US20060213651A1 - Heat exchanger - Google Patents
Heat exchanger Download PDFInfo
- Publication number
- US20060213651A1 US20060213651A1 US10/563,599 US56359906A US2006213651A1 US 20060213651 A1 US20060213651 A1 US 20060213651A1 US 56359906 A US56359906 A US 56359906A US 2006213651 A1 US2006213651 A1 US 2006213651A1
- Authority
- US
- United States
- Prior art keywords
- refrigerant
- heat exchange
- exchange tubes
- heat exchanger
- inlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 495
- 238000005192 partition Methods 0.000 claims description 73
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 41
- 229910052782 aluminium Inorganic materials 0.000 claims description 41
- 238000004891 communication Methods 0.000 claims description 32
- 238000005057 refrigeration Methods 0.000 claims description 10
- 230000009969 flowable effect Effects 0.000 claims description 5
- 238000005219 brazing Methods 0.000 description 19
- 239000000463 material Substances 0.000 description 14
- 238000010276 construction Methods 0.000 description 7
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/026—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
- F28F9/0278—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05391—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F27/00—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F27/00—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
- F28F27/02—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0202—Header boxes having their inner space divided by partitions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0202—Header boxes having their inner space divided by partitions
- F28F9/0204—Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
- F28F9/0214—Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0219—Arrangements for sealing end plates into casing or header box; Header box sub-elements
- F28F9/0224—Header boxes formed by sealing end plates into covers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/008—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
- F28D2021/0085—Evaporators
Definitions
- the present invention relates to heat exchangers, and more particularly to heat exchangers suitable for use as the evaporators of motor vehicle air conditioners which are refrigeration cycles to be installed in motor vehicles.
- aluminum as used herein and in the appended claims includes aluminum alloys in addition to pure aluminum.
- motor vehicle evaporators are those of the so-called stacked plate type which comprise a plurality of flat hollow bodies arranged in parallel and each composed of a pair of dishlike plates facing toward each other and brazed to each other along peripheral edges thereof, and a louvered corrugated fin disposed between and brazed to each adjacent pair of flat hollow bodies.
- stacked plate type which comprise a plurality of flat hollow bodies arranged in parallel and each composed of a pair of dishlike plates facing toward each other and brazed to each other along peripheral edges thereof, and a louvered corrugated fin disposed between and brazed to each adjacent pair of flat hollow bodies.
- the present applicant has already proposed evaporators which comprise a refrigerant inlet-outlet tank and a refrigerant turn tank arranged as spaced apart from each other, and a plurality of tube groups arranged in two rows as spaced apart in the direction of passage of air through the evaporator between the tanks and each comprising a plurality of heat exchange tubes arranged in parallel at a spacing longitudinally of the tanks, the heat exchange tubes of each tube group having opposite ends joined to the respective tanks, the refrigerant inlet-outlet tank having its interior divided by a partition wall into a refrigerant inlet header chamber and a refrigerant outlet header chamber arranged in the direction of passage of air, the two header chambers being in communication with the heat exchange tubes of the respective two tube groups, a refrigerant flowing into the inlet header chamber of the refrigerant inlet-outlet tank being flowable through the corresponding heat exchange tubes into the refrigerant turn tank, where the refrigerant changes its course to flow into the outlet
- the partition plate having the refrigerant passing holes and provided inside the outlet header chamber functions to permit the refrigerant to flow through the heat exchange tubes of the two tube groups in uniform quantities, thereby enabling the evaporator to exhibit improved heat exchange performance.
- An object of the present-invention is to overcome the above problem and to provide a heat exchanger which is outstanding in heat exchange performance.
- the present invention comprises the following modes.
- a heat exchanger comprising a refrigerant inlet-outlet tank and a refrigerant turn tank arranged as spaced apart from each other, and a plurality of tube groups in the form of rows arranged at a spacing in the direction of flow of air through the heat exchanger between the tanks and each comprising a plurality of heat exchange tubes arranged in parallel at a spacing longitudinally of the tanks, the heat exchange tubes of each tube group having opposite ends joined to the respective tanks, the refrigerant inlet-outlet tank having interior divided by a partition wall into a refrigerant inlet header chamber and a refrigerant outlet- header chamber arranged in the direction of flow of air, each of the two header chambers being in communication with the heat exchange tubes of the tube group of at least one row, a refrigerant flowing into the inlet header chamber of the refrigerant inlet-outlet tank being flowable through the corresponding heat exchange tubes into the refrigerant turn tank, where the refrigerant changes its course to flow into the outlet header chamber of the refrig
- the refrigerant turn tank being provide with a uniformalizing member for making uniform divided flows of the refrigerant from the inlet header chamber into the heat exchange tubes communicating with the inlet header chamber.
- the uniformalizing member comprises a divided flow control plate dividing the interior of the refrigerant turn tank into two spaces arranged in the direction of flow of air, the two spaces being in communication with each other, the heat exchange tubes in communication with the inlet header chamber communicating with one of the spaces of the refrigerant turn tank, the heat exchange tubes in communication with the outlet header chamber communicating with the other space of the refrigerant turn tank.
- each tube group comprises at least seven heat exchange tubes.
- a refrigeration cycle comprising a compressor, a condenser and an evaporator, the evaporator being a heat exchanger described in any one of par. 1) to 13).
- a heat exchanger comprising a refrigerant inlet-outlet tank and a refrigerant turn tank arranged as spaced apart from each other, and a plurality of tube groups in the form of rows arranged at a spacing in the direction of flow of air through the heat exchanger between the tanks and each comprising a plurality of heat exchange tubes arranged in parallel at a spacing longitudinally of the tanks, the heat exchange tubes of each tube group having opposite ends joined to the respective tanks, the refrigerant inlet-outlet tank having interior divided by a partition wall into a refrigerant inlet header chamber and a refrigerant outlet header chamber arranged in the direction of flow of air, each of the two header chambers being in communication with the heat exchange tubes of the tube group of at least one row, a refrigerant flowing into the inlet header chamber of the refrigerant inlet-outlet tank being flowable through the corresponding heat exchange tubes into the refrigerant
- the inlet header chamber of the refrigerant inlet-outlet tank having interior divided by a flow dividing resistance plate into a first space communicating with the corresponding heat exchange tubes and a second space for the refrigerant to flow in, the flow dividing resistance plate having one refrigerant passing hole formed therein.
- a refrigeration cycle comprising a compressor, a condenser and an evaporator, the evaporator being a heat exchanger described in any one of par. 16) to 29).
- the divided flow uniformalizing member acts to cause therefrigerant to flow through the heat exchange tubes connected to the inlet header chamber of the inlet-outlet tank in uniform quantities, i.e., uniform rates, enabling the heat exchanger to exhibit improved heat exchange performance.
- the refrigerant can be passed through the heat exchange tubes connected to the inlet header chamber of the refrigerant inlet-outlet tank in uniform quantities, permitting the heat exchanger to achieve an improved heat exchange efficiency.
- the divided flow control plate of the refrigerant turn tank is formed integrally with the second member of aluminum extrudate.
- the control plate can therefore be provided inside the refrigerant turn tank by a simple procedure.
- the partition plate functions to cause the refrigerant to flow through the heat exchange tubes connected to the inlet header chamber of the refrigerant inlet-outlet tank in uniform quantities and through the heat exchange tubes connected to the outlet header chamber of the inlet-outlet tank also in uniform quantities, consequently enabling the heat exchanger to exhibit further improved heat exchange performance.
- the partition wall and partition plate of the refrigerant inlet-outlet tank are formed integrally with the second member in the heat exchanger described in par. 11), the partition wall and partition plate can be provided inside the inlet-outlet tank by a simple procedure.
- the refrigerant inlet-outlet tank is provided at one end thereof with a refrigerant inlet communicating with the inlet header chamber and a refrigerant outlet communicating with the second space of the outlet header chamber as in the heat exchanger described in par. 12
- the refrigerant flows through the heat exchange tubes of the tube groups markedly unevenly, whereas even in this case, the refrigerant flow through the heat exchange tubes can be made uniform when the heat exchanger has the feature described in any one of par. 1) to 7), 9) and 10).
- each tube group comprises at least seven heat exchange tubes as in the heat exchanger described in par. 13
- the refrigerant is admitted into the second space of the inlet header chamber of the refrigerant inlet-outlet tank, flows through the single refrigerant passing hole in the flow dividing resistance plate into the first space, from which the refrigerant dividedly flows through all the heat exchange tubes communicating with the inlet header chamber. Because the resistance plate has only one refrigerant passing hole formed therein, the refrigerant gently flows from the second space into the first space to spread over the entire area of the first space and flow into all the heat exchange tubes. Accordingly, the refrigerant is allowed to flow through the heat exchange tubes communicating with the inlet header chamber of the inlet-outlet tank in uniform quantities, enabling the heat exchanger to exhibit improved heat exchange performance.
- the heat exchange tubes communicating with the inlet header chamber of the refrigerant inlet-outlet tank are made further uniform in the quantities of refrigerant flowing therethrough, permitting the heat exchanger to achieve an improved heat exchange efficiency.
- the heat exchangers described in par. 21) and 22) are so adapted that the refrigerant flowing through the refrigerant passing hole of the flow dividing resistance plate can be made to spread over the entire area of the first space of the inlet header chamber with a high efficiency.
- the heat exchange tubes communicating with the inlet header chamber of the refrigerant inlet-outlet tank are therefore made uniform to a greater extent in the quantities of refrigerant flowing therethrough, permitting the heat exchanger to achieve an improved heat exchange efficiency.
- the refrigerant changes its course inside the refrigerant turn tank, flows into the first space of the outlet header chamber of the refrigerant inlet-outlet tank, flows through the refrigerant passing holes of the partition plate into the second space.
- the resistance offered by the partition plate to the flow of refrigerant serves to further uniformalize the divided flows from the first space of the inlet header chamber into the heat exchange tubes communicating therewith, also uniformalizing the divided flows from the refrigerant turn tank into the heat exchange tube communicating therewith. Consequently, the refrigerant is made to flow through the heat exchange tubes of all the tube groups in uniform quantities for the heat exchange to exhibit improved heat exchange performance.
- the partition wall, flow dividing resistance plate and partition plate are formed integrally with the second member. This facilitates the procedure for providing the partition wall, flow diving resistance plate and partition plate inside the refrigerant inlet-outlet tank.
- the refrigerant inlet-outlet tank When the refrigerant inlet-outlet tank is provided at one end thereof with a refrigerant inlet communicating with the inlet header chamber and a refrigerant outlet communicating with the outlet header chamber as in the heat exchanger described in par. 25), the refrigerant flows through the heat exchange tubes of the tube groups markedly unevenly, whereas even in this case, the refrigerant flow through the heat exchange tubes can be made uniform if the heat exchanger has the feature described in any one of par. 16) to 23).
- the heat exchangers described in par. 26) to 28) have a refrigerant dam portion which offers resistance to the refrigerant flowing from the first space of the inlet header chamber of the refrigerant inlet-outlet tank into the first space of the refrigerant turn tank via the corresponding heat exchange tubes.
- the heat exchange tubes communicating with the inlet header chamber of the inlet-outlet tank are therefore made uniform to a greater extent in the quantities of refrigerant flowing therethrough.
- the divided flow control plate of the refrigerant turn tank is formed integrally with the second member of aluminum extrudate. Accordingly, the control plate can be provided inside the turn tank by a facilitated procedure.
- FIG. 1 is a perspective view showing the overall construction of a first embodiment of evaporator according to the invention.
- FIG. 2 is a view in vertical section partly broken away and showing the evaporator of FIG. 1 as it is seen from behind.
- FIG. 3 is a view in section taken along the line A-A in FIG. 2 .
- FIG. 4 is an enlarged view in section taken along the line B-B in FIG. 2 and partly broken away.
- FIG. 5 is an enlarged view in section taken along the line C-C in FIG. 2 and partly broken away.
- FIG. 6 is an exploded perspective view of a refrigerant inlet-outlet tank of the evaporator of FIG. 1 .
- FIG. 1 is a perspective view showing the overall construction of a first embodiment of evaporator according to the invention.
- FIG. 2 is a view in vertical section partly broken away and showing the evaporator of FIG. 1 as it is seen from behind.
- FIG. 3 is a view in section taken along the line A
- FIG. 7 is an exploded perspective view of a refrigerant turn tank of the evaporator of FIG. 1 .
- FIG. 8 is a diagram showing how a refrigerant flows through the evaporator of FIG. 1 .
- FIG. 9 is a view corresponding to FIG. 8 and showing a second embodiment of evaporator according to the invention.
- FIG. 10 is a view corresponding to FIG. 8 and showing a third embodiment of evaporator according to the invention.
- FIG. 11 is a view corresponding to FIG. 8 and showing a fourth embodiment of evaporator according to the invention.
- FIG. 12 is a view corresponding to FIG. 8 and showing a fifth embodiment of evaporator according to the invention.
- FIG. 13 is a view corresponding to FIG.
- FIG. 14 is a view in horizontal section of a refrigerant inlet-outlet tank showing a seventh embodiment of evaporator according to the invention.
- FIG. 15 is an enlarged view in section taken along the line D-D in FIG. 14 and partly broken away.
- FIG. 16 is an exploded perspective view of a refrigerant inlet-outlet tank of the evaporator of the seventh embodiment.
- FIG. 17 is an exploded perspective view of a refrigerant turn tank of the evaporator of the seventh embodiment.
- FIG. 18 is a diagram showing how a refrigerant flows through the evaporator of the seventh embodiment.
- FIG. 19 is a diagram corresponding to FIG. 18 and showing an eighth embodiment of evaporator according to the invention.
- FIG. 20 is an enlarged fragmentary view in vertical section showing a ninth embodiment of evaporator according to the invention.
- FIGS. 1, 2 and 13 will be referred to respectively as the “upper,” “lower,” “left” and “right,” the downstream side of the flow of air through an air passing clearance between each adjacent pair of heat exchange tubes (i.e., the direction indicated by the arrow X in FIG. 1 , and the right-hand side of FIGS. 4, 5 and 15 ) will be referred to as “front,” and the opposite side as “rear.” Further throughout all the drawings, like parts will be designated by like reference numerals and will not be described repeatedly.
- FIGS. 1 to 5 show the overall construction of an evaporator as a first embodiment of the invention
- FIGS. 6 and 7 show the construction of main portions
- FIG. 8 shows how a refrigerant flows through the evaporator of the first embodiment.
- the evaporator 1 comprises a refrigerant inlet-outlet aluminum tank 2 and a refrigerant turn aluminum tank 3 which are arranged as spaced apart vertically, tube groups 5 in the form of a plurality of rows, i.e., two rows in the present embodiment, as spaced forwardly or rearwardly of the evaporator between the two tanks 2 , 3 and each comprising a plurality of heat exchange aluminum tubes 4 , i.e., at least seven heat exchange aluminum tubes 4 , arranged in parallel at a spacing leftwardly or rightwardly, i.e., laterally, of the evaporator, corrugated aluminum fins 6 arranged respectively in air passing clearances between adjacent pairs of heat exchange tubes 4 of each tube group 5 and also outside the heat exchange tubes 4 at the left and right opposite ends of each tube group 5 and each brazed to the heat exchange tube 4 adjacent thereto, and an aluminum side plate 7 disposed outside the corrugated fin 6 at each of the left and right ends.
- tube groups 5 in the form of
- the refrigerant inlet-outlet tank 2 comprises a platelike first member 8 made of aluminum brazing sheet having a brazing material layer at least over the outer surface (lower surface) thereof and having the heat exchange tubes 4 joined thereto, a second member 9 of bare aluminum extrudate and covering the upper side of the first member 8 , and aluminum caps 11 , 12 closing respective left and right end openings.
- the tank 2 comprises a refrigerant inlet header chamber 13 positioned on the front side and a refrigerant outlet header chamber 14 positioned on the rear side.
- the first member 8 has at each of the front and rear side portions thereof a curved portion 15 in the form of a circular arc of small curvature in cross section and bulging downward at its midportion.
- the curved portion 15 has a plurality of tube insertion slits 16 elongated forward or rearward and arranged at a spacing in the lateral direction. Each corresponding pair of slits 16 in the front and rear curved portions 15 are in the same position with respect to the lateral direction.
- the front edge of the front curved portion 15 and the rear edge of the rear curved portion 15 are integrally provided with respective upstanding walls 17 extending over the entire length of the member 8 .
- the first member 8 includes between the two curved portions 15 a flat portion 18 having a plurality of through holes 19 arranged at a spacing in the lateral direction.
- the second member 9 is generally m-shaped in cross section and opened downward and comprises front and rear two walls 21 , 22 extending laterally, a partition wall 23 provided in the midportion between the two walls 21 , 22 and extending laterally to divide the interior of the refrigerant inlet-outlet tank 2 into front and rear two spaces, and two generally circular-arc connecting walls 24 bulging upward and integrally connecting the partition wall 23 to the respective front and rear walls 21 , 22 at their upper ends.
- the rear wall 22 and the partition wall 23 are integrally interconnected at their lower ends by a partition plate 25 over the entire length of the member 9 .
- a plate separate from the rear wall 22 and the partition wall 23 may be secured to these walls 22 , 23 as the plate 25 .
- the partition plate 25 has laterally elongated refrigerant passing holes 26 , 26 A formed therein at a rear portion thereof other than the left and right end portions of the plate and arranged at a spacing laterally thereof.
- the refrigerant passing hole 26 A in the lateral midportion of the plate 25 has a length smaller than the spacing between adjacent heat exchange tubes 4 of the rear tube group 5 , and is formed between the adjacent two heat exchange tubes 4 in the lateral middle of the rear tube group 5 .
- the other refrigerant passing holes 26 have a larger length than the hole 26 A.
- the partition plate 25 is provided at a rear edge portion of its lower surface with a downwardly projecting ridge 25 a integral therewith and extending over the entire length thereof.
- the front wall 21 is integrally provided at the lower edge of its inner surface with a ridge 21 a projecting downward.
- the partition wall 23 has a lower end projecting downward beyond the lower ends of the ridges 21 a , 25 a and integrally provided with a plurality of projections 23 a fitted into the through holes 19 of the first member 8 , these projections 23 a projecting downward from the lower edge of the wall 23 and arranged at a spacing in the lateral direction.
- the projections 23 a are formed by cutting away specified portions of the partition wall 23 .
- the caps 11 , 12 are made from a bare material as by press work, forging or cutting, each have a recess facing laterally inward for the corresponding ends of the first and second members 8 , 9 to fit in.
- the right cap 12 has a refrigerant inflow opening 12 a in communication with the refrigerant inlet header chamber 13 , and a refrigerant outflow opening 12 b communicating with the upper portion of the refrigerant outlet header chamber 14 above the partition plate 25 .
- a refrigerant inlet-outlet aluminum member 27 having a refrigerant inlet 27 a communicating with the refrigerant inflow opening 12 a and a refrigerant outlet 27 b communicating with the refrigerant outflow opening 12 b.
- the two members 8 , 9 are brazed to each other utilizing the brazing material layer of the first member 8 , with the projections 23 a of the second member 9 inserted in the respective holes 19 of the first member 8 in crimping engagement and with the upstanding walls 17 of the first member 8 engaged with the ridges 21 a , 25 a of the second member 9 .
- the refrigerant inlet-outlet tank 2 is formed by brazing the two caps 11 , 12 to the first and second members 8 , 9 using a brazing material sheet.
- the portion of the tank 2 forwardly of the partition wall 23 of the second member 9 serves as the refrigerant inlet header chamber 13 , and the portion thereof rearward from the partition wall 23 as the refrigerant outlet header chamber 14 .
- the refrigerant outlet header chamber 14 is divided into upper and lower two spaces 14 a , 14 b by the partition plate 25 , and these spaces 14 a , 14 b are in communication through the refrigerant passing holes 26 , 26 A.
- the lower space 14 b is a first space in communication with the heat exchange tubes 4 of the rear tube group 5
- the upper space 14 a a second space via which the refrigerant flows out of the evaporator.
- the refrigerant outflow opening 12 b of the right cap 12 is in communication with the upper space 14 a of the refrigerant outlet header chamber 14 .
- the refrigerant turn tank 3 comprises a platelike first member 28 made of aluminum brazing sheet having a brazing material layer at least over the outer surface (upper surface) thereof and having the heat exchange tubes 4 joined thereto, a second member 29 made of bare aluminum extrudate and covering the lower side of the first member 28 , and aluminum caps 31 for closing left and right opposite end openings.
- the tank 3 comprises a refrigerant inflow header chamber 32 as a space positioned on the front side and a refrigerant outflow header chamber 33 as a space positioned on the rear side.
- the refrigerant turn tank 3 has a top surface 3 a , front and rear opposite side surfaces 3 b and a bottom surface 3 c .
- the top surface 3 a of the refrigerant turn tank 3 is circular-arc in cross section in its entirety such that the midportion thereof with respect to the forward or rearward direction is the highest portion 34 which is gradually lowered toward the front and rear sides.
- the tank 3 is provided in its front an rear opposite side portions with grooves 35 extending from the front and rear opposite sides of the highest portion 35 of the top surface 3 a to the front and rear opposite side surfaces 3 b , respectively, and arranged laterally at a spacing. Each groove 35 has a flat bottom face.
- Each groove 35 has a first portion 35 a existing on the top surface 3 a of the tank 3 and having the same depth over the entire length of this portion. Opposite side faces defining the first portion 35 a of the groove 35 are inclined upwardly outward away from each other laterally of the tank 3 , and the width of the first portion 35 a of the groove 35 gradually increases from the bottom of the groove toward the opening thereof. Further in the longitudinal section of each groove 35 , the bottom face of the first portion 35 a is shaped in the form of a circular arc extending from the highest portion ( 34 ) side of the tank top surface 3 a forwardly or rearwardly outward as curved downward.
- the groove 35 has a second portion 35 b existing at the junction 3 d of the top surface 3 a of the refrigerant turn tank 3 and the front or rear side surface 3 b thereof and having a bottom face which is inclined downward forwardly or rearwardly outward.
- the bottom face of the second portion 35 b extends from the end of the bottom face of the first portion 35 a .
- Each groove 35 has a third portion 29 c existing on the front or rear side surface 3 b of the tank 3 and having a vertical bottom face.
- the groove third portion 35 c has the same width from the bottom of the groove 35 to the opening thereof.
- the first member 28 has a circular-arc cross section bulging upward at its midportion with respect to the forward or rearward direction and is provided with a depending wall 28 a formed at each of the front and rear side edges thereof integrally therewith and extending over the entire length of the member 28 .
- the upper surface of the first member 28 serves as the top surface 3 a of the refrigerant turn tank 3 , and the outer surface of the depending wall 28 a as the front or rear side surface 3 b of the tank 3 .
- the grooves 35 are formed in each of the front and rear side portions of the first member 28 and extend from the highest portion 34 in the midportion of the member 28 with respect to the forward or rearward direction to the lower end of the depending wall 28 a .
- tube insertion slits 36 elongated in the forward or rearward direction are formed between respective adjacent pairs of grooves 35 .
- Each corresponding pair of front and rear tube insertion slits 36 are in the same position with respect to the lateral direction.
- the first member 28 has a plurality of through holes 37 formed in the highest portion 34 in the midportion thereof and arranged laterally at a spacing.
- the depending walls 28 a , grooves 35 , tube insertions slits 36 and through holes 37 of the first member 28 are formed at the same time by making the member 28 from an aluminum brazing sheet by press work.
- the second member 29 is generally w-shaped in cross section and opened upward, and comprises front and rear two walls 38 , 39 curved upwardly outwardly forward and rearward, respectively, and extending laterally, a vertical partition wall 41 dividing the interior of the refrigerant turn tank 3 into front and rear two spaces, and two connecting walls 42 integrally connecting the partition wall 41 to the respective front and rear walls 38 , 39 at their lower ends.
- the outer surfaces of the connecting walls 42 provide the bottom surface 3 c of the tank 3
- the outer surfaces of the front and rear walls 38 , 39 each provide a junction 3 e of the bottom surface 3 c and the front or rear side surface 3 b .
- the front and rear walls 38 , 39 have respective ridges 38 a , 39 a each projecting upward from the inner edge of the upper end thereof and extending over the entire length of the wall.
- the partition wall 41 has an upper end projecting upward beyond the upper ends of the front and rear walls 38 , 39 , and is provided with a plurality of projections 41 a projecting upward from the upper edge of the wall 41 integrally therewith, arranged laterally at a spacing and to be fitted into the respective through holes 37 in the first member 28 .
- the partition wall 41 is provided, at a portion thereof slightly leftwardly of its midportion, with refrigerant passing cutouts 41 b formed in the upper edge thereof between respective adjacent pairs of projections 41 a .
- the projections 41 a and the cutouts 41 b are formed by cutting away specified portions of the partition wall 41 .
- the caps 31 are made from a bare material as by press work, forging or cutting, and each have a recess facing laterally inward for the corresponding ends of the first and second members 28 , 29 to fit in.
- the first and second members 28 , 29 are brazed to each other utilizing the brazing material layer of the first member 28 , with the projections 41 a of the second member 29 inserted through the respective holes 37 in crimping engagement and with the depending walls 28 a of the first member 28 engaged with the ridges 38 a , 39 a of the second member 29 .
- the two caps 31 are further brazed to the first and second members 28 , 29 using a brazing material sheet, whereby the refrigerant turn tank 3 is formed.
- the upper-end openings of the cutouts 41 b in the partition wall 41 of the second member 29 are closed with the first member 28 , whereby refrigerant passing holes 43 are formed.
- the refrigerant passing holes 43 which are formed by closing the upper-end openings of the cutouts 41 b in the partition wall 41 with the first member 28 , can alternatively be through holes formed in the partition wall 41 .
- the partition wall 41 of the second member 29 serves as a divided flow control plate 44 which has the refrigerant passing holes 43 and which functions as a uniformalizing member dividing the refrigerant turn tank 3 into the refrigerant inflow header chamber 32 on the front side and the refrigerant outflow header chamber 33 on the rear side for causing the refrigerant to flow as uniformly divided.
- the divided flow control plate 44 is provided at its left and right opposite end portions with respective refrigerant dam portions 45 A, 45 B having no refrigerant passing holes 43 and each extending from the corresponding end of the plate 44 over a predetermined length. Between the dam portions 45 A, 45 B, the plate 44 has a refrigerant passing portion 46 provided with one or at least two refrigerant passing holes 43 , i.e., at least two refrigerant passing holes 43 in this embodiment.
- the dam portion 45 B at the right has a length which is greater than that of the dam portion 45 A at the left and approximately one-half of the entire length of the control plate 44 .
- each of the dam portions 45 A, 45 B be at least 15% of the entire length of the control plate 44 , and that the combined area of all the refrigerant passing holes 43 formed in the refrigerant passing portion 46 be 130 to 510 mm 2 .
- the length of each of the refrigerant dam portions 45 A, 45 B is limited to not greater than 78% of the entire length of the control plate 44 if largest.
- the ratio of the number of refrigerant passing holes 43 in the refrigerant passing portion 46 to the number of heat exchange tubes 4 of each tube group 5 i.e., the opening ratio, is preferably 20 to 75%.
- each dam portion 45 A or 45 B is less than 15% of the entire length of the divided flow control plate 44 , it is likely that all the heat exchange tubes 4 of each tube group will not be fully uniform in the amount of flow of the refrigerant therethrough. Further if the combined area of all the refrigerant passing holes 43 in the refrigerant passing portion 46 is less than 130 mm 2 , greatly increased channel resistance will be offered to result in adversely affected performance, whereas if the combined area is in excess of 510 mm 2 , there is the likelihood that the control plate 44 will be unable to serve the divided flow control function.
- the opening ratio i.e., the ratio of the number of refrigerant passing holes 43 in the refrigerant passing portion 46 to the number of heat exchange tubes 4 of each tube group 5 .
- the ratio is less than 20%, greatly increased channel resistance will be encountered to entail adversely affected performance. If the ratio is over 75%, it is likely that no divided flow control function will be available.
- the heat exchange tubes 4 providing the front and rear tube groups 5 are each made of a bare material in the form of an aluminum extrudate. Each tube 4 is flat, has a large width in the forward or rearward direction and is provided in its interior with a plurality of refrigerant channels 4 a extending longitudinally of the tube and arranged in parallel. The tube 4 has front and rear opposite end walls which are each in the form of an outwardly bulging circular arc. Each corresponding pair of heat exchange tube 4 of the front tube group 5 and heat exchange tube 4 of the rear tube group 5 are in the same position with respect to the lateral direction.
- Each heat exchange tube 4 has its upper end inserted into the tube insertion slit 16 of the first member 8 of the inlet-outlet tank 2 and brazed to the first member 8 utilizing the brazing material layer of the member 8 , and has its lower end inserted into the tube insertion slit 36 of the first member 28 of the turn tank 3 and brazed to the first member 28 utilizing the brazing material layer of the member 28 .
- the heat exchange tube 4 is 0.75 to 1.5 mm in height, i.e., in thickness in the lateral direction, 12 to 18 mm in width in the forward or rearward direction, 0.175 to 0.275 mm in the wall thickness of the peripheral wall thereof, 0.175 to 0.275 mm in the thickness of partition walls separating refrigerant channels 4 a from one another, 0.5 to 3.0 mm in the pitch of partition walls, and 0.35 to 0.75 mm in the radius of curvature of the outer surfaces of the front and rear opposite end walls.
- an electric resistance welded tube of aluminum which has a plurality of refrigerant channels formed therein by inserting inner fins into the tube.
- a tube which is made from a plate prepared from an aluminum brazing sheet having an aluminum brazing material layer on opposite sides thereof by rolling work and which comprises two flat wall forming portions joined by a connecting portion, a side wall forming portion formed on each flat wall forming portion integrally therewith and projecting from one side edge thereof opposite to the connecting portion, and a plurality of partition forming portions projecting from each flatwall forming portion integrally therewith and arranged at a spacing widthwise thereof, by bending the plate into the shape of a hairpin at the connecting portion and brazing the side wall forming portions to each other in butting relation to form partition walls by the partition forming portions.
- the corrugated fins to be used in this case are those made from a bare material.
- the corrugated fin 6 is made from an aluminum brazing sheet having a brazing material layer on opposite sides thereof by shaping the sheet into a wavy form. Louvers 6 a are formed as arranged in parallel in the forward or rearward direction in the portions of the wavy sheet which connect crest portions thereof to furrow portions thereof.
- the corrugated fins 6 are used in common for the front and rear tube groups 5 .
- the width of the fin 6 in the forward or rearward direction is approximately equal to the distance from the front edge of the heat exchange tube 4 in the front tube group 5 to the rear edge of the corresponding heat exchange tube 4 in the rear tube group 5 .
- the corrugated fin 6 be 7.0 mm to 10.0 mm in fin height, i.e., the straight distance from the crest portion to the furrow portion, and 1.3 to 1.8 mm in fin pitch, i.e., the pitch of connecting portions.
- the evaporator 1 is fabricated by tacking the components together in combination and collectively brazing the tacked assembly.
- the evaporator 1 constitutes a refrigeration cycle, which is installed in vehicles, for example, in motor vehicles for use as an air conditioner.
- a two-layer refrigerant of vapor-liquid mixture phase flowing through a compressor, condenser and pressure reduction means enters the refrigerant inlet header chamber 13 of the refrigerant inlet-outlet tank 2 via the refrigerant inlet 27 a of the refrigerant inlet-outlet member 27 and the refrigerant inflow opening 12 a of the right cap 12 .
- the refrigerant admitted into the inlet header chamber 13 tends to readily flow into the heat exchange tubes 4 closer to the left and right opposite ends of the front tube group 5 , whereas since the divided flow control plate 44 of the refrigerant turn tank 3 has the refrigerant dam portions 45 A, 45 B at its opposite ends, these dam portions offer resistance to the refrigerant to be passed through the heat exchange tubes 4 closer to the left and right ends, permitting the refrigerant to flow as uniformly divided into the tubes 4 , flow down the refrigerant channels 4 a therein and ingress into the refrigerant inflow header chamber 32 of the refrigerant turn tank 3 .
- the refrigerant then flows into the refrigerant outflow header chamber 33 through the refrigerant passing holes 43 of the refrigerant passing portion 46 , dividedly moves into the refrigerant channels 4 a of all the heat exchange tubes 4 of the rear tube group 5 , changes its course and passes upward through the channels 4 a into the lower space 14 b of the refrigerant outlet header chamber 14 of the refrigerant inlet-outlet tank 2 .
- the partition plate 25 provided in the outlet header chamber 14 gives resistance to the flow of refrigerant, consequently enabling the refrigerant to flow as uniformly divided from the outflow header chamber 33 into the tubes 4 of the rear tube group 5 and also to flow from the inlet header chamber 13 into the tubes 4 of the front tube group 5 .
- the refrigerant flows through the heat exchange tubes 4 of the two tube groups in uniform quantities.
- the refrigerant flows through the refrigerant passing holes 26 , 26 A of the partition plate 25 into the upper space 14 a of the outlet header chamber 14 and flows out of the evaporator via the refrigerant outflow opening 12 b of the cap 12 and the outlet 27 b of the refrigerant inlet-outlet member 27 .
- the refrigerant While flowing through the refrigerant channels 4 a of the heat exchange tubes 4 of the front tube group 5 and the refrigerant channels 4 a of the heat exchange tubes 4 of the rear tube group 5 , the refrigerant is subjected to heat exchange with air flowing through the air passing clearances in the direction of arrow X shown in FIG. 1 and flows out of the evaporator in a vapor phase.
- the divided flow control plate 44 has the refrigerant passing holes 43 and divides the refrigerant turn tank 3 into the refrigerant inflow header chamber 32 on the front side and the refrigerant outflow header chamber 33 on the rear side to serve as a uniformalizing member for causing the refrigerant to flow as uniformly divided through the heat exchange tubes 4 of the front tube group 5 in communication with the inlet header chamber 13 .
- this construction is not limitative but can be modified suitably.
- FIG. 9 shows a second embodiment of evaporator according to the invention.
- the divided flow control plate 44 within the refrigerant turn tank 3 has a refrigerant passing portion 46 at the lateral midportion thereof, and refrigerant dam portions 45 A, 45 B provided respectively on the left and right sides of this portion 46 and approximately equal in length.
- This embodiment is the same as the first embodiment with respect to the ratio of the length of each of the dam portions 45 A, 45 B to the entire length of the control plate 44 , the combined area of all the refrigerant passing holes 43 formed in the refrigerant passing portion 46 , and the opening ratio which is the ratio of the number of refrigerant passing holes 43 formed in the refrigerant passing portion 46 to the number of heat exchange tubes 4 in each tube group 5 .
- the partition plate 25 of the refrigerant inlet-outlet tank 2 has a plurality of laterally elongated refrigerant passing holes 50 arranged laterally at a spacing and formed at the portions thereof corresponding to the respective dam portions 45 A, 45 B of the divided flow control plate 44 . All the refrigerant passing holes 50 are equal in length.
- the second embodiment is the same as the first with the exception of these features.
- the second embodiment is also so adapted that the refrigerant flowing through the evaporator flows through the heat exchange tubes 4 of each tube group in uniform quantities.
- FIG. 10 shows a third embodiment of evaporator according to the invention.
- the divided flow control plate 44 within the refrigerant turn tank 3 has a refrigerant passing portion 46 slightly longer than in the first embodiment and positioned leftwardly of the lateral midportion thereof, and refrigerant dam portions 45 A, 45 B provided respectively on the left and right sides of this portion 46 .
- the dam portion 45 B at the right has a length greater than that of the dam portion 45 A at the left and approximately one-half of the entire length of the control plate 44 .
- This -embodiment is the same as the first embodiment with respect to the ratio of the length of each of the dam portions 45 A, 45 B to the entire length of the control plate 44 , the combined area of all the refrigerant passing holes 43 formed in the refrigerant passing portion 46 , and the opening ratio which is the ratio of the number of refrigerant passing holes 43 formed in the refrigerant passing portion 46 to the number of heat exchange tubes 4 in each tube group 5 .
- the partition plate 25 of the refrigerant inlet-outlet tank 2 has one laterally elongated refrigerant passing hole 51 formed at the portion thereof corresponding to the left dam portion 45 A of the control plate 44 , and a plurality of laterally elongated refrigerant passing holes 51 arranged laterally at a spacing and formed at the portion thereof corresponding to the right dam portion 45 B. All the refrigerant passing holes 51 are equal in length.
- the third embodiment is the same as the first with the exception of these features.
- the third embodiment is also so adapted that the refrigerant flowing through the evaporator flows through the heat exchange tubes 4 of each tube group in uniform quantities.
- FIG. 11 shows a fourth embodiment of evaporator according to the invention.
- the divided flow control plate 44 within the refrigerant turn tank 3 has an auxiliary refrigerant passing hole 60 formed in at least one of the two refrigerant dam portions 45 A, 45 B, i.e., in each of these dam portions 45 A, 45 B according to the present embodiment.
- the fourth embodiment is the same as the first with the exception of this feature.
- an auxiliary refrigerant passing hole may be formed in at least one of the two dam portions 45 A, 45 B.
- the fourth embodiment is also so adapted that the refrigerant flowing through the evaporator flows through the heat exchange tubes 4 of each tube group in uniform quantities.
- FIG. 12 shows a fifth embodiment of evaporator according to the invention.
- an evaporator 61 has a refrigerant inlet-outlet tank 32 and a refrigerant turn tank 3 which are made to extend rightward over a larger distance than is the case with the first embodiment.
- tube groups 5 in the form of front and rear two rows and each comprising a plurality of heat exchange tubes arranged in parallel at a spacing in the lateral direction.
- the front and rear tube groups 5 have their heat exchange tubes 4 joined at the tube upper ends to the respective front and rear opposite side portions of the extensions 2 A of the tank 2 and at the tube lower ends to the respective front and rear opposite side portions of the extensions 3 A of the tank 3 .
- the outlet header chamber 14 of the refrigerant inlet-outlet tank 2 has no partition plate.
- the extension 2 A of the tank 2 has right-end openings which are closed with a cap (not shown) having no refrigerant inflow opening and no refrigerant outflow opening.
- the two header chambers 32 , 33 of the refrigerant turn tank 3 are separated from the extensions 32 A, 33 A of these chambers 32 , 33 by a partition plate 62 .
- the extension 3 A of the tank 3 has right-end openings which are closed with a cap (not shown) having a refrigerant inflow opening and a refrigerant outflow opening.
- a refrigerant inlet-outlet member (not shown) having a refrigerant inlet in communication with the inflow opening and a refrigerant outlet in communication with the outflow opening.
- the fifth embodiment is the same as the first with the exception of these features.
- the first to fourth embodiments can also be given the same construction as the fifth embodiment.
- a two-layer refrigerant of vapor-liquid mixture phase flowing through a compressor, condenser and pressure reduction means enters the evaporator 61 , more specifically, the extension 32 A of the refrigerant inflow header chamber 32 of the refrigerant turn tank 3 via the refrigerant inlet of the refrigerant inlet-outlet member and the refrigerant inflow opening of the right cap.
- the refrigerant admitted into the extension 32 A flows upward through the refrigerant channels 4 a of heat exchange tubes 4 of the front tube group 5 joined to the extension 3 A, flows into the refrigerant inlet header chamber 13 and flows leftward through this chamber 13 .
- the refrigerant thereafter flows as uniformly divided into the heat exchange tubes 4 of the front tube group 5 , flows down the refrigerant channels 4 a therein and ingresses into the refrigerant inflow header chamber 32 of the refrigerant turn tank 3 .
- the refrigerant then flows into the refrigerant outflow header chamber 33 through the refrigerant passing holes 43 of the refrigerant passing portion 46 , dividedly moves into the refrigerant channels 4 a of all the heat exchange tubes 4 of the rear tube group 5 , changes its course and passes upward through the channels 4 a into the refrigerant outlet header chamber 14 of the refrigerant inlet-outlet tank 2 .
- the refrigerant flows rightward through the outlet header chamber 14 , enters the channels 4 a of heat exchange tubes 4 of the rear tube group 5 joined to the extension 2 A, flows down the channels 4 a into the extension 33 A of the outflow header chamber 33 of the turn tank 3 and flows out of the evaporator through the refrigerant outflow opening of the cap and the outlet of the inlet-outlet member.
- the fifth embodiment is also so adapted that the refrigerant flowing through the evaporator flows through the heat exchange tubes 4 of each tube group in uniform quantities.
- FIG. 13 shows a sixth embodiment of evaporator according to the invention.
- the refrigerant passing holes 43 formed in the divided flow control plate 44 are positioned as shifted from heat exchange tubes 4 . Stated more specifically, each refrigerant passing hole 43 is positioned between a pair of adjacent heat exchange tubes 4 .
- the sixth embodiment is the same as the first. Incidentally, the second to fifth embodiments can be made to have the same construction as the sixth embodiment.
- FIGS. 14 to 18 show a seventh embodiment of evaporator according to the invention.
- the front wall 21 and the partition wall 23 of the second member 9 of the refrigerant inlet-outlet tank 2 are connected together at their lower ends by a flow dividing resistance plate 70 over the entire length of the tank.
- the resistance plate 70 has one refrigerant passing circular hole 71 formed at the midportion thereof with respect to the lateral direction.
- the resistance plate 70 may be a plate separate from the front wall 21 and the partition wall 23 and fixed to the front wall 21 , rear wall 22 and partition wall 23 .
- the refrigerant inlet header chamber 13 is divided by the resistance plate 70 into upper and lower two spaces 13 a , 13 b , which are held in communication with each other through the circular hole 71 .
- the lower space 13 b is a first space which is in communication with the heat exchange tubes 4 of the front tube group 5
- the upper space 13 a is a second space for the refrigerant to flow in.
- the refrigerant inflow opening 12 a of the right cap 12 is in communication with the upper space 13 a of the inlet header chamber 13 .
- the refrigerant passing circular hole 71 of the flow dividing resistance plate 70 is positioned between the two heat exchange tubes 4 in the lateral center of the front tube group 5 .
- the circular hole 71 has a lateral size (diameter) which is smaller than the spacing between the two tubes 4 .
- the hole 71 is 3 to 8 mm in diameter. If the hole 71 is less than 3 mm in diameter, increased channel resistance will be offered to the refrigerant to burden the air conditioner system with an increased load, while the flow of refrigerant produces a greater noise due to an increased flow velocity.
- the refrigerant passing circular hole 71 has an area greater than the combined cross sectional area of refrigerant channels of one heat exchange tube 4 .
- the refrigerant passing hole to be formed in the flow dividing resistance plate 70 is not limited to the circular shape but may have a suitably altered shape, such as an elliptical form (not limited to a mathematically defined elliptical form but including forms which are nearly elliptical). Even when the refrigerant passing hole has a shape other than the circular, the hole should have the above-mentioned area and is so sized as to be positioned between the two heat exchange tubes in the lateral midportion of the tube group 5 .
- the divided flow control plate 44 of the refrigerant turn tank 3 has a refrigerant dam portion 72 having no refrigerant passing holes and formed at the longitudinal midportion thereof, i.e., at a position corresponding to the refrigerant passing circular hole 71 of the flow dividing resistance plate 70 of the inlet-outlet tank 2 .
- the control plate 44 also has a refrigerant passing portion 73 formed on each of the left and right sides of the dam portion 72 and having one or at least two refrigerant passing holes 43 , i.e, at least two holes 43 in the present embodiment.
- the dam portion 72 has a length-of at least 28 mm in the lateral direction.
- the ratio of the number of refrigerant passing holes 43 in each refrigerant passing portion 73 to the number of heat exchange tubes 4 of each tube group 5 i.e., the opening ratio, is 20 to 90%. If this ratio is less than 20%, increased channel resistance will be offered to the refrigerant, possibly resulting in impaired performance. When the ratio is in excess of 90%, it is likely that no divided flow control function will be available.
- the seventh embodiment is the same as the first with the exception of the above features.
- a two-layer refrigerant of vapor-liquid mixture phase flowing through a compressor, condenser and pressure reduction means enters the upper space 13 a of the refrigerant inlet header chamber 13 of the refrigerant inlet-outlet tank 2 via the refrigerant inlet 27 a of the refrigerant inlet-outlet member 27 and the refrigerant inflow opening 12 a of the right cap 12 , flows into the lower space 13 b through the single circular hole 71 in the flow dividing resistance plate 70 and further flows from the lower space 13 b dividedly into the refrigerant channels 4 a of all the heat exchange tubes 4 of the front tube group 5 .
- the resistance plate 70 Since the resistance plate 70 has the single refrigerant passing circular hole 71 only formed therein, the refrigerant gently flows into the lower space 13 b , spreads over the entire area of this space 13 b to flow into the refrigerant channels 4 a of all the heat exchange tubes 4 . This permits the refrigerant to flow through these tube 4 in uniform quantities.
- the refrigerant flowing into the channels 4 a of all the heat exchange tubes 4 flows down the channels 4 a into the refrigerant inflow header chamber 32 of the refrigerant turn tank 3 .
- the refrigerant admitted into the chamber 32 flows leftwardly and righwardly outward by virtue of the function of the dam portion 72 and flows into the refrigerant outflow header chamber 33 through the holes 43 of the refrigerant passing portions 73 .
- the resistance offered by the dam portion 73 to the flow of refrigerant inhibits the refrigerant from flowing out of the lower space 13 b of the header chamber 13 only into the channels 4 a of the heat exchange tubes 4 of the front tube group 5 which tubes are positioned in the vicinity of the circular holes 71 , while promoting the flow of refrigerant into the channels 4 a of the other heat exchange tubes.
- the refrigerant is made to flow through the heat exchange tubes 4 of the front tube group 5 in uniform quantities.
- the partition plate 25 in chamber 14 gives resistance to the flow of refrigerant, consequently enabling the refrigerant to flow as uniformly divided from the outflow header chamber 33 into the tubes 4 of the rear tube group 5 and also to flow from the lower space 13 b of the inlet header chamber 13 into the heat exchange tubes 4 of the front tube group 5 .
- the refrigerant flows through the heat exchange tubes 4 of the two tube groups in uniform quantities.
- the refrigerant flows through the refrigerant passing holes 26 , 26 A of the partition plate 25 into the upper space 14 a of the outlet header chamber 14 and flows out of the evaporator via the refrigerant outflow opening 12 b of the cap 12 and the outlet 27 b of the refrigerant inlet-outlet member 27 .
- the refrigerant While flowing through the refrigerant channels 4 a of the heat exchange tubes 4 of the front tube group 5 and the refrigerant channels 4 a of the heat exchange tubes 4 of the rear tube group 5 , the refrigerant is subjected to heat exchange with air flowing through the air passing clearances in the direction of arrow X shown in FIG. 1 and flows out of the evaporator in a vapor phase.
- FIG. 19 shows an eighth embodiment of evaporator according to the invention.
- the partition plate 25 of the refrigerant inlet-outlet tank 2 has a plurality of laterally elongated refrigerant passing holes 26 arranged at a spacing in the lateral direction and formed at each of the portions thereof corresponding to the respective refrigerant passing portions 73 of the divided flow control plate 44 . All the refrigerant passing holes 26 are equal in length.
- the eighth embodiment is the same as the seventh with the exception of this feature.
- the eighth embodiment is also so adapted that the refrigerant flowing through the evaporator flows through the heat exchange tubes 4 of each tube group in uniform quantities.
- FIG. 20 shows a ninth embodiment of evaporator according to the invention.
- the first member 8 of the refrigerant inlet-outlet tank 2 has an upwardly projecting ridge 75 in the form of an angle in cross section, extending forward or rearward and positioned at the lateral midportion thereof immediately below the center, with respect to the lateral direction, of the refrigerant passing circular hole 7 1 .
- the ridge 75 is formed by upwardly bending the first member 8 into a projecting ridge.
- the length of the ridge 75 is preferably at least equal to the diameter (size in the forward or rearward direction) of the circular hole 71 .
- the ridge 75 is a flow dividing member by which the refrigerant flowing from the upper space 13 a of the inlet header chamber 13 into the lower space 13 b thereof through the circular hole 71 is divided leftward and rightward within the space 13 b .
- the ridge 75 is formed simultaneously when the first member 8 is made from an aluminum brazing sheet by press work.
- the ridge may be formed by fixing a separate member to the upper surface of the first member 8 instead of bending the first member 8 upward.
- the ninth embodiment is the same as the seventh with the exception of the above feature.
- one tube group 5 is provided between the front portions, as well as the rear portions, of the two tanks 2 , 3 , but this construction is not limitative; one or at least two tube groups 5 may be provided between the front portions, as well as the rear portions, of the tanks 2 , 3 .
- the highest portion 34 is positioned at the midportion, with respect to the forward or rearward direction, of the refrigerant turn tank 3 , whereas this arrangement is not limitative; the highest portion may be located away from such midportion of the tank 3 .
- One or at least two tube groups are provided at each of the front and rear sides of the highest portion also in this case.
- the refrigerant inlet-outlet tank 2 is positioned above the refrigerant turn tank 3 which is at a lower level according to all the foregoing embodiments, the evaporator may be used conversely with the turn tank 3 positioned above the inlet-outlet tank 2 .
- the heat exchanger of the present invention is suitable for use as an evaporator for motor vehicle air conditioners and is adapted to exhibit improved heat exchange performance.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Details Of Heat-Exchange And Heat-Transfer (AREA)
Abstract
A heat exchanger includes a refrigerant inlet-outlet tank, a refrigerant turn tank, and tube groups in the form of at least two rows arranged between the two tanks, and each including a plurality of heat exchange tubes. The refrigerant inlet-outlet tank has its interior divided into a refrigerant inlet header chamber and a refrigerant outlet header chamber. The refrigerant turn tank has its interior divided by a divided flow control plate into a refrigerant inflow header chamber and a refrigerant outflow header chamber. The divided flow control plate has refrigerant dam portions at respective opposite end portions thereof, and a refrigerant passing portion provided between the dam portions and having one or at least two refrigerant passing holes. The heat exchanger exhibits improved heat exchange performance when used as an evaporator.
Description
- This application is an application filed under 35 U.S.C. §111(a) claiming the benefit pursuant to 35 U.S.C. §119(e) (1) of the filing dates of Provisional Applications No. 60/486, 897 and No. 60/486,898 both filed Jul. 15, 2003 pursuant to 35 U.S.C. §111(b).
- The present invention relates to heat exchangers, and more particularly to heat exchangers suitable for use as the evaporators of motor vehicle air conditioners which are refrigeration cycles to be installed in motor vehicles.
- The term “aluminum” as used herein and in the appended claims includes aluminum alloys in addition to pure aluminum.
- Heretofore in wide use as motor vehicle evaporators are those of the so-called stacked plate type which comprise a plurality of flat hollow bodies arranged in parallel and each composed of a pair of dishlike plates facing toward each other and brazed to each other along peripheral edges thereof, and a louvered corrugated fin disposed between and brazed to each adjacent pair of flat hollow bodies. In recent years, however, it has been demanded to provide evaporators further reduced in size and weight and exhibiting higher performance.
- To meet such a demand, the present applicant has already proposed evaporators which comprise a refrigerant inlet-outlet tank and a refrigerant turn tank arranged as spaced apart from each other, and a plurality of tube groups arranged in two rows as spaced apart in the direction of passage of air through the evaporator between the tanks and each comprising a plurality of heat exchange tubes arranged in parallel at a spacing longitudinally of the tanks, the heat exchange tubes of each tube group having opposite ends joined to the respective tanks, the refrigerant inlet-outlet tank having its interior divided by a partition wall into a refrigerant inlet header chamber and a refrigerant outlet header chamber arranged in the direction of passage of air, the two header chambers being in communication with the heat exchange tubes of the respective two tube groups, a refrigerant flowing into the inlet header chamber of the refrigerant inlet-outlet tank being flowable through the corresponding heat exchange tubes into the refrigerant turn tank, where the refrigerant changes its course to flow into the outlet header chamber of the refrigerant inlet-outlet tank through the corresponding heat exchange tubes, the outlet header chamber having its interior divided into a first space in communication with the corresponding heat exchange tubes and a second space for the refrigerant to flow out therefrom, by a partition plate having refrigerant passing holes (see the publication of JP-A No. 2003-75024). With this evaporator, the partition plate having the refrigerant passing holes and provided inside the outlet header chamber functions to permit the refrigerant to flow through the heat exchange tubes of the two tube groups in uniform quantities, thereby enabling the evaporator to exhibit improved heat exchange performance.
- However, extended research conducted by the present inventors has revealed that the evaporator disclosed in the above publication still remains to be improved in making the refrigerant to flow through the heat exchange tubes of the tube groups in uniform quantities and in heat exchange performance.
- An object of the present-invention is to overcome the above problem and to provide a heat exchanger which is outstanding in heat exchange performance.
- To fulfill the above object, the present invention comprises the following modes.
- 1) A heat exchanger comprising a refrigerant inlet-outlet tank and a refrigerant turn tank arranged as spaced apart from each other, and a plurality of tube groups in the form of rows arranged at a spacing in the direction of flow of air through the heat exchanger between the tanks and each comprising a plurality of heat exchange tubes arranged in parallel at a spacing longitudinally of the tanks, the heat exchange tubes of each tube group having opposite ends joined to the respective tanks, the refrigerant inlet-outlet tank having interior divided by a partition wall into a refrigerant inlet header chamber and a refrigerant outlet- header chamber arranged in the direction of flow of air, each of the two header chambers being in communication with the heat exchange tubes of the tube group of at least one row, a refrigerant flowing into the inlet header chamber of the refrigerant inlet-outlet tank being flowable through the corresponding heat exchange tubes into the refrigerant turn tank, where the refrigerant changes its course to flow into the outlet header chamber of the refrigerant inlet-outlet tank through the corresponding heat exchange tubes,
- the refrigerant turn tank being provide with a uniformalizing member for making uniform divided flows of the refrigerant from the inlet header chamber into the heat exchange tubes communicating with the inlet header chamber.
- 2) A heat exchanger described in par. 1) wherein the uniformalizing member comprises a divided flow control plate dividing the interior of the refrigerant turn tank into two spaces arranged in the direction of flow of air, the two spaces being in communication with each other, the heat exchange tubes in communication with the inlet header chamber communicating with one of the spaces of the refrigerant turn tank, the heat exchange tubes in communication with the outlet header chamber communicating with the other space of the refrigerant turn tank.
- 3) A heat exchanger described in par. 2) wherein the divided flow control plate has one or at least two refrigerant passing holes formed therein, and the two spaces are held in communication through the refrigerant passing holes
- 4) A heat exchanger described in par. 3) wherein the refrigerant flows through the refrigerant passing holes in the divided flow control plate in counter current relation with the flow of air.
- 5) A heat exchanger described in par. 3) wherein the divided flow control plate has two refrigerant dam portions at respective opposite end portions thereof and is provided between the two refrigerant dam portions with a refrigerant passing portion having one or at least two refrigerant passing holes, the length of each of the refrigerant dam portions being at least 15% of the entire length of the divided flow control plate, the combined area of all the refrigerant passing holes formed in the refrigerant passing portion being 130 to 510 mm2.
- 6) A heat exchanger described in par. 3) wherein the divided flow control plate has two refrigerant dam portions at respective opposite end portions thereof and is provided between the two refrigerant dam portions with a refrigerant passing portion having one or at least two refrigerant passing holes, the length of each of the refrigerant dam portions being at least 15% of the entire length of the divided flow control plate, the heat exchanger being 20 to 75% in opening ratio which is the ratio of the number of refrigerant passing holes formed in the refrigerant passing portion to the number of heat exchange tubes of each tube group.
- 7) A heat exchanger described in par. 3) wherein the divided flow control plate has two refrigerant dam portions at respective opposite end portions thereof and is provided between the two refrigerant dam portions with a refrigerant passing portion having one or at least two refrigerant passing holes, the length of each of the refrigerant dam portions being at least 15% of the entire length of the divided flow control plate, the combined area of all the refrigerant passing holes formed in the refrigerant passing portion being 130 to 510 mm2, the heat exchanger being 20 to 75% in opening ratio which is the ratio of the number of refrigerant passing holes formed in the refrigerant passing portion to the number of heat exchange tubes of each tube group.
- 8) A heat exchanger described in par. 2) wherein the refrigerant turn tank comprises a first member of aluminum having the heat exchange tubes joined thereto, and a second member of an aluminum extrudate brazed to the first member at a portion thereof opposite to the heat exchange tubes, and the divided flow control plate is integral with the second member.
- 9) A heat exchanger described in par. 1) wherein the outlet header chamber of the refrigerant inlet-outlet tank has interior divided by a partition plate into a first space communicating with the corresponding heat exchange tubes and a second space for the refrigerant to flow out therefrom, the two spaces being in communication with each other.
- 10) A heat exchanger described in par. 9) wherein the partition plate has one or at least two refrigerant passing holes formed therein, and the two spaces are held in communication through the refrigerant passing holes.
- 11) A heat exchanger described in par. 9) wherein the refrigerant inlet-outlet tank comprises a first member of aluminum having the heat exchange tubes joined thereto, and a second member of an aluminum extrudate brazed to the first member at a portion thereof opposite to the heat exchange tubes, and the partition wall and the partition plate are integral with the second member.
- 12) A heat exchanger described in par. 9) wherein the refrigerant inlet-outlet tank is provided at one end thereof with a refrigerant inlet communicating with the inlet header chamber and a refrigerant outlet communicating with the second space of the outlet header chamber.
- 13) A heat exchanger described in par. 1) wherein each tube group comprises at least seven heat exchange tubes. 14) A refrigeration cycle comprising a compressor, a condenser and an evaporator, the evaporator being a heat exchanger described in any one of par. 1) to 13).
- 15) A vehicle having installed therein a refrigeration cycle described in par. 14) as an air conditioner. 16) A heat exchanger comprising a refrigerant inlet-outlet tank and a refrigerant turn tank arranged as spaced apart from each other, and a plurality of tube groups in the form of rows arranged at a spacing in the direction of flow of air through the heat exchanger between the tanks and each comprising a plurality of heat exchange tubes arranged in parallel at a spacing longitudinally of the tanks, the heat exchange tubes of each tube group having opposite ends joined to the respective tanks, the refrigerant inlet-outlet tank having interior divided by a partition wall into a refrigerant inlet header chamber and a refrigerant outlet header chamber arranged in the direction of flow of air, each of the two header chambers being in communication with the heat exchange tubes of the tube group of at least one row, a refrigerant flowing into the inlet header chamber of the refrigerant inlet-outlet tank being flowable through the corresponding heat exchange tubes into the refrigerant turn tank, where the refrigerant changes its course to flow into the outlet header chamber of the refrigerant inlet-outlet tank through the corresponding heat exchange tubes,
- the inlet header chamber of the refrigerant inlet-outlet tank having interior divided by a flow dividing resistance plate into a first space communicating with the corresponding heat exchange tubes and a second space for the refrigerant to flow in, the flow dividing resistance plate having one refrigerant passing hole formed therein.
- 17) A heat exchanger described in par. 16) wherein the refrigerant passing hole is formed at a longitudinal midportion of the flow dividing resistance plate.
- 18) A heat exchanger described in par. 16) wherein the refrigerant passing hole is positioned between a pair of heat exchange tubes adjacent to each other longitudinally of the refrigerant inlet-outlet tank and included among the heat exchange tubes in communication with the inlet header chamber of the refrigerant inlet-outlet tank.
- 19) A heat exchanger described in par. 16) wherein the refrigerant passing hole has an area larger than the combined cross sectional area of refrigerant channels in one heat exchange tube.
- 20) A heat exchanger described in par. 16) wherein the refrigerant passing hole is circular and has a diameter of 3 to 8 mm.
- 21) A heat exchanger described in par. 16) wherein the refrigerant inlet-outlet tank has a wall portion to which the heat exchange tubes communicating with the first space are joined and which has a flow dividing member inwardly projecting from a part thereof corresponding to the refrigerant passing hole for causing the refrigerant to dividedly flow longitudinally of the inlet header chamber upon flowing through the refrigerant passing hole.
- 22) A heat exchanger described in par. 21) wherein the flow dividing member is a ridge projecting toward the resistance plate in the form of an angle and extending widthwise of the inlet header chamber.
- 23) A heat exchanger described in par. 16) wherein the outlet header chamber of the refrigerant inlet-outlet tank has interior divided by a partition plate into a first space communicating with the corresponding heat exchange tubes and a second space for the refrigerant to flow out therefrom, and a refrigerant passing hole is formed in the partition plate.
- 24) A heat exchanger described in par. 23) wherein the refrigerant inlet-outlet tank comprises a first member of aluminum having the heat exchange tubes joined thereto, and a second member of an aluminum extrudate brazed to the first member at a portion thereof opposite to the heat exchange tubes, and the partition wall, the flow dividing resistance plate and the partition plate are integral with the second member.
- 25) A heat exchanger described in par. 16) wherein the refrigerant inlet-outlet tank is provided at one end thereof with a refrigerant inlet communicating with the second space of the inlet header chamber and a refrigerant outlet communicating with the outlet header chamber.
- 26) A heat exchanger described in par. 16) wherein the refrigerant turn tank has interior divided by a divided flow control plate into a first space in communication with the heat exchange tubes communicating with the first space of the inlet header chamber of the refrigerant inlet-outlet tank and a second space communicating with the heat exchange tubes communicating with the outlet header chamber of the refrigerant inlet-outlet tank, and the divided flow control plate has a refrigerant dam portion at a position corresponding to the refrigerant passing hole in the flow dividing resistance plate with respect to the longitudinal direction of the two tanks, the divided flow control plate being provided with a refrigerant passing portion having a refrigerant passing hole at a position other than the dam portion.
- 27) A heat exchanger described in par. 26) wherein the refrigerant dam portion of the divided flow control plate has a length of at least 28 mm.
- 28) A heat exchanger described in par. 26) which is 20 to 90% in opening ratio which is the ratio of the number of refrigerant passing holes formed in the divided flow control plate to the number of heat exchange tubes in each tube group.
- 29) A heat exchanger described in par. 26) wherein the refrigerant turn tank comprises a first member of aluminum having the heat exchange tubes joined thereto, and a second member of an aluminum extrudate brazed to the first member at a portion thereof opposite to the heat exchange tubes, and the divided flow control plate is integral with the second member.
- 30) A refrigeration cycle comprising a compressor, a condenser and an evaporator, the evaporator being a heat exchanger described in any one of par. 16) to 29). 31) A vehicle having installed therein a refrigeration cycle described in par. 30) as an air conditioner.
- With the heat exchangers described in par. 1) to 4), the divided flow uniformalizing member acts to cause therefrigerant to flow through the heat exchange tubes connected to the inlet header chamber of the inlet-outlet tank in uniform quantities, i.e., uniform rates, enabling the heat exchanger to exhibit improved heat exchange performance.
- With the heat exchangers described in par. 5) to 7), the refrigerant can be passed through the heat exchange tubes connected to the inlet header chamber of the refrigerant inlet-outlet tank in uniform quantities, permitting the heat exchanger to achieve an improved heat exchange efficiency.
- In the case of the heat exchanger described in par. 8), the divided flow control plate of the refrigerant turn tank is formed integrally with the second member of aluminum extrudate. The control plate can therefore be provided inside the refrigerant turn tank by a simple procedure.
- With the heat exchangers described in par. 9) and 10), the partition plate functions to cause the refrigerant to flow through the heat exchange tubes connected to the inlet header chamber of the refrigerant inlet-outlet tank in uniform quantities and through the heat exchange tubes connected to the outlet header chamber of the inlet-outlet tank also in uniform quantities, consequently enabling the heat exchanger to exhibit further improved heat exchange performance.
- Since the partition wall and partition plate of the refrigerant inlet-outlet tank are formed integrally with the second member in the heat exchanger described in par. 11), the partition wall and partition plate can be provided inside the inlet-outlet tank by a simple procedure.
- In the case where the refrigerant inlet-outlet tank is provided at one end thereof with a refrigerant inlet communicating with the inlet header chamber and a refrigerant outlet communicating with the second space of the outlet header chamber as in the heat exchanger described in par. 12), the refrigerant flows through the heat exchange tubes of the tube groups markedly unevenly, whereas even in this case, the refrigerant flow through the heat exchange tubes can be made uniform when the heat exchanger has the feature described in any one of par. 1) to 7), 9) and 10).
- In the case where each tube group comprises at least seven heat exchange tubes as in the heat exchanger described in par. 13), the refrigerant flows through the heat exchange tubes of the tube groups markedly unevenly, whereas even in this case, the refrigerant flow through the heat exchange tubes can be made uniform if the heat exchanger has the feature described in any one of par. 1) to 7), 9) and 10).
- With the heat exchanger described in par. 16), the refrigerant is admitted into the second space of the inlet header chamber of the refrigerant inlet-outlet tank, flows through the single refrigerant passing hole in the flow dividing resistance plate into the first space, from which the refrigerant dividedly flows through all the heat exchange tubes communicating with the inlet header chamber. Because the resistance plate has only one refrigerant passing hole formed therein, the refrigerant gently flows from the second space into the first space to spread over the entire area of the first space and flow into all the heat exchange tubes. Accordingly, the refrigerant is allowed to flow through the heat exchange tubes communicating with the inlet header chamber of the inlet-outlet tank in uniform quantities, enabling the heat exchanger to exhibit improved heat exchange performance.
- With the heat exchangers described in par. 17) to 20), the heat exchange tubes communicating with the inlet header chamber of the refrigerant inlet-outlet tank are made further uniform in the quantities of refrigerant flowing therethrough, permitting the heat exchanger to achieve an improved heat exchange efficiency.
- The heat exchangers described in par. 21) and 22) are so adapted that the refrigerant flowing through the refrigerant passing hole of the flow dividing resistance plate can be made to spread over the entire area of the first space of the inlet header chamber with a high efficiency. The heat exchange tubes communicating with the inlet header chamber of the refrigerant inlet-outlet tank are therefore made uniform to a greater extent in the quantities of refrigerant flowing therethrough, permitting the heat exchanger to achieve an improved heat exchange efficiency.
- With the heat exchanger described in par. 23), the refrigerant changes its course inside the refrigerant turn tank, flows into the first space of the outlet header chamber of the refrigerant inlet-outlet tank, flows through the refrigerant passing holes of the partition plate into the second space. The resistance offered by the partition plate to the flow of refrigerant serves to further uniformalize the divided flows from the first space of the inlet header chamber into the heat exchange tubes communicating therewith, also uniformalizing the divided flows from the refrigerant turn tank into the heat exchange tube communicating therewith. Consequently, the refrigerant is made to flow through the heat exchange tubes of all the tube groups in uniform quantities for the heat exchange to exhibit improved heat exchange performance.
- With the heat exchanger described in par. 24), the partition wall, flow dividing resistance plate and partition plate are formed integrally with the second member. This facilitates the procedure for providing the partition wall, flow diving resistance plate and partition plate inside the refrigerant inlet-outlet tank.
- When the refrigerant inlet-outlet tank is provided at one end thereof with a refrigerant inlet communicating with the inlet header chamber and a refrigerant outlet communicating with the outlet header chamber as in the heat exchanger described in par. 25), the refrigerant flows through the heat exchange tubes of the tube groups markedly unevenly, whereas even in this case, the refrigerant flow through the heat exchange tubes can be made uniform if the heat exchanger has the feature described in any one of par. 16) to 23).
- The heat exchangers described in par. 26) to 28) have a refrigerant dam portion which offers resistance to the refrigerant flowing from the first space of the inlet header chamber of the refrigerant inlet-outlet tank into the first space of the refrigerant turn tank via the corresponding heat exchange tubes. The heat exchange tubes communicating with the inlet header chamber of the inlet-outlet tank are therefore made uniform to a greater extent in the quantities of refrigerant flowing therethrough.
- In the heat exchanger described in par. 29), the divided flow control plate of the refrigerant turn tank is formed integrally with the second member of aluminum extrudate. Accordingly, the control plate can be provided inside the turn tank by a facilitated procedure.
-
FIG. 1 is a perspective view showing the overall construction of a first embodiment of evaporator according to the invention.FIG. 2 is a view in vertical section partly broken away and showing the evaporator ofFIG. 1 as it is seen from behind.FIG. 3 is a view in section taken along the line A-A inFIG. 2 .FIG. 4 is an enlarged view in section taken along the line B-B inFIG. 2 and partly broken away. FIG. 5 is an enlarged view in section taken along the line C-C inFIG. 2 and partly broken away.FIG. 6 is an exploded perspective view of a refrigerant inlet-outlet tank of the evaporator ofFIG. 1 .FIG. 7 is an exploded perspective view of a refrigerant turn tank of the evaporator ofFIG. 1 .FIG. 8 is a diagram showing how a refrigerant flows through the evaporator ofFIG. 1 .FIG. 9 is a view corresponding toFIG. 8 and showing a second embodiment of evaporator according to the invention.FIG. 10 is a view corresponding toFIG. 8 and showing a third embodiment of evaporator according to the invention.FIG. 11 is a view corresponding toFIG. 8 and showing a fourth embodiment of evaporator according to the invention.FIG. 12 is a view corresponding toFIG. 8 and showing a fifth embodiment of evaporator according to the invention.FIG. 13 is a view corresponding toFIG. 2 and showing a sixth embodiment of evaporator according to the invention.FIG. 14 is a view in horizontal section of a refrigerant inlet-outlet tank showing a seventh embodiment of evaporator according to the invention.FIG. 15 is an enlarged view in section taken along the line D-D inFIG. 14 and partly broken away.FIG. 16 is an exploded perspective view of a refrigerant inlet-outlet tank of the evaporator of the seventh embodiment.FIG. 17 is an exploded perspective view of a refrigerant turn tank of the evaporator of the seventh embodiment.FIG. 18 is a diagram showing how a refrigerant flows through the evaporator of the seventh embodiment.FIG. 19 is a diagram corresponding toFIG. 18 and showing an eighth embodiment of evaporator according to the invention.FIG. 20 is an enlarged fragmentary view in vertical section showing a ninth embodiment of evaporator according to the invention. - Embodiments of the present invention will be described below with reference to the drawings. These embodiments are evaporators according to the invention.
- In the following description, the upper, lower, left- and right-hand sides of
FIGS. 1, 2 and 13 will be referred to respectively as the “upper,” “lower,” “left” and “right,” the downstream side of the flow of air through an air passing clearance between each adjacent pair of heat exchange tubes (i.e., the direction indicated by the arrow X inFIG. 1 , and the right-hand side ofFIGS. 4, 5 and 15) will be referred to as “front,” and the opposite side as “rear.” Further throughout all the drawings, like parts will be designated by like reference numerals and will not be described repeatedly. - FIGS. 1 to 5 show the overall construction of an evaporator as a first embodiment of the invention,
FIGS. 6 and 7 show the construction of main portions, andFIG. 8 shows how a refrigerant flows through the evaporator of the first embodiment. - With reference to FIGS. 1 to 3, the
evaporator 1 comprises a refrigerant inlet-outlet aluminum tank 2 and a refrigerantturn aluminum tank 3 which are arranged as spaced apart vertically,tube groups 5 in the form of a plurality of rows, i.e., two rows in the present embodiment, as spaced forwardly or rearwardly of the evaporator between the twotanks exchange aluminum tubes 4, i.e., at least seven heatexchange aluminum tubes 4, arranged in parallel at a spacing leftwardly or rightwardly, i.e., laterally, of the evaporator,corrugated aluminum fins 6 arranged respectively in air passing clearances between adjacent pairs ofheat exchange tubes 4 of eachtube group 5 and also outside theheat exchange tubes 4 at the left and right opposite ends of eachtube group 5 and each brazed to theheat exchange tube 4 adjacent thereto, and analuminum side plate 7 disposed outside thecorrugated fin 6 at each of the left and right ends. - With reference to FIGS. 4 to 6, the refrigerant inlet-
outlet tank 2 comprises a platelikefirst member 8 made of aluminum brazing sheet having a brazing material layer at least over the outer surface (lower surface) thereof and having theheat exchange tubes 4 joined thereto, asecond member 9 of bare aluminum extrudate and covering the upper side of thefirst member 8, and aluminum caps 11, 12 closing respective left and right end openings. Thetank 2 comprises a refrigerantinlet header chamber 13 positioned on the front side and a refrigerantoutlet header chamber 14 positioned on the rear side. - The
first member 8 has at each of the front and rear side portions thereof acurved portion 15 in the form of a circular arc of small curvature in cross section and bulging downward at its midportion. Thecurved portion 15 has a plurality of tube insertion slits 16 elongated forward or rearward and arranged at a spacing in the lateral direction. Each corresponding pair ofslits 16 in the front and rearcurved portions 15 are in the same position with respect to the lateral direction. The front edge of the frontcurved portion 15 and the rear edge of the rearcurved portion 15 are integrally provided with respectiveupstanding walls 17 extending over the entire length of themember 8. Thefirst member 8 includes between the two curved portions 15 aflat portion 18 having a plurality of throughholes 19 arranged at a spacing in the lateral direction. - The
second member 9 is generally m-shaped in cross section and opened downward and comprises front and rear twowalls partition wall 23 provided in the midportion between the twowalls outlet tank 2 into front and rear two spaces, and two generally circular-arc connecting walls 24 bulging upward and integrally connecting thepartition wall 23 to the respective front andrear walls rear wall 22 and thepartition wall 23 are integrally interconnected at their lower ends by apartition plate 25 over the entire length of themember 9. Alternatively, a plate separate from therear wall 22 and thepartition wall 23 may be secured to thesewalls plate 25. Thepartition plate 25 has laterally elongated refrigerant passing holes 26, 26A formed therein at a rear portion thereof other than the left and right end portions of the plate and arranged at a spacing laterally thereof. Therefrigerant passing hole 26A in the lateral midportion of theplate 25 has a length smaller than the spacing between adjacentheat exchange tubes 4 of therear tube group 5, and is formed between the adjacent twoheat exchange tubes 4 in the lateral middle of therear tube group 5. The other refrigerant passingholes 26 have a larger length than thehole 26A. Thepartition plate 25 is provided at a rear edge portion of its lower surface with a downwardly projectingridge 25a integral therewith and extending over the entire length thereof. Thefront wall 21 is integrally provided at the lower edge of its inner surface with aridge 21 a projecting downward. Thepartition wall 23 has a lower end projecting downward beyond the lower ends of theridges projections 23 a fitted into the throughholes 19 of thefirst member 8, theseprojections 23 a projecting downward from the lower edge of thewall 23 and arranged at a spacing in the lateral direction. Theprojections 23 a are formed by cutting away specified portions of thepartition wall 23. - The
caps second members right cap 12 has a refrigerant inflow opening 12 a in communication with the refrigerantinlet header chamber 13, and arefrigerant outflow opening 12 b communicating with the upper portion of the refrigerantoutlet header chamber 14 above thepartition plate 25. Brazed to theright cap 12 is a refrigerant inlet-outlet aluminum member 27 having arefrigerant inlet 27 a communicating with the refrigerant inflow opening 12 a and arefrigerant outlet 27 b communicating with therefrigerant outflow opening 12 b. - The two
members first member 8, with theprojections 23 a of thesecond member 9 inserted in therespective holes 19 of thefirst member 8 in crimping engagement and with theupstanding walls 17 of thefirst member 8 engaged with theridges second member 9. The refrigerant inlet-outlet tank 2 is formed by brazing the twocaps second members tank 2 forwardly of thepartition wall 23 of thesecond member 9 serves as the refrigerantinlet header chamber 13, and the portion thereof rearward from thepartition wall 23 as the refrigerantoutlet header chamber 14. Furthermore, the refrigerantoutlet header chamber 14 is divided into upper and lower twospaces partition plate 25, and thesespaces lower space 14 b is a first space in communication with theheat exchange tubes 4 of therear tube group 5, and theupper space 14 a a second space via which the refrigerant flows out of the evaporator. Therefrigerant outflow opening 12 b of theright cap 12 is in communication with theupper space 14 a of the refrigerantoutlet header chamber 14. - With reference to
FIGS. 4, 5 and 7, therefrigerant turn tank 3 comprises a platelikefirst member 28 made of aluminum brazing sheet having a brazing material layer at least over the outer surface (upper surface) thereof and having theheat exchange tubes 4 joined thereto, asecond member 29 made of bare aluminum extrudate and covering the lower side of thefirst member 28, and aluminum caps 31 for closing left and right opposite end openings. Thetank 3 comprises a refrigerantinflow header chamber 32 as a space positioned on the front side and a refrigerantoutflow header chamber 33 as a space positioned on the rear side. - The
refrigerant turn tank 3 has atop surface 3 a, front and rearopposite side surfaces 3 b and a bottom surface 3 c. Thetop surface 3 a of therefrigerant turn tank 3 is circular-arc in cross section in its entirety such that the midportion thereof with respect to the forward or rearward direction is thehighest portion 34 which is gradually lowered toward the front and rear sides. Thetank 3 is provided in its front an rear opposite side portions withgrooves 35 extending from the front and rear opposite sides of thehighest portion 35 of thetop surface 3 a to the front and rearopposite side surfaces 3 b, respectively, and arranged laterally at a spacing. Eachgroove 35 has a flat bottom face. Eachgroove 35 has afirst portion 35a existing on thetop surface 3 a of thetank 3 and having the same depth over the entire length of this portion. Opposite side faces defining thefirst portion 35 a of thegroove 35 are inclined upwardly outward away from each other laterally of thetank 3, and the width of thefirst portion 35 a of thegroove 35 gradually increases from the bottom of the groove toward the opening thereof. Further in the longitudinal section of eachgroove 35, the bottom face of thefirst portion 35 a is shaped in the form of a circular arc extending from the highest portion (34) side of thetank top surface 3 a forwardly or rearwardly outward as curved downward. - The
groove 35 has asecond portion 35b existing at thejunction 3 d of thetop surface 3 a of therefrigerant turn tank 3 and the front orrear side surface 3 b thereof and having a bottom face which is inclined downward forwardly or rearwardly outward. The bottom face of thesecond portion 35b extends from the end of the bottom face of thefirst portion 35 a. Eachgroove 35 has a third portion 29 c existing on the front orrear side surface 3 b of thetank 3 and having a vertical bottom face. The groovethird portion 35 c has the same width from the bottom of thegroove 35 to the opening thereof. - The
first member 28 has a circular-arc cross section bulging upward at its midportion with respect to the forward or rearward direction and is provided with a dependingwall 28 a formed at each of the front and rear side edges thereof integrally therewith and extending over the entire length of themember 28. The upper surface of thefirst member 28 serves as thetop surface 3 a of therefrigerant turn tank 3, and the outer surface of the dependingwall 28 a as the front orrear side surface 3 b of thetank 3. Thegrooves 35 are formed in each of the front and rear side portions of thefirst member 28 and extend from thehighest portion 34 in the midportion of themember 28 with respect to the forward or rearward direction to the lower end of the dependingwall 28 a. In each of the front and rear side portions of thefirst member 28 other than thehighest portion 34 in the midportion thereof, tube insertion slits 36 elongated in the forward or rearward direction are formed between respective adjacent pairs ofgrooves 35. Each corresponding pair of front and rear tube insertion slits 36 are in the same position with respect to the lateral direction. Thefirst member 28 has a plurality of throughholes 37 formed in thehighest portion 34 in the midportion thereof and arranged laterally at a spacing. The dependingwalls 28 a,grooves 35, tube insertions slits 36 and throughholes 37 of thefirst member 28 are formed at the same time by making themember 28 from an aluminum brazing sheet by press work. - The
second member 29 is generally w-shaped in cross section and opened upward, and comprises front and rear twowalls vertical partition wall 41 dividing the interior of therefrigerant turn tank 3 into front and rear two spaces, and two connectingwalls 42 integrally connecting thepartition wall 41 to the respective front andrear walls walls 42 provide the bottom surface 3 c of thetank 3, and the outer surfaces of the front andrear walls junction 3 e of the bottom surface 3 c and the front orrear side surface 3 b . The front andrear walls respective ridges - The
partition wall 41 has an upper end projecting upward beyond the upper ends of the front andrear walls projections 41 a projecting upward from the upper edge of thewall 41 integrally therewith, arranged laterally at a spacing and to be fitted into the respective throughholes 37 in thefirst member 28. Thepartition wall 41 is provided, at a portion thereof slightly leftwardly of its midportion, with refrigerant passingcutouts 41 b formed in the upper edge thereof between respective adjacent pairs ofprojections 41 a. Theprojections 41 a and thecutouts 41 b are formed by cutting away specified portions of thepartition wall 41. - The
caps 31 are made from a bare material as by press work, forging or cutting, and each have a recess facing laterally inward for the corresponding ends of the first andsecond members - The first and
second members first member 28, with theprojections 41 a of thesecond member 29 inserted through therespective holes 37 in crimping engagement and with the dependingwalls 28 a of thefirst member 28 engaged with theridges second member 29. The twocaps 31 are further brazed to the first andsecond members refrigerant turn tank 3 is formed. The upper-end openings of thecutouts 41 b in thepartition wall 41 of thesecond member 29 are closed with thefirst member 28, whereby refrigerant passing holes 43 are formed. The refrigerant passing holes 43, which are formed by closing the upper-end openings of thecutouts 41 b in thepartition wall 41 with thefirst member 28, can alternatively be through holes formed in thepartition wall 41. Thepartition wall 41 of thesecond member 29 serves as a dividedflow control plate 44 which has the refrigerant passing holes 43 and which functions as a uniformalizing member dividing therefrigerant turn tank 3 into the refrigerantinflow header chamber 32 on the front side and the refrigerantoutflow header chamber 33 on the rear side for causing the refrigerant to flow as uniformly divided. - The divided
flow control plate 44 is provided at its left and right opposite end portions with respectiverefrigerant dam portions plate 44 over a predetermined length. Between thedam portions plate 44 has a refrigerant passingportion 46 provided with one or at least two refrigerant passing holes 43, i.e., at least two refrigerant passing holes 43 in this embodiment. Thedam portion 45B at the right has a length which is greater than that of thedam portion 45A at the left and approximately one-half of the entire length of thecontrol plate 44. It is desired that the length of each of thedam portions control plate 44, and that the combined area of all the refrigerant passing holes 43 formed in therefrigerant passing portion 46 be 130 to 510 mm2. Preferably, the length of each of therefrigerant dam portions control plate 44 if largest. The ratio of the number of refrigerant passing holes 43 in therefrigerant passing portion 46 to the number ofheat exchange tubes 4 of eachtube group 5, i.e., the opening ratio, is preferably 20 to 75%. If the length of eachdam portion flow control plate 44, it is likely that all theheat exchange tubes 4 of each tube group will not be fully uniform in the amount of flow of the refrigerant therethrough. Further if the combined area of all the refrigerant passing holes 43 in therefrigerant passing portion 46 is less than 130 mm2, greatly increased channel resistance will be offered to result in adversely affected performance, whereas if the combined area is in excess of 510 mm2, there is the likelihood that thecontrol plate 44 will be unable to serve the divided flow control function. If the opening ratio, i.e., the ratio of the number of refrigerant passing holes 43 in therefrigerant passing portion 46 to the number ofheat exchange tubes 4 of eachtube group 5, is less than 20%, greatly increased channel resistance will be encountered to entail adversely affected performance. If the ratio is over 75%, it is likely that no divided flow control function will be available. - The
heat exchange tubes 4 providing the front andrear tube groups 5 are each made of a bare material in the form of an aluminum extrudate. Eachtube 4 is flat, has a large width in the forward or rearward direction and is provided in its interior with a plurality ofrefrigerant channels 4 a extending longitudinally of the tube and arranged in parallel. Thetube 4 has front and rear opposite end walls which are each in the form of an outwardly bulging circular arc. Each corresponding pair ofheat exchange tube 4 of thefront tube group 5 andheat exchange tube 4 of therear tube group 5 are in the same position with respect to the lateral direction. Eachheat exchange tube 4 has its upper end inserted into the tube insertion slit 16 of thefirst member 8 of the inlet-outlet tank 2 and brazed to thefirst member 8 utilizing the brazing material layer of themember 8, and has its lower end inserted into the tube insertion slit 36 of thefirst member 28 of theturn tank 3 and brazed to thefirst member 28 utilizing the brazing material layer of themember 28. - Preferably, the
heat exchange tube 4 is 0.75 to 1.5 mm in height, i.e., in thickness in the lateral direction, 12 to 18 mm in width in the forward or rearward direction, 0.175 to 0.275 mm in the wall thickness of the peripheral wall thereof, 0.175 to 0.275 mm in the thickness of partition walls separatingrefrigerant channels 4 a from one another, 0.5 to 3.0 mm in the pitch of partition walls, and 0.35 to 0.75 mm in the radius of curvature of the outer surfaces of the front and rear opposite end walls. - In place of the
heat exchange tube 4 of aluminum extrudate, an electric resistance welded tube of aluminum may be used which has a plurality of refrigerant channels formed therein by inserting inner fins into the tube. Also usable is a tube which is made from a plate prepared from an aluminum brazing sheet having an aluminum brazing material layer on opposite sides thereof by rolling work and which comprises two flat wall forming portions joined by a connecting portion, a side wall forming portion formed on each flat wall forming portion integrally therewith and projecting from one side edge thereof opposite to the connecting portion, and a plurality of partition forming portions projecting from each flatwall forming portion integrally therewith and arranged at a spacing widthwise thereof, by bending the plate into the shape of a hairpin at the connecting portion and brazing the side wall forming portions to each other in butting relation to form partition walls by the partition forming portions. The corrugated fins to be used in this case are those made from a bare material. - The
corrugated fin 6 is made from an aluminum brazing sheet having a brazing material layer on opposite sides thereof by shaping the sheet into a wavy form.Louvers 6 a are formed as arranged in parallel in the forward or rearward direction in the portions of the wavy sheet which connect crest portions thereof to furrow portions thereof. Thecorrugated fins 6 are used in common for the front andrear tube groups 5. The width of thefin 6 in the forward or rearward direction is approximately equal to the distance from the front edge of theheat exchange tube 4 in thefront tube group 5 to the rear edge of the correspondingheat exchange tube 4 in therear tube group 5. It is desired that thecorrugated fin 6 be 7.0 mm to 10.0 mm in fin height, i.e., the straight distance from the crest portion to the furrow portion, and 1.3 to 1.8 mm in fin pitch, i.e., the pitch of connecting portions. - The
evaporator 1 is fabricated by tacking the components together in combination and collectively brazing the tacked assembly. - Along with a compressor, a condenser and pressure reduction means, the
evaporator 1 constitutes a refrigeration cycle, which is installed in vehicles, for example, in motor vehicles for use as an air conditioner. - With reference to
FIG. 8 showing theevaporator 1 described, a two-layer refrigerant of vapor-liquid mixture phase flowing through a compressor, condenser and pressure reduction means enters the refrigerantinlet header chamber 13 of the refrigerant inlet-outlet tank 2 via therefrigerant inlet 27 a of the refrigerant inlet-outlet member 27 and the refrigerant inflow opening 12 a of theright cap 12. - The refrigerant admitted into the
inlet header chamber 13 tends to readily flow into theheat exchange tubes 4 closer to the left and right opposite ends of thefront tube group 5, whereas since the dividedflow control plate 44 of therefrigerant turn tank 3 has therefrigerant dam portions heat exchange tubes 4 closer to the left and right ends, permitting the refrigerant to flow as uniformly divided into thetubes 4, flow down therefrigerant channels 4 a therein and ingress into the refrigerantinflow header chamber 32 of therefrigerant turn tank 3. - The refrigerant then flows into the refrigerant
outflow header chamber 33 through the refrigerant passing holes 43 of the refrigerant passingportion 46, dividedly moves into therefrigerant channels 4 a of all theheat exchange tubes 4 of therear tube group 5, changes its course and passes upward through thechannels 4 a into thelower space 14 b of the refrigerantoutlet header chamber 14 of the refrigerant inlet-outlet tank 2. Thepartition plate 25 provided in theoutlet header chamber 14 gives resistance to the flow of refrigerant, consequently enabling the refrigerant to flow as uniformly divided from theoutflow header chamber 33 into thetubes 4 of therear tube group 5 and also to flow from theinlet header chamber 13 into thetubes 4 of thefront tube group 5. As a result, the refrigerant flows through theheat exchange tubes 4 of the two tube groups in uniform quantities. - Subsequently, the refrigerant flows through the refrigerant passing holes 26, 26A of the
partition plate 25 into theupper space 14 a of theoutlet header chamber 14 and flows out of the evaporator via therefrigerant outflow opening 12 b of thecap 12 and theoutlet 27 b of the refrigerant inlet-outlet member 27. While flowing through therefrigerant channels 4 a of theheat exchange tubes 4 of thefront tube group 5 and therefrigerant channels 4 a of theheat exchange tubes 4 of therear tube group 5, the refrigerant is subjected to heat exchange with air flowing through the air passing clearances in the direction of arrow X shown inFIG. 1 and flows out of the evaporator in a vapor phase. - At this time, water condensate is produced on the surfaces of the
corrugated fins 6, and the condensate flows down thetop surface 3 a of theturn tank 3. The condensate flowing down thetank top surface 3 a enters thefirst portions 35 a of thegrooves 35 by virtue of a capillary effect, flows through thegrooves 35 and falls off the lower ends of the groovethird portions 35 c to below theturn tank 3. This prevents a large quantity of condensate from collecting between thetop surface 3 a of theturn tank 3 and the lower ends of thecorrugated fins 6, consequently preventing the condensate from freezing due to the collection of large quantity of the condensate, whereby inefficient performance of theevaporator 1 is precluded. - According to the first embodiment, the divided
flow control plate 44 has the refrigerant passing holes 43 and divides therefrigerant turn tank 3 into the refrigerantinflow header chamber 32 on the front side and the refrigerantoutflow header chamber 33 on the rear side to serve as a uniformalizing member for causing the refrigerant to flow as uniformly divided through theheat exchange tubes 4 of thefront tube group 5 in communication with theinlet header chamber 13. However, this construction is not limitative but can be modified suitably. -
FIG. 9 shows a second embodiment of evaporator according to the invention. - In the case of the embodiment shown in
FIG. 9 , the dividedflow control plate 44 within therefrigerant turn tank 3 has a refrigerant passingportion 46 at the lateral midportion thereof, andrefrigerant dam portions portion 46 and approximately equal in length. This embodiment is the same as the first embodiment with respect to the ratio of the length of each of thedam portions control plate 44, the combined area of all the refrigerant passing holes 43 formed in therefrigerant passing portion 46, and the opening ratio which is the ratio of the number of refrigerant passing holes 43 formed in therefrigerant passing portion 46 to the number ofheat exchange tubes 4 in eachtube group 5. Thepartition plate 25 of the refrigerant inlet-outlet tank 2 has a plurality of laterally elongated refrigerant passing holes 50 arranged laterally at a spacing and formed at the portions thereof corresponding to therespective dam portions flow control plate 44. All the refrigerant passing holes 50 are equal in length. The second embodiment is the same as the first with the exception of these features. - The second embodiment is also so adapted that the refrigerant flowing through the evaporator flows through the
heat exchange tubes 4 of each tube group in uniform quantities. -
FIG. 10 shows a third embodiment of evaporator according to the invention. - In the case of the embodiment shown in
FIG. 10 , the dividedflow control plate 44 within therefrigerant turn tank 3 has a refrigerant passingportion 46 slightly longer than in the first embodiment and positioned leftwardly of the lateral midportion thereof, andrefrigerant dam portions portion 46. Thedam portion 45B at the right has a length greater than that of thedam portion 45A at the left and approximately one-half of the entire length of thecontrol plate 44. This -embodiment is the same as the first embodiment with respect to the ratio of the length of each of thedam portions control plate 44, the combined area of all the refrigerant passing holes 43 formed in therefrigerant passing portion 46, and the opening ratio which is the ratio of the number of refrigerant passing holes 43 formed in therefrigerant passing portion 46 to the number ofheat exchange tubes 4 in eachtube group 5. Thepartition plate 25 of the refrigerant inlet-outlet tank 2 has one laterally elongated refrigerant passinghole 51 formed at the portion thereof corresponding to theleft dam portion 45A of thecontrol plate 44, and a plurality of laterally elongated refrigerant passing holes 51 arranged laterally at a spacing and formed at the portion thereof corresponding to theright dam portion 45B. All the refrigerant passing holes 51 are equal in length. The third embodiment is the same as the first with the exception of these features. - The third embodiment is also so adapted that the refrigerant flowing through the evaporator flows through the
heat exchange tubes 4 of each tube group in uniform quantities. -
FIG. 11 shows a fourth embodiment of evaporator according to the invention. - In the case of the embodiment shown in
FIG. 11 , the dividedflow control plate 44 within therefrigerant turn tank 3 has an auxiliary refrigerant passinghole 60 formed in at least one of the tworefrigerant dam portions dam portions dam portions - The fourth embodiment is also so adapted that the refrigerant flowing through the evaporator flows through the
heat exchange tubes 4 of each tube group in uniform quantities. -
FIG. 12 shows a fifth embodiment of evaporator according to the invention. - In the case of the embodiment shown in
FIG. 12 , anevaporator 61 has a refrigerant inlet-outlet tank 32 and arefrigerant turn tank 3 which are made to extend rightward over a larger distance than is the case with the first embodiment. Provided between theseextensions tube groups 5 in the form of front and rear two rows and each comprising a plurality of heat exchange tubes arranged in parallel at a spacing in the lateral direction. The front andrear tube groups 5 have theirheat exchange tubes 4 joined at the tube upper ends to the respective front and rear opposite side portions of theextensions 2A of thetank 2 and at the tube lower ends to the respective front and rear opposite side portions of theextensions 3A of thetank 3. - The
outlet header chamber 14 of the refrigerant inlet-outlet tank 2 has no partition plate. Theextension 2A of thetank 2 has right-end openings which are closed with a cap (not shown) having no refrigerant inflow opening and no refrigerant outflow opening. The twoheader chambers refrigerant turn tank 3 are separated from theextensions chambers partition plate 62. Theextension 3A of thetank 3 has right-end openings which are closed with a cap (not shown) having a refrigerant inflow opening and a refrigerant outflow opening. Brazed to this cap is a refrigerant inlet-outlet member (not shown) having a refrigerant inlet in communication with the inflow opening and a refrigerant outlet in communication with the outflow opening. The fifth embodiment is the same as the first with the exception of these features. The first to fourth embodiments can also be given the same construction as the fifth embodiment. - A two-layer refrigerant of vapor-liquid mixture phase flowing through a compressor, condenser and pressure reduction means enters the
evaporator 61, more specifically, theextension 32A of the refrigerantinflow header chamber 32 of therefrigerant turn tank 3 via the refrigerant inlet of the refrigerant inlet-outlet member and the refrigerant inflow opening of the right cap. - The refrigerant admitted into the
extension 32A flows upward through therefrigerant channels 4 a ofheat exchange tubes 4 of thefront tube group 5 joined to theextension 3A, flows into the refrigerantinlet header chamber 13 and flows leftward through thischamber 13. As in the case of the first embodiment, the refrigerant thereafter flows as uniformly divided into theheat exchange tubes 4 of thefront tube group 5, flows down therefrigerant channels 4 a therein and ingresses into the refrigerantinflow header chamber 32 of therefrigerant turn tank 3. - The refrigerant then flows into the refrigerant
outflow header chamber 33 through the refrigerant passing holes 43 of the refrigerant passingportion 46, dividedly moves into therefrigerant channels 4 a of all theheat exchange tubes 4 of therear tube group 5, changes its course and passes upward through thechannels 4 a into the refrigerantoutlet header chamber 14 of the refrigerant inlet-outlet tank 2. Subsequently, the refrigerant flows rightward through theoutlet header chamber 14, enters thechannels 4 a ofheat exchange tubes 4 of therear tube group 5 joined to theextension 2A, flows down thechannels 4 a into theextension 33A of theoutflow header chamber 33 of theturn tank 3 and flows out of the evaporator through the refrigerant outflow opening of the cap and the outlet of the inlet-outlet member. - The fifth embodiment is also so adapted that the refrigerant flowing through the evaporator flows through the
heat exchange tubes 4 of each tube group in uniform quantities. -
FIG. 13 shows a sixth embodiment of evaporator according to the invention. - In the case of the embodiment shown in
FIG. 13 , the refrigerant passing holes 43 formed in the dividedflow control plate 44 are positioned as shifted fromheat exchange tubes 4. Stated more specifically, each refrigerant passinghole 43 is positioned between a pair of adjacentheat exchange tubes 4. With the exception of this feature, the sixth embodiment is the same as the first. Incidentally, the second to fifth embodiments can be made to have the same construction as the sixth embodiment. - FIGS. 14 to 18 show a seventh embodiment of evaporator according to the invention.
- In the case of the embodiment shown in FIGS. 14 to 18, the
front wall 21 and thepartition wall 23 of thesecond member 9 of the refrigerant inlet-outlet tank 2 are connected together at their lower ends by a flow dividingresistance plate 70 over the entire length of the tank. Theresistance plate 70 has one refrigerant passingcircular hole 71 formed at the midportion thereof with respect to the lateral direction. Alternatively, theresistance plate 70 may be a plate separate from thefront wall 21 and thepartition wall 23 and fixed to thefront wall 21,rear wall 22 andpartition wall 23. The refrigerantinlet header chamber 13 is divided by theresistance plate 70 into upper and lower twospaces circular hole 71. Thelower space 13 b is a first space which is in communication with theheat exchange tubes 4 of thefront tube group 5, and theupper space 13 a is a second space for the refrigerant to flow in. The refrigerant inflow opening 12 a of theright cap 12 is in communication with theupper space 13 a of theinlet header chamber 13. - The refrigerant passing
circular hole 71 of the flow dividingresistance plate 70 is positioned between the twoheat exchange tubes 4 in the lateral center of thefront tube group 5. Thecircular hole 71 has a lateral size (diameter) which is smaller than the spacing between the twotubes 4. Preferably, thehole 71 is 3 to 8 mm in diameter. If thehole 71 is less than 3 mm in diameter, increased channel resistance will be offered to the refrigerant to burden the air conditioner system with an increased load, while the flow of refrigerant produces a greater noise due to an increased flow velocity. If the diameter of thehole 71 is in excess of 8 mm, an increased quantity of refrigerant flows through the midportion, further entailing the likelihood that the refrigerant will encounter difficulty in spreading over the entire area oflower space 13 b to be described below of theinlet header chamber 13. The refrigerant passingcircular hole 71 has an area greater than the combined cross sectional area of refrigerant channels of oneheat exchange tube 4. The refrigerant passing hole to be formed in the flow dividingresistance plate 70 is not limited to the circular shape but may have a suitably altered shape, such as an elliptical form (not limited to a mathematically defined elliptical form but including forms which are nearly elliptical). Even when the refrigerant passing hole has a shape other than the circular, the hole should have the above-mentioned area and is so sized as to be positioned between the two heat exchange tubes in the lateral midportion of thetube group 5. - With reference to
FIG. 17 , the dividedflow control plate 44 of therefrigerant turn tank 3 has arefrigerant dam portion 72 having no refrigerant passing holes and formed at the longitudinal midportion thereof, i.e., at a position corresponding to the refrigerant passingcircular hole 71 of the flow dividingresistance plate 70 of the inlet-outlet tank 2. Thecontrol plate 44 also has a refrigerant passingportion 73 formed on each of the left and right sides of thedam portion 72 and having one or at least two refrigerant passing holes 43, i.e, at least twoholes 43 in the present embodiment. Preferably, thedam portion 72 has a length-of at least 28 mm in the lateral direction. If the length is less than 28 mm, it is likely that an increased amount of refrigerant will flow through the midportion. Further preferably, the ratio of the number of refrigerant passing holes 43 in each refrigerant passingportion 73 to the number ofheat exchange tubes 4 of eachtube group 5, i.e., the opening ratio, is 20 to 90%. If this ratio is less than 20%, increased channel resistance will be offered to the refrigerant, possibly resulting in impaired performance. When the ratio is in excess of 90%, it is likely that no divided flow control function will be available. - The seventh embodiment is the same as the first with the exception of the above features.
- With reference to
FIG. 18 showing theevaporator 1 of the seventh embodiment, a two-layer refrigerant of vapor-liquid mixture phase flowing through a compressor, condenser and pressure reduction means enters theupper space 13 a of the refrigerantinlet header chamber 13 of the refrigerant inlet-outlet tank 2 via therefrigerant inlet 27 a of the refrigerant inlet-outlet member 27 and the refrigerant inflow opening 12 a of theright cap 12, flows into thelower space 13 b through the singlecircular hole 71 in the flow dividingresistance plate 70 and further flows from thelower space 13 b dividedly into therefrigerant channels 4 a of all theheat exchange tubes 4 of thefront tube group 5. Since theresistance plate 70 has the single refrigerant passingcircular hole 71 only formed therein, the refrigerant gently flows into thelower space 13 b, spreads over the entire area of thisspace 13 b to flow into therefrigerant channels 4 a of all theheat exchange tubes 4. This permits the refrigerant to flow through thesetube 4 in uniform quantities. - The refrigerant flowing into the
channels 4 a of all theheat exchange tubes 4 flows down thechannels 4 a into the refrigerantinflow header chamber 32 of therefrigerant turn tank 3. The refrigerant admitted into thechamber 32 flows leftwardly and righwardly outward by virtue of the function of thedam portion 72 and flows into the refrigerantoutflow header chamber 33 through theholes 43 of the refrigerant passingportions 73. The resistance offered by thedam portion 73 to the flow of refrigerant inhibits the refrigerant from flowing out of thelower space 13 b of theheader chamber 13 only into thechannels 4 a of theheat exchange tubes 4 of thefront tube group 5 which tubes are positioned in the vicinity of thecircular holes 71, while promoting the flow of refrigerant into thechannels 4 a of the other heat exchange tubes. Thus, the refrigerant is made to flow through theheat exchange tubes 4 of thefront tube group 5 in uniform quantities. - The refrigerant flowing into the
outflow header chamber 33 dividedly flows into therefrigerant channels 4 a of all theheat exchange tubes 4 of therear tube group 5, changes its course and passes upward through thechannels 4 a into thelower space 14 b of the refrigerantoutlet header chamber 14 of the refrigerant inlet-outlet tank 2. Thepartition plate 25 inchamber 14 gives resistance to the flow of refrigerant, consequently enabling the refrigerant to flow as uniformly divided from theoutflow header chamber 33 into thetubes 4 of therear tube group 5 and also to flow from thelower space 13 b of theinlet header chamber 13 into theheat exchange tubes 4 of thefront tube group 5. As a result, the refrigerant flows through theheat exchange tubes 4 of the two tube groups in uniform quantities. - Subsequently, the refrigerant flows through the refrigerant passing holes 26, 26A of the
partition plate 25 into theupper space 14 a of theoutlet header chamber 14 and flows out of the evaporator via therefrigerant outflow opening 12 b of thecap 12 and theoutlet 27 b of the refrigerant inlet-outlet member 27. While flowing through therefrigerant channels 4 a of theheat exchange tubes 4 of thefront tube group 5 and therefrigerant channels 4 a of theheat exchange tubes 4 of therear tube group 5, the refrigerant is subjected to heat exchange with air flowing through the air passing clearances in the direction of arrow X shown inFIG. 1 and flows out of the evaporator in a vapor phase. -
FIG. 19 shows an eighth embodiment of evaporator according to the invention. - In the case of the embodiment shown in
FIG. 19 , thepartition plate 25 of the refrigerant inlet-outlet tank 2 has a plurality of laterally elongated refrigerant passing holes 26 arranged at a spacing in the lateral direction and formed at each of the portions thereof corresponding to the respective refrigerant passingportions 73 of the dividedflow control plate 44. All the refrigerant passing holes 26 are equal in length. The eighth embodiment is the same as the seventh with the exception of this feature. - The eighth embodiment is also so adapted that the refrigerant flowing through the evaporator flows through the
heat exchange tubes 4 of each tube group in uniform quantities. -
FIG. 20 shows a ninth embodiment of evaporator according to the invention. - In the case of the embodiment shown in
FIG. 20 , thefirst member 8 of the refrigerant inlet-outlet tank 2 has an upwardly projectingridge 75 in the form of an angle in cross section, extending forward or rearward and positioned at the lateral midportion thereof immediately below the center, with respect to the lateral direction, of the refrigerant passingcircular hole 7 1. Theridge 75 is formed by upwardly bending thefirst member 8 into a projecting ridge. In the forward or rearward direction, the length of theridge 75 is preferably at least equal to the diameter (size in the forward or rearward direction) of thecircular hole 71. Theridge 75 is a flow dividing member by which the refrigerant flowing from theupper space 13 a of theinlet header chamber 13 into thelower space 13 b thereof through thecircular hole 71 is divided leftward and rightward within thespace 13 b. Incidentally, theridge 75 is formed simultaneously when thefirst member 8 is made from an aluminum brazing sheet by press work. The ridge may be formed by fixing a separate member to the upper surface of thefirst member 8 instead of bending thefirst member 8 upward. - The ninth embodiment is the same as the seventh with the exception of the above feature.
- In all the foregoing embodiments, one
tube group 5 is provided between the front portions, as well as the rear portions, of the twotanks tube groups 5 may be provided between the front portions, as well as the rear portions, of thetanks highest portion 34 is positioned at the midportion, with respect to the forward or rearward direction, of therefrigerant turn tank 3, whereas this arrangement is not limitative; the highest portion may be located away from such midportion of thetank 3. One or at least two tube groups are provided at each of the front and rear sides of the highest portion also in this case. Although the refrigerant inlet-outlet tank 2 is positioned above therefrigerant turn tank 3 which is at a lower level according to all the foregoing embodiments, the evaporator may be used conversely with theturn tank 3 positioned above the inlet-outlet tank 2. - The heat exchanger of the present invention is suitable for use as an evaporator for motor vehicle air conditioners and is adapted to exhibit improved heat exchange performance.
Claims (31)
1. A heat exchanger comprising a refrigerant inlet-outlet tank and a refrigerant turn tank arranged as spaced apart from each other, and a plurality of tube groups in the form of rows arranged at a spacing in the direction of flow of air through the heat exchanger between the tanks and each comprising a plurality of heat exchange tubes arranged in parallel at a spacing longitudinally of the tanks, the heat exchange tubes of each tube group having opposite ends joined to the respective tanks, the refrigerant inlet-outlet tank having interior divided by a partition wall into a refrigerant inlet header chamber and a refrigerant outlet header chamber arranged in the direction of flow of air, each of the two header chambers being in communication with the heat exchange tubes of the tube group of at least one row, a refrigerant flowing into the inlet header chamber of the refrigerant inlet-outlet tank being flowable through the corresponding heat exchange tubes into the refrigerant turn tank, where the refrigerant changes its course to flow into the outlet header chamber of the refrigerant inlet-outlet tank through the corresponding heat exchange tubes,
the refrigerant turn tank being provide with a uniformalizing member for making uniform divided flows of the refrigerant from the inlet header chamber into the heat exchange tubes communicating with the inlet header chamber.
2. A heat exchanger according to claim 1 wherein the uniformalizing member comprises a divided flow control plate dividing the interior of the refrigerant turn tank into two spaces arranged in the direction of flow of air, the two spaces being in communication with each other, the heat exchange tubes in communication with the inlet header chamber communicating with one of the spaces of the refrigerant turn tank, the heat exchange tubes in communication with the outlet header chamber communicating with the other space of the refrigerant turn tank.
3. A heat exchanger according to claim 2 wherein the divided flow control plate has one or at least two refrigerant passing holes formed therein, and the two spaces are held in communication through the refrigerant passing holes.
4. A heat exchanger according to claim 3 wherein the refrigerant flows through the refrigerant passing holes in the divided flow control plate in counter current relation with the flow of air.
5. A heat exchanger according to claim 3 wherein the divided flow control plate has two refrigerant dam portions at respective opposite end portions thereof and is provided between the two refrigerant dam portions with a refrigerant passing portion having one or at least two refrigerant passing holes, the length of each of the refrigerant dam portions being at least 15% of the entire length of the divided flow control plate, the combined area of all the refrigerant passing holes formed in the refrigerant passing portion being 130 to 510 mm2.
6. A heat exchanger according to claim 3 wherein the divided flow control plate has two refrigerant dam portions at respective opposite end portions thereof and is provided between the two refrigerant dam portions with a refrigerant passing portion having one or at least two refrigerant passing holes, the length of each of the refrigerant dam portions being at least 15% of the entire length of the divided flow control plate, the heat exchanger being 20 to 75% in opening ratio which is the ratio of the number of refrigerant passing holes formed in the refrigerant passing portion to the number of heat exchange tubes of each tube group.
7. A heat exchanger according to claim 3 wherein the divided flow control plate has two refrigerant dam portions at respective opposite end portions thereof and is provided between the two refrigerant dam portions with a refrigerant passing portion having one or at least two refrigerant passing holes, the length of each of the refrigerant dam portions being at least 15% of the entire length of the divided flow control plate, the combined area of all the refrigerant passing holes formed in the refrigerant passing portion being 130 to 510 mm2, the heat exchanger being 20 to 75% in opening ratio which is the ratio of the number of refrigerant passing holes formed in the refrigerant passing portion to the number of heat exchange tubes of each tube group.
8. A heat exchanger according to claim 2 wherein the refrigerant turn tank comprises a first member of aluminum having the heat exchange tubes joined thereto, and a second member of an aluminum extrudate brazed to the first member at a portion thereof opposite to the heat exchange tubes, and the divided flow control plate is integral with the second member.
9. A heat exchanger according to claim 1 wherein the outlet header chamber of the refrigerant inlet-outlet tank has interior divided by a partition plate into a first space communicating with the corresponding heat exchange tubes and a second space for the refrigerant to flow out therefrom, the two spaces being in communication with each other.
10. A heat exchanger according to claim 9 wherein the partition plate has one or at least two refrigerant passing holes formed therein, and the two spaces are held in communication through the refrigerant passing holes.
11. A heat exchanger according to claim 9 wherein the refrigerant inlet-outlet tank comprises a first member of aluminum having the heat exchange tubes joined thereto, and a second member of an aluminum extrudate brazed to the first member at a portion thereof opposite to the heat exchange tubes, and the partition wall and the partition plate are integral with the second member.
12. A heat exchanger according to claim 9 wherein the refrigerant inlet-outlet tank is provided at one end thereof with a refrigerant inlet communicating with the inlet header chamber and a refrigerant outlet communicating with the second space of the outlet header chamber.
13. A heat exchanger according to claim 1 wherein each tube group comprises at least seven heat exchange tubes.
14. A refrigeration cycle comprising a compressor, a condenser and an evaporator, the evaporator being a heat exchanger according to claim 1 .
15. A vehicle having installed therein a refrigeration cycle according to claim 14 as an air conditioner.
16. A heat exchanger comprising a refrigerant inlet-outlet tank and a refrigerant turn tank arranged as spaced apart from each other, and a plurality of tube groups in the form of rows arranged at a spacing in the direction of flow of air through the heat exchanger between the tanks and each comprising a plurality of heat exchange tubes arranged in parallel at a spacing longitudinally of the tanks, the heat exchange tubes of each tube group having opposite ends joined to the respective tanks, the refrigerant inlet-outlet tank having interior divided by a partition wall into a refrigerant inlet header chamber and a refrigerant outlet header chamber arranged in the direction of flow of air, each of the two header chambers being in communication with the heat exchange tubes of the tube group of at least one row, a refrigerant flowing into the inlet header chamber of the refrigerant inlet-outlet tank being flowable through the corresponding heat exchange tubes into the refrigerant turn tank, where the refrigerant changes its course to flow into the outlet header chamber of the refrigerant inlet-outlet tank through the corresponding heat exchange tubes,
the inlet header chamber of the refrigerant inlet-outlet tank having interior divided by a flow dividing resistance plate into a first space communicating with the corresponding heat exchange tubes and a second space for the refrigerant to flow in, the flow dividing resistance plate having one refrigerant passing hole formed therein.
17. A heat exchanger according to claim 16 wherein the refrigerant passing hole is formed at a longitudinal midportion of the flow dividing resistance plate.
18. A heat exchanger according to claim 16 wherein the refrigerant passing hole is positioned between a pair of heat exchange tubes adjacent to each other longitudinally of the refrigerant inlet-outlet tank and included among the heat exchange tubes in communication with the inlet header chamber of the refrigerant inlet-outlet tank.
19. A heat exchanger according to claim 16 wherein the refrigerant passing hole has an area larger than the combined cross sectional area of refrigerant channels in one heat exchange tube.
20. A heat exchanger according to claim 16 wherein the refrigerant passing hole is circular and has a diameter of 3 to 8 mm.
21. A heat exchanger according to claim 16 wherein the refrigerant inlet-outlet tank has a wall portion to which the heat exchange tubes communicating with the first space are joined and which has a flow dividing member inwardly projecting from a part thereof corresponding to the refrigerant passing hole for causing the refrigerant to dividedly flow longitudinally of the inlet header chamber upon flowing through the refrigerant passing hole.
22. A heat exchanger according to claim 21 wherein the flow dividing member is a ridge projecting toward the resistance plate in the form of an angle and extending widthwise of the inlet header chamber.
23. A heat exchanger according to claim 16 wherein the outlet header chamber of the refrigerant inlet-outlet tank has interior divided by a partition plate into a first space communicating with the corresponding heat exchange tubes and a second space for the refrigerant to flow out therefrom, and a refrigerant passing hole is formed in the partition plate.
24. A heat exchanger according to claim 23 wherein the refrigerant inlet-outlet tank comprises a first member of aluminum having the heat exchange tubes joined thereto, and a second member of an aluminum extrudate brazed to the first member at a portion thereof opposite to the heat exchange tubes, and the partition wall, the flow dividing resistance plate and the partition plate are integral with the second member.
25. A heat exchanger according to claim 16 wherein the refrigerant inlet-outlet tank is provided at one end thereof with a refrigerant inlet communicating with the second space of the inlet header chamber and a refrigerant outlet communicating with the outlet header chamber.
26. A heat exchanger according to claim 16 wherein the refrigerant turn tank has interior divided by a divided flow control plate into a first space in communication with the heat exchange tubes communicating with the first space of the inlet header chamber of the refrigerant inlet-outlet tank and a second space communicating with the heat exchange tubes communicating with the outlet header chamber of the refrigerant inlet-outlet tank, and the divided flow control plate has a refrigerant dam portion at a position corresponding to the refrigerant passing hole in the flow dividing resistance plate with respect to the longitudinal direction of the two tanks, the divided flow control plate being provided with a refrigerant passing portion having a refrigerant passing hole at a position other than the dam portion.
27. A heat exchanger according to claim 26 wherein the refrigerant dam portion of the divided flow control plate has a length of at least 28 mm.
28. A heat exchanger according to claim 26 which is 20 to 90% in opening ratio which is the ratio of the number of refrigerant passing holes formed in the divided flow control plate to the number of heat exchange tubes in each tube group.
29. A heat exchanger according to claim 26 wherein the refrigerant turn tank comprises a first member of aluminum having the heat exchange tubes joined thereto, and a second member of an aluminum extrudate brazed to the first member at a portion thereof opposite to the heat exchange tubes, and the divided flow control plate is integral with the second member.
30. A refrigeration cycle comprising a compressor, a condenser and an evaporator, the evaporator being a heat exchanger according to claim 16 .
31. A vehicle having installed therein a refrigeration cycle according to claim 30 as an air conditioner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/563,599 US20060213651A1 (en) | 2003-07-08 | 2004-07-08 | Heat exchanger |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003272043 | 2003-07-08 | ||
JP2003-272057 | 2003-07-08 | ||
JP2003272057 | 2003-07-08 | ||
JP2003-272043 | 2003-07-08 | ||
US48689803P | 2003-07-15 | 2003-07-15 | |
US48689703P | 2003-07-15 | 2003-07-15 | |
US10/563,599 US20060213651A1 (en) | 2003-07-08 | 2004-07-08 | Heat exchanger |
PCT/JP2004/010069 WO2005003670A1 (en) | 2003-07-08 | 2004-07-08 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060213651A1 true US20060213651A1 (en) | 2006-09-28 |
Family
ID=33568735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/563,599 Abandoned US20060213651A1 (en) | 2003-07-08 | 2004-07-08 | Heat exchanger |
Country Status (5)
Country | Link |
---|---|
US (1) | US20060213651A1 (en) |
EP (1) | EP1642078B1 (en) |
KR (1) | KR20060028809A (en) |
AU (1) | AU2004254507A1 (en) |
WO (1) | WO2005003670A1 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070074861A1 (en) * | 2003-10-29 | 2007-04-05 | Showa Denko K.K. | Heat exchanger |
US20070084594A1 (en) * | 2003-11-14 | 2007-04-19 | Showa Denko K.K. | Evaporator and process for fabricating same |
US20080023184A1 (en) * | 2006-07-25 | 2008-01-31 | Henry Earl Beamer | Heat exchanger assembly |
US20080023183A1 (en) * | 2006-07-25 | 2008-01-31 | Henry Earl Beamer | Heat exchanger assembly |
WO2009022020A1 (en) * | 2007-08-16 | 2009-02-19 | Valeo Systemes Thermiques | Evaporator with multiple banks, particularly for a motor vehicle air-conditioning system |
US20100044022A1 (en) * | 2008-08-22 | 2010-02-25 | Caterpillar Inc. | Air-to-air cooling assembly |
US20100108303A1 (en) * | 2007-04-05 | 2010-05-06 | Dana Canada Corporation | Heat exchanger construction |
US20100282449A1 (en) * | 2007-11-01 | 2010-11-11 | Brian Merklein | Heat exchanger |
US20110088886A1 (en) * | 2009-10-15 | 2011-04-21 | Klaus Kalbacher | Heat exchanger and seal arrangement for the same |
US20110120671A1 (en) * | 2007-11-01 | 2011-05-26 | Braeuning Thomas | Heat exchanger |
US20120103581A1 (en) * | 2010-10-28 | 2012-05-03 | Samsung Electronics Co., Ltd. | Header unit and heat exchanger having the same |
US20120199332A1 (en) * | 2011-02-04 | 2012-08-09 | Ken Cornell | Heat exchanger header plate |
US20120247740A1 (en) * | 2011-03-31 | 2012-10-04 | Denso International America, Inc. | Nested heat exchangers |
US20130180695A1 (en) * | 2012-01-16 | 2013-07-18 | Samsung Electronics Co., Ltd. | Header unit and heat exchanger having the same |
US20150053376A1 (en) * | 2012-03-27 | 2015-02-26 | Sanden Corporation | Vehicle interior heat exchanger and inter-header connecting member of vehicle interior heat exchanger |
US20180023423A1 (en) * | 2011-04-18 | 2018-01-25 | Holtec International | Autonomous self-powered system for removing thermal energy from pools of liquid heated by radioactive materials, and method of the same |
US10161659B2 (en) | 2013-05-20 | 2018-12-25 | Denso Corporation | Refrigerant evaporator |
US11014425B2 (en) * | 2017-11-24 | 2021-05-25 | Titanx Holding Ab | Vehicle condenser |
US20210381730A1 (en) * | 2020-06-09 | 2021-12-09 | Mahle International Gmbh | Heat exchanger |
EP4050292A1 (en) * | 2021-02-24 | 2022-08-31 | Valeo Systemes Thermiques | A heat exchanger |
US11569001B2 (en) | 2008-04-29 | 2023-01-31 | Holtec International | Autonomous self-powered system for removing thermal energy from pools of liquid heated by radioactive materials |
US20230082035A1 (en) * | 2020-02-19 | 2023-03-16 | Hanon Systems | Heat exchanger having flow distribution tank structure for thermal stress dispersion |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4866615B2 (en) * | 2005-01-18 | 2012-02-01 | 昭和電工株式会社 | Heat exchanger |
US8333088B2 (en) | 2006-12-26 | 2012-12-18 | Carrier Corporation | Heat exchanger design for improved performance and manufacturability |
JP5046771B2 (en) * | 2007-07-27 | 2012-10-10 | 三菱重工業株式会社 | Refrigerant evaporator |
WO2009061157A2 (en) * | 2007-11-09 | 2009-05-14 | Halla Climate Control Corp. | A heat exchanger |
CN101910775B (en) | 2007-11-09 | 2012-10-17 | 汉拏空调株式会社 | Heat exchanger |
DE102012211187A1 (en) * | 2012-06-28 | 2014-01-02 | Behr Gmbh & Co. Kg | Heat exchanger, particularly heat body for use in motor vehicle, has collection boxes with multiple longitudinal partition walls that are lesser in number than vents, which divide collection boxes into longitudinal chambers |
ES2529071B1 (en) * | 2014-11-13 | 2015-11-23 | Daniel JIMÉNEZ DEL PASO | Heat exchanger double propellers |
KR20220064684A (en) * | 2020-11-12 | 2022-05-19 | 엘지전자 주식회사 | Heat exchanger and method for manufacturing the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030221819A1 (en) * | 2002-05-29 | 2003-12-04 | Halla Climate Control Corporation | Heat exchanger for CO2 refrigerant |
US6745827B2 (en) * | 2001-09-29 | 2004-06-08 | Halla Climate Control Corporation | Heat exchanger |
US20070044949A1 (en) * | 2005-09-01 | 2007-03-01 | Showa Denko K.K. | Heat exchanger |
US20070051504A1 (en) * | 2005-09-06 | 2007-03-08 | Showa Denko K.K. | Heat exchanger |
US20070074861A1 (en) * | 2003-10-29 | 2007-04-05 | Showa Denko K.K. | Heat exchanger |
US7635019B2 (en) * | 2004-07-15 | 2009-12-22 | Showa Denko K.K. | Heat exchanger |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4554144B2 (en) | 2001-06-18 | 2010-09-29 | 昭和電工株式会社 | Evaporator |
-
2004
- 2004-07-08 AU AU2004254507A patent/AU2004254507A1/en not_active Abandoned
- 2004-07-08 US US10/563,599 patent/US20060213651A1/en not_active Abandoned
- 2004-07-08 WO PCT/JP2004/010069 patent/WO2005003670A1/en active Application Filing
- 2004-07-08 EP EP04747535A patent/EP1642078B1/en not_active Expired - Lifetime
- 2004-07-08 KR KR1020067000293A patent/KR20060028809A/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6745827B2 (en) * | 2001-09-29 | 2004-06-08 | Halla Climate Control Corporation | Heat exchanger |
US20030221819A1 (en) * | 2002-05-29 | 2003-12-04 | Halla Climate Control Corporation | Heat exchanger for CO2 refrigerant |
US6732789B2 (en) * | 2002-05-29 | 2004-05-11 | Halla Climate Control Corporation | Heat exchanger for CO2 refrigerant |
US20070074861A1 (en) * | 2003-10-29 | 2007-04-05 | Showa Denko K.K. | Heat exchanger |
US7635019B2 (en) * | 2004-07-15 | 2009-12-22 | Showa Denko K.K. | Heat exchanger |
US20070044949A1 (en) * | 2005-09-01 | 2007-03-01 | Showa Denko K.K. | Heat exchanger |
US20070051504A1 (en) * | 2005-09-06 | 2007-03-08 | Showa Denko K.K. | Heat exchanger |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7886812B2 (en) * | 2003-10-29 | 2011-02-15 | Showa Denko K.K. | Heat exchanger having a tank partition wall |
US20070074861A1 (en) * | 2003-10-29 | 2007-04-05 | Showa Denko K.K. | Heat exchanger |
US20070084594A1 (en) * | 2003-11-14 | 2007-04-19 | Showa Denko K.K. | Evaporator and process for fabricating same |
US7886811B2 (en) * | 2003-11-14 | 2011-02-15 | Showa Denko K.K. | Evaporator and process for fabricating same |
US20080023184A1 (en) * | 2006-07-25 | 2008-01-31 | Henry Earl Beamer | Heat exchanger assembly |
US20080023183A1 (en) * | 2006-07-25 | 2008-01-31 | Henry Earl Beamer | Heat exchanger assembly |
US9593889B2 (en) | 2007-04-05 | 2017-03-14 | Dana Canada Corporation | Heat exchanger construction |
US20100108303A1 (en) * | 2007-04-05 | 2010-05-06 | Dana Canada Corporation | Heat exchanger construction |
WO2009022020A1 (en) * | 2007-08-16 | 2009-02-19 | Valeo Systemes Thermiques | Evaporator with multiple banks, particularly for a motor vehicle air-conditioning system |
FR2920045A1 (en) * | 2007-08-16 | 2009-02-20 | Valeo Systemes Thermiques | MULTI-FLAP EVAPORATOR, ESPECIALLY FOR A MOTOR VEHICLE AIR CONDITIONING CIRCUIT |
US20100282449A1 (en) * | 2007-11-01 | 2010-11-11 | Brian Merklein | Heat exchanger |
US20110120671A1 (en) * | 2007-11-01 | 2011-05-26 | Braeuning Thomas | Heat exchanger |
US9470461B2 (en) | 2007-11-01 | 2016-10-18 | Modine Manufacturing Company | Heat exchanger with a tank reinforcement member |
US9328966B2 (en) * | 2007-11-01 | 2016-05-03 | Modine Manufacturing Company | Heat exchanger with a baffle reinforcement member |
US11569001B2 (en) | 2008-04-29 | 2023-01-31 | Holtec International | Autonomous self-powered system for removing thermal energy from pools of liquid heated by radioactive materials |
US12243662B2 (en) | 2008-04-29 | 2025-03-04 | Holtec International | Neutron absorbing apparatus |
US20100044022A1 (en) * | 2008-08-22 | 2010-02-25 | Caterpillar Inc. | Air-to-air cooling assembly |
US20110088886A1 (en) * | 2009-10-15 | 2011-04-21 | Klaus Kalbacher | Heat exchanger and seal arrangement for the same |
US20120103581A1 (en) * | 2010-10-28 | 2012-05-03 | Samsung Electronics Co., Ltd. | Header unit and heat exchanger having the same |
US8978746B2 (en) * | 2011-02-04 | 2015-03-17 | Modine Manufacturing Company | Heat exchanger header plate |
US20120199332A1 (en) * | 2011-02-04 | 2012-08-09 | Ken Cornell | Heat exchanger header plate |
US20120247740A1 (en) * | 2011-03-31 | 2012-10-04 | Denso International America, Inc. | Nested heat exchangers |
US10472996B2 (en) * | 2011-04-18 | 2019-11-12 | Holtec International | Autonomous self-powered system for removing thermal energy from pools of liquid heated by radioactive materials, and method of the same |
US20180023423A1 (en) * | 2011-04-18 | 2018-01-25 | Holtec International | Autonomous self-powered system for removing thermal energy from pools of liquid heated by radioactive materials, and method of the same |
US20130180695A1 (en) * | 2012-01-16 | 2013-07-18 | Samsung Electronics Co., Ltd. | Header unit and heat exchanger having the same |
US9797656B2 (en) * | 2012-03-27 | 2017-10-24 | Sanden Holdings Corporation | Vehicle interior heat exchanger and inter-header connecting member of vehicle interior heat exchanger |
US20150053376A1 (en) * | 2012-03-27 | 2015-02-26 | Sanden Corporation | Vehicle interior heat exchanger and inter-header connecting member of vehicle interior heat exchanger |
US10161659B2 (en) | 2013-05-20 | 2018-12-25 | Denso Corporation | Refrigerant evaporator |
US11014425B2 (en) * | 2017-11-24 | 2021-05-25 | Titanx Holding Ab | Vehicle condenser |
US20230082035A1 (en) * | 2020-02-19 | 2023-03-16 | Hanon Systems | Heat exchanger having flow distribution tank structure for thermal stress dispersion |
US12305939B2 (en) * | 2020-02-19 | 2025-05-20 | Hanon Systems | Heat exchanger having flow distribution tank structure for thermal stress dispersion |
US20210381730A1 (en) * | 2020-06-09 | 2021-12-09 | Mahle International Gmbh | Heat exchanger |
EP4050292A1 (en) * | 2021-02-24 | 2022-08-31 | Valeo Systemes Thermiques | A heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
EP1642078A1 (en) | 2006-04-05 |
EP1642078B1 (en) | 2010-09-08 |
WO2005003670A1 (en) | 2005-01-13 |
AU2004254507A1 (en) | 2005-01-13 |
KR20060028809A (en) | 2006-04-03 |
EP1642078A4 (en) | 2007-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1642078B1 (en) | Heat exchanger | |
US7886812B2 (en) | Heat exchanger having a tank partition wall | |
US7726387B2 (en) | Heat exchangers | |
US7971636B2 (en) | Heat exchanger with drain grooves | |
US7886811B2 (en) | Evaporator and process for fabricating same | |
US7775267B2 (en) | Evaporator | |
US7823406B2 (en) | Heat exchanger | |
US7673670B2 (en) | Semifinished joint plate, joint plate, process for fabricating joint plate and heat exchanger | |
US7708054B2 (en) | Heat exchanger | |
US7635019B2 (en) | Heat exchanger | |
US7992401B2 (en) | Evaporator | |
CN101270944A (en) | Heat exchanger | |
US8002024B2 (en) | Heat exchanger with inlet having a guide | |
US20070144715A1 (en) | Evaporator | |
EP1695012A1 (en) | Evaporator | |
AU2004254508A1 (en) | Evaporator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHOWA DENKO K.K., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIGASHIYAMA, NAOHISA;WATANABE, SUMITAKA;YAMAUCHI, SHINOBU;REEL/FRAME:020079/0946 Effective date: 20051111 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |