US20060093603A1 - ErbB4 antagonists - Google Patents
ErbB4 antagonists Download PDFInfo
- Publication number
- US20060093603A1 US20060093603A1 US11/248,122 US24812205A US2006093603A1 US 20060093603 A1 US20060093603 A1 US 20060093603A1 US 24812205 A US24812205 A US 24812205A US 2006093603 A1 US2006093603 A1 US 2006093603A1
- Authority
- US
- United States
- Prior art keywords
- antibody
- erbb4
- accession number
- atcc accession
- number pta
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229940123852 ERbB-4 antagonist Drugs 0.000 title description 36
- 238000000034 method Methods 0.000 claims abstract description 188
- 101710100963 Receptor tyrosine-protein kinase erbB-4 Proteins 0.000 claims abstract description 111
- 102000044591 ErbB-4 Receptor Human genes 0.000 claims abstract description 98
- 210000000329 smooth muscle myocyte Anatomy 0.000 claims abstract description 86
- 230000035755 proliferation Effects 0.000 claims abstract description 58
- 208000031481 Pathologic Constriction Diseases 0.000 claims abstract description 43
- 230000036262 stenosis Effects 0.000 claims abstract description 42
- 208000037804 stenosis Diseases 0.000 claims abstract description 42
- 239000005557 antagonist Substances 0.000 claims abstract description 37
- 230000005012 migration Effects 0.000 claims abstract description 36
- 238000013508 migration Methods 0.000 claims abstract description 36
- 210000004027 cell Anatomy 0.000 claims description 206
- 241000282414 Homo sapiens Species 0.000 claims description 99
- 230000027455 binding Effects 0.000 claims description 79
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 76
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 69
- 229920001184 polypeptide Polymers 0.000 claims description 67
- 102000005962 receptors Human genes 0.000 claims description 52
- 108020003175 receptors Proteins 0.000 claims description 52
- 108060003951 Immunoglobulin Proteins 0.000 claims description 50
- 102000018358 immunoglobulin Human genes 0.000 claims description 50
- 150000007523 nucleic acids Chemical class 0.000 claims description 38
- 238000011282 treatment Methods 0.000 claims description 38
- 102400000058 Neuregulin-1 Human genes 0.000 claims description 35
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 35
- 210000004408 hybridoma Anatomy 0.000 claims description 35
- 108020004707 nucleic acids Proteins 0.000 claims description 33
- 102000039446 nucleic acids Human genes 0.000 claims description 33
- 108090000556 Neuregulin-1 Proteins 0.000 claims description 32
- 208000037803 restenosis Diseases 0.000 claims description 29
- 108010047041 Complementarity Determining Regions Proteins 0.000 claims description 27
- 210000004509 vascular smooth muscle cell Anatomy 0.000 claims description 24
- 210000003932 urinary bladder Anatomy 0.000 claims description 20
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims description 19
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims description 19
- 206010057469 Vascular stenosis Diseases 0.000 claims description 18
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 claims description 16
- 230000005764 inhibitory process Effects 0.000 claims description 16
- 230000026731 phosphorylation Effects 0.000 claims description 15
- 238000006366 phosphorylation reaction Methods 0.000 claims description 15
- 230000003472 neutralizing effect Effects 0.000 claims description 14
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 claims description 14
- 238000001727 in vivo Methods 0.000 claims description 13
- 230000000414 obstructive effect Effects 0.000 claims description 12
- 206010020772 Hypertension Diseases 0.000 claims description 11
- 230000002265 prevention Effects 0.000 claims description 11
- 230000008719 thickening Effects 0.000 claims description 10
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 claims description 8
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 claims description 8
- 210000005119 human aortic smooth muscle cell Anatomy 0.000 claims description 8
- 208000023504 respiratory system disease Diseases 0.000 claims description 8
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 claims description 7
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 claims description 7
- 201000000660 Pyloric Stenosis Diseases 0.000 claims description 7
- 229940044551 receptor antagonist Drugs 0.000 claims description 7
- 239000002464 receptor antagonist Substances 0.000 claims description 7
- 210000002889 endothelial cell Anatomy 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 150000003384 small molecules Chemical group 0.000 claims description 6
- 238000001802 infusion Methods 0.000 claims description 4
- 239000003937 drug carrier Substances 0.000 claims description 3
- 239000008194 pharmaceutical composition Substances 0.000 claims description 2
- 230000002401 inhibitory effect Effects 0.000 abstract description 6
- 239000000556 agonist Substances 0.000 abstract description 2
- 230000002708 enhancing effect Effects 0.000 abstract description 2
- 108090000623 proteins and genes Proteins 0.000 description 84
- 235000018102 proteins Nutrition 0.000 description 43
- 102000004169 proteins and genes Human genes 0.000 description 43
- 239000003446 ligand Substances 0.000 description 41
- 239000013598 vector Substances 0.000 description 40
- 230000014509 gene expression Effects 0.000 description 35
- 108020004414 DNA Proteins 0.000 description 29
- 102000001301 EGF receptor Human genes 0.000 description 29
- 238000003556 assay Methods 0.000 description 29
- 108060006698 EGF receptor Proteins 0.000 description 27
- 230000004927 fusion Effects 0.000 description 27
- 239000000427 antigen Substances 0.000 description 25
- 108091007433 antigens Proteins 0.000 description 23
- 102000036639 antigens Human genes 0.000 description 23
- 239000012634 fragment Substances 0.000 description 23
- 235000001014 amino acid Nutrition 0.000 description 22
- 238000006467 substitution reaction Methods 0.000 description 22
- 229940024606 amino acid Drugs 0.000 description 21
- 150000001413 amino acids Chemical class 0.000 description 21
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 21
- 102100033762 Proheparin-binding EGF-like growth factor Human genes 0.000 description 20
- 102000004190 Enzymes Human genes 0.000 description 19
- 108090000790 Enzymes Proteins 0.000 description 19
- 101000871708 Homo sapiens Proheparin-binding EGF-like growth factor Proteins 0.000 description 19
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 19
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 19
- 230000004663 cell proliferation Effects 0.000 description 19
- 230000000694 effects Effects 0.000 description 19
- 229940088598 enzyme Drugs 0.000 description 19
- 238000002965 ELISA Methods 0.000 description 18
- 230000004913 activation Effects 0.000 description 17
- 239000002502 liposome Substances 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 17
- 206010028980 Neoplasm Diseases 0.000 description 16
- 238000000338 in vitro Methods 0.000 description 15
- 239000003814 drug Substances 0.000 description 14
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 14
- 206010006187 Breast cancer Diseases 0.000 description 13
- 102100029981 Receptor tyrosine-protein kinase erbB-4 Human genes 0.000 description 13
- -1 TweenTM Substances 0.000 description 13
- 208000035475 disorder Diseases 0.000 description 13
- 229940079593 drug Drugs 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- 101800003838 Epidermal growth factor Proteins 0.000 description 12
- 102100033237 Pro-epidermal growth factor Human genes 0.000 description 12
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 12
- 239000000872 buffer Substances 0.000 description 12
- 229940116977 epidermal growth factor Drugs 0.000 description 12
- 108010037896 heparin-binding hemagglutinin Proteins 0.000 description 12
- 238000011534 incubation Methods 0.000 description 12
- 210000004962 mammalian cell Anatomy 0.000 description 12
- 239000012528 membrane Substances 0.000 description 12
- 230000004048 modification Effects 0.000 description 12
- 238000012986 modification Methods 0.000 description 12
- 210000001519 tissue Anatomy 0.000 description 12
- 208000026310 Breast neoplasm Diseases 0.000 description 11
- 206010035226 Plasma cell myeloma Diseases 0.000 description 11
- 238000013459 approach Methods 0.000 description 11
- 238000010367 cloning Methods 0.000 description 11
- 201000000050 myeloid neoplasm Diseases 0.000 description 11
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 10
- 241000124008 Mammalia Species 0.000 description 10
- 230000004071 biological effect Effects 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 238000000746 purification Methods 0.000 description 10
- 239000007790 solid phase Substances 0.000 description 10
- 230000001225 therapeutic effect Effects 0.000 description 10
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 9
- 241000894006 Bacteria Species 0.000 description 9
- 241000588724 Escherichia coli Species 0.000 description 9
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 9
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 9
- 241000699666 Mus <mouse, genus> Species 0.000 description 9
- 241000699670 Mus sp. Species 0.000 description 9
- 108010076504 Protein Sorting Signals Proteins 0.000 description 9
- 230000000903 blocking effect Effects 0.000 description 9
- 238000012217 deletion Methods 0.000 description 9
- 230000037430 deletion Effects 0.000 description 9
- 238000010790 dilution Methods 0.000 description 9
- 239000012895 dilution Substances 0.000 description 9
- 239000003623 enhancer Substances 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- WOVKYSAHUYNSMH-UHFFFAOYSA-N BROMODEOXYURIDINE Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-UHFFFAOYSA-N 0.000 description 8
- 102100021242 Dymeclin Human genes 0.000 description 8
- 101000817629 Homo sapiens Dymeclin Proteins 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 8
- 108091028043 Nucleic acid sequence Proteins 0.000 description 8
- 239000002202 Polyethylene glycol Substances 0.000 description 8
- 241000283984 Rodentia Species 0.000 description 8
- 108090000190 Thrombin Proteins 0.000 description 8
- 125000000539 amino acid group Chemical group 0.000 description 8
- 239000002246 antineoplastic agent Substances 0.000 description 8
- 210000004204 blood vessel Anatomy 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 201000010099 disease Diseases 0.000 description 8
- 239000012636 effector Substances 0.000 description 8
- 239000013604 expression vector Substances 0.000 description 8
- 239000003102 growth factor Substances 0.000 description 8
- 206010020718 hyperplasia Diseases 0.000 description 8
- 229940072221 immunoglobulins Drugs 0.000 description 8
- 238000003780 insertion Methods 0.000 description 8
- 230000037431 insertion Effects 0.000 description 8
- 238000002703 mutagenesis Methods 0.000 description 8
- 231100000350 mutagenesis Toxicity 0.000 description 8
- 230000035772 mutation Effects 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 8
- 229940002612 prodrug Drugs 0.000 description 8
- 239000000651 prodrug Substances 0.000 description 8
- 241000894007 species Species 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 108091026890 Coding region Proteins 0.000 description 7
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 7
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 7
- 241001529936 Murinae Species 0.000 description 7
- 108091005804 Peptidases Proteins 0.000 description 7
- 102000035195 Peptidases Human genes 0.000 description 7
- 239000004365 Protease Substances 0.000 description 7
- 102220497176 Small vasohibin-binding protein_T47D_mutation Human genes 0.000 description 7
- 108010022394 Threonine synthase Proteins 0.000 description 7
- 238000002399 angioplasty Methods 0.000 description 7
- 201000011510 cancer Diseases 0.000 description 7
- 238000004113 cell culture Methods 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000003776 cleavage reaction Methods 0.000 description 7
- 102000004419 dihydrofolate reductase Human genes 0.000 description 7
- 239000003085 diluting agent Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 108020001507 fusion proteins Proteins 0.000 description 7
- 102000037865 fusion proteins Human genes 0.000 description 7
- 230000012010 growth Effects 0.000 description 7
- 239000001963 growth medium Substances 0.000 description 7
- 108010084091 heregulin beta1 Proteins 0.000 description 7
- 150000002632 lipids Chemical class 0.000 description 7
- 230000001404 mediated effect Effects 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- 239000013612 plasmid Substances 0.000 description 7
- 230000007017 scission Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 229960004072 thrombin Drugs 0.000 description 7
- 238000001890 transfection Methods 0.000 description 7
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- 241001302584 Escherichia coli str. K-12 substr. W3110 Species 0.000 description 6
- 102000003992 Peroxidases Human genes 0.000 description 6
- 108091000080 Phosphotransferase Proteins 0.000 description 6
- 101710100969 Receptor tyrosine-protein kinase erbB-3 Proteins 0.000 description 6
- 108020004511 Recombinant DNA Proteins 0.000 description 6
- 239000013592 cell lysate Substances 0.000 description 6
- 230000035605 chemotaxis Effects 0.000 description 6
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 6
- 238000004587 chromatography analysis Methods 0.000 description 6
- 238000010276 construction Methods 0.000 description 6
- 229940127089 cytotoxic agent Drugs 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 230000013595 glycosylation Effects 0.000 description 6
- 238000006206 glycosylation reaction Methods 0.000 description 6
- 208000009322 hypertrophic pyloric stenosis Diseases 0.000 description 6
- 208000009485 infantile hypertrophic 1 pyloric stenosis Diseases 0.000 description 6
- 239000002773 nucleotide Substances 0.000 description 6
- 125000003729 nucleotide group Chemical group 0.000 description 6
- 210000000056 organ Anatomy 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 108040007629 peroxidase activity proteins Proteins 0.000 description 6
- 238000002823 phage display Methods 0.000 description 6
- 102000020233 phosphotransferase Human genes 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- 210000002966 serum Anatomy 0.000 description 6
- 238000013518 transcription Methods 0.000 description 6
- 230000035897 transcription Effects 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 5
- 241000283707 Capra Species 0.000 description 5
- 201000009030 Carcinoma Diseases 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 5
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 5
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 5
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 5
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- 102000004278 Receptor Protein-Tyrosine Kinases Human genes 0.000 description 5
- 108090000873 Receptor Protein-Tyrosine Kinases Proteins 0.000 description 5
- 102100029986 Receptor tyrosine-protein kinase erbB-3 Human genes 0.000 description 5
- 238000001042 affinity chromatography Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000003305 autocrine Effects 0.000 description 5
- 230000017531 blood circulation Effects 0.000 description 5
- 239000001506 calcium phosphate Substances 0.000 description 5
- 229910000389 calcium phosphate Inorganic materials 0.000 description 5
- 235000011010 calcium phosphates Nutrition 0.000 description 5
- 150000001720 carbohydrates Chemical class 0.000 description 5
- 238000012512 characterization method Methods 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 230000002255 enzymatic effect Effects 0.000 description 5
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Natural products O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 5
- 230000016784 immunoglobulin production Effects 0.000 description 5
- 238000010348 incorporation Methods 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 230000000670 limiting effect Effects 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 239000003226 mitogen Substances 0.000 description 5
- 238000010647 peptide synthesis reaction Methods 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000000159 protein binding assay Methods 0.000 description 5
- 230000002285 radioactive effect Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 5
- 241000701161 unidentified adenovirus Species 0.000 description 5
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 4
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 4
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 4
- 201000001320 Atherosclerosis Diseases 0.000 description 4
- 241000699802 Cricetulus griseus Species 0.000 description 4
- 102000004127 Cytokines Human genes 0.000 description 4
- 108090000695 Cytokines Proteins 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- 101800000155 Epiregulin Proteins 0.000 description 4
- 101100390711 Escherichia coli (strain K12) fhuA gene Proteins 0.000 description 4
- 108010008165 Etanercept Proteins 0.000 description 4
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 4
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 4
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 4
- SEQKRHFRPICQDD-UHFFFAOYSA-N N-tris(hydroxymethyl)methylglycine Chemical compound OCC(CO)(CO)[NH2+]CC([O-])=O SEQKRHFRPICQDD-UHFFFAOYSA-N 0.000 description 4
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 4
- 101800002648 Neuregulin-1 Proteins 0.000 description 4
- 108700020796 Oncogene Proteins 0.000 description 4
- 229920001213 Polysorbate 20 Polymers 0.000 description 4
- 102100025498 Proepiregulin Human genes 0.000 description 4
- 108010029485 Protein Isoforms Proteins 0.000 description 4
- 102000001708 Protein Isoforms Human genes 0.000 description 4
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 4
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 4
- 239000012980 RPMI-1640 medium Substances 0.000 description 4
- 229920002684 Sepharose Polymers 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 230000001464 adherent effect Effects 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 239000012148 binding buffer Substances 0.000 description 4
- 230000010261 cell growth Effects 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 230000036755 cellular response Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 239000003431 cross linking reagent Substances 0.000 description 4
- 238000004520 electroporation Methods 0.000 description 4
- 239000012091 fetal bovine serum Substances 0.000 description 4
- 210000004602 germ cell Anatomy 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 4
- 239000003094 microcapsule Substances 0.000 description 4
- 210000001672 ovary Anatomy 0.000 description 4
- 238000003566 phosphorylation assay Methods 0.000 description 4
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 4
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 4
- 230000003389 potentiating effect Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 4
- 210000004881 tumor cell Anatomy 0.000 description 4
- 102000003390 tumor necrosis factor Human genes 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 206010003445 Ascites Diseases 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 241000701022 Cytomegalovirus Species 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- 241000206602 Eukaryota Species 0.000 description 3
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 3
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 102100029098 Hypoxanthine-guanine phosphoribosyltransferase Human genes 0.000 description 3
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 3
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 3
- 108010092694 L-Selectin Proteins 0.000 description 3
- 102100033467 L-selectin Human genes 0.000 description 3
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 101100178822 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) htrA1 gene Proteins 0.000 description 3
- 101800000675 Neuregulin-2 Proteins 0.000 description 3
- 101100407828 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) ptr-3 gene Proteins 0.000 description 3
- 108091093105 Nuclear DNA Proteins 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 102100022668 Pro-neuregulin-2, membrane-bound isoform Human genes 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 101710100968 Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 3
- 101100277437 Rhizobium meliloti (strain 1021) degP1 gene Proteins 0.000 description 3
- 206010040070 Septic Shock Diseases 0.000 description 3
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 3
- 241000607720 Serratia Species 0.000 description 3
- 108010071390 Serum Albumin Proteins 0.000 description 3
- 102000007562 Serum Albumin Human genes 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 239000004473 Threonine Substances 0.000 description 3
- 101800004564 Transforming growth factor alpha Proteins 0.000 description 3
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 3
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 3
- 229960005070 ascorbic acid Drugs 0.000 description 3
- 235000010323 ascorbic acid Nutrition 0.000 description 3
- 239000011668 ascorbic acid Substances 0.000 description 3
- 239000012131 assay buffer Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229960002685 biotin Drugs 0.000 description 3
- 235000020958 biotin Nutrition 0.000 description 3
- 239000011616 biotin Substances 0.000 description 3
- 210000000481 breast Anatomy 0.000 description 3
- 201000008275 breast carcinoma Diseases 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 3
- 235000012000 cholesterol Nutrition 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 230000001268 conjugating effect Effects 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 101150018266 degP gene Proteins 0.000 description 3
- 229940073621 enbrel Drugs 0.000 description 3
- 210000002744 extracellular matrix Anatomy 0.000 description 3
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 3
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 229940022353 herceptin Drugs 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 229940124452 immunizing agent Drugs 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 230000008676 import Effects 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 230000028709 inflammatory response Effects 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000036210 malignancy Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 210000004165 myocardium Anatomy 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- 230000007170 pathology Effects 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 230000004962 physiological condition Effects 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 235000019419 proteases Nutrition 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 230000003248 secreting effect Effects 0.000 description 3
- 230000036303 septic shock Effects 0.000 description 3
- 230000019491 signal transduction Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 230000015590 smooth muscle cell migration Effects 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 210000002784 stomach Anatomy 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 238000013268 sustained release Methods 0.000 description 3
- 239000012730 sustained-release form Substances 0.000 description 3
- 208000011580 syndromic disease Diseases 0.000 description 3
- 230000014616 translation Effects 0.000 description 3
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 3
- 210000001635 urinary tract Anatomy 0.000 description 3
- 210000003556 vascular endothelial cell Anatomy 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- 239000011534 wash buffer Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- IQFYYKKMVGJFEH-OFKYTIFKSA-N 1-[(2r,4s,5r)-4-hydroxy-5-(tritiooxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound C1[C@H](O)[C@@H](CO[3H])O[C@H]1N1C(=O)NC(=O)C(C)=C1 IQFYYKKMVGJFEH-OFKYTIFKSA-N 0.000 description 2
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 2
- 238000010600 3H thymidine incorporation assay Methods 0.000 description 2
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 2
- 102000013563 Acid Phosphatase Human genes 0.000 description 2
- 108010051457 Acid Phosphatase Proteins 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- 101100067974 Arabidopsis thaliana POP2 gene Proteins 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000194108 Bacillus licheniformis Species 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 206010055113 Breast cancer metastatic Diseases 0.000 description 2
- 206010006482 Bronchospasm Diseases 0.000 description 2
- 108010041884 CD4 Immunoadhesins Proteins 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 108010084457 Cathepsins Proteins 0.000 description 2
- 102000005600 Cathepsins Human genes 0.000 description 2
- 229920002157 Cellulin Polymers 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 239000004375 Dextrin Substances 0.000 description 2
- 229920001353 Dextrin Polymers 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- 108090000204 Dipeptidase 1 Proteins 0.000 description 2
- 241000588921 Enterobacteriaceae Species 0.000 description 2
- 241000724791 Filamentous phage Species 0.000 description 2
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 102000006395 Globulins Human genes 0.000 description 2
- 108010044091 Globulins Proteins 0.000 description 2
- 102000005731 Glucose-6-phosphate isomerase Human genes 0.000 description 2
- 108010070600 Glucose-6-phosphate isomerase Proteins 0.000 description 2
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 101100118549 Homo sapiens EGFR gene Proteins 0.000 description 2
- 206010020880 Hypertrophy Diseases 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 241000235649 Kluyveromyces Species 0.000 description 2
- 244000285963 Kluyveromyces fragilis Species 0.000 description 2
- 241001138401 Kluyveromyces lactis Species 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- 229930182816 L-glutamine Natural products 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- KFKWRHQBZQICHA-STQMWFEESA-N Leu-Phe Chemical compound CC(C)C[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 KFKWRHQBZQICHA-STQMWFEESA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 108010000817 Leuprolide Proteins 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 102000018697 Membrane Proteins Human genes 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 206010028851 Necrosis Diseases 0.000 description 2
- 102400000054 Neuregulin-3 Human genes 0.000 description 2
- 101800000673 Neuregulin-3 Proteins 0.000 description 2
- 230000004989 O-glycosylation Effects 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 108090000526 Papain Proteins 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 241000235648 Pichia Species 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- 101100084022 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) lapA gene Proteins 0.000 description 2
- 108020005091 Replication Origin Proteins 0.000 description 2
- 241000235070 Saccharomyces Species 0.000 description 2
- 101100123851 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HER1 gene Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 108090000787 Subtilisin Proteins 0.000 description 2
- UZMAPBJVXOGOFT-UHFFFAOYSA-N Syringetin Natural products COC1=C(O)C(OC)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UZMAPBJVXOGOFT-UHFFFAOYSA-N 0.000 description 2
- 101150006914 TRP1 gene Proteins 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- 101710120037 Toxin CcdB Proteins 0.000 description 2
- 102400001320 Transforming growth factor alpha Human genes 0.000 description 2
- 239000007997 Tricine buffer Substances 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 2
- 238000012452 Xenomouse strains Methods 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 208000037883 airway inflammation Diseases 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 238000012867 alanine scanning Methods 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000010913 antigen-directed enzyme pro-drug therapy Methods 0.000 description 2
- 229940041181 antineoplastic drug Drugs 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 210000003433 aortic smooth muscle cell Anatomy 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 208000006673 asthma Diseases 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 102000006635 beta-lactamase Human genes 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000036770 blood supply Effects 0.000 description 2
- 230000007885 bronchoconstriction Effects 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 238000012219 cassette mutagenesis Methods 0.000 description 2
- 108091092356 cellular DNA Proteins 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 230000009137 competitive binding Effects 0.000 description 2
- 230000024203 complement activation Effects 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 235000019425 dextrin Nutrition 0.000 description 2
- KCFYHBSOLOXZIF-UHFFFAOYSA-N dihydrochrysin Natural products COC1=C(O)C(OC)=CC(C2OC3=CC(O)=CC(O)=C3C(=O)C2)=C1 KCFYHBSOLOXZIF-UHFFFAOYSA-N 0.000 description 2
- 150000002016 disaccharides Chemical class 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 230000003511 endothelial effect Effects 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000013613 expression plasmid Substances 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 2
- 208000035474 group of disease Diseases 0.000 description 2
- 229940093915 gynecological organic acid Drugs 0.000 description 2
- 239000000833 heterodimer Substances 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 238000003119 immunoblot Methods 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- RGLRXNKKBLIBQS-XNHQSDQCSA-N leuprolide acetate Chemical compound CC(O)=O.CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 RGLRXNKKBLIBQS-XNHQSDQCSA-N 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 150000002772 monosaccharides Chemical class 0.000 description 2
- 210000000663 muscle cell Anatomy 0.000 description 2
- 208000010125 myocardial infarction Diseases 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 230000008692 neointimal formation Effects 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 230000009871 nonspecific binding Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 101150093139 ompT gene Proteins 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229940055729 papain Drugs 0.000 description 2
- 235000019834 papain Nutrition 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000011340 peptidyl-tyrosine autophosphorylation Effects 0.000 description 2
- 101150009573 phoA gene Proteins 0.000 description 2
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 2
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000009696 proliferative response Effects 0.000 description 2
- 238000001243 protein synthesis Methods 0.000 description 2
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 2
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 2
- 238000010188 recombinant method Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 206010039073 rheumatoid arthritis Diseases 0.000 description 2
- 238000013391 scatchard analysis Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000004017 serum-free culture medium Substances 0.000 description 2
- 230000009528 severe injury Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 210000002460 smooth muscle Anatomy 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 210000000626 ureter Anatomy 0.000 description 2
- 230000002485 urinary effect Effects 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- ALBODLTZUXKBGZ-JUUVMNCLSA-N (2s)-2-amino-3-phenylpropanoic acid;(2s)-2,6-diaminohexanoic acid Chemical compound NCCCC[C@H](N)C(O)=O.OC(=O)[C@@H](N)CC1=CC=CC=C1 ALBODLTZUXKBGZ-JUUVMNCLSA-N 0.000 description 1
- XMQUEQJCYRFIQS-YFKPBYRVSA-N (2s)-2-amino-5-ethoxy-5-oxopentanoic acid Chemical compound CCOC(=O)CC[C@H](N)C(O)=O XMQUEQJCYRFIQS-YFKPBYRVSA-N 0.000 description 1
- KYBXNPIASYUWLN-WUCPZUCCSA-N (2s)-5-hydroxypyrrolidine-2-carboxylic acid Chemical compound OC1CC[C@@H](C(O)=O)N1 KYBXNPIASYUWLN-WUCPZUCCSA-N 0.000 description 1
- CUKWUWBLQQDQAC-VEQWQPCFSA-N (3s)-3-amino-4-[[(2s)-1-[[(2s)-1-[[(2s)-1-[[(2s,3s)-1-[[(2s)-1-[(2s)-2-[[(1s)-1-carboxyethyl]carbamoyl]pyrrolidin-1-yl]-3-(1h-imidazol-5-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-3-methyl-1-ox Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C1=CC=C(O)C=C1 CUKWUWBLQQDQAC-VEQWQPCFSA-N 0.000 description 1
- NMWKYTGJWUAZPZ-WWHBDHEGSA-N (4S)-4-[[(4R,7S,10S,16S,19S,25S,28S,31R)-31-[[(2S)-2-[[(1R,6R,9S,12S,18S,21S,24S,27S,30S,33S,36S,39S,42R,47R,53S,56S,59S,62S,65S,68S,71S,76S,79S,85S)-47-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-3-methylbutanoyl]amino]-3-methylbutanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-phenylpropanoyl]amino]-4-oxobutanoyl]amino]-3-carboxypropanoyl]amino]-18-(4-aminobutyl)-27,68-bis(3-amino-3-oxopropyl)-36,71,76-tribenzyl-39-(3-carbamimidamidopropyl)-24-(2-carboxyethyl)-21,56-bis(carboxymethyl)-65,85-bis[(1R)-1-hydroxyethyl]-59-(hydroxymethyl)-62,79-bis(1H-imidazol-4-ylmethyl)-9-methyl-33-(2-methylpropyl)-8,11,17,20,23,26,29,32,35,38,41,48,54,57,60,63,66,69,72,74,77,80,83,86-tetracosaoxo-30-propan-2-yl-3,4,44,45-tetrathia-7,10,16,19,22,25,28,31,34,37,40,49,55,58,61,64,67,70,73,75,78,81,84,87-tetracosazatetracyclo[40.31.14.012,16.049,53]heptaoctacontane-6-carbonyl]amino]-3-methylbutanoyl]amino]-7-(3-carbamimidamidopropyl)-25-(hydroxymethyl)-19-[(4-hydroxyphenyl)methyl]-28-(1H-imidazol-4-ylmethyl)-10-methyl-6,9,12,15,18,21,24,27,30-nonaoxo-16-propan-2-yl-1,2-dithia-5,8,11,14,17,20,23,26,29-nonazacyclodotriacontane-4-carbonyl]amino]-5-[[(2S)-1-[[(2S)-1-[[(2S)-3-carboxy-1-[[(2S)-1-[[(2S)-1-[[(1S)-1-carboxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid Chemical compound CC(C)C[C@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](Cc1c[nH]cn1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H]1CSSC[C@H](NC(=O)[C@@H](NC(=O)[C@@H]2CSSC[C@@H]3NC(=O)[C@H](Cc4ccccc4)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](Cc4c[nH]cn4)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H]4CCCN4C(=O)[C@H](CSSC[C@H](NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](Cc4c[nH]cn4)NC(=O)[C@H](Cc4ccccc4)NC3=O)[C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](Cc3ccccc3)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N3CCC[C@H]3C(=O)N[C@@H](C)C(=O)N2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](Cc2ccccc2)NC(=O)[C@H](Cc2c[nH]cn2)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)C(C)C)C(=O)N[C@@H](Cc2c[nH]cn2)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](Cc2ccc(O)cc2)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1)C(=O)N[C@@H](C)C(O)=O NMWKYTGJWUAZPZ-WWHBDHEGSA-N 0.000 description 1
- IEUUDEWWMRQUDS-UHFFFAOYSA-N (6-azaniumylidene-1,6-dimethoxyhexylidene)azanium;dichloride Chemical compound Cl.Cl.COC(=N)CCCCC(=N)OC IEUUDEWWMRQUDS-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- VILFTWLXLYIEMV-UHFFFAOYSA-N 1,5-difluoro-2,4-dinitrobenzene Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=C(F)C=C1F VILFTWLXLYIEMV-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- YBBNVCVOACOHIG-UHFFFAOYSA-N 2,2-diamino-1,4-bis(4-azidophenyl)-3-butylbutane-1,4-dione Chemical compound C=1C=C(N=[N+]=[N-])C=CC=1C(=O)C(N)(N)C(CCCC)C(=O)C1=CC=C(N=[N+]=[N-])C=C1 YBBNVCVOACOHIG-UHFFFAOYSA-N 0.000 description 1
- LDGWQMRUWMSZIU-LQDDAWAPSA-M 2,3-bis[(z)-octadec-9-enoxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)C)OCCCCCCCC\C=C/CCCCCCCC LDGWQMRUWMSZIU-LQDDAWAPSA-M 0.000 description 1
- 125000000979 2-amino-2-oxoethyl group Chemical group [H]C([*])([H])C(=O)N([H])[H] 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- 229940117976 5-hydroxylysine Drugs 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 1
- WQVFQXXBNHHPLX-ZKWXMUAHSA-N Ala-Ala-His Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](Cc1cnc[nH]1)C(O)=O WQVFQXXBNHHPLX-ZKWXMUAHSA-N 0.000 description 1
- YYSWCHMLFJLLBJ-ZLUOBGJFSA-N Ala-Ala-Ser Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O YYSWCHMLFJLLBJ-ZLUOBGJFSA-N 0.000 description 1
- YYAVDNKUWLAFCV-ACZMJKKPSA-N Ala-Ser-Gln Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(O)=O YYAVDNKUWLAFCV-ACZMJKKPSA-N 0.000 description 1
- 101710187573 Alcohol dehydrogenase 2 Proteins 0.000 description 1
- 101710133776 Alcohol dehydrogenase class-3 Proteins 0.000 description 1
- 102100038778 Amphiregulin Human genes 0.000 description 1
- 108010033760 Amphiregulin Proteins 0.000 description 1
- 102400000345 Angiotensin-2 Human genes 0.000 description 1
- 101800000733 Angiotensin-2 Proteins 0.000 description 1
- 101100107610 Arabidopsis thaliana ABCF4 gene Proteins 0.000 description 1
- BHSYMWWMVRPCPA-CYDGBPFRSA-N Arg-Arg-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CCCN=C(N)N BHSYMWWMVRPCPA-CYDGBPFRSA-N 0.000 description 1
- PTVGLOCPAVYPFG-CIUDSAMLSA-N Arg-Gln-Asp Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O PTVGLOCPAVYPFG-CIUDSAMLSA-N 0.000 description 1
- 102000009133 Arylsulfatases Human genes 0.000 description 1
- PTNFNTOBUDWHNZ-GUBZILKMSA-N Asn-Arg-Met Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(O)=O PTNFNTOBUDWHNZ-GUBZILKMSA-N 0.000 description 1
- MECFLTFREHAZLH-ACZMJKKPSA-N Asn-Glu-Cys Chemical compound C(CC(=O)O)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)N)N MECFLTFREHAZLH-ACZMJKKPSA-N 0.000 description 1
- KHCNTVRVAYCPQE-CIUDSAMLSA-N Asn-Lys-Asn Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(O)=O KHCNTVRVAYCPQE-CIUDSAMLSA-N 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000351920 Aspergillus nidulans Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 206010063836 Atrioventricular septal defect Diseases 0.000 description 1
- 101710192393 Attachment protein G3P Proteins 0.000 description 1
- 102100022717 Atypical chemokine receptor 1 Human genes 0.000 description 1
- 241000713842 Avian sarcoma virus Species 0.000 description 1
- 102000019260 B-Cell Antigen Receptors Human genes 0.000 description 1
- 108010012919 B-Cell Antigen Receptors Proteins 0.000 description 1
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 101800001382 Betacellulin Proteins 0.000 description 1
- 241000701822 Bovine papillomavirus Species 0.000 description 1
- 235000011960 Brassica ruvo Nutrition 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 102000008203 CTLA-4 Antigen Human genes 0.000 description 1
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 1
- 229940045513 CTLA4 antagonist Drugs 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 101710169873 Capsid protein G8P Proteins 0.000 description 1
- 108010006303 Carboxypeptidases Proteins 0.000 description 1
- 102000005367 Carboxypeptidases Human genes 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 102100023321 Ceruloplasmin Human genes 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 102000000311 Cytosine Deaminase Human genes 0.000 description 1
- 108010080611 Cytosine Deaminase Proteins 0.000 description 1
- QNAYBMKLOCPYGJ-UWTATZPHSA-N D-alanine Chemical compound C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- 150000008574 D-amino acids Chemical group 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 108010024212 E-Selectin Proteins 0.000 description 1
- 102100023471 E-selectin Human genes 0.000 description 1
- 102000012545 EGF-like domains Human genes 0.000 description 1
- 108050002150 EGF-like domains Proteins 0.000 description 1
- 238000008157 ELISA kit Methods 0.000 description 1
- 101150029707 ERBB2 gene Proteins 0.000 description 1
- 102400000686 Endothelin-1 Human genes 0.000 description 1
- 101800004490 Endothelin-1 Proteins 0.000 description 1
- 241000588914 Enterobacter Species 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 102000056372 ErbB-3 Receptor Human genes 0.000 description 1
- 241000588698 Erwinia Species 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 241001646716 Escherichia coli K-12 Species 0.000 description 1
- 206010063560 Excessive granulation tissue Diseases 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 241000700662 Fowlpox virus Species 0.000 description 1
- 230000010190 G1 phase Effects 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- WQWMZOIPXWSZNE-WDSKDSINSA-N Gln-Asp-Gly Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O WQWMZOIPXWSZNE-WDSKDSINSA-N 0.000 description 1
- YYOBUPFZLKQUAX-FXQIFTODSA-N Glu-Asn-Glu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O YYOBUPFZLKQUAX-FXQIFTODSA-N 0.000 description 1
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 1
- 102100022624 Glucoamylase Human genes 0.000 description 1
- 102000030595 Glucokinase Human genes 0.000 description 1
- 108010021582 Glucokinase Proteins 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 208000037357 HIV infectious disease Diseases 0.000 description 1
- 101100082540 Haemophilus influenzae (strain ATCC 51907 / DSM 11121 / KW20 / Rd) pcp gene Proteins 0.000 description 1
- 241001149669 Hanseniaspora Species 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 101800001649 Heparin-binding EGF-like growth factor Proteins 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- 102000005548 Hexokinase Human genes 0.000 description 1
- 108700040460 Hexokinases Proteins 0.000 description 1
- 101100118545 Holotrichia diomphalia EGF-like gene Proteins 0.000 description 1
- 101000678879 Homo sapiens Atypical chemokine receptor 1 Proteins 0.000 description 1
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 101000935587 Homo sapiens Flavin reductase (NADPH) Proteins 0.000 description 1
- 101000840258 Homo sapiens Immunoglobulin J chain Proteins 0.000 description 1
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 241000701109 Human adenovirus 2 Species 0.000 description 1
- 101900111625 Human herpesvirus 1 Envelope glycoprotein D Proteins 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 102000009438 IgE Receptors Human genes 0.000 description 1
- 108010073816 IgE Receptors Proteins 0.000 description 1
- IOVUXUSIGXCREV-DKIMLUQUSA-N Ile-Leu-Phe Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 IOVUXUSIGXCREV-DKIMLUQUSA-N 0.000 description 1
- TUYOFUHICRWDGA-CIUDSAMLSA-N Ile-Met Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@H](C(O)=O)CCSC TUYOFUHICRWDGA-CIUDSAMLSA-N 0.000 description 1
- IPFKIGNDTUOFAF-CYDGBPFRSA-N Ile-Val-Arg Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N IPFKIGNDTUOFAF-CYDGBPFRSA-N 0.000 description 1
- 108010058683 Immobilized Proteins Proteins 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 102100029571 Immunoglobulin J chain Human genes 0.000 description 1
- 102000012745 Immunoglobulin Subunits Human genes 0.000 description 1
- 108010079585 Immunoglobulin Subunits Proteins 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 238000012404 In vitro experiment Methods 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 238000012695 Interfacial polymerization Methods 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- 238000012218 Kunkel's method Methods 0.000 description 1
- FADYJNXDPBKVCA-UHFFFAOYSA-N L-Phenylalanyl-L-lysin Natural products NCCCCC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FADYJNXDPBKVCA-UHFFFAOYSA-N 0.000 description 1
- 125000000998 L-alanino group Chemical group [H]N([*])[C@](C([H])([H])[H])([H])C(=O)O[H] 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- 241000481961 Lachancea thermotolerans Species 0.000 description 1
- 241000235651 Lachancea waltii Species 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- HSQGMTRYSIHDAC-BQBZGAKWSA-N Leu-Ala Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C)C(O)=O HSQGMTRYSIHDAC-BQBZGAKWSA-N 0.000 description 1
- 101001133631 Lysinibacillus sphaericus Penicillin acylase Proteins 0.000 description 1
- 241000282553 Macaca Species 0.000 description 1
- 239000004907 Macro-emulsion Substances 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 101710156564 Major tail protein Gp23 Proteins 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 230000004988 N-glycosylation Effects 0.000 description 1
- 208000034827 Neointima Diseases 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 102000005348 Neuraminidase Human genes 0.000 description 1
- 108010006232 Neuraminidase Proteins 0.000 description 1
- 101800002641 Neuregulin-4 Proteins 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 241000221960 Neurospora Species 0.000 description 1
- 241000221961 Neurospora crassa Species 0.000 description 1
- 101100438748 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cyt-2 gene Proteins 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 108010035766 P-Selectin Proteins 0.000 description 1
- 102100023472 P-selectin Human genes 0.000 description 1
- 108010067372 Pancreatic elastase Proteins 0.000 description 1
- 102000016387 Pancreatic elastase Human genes 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- 108010073038 Penicillin Amidase Proteins 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 101710123388 Penicillin G acylase Proteins 0.000 description 1
- 108010087702 Penicillinase Proteins 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- KIQUCMUULDXTAZ-HJOGWXRNSA-N Phe-Tyr-Tyr Chemical compound N[C@@H](Cc1ccccc1)C(=O)N[C@@H](Cc1ccc(O)cc1)C(=O)N[C@@H](Cc1ccc(O)cc1)C(O)=O KIQUCMUULDXTAZ-HJOGWXRNSA-N 0.000 description 1
- 102000001105 Phosphofructokinases Human genes 0.000 description 1
- 108010069341 Phosphofructokinases Proteins 0.000 description 1
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 1
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- 102100022658 Pro-neuregulin-4, membrane-bound isoform Human genes 0.000 description 1
- 102100029837 Probetacellulin Human genes 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 241000588769 Proteus <enterobacteria> Species 0.000 description 1
- 108010011939 Pyruvate Decarboxylase Proteins 0.000 description 1
- 102000013009 Pyruvate Kinase Human genes 0.000 description 1
- 108020005115 Pyruvate Kinase Proteins 0.000 description 1
- 102000004879 Racemases and epimerases Human genes 0.000 description 1
- 108090001066 Racemases and epimerases Proteins 0.000 description 1
- 241000223252 Rhodotorula Species 0.000 description 1
- 230000018199 S phase Effects 0.000 description 1
- 239000012722 SDS sample buffer Substances 0.000 description 1
- 101100068078 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GCN4 gene Proteins 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 241000311088 Schwanniomyces Species 0.000 description 1
- 241001123650 Schwanniomyces occidentalis Species 0.000 description 1
- 102000003800 Selectins Human genes 0.000 description 1
- 108090000184 Selectins Proteins 0.000 description 1
- QMCDMHWAKMUGJE-IHRRRGAJSA-N Ser-Phe-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C(C)C)C(O)=O QMCDMHWAKMUGJE-IHRRRGAJSA-N 0.000 description 1
- DKGRNFUXVTYRAS-UBHSHLNASA-N Ser-Ser-Trp Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O DKGRNFUXVTYRAS-UBHSHLNASA-N 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 241000256248 Spodoptera Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 108090001109 Thermolysin Proteins 0.000 description 1
- COYHRQWNJDJCNA-NUJDXYNKSA-N Thr-Thr-Thr Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O COYHRQWNJDJCNA-NUJDXYNKSA-N 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 241001149964 Tolypocladium Species 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 102000006747 Transforming Growth Factor alpha Human genes 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 241000223259 Trichoderma Species 0.000 description 1
- 102000005924 Triose-Phosphate Isomerase Human genes 0.000 description 1
- 108700015934 Triose-phosphate isomerases Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- KHPLUFDSWGDRHD-SLFFLAALSA-N Tyr-Tyr-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CC=C(C=C2)O)NC(=O)[C@H](CC3=CC=C(C=C3)O)N)C(=O)O KHPLUFDSWGDRHD-SLFFLAALSA-N 0.000 description 1
- 101150117115 V gene Proteins 0.000 description 1
- 244000000188 Vaccinium ovalifolium Species 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Chemical compound CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 208000032594 Vascular Remodeling Diseases 0.000 description 1
- 208000024248 Vascular System injury Diseases 0.000 description 1
- 208000012339 Vascular injury Diseases 0.000 description 1
- 206010072810 Vascular wall hypertrophy Diseases 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 241000235013 Yarrowia Species 0.000 description 1
- HIHOWBSBBDRPDW-PTHRTHQKSA-N [(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] n-[2-(dimethylamino)ethyl]carbamate Chemical compound C1C=C2C[C@@H](OC(=O)NCCN(C)C)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HIHOWBSBBDRPDW-PTHRTHQKSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- QPMSXSBEVQLBIL-CZRHPSIPSA-N ac1mix0p Chemical compound C1=CC=C2N(C[C@H](C)CN(C)C)C3=CC(OC)=CC=C3SC2=C1.O([C@H]1[C@]2(OC)C=CC34C[C@@H]2[C@](C)(O)CCC)C2=C5[C@]41CCN(C)[C@@H]3CC5=CC=C2O QPMSXSBEVQLBIL-CZRHPSIPSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 208000038016 acute inflammation Diseases 0.000 description 1
- 230000006022 acute inflammation Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000009824 affinity maturation Effects 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 1
- 102000013529 alpha-Fetoproteins Human genes 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 239000001166 ammonium sulphate Substances 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 239000002870 angiogenesis inducing agent Substances 0.000 description 1
- 229950006323 angiotensin ii Drugs 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940124599 anti-inflammatory drug Drugs 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 238000011319 anticancer therapy Methods 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 229940127218 antiplatelet drug Drugs 0.000 description 1
- 229940127217 antithrombotic drug Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 1
- 230000035578 autophosphorylation Effects 0.000 description 1
- RIIWUGSYXOBDMC-UHFFFAOYSA-N benzene-1,2-diamine;hydron;dichloride Chemical compound Cl.Cl.NC1=CC=CC=C1N RIIWUGSYXOBDMC-UHFFFAOYSA-N 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 201000008274 breast adenocarcinoma Diseases 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 238000002737 cell proliferation kit Methods 0.000 description 1
- 230000010307 cell transformation Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 108091092328 cellular RNA Proteins 0.000 description 1
- 230000030570 cellular localization Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 230000003196 chaotropic effect Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000002975 chemoattractant Substances 0.000 description 1
- 230000003399 chemotactic effect Effects 0.000 description 1
- 239000005482 chemotactic factor Substances 0.000 description 1
- 238000011098 chromatofocusing Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 238000005354 coacervation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000001447 compensatory effect Effects 0.000 description 1
- 230000004154 complement system Effects 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 239000005289 controlled pore glass Substances 0.000 description 1
- 238000007887 coronary angioplasty Methods 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000012531 culture fluid Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000003413 degradative effect Effects 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Natural products NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 1
- 238000000326 densiometry Methods 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- ZWIBGKZDAWNIFC-UHFFFAOYSA-N disuccinimidyl suberate Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCCC(=O)ON1C(=O)CCC1=O ZWIBGKZDAWNIFC-UHFFFAOYSA-N 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 238000001211 electron capture detection Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 210000004696 endometrium Anatomy 0.000 description 1
- 238000007824 enzymatic assay Methods 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 108700021032 erbB Genes Proteins 0.000 description 1
- 108700021358 erbB-1 Genes Proteins 0.000 description 1
- 108700020302 erbB-2 Genes Proteins 0.000 description 1
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229960000403 etanercept Drugs 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 1
- 229960004413 flucytosine Drugs 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 108010089491 gamma-heregulin Proteins 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 230000030136 gastric emptying Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000003500 gene array Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000002518 glial effect Effects 0.000 description 1
- 108060003196 globin Proteins 0.000 description 1
- 102000018146 globin Human genes 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 210000001126 granulation tissue Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 108010067006 heat stable toxin (E coli) Proteins 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 238000005734 heterodimerization reaction Methods 0.000 description 1
- 230000001744 histochemical effect Effects 0.000 description 1
- 239000000710 homodimer Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 125000002349 hydroxyamino group Chemical group [H]ON([H])[*] 0.000 description 1
- 238000012872 hydroxylapatite chromatography Methods 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 101150020087 ilvG gene Proteins 0.000 description 1
- 150000002463 imidates Chemical class 0.000 description 1
- 230000014726 immortalization of host cell Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 229940127121 immunoconjugate Drugs 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 239000001573 invertase Substances 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 108010071185 leucyl-alanine Proteins 0.000 description 1
- 108010044056 leucyl-phenylalanine Proteins 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 238000005567 liquid scintillation counting Methods 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 101150074251 lpp gene Proteins 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 229940087857 lupron Drugs 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012577 media supplement Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- DFTAZNAEBRBBKP-UHFFFAOYSA-N methyl 4-sulfanylbutanimidate Chemical compound COC(=N)CCCS DFTAZNAEBRBBKP-UHFFFAOYSA-N 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 238000007814 microscopic assay Methods 0.000 description 1
- 238000010232 migration assay Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000002297 mitogenic effect Effects 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000000066 myeloid cell Anatomy 0.000 description 1
- 210000003098 myoblast Anatomy 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000017066 negative regulation of growth Effects 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 229940043515 other immunoglobulins in atc Drugs 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000003076 paracrine Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229950009506 penicillinase Drugs 0.000 description 1
- 125000001151 peptidyl group Chemical group 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000009519 pharmacological trial Methods 0.000 description 1
- 238000009520 phase I clinical trial Methods 0.000 description 1
- XLCISDOVNFLSGO-VONOSFMSSA-N phorbol-12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(O)C1(C)C XLCISDOVNFLSGO-VONOSFMSSA-N 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000000106 platelet aggregation inhibitor Substances 0.000 description 1
- 108010017843 platelet-derived growth factor A Proteins 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 108010054442 polyalanine Proteins 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 108010055896 polyornithine Proteins 0.000 description 1
- 229920002714 polyornithine Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000036515 potency Effects 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 210000001187 pylorus Anatomy 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 230000000250 revascularization Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 210000003079 salivary gland Anatomy 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 210000004116 schwann cell Anatomy 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000000717 sertoli cell Anatomy 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003153 stable transfection Methods 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 238000011146 sterile filtration Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 108060007951 sulfatase Proteins 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- CNHYKKNIIGEXAY-UHFFFAOYSA-N thiolan-2-imine Chemical compound N=C1CCCS1 CNHYKKNIIGEXAY-UHFFFAOYSA-N 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 229960003766 thrombin (human) Drugs 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 230000025366 tissue development Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 239000003656 tris buffered saline Substances 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000003708 urethra Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000025033 vasoconstriction Effects 0.000 description 1
- 210000000264 venule Anatomy 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 150000003952 β-lactams Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/82—Translation products from oncogenes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/10—Drugs for disorders of the urinary system of the bladder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
- C07K14/4756—Neuregulins, i.e. p185erbB2 ligands, glial growth factor, heregulin, ARIA, neu differentiation factor
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/32—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5044—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
- G01N33/5061—Muscle cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/30—Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
Definitions
- the present invention concerns methods and means for controlling excessive proliferation and/or migration of smooth muscle cells, and in particular for treating stenosis, by using antagonists of a native ErbB4 receptor.
- the invention further concerns a method for the identification of ErbB4 agonists and antagonists capable of inhibiting or enhancing the proliferation or migration of smooth muscle cells.
- Protein tyrosine kinases are enzymes that catalyze this process. Receptor protein tyrosine kinases are believed to direct cellular growth via ligand-stimulated tyrosine phosphorylation of intracellular substrates.
- HER4/Erb4 is a receptor protein tyrosine kinase belonging to the ErbB family. Increased ErbB4 expression closely correlates with certain carcinomas of epithelial origin, including breast adenocarcinomas (Plowman et al., Proc. Natl. Acad. Sci. USA 90:1746-1750 [1993]; Plowman et al., Nature 366:473-475 [1993]). Diagnostic methods for detection of human neoplastic conditions (especially breast cancers) which evaluate ErbB4 expression are described in EP Pat Appln No. 599,274.
- ErbB family of receptor tyrosine kinases include: epidermal growth factor receptor (EGFR), ErbB2 (HER2/neu), and ErbB3 (HER3).
- EGFR epidermal growth factor receptor
- HER2/neu ErbB2
- HER3 ErbB3
- the erbB1 gene encodes the 170 kDa epidermal growth factor receptor (EGFR) that has been causally implicated in human malignancy. In particular, increased expression of this gene has been observed in more aggressive carcinomas of the breast, bladder, lung and stomach (Modjtahedi, H. and Dean, C. (1994) Int. J. Oncol. 4:277-296).
- HER4 acts, in the absence of HER2, as a mediator of antiproliferative and differentiative response in human breast cancer cell lines. (Sartor et al., Mol. Cell Biol. 21:4265-75 (2001)).
- the neu gene (also called erbB2 and HER2) encodes a 185 kDa receptor protein tyrosine kinase that was originally identified as the product of the transforming gene from neuroblastomas of chemically treated rats.
- Amplification and/or overexpression of the human HER2 gene correlates with a poor prognosis in breast and ovarian cancers (Slamon, D. J. et al., Science 235:177-182 (1987); Slamon et al., Science 244:707-712 (1989); and U.S. Pat. No. 4,968,603).
- Overexpression of HER2 (frequently but not uniformly due to gene amplification) has also been observed in other carcinomas including carcinomas of the stomach, endometrium, salivary gland, lung, kidney, colon, thyroid, pancreas and bladder.
- erbB3 A further related gene, called erbB3 or HER3, has been described. See U.S. Pat. No. 5,183,884; Kraus et al., Proc. Natl. Acad. Sci. USA 86:9193-9197 (1989); EP Pat Appln No 444,961A1; and Kraus et al., Proc. Natl. Acad. Sci. USA 90:2900-2904 (1993). Kraus et al. (1989) discovered that markedly elevated levels of erbB3 mRNA were present in certain human mammary tumor cell lines indicating that erbB3, like erbB1 and erbB2, may play a role in human malignancies.
- ErbB3 is unique among the ErbB receptor family in that it possesses little or no intrinsic tyrosine kinase activity (Guy et al., Proc. Natl. Acad. Sci. USA 91:8132-8136 (1994) and Kim et al. J. Biol. Chem. 269:24747-55 (1994)).
- ErbB receptors are generally found in various combinations in cells and heterodimerization is thought to increase the diversity of cellular responses to a variety of ErbB ligands (Earp et al. Breast Cancer Research and Treatment 35: 115-132 (1995)).
- EGFR is bound by six different ligands; epidermal growth factor (EGF), transforming growth factor alpha (TGF- ⁇ ), amphiregulin, heparin binding epidermal growth factor (HB-EGF), ⁇ -cellulin and epiregulin (Groenen et al. Growth Factors 11:235-257 (1994)).
- TGF- ⁇ transforming growth factor alpha
- HB-EGF heparin binding epidermal growth factor
- epiregulin heparin binding epidermal growth factor
- ⁇ -cellulin epiregulin
- a family of heregulin proteins resulting from alternative splicing of a single gene are ligands for ErbB3 and ErbB4.
- the heregulin family includes ⁇ , ⁇ and ⁇ heregulins (Holmes et al., Science, 256:1205-1210 (1992); U.S. Pat. No. 5,641,869; and Schaefer et al. Oncogene 15:1385-1394 (1997)); neu differentiation factors (NDFs), glial growth factors (GGFs); acetylcholine receptor inducing activity (ARIA); and sensory and motor neuron derived factor (SMDF).
- NDFs neu differentiation factors
- GGFs glial growth factors
- ARIA acetylcholine receptor inducing activity
- SMDF sensory and motor neuron derived factor
- EGF and TGF ⁇ do not bind ErbB2, EGF stimulates EGFR and ErbB2 to form a heterodimer, which activates EGFR and results in transphosphorylation of ErbB2 in the heterodimer. Dimerization and/or transphosphorylation appear to activate the ErbB2 tyrosine kinase. See Earp et al., supra.
- ErbB3 is co-expressed with ErbB2
- an active signaling complex is formed and antibodies directed against ErbB2 are capable of disrupting this complex (Sliwkowski et al., J. Biol. Chem., 269(20):14661-14665 (1994)).
- ErbB3 for heregulin (HRG) is increased to a higher affinity state when co-expressed with ErbB2.
- HRG heregulin
- HERCEPTIN® received marketing approval from the Food and Drug Administration Sep. 25, 1998 for the treatment of patients with metastatic breast cancer whose tumors overexpress the ErbB2/HER2 protein. Since HER2 is also overexpressed in other cancers, in addition to breast cancer, HERCEPTIN® holds a great potential in the treatment of such other cancers as well.
- Smooth muscle cells are very important structural and functional components of many hollow passages in the body, including blood vessels, gastrointestinal tract, airway passage (trachea and bronchi in lungs), urinary tract system (bladder and ureters) etc. They are responsible for elasticity that is so crucially required for normal functioning of these organs. They respond to a variety of physiological stimuli by constriction or dilation as needed, for example, for regulating the flow of fluids carried by them. They respond not only to chemical stimuli, such as growth factors and cytokines, but also to physical stimuli, such as pressure and stretch. Excessive proliferation of smooth muscle cells results in thickening of the wall and narrowing the lumen of the organs known as “stenosis” in a variety of disorders.
- EGF related ligands A number of growth factors and cytokines are implicated in the proliferation of smooth muscle cells.
- One category of such important molecules are EGF related ligands.
- smooth muscle cells from a variety of such organs have been demonstrated to possess EGF receptors, and some of them even synthesize and secrete EGF ligands such as HB-EGF, thus setting up autocrine loop.
- EGF ligands act as potent mitogens and stimulate proliferation of smooth muscle cells often resulting in thickening of the wall and ultimately stenosis.
- vascular smooth muscle cells For example, excessive proliferation of vascular smooth muscle cells (VSMC) is involved in pathology of vascular stenosis, restenosis resulting from angioplasy or surgery or stent implants, atherosclerosis, transplant atherosclerosis and hypertension (reviewed in Casterella and Teirstein, Cardiol. Rev. 7: 219-231 [1999]; Andres, Int. J. Mol. Med. 2: 81-89 [1998]; and Rosanio et al., Thromb. Haemost. 82 [suppl 1]: 164-170 [1999]).
- the thickening of blood vessels increases resistance to blood flow and ultimately leads to hypertension.
- decreased blood supply to the tissue may also cause necrosis and induce inflammatory response leading to severe damage.
- myocardial infarction occurs as a result of lack of oxygen and local death of heart muscle tissues.
- IHPS Infantile hypertrophic pyloric stenosis
- IHPS infantile hypertrophic pyloric stenosis
- HB-EGF HB-EGF
- HB-EGF HB-EGF is a potent mitogen for bladder SMC proliferation (Freeman et al., J. Clin. Invest. 99: 1028-1036 [1997]; Kaefer et al., J. Urol. 163: 580-584 [2000]; Borer et al., Lab Invest. 79: 1335-1345 [1999]).
- the obstructive airway diseases are yet another group of diseases with underlying pathology involving smooth muscle cell proliferation.
- One example of this group is asthma which manifests in airway inflammation and bronchoconstriction.
- EGF is implicated in the pathological proliferation of airway SMCs in obstructive airway diseases (Cerutis et al., Am. J. Physiol. 273: L10-15 [1997]; Cohen et al., Am. J. Respir. Cell. Mol. Biol. 16: 85-90 [1997]).
- the instant invention discloses the use of ErbB4 receptor antagonists for controlling excessive migration and/or proliferation or smooth muscle cells and, in particular, for the treatment of stenosis.
- the invention concerns a method for controlling excessive proliferation or migration of smooth muscle cells by treating the smooth muscle cells with an effective amount of an antagonist of a native ErbB4 receptor.
- the control is prevention or inhibition, including total inhibition, of excessive proliferation or migration of smooth muscle cells.
- the smooth muscle cells are urinary bladder smooth muscle cells, and in another embodiment they are the smooth muscle cells of an airway passage.
- the excessive proliferation or migration of smooth muscle cells such as vascular smooth muscle cells may result in stenosis including vascular stenosis and restenosis.
- the smooth muscle cells are human.
- the stenosis may be further characterized by excessive proliferation or migration of endothelial cells.
- the ErbB4 receptor antagonist is an immunoadhesin. In another embodiment the ErbB4 receptor antagonist is an antibody, such as a neutralizing antibody against a native ErbB4 receptor.
- the invention concerns a method for treating stenosis in a mammalian patient, including a human, comprising administering to the patient an effective amount of an antagonist of a native mammalian ErbB4 receptor.
- the treatment includes prevention of stenosis.
- the stenosis may be vascular stenosis including restenosis.
- the antagonist may be administered as an injection or infusion.
- the treatment may also be used to reduce hypertension associated with the stenosis.
- the stenosis may be vascular stenosis including restenosis, pyloric stenosis, thickening of the urinary bladder wall or part of an obstructive airway disease.
- the antagonist is an immunoadhesin, which may comprise the extracellular region of a native human ErbB4 receptor.
- the antagonist is an antibody, such as a neutralizing antibody against a native human ErbB4 receptor.
- the invention concerns a method for treating stenosis in a mammalian patient, such as a human, comprising introducing into a cell of the patient a nucleic acid encoding an antagonist of an ErbB4 receptor.
- the nucleic acid may be introduced in vivo or ex vivo, and with the aid of a vector such as retroviral vector or a lipid-based delivery system.
- the method of the present invention is particularly useful for the treatment (including prevention) of vascular stenosis and restenosis.
- the antagonist may be an immunoadhesin.
- the antagonist may also be an antibody, such as a neutralizing antibody against a native human ErbB4 receptor.
- the invention concern a method for treating hypertension associated with vascular stenosis in a mammalian patient, comprising administering to the patient an effective amount of an antagonist of a native ErbB4 receptor.
- the antagonist may be a small molecule.
- the invention concerns a pharmaceutical composition for the treatment of stenosis in a mammalian patient comprising an effective amount of an antagonist of a native mammalian ErbB4 receptor, in admixture with a pharmaceutically acceptable carrier.
- preferred ErbB4 antagonists include immunoadhesins, preferably comprising a native human ErbB4 receptor extracellular domain sequence fused to an immunoglobulin constant region sequence.
- the immunoglobulin sequence preferably is that of a heavy chain constant region of an IgG1, IgG2 or IgG3 immunoglobulin and may additionally comprise an immunoglobulin light chain sequence covalently attached to the fusion molecule comprising the immunoglobulin heavy chain constant region.
- Another preferred class of ErbB4 antagonists comprises neutralizing antibodies specifically binding a native ErbB4 receptor.
- the antibodies preferably are human or humanized.
- the antibodies bind essentially the same epitope as an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).
- the antibodies may also have complementarity determining region (CDR) residues from an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B 1.2H2 (ATCC Accession Number PTA-2825).
- CDR complementarity determining region
- the smooth muscle cells may, for example, be pyloric or urinary bladder smooth muscle cells, or smooth muscle cells of an airway passage.
- the smooth muscle cells are vascular smooth muscle cells.
- the invention concerns a method for identifying a molecule that inhibits or enhances the proliferation or migration of smooth muscle cells, comprising the steps of: (a) contacting a polypeptide comprising an amino acid sequence having at least 85% sequence identity with the amino acid sequence of the extracellular domain of a native ErbB4 receptor and retaining the ability to control excessive proliferation or migration of smooth muscle cells, with a candidate molecule; and (b) determining whether the candidate molecule inhibits or enhances the ability of the polypeptide to control excessive proliferation or migration of smooth muscle cells.
- the polypeptide may comprise the extracellular domain of a native ErbB4 receptor.
- the polypeptide is an immunoadhesin in one embodiment.
- the molecule enhances the ability of the polypeptide to control excessive proliferation or migration of smooth muscle cells, and is an antibody or a small molecule.
- the invention concerns an antibody that binds essentially the same epitope of ErbB4 as an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).
- these antibodies are believed to be useful in the treatment of various cancers, including breast cancer.
- the invention concerns an antibody that has complementarity determining region (CDR) residues from an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).
- CDR complementarity determining region
- the invention concerns an antibody selected from the group consisting of an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).
- HER4.10H1.1A1 ATCC Accession Number PTA-2828
- HER4.1C6.A11 ATCC Accession Number PTA-2829
- HER4.3B9.2C9 ATCC Accession Number PTA-2826
- HER4.1A6.5B3 ATCC Accession Number PTA-2827
- HER4.8B1.2H2 ATCC Accession Number PTA-2825.
- the invention also concerns an antibody that binds essentially the same epitope of ErbB4 bound by an antibody selected from the group consisting of anti-ErbB4 monoclonal antibodies 4-1440, 4-1460, 4-1473, 4-1492 and 4-1464.
- the invention concerns an antibody that has complementarity determining region (CDR) residues from an antibody selected from the group consisting of anti-ErbB4 monoclonal antibodies 4-1440, 4-1460, 4-1473, 4-1492 and 4-1464.
- CDR complementarity determining region
- the invention also concerns an antibody that binds ErbB4 with high affinity.
- This antibody preferably binds to ErbB4 with a Kd of less than 100 nM, more preferably with a Kd of less than 50 nM, even more preferably with a Kd of less than 25 nM and most preferably with a Kd less than 10 nM.
- this antibody is a human antibody and in another embodiment it is a humanized antibody. In yet another embodiment the antibody is an antibody fragment.
- the invention further concerns an antibody which is capable of binding to both ErbB4 and ErbB3.
- the antibody is capable of binding ErbB4 with high affinity and in another embodiment the antibody binds both ErbB4 and ErbB3 with high affinity.
- the invention in another aspect concerns an antibody which binds to ErbB4 and reduces heregulin binding thereto.
- This antibody may bind ErbB4 with high affinity.
- the invention concerns an antibody which binds to ErbB4 and reduces heregulin-induced tyrosine phosphorylation thereof.
- This antibody may also bind ErbB4 with high affinity.
- FIG. 1 shows the nucleotide sequence of human ErbB4 (SEQ ID NO: 1).
- FIG. 2 shows the deduced amino acid sequence of human ErbB4 (SEQ ID NO: 2).
- FIG. 3 shows the nucleotide sequence of an ErbB4-IgG immunoadhesin (SEQ ID NO: 3).
- FIG. 4 shows the amino acid sequence of the ErbB4 extracellular domain (ECD), which comprises amino acids 26 through 640 (SEQ ID NO: 4) of the ErbB4 amino acid sequence presented in FIG. 2 (SEQ ID NO: 2).
- FIG. 5 shows the effect of ErbB4-IgG immunoadhesin on PDGF-stimulated proliferation of human aortic smooth muscle cells.
- FIG. 6 shows the effect of ErbB4-IgG immunoadhesin on the chemotactic response of human aortic smooth muscle cells to thrombin.
- FIG. 7 shows the inhibition of heregulin binding to HER4 immunoadhesin by anti-HER4 monoclonal antibodies.
- ErbB when used herein refers to any one or more of the mammalian ErbB receptors (i.e. ErbB1 or epidermal growth factor (EGF) receptor, ErbB2 or HER2 receptor; ErbB3 or HER3 receptor; ErbB4 or HER4 receptor; and any other member(s) of this class I tyrosine kinase family to be identified in the future) and “erbB” refers to the mammalian erbB genes encoding these receptors.
- EGF epidermal growth factor
- ErbB4 and HER4 are used interchangeably and refer to a native sequence ErbB4 receptor polypeptide as disclosed, for example, in European Patent Application No. (EP) 599,274; Plowman et al., Proc. Natl. Acad. Sci. USA, 90:1746-1750 (1993); and Plowman et al., Nature, 366:473-475 (1993), and functional derivatives, including amino acid sequence variants thereof
- a “native” or “native sequence” ErbB4 or HER4 receptor has the amino acid sequence of a naturally occurring ErbB4 receptor in any mammalian (including humans) species, irrespective of its mode of preparation. Accordingly, a native or native sequence ErbB4 receptor may be isolated from nature, produced by techniques of recombinant DNA technology, chemically synthesized, or produced by any combinations of these or similar methods. Native ErbB4 receptors specifically include polypeptides having the amino acid sequence of naturally occurring allelic variants, isoforms or spliced variants of ErbB4, known in the art or hereinafter discovered. Native sequence ErbB4 receptors are disclosed, for example, in EP 599,274, supra, and in the two Plowman et al.
- HER4 isoforms are also disclosed in WO 99/19488.
- a nucleotide sequence encoding ErbB4 is presented in FIG. 1 (SEQ ID NO: 1) and the corresponding deduced amino acid sequence is depicted in FIG. 2 (SEQ ID NO: 2).
- ErbB4 extracellular domain refers to a soluble fragment of ErbB4 comprising the amino acids located between the signal sequence and the first predicted transmembrane region.
- the “ErbB4 ECD” is a polypeptide comprising amino acids 26-640 (SEQ ID NO: 4) of the human ErbB4 sequence presented in FIG. 2 (SEQ ID NO: 2).
- mammal is used herein to refer to any animal classified as a mammal, including, without limitation, humans, domestic and farm animals, and zoo, sports, or pet animals, such as sheep, dogs, horses, cats, cows, etc.
- the mammal herein is human.
- “Functional derivatives” include amino acid sequence variants, and covalent derivatives of the native polypeptides as long as they retain a qualitative biological activity of the corresponding native polypeptide.
- Amino acid sequence variants generally differ from a native sequence in the substitution, deletion and/or insertion of one or more amino acids anywhere within a native amino acid sequence.
- Deletional variants include fragments of the native polypeptides, and variants having N- and/or C-terminal truncations.
- amino acid sequence variants will possess at least about 70% homology, preferably at least about 80%, more preferably at least about 90% homology with a native polypeptide.
- “Homology” is defined as the percentage of residues in the amino acid sequence variant that are identical after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology. Methods and computer programs for the alignment are well known in the art. One such computer program is “Align 2”, authored by Genentech, Inc., which was filed with user documentation in the United States Copyright Office, Washington, D.C. 20559, on Dec. 10, 1991.
- an ErbB “antagonist” is a molecule, which prevents or interferes with an ErbB effector function, e.g. a molecule, which prevents or interferes with binding and/or activation of a native sequence ErbB receptor by a ligand, and/or downstream pathways used by the native sequence ErbB receptor. Such molecules can be screened, for example, based upon their ability to competitively inhibit ErbB receptor activation by ligand in the tyrosine phosphorylation assay.
- an antagonist of a native sequence ErbB4 (HER4) receptor is a molecule which prevents or interferes with an ErbB4 effector function, e.g.
- ErbB4 antagonists include, without limitation, soluble ErbB4 receptors (such as extracellular domains (ECD) of native sequence and variant ErbB4 receptors), neutralizing antibodies against native sequence ErbB4 receptors, neutralizing antibodies to ligands of native sequence ErbB4 receptors (e.g. anti-HB-EGF antibodies), ErbB4-Ig immunoadhesins (including chimeric heteroadhesins) and small molecules.
- ErbB4 ligand is meant a polypeptide which binds to and/or activates an ErbB4 receptor.
- ErbB4 ligands include betacellulin, epiregulin, HB-EGF, NRG-2, NRG-3 and heregulins.
- control and grammatical variants thereof, are used to refer to the prevention, partial or complete inhibition, reduction, delay or slowing down of an unwanted event, e.g. physiological condition, such as the excessive proliferation and/or migration of smooth muscle cells and/or other cell types, e.g. endothelial cells.
- an unwanted event e.g. physiological condition, such as the excessive proliferation and/or migration of smooth muscle cells and/or other cell types, e.g. endothelial cells.
- excessive proliferation and/or migration means proliferation and/or migration beyond normal levels that results or is likely to result, if untreated, in the development of an unwanted physiological condition or disease, such as, for example, stenosis, including vascular stenosis, restenosis, and pyloric stenosis; urinary bladder wall thickening, and obstructive airway disease.
- Treatment refers to both therapeutic treatment and prophylactic or preventative measures.
- Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in which the disorder is to be prevented.
- beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable.
- Treatment can also mean prolonging survival as compared to expected survival if not receiving treatment.
- Those in need of treatment include those already with the condition or disorder as well as those prone to have the condition or disorder or those in which the condition or disorder is to be prevented.
- isolated molecule is defined broadly as a molecule that is identified and separated from at least one contaminant molecule with which it is ordinarily associated in the natural source of the molecule. Preferably, the isolated molecule is free of association with all components with which it is naturally associated.
- immunoadhesin refers to antibody-like molecules that combine the binding domain of a protein such as an extracellular domain (the adhesin portion) of a cell-surface receptor with the effector functions of an immunoglobulin constant domain.
- the term “immunoadhesin” specifically includes native or variant ErbB4 receptor sequences.
- the nucleic acid sequence of an ErbB4-IgG immunoadhesin is presented in FIG. 3 (SEQ ID NO: 3). Immunoadhesins can possess many of the valuable chemical and biological properties of human antibodies.
- immunoadhesins can be constructed from a human protein sequence with a desired specificity linked to an appropriate human immunoglobulin hinge and constant domain (Fc) sequence, the binding specificity of interest can be achieved using entirely human components. Such immunoadhesins are minimally immunogenic to the patient, and are safe for chronic or repeated use.
- isolated immunoadhesin refers to an immunoadhesin that has been purified from a source or has been prepared by recombinant or synthetic methods and is sufficiently free of other peptides or proteins.
- Immunoadhesins reported in the literature include fusions of the T cell receptor (Gascoigne et al., Proc. Natl. Acad. Sci. USA 84:2936-2940 (1987)); CD4 (Capon et al., Nature 337:525-531 (1989); Traunecker et al., Nature 339:68-70 (1989); Zettmeissl et al., DNA Cell Biol. USA 9:347-353 (1990); and Byrn et al., Nature 344:667-670 (1990)); L-selectin or homing receptor (Watson et al., J. Cell. Biol.
- CD44 (Aruffo et al., Cell 61:1303-1313 (1990)); CD28 and B7 (Linsley et al., J. Exp. Med. 173:721-730 (1991)); CTLA-4 (Lisley et al., J. Exp. Med. 174:561-569 (1991)); CD22 (Stamenkovic et al., Cell 66:1133-1144 (1991)); TNF receptor (Ashkenazi et al., Proc. Natl. Acad. Sci.
- Examples of homomultimeric immunoadhesins which have been described for therapeutic use include the CD4-IgG immunoadhesin for blocking the binding of HIV to cell-surface CD4.
- CD4-IgG immunoadhesin for blocking the binding of HIV to cell-surface CD4.
- An immunoadhesin which binds tumor necrosis factor (TNF) has also been developed.
- TNF is a proinflammatory cytokine which has been shown to be a major mediator of septic shock.
- a TNF receptor immunoadhesin has shown promise as a candidate for clinical use in treating septic shock (Ashkenazi, A. et al. (1991) PNAS USA 88:10535-10539).
- ENBREL® etanercept
- an immunoadhesin comprising a TNF receptor sequence fused to an IgG Fc region was approved by the U.S. Food and Drug Administration (FDA), on Nov. 2, 1998, for the treatment of rheumatoid arthritis.
- FDA U.S. Food and Drug Administration
- the new expanded use of ENBREL® in the treatment of rheumatoid arthritis has recently been approved by FDA on Jun. 6, 2000.
- Immunoadhesins also have non-therapeutic uses.
- the L-selectin receptor immunoadhesin was used as a reagent for histochemical staining of peripheral lymph node high endothelial venules (HEV). This reagent was also used to isolate and characterize the L-selectin ligand (Ashkenazi et al., supra).
- the immunoadhesin is called a “bispecific immunoadhesin” by analogy to bispecific antibodies. Dietsch et al., J. Immunol. Methods 162:123 (1993) describe such a bispecific immunoadhesin combining the extracellular domains of the adhesion molecules, E-selectin and P-selectin, each of which selectins is expressed in a different cell type in nature. Binding studies indicated that the bispecific immunoglobulin fusion protein so formed had an enhanced ability to bind to a myeloid cell line compared to the monospecific immunoadhesins from which it was derived.
- heteromultimer adhesin refers to a complex of chimeric molecules (amino acid sequences) in which each chimeric molecule combines a biologically active portion, such as the extracellular domain of each of the heteromultimeric receptor monomers, with a multimerization domain.
- the “multimerization domain” promotes stable interaction of the chimeric molecules within the heteromultimer complex.
- the multimerization domains may interact via an immunoglobulin sequence, leucine zipper, a hydrophobic region, a hydrophilic region, or a free thiol which forms an intermolecular disulfide bond between the chimeric molecules of the chimeric heteromultimer.
- the multimerization domain may comprise an immunoglobulin constant region.
- a multimerization region may be engineered such that steric interactions not only promote stable interaction, but further promote the formation of heterodimers over homodimers from a mixture of monomers.
- “Protuberances” are constructed by replacing small amino acid side chains from the interface of the first polypeptide with larger side chains (e.g. tyrosine or tryptophan).
- Compensatory “cavities” of identical or similar size to the protuberances are optionally created on the interface of the second polypeptide by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine).
- the immunoglobulin sequence preferably, but not necessarily, is an immunoglobulin constant domain.
- the immunoglobulin moiety in the chimeras of the present invention may be obtained from IgG 1 , IgG 2 , IgG 3 or IgG 4 subtypes, IgA, IgE, IgD or IgM, but preferably IgG 1 or IgG 3 .
- epitope tagged when used herein refers to a chimeric polypeptide comprising the entire chimeric heteroadhesin, or a fragment thereof, fused to a “tag polypeptide”.
- the tag polypeptide has enough residues to provide an epitope against which an antibody can be made, yet is short enough such that it does not interfere with activity of the chimeric heteroadhesin.
- the tag polypeptide preferably is fairly unique so that the antibody thereagainst does not substantially cross-react with other epitopes.
- Suitable tag polypeptides generally have at least 6 amino acid residues and usually between about 8-50 amino acid residues (preferably between about 9-30 residues).
- An embodiment of the invention encompasses a chimeric heteroadhesin linked to an epitope tag, which tag is used to detect the adhesin in a sample or recover the adhesin from a sample.
- Isolated/highly purified/substantially homogenous immunoadhesin “isolated/highly purified/substantially homogenous heteroadhesin”, and “isolated/highly purified/substantially homogenous chimeric heteromultimer adhesin”, are used interchangeably and mean the adhesin that has been purified from a source or has been prepared by recombinant or synthetic methods and is sufficiently free of other peptides or proteins to homogeneity by chromatographic techniques or other purification techniques, such as SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Homogeneity here means less than about 5% contamination with other source proteins.
- the ErbB2/4-IgG chimeric heteroadhesins of the invention bind with sufficiently greater affinity relative to the homodimers that the use of a mixture of homodimers and heterodimers is also considered a useful embodiment of the invention.
- the terms “chimeric heteromultimer adhesin”, “chimeric heteroadhesin” and “CHA” are used interchangeably herein.
- antibody is used in the broadest sense and specifically covers antibodies that recognize native ErbB4 receptors.
- An antibody that shows “high affinity” binding has a Kd of less than about 100 nM, preferably less than about 50, more preferably less than about 25, most preferably less than about 10.
- monoclonal antibody refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.
- the monoclonal antibodies herein include hybrid and recombinant antibodies produced by splicing a variable (including hypervariable) domain of an anti-chimeric heteroadhesin antibody with a constant domain (e.g. “humanized” antibodies), or a light chain with a heavy chain, or a chain from one species with a chain from another species, or fusions with heterologous proteins, regardless of species of origin or immunoglobulin class or subclass designation, as well as antibody fragments (e.g., Fab, F(ab) 2 , and Fv), so long as they exhibit the desired biological activity.
- Fab, F(ab) 2 , and Fv antibody fragments
- the modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
- the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler & Milstein, Nature 256:495 (1975), or may be made by recombinant DNA methods (U.S. Pat. No. 4,816,567).
- the “monoclonal antibodies” may also be isolated from phage libraries generated using the techniques described in McCafferty et al., Nature 348:552-554 (1990), for example.
- “Humanized” forms of non-human (e.g. murine) antibodies are specific chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab) 2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin.
- humanized antibodies are human immunoglobulins (recipient antibody) in which residues from the complementarity determining regions (CDRs) of the recipient antibody are replaced by residues from the CDRs of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity.
- Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human FR residues.
- the humanized antibody may comprise residues which are found neither in the recipient antibody nor in the imported CDR or FR sequences. These modifications are made to further refine and optimize antibody performance.
- the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR residues are those of a human immunoglobulin consensus sequence.
- the humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
- Vascular smooth muscle cells include skeletal, cardiac or smooth muscle tissue cells. This term encompasses those cells which differentiate to form more specialized muscle cells (e.g. myoblasts). Vascular smooth muscle cells refer to smooth muscle cells present in a middle elastic layer, media, of blood vessels.
- stenosis refers to narrowing or stricture of a hollow passage (e,g, a duct or canal) in the body.
- vascular stenosis refers to occlusion or narrowing of blood vessels.
- vascular stenosis often results from fatty deposit (as in the case of atherosclerosis) or excessive migration and proliferation of vascular smooth muscle cells and endothelial cells. Arteries are particularly susceptible to stenosis.
- stenosis as used herein specifically includes initial stenosis and restenosis.
- restenosis refers to recurrence of stenosis after treatment of initial stenosis with apparent success.
- restenosis in the context of vascular stenosis, refers to the reoccurrence of vascular stenosis after it has been treated with apparent success, e.g. by removal of fatty deposit by balloon angioplasty.
- intimal hyperplasia One of the contributing factors in restenosis is intimal hyperplasia.
- intimal hyperplasia used interchangeably with “neointimal hyperplasia” and “neointima formation”, refers to thickening of the inner most layer of blood vessels, intima, as a consequence of excessive proliferation and migration of vascular smooth muscle cells and endothelial cells.
- vascular wall remodeling The various changes taking place during restenosis are often collectively referred to as “vascular wall remodeling.”
- balloon angioplasty and “percutaneous transluminal coronary angioplasty” (PTCA) are often used interchangeably, and refer to a non-surgical catheter-based treatment for removal of plaque from the coronary artery. Stenosis or restenosis often lead to hypertension as a result of increased resistance to blood flow.
- PTCA percutaneous transluminal coronary angioplasty
- pyloric stenosis refers to narrowing of pylorus, the passage at the lower end of the stomach that opens into the duodenum.
- hypertension refers to abnormally high blood pressure, i.e. beyond the upper value of the normal range.
- neutralizing antibody an antibody molecule as herein defined which is able to block or significantly reduce an effector function of ErbB receptors. Accordingly, a “neutralizing” anti-ErbB4 antibody is capable of blocking or significantly reducing an effector function, such as ligand binding and/or elicitation of a cellular response, of ErbB4.
- an anti-ErbB4 antibody to neutralize the binding of an ErbB4 ligand (heregulin, HRG) to ErbB4 can be monitored, for example, by measuring the binding of detectably labeled HRG to purified ErbB4 or to a cell line exressing or modified to express ErbB4 in the presence and absence of a candidate anti-ErbB4 antibody.
- HRG ErbB4 ligand
- the ability of the anti-ErbB4 antibodies to neutralize the elicitation of a cellular response by ErbB4 is preferably tested by monitoring the inhibition of tyrosine phosphorylation of ErbB4 by heregulin (HRG), or in a cell proliferation assay.
- HRG heregulin
- Representative assays are disclosed in Example 4 below.
- “Significant” reduction means at least about 60%, or at least about 70%, preferably at least about 75%, more preferably at least about 80%, even more preferably at least about 85%, still more preferably at least about 90%, still more preferably at least about 95%, most preferably at least about 99% reduction of an effector function of the target antigen (e.g.
- ErbB4 such as ligand (e.g. HRG) binding and/or elicitation of a cellular response.
- ligand e.g. HRG
- the “neutralizing” antibodies as defined herein will be capable of neutralizing at least about 60%, or at least about 70%, preferably at least about 75%, more preferably at least about 80%; even more preferably at least about 85%, still more preferably at least about 90%, still more preferably at least about 95%, most preferably at least about 99% of the tyrosine phosphorylation of ErbB4 by HRG, as determined by the assay described in Example 4.
- an “isolated” antibody is one that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes.
- the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or non-reducing conditions using Coomassie blue or, preferably, silver stain.
- Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.
- epitopope is used to refer to binding sites for (monoclonal or polyclonal) antibodies on protein antigens.
- Antibodies which bind to a particular epitope can be identified by “epitope mapping.” There are many methods known in the art for mapping and characterizing the location of epitopes on proteins, including solving the crystal structure of an antibody-antigen complex, competition assays, gene fragment expression assays, and synthetic peptide-based assays, as described, for example, in Chapter 11 of Harlow and Lane, Using Antibodies, a Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1999. Competition assays are discussed below. According to the gene fragment expression assays, the open reading frame encoding the protein is fragmented either randomly or by specific genetic constructions and the reactivity of the expressed fragments of the protein with the antibody to be tested is determined.
- the gene fragments may, for example, be produced by PCR and then transcribed and translated into protein in vitro, in the presence of radioactive amino acids. The binding of the antibody to the radioactively labeled protein fragments is then determined by immunoprecipitation and gel electrophoresis. Certain epitopes can also be identified by using large libraries of random peptide sequences displayed on the surface of phage particles (phage libraries). Alternatively, a defined library of overlapping peptide fragments can be tested for binding to the test antibody in simple binding assays. The latter approach is suitable to define linear epitopes of about 5 to 15 amino acids.
- An antibody binds “essentially the same epitope” as a reference antibody, when the two antibodies recognize identical or sterically overlapping epitopes.
- the most widely used and rapid methods for determining whether two epitopes bind to identical or sterically overlapping epitopes are competition assays, which can be configured in all number of different formats, using either labeled antigen or labeled antibody.
- the antigen is immobilized on a 96-well plate, and the ability of unlabeled antibodies to block the binding of labeled antibodies is measured using radioactive or enzyme labels.
- the phrase “inhibiting an ErbB4 (HER4) receptor” refers to the ability of an ErbB4 antagonist to inhibit or prevent activation of an ErbB4 receptor, for example, by blocking the binding of a ligand to the ErbB4 receptor.
- the “activation” of an ErbB4 receptor refers to receptor phosphorylation, which can be quantified using the tyrosine phosphorylation assays, and downstream events that constitute induction of signal transduction by the bound ligand.
- “Inhibition” is any of these assays is at least about 60%, or at least about 70%, preferably at least about 75%, more preferably at least about 80%; even more preferably at least about 85%, still more preferably at least about 90%, still more preferably at least about 95%, most preferably at least about 99%.
- the expression “decreasing survival of a cell” refers to the act of decreasing the period of existence of a cell, relative to an untreated cell which has not been exposed to a ERbB4 antagonist either in vitro or in vivo.
- the expression “decreased cell proliferation” refers to a decrease in the number of cells in a population exposed to an ErbB4 antagonist either in vitro or in vivo, relative to an untreated cell.
- Biological activity where used in conjunction with an ErbB4 antagonist refers to the ability of an ErbB4 antagonist to control the excessive proliferation or migration of smooth muscle cells, as determined in a relevant in vitro or in vivo assay, including the PDGF-stimulated smooth muscle cell proliferation and human aortic smooth muscle cell migration assays described in the Examples hereinbelow, animal models and human clinical trials, irrespective of the underlying mechanism.
- the biological activity of an ErbB4 antagonist includes, without limitation, functioning as an inhibitor of the binding of a ligand or activation of a native ErbB4 receptor, and/or inhibition of growth and/or migration of smooth muscle cells expressing an ErbB4 receptor on their surface.
- disease state refers to a physiological state of a cell or of a whole mammal in which an interruption, cessation, or disorder of cellular or body functions systems, or organs has occurred.
- an “effective amount” of an ErbB4 antagonist may reduce, slow down or delay the proliferation of smooth muscle cells; reduce, slow down or delay the migration of smooth muscle cells; prevent or inhibit (i.e., slow to some extent and preferably stop) the development of stenosis or restenosis; and/or relieve to some extent one or more of the symptoms associated with stenosis or restenosis, in particular, prevent or inhibit (i.e., slow to some extent and preferably stop) the development of elevated blood pressure associated with stenosis or restenosis.
- Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence.
- DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide;
- a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or
- a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation.
- “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adapters or linkers are used in accordance with conventional practice.
- “Pharmaceutically acceptable” carriers, excipients, or stabilizers are ones which are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution.
- physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TweenTM, polyethylene glycol (PEG), and PluronicsTM.
- buffers such as phosphate, citrate, and other organic acids
- antioxidants including ascorbic acid
- low molecular weight (less than about 10 residues) polypeptides such as serum albumin,
- the invention concerns the treatment of stenosis by antagonists of native ErbB4 receptors.
- the antagonist is an immunoadhesin or a chimeric heteromultimer adhesin.
- Immunoadhesins referred to as hybrid immunoglobulins
- hybrid immunoglobulins including their structure and preparation, are described, e.g. in WO 91/08298; and in U.S. Pat. Nos. 5,428,130 and 5,116,964, the disclosures of which are hereby expressly incorporated by reference.
- immunoadhesin by culturing cells transformed or transfected with a vector containing immunoadhesin nucleic acid. It is, of course, contemplated that alternative methods, which are well known in the art, may be employed to prepare immunoadhesin.
- the immunoadhesin sequence, or portions thereof may be produced by direct peptide synthesis using solid-phase techniques [see, e.g., Stewart et al., Solid - Phase Peptide Synthesis , W.H. Freeman Co., San Francisco, Calif. (1969); Merrifield, J. Am. Chem. Soc., 85:2149-2154 (1963)]. In vitro protein synthesis may be performed using manual techniques or by automation.
- Automated synthesis may be accomplished, for instance, using an Applied Biosystems Peptide Synthesizer (Foster City, Calif.) using manufacturer's instructions.
- Various portions of the immunoadhesin may be chemically synthesized separately and combined using chemical or enzymatic methods to produce the full-length immunoadhesin.
- Nucleic acid encoding a native sequence ErbB4 receptor can, for example, be isolated from cells known to express the ErbB4 receptor, such as those described in EP 599,274, supra, and in the collective Plowman et al. references, supra or is synthesized.
- DNA encoding immunoglobulin light or heavy chain constant regions is known or readily available from cDNA libraries or is synthesized. See for example, Adams et al., Biochemistry 19:2711-2719 (1980); Gough et al., Biochemistry 19:2702-2710 (1980); Dolby et al; P.N.A.S. USA, 77:6027-6031 (1980); Rice et al P.N.A.S USA 79:7862-7865 (1982); Falkner et al; Nature 298:286-288 (1982); and Morrison et al; Ann. Rev. Immunol. 2:239-256 (1984).
- An immunoadhesin or a chimeric heteroadhesin of the invention is preferably produced by expression in a host cell and isolated therefrom.
- a host cell is generally transformed with the nucleic acid of the invention.
- the nucleic acid is incorporated into an expression vector.
- Suitable host cells for cloning or expressing the vectors herein are prokaryote host cells (such as E. coli , strains of Bacillus, Pseudomonas and other bacteria), yeast and other eukaryotic microbes, and higher eukaryote cells (such as Chinese hamster ovary (CHO) cells and other mammalian cells).
- the cells may also be present in live animals (for example, in cows, goats or sheep). Insect cells may also be used. Cloning and expression methodologies are well known in the art.
- one or more expression vector(s) is/are introduced into host cells by transformation or transfection and the resulting recombinant host cells are cultured in conventional nutrient media, modified as appropriate for inducing promoters, selecting recombinant cells, or amplifying the ErbB4-IgG DNA.
- principles, protocols, and practical techniques for maximizing the productivity of in vitro mammalian cell cultures can be found in Mammalian Cell Biotechnology: a Practical Approach , M. Butler, ed. (IRL Press, 1991).
- nucleic acid encoding an extracellular domain of a natural receptor is fused C-terminally to nucleic acid encoding the N-terminus of an immunoglobulin constant domain sequence, however N-terminal fusions are also possible.
- the encoded chimeric polypeptide will retain at least functionally active hinge, CH2 and CH3 domains of the constant region of an immunoglobulin heavy chain. Fusions are also made to the C-terminus of the Fc portion of a constant domain, or immediately N-terminal to the CH1 of the heavy chain or the corresponding region of the light chain.
- the resultant DNA fusion construct is expressed in appropriate host cells.
- Nucleic acid molecules encoding amino acid sequence variants of native sequence extracellular domains are prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants, such as those mentioned above in connection with ErbB4) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of native sequence ErbB4.
- Amino acid sequence variants of native sequence extracellular domain included in the chimeric heteroadhesin are prepared by introducing appropriate nucleotide changes into the native extracellular domain DNA sequence, or by in vitro synthesis of the desired chimeric heteroadhesin monomer polypeptide.
- Such variants include, for example, deletions from, or insertions or substitutions of, residues in the amino acid sequence of the immunoadhesin or chimeric heteroadhesin.
- the nucleic acid encodes a chimeric molecule in which the ErbB4 receptor extracellular domain sequence is fused to the N-terminus of the C-terminal portion of an antibody (in particular the Fc domain), containing the effector functions of an immunoglobulin, e.g. IgG1. It is possible to fuse the entire heavy chain constant region to the ErbB4 receptor extracellular domain sequence. However, more preferably, a sequence beginning in the hinge region just upstream of the papain cleavage site (which defines IgG Fc chemically; residue 216, taking the first residue of heavy chain constant region to be 114 [Kobet et al., supra], or analogous sites of other immunoglobulins) is used in the fusion.
- the ErbB4 receptor extracellular domain sequence is fused to the hinge region and CH2 and CH3 or CH1, hinge, CH2 and CH3 domains of an IgG1, IgG2, or IgG3 heavy chain.
- the precise site at which the fusion is made is not critical, and the optimal site can be determined by routine experimentation.
- IgG1 and IgG3 immunoglobulin sequences are preferred.
- a major advantage of using IgG1 is that IgG1 immunoadhesins can be purified efficiently on immobilized protein A.
- purification of IgG3 requires protein G, a significantly less versatile medium.
- other structural and functional properties of immunoglobulins should be considered when choosing the Ig fusion partner for a particular immunoadhesin construction.
- the IgG3 hinge is longer and more flexible, so it can accommodate larger “adhesin” domains that may not fold or function properly when fused to IgG1.
- IgG immunoadhesins are bivalent homodimers, whereas Ig subtypes like IgA and IgM may give rise to dimeric or pentameric structures, respectively, of the basic Ig homodimer unit.
- IgG1 IgG2
- IgG4 all have in vivo half-lives of 21 days, their relative potencies at activating the complement system are different. IgG4 does not activate complement, and IgG2 is significantly weaker at complement activation than IgG1. Moreover, unlike IgG1, IgG2 does not bind to Fc receptors on mononuclear cells or neutrophils. While IgG3 is optimal for complement activation, its in vivo half-life in approximately one third of the other IgG isotypes.
- IgG isotypes with fewer serologically-defined allotypes are preferred.
- IgG1 has only four serologically-defined allotypic sites, two of which (G1m and 2) are located in the Fc region; and one of these sites G1m1, is non-immunogenic.
- the potential immunogenicity of an IgG3 immunoadhesin is greater than that of an IgG1 immunoadhesin.
- the cDNAs encoding the ErbB4 receptor sequence (e.g. an extracellular domain sequence) and the Ig parts of the immunoadhesin are inserted in tandem into a plasmid vector that directs efficient expression in the chosen host cells.
- a plasmid vector that directs efficient expression in the chosen host cells.
- pRK5-based vectors Scholl et al., Cell 61, 361-370 (1990)
- CDM8-based vectors Seed, Nature 329, 840 (1989)] may, for example, be used.
- the exact junction can be created by removing the extra sequences between the designed junction codons using oligonucleotide-directed deletional mutagenesis [Zoller and Smith, Nucleic Acids Res.
- Synthetic oligonucleotides can be used, in which each half is complementary to the sequence on either side of the desired junction; ideally, these are 36 to 48-mers.
- PCR techniques can be used to join the two parts of the molecule in-frame with an appropriate vector.
- an immunoglobulin light chain might be present either covalently associated to an trk receptor-immunoglobulin heavy chain fusion polypeptide, or directly fused to the trk receptor extracellular domain.
- DNA encoding an immunoglobulin light chain is typically coexpressed with the DNA encoding the ErbB4 receptor-immunoglobulin heavy chain fusion protein.
- the hybrid heavy chain and the light chain will be covalently associated to provide an immunoglobulin-like structure comprising two disulfide-linked immunoglobulin heavy chain-light chain pairs.
- chimeric ErbB4 antagonist herein is a fusion protein comprising an extracellular domain, such as from a ErbB4 monomer, linked to a heterologous polypeptide, such as a multimerization domain.
- a heterologous polypeptide such as a multimerization domain.
- Such a sequence can be constructed using recombinant DNA techniques.
- the heterologous polypeptide can be covalently bound to the extracellular domain polypeptide by techniques well known in the art such as the use of the heterobifunctional crosslinking reagents.
- Exemplary coupling agents include N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene).
- SPDP N-succinimidyl-3-(2-pyridyldithiol) propionate
- IT iminothi
- a chimeric heteroadhesin polypeptide comprises a fusion of a monomer of the chimeric heteroadhesin with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind.
- a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind.
- Such epitope tagged forms of the chimeric heteroadhesin are useful, as the presence thereof can be detected using a labeled antibody against the tag polypeptide.
- provision of the epitope tag enables the chimeric heteroadhesin to be readily purified by affinity purification using the anti-tag antibody.
- Tag polypeptides and their respective antibodies are well known in the art. Examples include the flu HA tag polypeptide and its antibody 12CA5, (Field et al., Mol. Cell. Biol.
- Another type of covalent modification of a chimeric heteromultimer comprises linking a monomer polypeptide of the heteromultimer to one of a variety of non-proteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol.
- non-proteinaceous polymers e.g., polyethylene glycol, polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol.
- a chimeric heteromultimer also may be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules), or in macroemulsions.
- colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules
- Host cells are transfected or transformed with expression or cloning vectors described herein for immunoadhesin production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
- the culture conditions such as media, temperature, pH and the like, can be selected by the skilled artisan without undue experimentation. In general, principles, protocols, and practical techniques for maximizing the productivity of cell cultures can be found in Mammalian Cell Biotechnology: a Practical Approach , M. Butler, ed. (IRL Press, 1991) and Sambrook et al., supra.
- transformation and “transfection” are used interchangeably herein and refer to the process of introducing DNA into a cell.
- the nucleic acid of the invention may integrate into the host cell genome, or may exist as an extrachromosomal element.
- Methods of eukaryotic cell transfection and prokaryotic cell transformation are known to the ordinarily skilled artisan, for example, CaCl 2 , CaPO 4 , liposome-mediated and electroporation.
- transformation is performed using standard techniques appropriate to such cells.
- the calcium treatment employing calcium chloride, as described in Sambrook et al., supra, or electroporation is generally used for prokaryotes.
- Suitable host cells for cloning or expressing the DNA in the vectors herein include prokaryote, yeast, or higher eukaryote cells.
- Suitable prokaryotes include but are not limited to eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as E. coli .
- Various E. coli strains are publicly available, such as E. coli K12 strain MM294 (ATCC 31,446); E. coli X1776 (ATCC 31,537); E. coli strain W3110 (ATCC 27,325) and K5 772 (ATCC 53,635).
- suitable prokaryotic host cells include Enterobacteriaceae such as Escherichia , e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella , e.g., Salmonella typhimurium, Serratia , e.g., Serratia marcescans , and Shigella , as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published 12 Apr. 1989), Pseudomonas such as P. aeruginosa , and Streptomyces . These examples are illustrative rather than limiting.
- Strain W3110 is one particularly preferred host or parent host because it is a common host strain for recombinant DNA product fermentation. Preferably, the host cell secretes minimal amounts of proteolytic enzymes.
- strain W3110 may be modified to effect a genetic mutation in the genes encoding proteins endogenous to the host, with examples of such hosts including E. coli W3110 strain 1A2, which has the complete genotype tonA; E. coli W3110 strain 9E4, which has the complete genotype tonA ptr3; E.
- coli W3110 strain 27C7 (ATCC 55,244), which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT kan r ;
- E. coli W3110 strain 37D6 which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT rbs7 ilvG kan r ;
- E. coli W3110 strain 40B4 which is strain 37D6 with a non-kanamycin resistant degP deletion mutation; and an E. coli strain having mutant periplasmic protease disclosed in U.S. Pat. No. 4,946,783 issued 7 Aug. 1990.
- in vitro methods of cloning e.g., PCR or other nucleic acid polymerase reactions, are suitable.
- eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for immunoadhesin-encoding vectors.
- Saccharomyces cerevisiae is a commonly used lower eukaryotic host microorganism.
- Others include Schizosaccharomyces pombe (Beach and Nurse, Nature, 290: 140 [1981]; EP 139,383 published 2 May 1985); Kluyveromyces hosts (U.S. Pat. No. 4,943,529; Fleer et al., Bio/Technology, 9:968-975 (1991)) such as, e.g., K.
- lactis (MW98-8C, CBS683, CBS4574; Louvencourt et al., J. Bacteriol., 154(2): 737-1742 [1983]), K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906; Van den Berg et al., Bio/Technology, 8:135 (1990)), K. thermotolerans , and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070; Sreekrishna et al., J.
- Candida Trichoderma reesia (EP 244,234); Neurospora crassa (Case et al., Proc. Natl. Acad. Sci. USA, 76:5259-5263 [1979]); Schwanniomyces such as Schwanniomyces occidentalis (EP 394,538 published 31 Oct. 1990); and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published 10 Jan. 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem. Biophys. Res.
- Methylotropic yeasts are suitable herein and include, but are not limited to, yeast capable of growth on methanol selected from the genera consisting of Hansenula, Candida, Kloeckera, Pichia, Saccharomyces, Torulopsis , and Rhodotorula .
- yeast capable of growth on methanol selected from the genera consisting of Hansenula, Candida, Kloeckera, Pichia, Saccharomyces, Torulopsis , and Rhodotorula .
- a list of specific species that are exemplary of this class of yeasts may be found in C. Anthony, The Biochemistry of Methylotrophs, 269 (1982).
- Suitable host cells for the expression of glycosylated immunoadhesin are derived from multicellular organisms.
- invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9, as well as plant cells.
- useful mammalian host cell lines include Chinese hamster ovary (CHO) and COS cells. More specific examples include monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol., 36:59 (1977)); Chinese hamster ovary cells/-DHFR(CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci.
- mice sertoli cells TM4, Mather, Biol. Reprod., 23:243-251 (1980)
- human lung cells W138, ATCC CCL 75
- human liver cells Hep G2, HB 8065
- mouse mammary tumor MMT 060562, ATCC CCL51. The selection of the appropriate host cell is deemed to be within the skill in the art.
- the choice of a mammalian host cell line for the expression of ErbB4-Ig immunoadhesins depends mainly on the expression vector (see below). Another consideration is the amount of protein that is required. Milligram quantities often can be produced by transient transfections.
- the adenovirus EIA-transformed 293 human embryonic kidney cell line can be transfected transiently with pRK5-based vectors by a modification of the calcium phosphate method to allow efficient immunoadhesin expression.
- CDM8-based vectors can be used to transfect COS cells by the DEAE-dextran method (Aruffo et al., Cell 61, 1303-1313 (1990)]; Zettmeissl et al., DNA Cell Biol. (US) 9, 347-353 (1990)].
- the immunoadhesin can be expressed after stable transfection of a host cell line.
- a pRK5-based vector can be introduced into Chinese hamster ovary (CHO) cells in the presence of an additional plasmid encoding dihydrofolate reductase (DHFR) and conferring resistance to G418.
- DHFR dihydrofolate reductase
- Clones resistant to G418 can be selected in culture; these clones are grown in the presence of increasing levels of DHFR inhibitor methotrexate; clones are selected, in which the number of gene copies encoding the DHFR and immunoadhesin sequences is co-amplified. If the immunoadhesin contains a hydrophobic leader sequence at its N-terminus, it is likely to be processed and secreted by the transfected cells.
- the expression of immunoadhesins with more complex structures may require uniquely suited host cells; for example, components such as light chain or J chain may be provided by certain myeloma or hybridoma cell hosts [Gascoigne et al., 1987, supra; Martin et al., J. Virol. 67, 3561-3568 (1993)].
- the nucleic acid encoding immunoadhesin may be inserted into a replicable vector for cloning (amplification of the DNA) or for expression.
- a replicable vector for cloning (amplification of the DNA) or for expression.
- the vector may, for example, be in the form of a plasmid, cosmid, viral particle, or phage.
- the appropriate nucleic acid sequence may be inserted into the vector by a variety of procedures. In general, DNA is inserted into an appropriate restriction endonuclease site(s) using techniques known in the art.
- Vector components generally include, but are not limited to, one or more of a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Construction of suitable vectors containing one or more of these components employs standard ligation techniques which are known to the skilled artisan.
- the immunoadhesin may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide.
- a heterologous polypeptide which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide.
- the signal sequence may be a component of the vector, or it may be a part of the immunoadhesin-encoding DNA that is inserted into the vector.
- the signal sequence may be a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders.
- the signal sequence may be, e.g., the yeast invertase leader, alpha factor leader (including Saccharomyces and Kluyveromyces ⁇ -factor leaders, the latter described in U.S. Pat. No. 5,010,182), or acid phosphatase leader, the C. albicans glucoamylase leader (EP 362,179 published 4 Apr. 1990), or the signal described in WO 90/13646 published 15 Nov. 1990.
- mammalian signal sequences may be used to direct secretion of the protein, such as signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders.
- Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Such sequences are well known for a variety of bacteria, yeast, and viruses.
- the origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2 ⁇ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus or BPV) are useful for cloning vectors in mammalian cells.
- Selection genes will typically contain a selection gene, also termed a selectable marker.
- Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.
- Suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the immunoadhesin-encoding nucleic acid, such as DHFR or thymidine kinase.
- An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., Proc. Natl. Acad. Sci. USA, 77:4216 (1980).
- a suitable selection gene for use in yeast is the trp1 gene present in the yeast plasmid YRp7 [Stinchcomb et al., Nature, 282:39 (1979); Kingsman et al., Gene, 7:141 (1979); Tschemper et al., Gene, 10:157 (1980)].
- the trp1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1 [Jones, Genetics, 85:12 (1977)].
- Expression and cloning vectors usually contain a promoter operably linked to the immunoadhesin-encoding nucleic acid sequence to direct mRNA synthesis. Promoters recognized by a variety of potential host cells are well known. Promoters suitable for use with prokaryotic hosts include the ⁇ -lactamase and lactose promoter systems [Chang et al., Nature, 275:615 (1978); Goeddel et al., Nature, 281:544 (1979)], alkaline phosphatase, a tryptophan (trp) promoter system [Goeddel, Nucleic Acids Res., 8:4057 (1980); EP 36,776], and hybrid promoters such as the tac promoter [deBoer et al., Proc. Natl. Acad. Sci. USA, 80:21-25 (1983)]. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA
- promoter sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase [Hitzeman et al., J. Biol. Chem. 255:2073 (1980)] or other glycolytic enzymees [Hess et al., J. Adv.
- yeast promoters which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657.
- the transcription of immunoadhesin from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 Jul. 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, retrovirus (such as avian sarcoma virus), cytomegalovirus, hepatitis-B virus and Simian Virus 40 (SV40); from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, or from heat-shock promoters, provided such promoters are compatible with the host cell systems.
- viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 Jul. 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, retrovirus (such as avian sarcoma virus),
- Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription.
- Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, ⁇ -fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus.
- Examples include the SV40 enhancer on the late side of the replication origin (by 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.
- the enhancer may be spliced into the vector at a position 5′ or 3′ to the immunoadhesin coding sequence, but is preferably located at a site 5′ from the promoter.
- Expression vectors used in eukaryotic host cells will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 3′ untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding immunoadhesin.
- An immunoadhesin or a chimeric heteroadhesin preferably is recovered from the culture medium as a secreted polypeptide, although it also may be recovered from host cell lysates.
- the particulate debris either host cells or lysed fragments, is removed, for example, by centrifugation or ultrafiltration; optionally, the protein may be concentrated with a commercially available protein concentration filter, followed by separating the chimeric heteroadhesin from other impurities by one or more purification procedures selected from: fractionation on an immunoaffinity column; fractionation on an ion-exchange column; ammonium sulphate or ethanol precipitation; reverse phase HPLC; chromatography on silica; chromatography on heparin Sepharose; chromatography on a cation exchange resin; chromatofocusing; SDS-PAGE; and gel filtration.
- a particularly advantageous method of purifying immunoadhesins is affinity chromatography.
- the choice of affinity ligand depends on the species and isotype of the immunoglobulin Fc domain that is used in the chimera.
- Protein A can be used to purify immunoadhesins that are based on human IgG1, IgG2, or IgG4 heavy chains [Lindmark et al., J. Immunol. Meth. 62, 1-13 (1983)].
- Protein G is recommended for all mouse isotypes and for human IgG3 [Guss et al., EMBO J. 5, 15671575 (1986)].
- the matrix to which the affinity ligand is attached is most often agarose, but other matrices are also available.
- Bound immunoadhesin can be efficiently eluted either at acidic pH (at or above 3.0), or in a neutral pH buffer containing a mildly chaotropic salt. This affinity chromatography step can result in an immunoadhesin preparation that is >95% pure.
- Immunoadhesins behave similarly to antibodies in thiophilic gel chromatography [Hutchens and Porath, Anal. Biochem. 159, 217-226 (1986)] and immobilized metal chelate chromatography [Al-Mashikhi and Makai, J. Dairy Sci. 71, 1756-1763 (1988)]. In contrast to antibodies, however, their behavior on ion exchange columns is dictated not only by their isoelectric points, but also by a charge dipole that may exist in the molecules due to their chimeric nature.
- Preparation of epitope tagged immunoadhesin, such as ErbB4-IgG facilitates purification using an immunoaffinity column containing antibody to the epitope to adsorb the fusion polypeptide.
- Immunoaffinity columns such as a rabbit polyclonal anti-ErbB4 column can be employed to absorb the ErbB4-IgG by binding it to an ErbB4 immune epitope.
- the ErbB4 receptor-immunoglobulin chimeras are assembled as monomers, or hetero- or homo-multimers, and particularly as dimers or tetramers, essentially as illustrated in WO 91/08298.
- these assembled immunoglobulins will have known unit structures.
- a basic four chain structural unit is the form in which IgG, IgD, and IgE exist.
- a four-unit structure is repeated in the higher molecular weight immunoglobulins; IgM generally exists as a pentamer of basic four units held together by disulfide bonds.
- IgA globulin, and occasionally IgG globulin may also exist in multimeric form in serum. In the case of multimer, each four unit may be the same or different.
- the immunoadhesins of the present invention can be made bispecific, and may, for example, include binding regions from two different ErbB receptors, at least one or which is ErbB4.
- the immunoadhesins of the present invention may have binding specificities for two distinct ErbB ligands.
- bispecific molecules trimeric molecules, composed of a chimeric antibody heavy chain in one arm and a chimeric antibody heavy chain-light chain pair in the other arm of their antibody-like structure are advantageous, due to ease of purification.
- cells transfected with nucleic acid encoding the three chains of a trimeric immunoadhesin structure produce a mixture of only three molecules, and purification of the desired product from this mixture is correspondingly easier.
- the ErbB4 chimeric heteromultimers of the invention will have any one or more of the following properties: (a) the ability to compete with a natural heteromultimeric receptor for binding to a ligand such as HB-EGF; (b) the ability to form ErbB2-IgG/ErbB4-IgG complexes; and (c) the ability to inhibit activation of a natural heteromultimeric receptor by depleting ligand from the environment of the natural receptor, thereby inhibiting proliferation of cells that express the ErbB2 and ErbB4 receptor.
- the ability of the chimeric ErbB4 heteromultimer adhesin to bind to a ligand can be readily determined in vitro.
- immunoadhesin forms of these receptors can be generated and the ErbB2/4-Ig heteroimmunoadhesin can be immobilized on a solid phase (e.g. on assay plates coated with goat-anti-human antibody).
- the ability of a ligand to bind to the immobilized immunoadhesin can then be determined. For more details, see the 125 I-HRG binding assay described in the Example below.
- the tyrosine phosphorylation assay using MCF7 cells provides a means for screening for activation of ErbB4 receptors.
- the KIRA-ELISA described in WO 95/14930 can be used to qualitatively and quantitatively measure the ability of an HER4 chimeric heteroadhesin to inhibit activation of a HER4 receptor.
- an immunoadhesin, chimeric heteroadhesin such as ErbB2/4-Ig, or other molecule of the present invention to inhibit proliferation of a cell that expresses the ErbB2 and ErbB4 receptor is readily determined in cell culture by standard procedures.
- Useful cells for this experiment include MCF7 and SK-BR-3 cells obtainable from the ATCC and Schwann cells (see, for example, Li et al., J. Neuroscience 16(6):2012-2019 (1996)). These tumor cell lines may be plated in cell culture plates and allowed to adhere thereto.
- the HRG ligand in the presence and absence of a potential ErbB4 antagonist such as an ErbB4 chimeric heteroadhesin is added. Monolayers are washed and stained/fixed with crystal violet and cell growth inhibition is quantified.
- Another preferred class of ErbB4 antagonists comprises neutralizing antibodies to this receptor.
- Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant.
- the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections.
- adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM.
- Monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Pat. No. 4,816,567).
- a mouse or other appropriate host animal such as a hamster or macaque monkey
- lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization.
- lymphocytes may be immunized in vitro. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice , pp. 59-103, [Academic Press, 1986]).
- the hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells.
- a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells.
- the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.
- Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium.
- preferred myeloma cell lines are murine myeloma lines, such as those derived from MOP-21 and MC.-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, Calif. USA, and SP-2 or X63-Ag8-653 cells available from the American Type Culture Collection, Rockville, Md. USA.
- Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications , pp. 51-63, Marcel Dekker, Inc., New York, [1987]).
- Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen.
- the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunosorbent assay (ELISA).
- RIA radioimmunoassay
- ELISA enzyme-linked immunosorbent assay
- the binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson et al., Anal. Biochem., 107:220 (1980).
- the cells may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice , pp. 59-103 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, DMEM or RPMI-1640 medium.
- the hybridoma cells may be grown in vivo as ascites tumors in an animal.
- the monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
- DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the monoclonal antibodies).
- the hybridoma cells serve as a preferred source of such DNA.
- the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.
- the DNA also may be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences, Morrison, et al., Proc. Nat. Acad. Sci. 81, 6851 (1984), or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide.
- “chimeric” or “hybrid” antibodies are prepared that have the binding specificity of an anti-ErbB4 receptor monoclonal antibody herein.
- non-immunoglobulin polypeptides are substituted for the constant domains of an antibody of the invention, or they are substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for a ErbB4 receptor and another antigen-combining site having specificity for a different antigen.
- Chimeric or hybrid antibodies also may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents.
- immunotoxins may be constructed using a disulfide exchange reaction or by forming a thioether bond.
- suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate.
- a humanized antibody has one or more amino acid residues introduced into it from a non-human source. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. Humanization can be essentially performed following the method of Winter and co-workers [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)], by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody.
- humanized antibodies are chimeric antibodies (Cabilly, supra), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.
- humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
- humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences.
- Three dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art.
- Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e. the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen.
- FR residues can be selected and combined from the consensus and import sequence so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved.
- the CDR residues are directly and most substantially involved in influencing antigen binding.
- Human monoclonal antibodies can be made by the hybridoma method. Human myeloma and mouse-human heteromyeloma cell lines for the production of human monoclonal antibodies have been described, for example, by Kozbor, J. Immunol. 133, 3001 (1984), and Brodeur, et al., Monoclonal Antibody Production Techniques and Applications , pp. 51-63 (Marcel Dekker, Inc., New York, 1987).
- transgenic animals e.g. mice
- transgenic animals e.g. mice
- J H antibody heavy chain joining region
- transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge.
- Jakobovits et al. Proc. Natl. Acad. Sci. USA 90, 2551-255 (1993); Jakobovits et al., Nature 362, 255-258 (1993).
- Mendez et al. ( Nature Genetics 15: 146-156 [1997]) have further improved the technology and have generated a line of transgenic mice designated as “Xenomouse II” that, when challenged with an antigen, generates high affinity fully human antibodies. This was achieved by germ-line integration of megabase human heavy chain and light chain loci into mice with deletion into endogenous J H segment as described above.
- the Xenomouse II harbors 1,020 kb of human heavy chain locus containing approximately 66 V H genes, complete D H and J H regions and three different constant regions ( ⁇ , ⁇ and ⁇ ), and also harbors 800 kb of human ⁇ locus containing 32 V ⁇ genes, J ⁇ segments and C ⁇ genes.
- the antibodies produced in these mice closely resemble that seen in humans in all respects, including gene rearrangement, assembly, and repertoire.
- the human antibodies are preferentially expressed over endogenous antibodies due to deletion in endogenous J H segment that prevents gene rearrangement in the murine locus.
- the phage display technology (McCafferty et al., Nature 348, 552-553 [1990]) can be used to produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors.
- V domain genes are cloned in-frame into either a major or minor coat protein gene of a filamentous bacteriophage, such as M13 or fd, and displayed as functional antibody fragments on the surface of the phage particle. Because the filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody also result in selection of the gene encoding the antibody exhibiting those properties.
- the phage mimics some of the properties of the B-cell.
- Phage display can be performed in a variety of formats; for their review see, e.g. Johnson, Kevin S. and Chiswell, David J., Current Opinion in Structural Biology 3, 564-571 (1993).
- V-gene segments can be used for phage display. Clackson et al., Nature 352, 624-628 (1991) isolated a diverse array of anti-oxazolone antibodies from a small random combinatorial library of V genes derived from the spleens of immunized mice.
- a repertoire of V genes from unimmunized human donors can be constructed and antibodies to a diverse array of antigens (including self-antigens) can be isolated essentially following the techniques described by Marks et al., J. Mol. Biol. 222, 581-597 (1991), or Griffiths et al., EMBO J. 12, 725-734 (1993).
- antibody genes accumulate mutations at a high rate (somatic hypermutation). Some of the changes introduced will confer higher affinity, and B cells displaying high-affinity surface immunoglobulin are preferentially replicated and differentiated during subsequent antigen challenge. This natural process can be mimicked by employing the technique known as “chain shuffling” (Marks et al., Bio/Technol.
- the affinity of “primary” human antibodies obtained by phage display can be improved by sequentially replacing the heavy and light chain V region genes with repertoires of naturally occurring variants (repertoires) of V domain genes obtained from unimmunized donors.
- This techniques allows the production of antibodies and antibody fragments with affinities in the nM range.
- a strategy for making very large phage antibody repertoires (also known as “the mother-of-all libraries”) has been described by Waterhouse et al., Nucl. Acids Res. 21, 2265-2266 (1993), and the isolation of a high affinity human antibody directly from such large phage library is reported by Griffiths et al., EMBO J. 13: 3245-3260 (1994).
- Gene shuffling can also be used to derive human antibodies from rodent antibodies, where the human antibody has similar affinities and specificities to the starting rodent antibody.
- this method which is also referred to as “epitope imprinting”
- the heavy or light chain V domain gene of rodent antibodies obtained by phage display technique is replaced with a repertoire of human V domain genes, creating rodent-human chimeras.
- Selection on antigen results in isolation of human variable domains capable of restoring a functional antigen-binding site, i.e. the epitope governs (imprints) the choice of partner.
- a human antibody is obtained (see PCT patent application WO 93/06213, published 1 Apr. 1993).
- this technique provides completely human antibodies, which have no framework or CDR residues of rodent origin.
- Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens.
- one of the binding specificities is for the ErbB4 receptor to provide an antagonist antibody, the other one is for any other antigen, and preferably for another receptor or receptor subunit.
- bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy chain-light chain pairs, where the two heavy chains have different specificities (Millstein and Cuello, Nature 305, 537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in PCT application publication No. WO 93/08829 (published 13 May 1993), and in Traunecker et al., EMBO 10, 3655-3659 (1991).
- antibody variable domains with the desired binding specificities are fused to immunoglobulin constant domain sequences.
- the fusion preferably is with an immunoglobulin heavy chain constant domain, comprising at least part of the hinge, CH2 and CH3 regions. It is preferred to have the first heavy chain constant region (CH1) containing the site necessary for light chain binding, present in at least one of the fusions.
- DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain are inserted into separate expression vectors, and are co-transfected into a suitable host organism.
- the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation.
- Heteroconjugate antibodies are also within the scope of the present invention.
- Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (PCT application publication Nos. WO 91/00360 and WO 92/200373; EP 03089).
- Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques.
- the ErbB4 antagonist antibody (including murine, human and humanized antibodies, and antibody variants) is an antibody fragment.
- Various techniques have been developed for the production of antibody fragments. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto et al., J. Biochem. Biophys. Methods 24:107-117 (1992) and Brennan et al., Science 229:81 (1985)). However, these fragments can now be produced directly by recombinant host cells. For example, Fab′-SH fragments can be directly recovered from E.
- F(ab′) 2 is formed using the leucine zipper GCN4 to promote assembly of the F(ab′) 2 molecule.
- Fv, Fab or F(ab′) 2 fragments can be isolated directly from recombinant host cell culture. Other techniques for the production of antibody fragments will be apparent to the skilled practitioner.
- Amino acid sequence variants of the ErbB4 antagonist antibodies are prepared by introducing appropriate nucleotide changes into the ErbB4 antagonist antibody DNA, or by peptide synthesis.
- Such variants include, for example, deletions from, and/or insertions into and/or substitutions of, residues within the amino acid sequences of the ErbB4 antagonist antibodies of the examples shown herein. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics.
- the amino acid changes also may alter post-translational processes of the humanized or variant ErbB4 antagonist antibody, such as changing the number or position of glycosylation sites.
- a useful method for identification of certain residues or regions of the ErbB4 receptor antibody that are preferred locations for mutagenesis is called “alanine scanning mutagenesis,” as described by Cunningham and Wells Science, 244:1081-1085 (1989).
- a residue or group of target residues are identified (e.g., charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with ErbB4 receptor antigen.
- Those amino acid locations demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at, or for, the sites of substitution.
- the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined.
- ala scanning or random mutagenesis is conducted at the target codon or region and the expressed ErbB4 antibody variants are screened for the desired activity.
- Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues.
- terminal insertions include a ErbB4 antagonist antibody with an N-terminal methionyl residue or the antibody fused to an epitope tag.
- Other insertional variants of the ErbB4 antagonist antibody molecule include the fusion to the N- or C-terminus of the ErbB4 antagonist antibody of an enzyme or a polypeptide which increases the serum half-life of the antibody.
- variants are an amino acid substitution variant. These variants have at least one amino acid residue in the ErbB4 antagonist antibody molecule removed and a different residue inserted in its place.
- the sites of greatest interest for substitution mutagenesis include the hypervariable regions, but FR alterations are also contemplated. Conservative substitutions are shown in Table 1 under the heading of “preferred substitutions”. If such substitutions result in a change in biological activity, then more substantial changes, denominated “exemplary substitutions” in Table 1, or as further described below in reference to amino acid classes, may be introduced and the products screened.
- Substantial modifications in the biological properties of the antibody are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.
- Naturally occurring residues are divided into groups based on common side-chain properties:
- hydrophobic norleucine, met, ala, val, leu, ile
- Non-conservative substitutions will entail exchanging a member of one of these classes for another class.
- cysteine residue not involved in maintaining the proper conformation of the ErbB4 antagonist antibody also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking.
- cysteine bond(s) may be added to the antibody to improve its stability (particularly where the antibody is an antibody fragment such as a Fv fragment).
- a particularly preferred type of substitution variant involves substituting one or more hypervariable region residues of a parent antibody (e.g. a humanized or human antibody).
- a parent antibody e.g. a humanized or human antibody
- the resulting variant(s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated.
- a convenient way for generating such substitution variants is affinity maturation using phage display. Briefly, several hypervariable region sites (e.g. 6-7 sites) are mutated to generate all possible amino substitutions at each site.
- the antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. The phage-displayed variants are then screened for their biological activity (e.g. antagonist activity) as herein disclosed.
- alanine scanning mutagenesis can be performed to identify hypervariable region residues contributing significantly to antigen binding.
- Another type of amino acid variant of the antibody alters the original glycosylation pattern of the antibody. By altering is meant deleting one or more carbohydrate moieties found in the antibody, and/or adding one or more glycosylation sites that are not present in the antibody.
- N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue.
- the tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain.
- X is any amino acid except proline
- O-linked glycosylation refers to the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.
- glycosylation sites to the antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites).
- the alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original antibody (for O-linked glycosylation sites).
- Nucleic acid molecules encoding amino acid sequence variants of the ErbB4 antagonist antibodies are prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the ErbB4 antagonist antibody.
- the ErbB4 antagonist antibodies disclosed herein may also be formulated as immunoliposomes.
- Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Nat. Acad. Sci. USA 82:3688 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Pat. No. 5,013,556.
- Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter.
- Fab′ fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al., J. Biol. Chem. 257:286-288 (1982) via a disulfide interchange reaction.
- a chemotherapeutic agent such as Doxorubicin is optionally contained within the liposome. See Gabizon et al., J. National Cancer Inst. 81(19):1484 (1989).
- the antibody of the present invention may also be used in ADEPT by conjugating the antibody to a prodrug-activating enzyme which converts a prodrug (e.g., a peptidyl chemotherapeutic agent, see WO81/01145) to an active anti-cancer drug.
- a prodrug e.g., a peptidyl chemotherapeutic agent, see WO81/01145
- WO 88/07378 and U.S. Pat. No. 4,975,278 See, for example, WO 88/07378 and U.S. Pat. No. 4,975,278.
- the enzyme component of the immunoconjugate useful for ADEPT includes any enzyme capable of acting on a prodrug in such a way so as to covert it into its more active, cytotoxic form.
- Enzymes that are useful in the method of this invention include, but are not limited to, alkaline phosphatase useful for converting phosphate-containing prodrugs into free drugs; arylsulfatase useful for converting sulfate-containing prodrugs into free drugs; cytosine deaminase useful for converting non-toxic 5-fluorocytosine into the anti-cancer drug, 5-fluorouracil; proteases, such as serratia protease, thermolysin, subtilisin, carboxypeptidases and cathepsins (such as cathepsins B and L), that are useful for converting peptide-containing prodrugs into free drugs; D-alanylcarboxypeptidases, useful for converting prodrugs that contain D-amino acid substituents; carbohydrate-cleaving enzymes such as ⁇ -galactosidase and neuraminidase useful for converting glycosylated prodrugs into free drugs; ⁇
- antibodies with enzymatic activity can be used to convert the prodrugs of the invention into free active drugs (see, e.g., Massey, Nature 328:457-458 (1987)).
- Antibody-abzyme conjugates can be prepared as described herein for delivery of the abzyme to a tumor cell population.
- the enzymes of this invention can be covalently bound to the ErbB4 antagonist antibodies by techniques well known in the art such as the use of the heterobifunctional crosslinking reagents discussed above.
- fusion proteins comprising at least the antigen binding region of an antibody of the invention linked to at least a functionally active portion of an enzyme of the invention can be constructed using recombinant DNA techniques well known in the art (see, e.g., Neuberger et al., Nature 312:604-608 [1984]).
- an antibody fragment rather than an intact antibody.
- the salvage receptor binding epitope generally constitutes a region wherein any one or more amino acid residues from one or two loops of a Fc domain are transferred to an analogous position of the antibody fragment. Even more preferably, three or more residues from one or two loops of the Fc domain are transferred. Still more preferred, the epitope is taken from the CH2 domain of the Fc region (e.g., of an IgG) and transferred to the CH1, CH3, or V H region, or more than one such region, of the antibody. Alternatively, the epitope is taken from the CH2 domain of the Fc region and transferred to the C L region or V L region, or both, of the antibody fragment.
- the CH2 domain of the Fc region e.g., of an IgG
- the epitope is taken from the CH2 domain of the Fc region and transferred to the C L region or V L region, or both, of the antibody fragment.
- Covalent modifications of the ErbB4 antagonist antibodies are also included within the scope of this invention. They may be made by chemical synthesis or by enzymatic or chemical cleavage of the antibody, if applicable. Other types of covalent modifications of the antibody are introduced into the molecule by reacting targeted amino acid residues of the antibody with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues. Exemplary covalent modifications of polypeptides are described in U.S. Pat. No. 5,534,615, specifically incorporated herein by reference.
- a preferred type of covalent modification of the antibody comprises linking the antibody to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Pat. No. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.
- nonproteinaceous polymers e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes
- Soluble ErbB4 receptors such an ErbB4 extracellular domain
- the soluble receptor sequence, or portions thereof may be produced by direct peptide synthesis using solid-phase techniques (see, e.g., Stewart et al., supra; and Merrifield, supra). In vitro protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be accomplished, for instance, using an Applied Biosystems Peptide Synthesizer (Foster City, Calif.) using manufacturer's instructions.
- Various portions of the soluble receptor may be chemically synthesized separately and combined using chemical or enzymatic methods to produce the full-length soluble receptor.
- an ErbB4-IgG e.g. IgG1
- IgG1 immunoadhesin is purified by protein A chromatography and cleaved with an immobilized form of the enzyme. Cleavage results in two products; the Fc region and the ErbB4 region, which is preferably an ErbB4 extracellular domain. These fragments can be separated easily by a second passage over a protein A column to retain the Fc and obtain the purified ErbB4 fragment in the flow-through fractions.
- a similar approach can be used to generate a dimeric ErbB4 portion, by placing the cleavable sequence at the lower hinge.
- an ErbB4 receptor antagonist may be utilized for the treatment of a variety of “diseases or disorders” involving smooth muscle cell proliferation in a mammal, such as a human.
- the present invention concerns the use of ErbB4 receptor antagonists for the treatment of cardiac diseases involving proliferation of vascular smooth muscle cells (VSMC) and leading to intimal hyperplasia such as vascular stenosis, restenosis resulting from angioplasy or surgery or stent implants, atherosclerosis and hypertension (reviewed in Casterella and Teirstein, Cardiol. Rev. 7: 219-231 [1999]; Andres, Int. J. Mol. Med. 2: 81-89 [1998]; and Rosanio et al., Thromb. Haemost. 82 [suppl 1]: 164-170 [1999]).
- VSMC vascular smooth muscle cells
- VSMCs Following activation of this receptor, VSMCs produce and secrete various autocrine growth factors, including PDGF-AA, HB-EGF and TGF- ⁇ (reviewed in Stouffer and Runge, Semin. Thromb. Hemost. 24: 145-150 [1998]).
- HB-EGF heparin-binding EGF-like growth factor
- VEGF vascular endothelial growth factor
- HB-EGF binds to and activates HER1 and ErbB4 receptors initiating a signal transduction cascade that ultimately results in migration and proliferation of fibroblasts and VSMCs.
- HB-EGF also stimulates VSMCs to secrete various factors that are mitogenic for endothelial cells (Abramovitch et al., FEBS Lett. 425: 441-447 [1998]). Moreover, it also induces chemotactic response in endothelial cells.
- VSMCs stimulated with angiotensin II, endothelin-1 and thrombin, and also acts as a powerful mitogen for proliferation of VSMCs (Taylor et al., Proc. Natl. Acad. Sci. USA 96: 1633-1638 [1999]).
- vascular stenosis gives rise to hypertension as a result of increased resistance to blood flow. Moreover, decreased blood supply to the tissue may also cause necrosis and induce inflammatory response leading to severe damage. For example, myocardial infarction occurs as a result of lack of oxygen and local death of heart muscle tissues.
- Percutaneous transluminal coronary angioplasy PTCA
- balloon angioplasty is a non-surgical catheter-based treatment for obstructive coronary artery disease.
- a catheter is introduced in the blood vessel and a balloon is inflated at the site of plaque in order to mechanically dislodge the plaque.
- stent is implanted to restore smooth blood flow.
- neointimal formation takes place even within the implanted stent, known as “in-stent restenosis.”
- in-stent restenosis neointimal formation takes place even within the implanted stent.
- stent deployment results in early thrombus deposition and acute inflammation, granulation tissue development, and ultimately smooth muscle cell proliferation and extracellular matrix synthesis (reviewed in Virmani and Farb, Curr. Opin. Lipidol. 10: 499-506 [1999]).
- Bypass surgery is performed to get around the affected blood vessel only in severe cases, and usually only after multiple rounds of angioplasty have failed in restoring blood flow.
- restenosis persists as the limiting factor in the maintenance of vessel patency after PTCA, occurring in 30-50% of patients and accounting for significant morbidity and health care expenditure.
- the underlying mechanisms of restenosis are comprised of a combination of effects from vessel recoil, negative vascular remodeling, thrombus formation and neointimal hyperplasia. Importantly, these events are interconnected. For example, neointimal hyperplasia is stimulated by growth factors, which are released by local thrombi and the injured arterial segment itself, and act to enhance the expression of other growth-stimulating proteins resulting in acute proliferative and inflammatory responses.
- EGF extracellular matrix
- the instant invention discloses the use of ErbB4 receptor antagonists for the treatment of stenosis or restenosis by controlling the proliferation of vascular smooth muscle cells.
- the scope of the present invention is not restricted to the disorders of the vascular smooth muscle cells.
- the scope specifically includes any disorder that results from proliferation of smooth muscle cells in any organ and that involves an active role of ErbB4 receptors and/or corresponding ligands.
- IHPS Infantile hypertrophic pyloric stenosis
- the underlying stenosis causes functional obstruction of the pyloric canal. Consequently, gastric emptying of milk is disturbed severely.
- IHPS involves hypertrophy and hyperplasia of the pyloric smooth muscle mass and results in pyloric stenosis (Oue and Puri, Pediatr. Res. 45: 853-857 [1999]).
- EGF EGF receptor
- HB-EGF HB-EGF
- the antagonists of ErbB4 disclosed herein may find use in the control of pyloric smooth muscle cell proliferation and therefore in the treatment of pyloric stenosis.
- HB-EGF is a potent mitogen for bladder SMC proliferation, and it acts by binding to ErbB1 (HER1) receptors expressed by these cells, thus acting as an autocrine growth factor (Borer et al., Lab Invest. 79: 1335-1345 [1999]).
- the authors also demonstrated the expression of ErbB2 and ErbB3 but not ErbB4 receptors on bladder SMCs.
- the obstructive airway diseases are yet another group of diseases with underlying pathology involving smooth muscle cell proliferation.
- This group is asthma which manifests in airway inflammation and bronchoconstriction.
- EGF has been shown to stimulate proliferation of human airway SMCs and is likely to be one of the factors involved in the pathological proliferation of airway SMCs in obstructive airway diseases (Cerutis et al., Am. J. Physiol. 273: L10-15 [1997]; Cohen et al., Am. J. Respir. Cell. Mol. Biol. 16: 85-90 [1997]).
- the ErbB4 antagonists of the present invention may be used for the treatment of obstructive airway diseases.
- nucleic acid (optionally contained in a vector) into the patient's cells
- in vivo and ex vivo the nucleic acid is injected directly into the patient, usually at the site where the chimeric heteroadhesin is required.
- ex vivo treatment the patient's cells are removed, the nucleic acid is introduced into these isolated cells and the modified cells are administered to the patient either directly or, for example, encapsulated within porous membranes which are implanted into the patient (see, e.g. U.S. Pat. Nos. 4,892,538 and 5,283,187).
- nucleic acids there are a variety of techniques available for introducing nucleic acids into viable cells. The techniques vary depending upon whether the nucleic acid is transferred into cultured cells in vitro, or in vivo in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium phosphate precipitation method, etc.
- a commonly used vector for ex vivo delivery of the gene is a retrovirus.
- the currently preferred in vivo nucleic acid transfer techniques include transfection with viral vectors (such as adenovirus, Herpes simplex I virus, or adeno-associated virus) and lipid-based systems (useful lipids for lipid-mediated transfer of the gene are DOTMA, DOPE and DC-Chol, for example).
- viral vectors such as adenovirus, Herpes simplex I virus, or adeno-associated virus
- lipid-based systems useful lipids for lipid-mediated transfer of the gene are DOTMA, DOPE and DC-Chol, for example.
- proteins which bind to a cell surface membrane protein associated with endocytosis may be used for targeting and/or to facilitate uptake, e.g. capsid proteins or fragments thereof tropic for a particular cell type, antibodies for proteins which undergo internalization in cycling, and proteins that target intracellular localization and enhance intracellular half-life.
- the technique of receptor-mediated endocytosis is described, for example, by Wu et al., J. Biol. Chem. 262:4429-4432 (1987); and Wagner et al., Proc. Natl. Acad. Sci. USA 87:3410-3414 (1990).
- Wu et al. J. Biol. Chem. 262:4429-4432 (1987); and Wagner et al., Proc. Natl. Acad. Sci. USA 87:3410-3414 (1990).
- Therapeutic formulations are prepared for storage by mixing the ErbB4 antagonist having the desired degree of purity with optional physiologically acceptable carriers, excipients, or stabilizers (Remington's Pharmaceutical Sciences, 16th Edition, Osol., A., Ed., (1980)), in the form of lyophilized cake or aqueous solutions.
- Pharmaceutically acceptable carriers, excipients, or stabilizers are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TweenTM, PluronicsTM, or polyethylene glycol (PEG).
- buffers such as phosphate, citrate, and other organic acids
- antioxidants including ascorbic
- An antibody or an immunoadhesin to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution. The formulation ordinarily will be stored in lyophilized form or in solution.
- Therapeutic compositions are generally placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
- the route of antibody, immunoadhesin or chimeric heteroadhesin administration is in accord with known methods, e.g., injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, or intralesional routes, or by sustained-release systems as noted below.
- the heteroadhesin or antibody is administered continuously by infusion or by bolus injection.
- sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the protein, which matrices are in the form of shaped articles, e.g., films, or microcapsules.
- sustained-release matrices include polyesters, hydrogels (e.g., poly(2-hydroxyethyl-methacrylate) as described by Langer et al., J. Biomed. Mater. Res., 15:167-277 (1981) and Langer, Chem. Tech., 12:98-105 (1982) or poly(vinylalcohol)), polylactides (U.S. Pat. No.
- Sustained-release ErbB4 antagonist also include liposomally entrapped drug.
- Liposomes containing ErbB4 antagonist are prepared by methods known per se: Epstein et al., Proc. Natl. Acad. Sci. USA 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese patent application 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324.
- the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. % cholesterol, the selected proportion being adjusted for the optimal therapy.
- Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter.
- a chemotherapeutic agent such as Doxorubicin is optionally contained within the liposome. See Gabizon et al. J. National Cancer Inst. 81(19):1484 (1989).
- the ErbB4 antagonist of the invention may be used to bind and sequester ErbB4 ligand or block ErbB4 receptor thereby inhibiting ErbB4 activation in the cell and inhibit cell proliferation.
- the ErbB4 antagonist of the invention may be administered to a patient along with other therapy such as a chemotherapeutic agent.
- Preparation and dosing schedules for such chemotherapeutic agents may be used according to manufacturers' instructions or as determined empirically by the skilled practitioner. Preparation and dosing schedules for such chemotherapy are also described in Chemotherapy Service Ed., M. C. Perry, Williams & Wilkins, Baltimore, Md. (1992).
- the chemotherapeutic agent may precede, or follow administration of the antagonist or may be given simultaneously therewith.
- An effective amount of antagonist to be employed therapeutically will depend, for example, upon the therapeutic objectives, the route of administration, and the condition of the patient. Accordingly, it will be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the maximum therapeutic effect.
- a typical dosage might range from about 1 ⁇ g/kg to up to 100 mg/kg of patient body weight, preferably about 10 ⁇ g/kg to 10 mg/kg.
- the clinician will administer antagonist until a dosage is reached that achieves the desired effect for treatment of the above mentioned disorders.
- the present invention discloses a method of screening to identify molecules that can inhibit or enhance the proliferation of smooth muscle cells.
- a candidate molecule is incubated with a polypeptide comprising the extracellular domain of an ErbB4 receptor, followed by adding to a culture of smooth muscle cells and determining the effect on the proliferation of cells.
- the ErbB4 receptor may be a native ErbB4 receptor such as a human ErbB4 receptor, or may be a polypeptide having at least 85% sequence identity with the amino acid sequence of a native ErbB4 receptor.
- the cell proliferation can be monitored and quantitated in a number of ways. For instance, incorporation of 3 H-thymidine into DNA is a well-established method to monitor cellular DNA synthesis indicative of cell proliferation.
- incorporation of 3 H-thymidine into DNA is monitored either microscopically by counting the number of silver grains in an autoradiograph or biochemically by liquid scintillation counting.
- incorporation of 5-bromo 2′-deoxyuridine (BrdU) into cellular DNA can be monitored either microscopically or immunologically.
- Both assays utilize highly specific monoclonal antibodies that recognize BrdU incorporated into DNA. In the microscopic assay, the cells are permeabilized, reacted with BrdU specific monoclonal antibodies followed by labeled secondary antibodies.
- the secondary antibodies are detected by virtue of an attached label such as a fluorescent dye (fluorescein isothiocyanate (FITC), rhodamine, Texas Red etc) or an enzymatic label (alkaline phosphatase, horseradish peroxidase etc).
- FITC fluorescein isothiocyanate
- rhodamine rhodamine
- Texas Red rhodamine
- enzymatic label alkaline phosphatase, horseradish peroxidase etc.
- An enzymatic assay monitors the amount of BrdU specific monoclonal antibodies by a suitable immunoassay such as ELISA.
- ELISA suitable immunoassay
- the monoclonal antibodies specific for BrdU as well as ELISA kits containing such antibodies are available commercially from a number of sources including. Boehringer Mannheim.
- a flow cytometry can also be used to monitor cell proliferation.
- cells are fractionated based on the nuclear DNA content per cell. Since the nuclear DNA content varies among cells undergoing division depending on the phase of cell cycle (2n in G1 phase, 4n in G2+M phase and intermediate value in S phase, wherein n is the value of haploid nuclear DNA content), cell proliferation can be rapidly monitored by estimating the fraction of cells in S and G2+M phases using this approach.
- any step in this pathway can be monitored and used as a measure of cell proliferation.
- One such step is a ligand-induced tyrosine autophosphorylation of ErbB4 receptor, which can be monitored by the kinase receptor activation (KIRA) assay as described in WO95/14930.
- KIRA kinase receptor activation
- This ELISA-type assay is suitable for qualitative or quantitative measurement of kinase activation by measuring the autophosphorylation of the kinase domain of a receptor protein tyrosine kinase such as ErbB4.
- the first stage of the assay involves phosphorylation of the kinase domain of ErbB4 receptor present in the cell membrane of a smooth muscle cell.
- a first solid phase e.g., a well of a first assay plate
- a substantially homogeneous population of smooth muscle cells Being adherent cells, the smooth muscle cells adhere naturally to the first solid phase.
- Antibodies specific for flag polypeptide are used in the ELISA part of the assay to capture the receptor with flag peptide.
- a candidate molecule and a polypeptide comprising the extracellular domain of a native ErbB4 receptor are then added to the wells containing smooth muscle cells, followed by monitoring tyrosine autophosphorylation of ErbB4 receptor by the KIRA assay.
- a polypeptide comprising an amino acid sequence having at least 85% sequence identity with the amino acid sequence of the extracellular domain of ErbB4 receptor can also be used in the assay.
- the smooth muscle cells are solubilized using a lysis buffer (which has a solubilizing detergent therein) and gentle agitation, thereby releasing cell lysate which can be subjected to the ELISA part of the assay directly, without the need for concentration or clarification of the cell lysate.
- the cell lysate thus prepared is then subjected to the second (ELISA) stage of the assay.
- a second solid phase usually a well of an ELISA microtiter plate
- a capture agent which binds specifically to ErbB4 receptor or, in the case of a receptor construct, to the flag polypeptide.
- Coating of the second solid phase is carried out so that the capture agent adheres to the second solid phase.
- the capture agent is generally a monoclonal antibody but polyclonal antibodies may also be used.
- the cell lysate obtained is then exposed to, or contacted with, the adhering capture agent so that the receptor or receptor construct adheres to (or is captured in) the second solid phase.
- a washing step is then carried out, so as to remove unbound cell lysate, leaving the captured receptor or receptor construct.
- the adhering or captured receptor or receptor construct is then exposed to, or contacted with, an anti-phosphotyrosine antibody which identifies phosphorylated tyrosine residues in the tyrosine kinase receptor.
- the anti-phosphotyrosine antibody is conjugated (directly or indirectly) to an enzyme which catalyses a color change of a non-radioactive color reagent.
- phosphorylation of the receptor can be measured by a subsequent color change of the reagent.
- the enzyme can be bound to the anti-phosphotyrosine antibody directly, or a conjugating molecule (e.g., biotin) can be conjugated to the anti-phosphotyrosine antibody and the enzyme can be subsequently bound to the anti-phosphotyrosine antibody via the conjugating molecule.
- binding of the anti-phosphotyrosine antibody to the captured receptor or receptor construct is measured, e.g., by a color change in the color reagent.
- Anti-phosphotyrosine antibodies that are commercially available can be used for the assay.
- the instant invention also provides for a method for screening of molecules which can inhibit or enhance migration of smooth muscle cells.
- One of the formats utilizes a compartmentalized chemotaxis cell culture chambers such as Neuroprobe ChemoTX chemotaxis chambers available from (Neuroprobe Inc., Gaithersburg, Md.).
- a porous filter separates smooth muscle cells in the upper chamber from a medium containing a chemoattractant (e.g. thrombin) in the lower chamber.
- Smooth muscle cells are incubated with a candidate molecule and a polypeptide comprising the extracellular domain of an ErbB4 receptor.
- the filters are stained and smooth muscle cells that have migrated to the bottom of the filter are counted using an inverted microscope.
- a conventional library or a combinatorial library of chemical compounds can be used for screening purpose.
- An automated approach adapted for high throughput can be conveniently used for the assay.
- the screening assays are not restricted only to small molecules, even macromolecules such as antibodies can be used for the screening.
- a unique Mlu I site was engineered into a plasmid expressing human IgG heavy chain (pDR, a gift from J. Ridgeway and P. Carter, Genentech, Inc.) at the region encoding the hinge domain of the immunoglobulin. Mlu I sites were also engineered into a set of ErbB4 expression plasmids at the region encoding the ECD/TM junctions of these receptors. All mutagenesis were performed using the Kunkel method (Kunkel, T., Proc. Natl. Acad. Sci. U.S.A. 82:488 (1985)). The Mlu I sites were utilized to make the appropriate ErbB4-IgG fusion constructs.
- the fusion junction of the ErbB-IgG chimera was: G 640 ErB4 -(TR)-DKTH 224 VH , where the amino acid numbering of the ErbB4 polypeptide is described in Plowman et al. (Plowman, G. D. et al., (1993a) PNAS USA 90:1746-1750)
- the conserved TR sequence is derived from the Mlu I site.
- the sequence of the Fc region used in the preparation of the fusion constructs is found in Ellison, J. W. et al. (Ellison, J. W. et al. (1982) NAR 10:4071-4079).
- the final expression constructs were in a pRK-type plasmid backbone wherein eukaryotic expression is driven by a CMV promoter (Gorman et al., DNA Prot. Eng. Tech. 2:3-10 (1990)).
- adherent HEK-293 cells (ATCC No. CRL-1573) were transfected with the expression plasmid using standard calcium phosphate methods (Gorman et al., supra and Huang et al., Nucleic Acids Res. 18:937-947 (1990)). Serum-containing media was replaced with serum-free media 15 hours post-transfection and the transfected cells incubated for 5-7 days. The resulting conditioned media was harvested and passed through Protein A columns (1 mL Pharmacia HiTrapTM). Purified IgG fusions were eluted with 0.1 M citric acid (pH 4.2) into tubes containing 1 M Tris pH 9.0.
- the eluted proteins were subsequently dialyzed against PBS and concentrated using Centri-prep-30 filters (Amicon). Glycerol was added to a final concentration of 25% and the material stored at ⁇ 20° C. Concentrations of material were determined via a Fc-ELISA
- the EGF-like domain of HRG ⁇ 1 (177-244) was expressed in E. coli , purified and radioiodinated as described previously (Sliwkowski, M. et al. J. Biol. Chem. 269:14661-14665 (1994)).
- Full-length rHRG ⁇ 1 which was expressed in Chinese hamster ovary cells, was used in Western blot analysis. Binding assays were performed in Nunc breakapart immuno-module plates. Plate wells were coated at 4° C. overnight with 100 ⁇ l of 5 ⁇ g/ml goat-anti-human antibody (Boehringer Mannheim) in 50 mM carbonate buffer (pH 9.6).
- Tritiated thymidine incorporation assays were performed in a 96-well format. MCF7 cells were plated at 10,000 cells/well in 50:50 F12/DMEM (high glucose) 0.1% fetal calf serum (100 ml). Cells were allowed to settle for 3 hours, after which ErbB4-IgG fusion proteins and/or heregulin were added to the wells (final volume of 200 ml) and the plates incubated for 15 hours in a 37° C. tissue culture incubator. Tritiated thymidine was added to the wells (20 ml of 1/20 diluted tritiated thymidine stock: Amersham TRA 120 B363, 1 mCi/ml) and the plates incubated a further 3 hours. Tritiated material was then harvested onto GF/C unifilters (96 well format) using a Packard Filtermate 196 harvester. Filters were counted using a Packard Topcount apparatus.
- Human aortic smooth muscle cells (Clonetics) were seeded at about 50% confluent density (5000 cells/well) in 96 well tissue culture plates and incubated overnight in SM2 media (Clonetics). Next day, the media was changed to M199 supplemented with ITS (1 ⁇ ), 2 mM L-glutamine, 50 ⁇ g/ml ascorbic acid, 26.5 mM NaHCO3, 100 U/ml penicillin, 100 U/ml streptomycin and 0.1% (v/v) fetal bovine serum. The cells were further incubated for 16 h.
- the cells were then treated with either Her4-IgG (400 nM) or buffer for 1 h, followed by treatment with PDGF (100 ng/ml) for 40 h. Control cells were left untreated to estimate the basal level of cell growth. An aliquot of BrdU (10 ⁇ l/well of a 10 ⁇ M solution of 5-bromo 2′-deoxyuridine prepared in PBS) was added and the cells were incubated for an additional 2 h. Cell proliferation was monitored by quantitating BrdU incorporation using BrdU ELISA (Cell proliferation kit, Boehringer mannheim, Catalog No 1 647 229) following manufacturer's instructions for adherent cells.
- BrdU ELISA Cell proliferation kit, Boehringer mannheim, Catalog No 1 647 229
- PDGF stimulated growth of aortic smooth muscle cells in agreement with earlier reports (Ross et al., Philos. Trans. R. Soc. Lond. B Biol. Sci. 12: 155-169 [1990]).
- Pre-treatment of cells with ErbB4-IgG immunoadhesin reduced the extent of PDGF-stimulated proliferation of cells.
- Control cells treated with buffer in place of ErbB4-IgG did not show any significant effect on cell proliferation.
- Human aortic smooth muscle cells were trypsinized and resuspended at a concentration of 5 ⁇ 10 5 cells per ml in DME containing 10% FBS. Cells were pre-incubated with Her4-IgG (400 nM) or buffer for 15 min. The lower wells of ChemoTX chemotaxis chambers (Neuroprobe Inc., Cat 116-8) were filled with 300 ⁇ l of a solution of 2 U/ml human thrombin or buffer (PBS) negative control. A filter was mounted on top of the chamber and the smooth muscle cells (buffer or ErbB4 treated) were added to the top wells in a volume of 50 ⁇ l.
- the plate and filter were covered with the clear plastic lid and incubated for 3 h at 37° C. in humidified air with 5% CO 2 . At the end of the incubation, filters were removed and the top sides were wiped with a Q-tip to remove any remaining cells. The filters were stained with Dif-Quick staining solution and the number of cells migrated to the bottom of the filter were counted using an inverted phase microscope. Six wells in each group and 40 fields in each well were counted.
- thrombin acted as a chemotactic stimulus and induced migration of aortic smooth muscle cells.
- ErbB4-IgG immunoadhesin inhibited thrombin-stimulated cell migration.
- a panel of 34 murine monoclonal antibodies which specifically bind the extracellular domain of ErbB4 were produced using conventional hybridoma technology (Table 2).
- Total cellular RNA was extracted from MDA-MB-453 cells and used as a template in RT PCR to generate the human ErbB4 extracellular domain (ECD) coding sequence.
- ECD extracellular domain
- Specific oligonucleotides used in the RT PCR reactions were synthesized on the basis of the ErbB4 DNA sequence.
- a gDErbB4 ECD fusion protein was constructed by ligating the coding sequences for amino acids 1-52 of herpes simplex virus type 1 glycoprotein D to the sequences encoding amino acids 26-640 of human ErbB4.
- the gDErbB4 ECD cDNA was inserted into the cytomegalovirus-based expression vector pRK5. This construct was transiently transfected into human embryonic kidney 293 cells using a standard calcium phosphate precipitation protocol.
- An affinity column was prepared by coupling the anti-gD monoclonal 5B6 to CNBR sepharose (Pharmacia LKB Biotechnology, Uppsala Sweden). Supernatant from gDErbB4 ECD transfected 293 cells was concentrated 20-40 fold on a ym30 membrane (Amicon, Beverly Mass.) and loaded onto the affinity resin. The column was washed with PBS and the receptor was eluted with 100 mM acetic acid/500 mM NaCl pH 2.4. The ErbB4 ECD was buffer exchanged into PBS and concentrated. Protein concentration was determined by OD280.
- mice were immunized with approximately 5 ⁇ g of ErbB4 ECD in RIBI MPL+TDM+CWS Emulsion (RIBI ImmunoChem Research Inc., Hamilton, Mont.) in their rear footpads on weeks 0, 1, 2 and 3.
- the immunized mice were tested for an antibody response by ELISA.
- the mice with the highest titers were given an additional 5 ⁇ g of ErbB4 ECD in RIBI during week 4.
- the lymphocytes from the popliteal and inguinal nodes were fused with mouse myeloma line X63-Ag8.653.
- Fused cells were plated at a density of 200,000 cells per well in 96-well tissue culture plates and hybridoma selection using HAT media supplement (Sigma, St. Louis, Mo.) began one day post fusion. Beginning on day 10, the hybridoma supernatants were screened for the presence of ErbB4 specific antibodies using a radioactive capture assay as described below. Stable antibody producing clones were obtained by limiting dilution and large quantities of specific Mabs were produced in ascites. The antibodies were purified on protein A-Sepharose columns (Fermentech, Inc., Edinburgh, Scotland) and stored sterile in PBS at 4° C.
- the 34 anti-ErbB4 monoclonal antibodies produced by this method have a high affinity for the receptor, exhibit a diversity of isotypes and are directed to 18 distinct epitopes on the ErbB4 ECD.
- Isotypes of the antibodies were determined using a Mouse MonoAb ID/SP isotyping kit from Zymed (So. San Francisco, Calif.), following supplier's instructions.
- the specificity of the Mabs was determined in an ELISA measuring their ability to bind immobilized HER2, HER3 and ErbB4 extracellular domains (amino acids 1-645, 1-617 and 1-640 respectively). ECDs were coated on ELISA plates at a concentration of 1 ⁇ g/ml and incubated with biotinylated anti-ErbB4 Mabs. Bound Mabs were detected using streptavidin peroxidase (Sigma, St. Louis, Mo.) and the substrate OPD (Sigma, St. Louis, Mo.). As can be seen in Table 2, nearly all of the antibodies produced were highly specific for ErbB4 (indicated by a ‘4’ in the column labeled ‘Specificity’). Four of the antibodies showed some binding to HER3 (indicated by a ‘3’ in the column labeled ‘Specificity’).
- the ErbB4 epitope bound by each of the monoclonal antibodies was determined by competitive binding analysis (Fendly et al. Cancer Research 50:1550-1558 (1990)).
- the anti-ErbB4 Mabs were diluted to a concentration of 25 ⁇ g/ml in ELISA diluent and 50 ⁇ l was added to an ELISA plate precoated with gDErbB4 ECD as above. The plates were incubated at room temperature for 2 hours and washed with PBST. Dilutions of biotinylated anti-ErbB4 antibodies ranging from 1:1,000 to 1:10,000 were prepared and 50 ⁇ l was added to the assay plate.
- the plates were washed and 50 ⁇ l of a 1:5000 dilution of streptavidin peroxidase (Sigma) was added. The plates were developed using OPD (Sigma).
- the anti-ErbB4 Mabs were grouped into epitopes based on their ability to block binding of the others by 50% or greater in comparison to an irrelevant Mab control.
- the relative epitope mapping identified 17 distinct epitopes, identified in Table 2 as A-Q.
- the relative affinities of the anti-ErbB4 Mabs were determined according to the method described by Friguet et al. (J Immunol Methods. 77(2):305-19 (1985)).
- Various concentrations of the ErbB4 ECD (1.1 ⁇ 10 ⁇ 7 M to 1.08 ⁇ 10 ⁇ 10 M) were mixed with a constant concentration of anti-ErbB4 Mab (2.08 ⁇ 10 ⁇ 10 M) and incubated overnight at 4° C.
- the unbound Mabs were assayed by adding 100 ⁇ l of the reaction mixture in duplicate to microtiter plates (Nunc) previously coated with gDErbB4 ECD (100 ⁇ l/well at a concentration of 1 ⁇ g/ml in 0.05M carbonate buffer, pH 9.6 for 16 hr at 4° C.) and incubated for 1 hour at room temperature. After washing with PBST, the bound Mabs were detected by adding 100 ⁇ l well of a 1:5000 dilution of goat anti-mouse F(ab′) 2 peroxidase (Boehringer Mannheim) for one hour at room temperature. The plates were developed using o-phenylenediamine dihydrochloride substrate (OPD, Sigma, St. Louis, Mo.) and read on a platereader.
- OPD o-phenylenediamine dihydrochloride substrate
- the Mabs all showed high affinity binding, with Kd's ranging from 0.4 to 12 nm as presented in Table 3.
- ErbB4 ECD was added to tricine sample buffer, with and without BME, and applied to a 10-20% Novex tricine gel (Novex, San Diego, Calif.). The gel was run at 100V and electroblotted for 60 min. at 0.5 amp onto a PVDF, Immobilon P, membrane (Millipore, Bedford Mass.). The membrane was washed with PBST and blocked overnight with PBS/0.5% BSA/0.1% Tween 20, and incubated with 1 ⁇ g/ml monoclonal antibody for 1.5 hour at ambient temperature.
- the membrane was washed and incubated for an additional hour with a 1:10,000 dilution of rat anti-mouse IgG peroxidase (Boehringer Mannheim). The membrane was washed thoroughly and developed using the Amersham ECL chemiluminescence system (Amersham Life Science Inc., Arlington Heights, Ill.).
- Mabs identified as positive in Table 3 are those that are able to recognize low concentrations of non-reduced ErbB4 ECD.
- Mabs 4-1459, 4-1460, 4-1461, 4-1462, 4-1492 and 4-1497 demonstrated a high level of immunoreactivity and were able to bind non-reduced ErbB4 ECD at levels down to 0.3 ng.
- a K562 cell line that does not express any EGFR-like receptors was used to further characterize the anti-ErbB4 monoclonal antibodies.
- a K562 cell line transfected with ErbB4 (1E10.1H4) was produced and cultured in RPMI 1640 with 2 mM L-glutamine (GIBCO/BRL), 10% FBS (Hyclone) and 800 ⁇ g/ml Geneticin, G418 (Gibco/BRL). At least 20 hr prior to assay, 1E10.1H4 was stimulated with 10 nm phorbol-12-myristate, 13-acetate (PMA, Calbiochem, La Jolla Calif.). The anti-ErbB4 Mabs were evaluated for their ability to block the binding of HRG to this cell line.
- Quadruplicate samples containing 1.0 ⁇ 10 5 K562 ErbB4 cells resuspended in 200 ⁇ l of RPMI 1640 with 10 mM HEPES and 0.1% BSA (binding buffer) were incubated with 132 pM [ 125 I]HRG ⁇ 1 (177-244) , in the presence of 100 nM anti-ErbB4 Mabs, overnight on ice. Following incubation, the cells were collected using a Multiscreen filtration device (Millipore), and washed twice with 200 ⁇ l ice cold binding buffer. Cell associated counts were measured on a gamma counter. The percent binding was calculated against a control sample containing no Mab.
- the nonspecific binding was determined by incubation of a sample in the presence of 500 nM cold HRG ⁇ 1 (177-244) . Mabs were considered positive for HRG blocking if they blocked 90% or greater binding. As can be seen in Table 3, six of the nine anti-ErbB4 antibodies tested were able to inhibit 125 I-HRG binding at this level. Mab 4-1461 inhibited binding by 7% and 1459 exhibited no HRG blocking. The anti-ErbB4 Mab 4-1497 did not inhibit binding but rather appeared to enhance HRG binding by 26%.
- the cell lines MDA-MB-453, T47D and BT474 were plated into 24 well tissue culture plates at a density of 1 ⁇ 10 5 cells per well and allowed to adhere overnight.
- the anti-ErbB4 Mabs or anti-HER-2 control Mabs 2C4 and 4D5 were diluted to a concentration of 100 nM in Ham's F-12 plus Dulbecco's modified Eagle medium (1:1, v/v) with 10 mM HEPES and 0.1% BSA (binding buffer) and added in triplicate to the plates. Following a 30 minute incubation on ice, 1.5 ⁇ 10 5 counts of [ 125 I] HRG ⁇ 1 (144-277) was added. The plates were incubated on ice for four hours and washed twice with ice cold binding buffer. The cells were solubilized with 8 M urea/3 M acetic acid and cell associated counts were measured on a Wallac 1277 GammaMaster. The percent binding was calculated as above. The nonspecific binding was determined by incubation of a sample in the presence of 100 nM cold HRG ⁇ 1 (144-277) .
- the ErbB4 transfected K562 cell line (1E10.1H4) was grown in RPMI 1640 culture media to a density of 1 ⁇ 10 6 cells/ml. The cells were then changed to serum-free media without PMA (assay buffer) and incubated at 37° C. for 2-6 hours. The cells were washed with assay buffer and duplicate samples containing 2.5 ⁇ 10 5 cells in assay buffer with 0.1% BSA, were incubated with 25 ug of anti-ErbB4 Mabs or a control Mab for 30 min. at room temperature. Following incubation, one set of the samples was stimulated with 15 mM HRG ⁇ 1 (177-244) for 8 minutes at room temperature. The supernatants were removed and the cells lysed for 5 minutes at 100° C.
- ErbB4 transfected K562 cells (1E10.1H4) and the human breast carcinoma lines MDA-MB-453, T47D, and BT474 were pelleted and frozen in OCT compound (Miles Inc., Elkhart, Ind.).
- OCT compound Miles Inc., Elkhart, Ind.
- the frozen pellets were sectioned on a cryostat to a thickness of 5 microns, mounted on slides, fixed in cold acetone (4° C.) for 3-5 min. and air-dried. Endogenous peroxidase activity was quenched using a modification of the glucose oxidase method.
- the slides were rinsed with PBS and the cells were blocked for endogenous biotin activity using a Vector Biotin blocking kit (Vector, Burlingame, Calif.). Endogenous immunoglobulin binding sites were blocked with 10% normal horse serum (Vector). The cells were then incubated with 10 ⁇ g/ml anti-ErbB4 Mabs for one hour at RT, followed by a 30 minute incubation with a 1:200 dilution of biotinylated horse anti-mouse IgG (Vector). The slides were incubated with ABC Elite Reagent (Vector) for 30 min. and the ErbB4 receptors visualized using DAB (Pierce, Rockford, Ill.). Mayer's hematoxylin (Rowley Biomedical Institute, Rowley, Mass.) was used to counterstain the cells.
- Vector Vector Biotin blocking kit
- Endogenous immunoglobulin binding sites were blocked with 10% normal horse serum (Vector).
- the cells were then
- FACS analysis was done using the ErbB4 transfected K562 cell line and the mammary carcinoma lines MDA-MB-453, T47D and BT-474.
- Adherent cells were detached from tissue culture flasks using 10 mM EDTA in PBS, centrifuged at 1400 rpm for 5 min. and resuspended in PBS with 1% fetal bovine serum (FACS diluent). The cells were counted, adjusted to 10 7 cells/ml and 0.1 ml of cells was incubated with 10 ⁇ g/ml of each Mab in 100 ⁇ l FACS diluent for 30 min.
- the positive control anti-HER2 Mab 2-2C4 showed binding to the tumor lines in proportion to the level of HER-2 expression. These results indicate a level of ErbB4 expression on the MDA-MB-453, T47D and BT-474 cells which is below the detection limit of this assay.
- FIG. 7 shows a displacement curve of 125 IHRG binding to a ErbB4 immunoadhesin captured on breakapart modules using the indicated concentrations of the anti-ErbB4 Mabs 4-1440, 4-1460, and 4-1464.
- Maxisorp breakapart modules (Nunc) were coated with 100 ⁇ l of a 1:200 dilution of goat anti-human Ig (Boehringer Mannheim) in 50 mM carbonate buffer pH 9.6 overnight at 4° C. The plates were washed with PBST, blocked with ELISA diluent and incubated with 100 ⁇ l of 200 ng/ml ErbB4 immunoadhesin for 2 hr at ambient temperature.
- the plates were washed and 50 ⁇ l of diluted Mabs (0.1 to 100 nM final) and 50 ⁇ l of 125 I-HRG ⁇ 1 (177-244) diluted to give a final concentration of 132 pM were added to the plate. Following a 1.5 hr incubation at ambient temperature, the plates were washed and the amount of 125 IHRG bound to the receptor was determined by counting the wells on a Wallac 1277 GammaMaster.
- FIG. 7 demonstrates that the Mabs inhibited heregulin binding to the immunoadhesin in a dose dependent manner with ED 50 values ranging from 0.7 to 1.1 nM. This indicates that the Mabs posses a high degree of blocking ability.
- hybridomas have been deposited with the American Type Culture Collection, 10801 University Boulevard., Manassas, Va. 20110-2209, USA (ATCC): Hybridoma ATCC Dep. No. Deposit Date HER4.10H1.1A1 PTA-2828 Dec. 19, 2000 HER4.1C6.A11 PTA-2829 Dec. 19, 2000 HER4.3B9.2C9 PTA-2826 Dec. 19, 2000 HER4.1A6.5B3 PTA-2827 Dec. 19, 2000 HER4.8B1.2H2 PTA-2825 Dec. 19, 2000
- Each of the deposited hybridomas produces one of the anti-ErbB4 monoclonal antibodies identified in Table 2.
- HER4.10H1.1A1 produces mAb 4-1464
- HER4.1C6.A11 produces mAb 4-1440
- HER4.3B9.2C9 produces mAb 4-1460
- HER4.1A6.5B3 produces mAb 4-1492
- HER4.8B1.2H2 produces mAb 4-1473
- the deposit of the hybridomas with the ATCC was made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture of the deposit for 30 years from the date of deposit.
- the deposit will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC, which assures permanent and unrestricted availability of the progeny of the culture of the deposit to the public upon issuance of the pertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures availability of the progeny to one determined by the U.S. Commissioner of Patents and Trademarks to be entitled thereto according to 35 U.S.C. ⁇ 122 and the Commissioner's rules pursuant thereto (including 37 C.F.R. ⁇ 1.14 with particular reference to 886 OG 638).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Urology & Nephrology (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- General Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Pharmacology & Pharmacy (AREA)
- Oncology (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Tropical Medicine & Parasitology (AREA)
- Cardiology (AREA)
- Biotechnology (AREA)
- Heart & Thoracic Surgery (AREA)
- Microbiology (AREA)
- Zoology (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Neurology (AREA)
Abstract
The present invention concerns methods and means for controlling excessive proliferation and/or migration of smooth muscle cells, and in particular for treating stenosis, by using antagonists of a native ErbB4 receptor. The invention further concerns a method for the identification of ErbB4 agonists and antagonists capable of inhibiting or enhancing the proliferation or migration of smooth muscle cells.
Description
- This application claims priority under 35 U.S.C. § 119(e) of U.S. provisional application Ser. No. 60/229,679 filed on Sep. 1, 2000, and 60/265,516 filed on Jan. 31, 2001, the entire disclosures of which are hereby expressly incorporated by reference.
- 1. Field of the Invention
- The present invention concerns methods and means for controlling excessive proliferation and/or migration of smooth muscle cells, and in particular for treating stenosis, by using antagonists of a native ErbB4 receptor. The invention further concerns a method for the identification of ErbB4 agonists and antagonists capable of inhibiting or enhancing the proliferation or migration of smooth muscle cells.
- 2. Description of the Related Art
- 1. ErbB Receptor Tyrosine Kinases
- Transduction of signals that regulate cell growth and differentiation is regulated in part by phosphorylation of various cellular proteins. Protein tyrosine kinases are enzymes that catalyze this process. Receptor protein tyrosine kinases are believed to direct cellular growth via ligand-stimulated tyrosine phosphorylation of intracellular substrates.
- HER4/Erb4 is a receptor protein tyrosine kinase belonging to the ErbB family. Increased ErbB4 expression closely correlates with certain carcinomas of epithelial origin, including breast adenocarcinomas (Plowman et al., Proc. Natl. Acad. Sci. USA 90:1746-1750 [1993]; Plowman et al., Nature 366:473-475 [1993]). Diagnostic methods for detection of human neoplastic conditions (especially breast cancers) which evaluate ErbB4 expression are described in EP Pat Appln No. 599,274.
- Other members of the ErbB family of receptor tyrosine kinases include: epidermal growth factor receptor (EGFR), ErbB2 (HER2/neu), and ErbB3 (HER3). The erbB1 gene encodes the 170 kDa epidermal growth factor receptor (EGFR) that has been causally implicated in human malignancy. In particular, increased expression of this gene has been observed in more aggressive carcinomas of the breast, bladder, lung and stomach (Modjtahedi, H. and Dean, C. (1994) Int. J. Oncol. 4:277-296). HER4 acts, in the absence of HER2, as a mediator of antiproliferative and differentiative response in human breast cancer cell lines. (Sartor et al., Mol. Cell Biol. 21:4265-75 (2001)).
- The neu gene (also called erbB2 and HER2) encodes a 185 kDa receptor protein tyrosine kinase that was originally identified as the product of the transforming gene from neuroblastomas of chemically treated rats. Amplification and/or overexpression of the human HER2 gene correlates with a poor prognosis in breast and ovarian cancers (Slamon, D. J. et al., Science 235:177-182 (1987); Slamon et al., Science 244:707-712 (1989); and U.S. Pat. No. 4,968,603). Overexpression of HER2 (frequently but not uniformly due to gene amplification) has also been observed in other carcinomas including carcinomas of the stomach, endometrium, salivary gland, lung, kidney, colon, thyroid, pancreas and bladder.
- A further related gene, called erbB3 or HER3, has been described. See U.S. Pat. No. 5,183,884; Kraus et al., Proc. Natl. Acad. Sci. USA 86:9193-9197 (1989); EP Pat Appln No 444,961A1; and Kraus et al., Proc. Natl. Acad. Sci. USA 90:2900-2904 (1993). Kraus et al. (1989) discovered that markedly elevated levels of erbB3 mRNA were present in certain human mammary tumor cell lines indicating that erbB3, like erbB1 and erbB2, may play a role in human malignancies. They also showed that EGF-dependent activation of the ErbB3 catalytic domain of a chimeric EGFR/ErbB3 receptor resulted in a proliferative response in transfected NIH-3T3 cells. Furthermore, these researchers demonstrated that some human mammary tumor cell lines display a significant elevation of steady-state ErbB3 tyrosine phosphorylation further indicating that this receptor may play a role in human malignancies. The role of erbB3 in cancer has been explored by others. It has been found to be overexpressed in breast (Lemoine et al., Br. J. Cancer 66:1116-1121 (1992)), gastrointestinal (Poller et al., J. Pathol. 168:275-280 (1992), Rajkumer et al., J. Pathol. 170:271-278 (1993), and Sanidas et al., Int. J. Cancer 54:935-940 (1993)), and pancreatic cancers (Lemoine et al., J. Pathol. 168:269-273 (1992), and Friess et al., Clinical Cancer Research 1:1413-1420 (1995)). ErbB3 is unique among the ErbB receptor family in that it possesses little or no intrinsic tyrosine kinase activity (Guy et al., Proc. Natl. Acad. Sci. USA 91:8132-8136 (1994) and Kim et al. J. Biol. Chem. 269:24747-55 (1994)).
- The ErbB receptors are generally found in various combinations in cells and heterodimerization is thought to increase the diversity of cellular responses to a variety of ErbB ligands (Earp et al. Breast Cancer Research and Treatment 35: 115-132 (1995)). EGFR is bound by six different ligands; epidermal growth factor (EGF), transforming growth factor alpha (TGF-α), amphiregulin, heparin binding epidermal growth factor (HB-EGF), β-cellulin and epiregulin (Groenen et al. Growth Factors 11:235-257 (1994)). A family of heregulin proteins resulting from alternative splicing of a single gene are ligands for ErbB3 and ErbB4. The heregulin family includes α, β and γ heregulins (Holmes et al., Science, 256:1205-1210 (1992); U.S. Pat. No. 5,641,869; and Schaefer et al. Oncogene 15:1385-1394 (1997)); neu differentiation factors (NDFs), glial growth factors (GGFs); acetylcholine receptor inducing activity (ARIA); and sensory and motor neuron derived factor (SMDF). For a review, see Groenen et al. Growth Factors 11:235-257 (1994); Lemke, G. Molec. & Cell. Neurosci. 7:247-262 (1996) and Lee et al. Pharm. Rev. 47:51-85 (1995). Recently three additional ErbB ligands were identified; neuregulin-2 (NRG-2) which is reported to bind either ErbB3 or ErbB4 (Chang et al. Nature 387 509-512 (1997); and Carraway et al Nature 387:512-516 (1997)); neuregulin-3 which binds ErbB4 (Zhang et al. PNAS (USA) 94(18):9562-7 (1997)); and neuregulin-4 which binds ErbB4 (Harari et al. Oncogene 18:2681-89 (1999)). HB-EGF, β-cellulin and epiregulin also bind to ErbB4.
- While EGF and TGFα do not bind ErbB2, EGF stimulates EGFR and ErbB2 to form a heterodimer, which activates EGFR and results in transphosphorylation of ErbB2 in the heterodimer. Dimerization and/or transphosphorylation appear to activate the ErbB2 tyrosine kinase. See Earp et al., supra. Likewise, when ErbB3 is co-expressed with ErbB2, an active signaling complex is formed and antibodies directed against ErbB2 are capable of disrupting this complex (Sliwkowski et al., J. Biol. Chem., 269(20):14661-14665 (1994)). Additionally, the affinity of ErbB3 for heregulin (HRG) is increased to a higher affinity state when co-expressed with ErbB2. See also, Levi et al., Journal of Neuroscience 15: 1329-1340 (1995); Morrissey et al., Proc. Natl. Acad. Sci. USA 92: 1431-1435 (1995); and Lewis et al., Cancer Res., 56:1457-1465 (1996) with respect to the ErbB2-ErbB3 protein complex. ErbB4, like ErbB3, forms an active signaling complex with ErbB2 (Carraway and Cantley, Cell 78:5-8 (1994)).
- Because of the physiological importance, members of the ErbB family of receptor tyrosine kinases have often been targeted for therapeutic development. For example, Hudziak et al., Mol. Cell. Biol. 9(3):1165-1172 (1989) describe the generation of a panel of anti-ErbB2 antibodies one of which, called 4D5, inhibited cellular proliferation by 56%. A recombinant humanized version of the murine anti-ErbB2 antibody 4D5 (huMAb4D5-8, rhuMAb HER2 or HERCEPTIN®; U.S. Pat. No. 5,821,337) is clinically active in patients with ErbB2-overexpressing metastatic breast cancers that have received extensive prior anti-cancer therapy (Baselga et al., J. Clin. Oncol. 14:737-744 (1996)). HERCEPTIN® received marketing approval from the Food and Drug Administration Sep. 25, 1998 for the treatment of patients with metastatic breast cancer whose tumors overexpress the ErbB2/HER2 protein. Since HER2 is also overexpressed in other cancers, in addition to breast cancer, HERCEPTIN® holds a great potential in the treatment of such other cancers as well.
- 2. Smooth Muscle Cell Proliferation
- Smooth muscle cells are very important structural and functional components of many hollow passages in the body, including blood vessels, gastrointestinal tract, airway passage (trachea and bronchi in lungs), urinary tract system (bladder and ureters) etc. They are responsible for elasticity that is so crucially required for normal functioning of these organs. They respond to a variety of physiological stimuli by constriction or dilation as needed, for example, for regulating the flow of fluids carried by them. They respond not only to chemical stimuli, such as growth factors and cytokines, but also to physical stimuli, such as pressure and stretch. Excessive proliferation of smooth muscle cells results in thickening of the wall and narrowing the lumen of the organs known as “stenosis” in a variety of disorders.
- A number of growth factors and cytokines are implicated in the proliferation of smooth muscle cells. One category of such important molecules are EGF related ligands. For example, smooth muscle cells from a variety of such organs have been demonstrated to possess EGF receptors, and some of them even synthesize and secrete EGF ligands such as HB-EGF, thus setting up autocrine loop. Various EGF ligands act as potent mitogens and stimulate proliferation of smooth muscle cells often resulting in thickening of the wall and ultimately stenosis. For example, excessive proliferation of vascular smooth muscle cells (VSMC) is involved in pathology of vascular stenosis, restenosis resulting from angioplasy or surgery or stent implants, atherosclerosis, transplant atherosclerosis and hypertension (reviewed in Casterella and Teirstein, Cardiol. Rev. 7: 219-231 [1999]; Andres, Int. J. Mol. Med. 2: 81-89 [1998]; and Rosanio et al., Thromb. Haemost. 82 [suppl 1]: 164-170 [1999]). The thickening of blood vessels increases resistance to blood flow and ultimately leads to hypertension. Moreover, decreased blood supply to the tissue may also cause necrosis and induce inflammatory response leading to severe damage. For example, myocardial infarction occurs as a result of lack of oxygen and local death of heart muscle tissues.
- Infantile hypertrophic pyloric stenosis (IHPS), which causes functional obstruction of the pyloric canal also involves hypertrophy and hyperplasia of the pyloric smooth muscle cells (Oue and Puri, Pediatr. Res. 45: 853-857 [1999]). Furthermore, EGF, EGF receptor and HB-EGF are implicated in pathogenesis of pyloric stenosis (Shima et al., Pediatr. Res. 47: 201-207 [2000]).
- Similarly, the urinary bladder wall thickening that occurs in response to obstructive syndromes affecting the lower urinary tract involves proliferation of urinary bladder smooth muscle cells. A membrane-bound precursor form of HB-EGF is expressed in urinary bladder smooth muscle cells and HB-EGF is a potent mitogen for bladder SMC proliferation (Freeman et al., J. Clin. Invest. 99: 1028-1036 [1997]; Kaefer et al., J. Urol. 163: 580-584 [2000]; Borer et al., Lab Invest. 79: 1335-1345 [1999]).
- The obstructive airway diseases are yet another group of diseases with underlying pathology involving smooth muscle cell proliferation. One example of this group is asthma which manifests in airway inflammation and bronchoconstriction. EGF is implicated in the pathological proliferation of airway SMCs in obstructive airway diseases (Cerutis et al., Am. J. Physiol. 273: L10-15 [1997]; Cohen et al., Am. J. Respir. Cell. Mol. Biol. 16: 85-90 [1997]).
- The instant invention discloses the use of ErbB4 receptor antagonists for controlling excessive migration and/or proliferation or smooth muscle cells and, in particular, for the treatment of stenosis.
- In one aspect, the invention concerns a method for controlling excessive proliferation or migration of smooth muscle cells by treating the smooth muscle cells with an effective amount of an antagonist of a native ErbB4 receptor. The control is prevention or inhibition, including total inhibition, of excessive proliferation or migration of smooth muscle cells. In one embodiment the smooth muscle cells are urinary bladder smooth muscle cells, and in another embodiment they are the smooth muscle cells of an airway passage.
- The excessive proliferation or migration of smooth muscle cells such as vascular smooth muscle cells may result in stenosis including vascular stenosis and restenosis. In one embodiment the smooth muscle cells are human. The stenosis may be further characterized by excessive proliferation or migration of endothelial cells.
- In one embodiment the ErbB4 receptor antagonist is an immunoadhesin. In another embodiment the ErbB4 receptor antagonist is an antibody, such as a neutralizing antibody against a native ErbB4 receptor.
- In another aspect, the invention concerns a method for treating stenosis in a mammalian patient, including a human, comprising administering to the patient an effective amount of an antagonist of a native mammalian ErbB4 receptor. The treatment includes prevention of stenosis. The stenosis may be vascular stenosis including restenosis. The antagonist may be administered as an injection or infusion. The treatment may also be used to reduce hypertension associated with the stenosis. The stenosis may be vascular stenosis including restenosis, pyloric stenosis, thickening of the urinary bladder wall or part of an obstructive airway disease.
- In one embodiment the antagonist is an immunoadhesin, which may comprise the extracellular region of a native human ErbB4 receptor. In another embodiment the antagonist is an antibody, such as a neutralizing antibody against a native human ErbB4 receptor.
- In a further aspect, the invention concerns a method for treating stenosis in a mammalian patient, such as a human, comprising introducing into a cell of the patient a nucleic acid encoding an antagonist of an ErbB4 receptor. The nucleic acid may be introduced in vivo or ex vivo, and with the aid of a vector such as retroviral vector or a lipid-based delivery system. The method of the present invention is particularly useful for the treatment (including prevention) of vascular stenosis and restenosis.
- The antagonist may be an immunoadhesin. The antagonist may also be an antibody, such as a neutralizing antibody against a native human ErbB4 receptor.
- In another aspect, the invention concern a method for treating hypertension associated with vascular stenosis in a mammalian patient, comprising administering to the patient an effective amount of an antagonist of a native ErbB4 receptor. The antagonist may be a small molecule.
- In a still further aspect, the invention concerns a pharmaceutical composition for the treatment of stenosis in a mammalian patient comprising an effective amount of an antagonist of a native mammalian ErbB4 receptor, in admixture with a pharmaceutically acceptable carrier.
- In all aspects, preferred ErbB4 antagonists include immunoadhesins, preferably comprising a native human ErbB4 receptor extracellular domain sequence fused to an immunoglobulin constant region sequence. The immunoglobulin sequence preferably is that of a heavy chain constant region of an IgG1, IgG2 or IgG3 immunoglobulin and may additionally comprise an immunoglobulin light chain sequence covalently attached to the fusion molecule comprising the immunoglobulin heavy chain constant region.
- Another preferred class of ErbB4 antagonists comprises neutralizing antibodies specifically binding a native ErbB4 receptor. The antibodies preferably are human or humanized. In one embodiment the antibodies bind essentially the same epitope as an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825). The antibodies may also have complementarity determining region (CDR) residues from an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B 1.2H2 (ATCC Accession Number PTA-2825).
- The smooth muscle cells may, for example, be pyloric or urinary bladder smooth muscle cells, or smooth muscle cells of an airway passage. Preferably, the smooth muscle cells are vascular smooth muscle cells.
- In a still further aspect, the invention concerns a method for identifying a molecule that inhibits or enhances the proliferation or migration of smooth muscle cells, comprising the steps of: (a) contacting a polypeptide comprising an amino acid sequence having at least 85% sequence identity with the amino acid sequence of the extracellular domain of a native ErbB4 receptor and retaining the ability to control excessive proliferation or migration of smooth muscle cells, with a candidate molecule; and (b) determining whether the candidate molecule inhibits or enhances the ability of the polypeptide to control excessive proliferation or migration of smooth muscle cells. The polypeptide may comprise the extracellular domain of a native ErbB4 receptor. The polypeptide is an immunoadhesin in one embodiment. In a particular embodiment, the molecule enhances the ability of the polypeptide to control excessive proliferation or migration of smooth muscle cells, and is an antibody or a small molecule.
- In a yet further aspect the invention concerns an antibody that binds essentially the same epitope of ErbB4 as an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825). In addition to the methods set forth above and throughout the disclosure, these antibodies are believed to be useful in the treatment of various cancers, including breast cancer.
- In a still further aspect the invention concerns an antibody that has complementarity determining region (CDR) residues from an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).
- In a further aspect the invention concerns an antibody selected from the group consisting of an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).
- The invention also concerns an antibody that binds essentially the same epitope of ErbB4 bound by an antibody selected from the group consisting of anti-ErbB4 monoclonal antibodies 4-1440, 4-1460, 4-1473, 4-1492 and 4-1464.
- Further, the invention concerns an antibody that has complementarity determining region (CDR) residues from an antibody selected from the group consisting of anti-ErbB4 monoclonal antibodies 4-1440, 4-1460, 4-1473, 4-1492 and 4-1464.
- The invention also concerns an antibody that binds ErbB4 with high affinity. This antibody preferably binds to ErbB4 with a Kd of less than 100 nM, more preferably with a Kd of less than 50 nM, even more preferably with a Kd of less than 25 nM and most preferably with a Kd less than 10 nM. In one embodiment this antibody is a human antibody and in another embodiment it is a humanized antibody. In yet another embodiment the antibody is an antibody fragment.
- The invention further concerns an antibody which is capable of binding to both ErbB4 and ErbB3. In one embodiment the antibody is capable of binding ErbB4 with high affinity and in another embodiment the antibody binds both ErbB4 and ErbB3 with high affinity.
- In another aspect the invention concerns an antibody which binds to ErbB4 and reduces heregulin binding thereto. This antibody may bind ErbB4 with high affinity.
- Finally, the invention concerns an antibody which binds to ErbB4 and reduces heregulin-induced tyrosine phosphorylation thereof. This antibody may also bind ErbB4 with high affinity.
-
FIG. 1 shows the nucleotide sequence of human ErbB4 (SEQ ID NO: 1). -
FIG. 2 shows the deduced amino acid sequence of human ErbB4 (SEQ ID NO: 2). -
FIG. 3 shows the nucleotide sequence of an ErbB4-IgG immunoadhesin (SEQ ID NO: 3). -
FIG. 4 shows the amino acid sequence of the ErbB4 extracellular domain (ECD), which comprises amino acids 26 through 640 (SEQ ID NO: 4) of the ErbB4 amino acid sequence presented inFIG. 2 (SEQ ID NO: 2). -
FIG. 5 shows the effect of ErbB4-IgG immunoadhesin on PDGF-stimulated proliferation of human aortic smooth muscle cells. -
FIG. 6 shows the effect of ErbB4-IgG immunoadhesin on the chemotactic response of human aortic smooth muscle cells to thrombin. -
FIG. 7 shows the inhibition of heregulin binding to HER4 immunoadhesin by anti-HER4 monoclonal antibodies. - A. Definitions
- Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. See, e.g. Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, N.Y. 1994); Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Springs Harbor Press (Cold Springs Harbor, N.Y. 1989). For purposes of the present invention, the following terms are defined below.
- Unless indicated otherwise, the term “ErbB” when used herein refers to any one or more of the mammalian ErbB receptors (i.e. ErbB1 or epidermal growth factor (EGF) receptor, ErbB2 or HER2 receptor; ErbB3 or HER3 receptor; ErbB4 or HER4 receptor; and any other member(s) of this class I tyrosine kinase family to be identified in the future) and “erbB” refers to the mammalian erbB genes encoding these receptors.
- The terms “ErbB4” and “HER4” are used interchangeably and refer to a native sequence ErbB4 receptor polypeptide as disclosed, for example, in European Patent Application No. (EP) 599,274; Plowman et al., Proc. Natl. Acad. Sci. USA, 90:1746-1750 (1993); and Plowman et al., Nature, 366:473-475 (1993), and functional derivatives, including amino acid sequence variants thereof
- A “native” or “native sequence” ErbB4 or HER4 receptor has the amino acid sequence of a naturally occurring ErbB4 receptor in any mammalian (including humans) species, irrespective of its mode of preparation. Accordingly, a native or native sequence ErbB4 receptor may be isolated from nature, produced by techniques of recombinant DNA technology, chemically synthesized, or produced by any combinations of these or similar methods. Native ErbB4 receptors specifically include polypeptides having the amino acid sequence of naturally occurring allelic variants, isoforms or spliced variants of ErbB4, known in the art or hereinafter discovered. Native sequence ErbB4 receptors are disclosed, for example, in EP 599,274, supra, and in the two Plowman et al. papers, supra. Elenius et al., J. Biol. Chem. 272:26761-26768 (1997) report the identification of two alternatively spliced isoforms of ErbB4 both in mouse and human tissues, that differ by the insertion of either 23 (HER4 JM-a) or 13 (HER4 JM-b) alternative amino acids in the extracellular juxtamembrane (JM) region. Elenius et al., Oncogene 18:2607-2615 (1999) report the identification and characterization of another naturally occurring isoform of ErbB4 (designated as ErbB4 CYT-2), with a deletion of the cytoplasmic domain sequence required for the activation of the P13-K intracellular signal transduction pathway. HER4 isoforms are also disclosed in WO 99/19488. A nucleotide sequence encoding ErbB4 is presented in
FIG. 1 (SEQ ID NO: 1) and the corresponding deduced amino acid sequence is depicted inFIG. 2 (SEQ ID NO: 2). - The term “ErbB4 extracellular domain” or “ErbB4 ECD” refers to a soluble fragment of ErbB4 comprising the amino acids located between the signal sequence and the first predicted transmembrane region. In one embodiment, the “ErbB4 ECD” is a polypeptide comprising amino acids 26-640 (SEQ ID NO: 4) of the human ErbB4 sequence presented in
FIG. 2 (SEQ ID NO: 2). - The term “mammal” is used herein to refer to any animal classified as a mammal, including, without limitation, humans, domestic and farm animals, and zoo, sports, or pet animals, such as sheep, dogs, horses, cats, cows, etc. Preferably, the mammal herein is human.
- “Functional derivatives” include amino acid sequence variants, and covalent derivatives of the native polypeptides as long as they retain a qualitative biological activity of the corresponding native polypeptide. Amino acid sequence variants generally differ from a native sequence in the substitution, deletion and/or insertion of one or more amino acids anywhere within a native amino acid sequence. Deletional variants include fragments of the native polypeptides, and variants having N- and/or C-terminal truncations. Ordinarily, amino acid sequence variants will possess at least about 70% homology, preferably at least about 80%, more preferably at least about 90% homology with a native polypeptide.
- “Homology” is defined as the percentage of residues in the amino acid sequence variant that are identical after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology. Methods and computer programs for the alignment are well known in the art. One such computer program is “Align 2”, authored by Genentech, Inc., which was filed with user documentation in the United States Copyright Office, Washington, D.C. 20559, on Dec. 10, 1991.
- An ErbB “antagonist” is a molecule, which prevents or interferes with an ErbB effector function, e.g. a molecule, which prevents or interferes with binding and/or activation of a native sequence ErbB receptor by a ligand, and/or downstream pathways used by the native sequence ErbB receptor. Such molecules can be screened, for example, based upon their ability to competitively inhibit ErbB receptor activation by ligand in the tyrosine phosphorylation assay. Similarly, an antagonist of a native sequence ErbB4 (HER4) receptor is a molecule which prevents or interferes with an ErbB4 effector function, e.g. a molecule which prevents or interferes with binding and/or activation of a native sequence ErbB4 receptor by a ligand, and/or downstream pathways used by the ErbB4 receptor. Such molecules can be screened, for example, based upon their ability to competitively inhibit ErbB4 receptor activation by ligand in the tyrosine phosphorylation assay. Examples of ErbB4 antagonists include, without limitation, soluble ErbB4 receptors (such as extracellular domains (ECD) of native sequence and variant ErbB4 receptors), neutralizing antibodies against native sequence ErbB4 receptors, neutralizing antibodies to ligands of native sequence ErbB4 receptors (e.g. anti-HB-EGF antibodies), ErbB4-Ig immunoadhesins (including chimeric heteroadhesins) and small molecules.
- By “ErbB4 ligand” is meant a polypeptide which binds to and/or activates an ErbB4 receptor. ErbB4 ligands include betacellulin, epiregulin, HB-EGF, NRG-2, NRG-3 and heregulins.
- In the methods of the present invention, the term “control” and grammatical variants thereof, are used to refer to the prevention, partial or complete inhibition, reduction, delay or slowing down of an unwanted event, e.g. physiological condition, such as the excessive proliferation and/or migration of smooth muscle cells and/or other cell types, e.g. endothelial cells.
- The term “excessive proliferation and/or migration” means proliferation and/or migration beyond normal levels that results or is likely to result, if untreated, in the development of an unwanted physiological condition or disease, such as, for example, stenosis, including vascular stenosis, restenosis, and pyloric stenosis; urinary bladder wall thickening, and obstructive airway disease.
- “Treatment” refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in which the disorder is to be prevented. For purposes of this invention, beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. “Treatment” can also mean prolonging survival as compared to expected survival if not receiving treatment. Those in need of treatment include those already with the condition or disorder as well as those prone to have the condition or disorder or those in which the condition or disorder is to be prevented.
- The term “isolated” molecule is defined broadly as a molecule that is identified and separated from at least one contaminant molecule with which it is ordinarily associated in the natural source of the molecule. Preferably, the isolated molecule is free of association with all components with which it is naturally associated.
- The term “immunoadhesin” as used herein refers to antibody-like molecules that combine the binding domain of a protein such as an extracellular domain (the adhesin portion) of a cell-surface receptor with the effector functions of an immunoglobulin constant domain. The term “immunoadhesin” specifically includes native or variant ErbB4 receptor sequences. The nucleic acid sequence of an ErbB4-IgG immunoadhesin is presented in
FIG. 3 (SEQ ID NO: 3). Immunoadhesins can possess many of the valuable chemical and biological properties of human antibodies. Since immunoadhesins can be constructed from a human protein sequence with a desired specificity linked to an appropriate human immunoglobulin hinge and constant domain (Fc) sequence, the binding specificity of interest can be achieved using entirely human components. Such immunoadhesins are minimally immunogenic to the patient, and are safe for chronic or repeated use. The term “isolated immunoadhesin” refers to an immunoadhesin that has been purified from a source or has been prepared by recombinant or synthetic methods and is sufficiently free of other peptides or proteins. - Immunoadhesins reported in the literature include fusions of the T cell receptor (Gascoigne et al., Proc. Natl. Acad. Sci. USA 84:2936-2940 (1987)); CD4 (Capon et al., Nature 337:525-531 (1989); Traunecker et al., Nature 339:68-70 (1989); Zettmeissl et al., DNA Cell Biol. USA 9:347-353 (1990); and Byrn et al., Nature 344:667-670 (1990)); L-selectin or homing receptor (Watson et al., J. Cell. Biol. 110:2221-2229 (1990); and Watson et al., Nature 349:164-167 (1991)); CD44 (Aruffo et al., Cell 61:1303-1313 (1990)); CD28 and B7 (Linsley et al., J. Exp. Med. 173:721-730 (1991)); CTLA-4 (Lisley et al., J. Exp. Med. 174:561-569 (1991)); CD22 (Stamenkovic et al., Cell 66:1133-1144 (1991)); TNF receptor (Ashkenazi et al., Proc. Natl. Acad. Sci. USA 88:10535-10539 (1991); Lesslauer et al., Eur. J. Immunol. 27:2883-2886 (1991); and Peppel et al., J. Exp. Med. 174:1483-1489 (1991)); NP receptors (Bennett et al., J. Biol. Chem. 266:23060-23067 (1991)); inteferon γ receptor (Kurschner et al., J. Biol. Chem. 267:9354-9360 (1992)); 4-1BB (Chalupny et al., PNAS USA 89:10360-10364 (1992)) and IgE receptor α (Ridgway and Gorman, J. Cell. Biol. 115, Abstract No. 1448 (1991)).
- Examples of homomultimeric immunoadhesins which have been described for therapeutic use include the CD4-IgG immunoadhesin for blocking the binding of HIV to cell-surface CD4. Data obtained from Phase I clinical trials, in which CD4-IgG was administered to pregnant women just before delivery, suggests that this immunoadhesin may be useful in the prevention of maternal-fetal transfer of HIV (Ashkenazi et al., Intern. Rev. Immunol. 10:219-227 (1993). An immunoadhesin which binds tumor necrosis factor (TNF) has also been developed. TNF is a proinflammatory cytokine which has been shown to be a major mediator of septic shock. Based on a mouse model of septic shock, a TNF receptor immunoadhesin has shown promise as a candidate for clinical use in treating septic shock (Ashkenazi, A. et al. (1991) PNAS USA 88:10535-10539). ENBREL® (etanercept), an immunoadhesin comprising a TNF receptor sequence fused to an IgG Fc region, was approved by the U.S. Food and Drug Administration (FDA), on Nov. 2, 1998, for the treatment of rheumatoid arthritis. The new expanded use of ENBREL® in the treatment of rheumatoid arthritis has recently been approved by FDA on Jun. 6, 2000. For recent information on TNF blockers, including ENBREL®, see Lovell et al., N. Engl. J. Med. 342: 763-169 (2000), and accompanying editorial on p810-811; and Weinblatt et al., N. Engl. J. Med. 340: 253-259 (1999); reviewed in Maini and Taylor, Annu. Rev. Med. 51: 207-229 (2000). Immunoadhesins also have non-therapeutic uses. For example, the L-selectin receptor immunoadhesin was used as a reagent for histochemical staining of peripheral lymph node high endothelial venules (HEV). This reagent was also used to isolate and characterize the L-selectin ligand (Ashkenazi et al., supra).
- If the two arms of the immunoadhesin structure have different specificities, the immunoadhesin is called a “bispecific immunoadhesin” by analogy to bispecific antibodies. Dietsch et al., J. Immunol. Methods 162:123 (1993) describe such a bispecific immunoadhesin combining the extracellular domains of the adhesion molecules, E-selectin and P-selectin, each of which selectins is expressed in a different cell type in nature. Binding studies indicated that the bispecific immunoglobulin fusion protein so formed had an enhanced ability to bind to a myeloid cell line compared to the monospecific immunoadhesins from which it was derived.
- The term “heteroadhesin” is used interchangeably with the expression “chimeric heteromultimer adhesin” and refers to a complex of chimeric molecules (amino acid sequences) in which each chimeric molecule combines a biologically active portion, such as the extracellular domain of each of the heteromultimeric receptor monomers, with a multimerization domain. The “multimerization domain” promotes stable interaction of the chimeric molecules within the heteromultimer complex. The multimerization domains may interact via an immunoglobulin sequence, leucine zipper, a hydrophobic region, a hydrophilic region, or a free thiol which forms an intermolecular disulfide bond between the chimeric molecules of the chimeric heteromultimer. The multimerization domain may comprise an immunoglobulin constant region. In addition a multimerization region may be engineered such that steric interactions not only promote stable interaction, but further promote the formation of heterodimers over homodimers from a mixture of monomers. “Protuberances” are constructed by replacing small amino acid side chains from the interface of the first polypeptide with larger side chains (e.g. tyrosine or tryptophan). Compensatory “cavities” of identical or similar size to the protuberances are optionally created on the interface of the second polypeptide by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). The immunoglobulin sequence preferably, but not necessarily, is an immunoglobulin constant domain. The immunoglobulin moiety in the chimeras of the present invention may be obtained from IgG1, IgG2, IgG3 or IgG4 subtypes, IgA, IgE, IgD or IgM, but preferably IgG1 or IgG3.
- The term “epitope tagged” when used herein refers to a chimeric polypeptide comprising the entire chimeric heteroadhesin, or a fragment thereof, fused to a “tag polypeptide”. The tag polypeptide has enough residues to provide an epitope against which an antibody can be made, yet is short enough such that it does not interfere with activity of the chimeric heteroadhesin. The tag polypeptide preferably is fairly unique so that the antibody thereagainst does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least 6 amino acid residues and usually between about 8-50 amino acid residues (preferably between about 9-30 residues). An embodiment of the invention encompasses a chimeric heteroadhesin linked to an epitope tag, which tag is used to detect the adhesin in a sample or recover the adhesin from a sample.
- “Isolated/highly purified/substantially homogenous immunoadhesin”, “isolated/highly purified/substantially homogenous heteroadhesin”, and “isolated/highly purified/substantially homogenous chimeric heteromultimer adhesin”, are used interchangeably and mean the adhesin that has been purified from a source or has been prepared by recombinant or synthetic methods and is sufficiently free of other peptides or proteins to homogeneity by chromatographic techniques or other purification techniques, such as SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Homogeneity here means less than about 5% contamination with other source proteins. The ErbB2/4-IgG chimeric heteroadhesins of the invention bind with sufficiently greater affinity relative to the homodimers that the use of a mixture of homodimers and heterodimers is also considered a useful embodiment of the invention. The terms “chimeric heteromultimer adhesin”, “chimeric heteroadhesin” and “CHA” are used interchangeably herein.
- The term “antibody” is used in the broadest sense and specifically covers antibodies that recognize native ErbB4 receptors. An antibody that shows “high affinity” binding has a Kd of less than about 100 nM, preferably less than about 50, more preferably less than about 25, most preferably less than about 10.
- The term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.
- The monoclonal antibodies herein include hybrid and recombinant antibodies produced by splicing a variable (including hypervariable) domain of an anti-chimeric heteroadhesin antibody with a constant domain (e.g. “humanized” antibodies), or a light chain with a heavy chain, or a chain from one species with a chain from another species, or fusions with heterologous proteins, regardless of species of origin or immunoglobulin class or subclass designation, as well as antibody fragments (e.g., Fab, F(ab)2, and Fv), so long as they exhibit the desired biological activity. (See, e.g., U.S. Pat. No. 4,816,567 and Mage & Lamoyi, in Monoclonal Antibody Production Techniques and Applications, pp. 79-97 (Marcel Dekker, Inc.), New York (1987)).
- Thus, the modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler & Milstein, Nature 256:495 (1975), or may be made by recombinant DNA methods (U.S. Pat. No. 4,816,567). The “monoclonal antibodies” may also be isolated from phage libraries generated using the techniques described in McCafferty et al., Nature 348:552-554 (1990), for example.
- “Humanized” forms of non-human (e.g. murine) antibodies are specific chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab)2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from the complementarity determining regions (CDRs) of the recipient antibody are replaced by residues from the CDRs of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human FR residues. Furthermore, the humanized antibody may comprise residues which are found neither in the recipient antibody nor in the imported CDR or FR sequences. These modifications are made to further refine and optimize antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR residues are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
- “Muscle cells” include skeletal, cardiac or smooth muscle tissue cells. This term encompasses those cells which differentiate to form more specialized muscle cells (e.g. myoblasts). Vascular smooth muscle cells refer to smooth muscle cells present in a middle elastic layer, media, of blood vessels.
- The term “stenosis” refers to narrowing or stricture of a hollow passage (e,g, a duct or canal) in the body. The term “vascular stenosis” refers to occlusion or narrowing of blood vessels. Vascular stenosis often results from fatty deposit (as in the case of atherosclerosis) or excessive migration and proliferation of vascular smooth muscle cells and endothelial cells. Arteries are particularly susceptible to stenosis. The term “stenosis” as used herein specifically includes initial stenosis and restenosis.
- The term “restenosis” refers to recurrence of stenosis after treatment of initial stenosis with apparent success. For example, “restenosis” in the context of vascular stenosis, refers to the reoccurrence of vascular stenosis after it has been treated with apparent success, e.g. by removal of fatty deposit by balloon angioplasty. One of the contributing factors in restenosis is intimal hyperplasia. The term “intimal hyperplasia”, used interchangeably with “neointimal hyperplasia” and “neointima formation”, refers to thickening of the inner most layer of blood vessels, intima, as a consequence of excessive proliferation and migration of vascular smooth muscle cells and endothelial cells. The various changes taking place during restenosis are often collectively referred to as “vascular wall remodeling.”
- The terms “balloon angioplasty” and “percutaneous transluminal coronary angioplasty” (PTCA) are often used interchangeably, and refer to a non-surgical catheter-based treatment for removal of plaque from the coronary artery. Stenosis or restenosis often lead to hypertension as a result of increased resistance to blood flow.
- The term “pyloric stenosis” refers to narrowing of pylorus, the passage at the lower end of the stomach that opens into the duodenum.
- The term “hypertension” refers to abnormally high blood pressure, i.e. beyond the upper value of the normal range.
- By “neutralizing antibody” is meant an antibody molecule as herein defined which is able to block or significantly reduce an effector function of ErbB receptors. Accordingly, a “neutralizing” anti-ErbB4 antibody is capable of blocking or significantly reducing an effector function, such as ligand binding and/or elicitation of a cellular response, of ErbB4. For the purpose of the present invention, the ability of an anti-ErbB4 antibody to neutralize the binding of an ErbB4 ligand (heregulin, HRG) to ErbB4 can be monitored, for example, by measuring the binding of detectably labeled HRG to purified ErbB4 or to a cell line exressing or modified to express ErbB4 in the presence and absence of a candidate anti-ErbB4 antibody. Such assays are described in Example 4 below. For the purpose of the present invention, the ability of the anti-ErbB4 antibodies to neutralize the elicitation of a cellular response by ErbB4 is preferably tested by monitoring the inhibition of tyrosine phosphorylation of ErbB4 by heregulin (HRG), or in a cell proliferation assay. Representative assays are disclosed in Example 4 below. “Significant” reduction means at least about 60%, or at least about 70%, preferably at least about 75%, more preferably at least about 80%, even more preferably at least about 85%, still more preferably at least about 90%, still more preferably at least about 95%, most preferably at least about 99% reduction of an effector function of the target antigen (e.g. ErbB4), such as ligand (e.g. HRG) binding and/or elicitation of a cellular response. Preferably, the “neutralizing” antibodies as defined herein will be capable of neutralizing at least about 60%, or at least about 70%, preferably at least about 75%, more preferably at least about 80%; even more preferably at least about 85%, still more preferably at least about 90%, still more preferably at least about 95%, most preferably at least about 99% of the tyrosine phosphorylation of ErbB4 by HRG, as determined by the assay described in Example 4.
- An “isolated” antibody is one that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or non-reducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.
- The term “epitope” is used to refer to binding sites for (monoclonal or polyclonal) antibodies on protein antigens.
- Antibodies which bind to a particular epitope can be identified by “epitope mapping.” There are many methods known in the art for mapping and characterizing the location of epitopes on proteins, including solving the crystal structure of an antibody-antigen complex, competition assays, gene fragment expression assays, and synthetic peptide-based assays, as described, for example, in Chapter 11 of Harlow and Lane, Using Antibodies, a Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1999. Competition assays are discussed below. According to the gene fragment expression assays, the open reading frame encoding the protein is fragmented either randomly or by specific genetic constructions and the reactivity of the expressed fragments of the protein with the antibody to be tested is determined. The gene fragments may, for example, be produced by PCR and then transcribed and translated into protein in vitro, in the presence of radioactive amino acids. The binding of the antibody to the radioactively labeled protein fragments is then determined by immunoprecipitation and gel electrophoresis. Certain epitopes can also be identified by using large libraries of random peptide sequences displayed on the surface of phage particles (phage libraries). Alternatively, a defined library of overlapping peptide fragments can be tested for binding to the test antibody in simple binding assays. The latter approach is suitable to define linear epitopes of about 5 to 15 amino acids.
- An antibody binds “essentially the same epitope” as a reference antibody, when the two antibodies recognize identical or sterically overlapping epitopes. The most widely used and rapid methods for determining whether two epitopes bind to identical or sterically overlapping epitopes are competition assays, which can be configured in all number of different formats, using either labeled antigen or labeled antibody. Usually, the antigen is immobilized on a 96-well plate, and the ability of unlabeled antibodies to block the binding of labeled antibodies is measured using radioactive or enzyme labels.
- The phrase “inhibiting an ErbB4 (HER4) receptor” refers to the ability of an ErbB4 antagonist to inhibit or prevent activation of an ErbB4 receptor, for example, by blocking the binding of a ligand to the ErbB4 receptor. The “activation” of an ErbB4 receptor refers to receptor phosphorylation, which can be quantified using the tyrosine phosphorylation assays, and downstream events that constitute induction of signal transduction by the bound ligand. “Inhibition” is any of these assays is at least about 60%, or at least about 70%, preferably at least about 75%, more preferably at least about 80%; even more preferably at least about 85%, still more preferably at least about 90%, still more preferably at least about 95%, most preferably at least about 99%.
- The expression “decreasing survival of a cell” refers to the act of decreasing the period of existence of a cell, relative to an untreated cell which has not been exposed to a ERbB4 antagonist either in vitro or in vivo. The expression “decreased cell proliferation” refers to a decrease in the number of cells in a population exposed to an ErbB4 antagonist either in vitro or in vivo, relative to an untreated cell.
- “Biological activity” where used in conjunction with an ErbB4 antagonist refers to the ability of an ErbB4 antagonist to control the excessive proliferation or migration of smooth muscle cells, as determined in a relevant in vitro or in vivo assay, including the PDGF-stimulated smooth muscle cell proliferation and human aortic smooth muscle cell migration assays described in the Examples hereinbelow, animal models and human clinical trials, irrespective of the underlying mechanism. Thus, the biological activity of an ErbB4 antagonist includes, without limitation, functioning as an inhibitor of the binding of a ligand or activation of a native ErbB4 receptor, and/or inhibition of growth and/or migration of smooth muscle cells expressing an ErbB4 receptor on their surface.
- The term “disease state” refers to a physiological state of a cell or of a whole mammal in which an interruption, cessation, or disorder of cellular or body functions systems, or organs has occurred.
- The term “effective amount” refers to an amount of a drug effective to treat (including prevention) a disease, disorder or unwanted physiological conditions in a mammal. In the present invention, an “effective amount” of an ErbB4 antagonist may reduce, slow down or delay the proliferation of smooth muscle cells; reduce, slow down or delay the migration of smooth muscle cells; prevent or inhibit (i.e., slow to some extent and preferably stop) the development of stenosis or restenosis; and/or relieve to some extent one or more of the symptoms associated with stenosis or restenosis, in particular, prevent or inhibit (i.e., slow to some extent and preferably stop) the development of elevated blood pressure associated with stenosis or restenosis.
- Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adapters or linkers are used in accordance with conventional practice.
- “Pharmaceutically acceptable” carriers, excipients, or stabilizers are ones which are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution. Examples of physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as Tween™, polyethylene glycol (PEG), and Pluronics™.
- B. Methods for Carrying Out the Invention
- The invention concerns the treatment of stenosis by antagonists of native ErbB4 receptors. Although the invention is not so limited, in a preferred embodiment, the antagonist is an immunoadhesin or a chimeric heteromultimer adhesin. Immunoadhesins (referred to as hybrid immunoglobulins), including their structure and preparation, are described, e.g. in WO 91/08298; and in U.S. Pat. Nos. 5,428,130 and 5,116,964, the disclosures of which are hereby expressly incorporated by reference.
- 1. Production of an Immunoadhesin or Chimeric Heteromultimer Adhesin.
- The description below relates primarily to production of immunoadhesin by culturing cells transformed or transfected with a vector containing immunoadhesin nucleic acid. It is, of course, contemplated that alternative methods, which are well known in the art, may be employed to prepare immunoadhesin. For instance, the immunoadhesin sequence, or portions thereof, may be produced by direct peptide synthesis using solid-phase techniques [see, e.g., Stewart et al., Solid-Phase Peptide Synthesis, W.H. Freeman Co., San Francisco, Calif. (1969); Merrifield, J. Am. Chem. Soc., 85:2149-2154 (1963)]. In vitro protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be accomplished, for instance, using an Applied Biosystems Peptide Synthesizer (Foster City, Calif.) using manufacturer's instructions. Various portions of the immunoadhesin may be chemically synthesized separately and combined using chemical or enzymatic methods to produce the full-length immunoadhesin.
- Nucleic acid encoding a native sequence ErbB4 receptor can, for example, be isolated from cells known to express the ErbB4 receptor, such as those described in EP 599,274, supra, and in the collective Plowman et al. references, supra or is synthesized.
- DNA encoding immunoglobulin light or heavy chain constant regions is known or readily available from cDNA libraries or is synthesized. See for example, Adams et al., Biochemistry 19:2711-2719 (1980); Gough et al., Biochemistry 19:2702-2710 (1980); Dolby et al; P.N.A.S. USA, 77:6027-6031 (1980); Rice et al P.N.A.S USA 79:7862-7865 (1982); Falkner et al; Nature 298:286-288 (1982); and Morrison et al; Ann. Rev. Immunol. 2:239-256 (1984).
- An immunoadhesin or a chimeric heteroadhesin of the invention is preferably produced by expression in a host cell and isolated therefrom. A host cell is generally transformed with the nucleic acid of the invention. Preferably the nucleic acid is incorporated into an expression vector. Suitable host cells for cloning or expressing the vectors herein are prokaryote host cells (such as E. coli, strains of Bacillus, Pseudomonas and other bacteria), yeast and other eukaryotic microbes, and higher eukaryote cells (such as Chinese hamster ovary (CHO) cells and other mammalian cells). The cells may also be present in live animals (for example, in cows, goats or sheep). Insect cells may also be used. Cloning and expression methodologies are well known in the art.
- To obtain expression of an immunoadhesin such as a chimeric ErbB4-IgG molecule, one or more expression vector(s) is/are introduced into host cells by transformation or transfection and the resulting recombinant host cells are cultured in conventional nutrient media, modified as appropriate for inducing promoters, selecting recombinant cells, or amplifying the ErbB4-IgG DNA. In general, principles, protocols, and practical techniques for maximizing the productivity of in vitro mammalian cell cultures can be found in Mammalian Cell Biotechnology: a Practical Approach, M. Butler, ed. (IRL Press, 1991).
- (i) Construction of Nucleic Acid Encoding Immunoadhesin
- When preparing the immunoadhesins of the present invention, preferably nucleic acid encoding an extracellular domain of a natural receptor is fused C-terminally to nucleic acid encoding the N-terminus of an immunoglobulin constant domain sequence, however N-terminal fusions are also possible. Typically, in such fusions the encoded chimeric polypeptide will retain at least functionally active hinge, CH2 and CH3 domains of the constant region of an immunoglobulin heavy chain. Fusions are also made to the C-terminus of the Fc portion of a constant domain, or immediately N-terminal to the CH1 of the heavy chain or the corresponding region of the light chain. The resultant DNA fusion construct is expressed in appropriate host cells.
- Nucleic acid molecules encoding amino acid sequence variants of native sequence extracellular domains (such as from ErbB4) and/or the antibody sequences used to prepare the desired immunoadhesin, are prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants, such as those mentioned above in connection with ErbB4) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of native sequence ErbB4.
- Amino acid sequence variants of native sequence extracellular domain included in the chimeric heteroadhesin are prepared by introducing appropriate nucleotide changes into the native extracellular domain DNA sequence, or by in vitro synthesis of the desired chimeric heteroadhesin monomer polypeptide. Such variants include, for example, deletions from, or insertions or substitutions of, residues in the amino acid sequence of the immunoadhesin or chimeric heteroadhesin.
- Variations in the native sequence as described above can be made using any of the techniques and guidelines for conservative and non-conservative mutations set forth in Table 1.
- In a preferred embodiment, the nucleic acid encodes a chimeric molecule in which the ErbB4 receptor extracellular domain sequence is fused to the N-terminus of the C-terminal portion of an antibody (in particular the Fc domain), containing the effector functions of an immunoglobulin, e.g. IgG1. It is possible to fuse the entire heavy chain constant region to the ErbB4 receptor extracellular domain sequence. However, more preferably, a sequence beginning in the hinge region just upstream of the papain cleavage site (which defines IgG Fc chemically; residue 216, taking the first residue of heavy chain constant region to be 114 [Kobet et al., supra], or analogous sites of other immunoglobulins) is used in the fusion. In a particularly preferred embodiment, the ErbB4 receptor extracellular domain sequence is fused to the hinge region and CH2 and CH3 or CH1, hinge, CH2 and CH3 domains of an IgG1, IgG2, or IgG3 heavy chain. The precise site at which the fusion is made is not critical, and the optimal site can be determined by routine experimentation.
- For human immunoadhesins, the use of human IgG1 and IgG3 immunoglobulin sequences is preferred. A major advantage of using IgG1 is that IgG1 immunoadhesins can be purified efficiently on immobilized protein A. In contrast, purification of IgG3 requires protein G, a significantly less versatile medium. However, other structural and functional properties of immunoglobulins should be considered when choosing the Ig fusion partner for a particular immunoadhesin construction. For example, the IgG3 hinge is longer and more flexible, so it can accommodate larger “adhesin” domains that may not fold or function properly when fused to IgG1. Another consideration may be valency; IgG immunoadhesins are bivalent homodimers, whereas Ig subtypes like IgA and IgM may give rise to dimeric or pentameric structures, respectively, of the basic Ig homodimer unit.
- For ErbB4-Ig immunoadhesins designed for in vivo application, the pharmacokinetic properties and the effector functions specified by the Fc region are important as well. Although IgG1, IgG2 and IgG4 all have in vivo half-lives of 21 days, their relative potencies at activating the complement system are different. IgG4 does not activate complement, and IgG2 is significantly weaker at complement activation than IgG1. Moreover, unlike IgG1, IgG2 does not bind to Fc receptors on mononuclear cells or neutrophils. While IgG3 is optimal for complement activation, its in vivo half-life in approximately one third of the other IgG isotypes.
- Another important consideration for immunoadhesins designed to be used as human therapeutics is the number of allotypic variants of the particular isotype. In general, IgG isotypes with fewer serologically-defined allotypes are preferred. For example, IgG1 has only four serologically-defined allotypic sites, two of which (G1m and 2) are located in the Fc region; and one of these sites G1m1, is non-immunogenic. In contrast, there are 12 serologically-defined allotypes in IgG3, all of which are in the Fc region; only three of these sites (G3m5, 11 and 21) have one allotype which is nonimmunogenic. Thus, the potential immunogenicity of an IgG3 immunoadhesin is greater than that of an IgG1 immunoadhesin.
- The cDNAs encoding the ErbB4 receptor sequence (e.g. an extracellular domain sequence) and the Ig parts of the immunoadhesin are inserted in tandem into a plasmid vector that directs efficient expression in the chosen host cells. For expression in mammalian cells pRK5-based vectors [Schall et al., Cell 61, 361-370 (1990)] and CDM8-based vectors [Seed, Nature 329, 840 (1989)] may, for example, be used. The exact junction can be created by removing the extra sequences between the designed junction codons using oligonucleotide-directed deletional mutagenesis [Zoller and Smith, Nucleic Acids Res. 10, 6487 (1982); Capon et al., Nature 337, 525-531 (1989)]. Synthetic oligonucleotides can be used, in which each half is complementary to the sequence on either side of the desired junction; ideally, these are 36 to 48-mers. Alternatively, PCR techniques can be used to join the two parts of the molecule in-frame with an appropriate vector.
- Although the presence of an immunoglobulin light chain is not required in the immunoadhesins of the present invention, an immunoglobulin light chain might be present either covalently associated to an trk receptor-immunoglobulin heavy chain fusion polypeptide, or directly fused to the trk receptor extracellular domain. In the former case, DNA encoding an immunoglobulin light chain is typically coexpressed with the DNA encoding the ErbB4 receptor-immunoglobulin heavy chain fusion protein. Upon secretion, the hybrid heavy chain and the light chain will be covalently associated to provide an immunoglobulin-like structure comprising two disulfide-linked immunoglobulin heavy chain-light chain pairs. Method suitable for the preparation of such structures are, for example, disclosed in U.S. Pat. No. 4,816,567 issued Mar. 28, 1989.
- Another preferred type of chimeric ErbB4 antagonist herein is a fusion protein comprising an extracellular domain, such as from a ErbB4 monomer, linked to a heterologous polypeptide, such as a multimerization domain. Such a sequence can be constructed using recombinant DNA techniques. Alternatively, the heterologous polypeptide can be covalently bound to the extracellular domain polypeptide by techniques well known in the art such as the use of the heterobifunctional crosslinking reagents. Exemplary coupling agents include N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene).
- In one embodiment, a chimeric heteroadhesin polypeptide comprises a fusion of a monomer of the chimeric heteroadhesin with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. Such epitope tagged forms of the chimeric heteroadhesin are useful, as the presence thereof can be detected using a labeled antibody against the tag polypeptide. Also, provision of the epitope tag enables the chimeric heteroadhesin to be readily purified by affinity purification using the anti-tag antibody. Tag polypeptides and their respective antibodies are well known in the art. Examples include the flu HA tag polypeptide and its antibody 12CA5, (Field et al., Mol. Cell. Biol. 8:2159-2165 (1988)); the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto (Evan et al., Molecular and Cellular Biology 5(12):3610-3616 (1985)); and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody (Paborsky et al., Protein Engineering 3(6):547-553 (1990)).
- Another type of covalent modification of a chimeric heteromultimer comprises linking a monomer polypeptide of the heteromultimer to one of a variety of non-proteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol. A chimeric heteromultimer also may be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules), or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th edition, Oslo, A., Ed., (1980).
- (ii) Selection and Transformation of Host Cells
- Host cells are transfected or transformed with expression or cloning vectors described herein for immunoadhesin production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. The culture conditions, such as media, temperature, pH and the like, can be selected by the skilled artisan without undue experimentation. In general, principles, protocols, and practical techniques for maximizing the productivity of cell cultures can be found in Mammalian Cell Biotechnology: a Practical Approach, M. Butler, ed. (IRL Press, 1991) and Sambrook et al., supra.
- The terms “transformation” and “transfection” are used interchangeably herein and refer to the process of introducing DNA into a cell. Following transformation or transfection, the nucleic acid of the invention may integrate into the host cell genome, or may exist as an extrachromosomal element. Methods of eukaryotic cell transfection and prokaryotic cell transformation are known to the ordinarily skilled artisan, for example, CaCl2, CaPO4, liposome-mediated and electroporation. Depending on the host cell used, transformation is performed using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in Sambrook et al., supra, or electroporation is generally used for prokaryotes. Infection with Agrobacterium tumefaciens is used for transformation of certain plant cells, as described by Shaw et al., Gene, 23:315 (1983) and WO 89/05859 published 29 Jun. 1989. For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, Virology, 52:456-457 (1978) can be employed. General aspects of mammalian cell host system transfections have been described in U.S. Pat. No. 4,399,216. Transformations into yeast are typically carried out according to the method of Van Solingen et al., J. Bact., 130:946 (1977) and Hsiao et al., Proc. Natl. Acad. Sci. (USA), 76:3829 (1979). However, other methods for introducing DNA into cells, such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene, polyornithine, may also be used. For various techniques for transforming mammalian cells, see Keown et al., Methods in Enzymology, 185:527-537 (1990) and Mansour et al., Nature, 336:348-352 (1988).
- Suitable host cells for cloning or expressing the DNA in the vectors herein include prokaryote, yeast, or higher eukaryote cells. Suitable prokaryotes include but are not limited to eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as E. coli. Various E. coli strains are publicly available, such as E. coli K12 strain MM294 (ATCC 31,446); E. coli X1776 (ATCC 31,537); E. coli strain W3110 (ATCC 27,325) and K5 772 (ATCC 53,635). Other suitable prokaryotic host cells include Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published 12 Apr. 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. These examples are illustrative rather than limiting. Strain W3110 is one particularly preferred host or parent host because it is a common host strain for recombinant DNA product fermentation. Preferably, the host cell secretes minimal amounts of proteolytic enzymes. For example, strain W3110 may be modified to effect a genetic mutation in the genes encoding proteins endogenous to the host, with examples of such hosts including E. coli W3110 strain 1A2, which has the complete genotype tonA; E. coli W3110 strain 9E4, which has the complete genotype tonA ptr3; E. coli W3110 strain 27C7 (ATCC 55,244), which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT kanr ; E. coli W3110 strain 37D6, which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT rbs7 ilvG kanr ; E. coli W3110 strain 40B4, which is strain 37D6 with a non-kanamycin resistant degP deletion mutation; and an E. coli strain having mutant periplasmic protease disclosed in U.S. Pat. No. 4,946,783 issued 7 Aug. 1990. Alternatively, in vitro methods of cloning, e.g., PCR or other nucleic acid polymerase reactions, are suitable.
- In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for immunoadhesin-encoding vectors. Saccharomyces cerevisiae is a commonly used lower eukaryotic host microorganism. Others include Schizosaccharomyces pombe (Beach and Nurse, Nature, 290: 140 [1981]; EP 139,383 published 2 May 1985); Kluyveromyces hosts (U.S. Pat. No. 4,943,529; Fleer et al., Bio/Technology, 9:968-975 (1991)) such as, e.g., K. lactis (MW98-8C, CBS683, CBS4574; Louvencourt et al., J. Bacteriol., 154(2): 737-1742 [1983]), K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906; Van den Berg et al., Bio/Technology, 8:135 (1990)), K. thermotolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070; Sreekrishna et al., J. Basic Microbiol., 28:265-278 [1998]); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa (Case et al., Proc. Natl. Acad. Sci. USA, 76:5259-5263 [1979]); Schwanniomyces such as Schwanniomyces occidentalis (EP 394,538 published 31 Oct. 1990); and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published 10 Jan. 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem. Biophys. Res. Commun., 112:284-289 [1983]; Tilburn et al., Gene, 26:205-221 [1983]; Yelton et al., Proc. Natl. Acad. Sci. USA, 81: 1470-1474 [1984]) and A. niger (Kelly and Hynes, EMBO J., 4:475-479 [1985]). Methylotropic yeasts are suitable herein and include, but are not limited to, yeast capable of growth on methanol selected from the genera consisting of Hansenula, Candida, Kloeckera, Pichia, Saccharomyces, Torulopsis, and Rhodotorula. A list of specific species that are exemplary of this class of yeasts may be found in C. Anthony, The Biochemistry of Methylotrophs, 269 (1982).
- Suitable host cells for the expression of glycosylated immunoadhesin are derived from multicellular organisms. Examples of invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9, as well as plant cells. Examples of useful mammalian host cell lines include Chinese hamster ovary (CHO) and COS cells. More specific examples include monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol., 36:59 (1977)); Chinese hamster ovary cells/-DHFR(CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77:4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod., 23:243-251 (1980)); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); and mouse mammary tumor (MMT 060562, ATCC CCL51). The selection of the appropriate host cell is deemed to be within the skill in the art.
- In general, the choice of a mammalian host cell line for the expression of ErbB4-Ig immunoadhesins depends mainly on the expression vector (see below). Another consideration is the amount of protein that is required. Milligram quantities often can be produced by transient transfections. For example, the adenovirus EIA-transformed 293 human embryonic kidney cell line can be transfected transiently with pRK5-based vectors by a modification of the calcium phosphate method to allow efficient immunoadhesin expression. CDM8-based vectors can be used to transfect COS cells by the DEAE-dextran method (Aruffo et al., Cell 61, 1303-1313 (1990)]; Zettmeissl et al., DNA Cell Biol. (US) 9, 347-353 (1990)]. If larger amounts of protein are desired, the immunoadhesin can be expressed after stable transfection of a host cell line. For example, a pRK5-based vector can be introduced into Chinese hamster ovary (CHO) cells in the presence of an additional plasmid encoding dihydrofolate reductase (DHFR) and conferring resistance to G418. Clones resistant to G418 can be selected in culture; these clones are grown in the presence of increasing levels of DHFR inhibitor methotrexate; clones are selected, in which the number of gene copies encoding the DHFR and immunoadhesin sequences is co-amplified. If the immunoadhesin contains a hydrophobic leader sequence at its N-terminus, it is likely to be processed and secreted by the transfected cells. The expression of immunoadhesins with more complex structures may require uniquely suited host cells; for example, components such as light chain or J chain may be provided by certain myeloma or hybridoma cell hosts [Gascoigne et al., 1987, supra; Martin et al., J. Virol. 67, 3561-3568 (1993)].
- (iii) Selection and Use of a Replicable Vector
- The nucleic acid encoding immunoadhesin may be inserted into a replicable vector for cloning (amplification of the DNA) or for expression. Various vectors are publicly available. The vector may, for example, be in the form of a plasmid, cosmid, viral particle, or phage. The appropriate nucleic acid sequence may be inserted into the vector by a variety of procedures. In general, DNA is inserted into an appropriate restriction endonuclease site(s) using techniques known in the art. Vector components generally include, but are not limited to, one or more of a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Construction of suitable vectors containing one or more of these components employs standard ligation techniques which are known to the skilled artisan.
- The immunoadhesin may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the immunoadhesin-encoding DNA that is inserted into the vector. The signal sequence may be a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders. For yeast secretion the signal sequence may be, e.g., the yeast invertase leader, alpha factor leader (including Saccharomyces and Kluyveromyces α-factor leaders, the latter described in U.S. Pat. No. 5,010,182), or acid phosphatase leader, the C. albicans glucoamylase leader (EP 362,179 published 4 Apr. 1990), or the signal described in WO 90/13646 published 15 Nov. 1990. In mammalian cell expression, mammalian signal sequences may be used to direct secretion of the protein, such as signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders.
- Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2μ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus or BPV) are useful for cloning vectors in mammalian cells.
- Expression and cloning vectors will typically contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.
- An example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the immunoadhesin-encoding nucleic acid, such as DHFR or thymidine kinase. An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., Proc. Natl. Acad. Sci. USA, 77:4216 (1980). A suitable selection gene for use in yeast is the trp1 gene present in the yeast plasmid YRp7 [Stinchcomb et al., Nature, 282:39 (1979); Kingsman et al., Gene, 7:141 (1979); Tschemper et al., Gene, 10:157 (1980)]. The trp1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1 [Jones, Genetics, 85:12 (1977)].
- Expression and cloning vectors usually contain a promoter operably linked to the immunoadhesin-encoding nucleic acid sequence to direct mRNA synthesis. Promoters recognized by a variety of potential host cells are well known. Promoters suitable for use with prokaryotic hosts include the β-lactamase and lactose promoter systems [Chang et al., Nature, 275:615 (1978); Goeddel et al., Nature, 281:544 (1979)], alkaline phosphatase, a tryptophan (trp) promoter system [Goeddel, Nucleic Acids Res., 8:4057 (1980); EP 36,776], and hybrid promoters such as the tac promoter [deBoer et al., Proc. Natl. Acad. Sci. USA, 80:21-25 (1983)]. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding immunoadhesin.
- Examples of suitable promoter sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase [Hitzeman et al., J. Biol. Chem. 255:2073 (1980)] or other glycolytic enzymees [Hess et al., J. Adv. Enzyme Reg., 7:149 (1968); Holland, Biochemistry, 17:4900 (1978)], such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.
- Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657.
- The transcription of immunoadhesin from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 Jul. 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, retrovirus (such as avian sarcoma virus), cytomegalovirus, hepatitis-B virus and Simian Virus 40 (SV40); from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, or from heat-shock promoters, provided such promoters are compatible with the host cell systems.
- Transcription of a DNA encoding the immunoadhesin by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α-fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (by 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. The enhancer may be spliced into the vector at a position 5′ or 3′ to the immunoadhesin coding sequence, but is preferably located at a site 5′ from the promoter.
- Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 3′ untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding immunoadhesin.
- Still other methods, vectors, and host cells suitable for adaptation to the synthesis of immunoadhesin in recombinant vertebrate cell culture are described in Gething et al., Nature, 293:620-625 (1981); Mantei et al., Nature, 281:40-46 (1979); EP 117,060; and EP 117,058.
- (iv) Purification of Immunoadhesin
- An immunoadhesin or a chimeric heteroadhesin preferably is recovered from the culture medium as a secreted polypeptide, although it also may be recovered from host cell lysates. As a first step, the particulate debris, either host cells or lysed fragments, is removed, for example, by centrifugation or ultrafiltration; optionally, the protein may be concentrated with a commercially available protein concentration filter, followed by separating the chimeric heteroadhesin from other impurities by one or more purification procedures selected from: fractionation on an immunoaffinity column; fractionation on an ion-exchange column; ammonium sulphate or ethanol precipitation; reverse phase HPLC; chromatography on silica; chromatography on heparin Sepharose; chromatography on a cation exchange resin; chromatofocusing; SDS-PAGE; and gel filtration.
- A particularly advantageous method of purifying immunoadhesins is affinity chromatography. The choice of affinity ligand depends on the species and isotype of the immunoglobulin Fc domain that is used in the chimera. Protein A can be used to purify immunoadhesins that are based on human IgG1, IgG2, or IgG4 heavy chains [Lindmark et al., J. Immunol. Meth. 62, 1-13 (1983)]. Protein G is recommended for all mouse isotypes and for human IgG3 [Guss et al., EMBO J. 5, 15671575 (1986)]. The matrix to which the affinity ligand is attached is most often agarose, but other matrices are also available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. The conditions for binding an immunoadhesin to the protein A or G affinity column are dictated entirely by the characteristics of the Fc domain; that is, its species and isotype. Generally, when the proper ligand is chosen, efficient binding occurs directly from unconditioned culture fluid. One distinguishing feature of immunoadhesins is that, for human IgG1 molecules, the binding capacity for protein A is somewhat diminished relative to an antibody of the same Fc type. Bound immunoadhesin can be efficiently eluted either at acidic pH (at or above 3.0), or in a neutral pH buffer containing a mildly chaotropic salt. This affinity chromatography step can result in an immunoadhesin preparation that is >95% pure.
- Other methods known in the art can be used in place of, or in addition to, affinity chromatography on protein A or G to purify immunoadhesins. Immunoadhesins behave similarly to antibodies in thiophilic gel chromatography [Hutchens and Porath, Anal. Biochem. 159, 217-226 (1986)] and immobilized metal chelate chromatography [Al-Mashikhi and Makai, J. Dairy Sci. 71, 1756-1763 (1988)]. In contrast to antibodies, however, their behavior on ion exchange columns is dictated not only by their isoelectric points, but also by a charge dipole that may exist in the molecules due to their chimeric nature.
- Preparation of epitope tagged immunoadhesin, such as ErbB4-IgG, facilitates purification using an immunoaffinity column containing antibody to the epitope to adsorb the fusion polypeptide. Immunoaffinity columns such as a rabbit polyclonal anti-ErbB4 column can be employed to absorb the ErbB4-IgG by binding it to an ErbB4 immune epitope.
- In some embodiments, the ErbB4 receptor-immunoglobulin chimeras (immunoadhesins) are assembled as monomers, or hetero- or homo-multimers, and particularly as dimers or tetramers, essentially as illustrated in WO 91/08298. Generally, these assembled immunoglobulins will have known unit structures. A basic four chain structural unit is the form in which IgG, IgD, and IgE exist. A four-unit structure is repeated in the higher molecular weight immunoglobulins; IgM generally exists as a pentamer of basic four units held together by disulfide bonds. IgA globulin, and occasionally IgG globulin, may also exist in multimeric form in serum. In the case of multimer, each four unit may be the same or different.
- As noted earlier, the immunoadhesins of the present invention can be made bispecific, and may, for example, include binding regions from two different ErbB receptors, at least one or which is ErbB4. Thus, the immunoadhesins of the present invention may have binding specificities for two distinct ErbB ligands. For bispecific molecules, trimeric molecules, composed of a chimeric antibody heavy chain in one arm and a chimeric antibody heavy chain-light chain pair in the other arm of their antibody-like structure are advantageous, due to ease of purification. In contrast to antibody-producing quadromas traditionally used for the production of bispecific immunoadhesins, which produce a mixture of ten tetramers, cells transfected with nucleic acid encoding the three chains of a trimeric immunoadhesin structure produce a mixture of only three molecules, and purification of the desired product from this mixture is correspondingly easier.
- (v) Characterization of Immunoadhesin
- Generally, the ErbB4 chimeric heteromultimers of the invention will have any one or more of the following properties: (a) the ability to compete with a natural heteromultimeric receptor for binding to a ligand such as HB-EGF; (b) the ability to form ErbB2-IgG/ErbB4-IgG complexes; and (c) the ability to inhibit activation of a natural heteromultimeric receptor by depleting ligand from the environment of the natural receptor, thereby inhibiting proliferation of cells that express the ErbB2 and ErbB4 receptor.
- To screen for property (a), the ability of the chimeric ErbB4 heteromultimer adhesin to bind to a ligand can be readily determined in vitro. For example, immunoadhesin forms of these receptors can be generated and the ErbB2/4-Ig heteroimmunoadhesin can be immobilized on a solid phase (e.g. on assay plates coated with goat-anti-human antibody). The ability of a ligand to bind to the immobilized immunoadhesin can then be determined. For more details, see the 125I-HRG binding assay described in the Example below.
- As to property (c), the tyrosine phosphorylation assay using MCF7 cells provides a means for screening for activation of ErbB4 receptors. In an alternative embodiment of the invention, the KIRA-ELISA described in WO 95/14930 can be used to qualitatively and quantitatively measure the ability of an HER4 chimeric heteroadhesin to inhibit activation of a HER4 receptor.
- The ability of an immunoadhesin, chimeric heteroadhesin such as ErbB2/4-Ig, or other molecule of the present invention to inhibit proliferation of a cell that expresses the ErbB2 and ErbB4 receptor is readily determined in cell culture by standard procedures. Useful cells for this experiment include MCF7 and SK-BR-3 cells obtainable from the ATCC and Schwann cells (see, for example, Li et al., J. Neuroscience 16(6):2012-2019 (1996)). These tumor cell lines may be plated in cell culture plates and allowed to adhere thereto. The HRG ligand in the presence and absence of a potential ErbB4 antagonist such as an ErbB4 chimeric heteroadhesin is added. Monolayers are washed and stained/fixed with crystal violet and cell growth inhibition is quantified.
- 2. Antibody Preparation
- Another preferred class of ErbB4 antagonists comprises neutralizing antibodies to this receptor.
- (i) Polyclonal Antibodies
- Methods of preparing polyclonal antibodies are known in the art. Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized, such as serum albumin, or soybean trypsin inhibitor. Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM.
- (ii) Monoclonal Antibodies
- Monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Pat. No. 4,816,567).
- In the hybridoma method, a mouse or other appropriate host animal, such as a hamster or macaque monkey, is immunized as hereinabove described to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized in vitro. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-103, [Academic Press, 1986]).
- The hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells. For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.
- Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. Among these, preferred myeloma cell lines are murine myeloma lines, such as those derived from MOP-21 and MC.-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, Calif. USA, and SP-2 or X63-Ag8-653 cells available from the American Type Culture Collection, Rockville, Md. USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63, Marcel Dekker, Inc., New York, [1987]).
- Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunosorbent assay (ELISA).
- The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson et al., Anal. Biochem., 107:220 (1980).
- After hybridoma cells are identified that produce antibodies of the desired specificity, affinity, and/or activity, the cells may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-103 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, DMEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal.
- The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
- DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the monoclonal antibodies). The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also may be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences, Morrison, et al., Proc. Nat. Acad. Sci. 81, 6851 (1984), or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. In that manner, “chimeric” or “hybrid” antibodies are prepared that have the binding specificity of an anti-ErbB4 receptor monoclonal antibody herein.
- Typically such non-immunoglobulin polypeptides are substituted for the constant domains of an antibody of the invention, or they are substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for a ErbB4 receptor and another antigen-combining site having specificity for a different antigen.
- Chimeric or hybrid antibodies also may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins may be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate.
- Recombinant production of antibodies will be described in more detail below.
- (iii) Humanized Antibodies
- Generally, a humanized antibody has one or more amino acid residues introduced into it from a non-human source. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. Humanization can be essentially performed following the method of Winter and co-workers [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)], by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody.
- Accordingly, such “humanized” antibodies are chimeric antibodies (Cabilly, supra), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
- It is important that antibodies be humanized with retention of high affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e. the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the consensus and import sequence so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the CDR residues are directly and most substantially involved in influencing antigen binding. For further details, see U.S. Pat. No. 5,821,337.
- (iv) Human Antibodies
- Human monoclonal antibodies can be made by the hybridoma method. Human myeloma and mouse-human heteromyeloma cell lines for the production of human monoclonal antibodies have been described, for example, by Kozbor, J. Immunol. 133, 3001 (1984), and Brodeur, et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987).
- It is now possible to produce transgenic animals (e.g. mice) that are capable, upon immunization, of producing a repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy chain joining region (JH) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g. Jakobovits et al., Proc. Natl. Acad. Sci. USA 90, 2551-255 (1993); Jakobovits et al., Nature 362, 255-258 (1993).
- Mendez et al. (Nature Genetics 15: 146-156 [1997]) have further improved the technology and have generated a line of transgenic mice designated as “Xenomouse II” that, when challenged with an antigen, generates high affinity fully human antibodies. This was achieved by germ-line integration of megabase human heavy chain and light chain loci into mice with deletion into endogenous JH segment as described above. The Xenomouse II harbors 1,020 kb of human heavy chain locus containing approximately 66 VH genes, complete DH and JH regions and three different constant regions (μ, δ and χ), and also harbors 800 kb of human κ locus containing 32 Vκ genes, Jκ segments and Cκ genes. The antibodies produced in these mice closely resemble that seen in humans in all respects, including gene rearrangement, assembly, and repertoire. The human antibodies are preferentially expressed over endogenous antibodies due to deletion in endogenous JH segment that prevents gene rearrangement in the murine locus.
- Alternatively, the phage display technology (McCafferty et al., Nature 348, 552-553 [1990]) can be used to produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors. According to this technique, antibody V domain genes are cloned in-frame into either a major or minor coat protein gene of a filamentous bacteriophage, such as M13 or fd, and displayed as functional antibody fragments on the surface of the phage particle. Because the filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody also result in selection of the gene encoding the antibody exhibiting those properties. Thus, the phage mimics some of the properties of the B-cell. Phage display can be performed in a variety of formats; for their review see, e.g. Johnson, Kevin S. and Chiswell, David J., Current Opinion in Structural Biology 3, 564-571 (1993). Several sources of V-gene segments can be used for phage display. Clackson et al., Nature 352, 624-628 (1991) isolated a diverse array of anti-oxazolone antibodies from a small random combinatorial library of V genes derived from the spleens of immunized mice. A repertoire of V genes from unimmunized human donors can be constructed and antibodies to a diverse array of antigens (including self-antigens) can be isolated essentially following the techniques described by Marks et al., J. Mol. Biol. 222, 581-597 (1991), or Griffiths et al., EMBO J. 12, 725-734 (1993). In a natural immune response, antibody genes accumulate mutations at a high rate (somatic hypermutation). Some of the changes introduced will confer higher affinity, and B cells displaying high-affinity surface immunoglobulin are preferentially replicated and differentiated during subsequent antigen challenge. This natural process can be mimicked by employing the technique known as “chain shuffling” (Marks et al., Bio/Technol. 10, 779-783 [1992]). In this method, the affinity of “primary” human antibodies obtained by phage display can be improved by sequentially replacing the heavy and light chain V region genes with repertoires of naturally occurring variants (repertoires) of V domain genes obtained from unimmunized donors. This techniques allows the production of antibodies and antibody fragments with affinities in the nM range. A strategy for making very large phage antibody repertoires (also known as “the mother-of-all libraries”) has been described by Waterhouse et al., Nucl. Acids Res. 21, 2265-2266 (1993), and the isolation of a high affinity human antibody directly from such large phage library is reported by Griffiths et al., EMBO J. 13: 3245-3260 (1994). Gene shuffling can also be used to derive human antibodies from rodent antibodies, where the human antibody has similar affinities and specificities to the starting rodent antibody. According to this method, which is also referred to as “epitope imprinting”, the heavy or light chain V domain gene of rodent antibodies obtained by phage display technique is replaced with a repertoire of human V domain genes, creating rodent-human chimeras. Selection on antigen results in isolation of human variable domains capable of restoring a functional antigen-binding site, i.e. the epitope governs (imprints) the choice of partner. When the process is repeated in order to replace the remaining rodent V domain, a human antibody is obtained (see PCT patent application WO 93/06213, published 1 Apr. 1993). Unlike traditional humanization of rodent antibodies by CDR grafting, this technique provides completely human antibodies, which have no framework or CDR residues of rodent origin.
- (v) Bispecific Antibodies
- Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for the ErbB4 receptor to provide an antagonist antibody, the other one is for any other antigen, and preferably for another receptor or receptor subunit.
- Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy chain-light chain pairs, where the two heavy chains have different specificities (Millstein and Cuello, Nature 305, 537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in PCT application publication No. WO 93/08829 (published 13 May 1993), and in Traunecker et al.,
EMBO 10, 3655-3659 (1991). - According to a different and more preferred approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy chain constant domain, comprising at least part of the hinge, CH2 and CH3 regions. It is preferred to have the first heavy chain constant region (CH1) containing the site necessary for light chain binding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. This provides for great flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yields. It is, however, possible to insert the coding sequences for two or all three polypeptide chains in one expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios are of no particular significance. In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation.
- For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology 121, 210 (1986).
- (vi) Heteroconjugate Antibodies
- Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (PCT application publication Nos. WO 91/00360 and WO 92/200373; EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques.
- (vii) Antibody Fragments
- In certain embodiments, the ErbB4 antagonist antibody (including murine, human and humanized antibodies, and antibody variants) is an antibody fragment. Various techniques have been developed for the production of antibody fragments. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto et al., J. Biochem. Biophys. Methods 24:107-117 (1992) and Brennan et al., Science 229:81 (1985)). However, these fragments can now be produced directly by recombinant host cells. For example, Fab′-SH fragments can be directly recovered from E. coli and chemically coupled to form F(ab′)2 fragments (Carter et al., Bio/Technology 10:163-167 (1992)). In another embodiment, the F(ab′)2 is formed using the leucine zipper GCN4 to promote assembly of the F(ab′)2 molecule. According to another approach, Fv, Fab or F(ab′)2 fragments can be isolated directly from recombinant host cell culture. Other techniques for the production of antibody fragments will be apparent to the skilled practitioner.
- (viii) Amino Acid Sequence Variants of Antibodies
- Amino acid sequence variants of the ErbB4 antagonist antibodies are prepared by introducing appropriate nucleotide changes into the ErbB4 antagonist antibody DNA, or by peptide synthesis. Such variants include, for example, deletions from, and/or insertions into and/or substitutions of, residues within the amino acid sequences of the ErbB4 antagonist antibodies of the examples shown herein. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics. The amino acid changes also may alter post-translational processes of the humanized or variant ErbB4 antagonist antibody, such as changing the number or position of glycosylation sites.
- A useful method for identification of certain residues or regions of the ErbB4 receptor antibody that are preferred locations for mutagenesis is called “alanine scanning mutagenesis,” as described by Cunningham and Wells Science, 244:1081-1085 (1989). Here, a residue or group of target residues are identified (e.g., charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with ErbB4 receptor antigen. Those amino acid locations demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at, or for, the sites of substitution. Thus, while the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined. For example, to analyze the performance of a mutation at a given site, ala scanning or random mutagenesis is conducted at the target codon or region and the expressed ErbB4 antibody variants are screened for the desired activity.
- Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Examples of terminal insertions include a ErbB4 antagonist antibody with an N-terminal methionyl residue or the antibody fused to an epitope tag. Other insertional variants of the ErbB4 antagonist antibody molecule include the fusion to the N- or C-terminus of the ErbB4 antagonist antibody of an enzyme or a polypeptide which increases the serum half-life of the antibody.
- Another type of variant is an amino acid substitution variant. These variants have at least one amino acid residue in the ErbB4 antagonist antibody molecule removed and a different residue inserted in its place. The sites of greatest interest for substitution mutagenesis include the hypervariable regions, but FR alterations are also contemplated. Conservative substitutions are shown in Table 1 under the heading of “preferred substitutions”. If such substitutions result in a change in biological activity, then more substantial changes, denominated “exemplary substitutions” in Table 1, or as further described below in reference to amino acid classes, may be introduced and the products screened.
TABLE 1 Exemplary Preferred Original Residue Substitutions Substitutions Ala (A) val; leu; ile val Arg (R) lys; gln; asn lys Asn (N) gln; his; asp, lys; arg gln Asp (D) glu; asn glu Cys (C) ser; ala ser Gln (Q) asn; glu asn Glu (E) asp; gln asp Gly (G) ala ala His (H) asn; gln; lys; arg arg Ile (I) leu; val; met; ala; leu phe; norleucine Leu (L) norleucine; ile; val; ile met; ala; phe Lys (K) arg; gln; asn arg Met (M) leu; phe; ile leu Phe (F) leu; val; ile; ala; tyr tyr Pro (P) ala ala Ser (S) thr thr Thr (T) ser ser Trp (W) tyr; phe tyr Tyr (Y) trp; phe; thr; ser phe Val (V) ile; leu; met; phe; leu ala; norleucine - Substantial modifications in the biological properties of the antibody are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties:
- (1) hydrophobic: norleucine, met, ala, val, leu, ile;
- (2) neutral hydrophilic: cys, ser, thr;
- (3) acidic: asp, glu;
- (4) basic: asn, gln, his, lys, arg;
- (5) residues that influence chain orientation: gly, pro; and
- (6) aromatic: trp, tyr, phe.
- Non-conservative substitutions will entail exchanging a member of one of these classes for another class.
- Any cysteine residue not involved in maintaining the proper conformation of the ErbB4 antagonist antibody also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking. Conversely, cysteine bond(s) may be added to the antibody to improve its stability (particularly where the antibody is an antibody fragment such as a Fv fragment).
- A particularly preferred type of substitution variant involves substituting one or more hypervariable region residues of a parent antibody (e.g. a humanized or human antibody). Generally, the resulting variant(s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated. A convenient way for generating such substitution variants is affinity maturation using phage display. Briefly, several hypervariable region sites (e.g. 6-7 sites) are mutated to generate all possible amino substitutions at each site. The antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. The phage-displayed variants are then screened for their biological activity (e.g. antagonist activity) as herein disclosed. In order to identify candidate hypervariable region sites for modification, alanine scanning mutagenesis can be performed to identify hypervariable region residues contributing significantly to antigen binding. Alternatively, or in addition, it may be beneficial to analyze a crystal structure of the antigen-antibody complex to identify contact points between the antibody and ErbB receptor. Such contact residues and neighboring residues are candidates for substitution according to the techniques elaborated herein. Once such variants are generated, the panel of variants is subjected to screening as described herein and antibodies with superior properties in one or more relevant assays may be selected for further development.
- Another type of amino acid variant of the antibody alters the original glycosylation pattern of the antibody. By altering is meant deleting one or more carbohydrate moieties found in the antibody, and/or adding one or more glycosylation sites that are not present in the antibody.
- Glycosylation of antibodies is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.
- Addition of glycosylation sites to the antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original antibody (for O-linked glycosylation sites).
- Nucleic acid molecules encoding amino acid sequence variants of the ErbB4 antagonist antibodies are prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the ErbB4 antagonist antibody.
- (ix) Other Modifications of Antibodies
- The ErbB4 antagonist antibodies disclosed herein may also be formulated as immunoliposomes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Nat. Acad. Sci. USA 82:3688 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Pat. No. 5,013,556.
- Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab′ fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al., J. Biol. Chem. 257:286-288 (1982) via a disulfide interchange reaction. A chemotherapeutic agent (such as Doxorubicin) is optionally contained within the liposome. See Gabizon et al., J. National Cancer Inst. 81(19):1484 (1989).
- The antibody of the present invention may also be used in ADEPT by conjugating the antibody to a prodrug-activating enzyme which converts a prodrug (e.g., a peptidyl chemotherapeutic agent, see WO81/01145) to an active anti-cancer drug. See, for example, WO 88/07378 and U.S. Pat. No. 4,975,278.
- The enzyme component of the immunoconjugate useful for ADEPT includes any enzyme capable of acting on a prodrug in such a way so as to covert it into its more active, cytotoxic form.
- Enzymes that are useful in the method of this invention include, but are not limited to, alkaline phosphatase useful for converting phosphate-containing prodrugs into free drugs; arylsulfatase useful for converting sulfate-containing prodrugs into free drugs; cytosine deaminase useful for converting non-toxic 5-fluorocytosine into the anti-cancer drug, 5-fluorouracil; proteases, such as serratia protease, thermolysin, subtilisin, carboxypeptidases and cathepsins (such as cathepsins B and L), that are useful for converting peptide-containing prodrugs into free drugs; D-alanylcarboxypeptidases, useful for converting prodrugs that contain D-amino acid substituents; carbohydrate-cleaving enzymes such as β-galactosidase and neuraminidase useful for converting glycosylated prodrugs into free drugs; β-lactamase useful for converting drugs derivatized with β-lactams into free drugs; and penicillin amidases, such as penicillin V amidase or penicillin G amidase, useful for converting drugs derivatized at their amine nitrogens with phenoxyacetyl or phenylacetyl groups, respectively, into free drugs. Alternatively, antibodies with enzymatic activity, also known in the art as “abzymes”, can be used to convert the prodrugs of the invention into free active drugs (see, e.g., Massey, Nature 328:457-458 (1987)). Antibody-abzyme conjugates can be prepared as described herein for delivery of the abzyme to a tumor cell population.
- The enzymes of this invention can be covalently bound to the ErbB4 antagonist antibodies by techniques well known in the art such as the use of the heterobifunctional crosslinking reagents discussed above. Alternatively, fusion proteins comprising at least the antigen binding region of an antibody of the invention linked to at least a functionally active portion of an enzyme of the invention can be constructed using recombinant DNA techniques well known in the art (see, e.g., Neuberger et al., Nature 312:604-608 [1984]).
- In certain embodiments of the invention, it may be desirable to use an antibody fragment, rather than an intact antibody. In this case, it may be desirable to modify the antibody fragment in order to increase its serum half-life. This may be achieved, for example, by incorporation of a salvage receptor binding epitope into the antibody fragment (e.g., by mutation of the appropriate region in the antibody fragment or by incorporating the epitope into a peptide tag that is then fused to the antibody fragment at either end or in the middle, e.g., by DNA or peptide synthesis). See WO96/32478 published Oct. 17, 1996.
- The salvage receptor binding epitope generally constitutes a region wherein any one or more amino acid residues from one or two loops of a Fc domain are transferred to an analogous position of the antibody fragment. Even more preferably, three or more residues from one or two loops of the Fc domain are transferred. Still more preferred, the epitope is taken from the CH2 domain of the Fc region (e.g., of an IgG) and transferred to the CH1, CH3, or VH region, or more than one such region, of the antibody. Alternatively, the epitope is taken from the CH2 domain of the Fc region and transferred to the CL region or VL region, or both, of the antibody fragment.
- Covalent modifications of the ErbB4 antagonist antibodies are also included within the scope of this invention. They may be made by chemical synthesis or by enzymatic or chemical cleavage of the antibody, if applicable. Other types of covalent modifications of the antibody are introduced into the molecule by reacting targeted amino acid residues of the antibody with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues. Exemplary covalent modifications of polypeptides are described in U.S. Pat. No. 5,534,615, specifically incorporated herein by reference. A preferred type of covalent modification of the antibody comprises linking the antibody to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Pat. No. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.
- 3. Preparation of Soluble ErbB4 Receptors
- Soluble ErbB4 receptors, such an ErbB4 extracellular domain, can be prepared by culturing cells transformed or transfected with a vector containing the encoding nucleic acid. It is, of course, contemplated that alternative methods, which are well known in the art, may be employed to prepare such soluble receptors. For instance, the soluble receptor sequence, or portions thereof, may be produced by direct peptide synthesis using solid-phase techniques (see, e.g., Stewart et al., supra; and Merrifield, supra). In vitro protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be accomplished, for instance, using an Applied Biosystems Peptide Synthesizer (Foster City, Calif.) using manufacturer's instructions. Various portions of the soluble receptor may be chemically synthesized separately and combined using chemical or enzymatic methods to produce the full-length soluble receptor.
- Recombinant production of soluble ErbB4 receptors is performed essentially as described hereinabove in connection with immunoadhesins.
- The most convenient method for the large-scale production of soluble ErbB4 receptors is by cleavage from an ErbB4-Ig immunoadhesin. The structural similarity between immunoadhesins and antibodies suggested that it might be possible to cleave immunoadhesins by proteolytic enzymes such as papain, to generate Fd-like fragments containing the “adhesin” portion. In order to provide a more generic approach for cleavage of immunoadhesins, proteases which are highly specific for their target sequence are to be used. A protease suitable for this purpose is an engineered mutant of subtilisin BPN, which recognizes and cleaves the sequence AAHYTL. Introduction of this target sequence into the support hinge region of an ErbB4-IgG (e.g. IgG1) immunoadhesin facilitates highly specific cleavage between the Fc and trk domains. The IgG1 immunoadhesin is purified by protein A chromatography and cleaved with an immobilized form of the enzyme. Cleavage results in two products; the Fc region and the ErbB4 region, which is preferably an ErbB4 extracellular domain. These fragments can be separated easily by a second passage over a protein A column to retain the Fc and obtain the purified ErbB4 fragment in the flow-through fractions. A similar approach can be used to generate a dimeric ErbB4 portion, by placing the cleavable sequence at the lower hinge.
- 4. Therapeutic Compositions and Methods
- The members of the ErbB family of receptors and corresponding ligands are involved in smooth muscle cell proliferation in various organs. Accordingly, an ErbB4 receptor antagonist may be utilized for the treatment of a variety of “diseases or disorders” involving smooth muscle cell proliferation in a mammal, such as a human.
- In a preferred embodiment, the present invention concerns the use of ErbB4 receptor antagonists for the treatment of cardiac diseases involving proliferation of vascular smooth muscle cells (VSMC) and leading to intimal hyperplasia such as vascular stenosis, restenosis resulting from angioplasy or surgery or stent implants, atherosclerosis and hypertension (reviewed in Casterella and Teirstein, Cardiol. Rev. 7: 219-231 [1999]; Andres, Int. J. Mol. Med. 2: 81-89 [1998]; and Rosanio et al., Thromb. Haemost. 82 [suppl 1]: 164-170 [1999]). There is an intricate interplay of various cells and cytokines released that act in autocrine, paracrine or juxtacrine manner, which result in migration of VSMCs from their normal location in media to the damaged intima. The migrated VSMCs proliferate excessively and lead to thickening of intima, which results in stenosis or occlusion of blood vessels. The problem is compounded by platelet aggregation and deposition at the site of lesion. α-thrombin, a multifunctional serine protease, is concentrated at site of vascular injury and stimulates VSMCs proliferation. Following activation of this receptor, VSMCs produce and secrete various autocrine growth factors, including PDGF-AA, HB-EGF and TGF-β (reviewed in Stouffer and Runge, Semin. Thromb. Hemost. 24: 145-150 [1998]).
- Various members of the EGF family play important roles in the normal growth and maintenance of blood vessels as well as in pathological conditions. For example, heparin-binding EGF-like growth factor (HB-EGF) is a potent mitogen and a chemotactic factor for fibroblasts as well as VSMCs but not endothelial cells (reviewed in Raab and Klagsbrun, Biochim. Biophys. Acta 1333: F179-199 [1997]). Vascular endothelial growth factor (VEGF), a powerful angiogenic factor, induces the expression of HB-EGF in vascular endothelial cells (Arkonac et al., J. Biol. Chem. 273: 4400-4405 [1998]). HB-EGF binds to and activates HER1 and ErbB4 receptors initiating a signal transduction cascade that ultimately results in migration and proliferation of fibroblasts and VSMCs. HB-EGF also stimulates VSMCs to secrete various factors that are mitogenic for endothelial cells (Abramovitch et al., FEBS Lett. 425: 441-447 [1998]). Moreover, it also induces chemotactic response in endothelial cells. Similarly, another ligand that activates EGF receptors, epiregulin, is secreted by VSMCs stimulated with angiotensin II, endothelin-1 and thrombin, and also acts as a powerful mitogen for proliferation of VSMCs (Taylor et al., Proc. Natl. Acad. Sci. USA 96: 1633-1638 [1999]).
- Vascular stenosis gives rise to hypertension as a result of increased resistance to blood flow. Moreover, decreased blood supply to the tissue may also cause necrosis and induce inflammatory response leading to severe damage. For example, myocardial infarction occurs as a result of lack of oxygen and local death of heart muscle tissues. Percutaneous transluminal coronary angioplasy (PTCA), simply referred to as balloon angioplasty, is a non-surgical catheter-based treatment for obstructive coronary artery disease. In this method, a catheter is introduced in the blood vessel and a balloon is inflated at the site of plaque in order to mechanically dislodge the plaque. Alternatively, stent is implanted to restore smooth blood flow. However, neointimal formation takes place even within the implanted stent, known as “in-stent restenosis.” For example, stent deployment results in early thrombus deposition and acute inflammation, granulation tissue development, and ultimately smooth muscle cell proliferation and extracellular matrix synthesis (reviewed in Virmani and Farb, Curr. Opin. Lipidol. 10: 499-506 [1999]). Bypass surgery is performed to get around the affected blood vessel only in severe cases, and usually only after multiple rounds of angioplasty have failed in restoring blood flow.
- Although balloon angioplasty has been used widely for the treatment of stenosis, its long-term success is limited by restenosis. Restenosis persists as the limiting factor in the maintenance of vessel patency after PTCA, occurring in 30-50% of patients and accounting for significant morbidity and health care expenditure. The underlying mechanisms of restenosis are comprised of a combination of effects from vessel recoil, negative vascular remodeling, thrombus formation and neointimal hyperplasia. Importantly, these events are interconnected. For example, neointimal hyperplasia is stimulated by growth factors, which are released by local thrombi and the injured arterial segment itself, and act to enhance the expression of other growth-stimulating proteins resulting in acute proliferative and inflammatory responses. For instance, endothelial injury induces expression of EGF, EGF-like factors and EGFR in VSMCs, which act upon them in an autocrine manner to stimulate their proliferation leading to intimal thickening and restenosis. Extracellular matrix (ECM) formation and accumulation in the vessel wall is another important component of the restenosis lesion that develops after balloon angioplasty.
- A multitude of pharmacological trials have been conducted in an attempt to prevent restenosis, but most have demonstrated little benefits. Early clinical trials in restenosis prevention using various revascularization devices, anti-platelet drugs, anti-thrombotic drugs and anti-inflammatory drugs were uniformly negative (reviewed in Casterella and Teirstein, Cardiol. Rev. 7: 219-231 [1999]; Andres, Int. J. Mol. Med. 2: 81-89 [1998]; and Rosanio et al., Thromb. Haemost. 82 [suppl 1]: 164-170 [1999]). Inspite of all the recent progress, there is still no satisfactory treatment for stenosis or prevention of restenosis after balloon angioplasty or stent implantation. Although limited success has been achieved in small randomized trials, stenosis, and particularly restenosis, remains a major clinical problem. The instant invention discloses the use of ErbB4 receptor antagonists for the treatment of stenosis or restenosis by controlling the proliferation of vascular smooth muscle cells.
- The scope of the present invention, however, is not restricted to the disorders of the vascular smooth muscle cells. The scope specifically includes any disorder that results from proliferation of smooth muscle cells in any organ and that involves an active role of ErbB4 receptors and/or corresponding ligands.
- Infantile hypertrophic pyloric stenosis (IHPS) is a relatively common disease that primarily affects young infants. The underlying stenosis causes functional obstruction of the pyloric canal. Consequently, gastric emptying of milk is disturbed severely. IHPS involves hypertrophy and hyperplasia of the pyloric smooth muscle mass and results in pyloric stenosis (Oue and Puri, Pediatr. Res. 45: 853-857 [1999]). Furthermore, increased expression of EGF, EGF receptor and HB-EGF has been reported in SMCs in pyloric circular and longitudinal muscle from IHPS patients as compared to control tissues (Shima et al., Pediatr. Res. 47: 201-207 [2000]). The antagonists of ErbB4 disclosed herein may find use in the control of pyloric smooth muscle cell proliferation and therefore in the treatment of pyloric stenosis.
- The contractile nature of smooth muscle cells and regulation of their contraction by various factors play a crucial role in the urinary collecting system including bladder, ureters and urethra. A membrane-bound precursor form of HB-EGF is expressed in urinary bladder smooth muscle cells and epithelial cells (Freeman et al., J. Clin. Invest. 99: 1028-1036 [1997]; Kaefer et al., J. Urol. 163: 580-584 [2000]). Moreover, treatment of bladder SMCs with diphtheria toxin, which is known to utilize membrane-bound HB-EGF as a receptor, inhibited their proliferation (Kaefer et al., ibid). HB-EGF is a potent mitogen for bladder SMC proliferation, and it acts by binding to ErbB1 (HER1) receptors expressed by these cells, thus acting as an autocrine growth factor (Borer et al., Lab Invest. 79: 1335-1345 [1999]). The authors also demonstrated the expression of ErbB2 and ErbB3 but not ErbB4 receptors on bladder SMCs. These findings raise the possibility that HB-EGF plays a role in the bladder wall thickening that occurs in response to obstructive syndromes affecting the lower urinary tract. Therefore, ErbB4 antagonists of the instant invention, particularly ErbB4 immunoadhesin, may prove useful in controlling proliferation of bladder smooth muscle cells, and consequently in the prevention or treatment of urinary obstructive syndromes.
- The obstructive airway diseases are yet another group of diseases with underlying pathology involving smooth muscle cell proliferation. One example of this group is asthma which manifests in airway inflammation and bronchoconstriction. EGF has been shown to stimulate proliferation of human airway SMCs and is likely to be one of the factors involved in the pathological proliferation of airway SMCs in obstructive airway diseases (Cerutis et al., Am. J. Physiol. 273: L10-15 [1997]; Cohen et al., Am. J. Respir. Cell. Mol. Biol. 16: 85-90 [1997]). Accordingly, the ErbB4 antagonists of the present invention may be used for the treatment of obstructive airway diseases.
- There are two major approaches to introducing the nucleic acid (optionally contained in a vector) into the patient's cells; in vivo and ex vivo. For in vivo delivery the nucleic acid is injected directly into the patient, usually at the site where the chimeric heteroadhesin is required. For ex vivo treatment, the patient's cells are removed, the nucleic acid is introduced into these isolated cells and the modified cells are administered to the patient either directly or, for example, encapsulated within porous membranes which are implanted into the patient (see, e.g. U.S. Pat. Nos. 4,892,538 and 5,283,187).
- There are a variety of techniques available for introducing nucleic acids into viable cells. The techniques vary depending upon whether the nucleic acid is transferred into cultured cells in vitro, or in vivo in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium phosphate precipitation method, etc.
- A commonly used vector for ex vivo delivery of the gene is a retrovirus. The currently preferred in vivo nucleic acid transfer techniques include transfection with viral vectors (such as adenovirus, Herpes simplex I virus, or adeno-associated virus) and lipid-based systems (useful lipids for lipid-mediated transfer of the gene are DOTMA, DOPE and DC-Chol, for example). In some situations it is desirable to provide the nucleic acid source with an agent that targets the target cells, such as an antibody specific for a cell surface membrane protein or the target cell, a ligand for a receptor on the target cell, etc. Where liposomes are employed, proteins which bind to a cell surface membrane protein associated with endocytosis may be used for targeting and/or to facilitate uptake, e.g. capsid proteins or fragments thereof tropic for a particular cell type, antibodies for proteins which undergo internalization in cycling, and proteins that target intracellular localization and enhance intracellular half-life. The technique of receptor-mediated endocytosis is described, for example, by Wu et al., J. Biol. Chem. 262:4429-4432 (1987); and Wagner et al., Proc. Natl. Acad. Sci. USA 87:3410-3414 (1990). For review of the currently known gene marking and gene therapy protocols see Anderson et al., Science 256:808-813 (1992). See also WO 93/25673 and the references cited therein.
- Therapeutic formulations are prepared for storage by mixing the ErbB4 antagonist having the desired degree of purity with optional physiologically acceptable carriers, excipients, or stabilizers (Remington's Pharmaceutical Sciences, 16th Edition, Osol., A., Ed., (1980)), in the form of lyophilized cake or aqueous solutions. Pharmaceutically acceptable carriers, excipients, or stabilizers are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as Tween™, Pluronics™, or polyethylene glycol (PEG).
- An antibody or an immunoadhesin to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution. The formulation ordinarily will be stored in lyophilized form or in solution.
- Therapeutic compositions are generally placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
- The route of antibody, immunoadhesin or chimeric heteroadhesin administration is in accord with known methods, e.g., injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, or intralesional routes, or by sustained-release systems as noted below. The heteroadhesin or antibody is administered continuously by infusion or by bolus injection.
- Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the protein, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (e.g., poly(2-hydroxyethyl-methacrylate) as described by Langer et al., J. Biomed. Mater. Res., 15:167-277 (1981) and Langer, Chem. Tech., 12:98-105 (1982) or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., Biopolymers, 22:547-556 (1983)), non-degradable ethylene-vinyl acetate (Langer et al., supra), degradable lactic acid-glycolic acid copolymers such as the Lupron Depot™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(−)-3-hydroxybutyric acid (EP 133,988).
- Sustained-release ErbB4 antagonist also include liposomally entrapped drug. Liposomes containing ErbB4 antagonist are prepared by methods known per se: Epstein et al., Proc. Natl. Acad. Sci. USA 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese patent application 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. % cholesterol, the selected proportion being adjusted for the optimal therapy. Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. A chemotherapeutic agent (such as Doxorubicin) is optionally contained within the liposome. See Gabizon et al. J. National Cancer Inst. 81(19):1484 (1989).
- The ErbB4 antagonist of the invention may be used to bind and sequester ErbB4 ligand or block ErbB4 receptor thereby inhibiting ErbB4 activation in the cell and inhibit cell proliferation. The ErbB4 antagonist of the invention may be administered to a patient along with other therapy such as a chemotherapeutic agent. Preparation and dosing schedules for such chemotherapeutic agents may be used according to manufacturers' instructions or as determined empirically by the skilled practitioner. Preparation and dosing schedules for such chemotherapy are also described in Chemotherapy Service Ed., M. C. Perry, Williams & Wilkins, Baltimore, Md. (1992). The chemotherapeutic agent may precede, or follow administration of the antagonist or may be given simultaneously therewith.
- An effective amount of antagonist to be employed therapeutically will depend, for example, upon the therapeutic objectives, the route of administration, and the condition of the patient. Accordingly, it will be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the maximum therapeutic effect. A typical dosage might range from about 1 μg/kg to up to 100 mg/kg of patient body weight, preferably about 10 μg/kg to 10 mg/kg. Typically, the clinician will administer antagonist until a dosage is reached that achieves the desired effect for treatment of the above mentioned disorders.
- 5. Methods for Identification of Molecules that Inhibit or Enhance the Proliferation or Migration of Smooth Muscle Cells
- The present invention discloses a method of screening to identify molecules that can inhibit or enhance the proliferation of smooth muscle cells. For example, a candidate molecule is incubated with a polypeptide comprising the extracellular domain of an ErbB4 receptor, followed by adding to a culture of smooth muscle cells and determining the effect on the proliferation of cells. The ErbB4 receptor may be a native ErbB4 receptor such as a human ErbB4 receptor, or may be a polypeptide having at least 85% sequence identity with the amino acid sequence of a native ErbB4 receptor. The cell proliferation can be monitored and quantitated in a number of ways. For instance, incorporation of 3H-thymidine into DNA is a well-established method to monitor cellular DNA synthesis indicative of cell proliferation. The incorporation of 3H-thymidine into DNA is monitored either microscopically by counting the number of silver grains in an autoradiograph or biochemically by liquid scintillation counting. Similarly, incorporation of 5-bromo 2′-deoxyuridine (BrdU) into cellular DNA can be monitored either microscopically or immunologically. Both assays utilize highly specific monoclonal antibodies that recognize BrdU incorporated into DNA. In the microscopic assay, the cells are permeabilized, reacted with BrdU specific monoclonal antibodies followed by labeled secondary antibodies. The secondary antibodies are detected by virtue of an attached label such as a fluorescent dye (fluorescein isothiocyanate (FITC), rhodamine, Texas Red etc) or an enzymatic label (alkaline phosphatase, horseradish peroxidase etc). A suitable substrate that produces an insoluble product upon enzymatic action is then used to reveal and quantitate the enzyme labeled secondary antibodies. An enzymatic assay monitors the amount of BrdU specific monoclonal antibodies by a suitable immunoassay such as ELISA. The monoclonal antibodies specific for BrdU as well as ELISA kits containing such antibodies are available commercially from a number of sources including. Boehringer Mannheim. A flow cytometry can also be used to monitor cell proliferation. In this method, cells are fractionated based on the nuclear DNA content per cell. Since the nuclear DNA content varies among cells undergoing division depending on the phase of cell cycle (2n in G1 phase, 4n in G2+M phase and intermediate value in S phase, wherein n is the value of haploid nuclear DNA content), cell proliferation can be rapidly monitored by estimating the fraction of cells in S and G2+M phases using this approach.
- Since ErbB4-dependent proliferation of smooth muscle cells involves ligand-mediated signal transduction pathway utilizing ErbB4 receptor, any step in this pathway can be monitored and used as a measure of cell proliferation. One such step is a ligand-induced tyrosine autophosphorylation of ErbB4 receptor, which can be monitored by the kinase receptor activation (KIRA) assay as described in WO95/14930. This ELISA-type assay is suitable for qualitative or quantitative measurement of kinase activation by measuring the autophosphorylation of the kinase domain of a receptor protein tyrosine kinase such as ErbB4. The first stage of the assay involves phosphorylation of the kinase domain of ErbB4 receptor present in the cell membrane of a smooth muscle cell. Typically, a first solid phase (e.g., a well of a first assay plate) is coated with a substantially homogeneous population of smooth muscle cells. Being adherent cells, the smooth muscle cells adhere naturally to the first solid phase. One can also use smooth muscle cells transfected with a “receptor construct” that comprises a fusion of a kinase receptor and a flag polypeptide. Antibodies specific for flag polypeptide are used in the ELISA part of the assay to capture the receptor with flag peptide. A candidate molecule and a polypeptide comprising the extracellular domain of a native ErbB4 receptor are then added to the wells containing smooth muscle cells, followed by monitoring tyrosine autophosphorylation of ErbB4 receptor by the KIRA assay. A polypeptide comprising an amino acid sequence having at least 85% sequence identity with the amino acid sequence of the extracellular domain of ErbB4 receptor can also be used in the assay. Following exposure, the smooth muscle cells are solubilized using a lysis buffer (which has a solubilizing detergent therein) and gentle agitation, thereby releasing cell lysate which can be subjected to the ELISA part of the assay directly, without the need for concentration or clarification of the cell lysate.
- The cell lysate thus prepared is then subjected to the second (ELISA) stage of the assay. As a first step in the ELISA stage, a second solid phase (usually a well of an ELISA microtiter plate) is coated with a capture agent (often a capture antibody) which binds specifically to ErbB4 receptor or, in the case of a receptor construct, to the flag polypeptide. Coating of the second solid phase is carried out so that the capture agent adheres to the second solid phase. The capture agent is generally a monoclonal antibody but polyclonal antibodies may also be used. The cell lysate obtained is then exposed to, or contacted with, the adhering capture agent so that the receptor or receptor construct adheres to (or is captured in) the second solid phase. A washing step is then carried out, so as to remove unbound cell lysate, leaving the captured receptor or receptor construct. The adhering or captured receptor or receptor construct is then exposed to, or contacted with, an anti-phosphotyrosine antibody which identifies phosphorylated tyrosine residues in the tyrosine kinase receptor. In the preferred embodiment, the anti-phosphotyrosine antibody is conjugated (directly or indirectly) to an enzyme which catalyses a color change of a non-radioactive color reagent. Accordingly, phosphorylation of the receptor can be measured by a subsequent color change of the reagent. The enzyme can be bound to the anti-phosphotyrosine antibody directly, or a conjugating molecule (e.g., biotin) can be conjugated to the anti-phosphotyrosine antibody and the enzyme can be subsequently bound to the anti-phosphotyrosine antibody via the conjugating molecule. Finally, binding of the anti-phosphotyrosine antibody to the captured receptor or receptor construct is measured, e.g., by a color change in the color reagent. Anti-phosphotyrosine antibodies that are commercially available can be used for the assay.
- The instant invention also provides for a method for screening of molecules which can inhibit or enhance migration of smooth muscle cells. One of the formats utilizes a compartmentalized chemotaxis cell culture chambers such as Neuroprobe ChemoTX chemotaxis chambers available from (Neuroprobe Inc., Gaithersburg, Md.). In this method, a porous filter separates smooth muscle cells in the upper chamber from a medium containing a chemoattractant (e.g. thrombin) in the lower chamber. Smooth muscle cells are incubated with a candidate molecule and a polypeptide comprising the extracellular domain of an ErbB4 receptor. At the end of incubation period, the filters are stained and smooth muscle cells that have migrated to the bottom of the filter are counted using an inverted microscope.
- A conventional library or a combinatorial library of chemical compounds can be used for screening purpose. An automated approach adapted for high throughput can be conveniently used for the assay. However, the screening assays are not restricted only to small molecules, even macromolecules such as antibodies can be used for the screening.
- The following examples are offered by way of illustration and not by way of limitation. The examples are provided so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the compounds, compositions, and methods of the invention and are not intended to limit the scope of what the inventors regard as their invention. Efforts have been made to insure accuracy with respect to numbers used (e.g. amounts, temperature, etc.) but some experimental errors and deviation should be accounted for. Unless indicated otherwise, parts are parts by weight, temperature is in degrees C., and pressure is at or near atmospheric. The disclosures of all citations in the specification are expressly incorporated herein by reference.
- A unique Mlu I site was engineered into a plasmid expressing human IgG heavy chain (pDR, a gift from J. Ridgeway and P. Carter, Genentech, Inc.) at the region encoding the hinge domain of the immunoglobulin. Mlu I sites were also engineered into a set of ErbB4 expression plasmids at the region encoding the ECD/TM junctions of these receptors. All mutagenesis were performed using the Kunkel method (Kunkel, T., Proc. Natl. Acad. Sci. U.S.A. 82:488 (1985)). The Mlu I sites were utilized to make the appropriate ErbB4-IgG fusion constructs. The fusion junction of the ErbB-IgG chimera was: G640 ErB4-(TR)-DKTH224 VH, where the amino acid numbering of the ErbB4 polypeptide is described in Plowman et al. (Plowman, G. D. et al., (1993a) PNAS USA 90:1746-1750) The conserved TR sequence is derived from the Mlu I site. The sequence of the Fc region used in the preparation of the fusion constructs is found in Ellison, J. W. et al. (Ellison, J. W. et al. (1982) NAR 10:4071-4079). The final expression constructs were in a pRK-type plasmid backbone wherein eukaryotic expression is driven by a CMV promoter (Gorman et al., DNA Prot. Eng. Tech. 2:3-10 (1990)).
- To obtain protein for in vitro experiments, adherent HEK-293 cells (ATCC No. CRL-1573) were transfected with the expression plasmid using standard calcium phosphate methods (Gorman et al., supra and Huang et al., Nucleic Acids Res. 18:937-947 (1990)). Serum-containing media was replaced with serum-free media 15 hours post-transfection and the transfected cells incubated for 5-7 days. The resulting conditioned media was harvested and passed through Protein A columns (1 mL Pharmacia HiTrap™). Purified IgG fusions were eluted with 0.1 M citric acid (pH 4.2) into tubes containing 1 M Tris pH 9.0. The eluted proteins were subsequently dialyzed against PBS and concentrated using Centri-prep-30 filters (Amicon). Glycerol was added to a final concentration of 25% and the material stored at −20° C. Concentrations of material were determined via a Fc-ELISA
- 125I-HRG Binding Assay
- The EGF-like domain of HRGβ1(177-244) was expressed in E. coli, purified and radioiodinated as described previously (Sliwkowski, M. et al. J. Biol. Chem. 269:14661-14665 (1994)). Full-length rHRGβ1, which was expressed in Chinese hamster ovary cells, was used in Western blot analysis. Binding assays were performed in Nunc breakapart immuno-module plates. Plate wells were coated at 4° C. overnight with 100 μl of 5 μg/ml goat-anti-human antibody (Boehringer Mannheim) in 50 mM carbonate buffer (pH 9.6). Plates were rinsed twice with 200 μl wash buffer (PBS/0.05% Tween-20™) followed by a brief incubation with 100
μl 1% BSA/PBS for 30 min at room temperature. Buffer was removed and each well was incubated with 100 μl IgG fusion protein in 1% BSA/PBS under vigorous side-to-side rotation for 1 hour. Plates were rinsed three times with wash buffer and competitive binding was carried out by adding various amounts of cold competitor γ-HRG and 125I-HRGβ1 and incubating at room temperature for 2-3 hours with vigorous side-to-side rotation. Wells were quickly rinsed three times with wash buffer, drained and individual wells were counted using a 100 Series Iso Data γ-counter. Scatchard analysis was performed using a modified Ligand program (Munson, P. and Robard, D. (1980) Analytical Biochemistry 107:220-239). - 3H-Thymidine Incorporation Assay
- Tritiated thymidine incorporation assays were performed in a 96-well format. MCF7 cells were plated at 10,000 cells/well in 50:50 F12/DMEM (high glucose) 0.1% fetal calf serum (100 ml). Cells were allowed to settle for 3 hours, after which ErbB4-IgG fusion proteins and/or heregulin were added to the wells (final volume of 200 ml) and the plates incubated for 15 hours in a 37° C. tissue culture incubator. Tritiated thymidine was added to the wells (20 ml of 1/20 diluted tritiated thymidine stock:
Amersham TRA 120 B363, 1 mCi/ml) and the plates incubated a further 3 hours. Tritiated material was then harvested onto GF/C unifilters (96 well format) using a Packard Filtermate 196 harvester. Filters were counted using a Packard Topcount apparatus. - Human aortic smooth muscle cells (Clonetics) were seeded at about 50% confluent density (5000 cells/well) in 96 well tissue culture plates and incubated overnight in SM2 media (Clonetics). Next day, the media was changed to M199 supplemented with ITS (1×), 2 mM L-glutamine, 50 μg/ml ascorbic acid, 26.5 mM NaHCO3, 100 U/ml penicillin, 100 U/ml streptomycin and 0.1% (v/v) fetal bovine serum. The cells were further incubated for 16 h. The cells were then treated with either Her4-IgG (400 nM) or buffer for 1 h, followed by treatment with PDGF (100 ng/ml) for 40 h. Control cells were left untreated to estimate the basal level of cell growth. An aliquot of BrdU (10 μl/well of a 10 μM solution of 5-bromo 2′-deoxyuridine prepared in PBS) was added and the cells were incubated for an additional 2 h. Cell proliferation was monitored by quantitating BrdU incorporation using BrdU ELISA (Cell proliferation kit, Boehringer mannheim,
Catalog No 1 647 229) following manufacturer's instructions for adherent cells. - As shown in
FIG. 5 , PDGF stimulated growth of aortic smooth muscle cells in agreement with earlier reports (Ross et al., Philos. Trans. R. Soc. Lond. B Biol. Sci. 12: 155-169 [1990]). Pre-treatment of cells with ErbB4-IgG immunoadhesin reduced the extent of PDGF-stimulated proliferation of cells. Control cells treated with buffer in place of ErbB4-IgG did not show any significant effect on cell proliferation. These data indicate that at least part of the mitotic response of smooth muscle cells is mediated by the activation of the ErbB4 receptor, and removal of ligands which would activate the ErbB4 receptor with the ErbB4 immunoadhesin reduces smooth muscle cell proliferation in response to PDGF. - Human aortic smooth muscle cells were trypsinized and resuspended at a concentration of 5×105 cells per ml in DME containing 10% FBS. Cells were pre-incubated with Her4-IgG (400 nM) or buffer for 15 min. The lower wells of ChemoTX chemotaxis chambers (Neuroprobe Inc., Cat 116-8) were filled with 300 μl of a solution of 2 U/ml human thrombin or buffer (PBS) negative control. A filter was mounted on top of the chamber and the smooth muscle cells (buffer or ErbB4 treated) were added to the top wells in a volume of 50 μl. The plate and filter were covered with the clear plastic lid and incubated for 3 h at 37° C. in humidified air with 5% CO2. At the end of the incubation, filters were removed and the top sides were wiped with a Q-tip to remove any remaining cells. The filters were stained with Dif-Quick staining solution and the number of cells migrated to the bottom of the filter were counted using an inverted phase microscope. Six wells in each group and 40 fields in each well were counted.
- As shown in
FIG. 6 , thrombin acted as a chemotactic stimulus and induced migration of aortic smooth muscle cells. ErbB4-IgG immunoadhesin inhibited thrombin-stimulated cell migration. These data indicate that at least part of thrombin's ability to stimulate smooth muscle cell migration is mediated by the release of ligand(s) for the ErbB4 receptor, and that the removal of these ligands with the ErbB4 immunoadhesin reduces the chemotactic response to thrombin - Generation of Anti-ErbB4 Mabs
- A panel of 34 murine monoclonal antibodies which specifically bind the extracellular domain of ErbB4 were produced using conventional hybridoma technology (Table 2). Total cellular RNA was extracted from MDA-MB-453 cells and used as a template in RT PCR to generate the human ErbB4 extracellular domain (ECD) coding sequence. Specific oligonucleotides used in the RT PCR reactions were synthesized on the basis of the ErbB4 DNA sequence. A gDErbB4 ECD fusion protein was constructed by ligating the coding sequences for amino acids 1-52 of herpes
simplex virus type 1 glycoprotein D to the sequences encoding amino acids 26-640 of human ErbB4. The gDErbB4 ECD cDNA was inserted into the cytomegalovirus-based expression vector pRK5. This construct was transiently transfected into human embryonic kidney 293 cells using a standard calcium phosphate precipitation protocol. - An affinity column was prepared by coupling the anti-gD monoclonal 5B6 to CNBR sepharose (Pharmacia LKB Biotechnology, Uppsala Sweden). Supernatant from gDErbB4 ECD transfected 293 cells was concentrated 20-40 fold on a ym30 membrane (Amicon, Beverly Mass.) and loaded onto the affinity resin. The column was washed with PBS and the receptor was eluted with 100 mM acetic acid/500 mM NaCl pH 2.4. The ErbB4 ECD was buffer exchanged into PBS and concentrated. Protein concentration was determined by OD280.
- Balb/c mice were immunized with approximately 5 μg of ErbB4 ECD in RIBI MPL+TDM+CWS Emulsion (RIBI ImmunoChem Research Inc., Hamilton, Mont.) in their rear footpads on
weeks day 10, the hybridoma supernatants were screened for the presence of ErbB4 specific antibodies using a radioactive capture assay as described below. Stable antibody producing clones were obtained by limiting dilution and large quantities of specific Mabs were produced in ascites. The antibodies were purified on protein A-Sepharose columns (Fermentech, Inc., Edinburgh, Scotland) and stored sterile in PBS at 4° C. - In the radioactive capture assay, Maxisorp breakapart modules (Nunc, Roskilde, Denmark) were coated with 100 μl of 2 μg/ml goat anti-mouse IgG (Boehringer Mannheim) overnight at 4° C. The plates were washed with PBS/0.5% Tween 20 (PBST), blocked with ELISA diluent (PBS/0.5% BSA/0.05% Tween 20) and incubated with monoclonal supernatants for 2 hr at ambient temperature. The plates were washed and incubated for an additional hour with 40,000 counts/well of [125I]ErbB4 ECD. After washing, the amount of ErbB4 bound to the antibodies was determined by counting the wells on a Wallac 1277 GammaMaster (Wallac Inc, Gaithersburg, Md.).
- The 34 anti-ErbB4 monoclonal antibodies produced by this method (Table 2) have a high affinity for the receptor, exhibit a diversity of isotypes and are directed to 18 distinct epitopes on the ErbB4 ECD. Isotypes of the antibodies were determined using a Mouse MonoAb ID/SP isotyping kit from Zymed (So. San Francisco, Calif.), following supplier's instructions.
- Testing the Specificity of Anti-ErbB4 Antibodies
- The specificity of the Mabs was determined in an ELISA measuring their ability to bind immobilized HER2, HER3 and ErbB4 extracellular domains (amino acids 1-645, 1-617 and 1-640 respectively). ECDs were coated on ELISA plates at a concentration of 1 μg/ml and incubated with biotinylated anti-ErbB4 Mabs. Bound Mabs were detected using streptavidin peroxidase (Sigma, St. Louis, Mo.) and the substrate OPD (Sigma, St. Louis, Mo.). As can be seen in Table 2, nearly all of the antibodies produced were highly specific for ErbB4 (indicated by a ‘4’ in the column labeled ‘Specificity’). Four of the antibodies showed some binding to HER3 (indicated by a ‘3’ in the column labeled ‘Specificity’).
- Epitope Mapping and Characterization
- The ErbB4 epitope bound by each of the monoclonal antibodies was determined by competitive binding analysis (Fendly et al. Cancer Research 50:1550-1558 (1990)). The anti-ErbB4 Mabs were diluted to a concentration of 25 μg/ml in ELISA diluent and 50 μl was added to an ELISA plate precoated with gDErbB4 ECD as above. The plates were incubated at room temperature for 2 hours and washed with PBST. Dilutions of biotinylated anti-ErbB4 antibodies ranging from 1:1,000 to 1:10,000 were prepared and 50 μl was added to the assay plate. Following a one-hour room temperature incubation, the plates were washed and 50 μl of a 1:5000 dilution of streptavidin peroxidase (Sigma) was added. The plates were developed using OPD (Sigma). The anti-ErbB4 Mabs were grouped into epitopes based on their ability to block binding of the others by 50% or greater in comparison to an irrelevant Mab control. The relative epitope mapping identified 17 distinct epitopes, identified in Table 2 as A-Q.
- The activities of nine representative antibodies were investigated further.
TABLE 2 Summary table of anti-ErbB4 monoclonals Mab Isotype Epitope Specificity 4-1440 IgG2b, κ B 4 4-1441 IgG1, κ J 4 4-1459 IgG2a, κ D 4 4-1460 IgG1, κ C 4 4-1461 IgG2a, κ E 4 4-1462 IgG1, κ C 4 4-1463 IgG2a, κ D 4 4-1464 IgG2b, κ C 4 4-1465 IgG2a, κ L 3, 4 4-1472 IgG2a, κ M 4 4-1473 IgG2a, κ F 4 4-1474 IgG2b, κ G 4 4-1475 IgG2b, κ P 4 4-1476 IgG2a, κ K 4 4-1477 IgG2a, κ Q 4 4-1478 IgG2a, κ I 4 4-1479 IgG2a, κ D 4 4-1481 IgG2a, κ H 3, 4 4-1482 IgG2b, κ H 4 4-1483 IgG1, κ R 3, 4 4-1484 IgG1, κ E 4 4-1485 IgG2a, κ F 4 4-1491 IgG2a, κ G 4 4-1492 IgG2b, κ A 4 4-1493 IgG2B, κ A 4 4-1494 IgG2b, κ B 4 4-1495 IgG2b, κ A 4 4-1496 IgG1, κ A 3, 4 4-1497 IgG1, κ N 4 4-1498 IgG2b, κ E 4 4-1535 IgG2b, κ B 4 4-1536 IgG2b, κ A 4 4-1537 IgG2b, κ B 4 4-1543 IgG2a, κ O 4
Determination of Binding Affinity - The relative affinities of the anti-ErbB4 Mabs were determined according to the method described by Friguet et al. (J Immunol Methods. 77(2):305-19 (1985)). Various concentrations of the ErbB4 ECD (1.1×10−7 M to 1.08×10−10 M) were mixed with a constant concentration of anti-ErbB4 Mab (2.08×10−10 M) and incubated overnight at 4° C. Following incubation, the unbound Mabs were assayed by adding 100 μl of the reaction mixture in duplicate to microtiter plates (Nunc) previously coated with gDErbB4 ECD (100 μl/well at a concentration of 1 μg/ml in 0.05M carbonate buffer, pH 9.6 for 16 hr at 4° C.) and incubated for 1 hour at room temperature. After washing with PBST, the bound Mabs were detected by adding 100 μl well of a 1:5000 dilution of goat anti-mouse F(ab′)2 peroxidase (Boehringer Mannheim) for one hour at room temperature. The plates were developed using o-phenylenediamine dihydrochloride substrate (OPD, Sigma, St. Louis, Mo.) and read on a platereader.
- The Mabs all showed high affinity binding, with Kd's ranging from 0.4 to 12 nm as presented in Table 3.
- Non-Reducing Immuoblot
- The ability of the anti-ErbB4 Mabs to bind reduced and non-reduced ErbB4 ECD was tested by immunoblot analysis. ErbB4 ECD was added to tricine sample buffer, with and without BME, and applied to a 10-20% Novex tricine gel (Novex, San Diego, Calif.). The gel was run at 100V and electroblotted for 60 min. at 0.5 amp onto a PVDF, Immobilon P, membrane (Millipore, Bedford Mass.). The membrane was washed with PBST and blocked overnight with PBS/0.5% BSA/0.1
% Tween 20, and incubated with 1 μg/ml monoclonal antibody for 1.5 hour at ambient temperature. The membrane was washed and incubated for an additional hour with a 1:10,000 dilution of rat anti-mouse IgG peroxidase (Boehringer Mannheim). The membrane was washed thoroughly and developed using the Amersham ECL chemiluminescence system (Amersham Life Science Inc., Arlington Heights, Ill.). - None of the Mabs were able to recognize reduced ErbB4 ECD (data not shown), suggesting that they are directed to conformational epitopes. Mabs identified as positive in Table 3 are those that are able to recognize low concentrations of non-reduced ErbB4 ECD. Mabs 4-1459, 4-1460, 4-1461, 4-1462, 4-1492 and 4-1497 demonstrated a high level of immunoreactivity and were able to bind non-reduced ErbB4 ECD at levels down to 0.3 ng.
- Inhibition of HRG Binding
- A K562 cell line that does not express any EGFR-like receptors was used to further characterize the anti-ErbB4 monoclonal antibodies. A K562 cell line transfected with ErbB4 (1E10.1H4) was produced and cultured in RPMI 1640 with 2 mM L-glutamine (GIBCO/BRL), 10% FBS (Hyclone) and 800 μg/ml Geneticin, G418 (Gibco/BRL). At least 20 hr prior to assay, 1E10.1H4 was stimulated with 10 nm phorbol-12-myristate, 13-acetate (PMA, Calbiochem, La Jolla Calif.). The anti-ErbB4 Mabs were evaluated for their ability to block the binding of HRG to this cell line.
- Quadruplicate samples containing 1.0×105 K562 ErbB4 cells resuspended in 200 μl of RPMI 1640 with 10 mM HEPES and 0.1% BSA (binding buffer) were incubated with 132 pM [125I]HRGβ1(177-244), in the presence of 100 nM anti-ErbB4 Mabs, overnight on ice. Following incubation, the cells were collected using a Multiscreen filtration device (Millipore), and washed twice with 200 μl ice cold binding buffer. Cell associated counts were measured on a gamma counter. The percent binding was calculated against a control sample containing no Mab. The nonspecific binding was determined by incubation of a sample in the presence of 500 nM cold HRGβ1(177-244). Mabs were considered positive for HRG blocking if they blocked 90% or greater binding. As can be seen in Table 3, six of the nine anti-ErbB4 antibodies tested were able to inhibit 125I-HRG binding at this level. Mab 4-1461 inhibited binding by 7% and 1459 exhibited no HRG blocking. The anti-ErbB4 Mab 4-1497 did not inhibit binding but rather appeared to enhance HRG binding by 26%.
- Inhibition of HRG Binding in Human Breast Cancer Cell Lines
- Since a number of the anti-ErbB4 Mabs were able to block binding of HRG to transfected K562 cells, their ability to block HRG binding to several human mammary carcinoma cell lines was tested. The cell lines MDA-MB-453, T47D and BT474 (ATCC, Rockville, Md.) were plated into 24 well tissue culture plates at a density of 1×105 cells per well and allowed to adhere overnight. The anti-ErbB4 Mabs or anti-HER-2 control Mabs 2C4 and 4D5 were diluted to a concentration of 100 nM in Ham's F-12 plus Dulbecco's modified Eagle medium (1:1, v/v) with 10 mM HEPES and 0.1% BSA (binding buffer) and added in triplicate to the plates. Following a 30 minute incubation on ice, 1.5×105 counts of [125I] HRGβ1(144-277) was added. The plates were incubated on ice for four hours and washed twice with ice cold binding buffer. The cells were solubilized with 8 M urea/3 M acetic acid and cell associated counts were measured on a Wallac 1277 GammaMaster. The percent binding was calculated as above. The nonspecific binding was determined by incubation of a sample in the presence of 100 nM cold HRGβ1(144-277).
- None of the anti-ErbB4 Mabs caused significant inhibition of 125IHRG binding to the carcinoma lines tested. In contrast, the anti-HER-2 control Mabs 2C4 and 4D5 blocked binding by 84% and 29% respectively in MDA-MB-453 cells, 70% and 48% in T47D cells and 57% and 12% in BT474 cells. The unlabeled HRG control blocked 99% binding in MDA-MB 453 cells, 98% binding in T47D cells and 96% binding in BT474 cells at a concentration of 100 nM. This data suggests that in these cell lines the ErbB4 receptor may play a minor role in mediating the HRG responses.
- Inhibition of Tyrosine Phosphorylation
- Heregulins have been shown to induce the tyrosine phosphorylation of ErbB4. Therefore it was of interest to determine if the anti-ErbB4 Mabs were able to affect HRGβ1(177-244) stimulated phosphorylation of the receptor in the K562 ErbB4 cell line.
- The ErbB4 transfected K562 cell line (1E10.1H4) was grown in RPMI 1640 culture media to a density of 1×106 cells/ml. The cells were then changed to serum-free media without PMA (assay buffer) and incubated at 37° C. for 2-6 hours. The cells were washed with assay buffer and duplicate samples containing 2.5×105 cells in assay buffer with 0.1% BSA, were incubated with 25 ug of anti-ErbB4 Mabs or a control Mab for 30 min. at room temperature. Following incubation, one set of the samples was stimulated with 15 mM HRGβ1(177-244) for 8 minutes at room temperature. The supernatants were removed and the cells lysed for 5 minutes at 100° C. in 100 μl of SDS sample buffer containing 50 μl/ml β-mercaptoethanol. A 30 μl aliquot of each sample was electrophoresed in a 4-12% polyacrylamide gel (Novex) and electroblotted onto a PVDF membrane (Millipore). The membranes were blocked with 2% BSA in tris-buffered saline containing 0.05% Tween-20 overnight at 4° C. and incubated with a 1:1000 dilution of recombinant anti-phosphotyrosine peroxidase monoclonal RC20H (Transduction Laboratories, Lexington Ky.) for 4 hours at room temperature. Bound anti-phosphotyrosine Ab was visualized using the Amersham ECL system (Amersham Life Science Inc.) and quantified by densitometry.
- Six of nine monoclonal antibodies tested inhibited the generation of an HRG-induced tyrosine phosphorylation signal (Table 3). The remaining three were not inhibitory and none of the anti-ErbB4 Mabs was able to stimulate phosphorylation of the ErbB4 receptor.
- Immunohistochemistry
- Since anti-ErbB4 Mabs may be useful as diagnostic reagents, their ability to stain frozen cell pellets using standard immunocytochemical techniques was investigated. ErbB4 transfected K562 cells (1E10.1H4) and the human breast carcinoma lines MDA-MB-453, T47D, and BT474 (ATCC, Rockville, Md.) were pelleted and frozen in OCT compound (Miles Inc., Elkhart, Ind.). The frozen pellets were sectioned on a cryostat to a thickness of 5 microns, mounted on slides, fixed in cold acetone (4° C.) for 3-5 min. and air-dried. Endogenous peroxidase activity was quenched using a modification of the glucose oxidase method. The slides were rinsed with PBS and the cells were blocked for endogenous biotin activity using a Vector Biotin blocking kit (Vector, Burlingame, Calif.). Endogenous immunoglobulin binding sites were blocked with 10% normal horse serum (Vector). The cells were then incubated with 10 μg/ml anti-ErbB4 Mabs for one hour at RT, followed by a 30 minute incubation with a 1:200 dilution of biotinylated horse anti-mouse IgG (Vector). The slides were incubated with ABC Elite Reagent (Vector) for 30 min. and the ErbB4 receptors visualized using DAB (Pierce, Rockford, Ill.). Mayer's hematoxylin (Rowley Biomedical Institute, Rowley, Mass.) was used to counterstain the cells.
- Many of the anti-ErbB4 Mabs were able to stain the ErbB4 transfected K562 cells with varying intensity and little or no background staining (Table 3). Numbers represent the intensity of staining compared to an irrelevant control. None of the Mabs was able to stain the frozen human mammary carcinoma cells that were tested (data not shown).
TABLE 3 Summary table of monoclonal antibody activity Non-Reducing HRG P-Tyr Histo- Mab Isotype Epitope Kd(nM) Immunoblot Blocking Blocking chemistry 4-1440 IgG2b, κ B 1.9 − + + 3+ 4-1459 IgG2a, κ D 0.7 + − − 4+ 4-1460 IgG1, κ C 1.2 + + + 3+ 4-1461 IgG2a, κ E 2.3 + − − 4+ 4-1462 IgG1, κ C 0.4 + + + 2+ 4-1464 IgG2b, κ C 1.0 − + + 2+ 4-1473 IgG2a, κ F 6.0 − + + 2-3+ 4-1492 IgG2b, κ A 2.1 + + + − 4-1497 IgG1, κ N 12.0 + − − −
FACS Analysis - To determine whether the anti-ErbB4 Mabs could bind to ErbB4 on the surface of viable cells, FACS analysis was done using the ErbB4 transfected K562 cell line and the mammary carcinoma lines MDA-MB-453, T47D and BT-474. Adherent cells were detached from tissue culture flasks using 10 mM EDTA in PBS, centrifuged at 1400 rpm for 5 min. and resuspended in PBS with 1% fetal bovine serum (FACS diluent). The cells were counted, adjusted to 107 cells/ml and 0.1 ml of cells was incubated with 10 μg/ml of each Mab in 100 μl FACS diluent for 30 min. at 4° C. The samples were washed, resuspended in 0.1 ml diluent and incubated with 1 μg of FITC conjugated F(ab′)2 fragment of goat anti-mouse IgG (Boehringer Mannheim) for 30 min at 4° C. The cells were washed, resuspended in 0.5 ml FACS diluent and analyzed using a FACScan cell sorter (Becton Dickinson, Mt. View, Calif.). Data was gated by forward and side scatter and propidium iodide fluorescence to exclude debris, doublets and dead cells.
- All of the Mabs bound to the ErbB4 receptor on the ErbB4 transfected K562 cell line, which is expressed at approximately 2×105 receptors/cell. An increase in observed cellular fluorescence of the ErbB4 transfected K562 cells from 2 to 50 fold was observed when compared to the isotype controls. Some of the weaker binding may reflect a ErbB4 ECD epitope that is sequestered on the intact cells. In contrast, the anti-ErbB4 antibodies 4-1440, 4-1464 and 4-1492, which give the highest fluorescence intensity on the transfected cell line, showed minimal binding to the breast carcinoma lines MDA-MB-453, T47D and BT-474. The positive control anti-HER2 Mab 2-2C4 showed binding to the tumor lines in proportion to the level of HER-2 expression. These results indicate a level of ErbB4 expression on the MDA-MB-453, T47D and BT-474 cells which is below the detection limit of this assay.
- Inhibition of Heregulin Binding to ErbB4 Immunoadhesin
-
FIG. 7 shows a displacement curve of 125IHRG binding to a ErbB4 immunoadhesin captured on breakapart modules using the indicated concentrations of the anti-ErbB4 Mabs 4-1440, 4-1460, and 4-1464. Maxisorp breakapart modules (Nunc) were coated with 100 μl of a 1:200 dilution of goat anti-human Ig (Boehringer Mannheim) in 50 mM carbonate buffer pH 9.6 overnight at 4° C. The plates were washed with PBST, blocked with ELISA diluent and incubated with 100 μl of 200 ng/ml ErbB4 immunoadhesin for 2 hr at ambient temperature. The plates were washed and 50 μl of diluted Mabs (0.1 to 100 nM final) and 50 μl of 125I-HRGβ1(177-244) diluted to give a final concentration of 132 pM were added to the plate. Following a 1.5 hr incubation at ambient temperature, the plates were washed and the amount of 125IHRG bound to the receptor was determined by counting the wells on a Wallac 1277 GammaMaster. -
FIG. 7 demonstrates that the Mabs inhibited heregulin binding to the immunoadhesin in a dose dependent manner with ED50 values ranging from 0.7 to 1.1 nM. This indicates that the Mabs posses a high degree of blocking ability. - Deposit of Material
- The following hybridomas have been deposited with the American Type Culture Collection, 10801 University Blvd., Manassas, Va. 20110-2209, USA (ATCC):
Hybridoma ATCC Dep. No. Deposit Date HER4.10H1.1A1 PTA-2828 Dec. 19, 2000 HER4.1C6.A11 PTA-2829 Dec. 19, 2000 HER4.3B9.2C9 PTA-2826 Dec. 19, 2000 HER4.1A6.5B3 PTA-2827 Dec. 19, 2000 HER4.8B1.2H2 PTA-2825 Dec. 19, 2000 - Each of the deposited hybridomas produces one of the anti-ErbB4 monoclonal antibodies identified in Table 2. HER4.10H1.1A1 produces mAb 4-1464, HER4.1C6.A11 produces mAb 4-1440, HER4.3B9.2C9 produces mAb 4-1460, HER4.1A6.5B3 produces mAb 4-1492 and HER4.8B1.2H2 produces mAb 4-1473
- The deposit of the hybridomas with the ATCC was made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture of the deposit for 30 years from the date of deposit. The deposit will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC, which assures permanent and unrestricted availability of the progeny of the culture of the deposit to the public upon issuance of the pertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures availability of the progeny to one determined by the U.S. Commissioner of Patents and Trademarks to be entitled thereto according to 35 U.S.C. § 122 and the Commissioner's rules pursuant thereto (including 37 C.F.R. § 1.14 with particular reference to 886 OG 638).
- The assignee of the present application has agreed that if a culture of the materials on deposit should die or be lost or destroyed when cultivated under suitable conditions, the materials will be promptly replaced on notification with another of the same. Availability of the deposited material is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws.
- The foregoing written specification is considered sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by the construct deposited, since the deposited embodiment is intended as a single illustration of certain aspects of the invention and any constructs that are functionally equivalent are within the scope of this invention. The deposit of material herein does not constitute an admission that the written description herein contained is inadequate to enable the practice of any aspect of the invention, including the best mode thereof, nor is it to be construed as limiting the scope of the claims to the specific illustrations that it represents. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims.
Claims (84)
1. A method for controlling excessive proliferation or migration of smooth muscle cells comprising treating said smooth muscle cells with an effective amount of an antagonist of a native ErbB4 receptor.
2. The method of claim 1 wherein the control is prevention of excessive proliferation or migration of smooth muscle cells.
3. The method of claim 1 wherein the control is inhibition of excessive proliferation or migration of smooth muscle cells.
4. The method of claim 3 wherein said inhibition is total inhibition.
5. The method of claim 1 wherein said smooth muscle cells are pyloric smooth muscle cells.
6. The method of claim 1 wherein said smooth muscle cells are urinary bladder smooth muscle cells.
7. The method of claim 1 wherein said smooth muscle cells are those of an airway passage.
8. The method of claim 1 wherein said excessive proliferation or migration of smooth muscle cells results in stenosis.
9. The method of claim 1 wherein said smooth muscle cells are vascular smooth muscle cells.
10. The method of claim 9 wherein said vascular smooth muscle cells are human.
11. The method of claim 9 wherein said vascular smooth muscle cells are human aortic smooth muscle cells.
12. The method of claim 9 wherein said excessive proliferation or migration of smooth muscle cells results in vascular stenosis.
13. The method of claim 12 wherein said vascular stenosis is further characterized by excessive proliferation or migration of endothelial cells.
14. The method of claim 13 wherein said stenosis is restenosis.
15. The method of claim 1 wherein the ErbB4 receptor antagonist is an immunoadhesin.
16. The method of claim 15 wherein said immunoadhesin comprises an extracellular domain sequence of a native ErbB4 receptor.
17. The method of claim 16 wherein said native ErbB4 receptor is human.
18. The method of claim 17 wherein the native human ErbB4 receptor extracellular domain sequence is fused to an immunoglobulin heavy chain constant region sequence.
19. The method of claim 18 wherein said immunoglobulin is of IgG isotype.
20. The method of claim 19 wherein said immunoglobulin is of IgG1, IgG2 or IgG3 isotype.
21. The method of claim 19 wherein said immunoadhesin comprises at least one IgG immunoglobulin light chain.
22. The method of claim 1 wherein said antagonist is an antibody.
23. The method of claim 22 wherein said antibody is a neutralizing antibody against a native ErbB4 receptor.
24. The method of claim 23 wherein said antibody is a chimeric, humanized or human antibody.
25. The method of claim 23 wherein said antibody is glycosylated.
26. The method of claim 23 wherein said antibody binds essentially the same epitope as an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).
27. The method of claim 23 wherein said antibody has complementarity determining region (CDR) residues from an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).
28. A method for treating stenosis in a mammalian patient comprising administering to said patient an effective amount of an antagonist of a native mammalian ErbB4 receptor.
29. The method of claim 28 wherein said patient is human.
30. The method of claim 29 wherein said stenosis is vascular stenosis.
31. The method of claim 30 wherein said vascular stenosis is restenosis.
32. The method of claim 28 wherein said antagonist is an immunoadhesin.
33. The method of claim 32 wherein said immunoadhesin comprises an extracellular domain sequence of a native human ErbB4 receptor.
34. The method of claim 33 wherein said extracellular domain sequence is fused to an immunoglobulin heavy chain constant region sequence.
35. The method of claim 34 wherein said immunoglobulin is of IgG isotype.
36. The method of claim 28 wherein said antagonist is an antibody.
37. The method of claim 36 wherein said antibody is a neutralizing antibody against a native human ErbB4 receptor.
38. The method of claim 36 wherein said antibody binds essentially the same epitope as an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).
39. The method of claim 36 wherein said antibody has complementarity determining region (CDR) residues from an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).
40. The method of claim 28 wherein said antagonist is administered as an injection or infusion.
41. The method of claim 28 wherein said treatment additionally reduces hypertension associated with said stenosis.
42. The method of claim 28 wherein said treatment is prevention.
43. The method of claim 28 wherein said stenosis is pyloric stenosis.
44. The method of claim 28 wherein said stenosis is thickening of the urinary bladder wall.
45. The method of claim 28 wherein said stenosis is part of an obstructive airway disease.
46. A method for treating stenosis in a mammalian patient comprising introducing into a cell of said patient a nucleic acid encoding an antagonist of an ErbB4 receptor.
47. The method of claim 46 wherein said patient is human.
48. The method of claim 47 wherein said antagonist is an immunoadhesin.
49. The method of claim 48 wherein said immunoadhesin comprises an extracellular domain sequence of a native human ErbB4 receptor fused to an immunoglobulin heavy chain constant region sequence.
50. The method of claim 47 wherein said antagonist is an antibody.
51. The method of claim 50 wherein said antibody is a neutralizing antibody against a native ErbB4 receptor.
52. The method of claim 51 wherein said antibody is a chimeric, humanized or human antibody.
53. The method of claim 51 wherein said antibody binds essentially the same epitope as an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).
54. The method of claim 51 wherein said antibody has complementarity determining region (CDR) residues from an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).
55. The method of claim 46 wherein said nucleic acid is introduced in vivo.
56. The method of claim 46 wherein said nucleic acid is introduced ex vivo.
57. A method for treating hypertension associated with vascular stenosis in a mammalian patient, comprising administering to said patient an effective amount of an antagonist of a native mammalian ErbB4 receptor.
58. The method of claim 57 wherein said antagonist is a small molecule.
59. A pharmaceutical composition for the treatment of stenosis in a mammalian patient comprising an effective amount of an antagonist of a native mammalian ErbB4 receptor, in admixture with a pharmaceutically acceptable carrier.
60. A method for identifying a molecule that inhibits or enhances the proliferation or migration of smooth muscle cells, comprising the steps of:
(a) contacting a polypeptide comprising an amino acid sequence having at least 85% sequence identity with the amino acid sequence of the extracellular domain of a native ErbB4 receptor and retaining the ability to control excessive proliferation or migration of smooth muscle cells, with a candidate molecule; and
(b) determining whether the candidate molecule inhibits or enhances the ability of said polypeptide to control excessive proliferation or migration of smooth muscle cells.
61. The method of claim 60 wherein said polypeptide comprises the extracellular domain of a native ErbB4 receptor.
62. The method of claim 61 wherein said receptor is human.
63. The method of claim 61 wherein said polypeptide is an immunoadhesin.
64. The method of claim 60 wherein said molecule enhances the ability of said polypeptide to control excessive proliferation or migration of smooth muscle cells.
65. The method of claim 64 wherein said molecule is selected from the group consisting of antibodies and small molecules.
66. An antibody that binds essentially the same epitope of ErbB4 as an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).
67. An antibody that has complementarity determining region (CDR) residues from an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).
68. An antibody selected from the group consisting of an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B 1.2H2 (ATCC Accession Number PTA-2825).
69. An antibody that binds essentially the same epitope of ErbB4 bound by an antibody selected from the group consisting of anti-ErbB4 monoclonal antibodies 4-1440, 4-1460, 4-1473, 4-1492 and 4-1464.
70. An antibody that has complementarity determining region (CDR) residues from an antibody selected from the group consisting of anti-ErbB4 monoclonal antibodies 4-1440, 4-1460, 4-1473, 4-1492 and 4-1464.
71. An antibody which binds to ErbB4 with high affinity.
72. The antibody of claim 71 which binds to ErbB4 with a Kd of less than 100 nM.
73. The antibody of claim 71 which binds to ErbB4 with a Kd of less than 50 nM.
74. The antibody of claim 71 which binds to ErbB4 with a Kd of less than 10 nM.
75. The antibody of claim 71 which is a humanized antibody.
76. The antibody of claim 71 which is a human antibody.
77. The antibody of claim 71 which is an antibody fragment.
78. An antibody which is capable of binding to both ErbB4 and ErbB3.
79. The antibody of claim 78 which binds ErbB4 with high affinity.
80. The antibody of claim 78 which binds both ErbB4 and ErbB3 with high affinity.
81. An antibody which binds to ErbB4 and reduces heregulin binding thereto.
82. The antibody of claim 81 which binds ErbB4 with high affinity.
83. An antibody which binds to ErbB4 and reduces heregulin-induced tyrosine phosphorylation thereof.
84. The antibody of claim 83 which binds ErbB4 with high affinity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/248,122 US20060093603A1 (en) | 2000-09-01 | 2005-10-11 | ErbB4 antagonists |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US22967900P | 2000-09-01 | 2000-09-01 | |
US26551601P | 2001-01-31 | 2001-01-31 | |
US09/940,101 US20020119148A1 (en) | 2000-09-01 | 2001-08-27 | ErbB4 antagonists |
US11/248,122 US20060093603A1 (en) | 2000-09-01 | 2005-10-11 | ErbB4 antagonists |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/940,101 Continuation US20020119148A1 (en) | 2000-09-01 | 2001-08-27 | ErbB4 antagonists |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060093603A1 true US20060093603A1 (en) | 2006-05-04 |
Family
ID=27397993
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/940,101 Abandoned US20020119148A1 (en) | 2000-09-01 | 2001-08-27 | ErbB4 antagonists |
US10/362,380 Expired - Fee Related US7332579B2 (en) | 2000-09-01 | 2001-08-29 | Antibodies to human ErbB4 |
US11/248,122 Abandoned US20060093603A1 (en) | 2000-09-01 | 2005-10-11 | ErbB4 antagonists |
US11/581,221 Abandoned US20070092513A1 (en) | 2000-09-01 | 2006-10-13 | ErbB4 antagonists |
US12/215,200 Expired - Fee Related US7704498B2 (en) | 2000-09-01 | 2008-06-24 | ErbB4 antagonists |
US12/753,792 Abandoned US20100190964A1 (en) | 2000-09-01 | 2010-04-02 | Antibodies to human ErbB4 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/940,101 Abandoned US20020119148A1 (en) | 2000-09-01 | 2001-08-27 | ErbB4 antagonists |
US10/362,380 Expired - Fee Related US7332579B2 (en) | 2000-09-01 | 2001-08-29 | Antibodies to human ErbB4 |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/581,221 Abandoned US20070092513A1 (en) | 2000-09-01 | 2006-10-13 | ErbB4 antagonists |
US12/215,200 Expired - Fee Related US7704498B2 (en) | 2000-09-01 | 2008-06-24 | ErbB4 antagonists |
US12/753,792 Abandoned US20100190964A1 (en) | 2000-09-01 | 2010-04-02 | Antibodies to human ErbB4 |
Country Status (11)
Country | Link |
---|---|
US (6) | US20020119148A1 (en) |
EP (1) | EP1351744B1 (en) |
JP (1) | JP2004507559A (en) |
AT (1) | ATE374642T1 (en) |
AU (2) | AU2001286918B2 (en) |
CA (1) | CA2420062C (en) |
DE (1) | DE60130797T2 (en) |
DK (1) | DK1351744T3 (en) |
ES (1) | ES2295202T3 (en) |
IL (2) | IL154495A0 (en) |
WO (1) | WO2002018444A2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070148691A1 (en) * | 2002-06-03 | 2007-06-28 | Schleyer Siew C | Use of NRG4, or inhibitors thereof, in the treatment of colon and pancreatic cancers |
US20090291085A1 (en) * | 2007-02-16 | 2009-11-26 | Merrimack Pharmaceuticals, Inc. | Antibodies against erbb3 and uses thereof |
US20110027291A1 (en) * | 2008-08-15 | 2011-02-03 | Merrimack Pharmaceuticals, Inc. | Methods, systems and products for predicting response of tumor cells to a therapeutic agent and treating a patient according to the predicted response |
US8895001B2 (en) | 2010-03-11 | 2014-11-25 | Merrimack Pharmaceuticals, Inc. | Use of ErbB3 inhibitors in the treatment of triple negative and basal-like breast cancers |
US9688761B2 (en) | 2013-12-27 | 2017-06-27 | Merrimack Pharmaceuticals, Inc. | Biomarker profiles for predicting outcomes of cancer therapy with ERBB3 inhibitors and/or chemotherapies |
US10184006B2 (en) | 2015-06-04 | 2019-01-22 | Merrimack Pharmaceuticals, Inc. | Biomarkers for predicting outcomes of cancer therapy with ErbB3 inhibitors |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020119148A1 (en) * | 2000-09-01 | 2002-08-29 | Gerritsen Mary E. | ErbB4 antagonists |
JP5052736B2 (en) * | 2001-05-30 | 2012-10-17 | 中外製薬株式会社 | Protein preparation |
AU2003273218C1 (en) | 2002-07-15 | 2019-01-17 | F. Hoffmann - La Roche Ag | Methods for identifying tumors that are responsive to treatment with anti-ErbB2 antibodies |
US8505468B2 (en) * | 2002-11-19 | 2013-08-13 | Sharp Kabushiki Kaisha | Substrate accommodating tray |
JP4527388B2 (en) * | 2003-12-11 | 2010-08-18 | 東洋鋼鈑株式会社 | Method for detecting interaction between polypeptide and receptor, method for screening for ligand or ligand variant using the method for detection, and diagnostic method for using the method for detection |
MXPA06014065A (en) | 2004-06-01 | 2007-01-31 | Genentech Inc | Antibody drug conjugates and methods. |
EP1791565B1 (en) | 2004-09-23 | 2016-04-20 | Genentech, Inc. | Cysteine engineered antibodies and conjugates |
US20100111856A1 (en) | 2004-09-23 | 2010-05-06 | Herman Gill | Zirconium-radiolabeled, cysteine engineered antibody conjugates |
WO2006096663A2 (en) * | 2005-03-07 | 2006-09-14 | Targeted Molecular Diagnostics, Llc | Tyrosine kinase inhibitor compositions and methods for manufacturing and using them in the treatment of disease |
CA2719201A1 (en) | 2008-03-28 | 2009-10-01 | Sea Lane Biotechnologies, Llc. | Neutralizing molecules to viral antigens |
JP5894436B2 (en) | 2008-11-25 | 2016-03-30 | ジェネンテック, インコーポレイテッド | Isoform-specific anti-HER4 antibody |
AU2010226453B2 (en) * | 2009-03-20 | 2013-11-21 | Genentech, Inc. | Bispecific anti-HER antibodies |
CN102770456B (en) | 2009-12-04 | 2018-04-06 | 弗·哈夫曼-拉罗切有限公司 | Multispecific antibodies, antibody analogs, compositions and methods |
MY166529A (en) | 2010-02-08 | 2018-07-10 | Regeneron Pharma | Common light chain mouse |
US9796788B2 (en) | 2010-02-08 | 2017-10-24 | Regeneron Pharmaceuticals, Inc. | Mice expressing a limited immunoglobulin light chain repertoire |
US20130045492A1 (en) | 2010-02-08 | 2013-02-21 | Regeneron Pharmaceuticals, Inc. | Methods For Making Fully Human Bispecific Antibodies Using A Common Light Chain |
WO2011107100A1 (en) | 2010-03-03 | 2011-09-09 | Aarhus Universitet | Methods and compositions for regulation of herv4 |
EP2640831A1 (en) | 2010-11-17 | 2013-09-25 | Sea Lane Biotechnologies,llc. | Influenza virus neutralizing agents that mimic the binding site of an influenza neutralizing antibody |
EP3572517B1 (en) | 2011-08-05 | 2021-03-24 | Regeneron Pharmaceuticals, Inc. | Humanized universal light chain mice |
WO2013033008A2 (en) | 2011-08-26 | 2013-03-07 | Merrimack Pharmaceuticals, Inc. | Tandem fc bispecific antibodies |
WO2014072306A1 (en) | 2012-11-08 | 2014-05-15 | F. Hoffmann-La Roche Ag | Her3 antigen binding proteins binding to the beta-hairpin of her3 |
MA38164B1 (en) * | 2012-11-08 | 2018-11-30 | Hoffmann La Roche | Anti-her3 / her4 antigen-binding proteins binding to the hairpin loop beta |
EA201591652A1 (en) | 2013-03-06 | 2016-02-29 | Мерримак Фармасьютикалз, Инк. | TANDEM BISSPECIFIC Fc-ANTIBODIES AGAINST c-MET |
EP3895528A1 (en) | 2014-03-21 | 2021-10-20 | Regeneron Pharmaceuticals, Inc. | Non-human animals that make single domain binding proteins |
FR3020063A1 (en) * | 2014-04-16 | 2015-10-23 | Gamamabs Pharma | ANTI-HER4 HUMAN ANTIBODY |
JP6433511B2 (en) | 2014-05-14 | 2018-12-05 | エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト | Anti-HER3 antibody binding to HER3 beta hairpin |
CN107438622A (en) | 2015-03-19 | 2017-12-05 | 瑞泽恩制药公司 | Non-human animals selected for antigen-binding light chain variable regions |
EP4072682A1 (en) * | 2019-12-09 | 2022-10-19 | Institut National de la Santé et de la Recherche Médicale (INSERM) | Antibodies having specificity to her4 and uses thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5811098A (en) * | 1992-11-24 | 1998-09-22 | Bristol-Myers Squibb Company | Antibodies to HER4, human receptor tyrosine kinase |
US6632927B2 (en) * | 1989-12-21 | 2003-10-14 | Celltech Therapeutics Limited | Humanized antibodies |
US20040052786A1 (en) * | 2000-09-01 | 2004-03-18 | Gerritsen Mary E | Erbb4 antagonists |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4968603A (en) * | 1986-12-31 | 1990-11-06 | The Regents Of The University Of California | Determination of status in neoplastic disease |
US5116964A (en) * | 1989-02-23 | 1992-05-26 | Genentech, Inc. | Hybrid immunoglobulins |
US5183884A (en) * | 1989-12-01 | 1993-02-02 | United States Of America | Dna segment encoding a gene for a receptor related to the epidermal growth factor receptor |
CA2037440A1 (en) | 1990-03-02 | 1991-09-03 | Gregory D. Plowman | Her3: a novel egf receptor homolog |
IL101943A0 (en) * | 1991-05-24 | 1992-12-30 | Genentech Inc | Structure,production and use of heregulin |
DK0590058T3 (en) * | 1991-06-14 | 2004-03-29 | Genentech Inc | Humanized heregulin antibody |
CA2103323A1 (en) | 1992-11-24 | 1994-05-25 | Gregory D. Plowman | Her4 human receptor tyrosine kinase |
US5770567A (en) * | 1994-11-14 | 1998-06-23 | Genentech, Inc. | Sensory and motor neuron derived factor (SMDF) |
ES2146782T3 (en) * | 1994-11-14 | 2000-08-16 | Warner Lambert Co | 6-ARYL-PIRIDO (2,3-D) PIRIMIDINAS AND NAFTIRIDINAS FOR THE INHIBITION OF THE CELL PROLIFERATION INDUCED BY THE PROTEIN TIROSINA QUINASA. |
US5968511A (en) * | 1996-03-27 | 1999-10-19 | Genentech, Inc. | ErbB3 antibodies |
CA2257839C (en) * | 1996-07-12 | 2012-10-23 | Genentech, Inc. | Gamma-heregulin |
CA2258721C (en) * | 1996-07-12 | 2014-09-09 | Genentech, Inc. | Chimeric heteromultimer adhesins |
ES2293661T3 (en) * | 1996-11-27 | 2008-03-16 | Genentech, Inc. | PURIFICATION FOR POLYPEPTIDE AFFINITY IN A PROTEIN MATRIX A. |
US6121415A (en) | 1997-07-09 | 2000-09-19 | Genentech, Inc. | ErbB4 receptor-specific neuregolin related ligands and uses therefor |
US6994856B1 (en) * | 1997-07-24 | 2006-02-07 | Genentech, Inc. | ErbB4 receptor-specific neuregulin related ligands and uses therefor |
AU9805398A (en) | 1997-10-15 | 1999-05-03 | Children's Medical Center Corporation | Novel human egf receptors and use thereof |
IL143089A0 (en) | 1998-11-19 | 2002-04-21 | Warner Lambert Co | N-[4-(3-chloro-4-fluoro-phenylamino)-7-(3-morpholin-4-yl-propoxy)-quinazolin-6-yl]-acrylamide, an irreversible inhibitor of tyrosine kinases |
JP2004500863A (en) * | 2000-06-06 | 2004-01-15 | ブリストル−マイヤーズ スクイブ カンパニー | B7-related nucleic acids and polypeptides useful for immunomodulation |
-
2001
- 2001-08-27 US US09/940,101 patent/US20020119148A1/en not_active Abandoned
- 2001-08-29 EP EP01966399A patent/EP1351744B1/en not_active Expired - Lifetime
- 2001-08-29 ES ES01966399T patent/ES2295202T3/en not_active Expired - Lifetime
- 2001-08-29 JP JP2002523958A patent/JP2004507559A/en active Pending
- 2001-08-29 CA CA2420062A patent/CA2420062C/en not_active Expired - Fee Related
- 2001-08-29 IL IL15449501A patent/IL154495A0/en unknown
- 2001-08-29 US US10/362,380 patent/US7332579B2/en not_active Expired - Fee Related
- 2001-08-29 DK DK01966399T patent/DK1351744T3/en active
- 2001-08-29 DE DE60130797T patent/DE60130797T2/en not_active Expired - Lifetime
- 2001-08-29 AU AU2001286918A patent/AU2001286918B2/en not_active Ceased
- 2001-08-29 WO PCT/US2001/026984 patent/WO2002018444A2/en active IP Right Grant
- 2001-08-29 AU AU8691801A patent/AU8691801A/en active Pending
- 2001-08-29 AT AT01966399T patent/ATE374642T1/en active
-
2003
- 2003-02-17 IL IL154495A patent/IL154495A/en not_active IP Right Cessation
-
2005
- 2005-10-11 US US11/248,122 patent/US20060093603A1/en not_active Abandoned
-
2006
- 2006-10-13 US US11/581,221 patent/US20070092513A1/en not_active Abandoned
-
2008
- 2008-06-24 US US12/215,200 patent/US7704498B2/en not_active Expired - Fee Related
-
2010
- 2010-04-02 US US12/753,792 patent/US20100190964A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6632927B2 (en) * | 1989-12-21 | 2003-10-14 | Celltech Therapeutics Limited | Humanized antibodies |
US5811098A (en) * | 1992-11-24 | 1998-09-22 | Bristol-Myers Squibb Company | Antibodies to HER4, human receptor tyrosine kinase |
US20040052786A1 (en) * | 2000-09-01 | 2004-03-18 | Gerritsen Mary E | Erbb4 antagonists |
US20070092513A1 (en) * | 2000-09-01 | 2007-04-26 | Gerritsen Mary E | ErbB4 antagonists |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070148691A1 (en) * | 2002-06-03 | 2007-06-28 | Schleyer Siew C | Use of NRG4, or inhibitors thereof, in the treatment of colon and pancreatic cancers |
US20080008711A1 (en) * | 2002-06-03 | 2008-01-10 | Schleyer Siew C | Use of NRG4, or inhibitors thereof, in the treatment of colon and pancreatic cancers |
US7476506B2 (en) | 2002-06-03 | 2009-01-13 | Novartis Vaccines And Diagnostics, Inc. | Use of NRG4, or inhibitors thereof, in the treatment of colon and pancreatic cancers |
US8961966B2 (en) | 2007-02-16 | 2015-02-24 | Merrimack Pharmaceuticals, Inc. | Antibodies against ERBB3 and uses thereof |
US8691225B2 (en) | 2007-02-16 | 2014-04-08 | Merrimack Pharmaceuticals, Inc. | Antibodies against the ectodomain of ErbB3 and uses thereof |
US7846440B2 (en) | 2007-02-16 | 2010-12-07 | Merrimack Pharmaceuticals, Inc. | Antibodies against ErbB3 and uses thereof |
US9487588B2 (en) | 2007-02-16 | 2016-11-08 | Merrimack Pharmaceuticals, Inc. | Antibodies against the ectodomain of ERBB3 and uses thereof |
US20110123523A1 (en) * | 2007-02-16 | 2011-05-26 | Merrimack Pharmaceuticals, Inc. | Antibodies against erbb3 and uses thereof |
US20090291085A1 (en) * | 2007-02-16 | 2009-11-26 | Merrimack Pharmaceuticals, Inc. | Antibodies against erbb3 and uses thereof |
US20100266584A1 (en) * | 2007-02-16 | 2010-10-21 | Merrimack Pharmaceuticals, Inc. | Antibodies against the ectodomain of erbb3 and uses thereof |
US8623592B2 (en) | 2008-08-15 | 2014-01-07 | Merrimack Pharmaceuticals, Inc. | Methods and systems for predicting response of cells to a therapeutic agent |
US20110159513A1 (en) * | 2008-08-15 | 2011-06-30 | Merrimack Pharmaceuticals, Inc. | Methods and systems for predicting response of cells to a therapeutic agent |
US20110027291A1 (en) * | 2008-08-15 | 2011-02-03 | Merrimack Pharmaceuticals, Inc. | Methods, systems and products for predicting response of tumor cells to a therapeutic agent and treating a patient according to the predicted response |
US8895001B2 (en) | 2010-03-11 | 2014-11-25 | Merrimack Pharmaceuticals, Inc. | Use of ErbB3 inhibitors in the treatment of triple negative and basal-like breast cancers |
US9518130B2 (en) | 2010-03-11 | 2016-12-13 | Merrimack Pharmaceuticals, Inc. | Use of ERBB3 inhibitors in the treatment of triple negative and basal-like breast cancers |
US9688761B2 (en) | 2013-12-27 | 2017-06-27 | Merrimack Pharmaceuticals, Inc. | Biomarker profiles for predicting outcomes of cancer therapy with ERBB3 inhibitors and/or chemotherapies |
US10273304B2 (en) | 2013-12-27 | 2019-04-30 | Merrimack Pharmaceuticals, Inc. | Biomarker profiles for predicting outcomes of cancer therapy with ERBB3 inhibitors and/or chemotherapies |
US10184006B2 (en) | 2015-06-04 | 2019-01-22 | Merrimack Pharmaceuticals, Inc. | Biomarkers for predicting outcomes of cancer therapy with ErbB3 inhibitors |
Also Published As
Publication number | Publication date |
---|---|
AU2001286918B2 (en) | 2006-12-21 |
IL154495A (en) | 2009-12-24 |
US7332579B2 (en) | 2008-02-19 |
US20100190964A1 (en) | 2010-07-29 |
JP2004507559A (en) | 2004-03-11 |
US20070092513A1 (en) | 2007-04-26 |
IL154495A0 (en) | 2003-09-17 |
US20020119148A1 (en) | 2002-08-29 |
AU8691801A (en) | 2002-03-13 |
EP1351744B1 (en) | 2007-10-03 |
ATE374642T1 (en) | 2007-10-15 |
US7704498B2 (en) | 2010-04-27 |
ES2295202T3 (en) | 2008-04-16 |
WO2002018444A2 (en) | 2002-03-07 |
HK1059404A1 (en) | 2004-07-02 |
CA2420062A1 (en) | 2002-03-07 |
DE60130797T2 (en) | 2008-08-07 |
US20040052786A1 (en) | 2004-03-18 |
US20090068205A1 (en) | 2009-03-12 |
CA2420062C (en) | 2014-04-01 |
DE60130797D1 (en) | 2007-11-15 |
EP1351744A2 (en) | 2003-10-15 |
WO2002018444A3 (en) | 2003-07-31 |
DK1351744T3 (en) | 2008-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7704498B2 (en) | ErbB4 antagonists | |
AU2001286918A1 (en) | ErbB4 antagonists | |
CA2185656C (en) | Protein tyrosine kinase agonist antibodies | |
AU705107B2 (en) | HTK ligand | |
US5763213A (en) | Sensory and motor neuron derived factor (SMDF) | |
US6696290B2 (en) | ErbB2 and ErbB4 Chimeric Heteromultimeric Adhesins | |
US20050084493A1 (en) | Screening method for antibodies and other selective IL-1 binding agents that allow binding to IL-1 receptor but not activation thereof | |
CA2241564A1 (en) | Wsx receptor and ligands | |
EP1328547B1 (en) | Identification and modification of immunodominant epitopes in polypeptides | |
KR20050049470A (en) | Anti-myelin associated glycoprotein(mag) antibodies | |
JPH09506250A (en) | Protein tyrosine kinase named Rse | |
JP2002530066A (en) | RHAMM antagonist antibody | |
HK1059404B (en) | Use of specific erbb4 antagonists for treating stenosis | |
US7259245B2 (en) | Anti-fused antibodies | |
WO2004068135A2 (en) | Identification and modification of immunodominant epitopes in polypeptides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |