloride. The combined organic extracts were washed with brine, dried (Na2SO4) and concentrated in vacuo. Purification of the residue by preparative reversed phase high pressure liquid chromatography on YMC Pack Pro C18 phase (gradient elution; 0-100% acetonitrile/water as eluent, 0.1% TFA as modifier) afforded the title compound as an off-white solid [MS: m/z 503 (MH+)].
- Following a procedure similar to that described above for Example 50, the following compounds can be prepared:
Relativestereo. Parent Ex. # (3,4) R1 R3 X Ion m/z 51 trans (RS,RS) —H —F 472 52 trans (R,R) —H —F 472 53 trans (RS,RS) —H —Cl 488 54 trans (RS,RS) —H —F 445 55 trans (S,S) —H —F 445 56 trans (R,R) —H —F 445 57 trans (RS,RS) —H —F 461 58 trans (RS,RS) —H —F 493 59 trans (RS,RS) —H —F 454 60 trans (R,R) —H —F 454 61 trans (RS,RS) —H —Cl 470 62 trans (R,R) —H —F 486 63 trans (RS,RS) —H —Cl 538 64 trans (RS,RS) methyl —Cl 65 trans (RS,RS) —H —H 427 66 trans (R,R) isopropyl —F 487 67 trans (RS,RS) isopropyl —Cl 530 68 trans (R,R) isopropyl —F 514 69 trans (R,R) isopropyl —F 496 70 trans (S,S) —H —F 471 71 trans (RS,RS) —H —Cl 461 72 trans (RS,RS) —H —CF3 495 73 trans (RS,RS) —H —CF3 522 74 trans (RS,RS) —H —CF3 504 75 trans (R,R) —H —F 470 76 trans (RS,RS) —H —Cl 486 77 trans (R,R) —F 548 78 trans (R,R) —H —F 486 79 trans (RS,RS) —H —Cl 502 80 trans (R,R) —H —F 499 81 trans (RS,RS) —H —Cl 515 82 trans (R,R) —H —F 493 83 trans (R,R) —H —F 507 84 trans (R,R) —H —F 488 85 trans (RS,RS) —H —F 497 86 trans (RS,RS) —H —F 481 -
- Preparation of 4-(2-fluorophenyl)-1-methylpiperidine-4-carbonitrile
- N-Methyl-bis-(2′-chloroethyl)amine hydrochloride (8.36 g; 43.1 mmol) was suspended in 60 mL of methylene chloride followed by the addition of 1 eq. of triethylamine (6.0 mL). After 45 min, the mixture was filtered on a medium-pore fritted Buchner funnel to remove the triethylammonium chloride salt. The filtrate was concentrated in vacuo resulting in the precipitation of additional salt. The filtration was repeated 2 more times to provide pure N-methyl-bis-(2′-chloroethyl)amine. The amine was combined with (2-fluorophenyl)acetonitrile (8.01 g; 43.1 mmol) and tetra-n-butylammonium sulfate (1.46 g; 4.31 mmol) followed by the addition of toluene (15 mL). To this solution was added 12.5 N sodium hydroxide dropwise over 10 min. The reaction mixture was heated to 75° C. until the starting material had been consumed, poured into H2O (100 mL) and extracted three times with 200 mL methylene chloride. The combined organic extracts were washed with brine, dried (Na2SO4), filtered and concentrated in vacuo. The crude residue was purified on silica gel by first elution with 50:50 ethyl acetate/hexanes followed by 95:5 methylene chloride/methanol (containing +10% v/v ammonium hydroxide) to provide the titled compound
- Step B:
-
- Preparation of 4-carboxy-4-(2-fluorophenyl)-1-methyl-piperidinium chloride
- The product of Step A (4.5 g; 20.6 mmol) was heated to 135° C. in concentrated hydrochloric acid (25 mL). The volatiles were removed in vacuo which provided the crude product. The residue was suspended in toluene (20 mL) and heated under reduced pressure to remove the toluene. This process was repeated three times which furnished the title compound as a powder.
- Step C:
-
- Preparation of N-(tert-butyl)-4-(2-fluorophenyl)-1-methyl-piperidine-4-carboxamide
- To a suspension of the product of the previous step (1.0 g; 3.63 mmol) in methylene chloride (15 mL) was added 4 drops of N,N-dimethylformamide and the mixture was cooled to 0° C. A solution of oxalyl chloride (2.0 M in methylene chloride; 1.25 eq; 2.27 mL) was added dropwise over 10 min. After an additional 30 min at 0° C., the reaction mixture was allowed to warm to ambient temperature for 2 h at which time tert-butyl amine (5 eq.; 1.92 mL) was added dropwise. The resultant mixture was maintained at room temperature for 18 h and then quenched with a saturated solution of sodium bicarbonate. The aqueous layer was extracted three times with methylene chloride. The combined extracts were washed with brine, dried (Na2SO4), filtered and concentrated in vacuo. The crude residue was purified on silica gel and eluted with 95:5 methylene chloride/methanol (containing 10% v/v ammonium hydroxide) which provided 550 mg of the title compound.
- Step D:
-
- Preparation of N-(tert-butyl)-4-(2-fluorophenyl)piperidine-4-carboxamide
- To a solution of the product of step C (550 mg; 1.88 mmol) in toluene (10 mL) was added 1-chloroethyl chloroformate (1.5 mmol; 1.62mL) and the reaction was heated to reflux for 36 h. The volatiles were removed in vacuo, the crude carbamate was then dissolved in methanol (10 mL) and the resultant solution was heated to reflux for 2 h. The volatiles were removed in vacuo, the crude amine was dissolved in methylene chloride (100 mL) and the solution was washed with a saturated solution of sodium bicarbonate, brine and the compound dried (Na2SO4). The drying agent was removed by filtration and the volatiles were removed in vacuo to furnish the crude product which was purified on silica gel using a gradient elution (95:5 then 90:10 methylene chloride/methanol (containing 10% v/v ammonium hydroxide) to afford the title compound.
- Step E:
-
- Preparation of (3R,4R)-4-{[4-[(tert-butylamino)carbonyl]-4-(2-fluorophenyl)piperidin-1-yl]carbonyl}-3-(4-fluorophenyl)-piperidinium chloride
- The product of step D (70 mg) was combined with (3R,4R)-1-(tert-butoxycarbonyl)-3-(4-fluorophenyl)piperidine-4-carboxylic acid (0.1971 mmol; 55 mg), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (57 mg) and 1-hydroxybenzotriazole (40 mg) to which methylene chloride (2.5 mL) was added. The reaction mixture was maintained at ambient temperature for 24 h. The reaction mixture was diluted with methylene chloride (100 mL),washed with a saturated solution of sodium bicarbonate, brine and dried (Na2SO4). The drying agent was removed by filtration and the volatiles were removed in vacuo to furnish the crude N-BOC protected product which was purified on silica gel (eluted with 50:50 to 75:25 ethyl acetate:hexane). The N-BOC protected product was dissolved in ethyl acetate (2 mL) and a saturated solution of hydrogen chloride in ethyl acetate (2 mL) was added. The reaction mixture was maintained at ambient temperature for 90 min. The volatiles were removed in vacuo, the crude product was triturated twice with diethyl ether, and the purified product was dried in vacuo to provide 55 mg of the title compound [MS: m/z 484 (MH+)].
- Following a procedure similar to that described above for Example 87, the following compounds were prepared:
Relative stereo. Parent Ex. # (3,4) R3 X Y Ion m/z 88 trans (RS,RS) —F phenyl phenyl 443 89 trans (RS,RS) —F phenyl —H 367 90 trans (RS,RS) —F —H 381 91 trans (S,S) —F 439 92 trans (S,S) —F 389 93 trans (S,S) —F methyl 363 94 trans (S,S) —F —H 349 95 trans (S,S) —F phenyl 466 96 trans (RS,RS) —Cl 2-fluorophenyl 500 97 trans (R,R) —F 2-fluorophenyl 498 98 trans (RS,RS) —Cl 2-fluorophenyl 514 99 trans (R,R) —F 4-iodophenyl 592 100 trans (RS,RS) —H 4-iodophenyl 608 101 trans (RS,RS) methyl 4-(CF3)phenyl 534 102 trans (RS,RS) —H 4-(CF3)phenyl 550 103 trans (R,R) isopropyl 4-chlorophenyl 500 104 trans (RS,RS) isopropyl 4-chlorophenyl 516 105 trans (R,R) isopropyl 3,4-difluorophenyl 502 106 trans (R,R) isopropyl 3,4-difluorophenyl 518 107 trans (S,S) —H 3-chlorophenyl 500 108 trans (RS,RS) —H 2,4-dichlorophenyl 548 109 trans (RS,RS) —F 3-methoxyphenyl 510 -
- Step A:
- Preparation of 3-(ethoxycarbonyl)-4-oxopiperidinium chloride
- A mixture of ethyl 1-benzyl-4-oxopidenrne-3-carboxylate hydrochloride (25.0 g, 84.0 mmol) and 10% Pd/C (2.5 g Degussa Type E101) in ethanol/water (1:1; 300 mL) was hydrogenated at 50 psi for 4 h. The resulting mixture was filtered through celite® and the filtrate evaporated in vacuo to give the title compound as a brown solid (84 mmol).
- Step B:
-
- Preparation of 1-tert-butyl 3-ethyl 4-oxopiperidine-1,3-dicarboxylate
- Di-tert-butyldicarbonate (21.2 g, 97.0 mmol) was added in one portion to a stirred mixture of the crude product of step A (84.0 mmol), sodium bicarbonate (7.7 g, 92.0 mmol) and sodium chloride (14.7 g, 252 mmol) in water/chloroform (1:2; 300 mL) and the resulting mixture heated at 60° C. for 3 h. After cooling to room temperature, the organic phase was separated and the aqueous phase extracted three times with chloroform. The combined organic extracts were washed with brine, dried (MgSO4) and concentrated in vacuo. The residue (33.8 g) was used without further purification in the subsequent reaction.
- Step C:
-
- Preparation of 1-tert-butyl 3-ethyl 4-{[(trifluoromethyl)-sulfonyl]oxy}-5,6-dihydropyridine-1,3(2H)-dicarboxylate
- Trifluoromethanesulfonic anhydride (15.5 mL, 92.0 mmol) was added over approximately 0.1 h, via syringe, to a stirred solution of the product of step B (33.8 g, 84.0 mmol) and N,N-diisopropylethylamine (17.6 mL, 101.0 mmol) in methylene chloride (300 mL) at −78° C. After allowing to warm to ambient temperature ovemight, the reaction mixture was quenched with saturated aqueous sodium bicarbonate, poured into water and extracted three times with methylene chloride. The combined organic extracts were washed with brine, dried (MgSO4) and concentrated in vacuo. Purification of the residue by flash chromatography on silica gel (gradient elution; 0-20% ethyl acetate/hexanes as eluent) gave the title compound as an amber colored oil (23.0 g).
- Step D:
-
- Preparation of 1-tert-butyl 3-ethyl 4-(4-fluorophenyl)-5,6-dihydropyridine-1,3(2H)-dicarboxylate
- A vigorously stirred suspension of the product of step C (1.00 g, 2.48 mmol), 4-fluorophenylboronic acid (0.382 g, 2.73 mmol) and [1,1′-bis(diphenylphosphino)-ferrocene)dichloropalladium(II) (0.102 g, 0.124 mmol) in toluene/ethanol (3:2; 24.0 mL) was degassed via three vacuum/nitrogen ingress cycles and then heated to approximately 80° C. Aqueous 2 M sodium carbonate (3.10 mL, 6.20 mmol) was added dropwise via syringe and the resulting mixture maintained at reflux overnight. After cooling to ambient temperature, the reaction mixture was diluted with ethyl acetate and filtered through celiteo®. The filtrate was poured into water and extracted three times with ethyl acetate. The combined organic extracts were washed with brine, dried (MgSO4) and concentrated in vacuo. Purification of the residue by medium pressure liquid chromatography on silica gel (gradient elution; 0-15% ethyl acetate/hexanes as eluent) afforded the title compound as a colorless oil (0.762 g).
- Step E:
-
- Preparation of 1-tert-butyl 3-ethyl 4-(4-fluorophenyl)piperidine-1,3-dicarboxylate
- Magnesium metal (0.525 g, 21.8 mmol) was added in three portions over approximately 0.3 h to a stirred solution of the product of step D (0.762 g, 2.18 mmol) in methanol at ambient temperature. After stirring overnight, the reaction mixture was poured into 1 N hydrochloric acid (100 mL) and extracted three times with ethyl acetate. The combined organic extracts were washed with saturated sodium bicarbonate, brine, dried (MgSO4) and concentrated in vacuo. Purification of the residue by medium pressure liquid chromatography on silica gel (gradient elution; 0-25% ethyl acetate/hexanes as eluent) furnished the title compound (3:1 mixture of cis/trans diastereoisomers) as a colorless oil (0.651 g).
- Step F:
-
- Preparation of (±)-trans-1-(tert-butoxycarbonyl)-4-(4-fluorophenyl)piperidine-3-carboxylic acid
- Excess sodium metal was added to a stirred solution of the product of step E (0.651 g, 1.85 mmol) in methanol (5.0 mL) at ambient temperature, and the resulting solution was heated to 75° C. After approximately 1 h, 5 M sodium hydroxide (3.0 mL) was added and the reaction mixture heated to 100° C. for an additional 1 h. After cooling to room temperature, the reaction mixture was acidified to pH 5 with 2 N hydrochloric acid and extracted three times with methylene chloride. The combined organic extracts were washed with brine, dried (MgSO4) and concentrated in vacuo. The crude product was used without further purification in the subsequent reaction.
- Step G:
-
- Preparation of (±)-trans-3-({4-cyclohexyl-4-[(4,4-dimethyl-2-oxo-1,3-oxazolidin-3-yl)methyl]piperidin-1-yl}carbonyl)4-(4-fluorophenyl)piperidinium trifluoroacetate
- 1-(3-Dimethylaminbpropyl)-3-ethylcarbodiimide hydrochloride (0.0174 g, 0.091 mmol) was added to a stirred mixture of the crude product of step F (0.0294 g, 0.091 mmol), 4-cyclohexyl-4-[(4,4-dimethyl-2-oxo-1,3-oxazolidin-3-yl)methyl]piperidinium chloride (0.025 g, 0.076 mmol), 1-hydroxybenzotriazole (0.0123 g, 0.091 mmol) and N-methylmorpholine (0.010 mL, 0.091 mmol) in methylene chloride (0.500 mnL) at ambient temperature. After approximately 18 h, the reaction mixture was poured into water/saturated sodium bicarbonate (1:1) and extracted three times with methylene chloride. The combined organic extracts were washed with brine, dried (Na2SO4) and concentrated in vacuo. A saturated solution of hydrogen chloride in ethyl acetate (1.0 mL) was added to a solution of the crude amide in methylene chloride (1.0 mL) at room temperature. After 18 h, the volatiles were evaporated in vacuo, and the crude residue purified by preparative reversed phase high pressure liquid chromatography on YMC Pack Pro C18 phase (gradient elution; 0-100% acetonitrile/water as eluent, 0.1% TFA as modifier) to give the title compound (0.031 g) as an off-white solid [MS: m/z 500 (MH30 )].
- Following a procedure similar to that described above for Example 110, the following compounds can be prepared:
Relative stereo. Parent Ex. # (3,4) R1 R2 Ion m/z 111 trans (RS,RS) —H 3-chlorophenyl 516 112 trans (RS,RS) —H 4-methoxyphenyl 512 113 trans (RS,RS) —H 4-chlorophenyl 516 114 trans (R,R) methyl 4-fluorophenyl 115 trans (R,R) methyl 3-chlorophenyl 116 trans (R,R) methyl 4-methoxyphenyl 117 trans (R,R) methyl 4-chlorophenyl 118 trans (R,R) isopropyl 4-fluorophenyl 119 trans (R,R) isopropyl 4-chlorophenyl 120 trans (R,R) isopropyl 2,4-difluorophenyl -
- Preparation of (4S)-4-benzyl-3-[(2E)-3-(4-fluorophenyl)prop-2-enoyl]-1,3-oxazolidin-2-one
- A flame-dried 1 L 3-necked flask equipped with a mechanical stirrer was charged with (2E)-3-(4-fluorophenyl)prop-2-enoic acid (20.769 g; 0.125 mol) and tetrahydrofuran (275 mL). The reaction was cooled to −20° C. followed by the sequential addition of triethylamine (16.443 g; 0.163 mol) and trimethylacetyl chloride (16.580 g; 0.138 mol). After 30 min, the reaction was warmed to ambient temperature where it remained for an additional 90 min. A separate 2 L 3-necked flask, equipped with a mechanical stirrer, and a filter funnel, was charged with (S)-4-benzyloxazolidinone (20.20 g; 0.114 mol), anhydrous powdered lithium chloride (5.316 g; 0.125 mol), tetrahydrofuran (500 mL) and triethylamine (14.996 g; 0.148 mol) and cooled to −20° C. The mixed anhydride was rapidly added to the oxazolidinone solution through the filter funnel using a slight vacuum. After 30 min, the reaction was allowed to warm to ambient temperature for 5 h. The reaction was filtered through a fritted-funnel and concentrated in vacuo. The crude residue was diluted with ethyl acetate, washed with 1 N hydrochloric acid, saturated sodium bicarbonate, brine, dried (MgSO4), filtered and concentrated in vacuo. The crude product was purified on a silica gel chromatography column eluted with methylene chloride. Evaporation of the purified fractions and drying in vacuo afforded 26.36 g of the title compound.
- Step B:
-
- Preparation of (4S)-4-benzyl-3-{[(3R,4R)-1-benzyl4-(4-fluorophenyl)pyrrolidin-3-yl]carbonyl}-1,3-oxazolidin-2-one
- To a cooled (0° C.) solution of the product of step A (12.667 g; 38.9 mmol) in methylene chloride (110 mL) was added N-(methoxymethyl)-N-(trimethylsilylmethyl)benzylamine (13.866 g; 58.4 mmol) followed by a catalytic amount of trifluoroacetic acid (0.15 mL). After 10 min at 0° C., the reaction was allowed to warm to ambient temperature for 8 h. The reaction mixture was diluted with methylene chloride and washed with saturated saturated sodium bicarbonate, brine, dried (MgSO4), filtered and concentrated in vacuo. The crude residue was purified on a silica gel chromatography column eluted with methylene chloride to afford 7.42 g of the less polar diastereoisomer and 7.79 g of the more polar diastereoisoimer.
- Step C:
-
- Preparation of tert-butyl (3R,4R)-3-{[(4S)-4-benzyl-2-oxo-1,3-oxazolidin-3-yl]carbonyl}-4-(4-fluorophenyl)pyrrolidine-1-carboxylate.
- To a suspension of the product of step B (2.0 g; 4.4 mmol) in toluene (20 mL) was added 4 eq of 1-chloroethyl chloroformate (17.5 mmol; 1.33 mL). The reaction was heated to 100° C. for 6 h at which time starting material still remained. Thus, an additional 2 eq. of 1-chloroethyl chloroformate (8.8 mmol; 0.66 mL) was added and heating was resumed for another 20 h. The volatiles were removed in vacuo and the crude carbamate was dissolved in methanol (20 mL). The reaction mixture was heated to 70° C. for 2 h. The volatiles were removed in vacuo and the crude amine was dissolved in methylene chloride (400 mL) followed by washing the organic solution with saturated sodium bicarbonate and brine. The organic phase was dried (Na2SO4), filtered and concentrated in vacuo to provide the crude amine which was purified on silica gel using a gradient elution (50% ethyl acetate/hexane to elute the starting material followed by 9:1 methylene chloride/methanol (containing 10% v/v ammonium hydroxide). This provided 720 mg of the desired amine. The amine (720 mg; 1.96 mmol) was dissolved in methylene chloride (5 mL) and saturated sodium bicarbonate (5 mL) was added followed by di-tert-butyldicarbonate (533 mg; 2.45 mmol). After 1 h, the mixture was diluted with methylene chloride (100 mL) followed by washing the organic solution with saturated sodium bicarbonate and brine. The organic phase was dried (Na2SO4), filtered and concentrated in vacuo. The crude product was purified on silica gel (30% ethyl acetate/hexane) which furnished 840 mg of the title compound.
- Step D:
-
- Preparation of (3R,4R)-1-(tert-butoxycarbonyl)-4-(4-fluorophenyl)pyrrolidine-3-carboxylic acid
- To a cooled (0° C.) solution of the product of step C (835 mg; 1.78 mmol) lithium hydroxide (85 mg; 3.56 mmol) in 15 mL of a 4:1 mixture of tetrahydrofuran-water was added a 30% aqueous solution of hydrogen peroxide. After 5 min, the solution was warmed to ambient temperature and stirred for 5 h. The reaction mixture was poured into a 10% aqueous solution of sodium sulfite and then acidified to pH 3 with 1 N hydrochloric acid. The aqueous solution was extracted three times with ethyl acetate. The organic phase was washed with brine, dried (MgSO4), filtered, concentrated in vacuo and the crude acid was purified on silica gel (30% ethyl acetate/hexane with 1% acetic acid) which furnished 520 mg of the title compound.
- Step E:
-
- Preparation of (3R,4R)-3-({4-cyclohexyl-4-[(4,4-dimethyl-2-oxo-1,3-oxazolidin-3-yl)methyl]piperidin-1-yl}carbonyl)-4-(4-fluorophenyl)pyrrolidinium chloride
- To a suspension of 4-cyclohexyl4-[(4,4-dimethyl-2-oxo-1,3-oxazolidin-3-yl)methyl]piperidinium chloride (150 mg; 0.4532 mmol) in methylene chloride (4.0 mL) was added N-methylmorpholine (183 mg; 0.2 mL). After 20 min, the following reagents were added sequentially: 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (130 mg; 0.6798 mmol), 1-hydroxybenzotriazole (92 mg; 0.6798 mmol) and the product of step D (154 mg; 0.4985 mmol). The final reaction mixture was maintained at ambient temperature for 48 h. The reaction mixture was diluted with methylene chloride (100 mL) followed by washing the organic solution with saturated sodium bicarbonate and brine. The organic phase was dried (Na2SO4), filtered and concentrated in vacuo to provide the crude N-BOC protected pyrrolidine that was purified on silica gel (50% ethyl acetate/hexane as the elution solvent). The crude N-BOC protected pyrrolidine was then dissolved in ethyl acetate (2 mL) followed by the addition of a saturated solution of hydrogen chloride in ethyl acetate (2 mL). The reaction mixture was maintained at ambient temperature for 2 h at which time the volatiles were removed in vacuo. The crude product was triturated to high purity with diethyl ether which furnished 204 mg of the title compound as a hydrochloride salt.
- Step F:
-
- Preparation of (3S,4R)-3-({4-cyclohexyl-4-[(4,4-dimethyl-2-oxo-1,3-oxazolidin-3-yl)methyl]piperidin-1-yl}carbonyl)-4-(4-fluorophenyl)-1-isopropylpyrrolidinium chloride
- A solution of the product of step E (100 mg; 0.1916 mmol) in methylene chloride (100 mL) was converted to the free-base by washing with saturated sodium bicarbonate. The organic phase was washed with brine, dried (Na2SO4), filtered and the volatiles were removed in vacuo. The residue was dissolved in methylene chloride (2 mL) and cooled to 0° C. Acetone (111 mg; 0.14 mmol) was added, followed by acetic acid (57 mg; 0.9579 mmol) and sodium triacetoxyborohydride (0.575 mmol). The reaction mixture was stirred and allowed to warm to room temperature over 36 h at which time the reaction was quenched with saturated sodium bicarbonate. After extracting three times with methylene chloride, the organic solution was washed with brine, dried (Na2SO4), filtered and concentrated in vacuo to provide the crude residue which was purified on silica gel (93:7 methylene chloride/methanol (contaiing 10% v/v ammonium hydroxide). The product was dissolved in ethyl acetate (2 mL) and converted to the hydrochloride salt by addition of a saturated solution of hydrogen chloride in ethyl acetate (2 mL). The reaction mixture was maintained at ambient temperature for 30 min at which time the volatiles were removed in vacuo. The solid was triturated to high purity with diethyl ether which furnished 95 mg of the title compound as the hydrochloride salt [MS: m/z 528 (MH+)].
- Following a procedure similar to that described above for Example 121, the following compounds were prepared:
Relative stereo. Parent Ex. # (3,4) R1 R2 Ion m/z 122 trans (SR,RS) 4-chlorophenyl 592 123 trans (SR,RS) —H 4-chlorophenyl 502 124 trans (R,S) —H 4-chlorophenyl 502 125 trans (R,S) methyl 4-chlorophenyl 516 126 trans (R,S) isopropyl 4-chlorophenyl 544 127 trans (S,R) —H 4-chlorophenyl 502 128 trans (S,R) methyl 4-chlorophenyl 516 129 trans (S,R) isopropyl 4-chlorophenyl 544 130 trans (SR,RS) —H 4-fluorophenyl 486 131 trans (SR,RS) isopropyl 4-fluorophenyl 528 132 trans (SR,RS) ethyl 4-fluorophenyl 514 133 trans (SR,RS) —H 3,4-dichlorophenyl 536 134 trans (SR,RS) isopropyl 3,4-dichlorophenyl 578 135 trans (S,R) —H 4-fluorophenyl 486 136 trans (S,R) ethyl 4-fluorophenyl 514 137 trans (S,R) 4-fluorophenyl 564 138 trans (SR,RS) —H 3,4-difluorophenyl 504 139 trans (SR,RS) isopropyl 3,4-difluorophenyl 546 140 trans (SR,RS) —H 2,4-difluorophenyl 504 141 trans (SR,RS) isopropyl 2,4-difluorophenyl 546 142 trans (S,R) —H 2,4-difluorophenyl 504 143 trans (S,R) isopropyl 2,4-difluorophenyl 546 144 trans (S,R) ethyl 2,4-difluorophenyl 532 145 trans (S,R) —CH2C(CH3)3 2,4-difluorophenyl 574 146 trans (SR,RS) —H 3-chloro-4- 520 fluorophenyl 147 trans (SR,RS) isopropyl 3-chloro-4- 562 fluorophenyl 148 trans (SR,SR) —H 3,4-difluorophenyl 503 149 trans (S,R) isopropyl 3,4-difluorophenyl 546 150 trans (SR,RS) —H 2-thiophene 474 151 trans (SR,RS) isopropyl 2-thiophene 516 152 trans (SR,RS) —H 2-(3-chloro- 508 thiophene) 153 trans (SR,RS) isopropyl 2-(3-chloro- 550 thiophene) -
- Preparation of N-tert-butyl-N-(trimethylsilylmethyl)amine
- A mixture of tert-butylamine (18.0 mL, 171 mmol) and (chloromethyl)trimethylsilane (7.00 g, 57.1 mmol) was heated in a thick-walled glass tube at 200° C. overnight. After cooling to ambient temperature, the reaction mixture was poured into 1 N sodium hydroxide and extracted three times with diethyl ether. The combined organic extracts were washed with brine, dried (MgSO4), and the volatiles evaporated in vacuo. Distillation (atmospheric pressure; ˜135° C.) of the residual liquid gave the title compound as a colorless liquid (7.67 g).
- Step B:
-
- Preparation of N-tert-butyl-N-(methoxymethyl)-N-(trimethylsilylmethyl)amine
- N-tert-Butyl-N-(trimethylsilylmethyl)amine (8.47 g, 53.1 mmol) was added dropwise, over approximately 30 min, via a pressure equalizing addition funnel to a stirred solution of aqueous formaldehyde (5.98 mL of a 37 wt. % solution in water, 79.7 mmol) at 0° C. (ice cooling). After 45 min, methanol (6.45 mL, 159.3 mmol) was added and the resulting solution was saturated with potassium carbonate. After stirring vigorously for approximately 5 h, the aqueous phase was removed. The organic phase was saturated with potassium carbonate and stirred overnight. The reaction mixture was poured into water and extracted three times with diethyl ether. The combined organic extracts were washed with brine, dried (MgSO4) and the volatiles evaporated in vacuo. Distillation (high vacuum; ˜70° C.) of the residual liquid afforded the title compound as a colorless liquid (3.50 g).
- Step C:
-
- Preparation of methyl (±)-trans-1-tert-butyl4-(4-fluorophenyl)-pyrrolidine-3-carboxylate
- Trifluoroacetic acid (38.9 mL, 0.505 mmol) was added to a solution of the product of step B (1.03 g, 5.05 mmol) and methyl (2E)-3-(4-fluorophenyl)prop-2-enoate (1.00 g, 5.05 mmol) in methylene chloride (10 mL) at ambient temperature. After 18 h, the reaction mixture was poured into saturated aqueous sodium bicarbonate and extracted three times with methylene chloride. The combined organic extracts were washed with brine, dried (Na2SO4) and concentrated in vacuo. Purification of the crude residue by medium pressure liquid chromatography on silica gel (gradient elution; 0-9% methanol (containing 10% v/v ammonium hydroxide)/methylene chloride as eluent) furnished the title compound as a colorless liquid (1.06 g).
- Step D:
-
- Preparation of (±)-trans-1-tert-butyl-3-carboxy4-(4-fluoro-phenyl)pyrrolidinium chloride
- A solution of the product of Step C (50.0 mg, 0.179 mmol) in 8 N hydrochloric acid (1.0 mL) was heated at reflux overnight. After cooling to room temperature, the volatiles were evaporated and the residual solid used without further purification in the subsequent reaction.
- Step E:
- Preparation of (±)-trans-1-tert-butyl-3-({4-cyclohexyl4-[(4,4-dimethyl-2-oxo-1,3-oxazolidin-3-yl)methyl]piperidin-1-yl}carbonyl)-4-(4-fluorophenyl)pyrrolidinium trifluoroacetate
- 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (51.5 mg, 0.269 mmol) was added to a stirred mixture of 4-cyclohexyl-4-[(4,4-dimethyl-2-oxo-1,3-oxazolidin-3-yl)methyl]piperidinium chloride (54.9 mg, 0.166 mmol), crude product of step D (0.179 mmol), 1-hydroxybenzotriazole (36.3 mg, 0.269 mmol) and N-methylmorpholine (59.0 L, 0.537 mmol) in methylene chloride (1.8 mL) at ambient temperature. After approximately 18 h, the reaction mixture was poured into saturated aqueous sodium bicarbonate and extracted three times with methylene chloride. The combined organic extracts were washed with brine, dried (Na2SO4) and concentrated in vacuo. Purification of the residue by preparative reversed phase high pressure liquid chromatography on YMC Pack Pro C18 phase (gradient elution; 0-100% acetonitrile/water as eluent, 0.1% TFA as modifier) gave the title compound as an off-white solid [MS: m/z 542 (MH+)].
- Following a procedure similar to that described above for Example 154, the following compounds were prepared:
Relative stereo. Parent Ex. # (3,4) X R2 Ion m/z 155 trans (S,R) 2,4-difluorophenyl 560 156 trans (R,S) 2,4-difluorophenyl 560 157 trans (SR,RS) 2,3,4-trifluorophenyl 578 158 trans (SR,RS) 2-chloro-4-fluorophenyl 576 159 trans (SR,RS) 2-iodo-4-fluoro-6-chlorophenyl 686 160 trans (SR,RS) 2,5-difluorophenyl 574 161 trans (SR,RS) 2,4-difluorophenyl 505 162 trans (SR,RS) 4-fluorophenyl 487 163 trans (S,R) 2,4-difluorophenyl 532 164 trans (R,S) 2,4-difluorophenyl 532 165 trans (SR,RS) 2,4-difluorophenyl 532 166 trans (SR,RS) 4-fluorophenyl 514 167 trans (S,R) 2,4-difluorophenyl 519 168 trans (R,S) 2,4-difluorophenyl 519 169 trans (S,R) 2,4-difluorophenyl 546 170 trans (S,R) 2,4-difluorophenyl 572 171 trans (S,R) 2,4-difluorophenyl 560 172 trans (S,R) 2,4-difluorophenyl 584 173 trans (S,R) 2,4-difluorophenyl 544 174 trans (S,R) 2,4-difluorophenyl 532 175 trans (S,R) 2,4-difluorophenyl 546 176 trans (S,R) 2,4-difluorophenyl 532 177 trans (S,R) 2,4-difluorophenyl 530 178 trans (S,R) 2,4-difluorophenyl 546 179 trans (S,R) 2,4-difluorophenyl 546 180 trans (S,R) 2,4-difluorophenyl 516 181 trans (S,R) 2,4-difluorophenyl 572 182 trans (S,R) 2,4-difluorophenyl 521 183 trans (S,R) 2,4-difluorophenyl 537 184 trans (S,R) 2,4-difluorophenyl 553 185 trans (S,R) 2,4-difluorophenyl 493 186 trans (S,R) 2,4-difluorophenyl 509 187 trans (S,R) 2,4-difluorophenyl 525 188 trans (S,R) 2,4-difluorophenyl 507 189 trans (S,R) 2,4-difluorophenyl 523 190 trans (S,R) 2,4-difluorophenyl 539 191 trans (S,R) 2,4-difluorophenyl 521 192 trans (S,R) 2,4-difluorophenyl 537 193 trans (S,R) 2,4-difluorophenyl 553 194 trans (S,R) 2,4-difluorophenyl 549 195 trans (S,R) 2,4-difluorophenyl 565 196 trans (S,R) 2,4-difluorophenyl 565 197 trans (S,R) 2,4-difluorophenyl 542 198 trans (S,R) 2,4-difluorophenyl 544 199 trans (S,R) 2,4-difluorophenyl 516 200 trans (S,R) 2,4-difluorophenyl 530 201 trans (S,R) 2,4-difluorophenyl 558 -
- Preparation of ethyl 4-(tert-butylamino)butanoate
- Ethyl 4-bromobutyrate (20 g; 102.6 mmol) was combined with tert-butylarnine (37.2 g; 0.514 mol) and heated to 100° C. in a sealed tube for 24 h. The contents of the reaction were cooled to ambient temperature, the volatiles were removed in vacuo and the crude product was dissolved in 1 N hydrochloric acid. The aqueous layer was extracted twice with diethyl ether and the organic layer discarded. The aqueous layer was adjusted to pH 9 with 2.5 N sodium hydroxide. The aqueous layer was extracted three times with diethyl ether. The combined organic extracts (from the pH 9 aqueous layer) were washed with brine, dried (Na2SO4), filtered and the solvent was removed in vacuo to afford the title compound (14.2 g).
- Step B:
-
- Preparation of ethyl N-(tert-butyl)-N-(2-ethoxy-2-oxoethyl)-4-aminobutanoate
- To a solution of the product of step A (14.2 g; 75.5 mmol) in toluene (150 mL) was added potassium carbonate (20.8 g; 151.1 mmol) and ethyl bromoacetate (18.9 g; 113.3 mmol). The reaction was heated to 120° C. for 24 h. The reaction mixture was cooled to ambient temperature and partitioned between 1 N hydrochloric acid and diethyl ether. The aqueous layer was extracted twice with diethyl ether and the organic layer discarded. The aqueous layer was adjusted to pH 9 with 2.5 N sodium hydroxide and extracted three times with diethyl ether. The combined organic extracts (from the pH 9 aqueous layer) were washed with brine, dried (Na2SO4), filtered and concentrated in vacuo to furnish the title compound (19.2 g).
- Step C:
-
- Preparation of ethyl 1-tert-butyl-3-oxopiperidine-4-carboxylate.
- To a solution of the product of step B (14.0 g; 50.9 mmol) in tetrahydrofuran (200 mL) was added 1.05 eq of potassium tert-butoxide (6.0 g; 53.5 mmol). The reaction was maintained at ambient temperature for 2 h and then quenched with a sufficient amount of saturated aqueous ammonium chloride to make the solution pH 8. The tetrahydrofuran was removed in vacuo and the aqueous layer was extracted three times with diethyl ether. The combined organic extracts were washed with brine, dried (Na2SO4), filtered and concentrated in vacuo to afford the title compound (7.15 g).
- Step D:
-
- Preparation of ethyl 1-tert-butyl-5-{[(trifluoromethyl)sulfonyl]-oxy}-1,2,3,6-tetrahydropyridine-4-carboxylate
- To a cooled (−78° C.) solution of the product of step C (7.15 g; 31.2 mmol) in methylene chloride (100 mL) was added diisopropylethylamine (5.04 g; 39.0 mmol). Triflic anhydride (9.69g; 34.3 mmol) was then added dropwise over 10 min and the reaction mixture was allowed to warm to ambient temperature over 16 h. The mixture was concentrated to about 50% of the initial volume and directly loaded onto silica gel eluted with 50% ethyl acetate/hexane. Evaporation of the purified fractions provided 5.05 g of the title compound.
- Step E:
-
- Preparation of ethyl 1-tert-butyl-5-(2,4-difluorophenyl)-1,2,3,6-tetrahydropyridine-4-carboxylate
- The product of step D (5.05 g; 14.4 mmol), 2,4-difluorophenylboronic acid (2.85 g; 18.0 mmol) and [1,1′-bis(diphenylphosphino)ferrocene)dichloro-palladium(lI) (0.589 g; 0.7 mmol) were combined and dissolved a 2:1 mixture of toluene:ethanol (54 mL). The reaction was heated to 80° C. followed by the dropwise addition of 2 M aqueous sodium carbonate over 10 min. The reaction was maintained at 80° C. for 2 h. The reaction was quenched with saturated aqueous sodium bicarbonate and the aqueous layer was extracted three times with ethyl acetate. The combined organic extracts were washed with brine, dried (Na2SO4), filtered concentrated in vacuo. The crude residue was purified on silica gel using a gradient elution (30%→40%→60% ethyl acetate/hexane) which furnished the title compound (2.8 g).
- Step F:
-
- Preparation of methyl (±)-trans-1-tert-butyl-3-(2,4-difluoro-phenyl)piperidine-4-carboxylate
- The product of step E (1 g; 3.1 mmol) was dissolved in ethanol (20 mL) and treated with acetic acid (280 mg; 4.6 mmol) and 20% palladium hydroxide on carbon catalyst (0.760 g). The reaction mixture was stirred for 24 h under 1 atmosphere of hydrogen gas. The reaction was filtered through celite® and the filter cake was rinsed with copious amounts of methanol. The solvents were evaporated and the crude residue was dissolved in methylene chloride. The organic solution was washed with saturated sodium bicarbonate, brine, dried (Na2SO4), filtered and concentrated in vacuo. The crude residue was purified on silica gel using 10% methanol/methylene chloride to provide predominantly the cis-disubstituted piperidine. The cis isomer, accumulated from several experiments as described above, (5.5 g; 17.0 mmol) was dissolved in methanol (75 mL) followed by the addition of freshly cut sodium metal (1.27 g; 55.3 mmol). The reaction mixture was heated to 70° C. for 12 h. The reaction was quenched with saturated aqueous ammonium chloride and the aqueous layer was extracted with ethyl acetate. The combined organic extracts were dried (Na2SO4), filtered and concentrated in vacuo. The crude residue was purified on silica gel (50% ethyl acetate/hexane) which furnished the title compound.
- Step G:
-
- Preparation of (±)-trans-1-tert-butyl-4-carboxy-3-(2,4-difluoro-phenyl)piperidinium chloride
- The product of step F (160 mg; 0.515 mmol) was heated to 100° C. in concentrated hydrochloric acid for 16 h. The volatiles were removed in vacuo and the crude residue was suspended in toluene and evaporated to dryness. This process was repeated three times to provide 170 mg of the title compound.
- Step H:
-
- Preparation of (±)-trans-1-tert-butyl-4-({4-cyclohexyl-4-[(4,4-dimethyl-2-oxo-1,3-oxazolidin-3-yl)methyl]piperidin-1-yl}carbonyl)-3-(2,4-difluorophenyl)piperidinium chloride
- To a suspension of 4-cyclohexyl-4-[(4,4-dimethyl-2-oxo-1,3-oxazolidin-3-yl)methyl]piperidinium chloride (45 mg; 0.136 mmol) in methylene chloride (2.0 mL) was added N-methylmorpholine (35 mg; 0.036 mL). A separate flask was charged with the product of step G (50 mg; 0.1497 mmol), methylene chloride (2.0 mL), and N-methylmorpholine (35 mg; 0.036 mL) was added. After 20 min, the following reagents were added sequentially to the flask containing the product of step G: 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (39 mg; 0.204 mmol), 1-hydroxybenzotriazole (28 mg; 0.204 mmol) followed by the dropwise addition of the piperidine solution from the first flask. The final reaction mixture was maintained at ambient temperature for 48 h. The reaction was diluted with methylene chloride (100 mL) then washed with saturated sodium bicarbonate and brine. The mixture was dried (Na2SO4), filtered and concentrated in vacuo to provide a crude product that was purified on silica gel (eluted first with 75% ethyl acetate/hexane followed by 95:5 methylene chloride/methanol (containing 10% v/v ammonium hydroxide)). The purified product was dissolved in ethyl acetate (2 mL) and converted to the hydrochloride salt by treatment with a saturated solution of hydroogen chloride in ethyl acetate (2 mL). The reaction mixture was maintained at ambient temperature for 1 h at which time the volatiles were removed in vacuo. The crude hydrochloride salt was triturated to high purity with diethyl ether which furnished 50 mg of the title compound [MS: m/z 574 (MH+)].
- Following a procedure similar to that described above for Example 202, the following compounds can be prepared:
Relative stereo. Parent Ex. # (3,4) X R2 Ion m/z 203 trans (S,S) 2,4-difluorophenyl 575 204 trans (R,R) 2,4-difluorophenyl 575 205 trans (S,S) 2,4-difluorophenyl 206 trans (R,R) 2,4-difluorophenyl 207 trans (S,S) 2-fluorophenyl 208 trans (S,S) 2-fluorophenyl 209 trans (S,S) 2,4-difluorophenyl 547 210 trans (R,R) 2,4-difluorophenyl 547 211 trans (R,R) 2-fluorophenyl 212 trans (R,R) 2-fluorophenyl 213 trans (R,R) 2,4-difluorophenyl 563 -
- Preparation of ethyl (±)-1-{[1-(tert-butoxycarbonyl)-2-phenyl-pyrrolidin-3-yl]carbonyl}-4-cyclohexylpiperidine-4-carboxylate
- 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (1.09 mL of a 0.25 M solution in methylene chloride, 0.272 mmol) was added to a stirred mixture of 4-cyclohexyl-4-(ethoxycarbonyl)piperidinium chloride (50.0 mg, 0.181 mmol), (±)-1-(tert-butoxycarbonyl)-2-phenylpyrrolidine-3-carboxylic acid (68.6 mg, 0.235 mmol), 1-hydroxybenzotriazole (36.7 mg, 0.272 mmol) and N-methylmorpholine (59.7 μL, 0.543 mmol) in methylene chloride (0.7 mL) at ambient temperature. After approximately 18 h, the reaction mixture was poured into saturated aqueous sodium bicarbonate and extracted three times with methylene chloride. The combined organic extracts were washed with brine, dried (Na2SO4) and concentrated in vacuo. The crude residue was used without further purification in the subsequent reaction.
- Step B:
-
- Preparation of (±)-3-{[4-cyclohexyl-4-(ethoxycarbonyl)piperidin-1-yl]carbonyl}-2-phenylpyrrolidinium chloride
- A saturated solution of hydrogen chloride in ethyl acetate (2.0 mL) was added to a solution of the crude product of step A in methylene chloride (1.0 mL) at room temperature. After 18 h, the volatiles were evaporated in vacuo, and the crude residue purified by preparative reversed phase high pressure liquid chromatography on YMC Pack Pro C18 phase (gradient elution; 0-100% acetonitrile/water as eluent, 0.1% TFA as modifier) to give the title compound (59.1 mg) as an off-white solid [MS: m/z 413 (MH30 )].
-
- A. Binding Assay. The membrane binding assay was used to identify competitive inhibitors of 125I-NDP-alpha-MSH binding to cloned human MCRs expressed in mouse L- or Chinese hamster ovary (CHO)-cells.
- Cell lines expressing melanocortin receptors were grown in T-180 flasks containing selective medium of the composition: 1 L Dulbecco's modified Eagles Medium (DMEM) with 4.5 g L-glucose, 25 mM Hepes, without sodium pyruvate, (Gibco/BR1); 100 ml 10% heat-inactivated fetal bovine serum (Sigma); 10 mL 10,000 unit/mL penicillin & 10,000 μg/mL streptomycin (Gibco/BRl); 10 ml 200 mM L-glutamine (Gibco/BRl); 1 mg/mL geneticin (G418) (Gibco/BRl). The cells were grown at 37° C. with CO2 and humidity control until the desired cell density and cell number was obtained.
- The medium was poured off and 10 mls/monolayer of enzyme-free dissociation media (Specialty Media Inc.) was added. The cells were incubated at 37° C. for 10 min or until cells sloughed off when flask was banged against hand.
- The cells were harvested into 200 mL centrifuge tubes and spun at 1000 rpm, 4° C., for 10 min. The supernatant was discarded and the cells were resuspended in 5 mis/monolayer membrane preparation buffer having the composition: 10 mM Tris pH 7.2-7.4; 4 μg/mL Leupeptin (Sigma); 10 μM Phosphoramidon (Boehringer Mannheim); 40 μg/mL Bacitracin (Sigma); 5 μg/mL Aprotinin (Sigma); 10 mM Pefabloc (Boehringer Mannheim). The cells were homogenized with motor-driven dounce. (Talboy setting 40), using 10 strokes and the homogenate centrifuged at 6,000 rpm, 4° C., for 15 min.
- The pellets were resuspended in 0.2 mls/monolayer membrane prep buffer and aliquots were placed in tubes (500-1000 μL/tube) and quick frozen in liquid nitrogen and then stored at −80° C.
- Test compounds or unlabelled NDP-α-MSH was added to 100 μL of membrane binding buffer to a final concentration of 1 μM. The membrane binding buffer had the composition: 50 mM Tris pH 7.2; 2 mM CaCl2; 1 mM MgCl2; 5 mM KCl; 0.2% BSA; 4 μg/mL Leupeptin (SIGMA); 10 μM Phosphoramidon (Boehringer Mannheim); 40 μg/mL Bacitracin (SIGMA); 5 μg/mL Aprotinin (SIGMA); and 10 mM Pefabloc (Boehringer Mannheim). One hundred μL of membrane binding buffer containing 10-40 μg membrane protein was added, followed by 100 μM 125I-NDP-α-MSH to final concentration of 100 pM. The resulting mixture was vortexed briefly and incubated for 90-120 min at room temp while shaking.
- The mixture was filtered with Packard Microplate 196 filter apparatus using Packard Unifilter 96-well GF/C filter with 0.1% polyethyleneimine (Sigma). The filter was washed (5 times with a total of 10 mL per well) with room temperature of filter wash having the composition: 50 mM Tris-HCl pH 7.2 and 20 mM NaCl. The filter was dried, and the bottom sealed and 50 μL of Packard Microscint-20 was added to each well. The top was sealed and the radioactivity quantitated in a Packard Topcount Microplate Scintillation counter.
- B. Functional assay. Functional cell based assays were developed to discriminate melanocortin receptor agonists from antagonists.
- Cells (for example, CHO- or L-cells or other eukaryotic cells) expressing a human melanocortin receptor (see e.g. Yang-Y K; Ollmann-M M; Wilson-B D; Dickinson-C; Yamada-T; Barsh-G S; Gantz-I; Mol-Endocrinol. 1997 Mar; 11(3): 274-80) were dissociated from tissue culture flasks by rinsing with Ca and Mg free phosphate buffered saline (14190-136, Life Technologies, Gaithersburg, Md.) and detached following 5 min incubation at 37° C. with enzyme free dissociation buffer (S-014-B, Specialty Media, Lavellette, N.J.). Cells were collected by centrifugation and resuspended in Earle's Balanced Salt Solution (14015-069, Life Technologies, Gaithersburg, Md.) with additions of 10 mM HEPES pH 7.5, 5 mM MgCl2, 1 mM glutamine and 1 mg/ml bovine serum albumin. Cells were counted and diluted to 1 to 5×106/mL. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine was added to cells to 0.6 mM.
- Test compounds were diluted in dimethylsulfoxide (DMSO) (10−5 to 10−10 M) and 0.1 volume of compound solution was added to 0.9 volumes of cell suspension; the final DMSO concentration was 1%. After room temperature incubation for 45 min, cells were lysed by incubation at 100° C. for 5 min to release accumulated cAMP.
- cAMP was measured in an aliquot of the cell lysate with the Amersham (Arlington Heights, Ill.) cAMP detection assay (RPA556). The amount of cAMP production which resulted from an unknown compound was compared to that amount of cAMP produced in response to alpha-MSH which was defined as a 100 % agonist. The EC50 is defined as the compound concentration which results in half maximal stimulation, when compared to its own maximal level of stimulation.
- Antagonist assay: Antagonist activity was defined as the ability of a compound to block cAMP production in response to alpha-MSH. Solution of test compounds and suspension of receptor containing cells were prepared and mixed as described above; the mixture was incubated for 15 min, and an EC50 dose (approximately 10 nM alpha-MSH) was added to the cells. The assay was terminated at 45 min and cAMP quantitated as above. Percent inhibition was determined by comparing the amount of cAMP produced in the presence to that produced in the absence of test compound.
- C. In vivo food intake models.
- 1) Overnight food intake. Sprague Dawley rats are injected intracerebroventricularly with a test compound in 400 nL of 50% propylene glycol/artificial cerebrospinal fluid one hour prior to onset of dark cycle (12 hours). Food intake is determined using a computerized system in which each rat's food is placed on a computer monitored balance. Cumulative food intake for 16 h post compound administration is measured.
- 2) Food intake in diet induced obese mice. Male C57/B16J mice maintained on a high fat diet (60% fat calories) for 6.5 months from 4 weeks of age are are dosed intraperitoneally with test compound. Food intake and body weight are measured over an eight day period. Biochemical parameters relating to obesity, including leptin, insulin, triglyceride, free fatty acid, cholesterol and serum glucose levels are determined.
- D. Rat Ex Copula Assay
- Sexually mature male Caesarian Derived Sprague Dawley (CD) rats (over 60 days old) are used with the suspensory ligament surgically removed to prevent retraction of the penis back into the penile sheath during the ex copula evaluations. Animals receive food and water ad lib and are kept on a normal light/dark cycle. Studies are conducted during the light cycle.
- 1) Conditioning to Supine Restraint for Ex Copula Reflex Tests. This conditioning takes ˜4 days. Day 1, the animals are placed in a darkened restrainer and left for 15-30 minutes. Day 2, the animals are restrained in a supine position in the restrainer for 15-30 minutes. Day 3, the animals are restrained in the supine position with the penile sheath retracted for 15-30 minutes. Day 4, the animals are restrained in the supine position with the penile sheath retracted until penile responses are observed. Some animals require additional days of conditioning before they are completely acclimated to the procedures; non-responders are removed from further evaluation. After any handling or evaluation animals are given a treat to ensure positive reinforcement.
- 2) Ex Copula Reflex Tests. Rats are gently restrained in a supine position with their anterior torso placed inside a cylinder of adequate size to allow for normal head and paw grooming. For a 400-500 gram rat, the diameter of the cylinder is approximately 8 cm. The lower torso and hind limbs are restrained with a non-adhesive material (vetrap). An additional piece of vetrap with a hole in it, through which the glans penis will be passed, is fastened over the animal to maintain the preputial sheath in a retracted position. Penile responses will be observed, typically termed ex copula genital reflex tests. Typically, a series of penile erections will occur spontaneously within a few minutes after sheath retraction. The types of normal reflexogenic erectile responses include elongation, engorgement, cup and flip. An elongation is classified as an extension of the penile body. Engorgement is a dilation of the glans penis. A cup is defined as an intense erection where the distal margin of the glans penis momentarily flares open to form a cup. A flip is a dorsiflexion of the penile body.
- Baseline and or vehicle evaluations are conducted to determine how and if an animal will respond. Some animals have a long duration until the first response while others are non-responders altogether. During this baseline evaluation latency to first response, number and type of.responses are recorded. The testing time frame is 15 minutes after the first response.
- After a minimum of I day between evaluations, these same animals are administered the test compound at 20 mg/kg and evaluated for penile reflexes. All evaluations are videotaped and scored later. Data are collected and analyzed using paired 2 tailed t-tests to compared baseline and/ or vehicle evaluations to drug treated evaluations for individual animals. Groups of a minimum of 4 animals are utilized to reduce variability.
- Positive reference controls are included in each study to assure the validity of the study. Animals can be dosed by a number of routes of administration depending on the nature of the study to be performed. The routes of administration includes intravenous (IV), intraperitoneal (IP), subcutaneous (SC) and intracerebral ventricular (ICV).
- E. Models of Female Sexual Dysfunction
- Rodent assays relevant to female sexual receptivity include the behavioral model of lordosis and direct observations of copulatory activity. There is also a urethrogenital reflex model in anesthetized spinally transected rats for measuring orgasm in both male and female rats. These and other established animal models of female sexual dysfunction are described in McKenna K E et al, A Model For The Study of Sexual Function In Anesthetized Male And Female Rats, Am. J. Physiol. (Regulatory Integrative Comp. Physiol 30): R1276-R1285, 1991; McKenna K E et al, Modulation By Peripheral Serotonin of The Threshold For Sexual Reflexes In Female Rats, Pharm. Bioch. Behav., 40:151-156, 1991; and Takahashi L K et al, Dual Estradiol Action In The Diencephalon And The Regulation Of Sociosexual Behavior In Female Golden Hamsters, Brain Res., 359:194-207, 1985.
- Representative compounds of the present invention were tested and found to bind to the melanocortin-4 receptor. These compounds were generally found to have IC50 values less than 2 μM. Representative compounds of the present invention were also tested in the functional assay and found generally to activate the melanocortin-4 receptor with EC50 values less than 1 μM.
- As a specific embodiment of an oral composition of a composition of the present invention, 5 mg of Example 169 is formulated with sufficient finely divided lactose to provide a total amount of 580 to 590 mg to fill a size O hard gelatin capsule.
- As another specific embodiment of an oral composition of a compound of the present invention, 10 mg of Example 174 is formulated with sufficient finely divided lactose to provide a total amount of 580 to 590 mg to fill a size O hard gelatin capsule.
- While the invention has been described and illustrated in reference to certain preferred embodiments thereof, those skilled in the art will appreciate that various changes, modifications and substitutions can be made therein without departing from the spirit and scope of the invention. For example, effective dosages other than the preferred doses as set forth hereinabove may be applicable as a consequence of variations in the responsiveness of the mammal being treated for severity of bone disorders caused by resorption, or for other indications for the compounds of the invention indicated above. Likewise, the specific pharmacological responses observed may vary according to and depending upon the particular active compound selected or whether there are present pharmaceutical carriers, as well as the type of formulation and mode of administration employed, and such expected variations or differences in the results are contemplated in accordance with the objects and practices of the present invention. It is intended, therefore, that the invention be limited only by the scope of the claims which follow and that such claims be interpreted as broadly as is reasonable.
Claims (25)
1. A compound of structural formula I:
or a pharmaceutically acceptable salt thereof;
wherein
r is 1 or 2;
s is 0, 1, or 2;
n is 0, or 2;
p is 0, 1, or 2;
R1 is selected from the group consisting of
hydrogen,
amidino,
C1-4 alkyliminoyl,
C1-10 alkyl,
(CH2)n-C3-7 cycloalkyl,
(CH2)n-phenyl,
(CH2)n-naphthyl, and
(CH2)n-heteroaryl wherein heteroaryl is selected from the group consisting of
(1) pyridinyl,
(2) furyl,
(3) thienyl,
(4) pyrrolyl,
(5) oxazolyl,
(6) thiazolyl,
(7) imidazolyl,
(8) pyrazolyl,
(9) isoxazolyl,
(10) isothiazolyl,
(11) pyrimidinyl,
(12) pyrazinyl,
(13) pyridazinyl,
(14) quinolyl,
(15) isoquinolyl,
(16) benzimidazolyl,
(17) benzofuryl,
(18) benzothienyl,
(19) indolyl,
(20) benzthiazolyl, and
(21) benzoxazolyl;
in which phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R3; and alkyl and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from R3 and oxo;
R2 is selected from the group consisting of
phenyl,
naphthyl, and
heteroaryl wherein heteroaryl is selected from the group consisting of
(1) pyridinyl,
(2) furyl,
(3) thienyl,
(4) pyrrolyl,
(5) oxazolyl,
(6) thiazolyl,
(7) imidazolyl,
(8) pyrazolyl,
(9) isoxazolyl,
(10) isothiazolyl,
(11) pyrimidinyl,
(12) pyrazinyl,
(13) pyridazinyl,
(14) quinolyl,
(15) isoquinolyl,
(16) benzimidazolyl,
(17) benzofuryl,
(18) benzothienyl,
(19) indolyl,
(20) benzthiazolyl, and
(21) benzoxazolyl;
in which phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R3;
R3 is selected from the group consisting of
C1-6 alkyl,
(CH2)n-phenyl,
(CH2)n-naphthyl,
(CH2)n-heteroaryl,
(CH2)n-heterocyclyl,
(CH2)nC3-7 cycloalkyl,
halogen,
OR4,
(CH2)nN(R4)2,
(CH2)nC-N,
CO2R4,
C(R4)(R4)N(R4)2,
NO2,
(CH2)nNR4SO2R4
(CH2)nSO2N(R4)2,
(CH2)nS(O)pR4,
(CH2)nNR4C(O)N(R4)2,
(CH2)nC(O)N(R4)2,
(CH2)nNR4C(O)R4,
(CH2)nNR4CO2R4,
CF3,
CH2CF3,
OCF3, and
OCH2CF3;
in which heteroaryl is as defined above; phenyl, naphthyl, heteroaryl, cycloalkyl, and heterocyclyl are unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C1-4 alkyl, trifluoromethyl, and C1-4 alkoxy; and CH2)n is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C1-4 alkyl;
each R4 is independently selected from the group consisting of
hydrogen,
C1-6 alkyl,
(CH2)n-phenyl,
(CH2)n-naphthyl, and
(CH2)nC3-7 cycloalkyl;
wherein cycloalkyl is unsubstituted or substituted with one to three groups independently selected from halogen, C1-4 alkyl, and C1-4 alkoxy;
or two R4 groups together with the atom to which they are attached form a 4- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and NC1-4 alkyl;
each R5 is independently selected from the group consisting of
hydrogen,
C1-8 alkyl,
(CH2)n-phenyl,
(CH2)n-naphthyl,
(CH2)n-heteroaryl, and
(CH2)nC3-7 cycloalkyl;
wherein heteroaryl is as defined above; phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R3; and alkyl, cycloalkyl, and CH2)n are unsubstituted or substituted with one to three groups independently selected from R3 and oxo; or two R5 groups together with the atom to which they are attached form a 5- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and
NC1-4 alkyl;
X is selected from the group consisting of
C1-8 alkyl substituted with one to three groups independently selected from R3 and oxo provided that C1-8 alkyl is not substituted with OR4,
(CH2)nC3-8 cycloalkyl,
(CH2)n-phenyl,
(CH2)n-naphthyl,
(CH2)n-heteroaryl,
CH2)nheterocyclyl,
(CH2)nC≡N,
(CH2)nCOR5,
(CH2)nNR5C(O)R5,
(CH2)nNR5 CO2R5,
(CH2)nNR5C(O)N(R5)2,
(CH2)nNR5SO2R5,
(CH2)nS(O)pR5,
(CH2)nSO2N(R5)(R5),
CH2)nOR5,
CH2)nOC(O)R5,
CH2)nOC(O)OR5,
CH2)nOC(O)N(R5)2,
(CH2)nNR5SO2N(R5)(R5);
wherein heteroaryl is as defined above; phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R3; and alkyl, CH2)n,
cycloalkyl, and heterocyclyl are unsubstituted or substituted with one to three groups independently selected from R3 and oxo; and
Y is selected from the group consisting of
C1-8 alkyl,
C2-6 alkenyl,
(CH2)nC3-8 cycloalkyl,
(CH2)n-phenyl,
(CH2)n-naphthyl,
(CH2)n-heteroaryl, and
(CH2)n-heterocyclyl;
wherein heteroaryl is as defined above; phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R3; and alkyl, CH2)n,
cycloalkyl, and heterocyclyl are optionally substituted with one to three groups independently selected from R3 and oxo.
2. The compound of claim 1 wherein R1 is selected from the group consisting of hydrogen, C1-6 alkyl, (CH2)0-1C3-6 cycloalkyl, and
(CH2)0-1-phenyl; wherein phenyl is unsubstituted or substituted with one to three groups independently selected from R3; and alkyl and cycloalkyl are optionally substituted with one to three groups independently selected from R3 and oxo.
3. The compound of claim 1 wherein R2 is phenyl or thienyl optionally substituted with one to three groups independently selected from R3.
4. The compound of claim 3 wherein R2 is phenyl optionally substituted with one to three groups independently selected from R3.
5. The compound of claim 1 wherein X is selected from the group consisting of
C1-6 alkyl substituted with one to three groups independently selected from R3 and oxo provided that C1-8 alkyl is not substituted with OR4,
(CH2)n-phenyl,
(CH2)n-naphthyl,
(CH2)n-heteroaryl,
(CH2)n-heterocyclyl,
(CH2)nS(O)pR5,
CH2)nOR5,
(CH2)nNR5C(O)R5, and
(CH2)nNR5 SO2R5;
wherein phenyl, naphthyl, and heteroaryl are optionally substituted with one to three groups independently selected from R3; alkyl and heterocyclyl are optionally substituted with one to three groups independently selected from R3 and oxo; and the CH2)n group is optionally substituted with one to three groups independently selected from R4, halogen, S(O)pR4, N(R4)2, and OR4.
6. The compound of claim 5 wherein X is selected from the group consisting of
C1-6 alkyl substituted with one to three groups independently selected from R3 and oxo provided that C1-8 alkyl is not substituted with OR4,
(CH2)0-1-phenyl,
(CH2)0-1-heteroaryl,
(CH2)0-1-heterocyclyl, and
(CH2)0-1NHC(O)R5,
wherein phenyl and heteroaryl are optionally substituted with one to three groups independently selected from R3; and alkyl and heterocyclyl are optionally substituted with one to three groups independently selected from R3 and oxo.
7. The compound of claim 6 wherein heteroaryl is selected from the group consisting of pyridyl, pyrazinyl, pyrimidinyl, triazolyl, tetrazolyl, thiadiazolyl, oxadiazolyl, pyrazolyl, and imidazolyl.
8. The compound of claim 1 wherein Y is selected from the group consisting of
C1-8 alkyl,
C2-6 alkenyl,
(CH2)C3-8 cycloalkyl,
(CH2)-phenyl,
(CH2)-naphthyl,
(CH2)-heterocyclyl, and
(CH2)-heteroaryl;
wherein phenyl, naphthyl, and heteroaryl are optionally substituted with one to three groups independently selected from R3; and (CH2), alkyl, cycloalkyl, and heterocyclyl are optionally substituted with one to three groups independently selected from R3 and oxo.
9. The compound of claim 8 wherein Y is selected from the group consisting of
C1-8 alkyl,
C2-6 alkenyl,
C5-7 cycloalkyl, and
phenyl;
wherein phenyl is unsubstituted or substituted with one to three groups independently selected from R3; and alkyl and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from R3 and oxo.
10. The compound of claim 9 wherein Y is cyclohexyl or C1-6 alkyl; wherein the cyclohexyl and alkyl groups are unsubstituted or substituted with one to three groups independently selected from R3 and oxo.
11. The compound of claim 1 wherein r is 1 or 2 and s is 1.
12. The compound of claim 1 of structural formula IIa or IIb of the indicated trans relative stereochemical configuration:
or a pharmaceutically acceptable salt thereof;
wherein
r is 1 or 2;
n is 0, 1, or 2;
p is 0, 1, or 2;
R1 is hydrogen, amidino, C1-4 alkyliminoyl, C1-6 alkyl, C5-6 cycloalkyl, (CH2)0-1 phenyl, or (CH2)0-1 heteroaryl; wherein phenyl and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R3; and alkyl and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from R3 and oxo;
R2 is phenyl or thienyl optionally substituted with one to three groups independently selected from R3;
R3 is selected from the group consisting of
C1-6 alkyl,
(CH2)n-phenyl,
(CH2)n-naphthyl,
(CH2)n-heteroaryl,
(CH2)n-heterocyclyl,
(CH2)nC3-7 cycloalkyl,
halogen,
OR4,
(CH2)nN(R4)2,
(CH2)nC≡N,
CO2R4,
C(R4)(R4)N(R4)2,
NO2,
(CH2)nNR4SO2R4
(CH2)nSO2N(R4)2,
CH2)nS(O)pR4,
(CH2)nNR4C(O)N(R4)2,
(CH2)nC(O)N(R4)2,
(CH2)nNR4C(O)R4,
(CH2)nNR4CO2R4,
CF3,
CH2CF3,
OCF3, and
OCH2CF3;
in which phenyl, naphthyl, heteroaryl, cycloalkyl, and heterocyclyl are unsubstituted or substituted with one to two substituents independently selected from halogen, hydroxy, C1-4 alkyl, trifluoromethyl, and C1-4 alkoxy; and CH2)n is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C1-4 alkyl;
each R4 is independently selected from the group consisting of
hydrogen,
C1-8 alkyl, and
C3-6 cycloalkyl;
wherein cycloalkyl is unsubstituted or substituted with one to three groups independently selected from halogen, C1-4 alkyl, and C1-4 alkoxy;
or two R4 groups together with the atom to which they are attached form a 4- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and NC1-4 alkyl;
Y is selected from the group consisting of
C1-8 alkyl,
C2-6 alkenyl,
(CH2)0-1C3-8 cycloalkyl,
(CH2)0-1-phenyl,
(CH2)0-1-naphthyl, and
(CH2)0-1-heteroaryl;
wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R3; and alkyl, (CH2), and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from R3 and oxo; and
X is selected from the group consisting of
13. The compound of claim 1 of structural formula IIIa or IIIb of the indicated trans relative stereochemical configuration:
or a pharmaceutically acceptable salt thereof;
wherein
r is 1 or 2;
R1 is hydrogen, C1-4 alkyl, or (CH2)0-1 phenyl;
each R3 is independently selected from the group consisting of hydrogen, halo,
C1-4 alkyl, trifluoromethyl, and C1-4 alkoxy;
Y is cyclohexyl or phenyl; and
14. (canceled)
15. A method for the treatment or prevention of disorders, diseases or conditions responsive to the activation of the melanocortin receptor in a subject in need thereof which comprises administering to the subject a therapeutically or prophylactically effective amount of a compound according to claim 1 .
16. A method for the treatment or prevention of obesity in a subject in need thereof which comprises administering to the subject a therapeutically or prophylactically effective amount of a compound according to claim 1 .
17. A method for the treatment or prevention of diabetes mellitus in a subject in need thereof comprising administering to the subject a therapeutically or prophylactically effective amount of a compound according to claim 1 .
18. A method for the treatment or prevention of male or female sexual dysfunction in a subject in need thereof comprising administering to the subject a therapeutically or prophylactically effective amount of a compound according to claim 1 .
19. A method for the treatment or prevention of erectile dysfunction in a subject in need thereof comprising administering to the subject a therapeutically or prophylactically effective amount of a compound according to claim 1 .
20. A pharmaceutical composition which comprises a therapeutically effective amount of a compound of claim 1 and a pharmaceutically acceptable carrer.
21. The pharmaceutical composition of claim 20 further comprising a second active ingredient selected from the group consisting of an insulin sensitizer, an insulin mimetic, a sulfonylurea, an α-glucosidase inhibitor, an HMG-CoA reductase inhibitor, an anti-obesity serotonergic agent, a β adrenoreceptor agonist, a neuropeptide Y1 or Y5 antagonist, a pancreatic lipase inhibitor, and a cannabinoid CB1 receptor antagonist or inverse agonist.
22. The pharmaceutical composition of claim 20 further comprising a second active ingredient selected from the group consisting of a type V cyclic-GMP-selective phosphodiesterase inhibitor, an α2-adrenergic receptor antagonist, and a dopaminergic agent.
23. A method of treating erectile dysfunction in a subject in need thereof comprising administering to the subject a therapeutically effective amount of the composition of claim 22 .
24. A method of treating erectile dysfunction in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a compound of claim 1 in combination with a type V cyclic-GMP-selective phosphodiesterase inhibitor, an α2-adrenergic receptor antagonist, or a dopaminergic agent.
25. A method of treating diabetes or obesity in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a compound of claim 1 in combination with an insulin sensitizer, an insulin mimetic, a sulfonylurea, an α-glucosidase inhibitor, an HMG-CoA reductase inhibitor, an anti-obesity serotonergic agent, a β adrenoreceptor agonist, a neuropeptide Y1 or Y5 antagonist, a pancreatic lipase inhibitor, or a cannabinoid CB1 receptor antagonist or inverse agonist.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/239,721 US20060035935A1 (en) | 2001-02-28 | 2005-09-30 | Acylated piperidine derivatives as melanocortin-4 receptor agonists |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US27225801P | 2001-02-28 | 2001-02-28 | |
US30057201P | 2001-06-22 | 2001-06-22 | |
PCT/US2002/005623 WO2002068387A2 (en) | 2001-02-28 | 2002-02-25 | Acylated piperidine derivatives as melanocortin-4 receptor agonists |
US10/468,515 US7015235B2 (en) | 2001-02-28 | 2002-02-25 | Acylated piperidine derivatives as melanocortin-4 receptor agonists |
US11/239,721 US20060035935A1 (en) | 2001-02-28 | 2005-09-30 | Acylated piperidine derivatives as melanocortin-4 receptor agonists |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/468,515 Division US7015235B2 (en) | 2001-02-28 | 2002-02-25 | Acylated piperidine derivatives as melanocortin-4 receptor agonists |
PCT/US2002/005623 Division WO2002068387A2 (en) | 2001-02-28 | 2002-02-25 | Acylated piperidine derivatives as melanocortin-4 receptor agonists |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060035935A1 true US20060035935A1 (en) | 2006-02-16 |
Family
ID=26955403
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/468,515 Expired - Lifetime US7015235B2 (en) | 2001-02-28 | 2002-02-25 | Acylated piperidine derivatives as melanocortin-4 receptor agonists |
US11/239,721 Abandoned US20060035935A1 (en) | 2001-02-28 | 2005-09-30 | Acylated piperidine derivatives as melanocortin-4 receptor agonists |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/468,515 Expired - Lifetime US7015235B2 (en) | 2001-02-28 | 2002-02-25 | Acylated piperidine derivatives as melanocortin-4 receptor agonists |
Country Status (9)
Country | Link |
---|---|
US (2) | US7015235B2 (en) |
EP (1) | EP1372653B1 (en) |
JP (1) | JP4323169B2 (en) |
AT (1) | ATE341327T1 (en) |
AU (1) | AU2002255597B8 (en) |
CA (1) | CA2439149C (en) |
DE (1) | DE60215132T2 (en) |
ES (1) | ES2272703T3 (en) |
WO (1) | WO2002068387A2 (en) |
Families Citing this family (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7012084B2 (en) | 2001-02-28 | 2006-03-14 | Merck & Co., Inc. | Acylated piperidine derivatives as melanocortin-4 receptor agonists |
EP1383501B1 (en) | 2001-02-28 | 2007-04-04 | Merck & Co., Inc. | Acylated piperidine derivatives as melanocortin-4 receptor agonists |
US6911447B2 (en) | 2001-04-25 | 2005-06-28 | The Procter & Gamble Company | Melanocortin receptor ligands |
DE60229393D1 (en) | 2001-07-18 | 2008-11-27 | Merck & Co Inc | Bridged piperidine derivatives as melanocortin receptor agonists |
US6977264B2 (en) | 2001-07-25 | 2005-12-20 | Amgen Inc. | Substituted piperidines and methods of use |
US7115607B2 (en) | 2001-07-25 | 2006-10-03 | Amgen Inc. | Substituted piperazinyl amides and methods of use |
US7354923B2 (en) | 2001-08-10 | 2008-04-08 | Palatin Technologies, Inc. | Piperazine melanocortin-specific compounds |
EP1425029A4 (en) | 2001-08-10 | 2006-06-07 | Palatin Technologies Inc | PEPTIDOMIMETICS OF BIOLOGICALLY ACTIVE METALOPEPTIDES |
US7456184B2 (en) | 2003-05-01 | 2008-11-25 | Palatin Technologies Inc. | Melanocortin receptor-specific compounds |
US7026335B2 (en) | 2002-04-30 | 2006-04-11 | The Procter & Gamble Co. | Melanocortin receptor ligands |
US7105526B2 (en) | 2002-06-28 | 2006-09-12 | Banyu Pharmaceuticals Co., Ltd. | Benzimidazole derivatives |
JP2006505531A (en) | 2002-09-11 | 2006-02-16 | メルク エンド カムパニー インコーポレーテッド | Piperazine urea derivatives as melanocortin-4 receptor agonists |
TW200504033A (en) | 2002-10-23 | 2005-02-01 | Procter & Gamble | Melanocortin receptor ligands |
US7772188B2 (en) | 2003-01-28 | 2010-08-10 | Ironwood Pharmaceuticals, Inc. | Methods and compositions for the treatment of gastrointestinal disorders |
AR043434A1 (en) * | 2003-03-03 | 2005-07-27 | Merck & Co Inc | PIPERIZACINE DERIVATIVES ACILATED AS AGELISTS OF THE RECEIVER OF MELANOCORTINA-4. PHARMACEUTICAL COMPOSITIONS AND USES |
US6998488B2 (en) | 2003-03-10 | 2006-02-14 | Merck & Co., Inc. | Process and intermediates for the preparation of 4-aryl piperidines |
EP1610789B1 (en) * | 2003-03-26 | 2010-07-21 | Merck Sharp & Dohme Corp. | Bicyclic piperidine derivatives as melanocortin-4 receptor agonists |
RU2005134230A (en) | 2003-04-04 | 2006-05-10 | Мерк энд Ко., Инк. (US) | Acylated derivatives of spiroperiperidine as agonists of the receptor melanocortin-4 |
AR044510A1 (en) * | 2003-04-14 | 2005-09-14 | Merck & Co Inc | PROCEDURE AND INTERMEDIATES TO PREPARE CARBOXILIC ACIDS OF PIRROLIDINE |
US7049323B2 (en) | 2003-04-25 | 2006-05-23 | Bristol-Myers Squibb Company | Amidoheterocycles as modulators of the melanocortin-4 receptor |
US7419990B2 (en) | 2003-07-22 | 2008-09-02 | Merck & Co., Inc. | Piperidine derivatives as melanocortin-4 receptor agonists |
ATE547404T1 (en) | 2003-09-22 | 2012-03-15 | Msd Kk | PIPERIDINE DERIVATIVES |
US7649002B2 (en) | 2004-02-04 | 2010-01-19 | Pfizer Inc | (3,5-dimethylpiperidin-1yl)(4-phenylpyrrolidin-3-yl)methanone derivatives as MCR4 agonists |
GB0402492D0 (en) * | 2004-02-04 | 2004-03-10 | Pfizer Ltd | Pharmaceutically active compounds |
JP5111101B2 (en) * | 2004-03-02 | 2012-12-26 | 株式会社ブリヂストン | Bulk polymerization process |
EP2305352A1 (en) | 2004-04-02 | 2011-04-06 | Merck Sharp & Dohme Corp. | 5-alpha-reductase inhibitors for use in the treatment of men with metabolic and anthropometric disorders |
EP1773338B1 (en) * | 2004-07-19 | 2010-01-06 | Merck & Co., Inc. | Acylated piperidine derivatives as melanocortin-4 receptor agonists |
CN101094689B (en) | 2004-11-01 | 2013-06-12 | 安米林药品有限责任公司 | Methods of treating obesity and obesity-related diseases and conditions |
GB0428514D0 (en) * | 2004-12-31 | 2005-02-09 | Prosidion Ltd | Compounds |
WO2007022123A2 (en) | 2005-08-11 | 2007-02-22 | Amylin Pharmaceuticals, Inc. | Hybrid polypeptides with selectable properties |
AU2006253312B2 (en) | 2005-05-30 | 2011-08-18 | Msd K.K. | Novel piperidine derivative |
US20070021433A1 (en) | 2005-06-03 | 2007-01-25 | Jian-Qiang Fan | Pharmacological chaperones for treating obesity |
WO2007016361A2 (en) | 2005-07-29 | 2007-02-08 | Concert Pharmaceuticals Inc. | Novel pharmaceutical compounds |
WO2007015162A1 (en) * | 2005-08-04 | 2007-02-08 | Pfizer Limited | Piperidinoyl-pyrrolidine and piperidinoyl-piperidine compounds |
EP1916239A4 (en) | 2005-08-10 | 2009-10-21 | Banyu Pharma Co Ltd | PYRIDOLVERBINDUNG |
EP2330125A3 (en) | 2005-08-11 | 2012-12-12 | Amylin Pharmaceuticals, Inc. | Hybrid polypeptides with selectable properties |
JPWO2007024004A1 (en) | 2005-08-24 | 2009-03-05 | 萬有製薬株式会社 | Phenylpyridone derivatives |
JPWO2007029847A1 (en) | 2005-09-07 | 2009-03-19 | 萬有製薬株式会社 | Bicyclic aromatic substituted pyridone derivatives |
CN101277960A (en) * | 2005-09-29 | 2008-10-01 | 默克公司 | Acylated spiropiperidine derivatives as melanocortin-4 receptor modulators |
AU2006304305B2 (en) | 2005-10-18 | 2010-04-01 | Merck Sharp & Dohme Corp. | Acylated spiropiperidine derivatives as melanocortin-4 receptor modulators |
EP1940374A2 (en) | 2005-10-21 | 2008-07-09 | Novartis AG | Combination of a renin-inhibitor and an anti-dyslipidemic agent and/or an antiobesity agent |
JPWO2007049798A1 (en) | 2005-10-27 | 2009-04-30 | 萬有製薬株式会社 | New benzooxathiin derivatives |
KR101318127B1 (en) | 2005-11-10 | 2013-10-16 | 엠에스디 가부시키가이샤 | Aza-substituted spiro derivative |
US8138188B2 (en) | 2006-02-23 | 2012-03-20 | Pfizer Inc. | Melanocortin type 4 receptor agonist piperidinoylpyrrolidines |
JP5243274B2 (en) * | 2006-02-23 | 2013-07-24 | ファイザー・リミテッド | Piperidinoylpyrrolidine, a type 4 melanocortin receptor agonist |
AU2007300627B2 (en) | 2006-09-22 | 2012-02-16 | Merck Sharp & Dohme Corp. | Method of treatment using fatty acid synthesis inhibitors |
CA2664358A1 (en) | 2006-09-28 | 2008-04-03 | Banyu Pharmaceutical Co., Ltd. | Diarylketimine derivative |
AU2008233662B2 (en) | 2007-04-02 | 2012-08-23 | Msd K.K. | Indoledione derivative |
US8969514B2 (en) | 2007-06-04 | 2015-03-03 | Synergy Pharmaceuticals, Inc. | Agonists of guanylate cyclase useful for the treatment of hypercholesterolemia, atherosclerosis, coronary heart disease, gallstone, obesity and other cardiovascular diseases |
JP5546451B2 (en) | 2007-06-04 | 2014-07-09 | シナジー ファーマシューティカルズ インコーポレイテッド | Agonyl cyclase agonists useful in the treatment of gastrointestinal disorders, inflammation, cancer and other disorders |
AU2008307572A1 (en) * | 2007-10-04 | 2009-04-09 | Merck Sharp & Dohme Corp. | Substituted aryl sulfone derivatives as calcium channel blockers |
EP2264026A4 (en) | 2008-03-06 | 2012-03-28 | Msd Kk | ALKYLAMINOPYRIDINE DERIVATIVE |
CA2717384A1 (en) | 2008-03-28 | 2009-10-01 | Banyu Pharmaceutical Co., Ltd. | Diarylmethylamide derivative having melanin-concentrating hormone receptor antagonism |
ES2627848T3 (en) | 2008-06-04 | 2017-07-31 | Synergy Pharmaceuticals Inc. | Guanylate cyclase agonists useful for the treatment of gastrointestinal disorders, inflammation, cancer and other disorders |
WO2009154132A1 (en) | 2008-06-19 | 2009-12-23 | 萬有製薬株式会社 | Spirodiamine-diarylketoxime derivative |
ES2624828T3 (en) | 2008-07-16 | 2017-07-17 | Synergy Pharmaceuticals Inc. | Guanylate cyclase agonists useful for the treatment of gastrointestinal disorders, inflammation, cancer and others |
AU2009277736A1 (en) | 2008-07-30 | 2010-02-04 | Banyu Pharmaceutical Co., Ltd. | (5-membered)-(5-membered) or (5-membered)-(6-membered) fused ring cycloalkylamine derivative |
AU2009278838B2 (en) | 2008-08-06 | 2013-07-25 | Pfizer Limited | Diazepine and diazocane compounds as MC4 agonists |
EP2348857B1 (en) | 2008-10-22 | 2016-02-24 | Merck Sharp & Dohme Corp. | Novel cyclic benzimidazole derivatives useful anti-diabetic agents |
WO2010051206A1 (en) | 2008-10-31 | 2010-05-06 | Merck Sharp & Dohme Corp. | Novel cyclic benzimidazole derivatives useful anti-diabetic agents |
UA99555C2 (en) | 2008-11-12 | 2012-08-27 | Элджи Лайф Саенсез Лтд. | Melanocortin receptor agonists |
US8759539B2 (en) | 2008-11-17 | 2014-06-24 | Merck Sharp & Dohme Corp. | Substituted bicyclic amines for the treatment of diabetes |
WO2010069793A1 (en) * | 2008-12-16 | 2010-06-24 | F. Hoffmann-La Roche Ag | Process for the preparation of pyrollidine-3-carboxylic acids |
US8324250B2 (en) * | 2009-03-19 | 2012-12-04 | Hoffmann-La Roche Inc. | Piperidine derivatives as NK3 receptor antagonists |
US20120220567A1 (en) | 2009-07-23 | 2012-08-30 | Shipps Jr Gerald W | Benzo-fused oxazepine compounds as stearoyl-coenzyme a delta-9 desaturase inhibitors |
WO2011011506A1 (en) | 2009-07-23 | 2011-01-27 | Schering Corporation | Spirocyclic oxazepine compounds as stearoyl-coenzyme a delta-9 desaturase inhibitors |
US9044606B2 (en) | 2010-01-22 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Methods and devices for activating brown adipose tissue using electrical energy |
US8476227B2 (en) | 2010-01-22 | 2013-07-02 | Ethicon Endo-Surgery, Inc. | Methods of activating a melanocortin-4 receptor pathway in obese subjects |
JP2013520502A (en) | 2010-02-25 | 2013-06-06 | メルク・シャープ・エンド・ドーム・コーポレイション | Novel cyclic benzimidazole derivatives that are useful anti-diabetic drugs |
EP2563764B1 (en) | 2010-04-26 | 2015-02-25 | Merck Sharp & Dohme Corp. | Novel spiropiperidine prolylcarboxypeptidase inhibitors |
US8921394B2 (en) | 2010-04-27 | 2014-12-30 | Merck Sharp & Dohme Corp. | Prolylcarboxypeptidase inhibitors |
WO2011143057A1 (en) | 2010-05-11 | 2011-11-17 | Merck Sharp & Dohme Corp. | Novel prolylcarboxypeptidase inhibitors |
WO2011156246A1 (en) | 2010-06-11 | 2011-12-15 | Merck Sharp & Dohme Corp. | Novel prolylcarboxypeptidase inhibitors |
US9616097B2 (en) | 2010-09-15 | 2017-04-11 | Synergy Pharmaceuticals, Inc. | Formulations of guanylate cyclase C agonists and methods of use |
US9018395B2 (en) | 2011-01-27 | 2015-04-28 | Université de Montréal | Pyrazolopyridine and pyrazolopyrimidine derivatives as melanocortin-4 receptor modulators |
CA2826649C (en) | 2011-02-25 | 2016-07-26 | Merck Sharp & Dohme Corp. | Novel cyclic azabenzimidazole derivatives useful as anti-diabetic agents |
JP2015525782A (en) | 2012-08-02 | 2015-09-07 | メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. | Antidiabetic tricyclic compounds |
KR20150118158A (en) | 2013-02-22 | 2015-10-21 | 머크 샤프 앤드 돔 코포레이션 | Antidiabetic bicyclic compounds |
WO2014139388A1 (en) | 2013-03-14 | 2014-09-18 | Merck Sharp & Dohme Corp. | Novel indole derivatives useful as anti-diabetic agents |
EP2968439A2 (en) | 2013-03-15 | 2016-01-20 | Synergy Pharmaceuticals Inc. | Compositions useful for the treatment of gastrointestinal disorders |
US9708367B2 (en) | 2013-03-15 | 2017-07-18 | Synergy Pharmaceuticals, Inc. | Agonists of guanylate cyclase and their uses |
PL3004138T3 (en) | 2013-06-05 | 2024-07-29 | Bausch Health Ireland Limited | Ultra-pure agonists of guanylate cyclase c, method of making and using same |
WO2015051496A1 (en) | 2013-10-08 | 2015-04-16 | Merck Sharp & Dohme Corp. | Antidiabetic tricyclic compounds |
CN107207483B (en) | 2014-08-29 | 2020-10-30 | Tes制药有限责任公司 | Alpha-amino-beta-carboxymuconate semialdehyde decarboxylase inhibitors |
US10092738B2 (en) | 2014-12-29 | 2018-10-09 | Ethicon Llc | Methods and devices for inhibiting nerves when activating brown adipose tissue |
US10080884B2 (en) | 2014-12-29 | 2018-09-25 | Ethicon Llc | Methods and devices for activating brown adipose tissue using electrical energy |
MX2019004321A (en) | 2016-10-14 | 2019-06-12 | Tes Pharma S R L | Inhibitors of alpha-amino-beta-carboxymuconic acid semialdehyde decarboxylase. |
US11072602B2 (en) | 2016-12-06 | 2021-07-27 | Merck Sharp & Dohme Corp. | Antidiabetic heterocyclic compounds |
US10968232B2 (en) | 2016-12-20 | 2021-04-06 | Merck Sharp & Dohme Corp. | Antidiabetic spirochroman compounds |
BR112021009589A2 (en) | 2018-11-20 | 2021-08-17 | Tes Pharma S.R.L. | alpha-amino-beta-carboxymuconic acid semialdehyde decarboxylase inhibitors |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5576290A (en) * | 1993-04-05 | 1996-11-19 | Competitive Technologies, Inc. | Compositions and methods for the diagnosis and treatment of psychogenic erectile dysfunction |
US6166037A (en) * | 1997-08-28 | 2000-12-26 | Merck & Co., Inc. | Pyrrolidine and piperidine modulators of chemokine receptor activity |
US6350760B1 (en) * | 1999-06-04 | 2002-02-26 | Merck & Co., Inc. | Substituted piperidines as melanocortin-4 receptor agonists |
US6511994B2 (en) * | 2000-10-11 | 2003-01-28 | Merck & Co., Inc. | Modulators of CCR5 chemokine receptor activity |
US6818658B2 (en) * | 2001-02-28 | 2004-11-16 | Merck & Co., Inc. | Acylated piperidine derivatives as melanocortin-4 receptor agonists |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2298813A1 (en) | 1997-08-28 | 1999-03-04 | Merck & Co., Inc. | Pyrrolidine and piperidine modulators of chemokine receptor activity |
PL357177A1 (en) | 2000-02-11 | 2004-07-26 | Vertex Pharmaceuticals Incorporated | Piperazine and piperidine derivatives for treatment or prevention of neuronal damage |
US6458790B2 (en) * | 2000-03-23 | 2002-10-01 | Merck & Co., Inc. | Substituted piperidines as melanocortin receptor agonists |
JP2003534377A (en) * | 2000-05-30 | 2003-11-18 | メルク エンド カムパニー インコーポレーテッド | Melanocortin receptor agonist |
US7012084B2 (en) | 2001-02-28 | 2006-03-14 | Merck & Co., Inc. | Acylated piperidine derivatives as melanocortin-4 receptor agonists |
-
2002
- 2002-02-25 JP JP2002567901A patent/JP4323169B2/en not_active Expired - Fee Related
- 2002-02-25 WO PCT/US2002/005623 patent/WO2002068387A2/en active IP Right Grant
- 2002-02-25 CA CA2439149A patent/CA2439149C/en not_active Expired - Fee Related
- 2002-02-25 AT AT02725001T patent/ATE341327T1/en not_active IP Right Cessation
- 2002-02-25 ES ES02725001T patent/ES2272703T3/en not_active Expired - Lifetime
- 2002-02-25 EP EP02725001A patent/EP1372653B1/en not_active Expired - Lifetime
- 2002-02-25 DE DE60215132T patent/DE60215132T2/en not_active Expired - Lifetime
- 2002-02-25 US US10/468,515 patent/US7015235B2/en not_active Expired - Lifetime
- 2002-02-25 AU AU2002255597A patent/AU2002255597B8/en not_active Ceased
-
2005
- 2005-09-30 US US11/239,721 patent/US20060035935A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5576290A (en) * | 1993-04-05 | 1996-11-19 | Competitive Technologies, Inc. | Compositions and methods for the diagnosis and treatment of psychogenic erectile dysfunction |
US6051555A (en) * | 1993-04-05 | 2000-04-18 | Hadley; Mac E. | Stimulating sexual response in females |
US6166037A (en) * | 1997-08-28 | 2000-12-26 | Merck & Co., Inc. | Pyrrolidine and piperidine modulators of chemokine receptor activity |
US6350760B1 (en) * | 1999-06-04 | 2002-02-26 | Merck & Co., Inc. | Substituted piperidines as melanocortin-4 receptor agonists |
US6511994B2 (en) * | 2000-10-11 | 2003-01-28 | Merck & Co., Inc. | Modulators of CCR5 chemokine receptor activity |
US6818658B2 (en) * | 2001-02-28 | 2004-11-16 | Merck & Co., Inc. | Acylated piperidine derivatives as melanocortin-4 receptor agonists |
Also Published As
Publication number | Publication date |
---|---|
JP2004527498A (en) | 2004-09-09 |
WO2002068387A8 (en) | 2003-09-04 |
WO2002068387A3 (en) | 2003-02-20 |
EP1372653B1 (en) | 2006-10-04 |
ES2272703T3 (en) | 2007-05-01 |
US7015235B2 (en) | 2006-03-21 |
WO2002068387A2 (en) | 2002-09-06 |
AU2002255597B8 (en) | 2006-10-26 |
DE60215132T2 (en) | 2007-08-23 |
EP1372653A2 (en) | 2004-01-02 |
EP1372653A4 (en) | 2005-10-05 |
JP4323169B2 (en) | 2009-09-02 |
DE60215132D1 (en) | 2006-11-16 |
CA2439149C (en) | 2012-04-24 |
US20040097546A1 (en) | 2004-05-20 |
CA2439149A1 (en) | 2002-09-06 |
ATE341327T1 (en) | 2006-10-15 |
AU2002255597B2 (en) | 2006-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7015235B2 (en) | Acylated piperidine derivatives as melanocortin-4 receptor agonists | |
US6818658B2 (en) | Acylated piperidine derivatives as melanocortin-4 receptor agonists | |
US7700778B2 (en) | Acylated piperidine derivatives as melanocortin-4 receptor agonists | |
AU2002255597A1 (en) | Acylated piperidine derivatives as melanocortin-4 receptor agonists | |
US7115628B2 (en) | Bridged piperidine derivatives as melanocortin receptor agonists | |
US6767915B2 (en) | Substituted piperidines as melanocortin receptor agonists | |
AU2002258414A1 (en) | Acylated Piperidine Derivatives as Melanocortin-4 Receptor Agonists | |
AU2002250343A1 (en) | Acylated piperidine derivatives as melanocortin-4 receptor agonists | |
AU2002320494A1 (en) | Bridged piperidine derivatives as melanocortin receptor agonists | |
US20040266821A1 (en) | Acylated piperidine derivatives as melanocortin-4 receptor agonists |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |