US20080019962A1 - Endotheliase-2 ligands - Google Patents
Endotheliase-2 ligands Download PDFInfo
- Publication number
- US20080019962A1 US20080019962A1 US11/838,677 US83867707A US2008019962A1 US 20080019962 A1 US20080019962 A1 US 20080019962A1 US 83867707 A US83867707 A US 83867707A US 2008019962 A1 US2008019962 A1 US 2008019962A1
- Authority
- US
- United States
- Prior art keywords
- antibody
- ligand
- protein
- seq
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003446 ligand Substances 0.000 title description 268
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 140
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 109
- 108060003951 Immunoglobulin Proteins 0.000 claims abstract description 52
- 102000018358 immunoglobulin Human genes 0.000 claims abstract description 52
- 230000033115 angiogenesis Effects 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims description 160
- 230000027455 binding Effects 0.000 claims description 117
- 238000009739 binding Methods 0.000 claims description 116
- 206010028980 Neoplasm Diseases 0.000 claims description 111
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 91
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 74
- 229920001184 polypeptide Polymers 0.000 claims description 71
- 230000000694 effects Effects 0.000 claims description 44
- 239000000427 antigen Substances 0.000 claims description 39
- 108091007433 antigens Proteins 0.000 claims description 38
- 102000036639 antigens Human genes 0.000 claims description 38
- 201000011510 cancer Diseases 0.000 claims description 36
- 238000001727 in vivo Methods 0.000 claims description 31
- 238000000338 in vitro Methods 0.000 claims description 29
- 239000000758 substrate Substances 0.000 claims description 14
- 230000005764 inhibitory process Effects 0.000 claims description 13
- 230000004614 tumor growth Effects 0.000 claims description 10
- 210000002469 basement membrane Anatomy 0.000 claims description 6
- 230000002255 enzymatic effect Effects 0.000 claims description 5
- 238000011579 SCID mouse model Methods 0.000 claims description 4
- 230000017854 proteolysis Effects 0.000 claims description 3
- 229940072221 immunoglobulins Drugs 0.000 abstract description 4
- 102000014914 Carrier Proteins Human genes 0.000 abstract 1
- 108091008324 binding proteins Proteins 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 206
- 150000007523 nucleic acids Chemical class 0.000 description 96
- 235000018102 proteins Nutrition 0.000 description 93
- 235000001014 amino acid Nutrition 0.000 description 76
- 150000001413 amino acids Chemical class 0.000 description 69
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 69
- 229940024606 amino acid Drugs 0.000 description 68
- 238000003556 assay Methods 0.000 description 67
- 108020004707 nucleic acids Proteins 0.000 description 66
- 102000039446 nucleic acids Human genes 0.000 description 66
- 150000001875 compounds Chemical class 0.000 description 58
- 208000035475 disorder Diseases 0.000 description 58
- 239000012634 fragment Substances 0.000 description 53
- 210000004602 germ cell Anatomy 0.000 description 43
- 239000000203 mixture Substances 0.000 description 40
- 230000014616 translation Effects 0.000 description 37
- 238000013519 translation Methods 0.000 description 36
- 241001465754 Metazoa Species 0.000 description 33
- 229920001223 polyethylene glycol Polymers 0.000 description 32
- 238000012360 testing method Methods 0.000 description 32
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 30
- 239000003795 chemical substances by application Substances 0.000 description 30
- 239000002202 Polyethylene glycol Substances 0.000 description 28
- -1 e.g. Substances 0.000 description 28
- 239000000463 material Substances 0.000 description 27
- 210000001519 tissue Anatomy 0.000 description 26
- 238000011282 treatment Methods 0.000 description 26
- 108091028043 Nucleic acid sequence Proteins 0.000 description 25
- 102000035195 Peptidases Human genes 0.000 description 24
- 108091005804 Peptidases Proteins 0.000 description 24
- 229920000642 polymer Polymers 0.000 description 24
- 239000000523 sample Substances 0.000 description 24
- 239000004365 Protease Substances 0.000 description 23
- 230000015572 biosynthetic process Effects 0.000 description 23
- 125000003275 alpha amino acid group Chemical group 0.000 description 22
- 210000002889 endothelial cell Anatomy 0.000 description 22
- 230000001225 therapeutic effect Effects 0.000 description 22
- 239000002253 acid Substances 0.000 description 21
- 239000000243 solution Substances 0.000 description 21
- 230000012010 growth Effects 0.000 description 20
- 101710117290 Aldo-keto reductase family 1 member C4 Proteins 0.000 description 18
- 239000011324 bead Substances 0.000 description 17
- 108020004705 Codon Proteins 0.000 description 16
- 238000002965 ELISA Methods 0.000 description 16
- 125000000539 amino acid group Chemical group 0.000 description 16
- 239000003112 inhibitor Substances 0.000 description 15
- 230000002401 inhibitory effect Effects 0.000 description 15
- 206010061289 metastatic neoplasm Diseases 0.000 description 15
- 238000003498 protein array Methods 0.000 description 15
- 238000006467 substitution reaction Methods 0.000 description 15
- 239000003814 drug Substances 0.000 description 14
- 230000001394 metastastic effect Effects 0.000 description 14
- 239000002773 nucleotide Chemical group 0.000 description 14
- 125000003729 nucleotide group Chemical group 0.000 description 14
- 239000008194 pharmaceutical composition Substances 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 210000004881 tumor cell Anatomy 0.000 description 14
- 230000003993 interaction Effects 0.000 description 13
- 239000002245 particle Substances 0.000 description 13
- 230000009261 transgenic effect Effects 0.000 description 13
- 239000013598 vector Substances 0.000 description 13
- 102000004190 Enzymes Human genes 0.000 description 12
- 108090000790 Enzymes Proteins 0.000 description 12
- 206010027476 Metastases Diseases 0.000 description 12
- 210000001744 T-lymphocyte Anatomy 0.000 description 12
- 229940088598 enzyme Drugs 0.000 description 12
- 239000013604 expression vector Substances 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 12
- 238000002703 mutagenesis Methods 0.000 description 12
- 231100000350 mutagenesis Toxicity 0.000 description 12
- 230000009467 reduction Effects 0.000 description 12
- 230000000295 complement effect Effects 0.000 description 11
- 231100000433 cytotoxic Toxicity 0.000 description 11
- 230000001472 cytotoxic effect Effects 0.000 description 11
- 201000010099 disease Diseases 0.000 description 11
- 238000011534 incubation Methods 0.000 description 11
- 238000001802 infusion Methods 0.000 description 11
- 238000002372 labelling Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 201000009030 Carcinoma Diseases 0.000 description 10
- 206010029113 Neovascularisation Diseases 0.000 description 10
- 230000003321 amplification Effects 0.000 description 10
- 229940127089 cytotoxic agent Drugs 0.000 description 10
- 239000002254 cytotoxic agent Substances 0.000 description 10
- 231100000599 cytotoxic agent Toxicity 0.000 description 10
- 229940079593 drug Drugs 0.000 description 10
- 230000004927 fusion Effects 0.000 description 10
- 206010020718 hyperplasia Diseases 0.000 description 10
- 230000009401 metastasis Effects 0.000 description 10
- 238000003199 nucleic acid amplification method Methods 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 230000005855 radiation Effects 0.000 description 10
- 238000012216 screening Methods 0.000 description 10
- 108091034117 Oligonucleotide Proteins 0.000 description 9
- 210000000481 breast Anatomy 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 238000001514 detection method Methods 0.000 description 9
- 238000009396 hybridization Methods 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 230000002147 killing effect Effects 0.000 description 9
- 230000003902 lesion Effects 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 241000699666 Mus <mouse, genus> Species 0.000 description 8
- BKAYIFDRRZZKNF-VIFPVBQESA-N N-acetylcarnosine Chemical compound CC(=O)NCCC(=O)N[C@H](C(O)=O)CC1=CN=CN1 BKAYIFDRRZZKNF-VIFPVBQESA-N 0.000 description 8
- VWQVUPCCIRVNHF-OUBTZVSYSA-N Yttrium-90 Chemical compound [90Y] VWQVUPCCIRVNHF-OUBTZVSYSA-N 0.000 description 8
- 208000009956 adenocarcinoma Diseases 0.000 description 8
- 210000004204 blood vessel Anatomy 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 239000004615 ingredient Substances 0.000 description 8
- 230000036210 malignancy Effects 0.000 description 8
- 230000001404 mediated effect Effects 0.000 description 8
- 238000002823 phage display Methods 0.000 description 8
- 230000035755 proliferation Effects 0.000 description 8
- 230000000069 prophylactic effect Effects 0.000 description 8
- 238000003259 recombinant expression Methods 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 7
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 7
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 7
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 7
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 7
- 239000004472 Lysine Substances 0.000 description 7
- 241000124008 Mammalia Species 0.000 description 7
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 7
- 230000001580 bacterial effect Effects 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 230000010261 cell growth Effects 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000012636 effector Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 210000002744 extracellular matrix Anatomy 0.000 description 7
- 239000007850 fluorescent dye Substances 0.000 description 7
- 239000001963 growth medium Substances 0.000 description 7
- 230000002390 hyperplastic effect Effects 0.000 description 7
- 238000001990 intravenous administration Methods 0.000 description 7
- 210000004072 lung Anatomy 0.000 description 7
- 239000003550 marker Substances 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 241001515965 unidentified phage Species 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 6
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 6
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 6
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 6
- 206010060862 Prostate cancer Diseases 0.000 description 6
- 108010022999 Serine Proteases Proteins 0.000 description 6
- 102000012479 Serine Proteases Human genes 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 238000010171 animal model Methods 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000004132 cross linking Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- 230000005291 magnetic effect Effects 0.000 description 6
- 210000004379 membrane Anatomy 0.000 description 6
- 230000005012 migration Effects 0.000 description 6
- 238000013508 migration Methods 0.000 description 6
- 235000013336 milk Nutrition 0.000 description 6
- 239000008267 milk Substances 0.000 description 6
- 210000004080 milk Anatomy 0.000 description 6
- 230000035772 mutation Effects 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 5
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 5
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 5
- 238000005481 NMR spectroscopy Methods 0.000 description 5
- 241000283984 Rodentia Species 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- 210000003719 b-lymphocyte Anatomy 0.000 description 5
- 238000001574 biopsy Methods 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 210000001072 colon Anatomy 0.000 description 5
- 208000029742 colonic neoplasm Diseases 0.000 description 5
- 239000013068 control sample Substances 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 238000012377 drug delivery Methods 0.000 description 5
- 230000003463 hyperproliferative effect Effects 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 230000000670 limiting effect Effects 0.000 description 5
- 239000002502 liposome Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 229960000485 methotrexate Drugs 0.000 description 5
- 230000001613 neoplastic effect Effects 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 230000002285 radioactive effect Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 4
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 4
- 208000026310 Breast neoplasm Diseases 0.000 description 4
- 108091035707 Consensus sequence Proteins 0.000 description 4
- 101000690301 Homo sapiens Aldo-keto reductase family 1 member C4 Proteins 0.000 description 4
- 101001116548 Homo sapiens Protein CBFA2T1 Proteins 0.000 description 4
- 102000012745 Immunoglobulin Subunits Human genes 0.000 description 4
- 108010079585 Immunoglobulin Subunits Proteins 0.000 description 4
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 4
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 4
- 101710125418 Major capsid protein Proteins 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- 241000288906 Primates Species 0.000 description 4
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 4
- 208000006265 Renal cell carcinoma Diseases 0.000 description 4
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 4
- 206010068771 Soft tissue neoplasm Diseases 0.000 description 4
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 4
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 4
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 239000002870 angiogenesis inducing agent Substances 0.000 description 4
- 235000009582 asparagine Nutrition 0.000 description 4
- 229960001230 asparagine Drugs 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 238000000423 cell based assay Methods 0.000 description 4
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 4
- 229920001436 collagen Polymers 0.000 description 4
- 230000001268 conjugating effect Effects 0.000 description 4
- 210000004087 cornea Anatomy 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000003013 cytotoxicity Effects 0.000 description 4
- 231100000135 cytotoxicity Toxicity 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000010494 dissociation reaction Methods 0.000 description 4
- 230000005593 dissociations Effects 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- 230000003511 endothelial effect Effects 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 210000003527 eukaryotic cell Anatomy 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 4
- 102000054751 human RUNX1T1 Human genes 0.000 description 4
- 210000002865 immune cell Anatomy 0.000 description 4
- 238000011503 in vivo imaging Methods 0.000 description 4
- 201000007270 liver cancer Diseases 0.000 description 4
- 208000014018 liver neoplasm Diseases 0.000 description 4
- 230000003211 malignant effect Effects 0.000 description 4
- 210000004962 mammalian cell Anatomy 0.000 description 4
- 108010082117 matrigel Proteins 0.000 description 4
- 230000009826 neoplastic cell growth Effects 0.000 description 4
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 4
- 210000001672 ovary Anatomy 0.000 description 4
- 210000003800 pharynx Anatomy 0.000 description 4
- 239000002953 phosphate buffered saline Substances 0.000 description 4
- 230000001023 pro-angiogenic effect Effects 0.000 description 4
- 229940002612 prodrug Drugs 0.000 description 4
- 239000000651 prodrug Substances 0.000 description 4
- 230000002797 proteolythic effect Effects 0.000 description 4
- 239000013074 reference sample Substances 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 238000010839 reverse transcription Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000007920 subcutaneous administration Methods 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 210000005253 yeast cell Anatomy 0.000 description 4
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 3
- 101710132601 Capsid protein Proteins 0.000 description 3
- 101710094648 Coat protein Proteins 0.000 description 3
- 108010035532 Collagen Proteins 0.000 description 3
- 102000008186 Collagen Human genes 0.000 description 3
- 206010009944 Colon cancer Diseases 0.000 description 3
- 101710112752 Cytotoxin Proteins 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- 206010012689 Diabetic retinopathy Diseases 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 3
- 241000724791 Filamentous phage Species 0.000 description 3
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 3
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 3
- 102000043131 MHC class II family Human genes 0.000 description 3
- 108091054438 MHC class II family Proteins 0.000 description 3
- 108010052285 Membrane Proteins Proteins 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 101710141454 Nucleoprotein Proteins 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 101710083689 Probable capsid protein Proteins 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 3
- 206010039491 Sarcoma Diseases 0.000 description 3
- 108010090804 Streptavidin Proteins 0.000 description 3
- 241000282898 Sus scrofa Species 0.000 description 3
- 108010022394 Threonine synthase Proteins 0.000 description 3
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 3
- 206010052428 Wound Diseases 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 230000001594 aberrant effect Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 229910052767 actinium Inorganic materials 0.000 description 3
- QQINRWTZWGJFDB-UHFFFAOYSA-N actinium atom Chemical compound [Ac] QQINRWTZWGJFDB-UHFFFAOYSA-N 0.000 description 3
- 230000002491 angiogenic effect Effects 0.000 description 3
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 3
- 230000000890 antigenic effect Effects 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 3
- 229910052797 bismuth Inorganic materials 0.000 description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 3
- 229920001400 block copolymer Polymers 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 230000008499 blood brain barrier function Effects 0.000 description 3
- 210000001218 blood-brain barrier Anatomy 0.000 description 3
- 208000035269 cancer or benign tumor Diseases 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000003352 cell adhesion assay Methods 0.000 description 3
- 229960004630 chlorambucil Drugs 0.000 description 3
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 3
- 210000003711 chorioallantoic membrane Anatomy 0.000 description 3
- 230000000112 colonic effect Effects 0.000 description 3
- 239000002872 contrast media Substances 0.000 description 3
- 239000000824 cytostatic agent Substances 0.000 description 3
- 239000002619 cytotoxin Substances 0.000 description 3
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000000032 diagnostic agent Substances 0.000 description 3
- 229940039227 diagnostic agent Drugs 0.000 description 3
- 238000002405 diagnostic procedure Methods 0.000 description 3
- 102000004419 dihydrofolate reductase Human genes 0.000 description 3
- 210000002257 embryonic structure Anatomy 0.000 description 3
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 3
- 230000002496 gastric effect Effects 0.000 description 3
- 238000001641 gel filtration chromatography Methods 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 230000016784 immunoglobulin production Effects 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- APFVFJFRJDLVQX-AHCXROLUSA-N indium-111 Chemical compound [111In] APFVFJFRJDLVQX-AHCXROLUSA-N 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 238000007912 intraperitoneal administration Methods 0.000 description 3
- 230000009545 invasion Effects 0.000 description 3
- 230000002083 iodinating effect Effects 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 238000004255 ion exchange chromatography Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000006193 liquid solution Substances 0.000 description 3
- 208000020816 lung neoplasm Diseases 0.000 description 3
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 3
- 238000002595 magnetic resonance imaging Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 230000006510 metastatic growth Effects 0.000 description 3
- 238000000386 microscopy Methods 0.000 description 3
- 238000010232 migration assay Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- 210000000287 oocyte Anatomy 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 210000004789 organ system Anatomy 0.000 description 3
- 230000003204 osmotic effect Effects 0.000 description 3
- 230000005298 paramagnetic effect Effects 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 210000001236 prokaryotic cell Anatomy 0.000 description 3
- 210000002307 prostate Anatomy 0.000 description 3
- 230000002685 pulmonary effect Effects 0.000 description 3
- 238000011363 radioimmunotherapy Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 206010039073 rheumatoid arthritis Diseases 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 210000000813 small intestine Anatomy 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 239000003053 toxin Substances 0.000 description 3
- 231100000765 toxin Toxicity 0.000 description 3
- 108700012359 toxins Proteins 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 229910052722 tritium Inorganic materials 0.000 description 3
- 210000005239 tubule Anatomy 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 230000029663 wound healing Effects 0.000 description 3
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 2
- PVVTWNMXEHROIA-UHFFFAOYSA-N 2-(3-hydroxypropyl)-1h-quinazolin-4-one Chemical compound C1=CC=C2NC(CCCO)=NC(=O)C2=C1 PVVTWNMXEHROIA-UHFFFAOYSA-N 0.000 description 2
- NMPVEAUIHMEAQP-UHFFFAOYSA-N 2-Bromoacetaldehyde Chemical compound BrCC=O NMPVEAUIHMEAQP-UHFFFAOYSA-N 0.000 description 2
- VPFUWHKTPYPNGT-UHFFFAOYSA-N 3-(3,4-dihydroxyphenyl)-1-(5-hydroxy-2,2-dimethylchromen-6-yl)propan-1-one Chemical compound OC1=C2C=CC(C)(C)OC2=CC=C1C(=O)CCC1=CC=C(O)C(O)=C1 VPFUWHKTPYPNGT-UHFFFAOYSA-N 0.000 description 2
- RJYQLMILDVERHH-UHFFFAOYSA-N 4-Ipomeanol Chemical compound CC(O)CCC(=O)C=1C=COC=1 RJYQLMILDVERHH-UHFFFAOYSA-N 0.000 description 2
- RGHHSNMVTDWUBI-UHFFFAOYSA-N 4-hydroxybenzaldehyde Chemical compound OC1=CC=C(C=O)C=C1 RGHHSNMVTDWUBI-UHFFFAOYSA-N 0.000 description 2
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 2
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 2
- 208000016683 Adult T-cell leukemia/lymphoma Diseases 0.000 description 2
- 241001598984 Bromius obscurus Species 0.000 description 2
- 208000017897 Carcinoma of esophagus Diseases 0.000 description 2
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 2
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 2
- 108700020911 DNA-Binding Proteins Proteins 0.000 description 2
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 229920001353 Dextrin Polymers 0.000 description 2
- 239000004375 Dextrin Substances 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 108010053187 Diphtheria Toxin Proteins 0.000 description 2
- 102000016607 Diphtheria Toxin Human genes 0.000 description 2
- 101100120289 Drosophila melanogaster Flo1 gene Proteins 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 2
- 108090000387 Endothelin-2 Proteins 0.000 description 2
- 102100029110 Endothelin-2 Human genes 0.000 description 2
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 2
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 2
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 2
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 208000010412 Glaucoma Diseases 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 206010073069 Hepatic cancer Diseases 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 208000008839 Kidney Neoplasms Diseases 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- 229910052765 Lutetium Inorganic materials 0.000 description 2
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 2
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 2
- 102000018697 Membrane Proteins Human genes 0.000 description 2
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 108091093037 Peptide nucleic acid Proteins 0.000 description 2
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 2
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 2
- 108010001014 Plasminogen Activators Proteins 0.000 description 2
- 102000001938 Plasminogen Activators Human genes 0.000 description 2
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 2
- 241001415846 Procellariidae Species 0.000 description 2
- 208000033766 Prolymphocytic Leukemia Diseases 0.000 description 2
- 201000004681 Psoriasis Diseases 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 208000015634 Rectal Neoplasms Diseases 0.000 description 2
- 206010038389 Renal cancer Diseases 0.000 description 2
- 206010038933 Retinopathy of prematurity Diseases 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 201000009594 Systemic Scleroderma Diseases 0.000 description 2
- 206010042953 Systemic sclerosis Diseases 0.000 description 2
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- 108020005038 Terminator Codon Proteins 0.000 description 2
- 208000024313 Testicular Neoplasms Diseases 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 206010047115 Vasculitis Diseases 0.000 description 2
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000002679 ablation Methods 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- YRHVTNFFGLSGHS-RFNIADBLSA-N acetic acid;(2s)-5-(diaminomethylideneamino)-2-[[2-[[(2r)-3-(4-hydroxycyclohexyl)-2-(methanesulfonamido)propanoyl]amino]acetyl]amino]-n-(4-nitrophenyl)pentanamide Chemical compound CC(O)=O.C([C@@H](NS(=O)(=O)C)C(=O)NCC(=O)N[C@@H](CCCN=C(N)N)C(=O)NC=1C=CC(=CC=1)[N+]([O-])=O)C1CCC(O)CC1 YRHVTNFFGLSGHS-RFNIADBLSA-N 0.000 description 2
- 208000004064 acoustic neuroma Diseases 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 229940009456 adriamycin Drugs 0.000 description 2
- 201000006966 adult T-cell leukemia Diseases 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 229940100198 alkylating agent Drugs 0.000 description 2
- 239000002168 alkylating agent Substances 0.000 description 2
- 230000000340 anti-metabolite Effects 0.000 description 2
- 229940100197 antimetabolite Drugs 0.000 description 2
- 239000002256 antimetabolite Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- AEMOLEFTQBMNLQ-UHFFFAOYSA-N beta-D-galactopyranuronic acid Natural products OC1OC(C(O)=O)C(O)C(O)C1O AEMOLEFTQBMNLQ-UHFFFAOYSA-N 0.000 description 2
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 2
- 230000015916 branching morphogenesis of a tube Effects 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000021164 cell adhesion Effects 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 230000032823 cell division Effects 0.000 description 2
- 230000012292 cell migration Effects 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 210000003837 chick embryo Anatomy 0.000 description 2
- 235000013330 chicken meat Nutrition 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000512 collagen gel Substances 0.000 description 2
- 230000004540 complement-dependent cytotoxicity Effects 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 235000019425 dextrin Nutrition 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 230000010595 endothelial cell migration Effects 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 238000001952 enzyme assay Methods 0.000 description 2
- 210000002919 epithelial cell Anatomy 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 235000013861 fat-free Nutrition 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229960002949 fluorouracil Drugs 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000005714 functional activity Effects 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000000762 glandular Effects 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 201000009277 hairy cell leukemia Diseases 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 239000002596 immunotoxin Substances 0.000 description 2
- 231100000608 immunotoxin Toxicity 0.000 description 2
- 230000002637 immunotoxin Effects 0.000 description 2
- 229940051026 immunotoxin Drugs 0.000 description 2
- 238000000099 in vitro assay Methods 0.000 description 2
- 239000000411 inducer Substances 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 201000010982 kidney cancer Diseases 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 2
- 230000000527 lymphocytic effect Effects 0.000 description 2
- 208000002780 macular degeneration Diseases 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 201000005962 mycosis fungoides Diseases 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 201000003142 neovascular glaucoma Diseases 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 230000001766 physiological effect Effects 0.000 description 2
- 229940012957 plasmin Drugs 0.000 description 2
- 229940127126 plasminogen activator Drugs 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 150000004804 polysaccharides Chemical class 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 238000011533 pre-incubation Methods 0.000 description 2
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000000159 protein binding assay Methods 0.000 description 2
- 238000002818 protein evolution Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000000163 radioactive labelling Methods 0.000 description 2
- 239000012857 radioactive material Substances 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 206010038038 rectal cancer Diseases 0.000 description 2
- 201000001275 rectum cancer Diseases 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- WUAPFZMCVAUBPE-IGMARMGPSA-N rhenium-186 Chemical compound [186Re] WUAPFZMCVAUBPE-IGMARMGPSA-N 0.000 description 2
- 238000009738 saturating Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000003001 serine protease inhibitor Substances 0.000 description 2
- 230000000392 somatic effect Effects 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 238000005556 structure-activity relationship Methods 0.000 description 2
- 238000010254 subcutaneous injection Methods 0.000 description 2
- 239000007929 subcutaneous injection Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 2
- CWERGRDVMFNCDR-UHFFFAOYSA-M thioglycolate(1-) Chemical compound [O-]C(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-M 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 2
- 238000003325 tomography Methods 0.000 description 2
- 206010044325 trachoma Diseases 0.000 description 2
- 206010044412 transitional cell carcinoma Diseases 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 210000003606 umbilical vein Anatomy 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 230000007998 vessel formation Effects 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- ZJIFDEVVTPEXDL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) hydrogen carbonate Chemical compound OC(=O)ON1C(=O)CCC1=O ZJIFDEVVTPEXDL-UHFFFAOYSA-N 0.000 description 1
- AASBXERNXVFUEJ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) propanoate Chemical compound CCC(=O)ON1C(=O)CCC1=O AASBXERNXVFUEJ-UHFFFAOYSA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- ZZKNRXZVGOYGJT-VKHMYHEASA-N (2s)-2-[(2-phosphonoacetyl)amino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)CP(O)(O)=O ZZKNRXZVGOYGJT-VKHMYHEASA-N 0.000 description 1
- SULKGYKWHKPPKO-RAJPIYRYSA-N (4s)-4-[[(2r)-2-[[(2s,3r)-2-[[(2s)-4-amino-4-oxo-2-[[(2s)-pyrrolidine-2-carbonyl]amino]butanoyl]amino]-3-hydroxybutanoyl]amino]-3-sulfanylpropanoyl]amino]-5-[[(2s,3s)-1-[[(2r)-1-[[(2s)-1-[[(2s)-1-[[(2s)-1-[[(2s)-1-[[(2r)-1-[[(2s,3r)-1-[[2-[[(1r)-1-carboxy Chemical compound N([C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CS)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](CS)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CS)C(O)=O)[C@@H](C)O)C(=O)[C@@H]1CCCN1 SULKGYKWHKPPKO-RAJPIYRYSA-N 0.000 description 1
- BZSALXKCVOJCJJ-IPEMHBBOSA-N (4s)-4-[[(2s)-2-acetamido-3-methylbutanoyl]amino]-5-[[(2s)-1-[[(2s)-1-[[(2s,3r)-1-[[(2s)-1-[[(2s)-1-[[2-[[(2s)-1-amino-1-oxo-3-phenylpropan-2-yl]amino]-2-oxoethyl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-hydroxy Chemical compound CC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCC)C(=O)N[C@@H](CCCC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(=O)N[C@H](C(N)=O)CC1=CC=CC=C1 BZSALXKCVOJCJJ-IPEMHBBOSA-N 0.000 description 1
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 1
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 1
- ZGNLFUXWZJGETL-YUSKDDKASA-N (Z)-[(2S)-2-amino-2-carboxyethyl]-hydroxyimino-oxidoazanium Chemical compound N[C@@H](C\[N+]([O-])=N\O)C(O)=O ZGNLFUXWZJGETL-YUSKDDKASA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- BGPJLYIFDLICMR-UHFFFAOYSA-N 1,4,2,3-dioxadithiolan-5-one Chemical class O=C1OSSO1 BGPJLYIFDLICMR-UHFFFAOYSA-N 0.000 description 1
- ICAYNKLSQSKOJZ-UHFFFAOYSA-N 1-(4-fluorophenyl)-4-[4-[(4-fluorophenyl)-hydroxymethyl]piperidin-1-yl]butan-1-one Chemical compound C=1C=C(F)C=CC=1C(O)C(CC1)CCN1CCCC(=O)C1=CC=C(F)C=C1 ICAYNKLSQSKOJZ-UHFFFAOYSA-N 0.000 description 1
- FPKVOQKZMBDBKP-UHFFFAOYSA-N 1-[4-[(2,5-dioxopyrrol-1-yl)methyl]cyclohexanecarbonyl]oxy-2,5-dioxopyrrolidine-3-sulfonic acid Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)C1CCC(CN2C(C=CC2=O)=O)CC1 FPKVOQKZMBDBKP-UHFFFAOYSA-N 0.000 description 1
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-GASJEMHNSA-N 2-amino-2-deoxy-D-galactopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@H](O)[C@@H]1O MSWZFWKMSRAUBD-GASJEMHNSA-N 0.000 description 1
- OALHHIHQOFIMEF-UHFFFAOYSA-N 3',6'-dihydroxy-2',4',5',7'-tetraiodo-3h-spiro[2-benzofuran-1,9'-xanthene]-3-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 OALHHIHQOFIMEF-UHFFFAOYSA-N 0.000 description 1
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- QNKJFXARIMSDBR-UHFFFAOYSA-N 3-[2-[bis(2-chloroethyl)amino]ethyl]-1,3-diazaspiro[4.5]decane-2,4-dione Chemical compound O=C1N(CCN(CCCl)CCCl)C(=O)NC11CCCCC1 QNKJFXARIMSDBR-UHFFFAOYSA-N 0.000 description 1
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 1
- JARCFMKMOFFIGZ-UHFFFAOYSA-N 4,6-dioxo-n-phenyl-2-sulfanylidene-1,3-diazinane-5-carboxamide Chemical compound O=C1NC(=S)NC(=O)C1C(=O)NC1=CC=CC=C1 JARCFMKMOFFIGZ-UHFFFAOYSA-N 0.000 description 1
- QXZGLTYKKZKGLN-UHFFFAOYSA-N 4-(2,5-dioxopyrrolidin-1-yl)oxy-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)ON1C(=O)CCC1=O QXZGLTYKKZKGLN-UHFFFAOYSA-N 0.000 description 1
- IDPUKCWIGUEADI-UHFFFAOYSA-N 5-[bis(2-chloroethyl)amino]uracil Chemical compound ClCCN(CCCl)C1=CNC(=O)NC1=O IDPUKCWIGUEADI-UHFFFAOYSA-N 0.000 description 1
- XAUDJQYHKZQPEU-KVQBGUIXSA-N 5-aza-2'-deoxycytidine Chemical compound O=C1N=C(N)N=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 XAUDJQYHKZQPEU-KVQBGUIXSA-N 0.000 description 1
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 1
- FHIDNBAQOFJWCA-UAKXSSHOSA-N 5-fluorouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 FHIDNBAQOFJWCA-UAKXSSHOSA-N 0.000 description 1
- 108010066676 Abrin Proteins 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 229920000945 Amylopectin Polymers 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 208000003120 Angiofibroma Diseases 0.000 description 1
- 201000003076 Angiosarcoma Diseases 0.000 description 1
- 208000003343 Antiphospholipid Syndrome Diseases 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 208000022211 Arteriovenous Malformations Diseases 0.000 description 1
- 108700032558 Aspergillus restrictus MITF Proteins 0.000 description 1
- 101000669426 Aspergillus restrictus Ribonuclease mitogillin Proteins 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 101710192393 Attachment protein G3P Proteins 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- 206010004593 Bile duct cancer Diseases 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 101000984722 Bos taurus Pancreatic trypsin inhibitor Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- VPIDXLJVGVBFOW-UHFFFAOYSA-N C=1C=[C-]PC=1 Chemical class C=1C=[C-]PC=1 VPIDXLJVGVBFOW-UHFFFAOYSA-N 0.000 description 1
- 108010029697 CD40 Ligand Proteins 0.000 description 1
- 101150013553 CD40 gene Proteins 0.000 description 1
- 102100032937 CD40 ligand Human genes 0.000 description 1
- 201000002829 CREST Syndrome Diseases 0.000 description 1
- 101100348341 Caenorhabditis elegans gas-1 gene Proteins 0.000 description 1
- 208000004434 Calcinosis Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282836 Camelus dromedarius Species 0.000 description 1
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 description 1
- 101710158575 Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 101710169873 Capsid protein G8P Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 201000000274 Carcinosarcoma Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 208000005243 Chondrosarcoma Diseases 0.000 description 1
- 201000009047 Chordoma Diseases 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- PPASFTRHCXASPY-UHFFFAOYSA-N Cl.Cl.NCCCNc1ccc2c3c(nn2CCNCCO)c4c(O)ccc(O)c4C(=O)c13 Chemical compound Cl.Cl.NCCCNc1ccc2c3c(nn2CCNCCO)c4c(O)ccc(O)c4C(=O)c13 PPASFTRHCXASPY-UHFFFAOYSA-N 0.000 description 1
- WIQWZMXJFYDPOU-UHFFFAOYSA-N Cl.Cl.[H]C(CCCNC(=N)N)(NC(=O)CNC(=O)C([H])(CCCNC(=N)N)NC(=O)OCC1=CC=CC=C1)C(=O)NC1=CC=C([N+](=O)[O-])C=C1 Chemical compound Cl.Cl.[H]C(CCCNC(=N)N)(NC(=O)CNC(=O)C([H])(CCCNC(=N)N)NC(=O)OCC1=CC=CC=C1)C(=O)NC1=CC=C([N+](=O)[O-])C=C1 WIQWZMXJFYDPOU-UHFFFAOYSA-N 0.000 description 1
- PTOAARAWEBMLNO-KVQBGUIXSA-N Cladribine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PTOAARAWEBMLNO-KVQBGUIXSA-N 0.000 description 1
- 102000000989 Complement System Proteins Human genes 0.000 description 1
- 108010069112 Complement System Proteins Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 108010062580 Concanavalin A Proteins 0.000 description 1
- 206010011017 Corneal graft rejection Diseases 0.000 description 1
- 206010055665 Corneal neovascularisation Diseases 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 208000009798 Craniopharyngioma Diseases 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 108700032819 Croton tiglium crotin II Proteins 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- AEMOLEFTQBMNLQ-DTEWXJGMSA-N D-Galacturonic acid Natural products O[C@@H]1O[C@H](C(O)=O)[C@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-DTEWXJGMSA-N 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 229940123780 DNA topoisomerase I inhibitor Drugs 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 101710194146 Ecotin Proteins 0.000 description 1
- 201000009051 Embryonal Carcinoma Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 108050009340 Endothelin Proteins 0.000 description 1
- 102000002045 Endothelin Human genes 0.000 description 1
- 241000701867 Enterobacteria phage T7 Species 0.000 description 1
- 102000010911 Enzyme Precursors Human genes 0.000 description 1
- 108010062466 Enzyme Precursors Proteins 0.000 description 1
- 206010014967 Ependymoma Diseases 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 208000006168 Ewing Sarcoma Diseases 0.000 description 1
- 101710082714 Exotoxin A Proteins 0.000 description 1
- 101150021185 FGF gene Proteins 0.000 description 1
- 108010074860 Factor Xa Proteins 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 1
- 102100037362 Fibronectin Human genes 0.000 description 1
- 102000002090 Fibronectin type III Human genes 0.000 description 1
- 108050009401 Fibronectin type III Proteins 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700004714 Gelonium multiflorum GEL Proteins 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 102400001367 Guanylin Human genes 0.000 description 1
- 101800004305 Guanylin Proteins 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 101710121697 Heat-stable enterotoxin Proteins 0.000 description 1
- 208000001258 Hemangiosarcoma Diseases 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 101000800023 Homo sapiens 4F2 cell-surface antigen heavy chain Proteins 0.000 description 1
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 1
- 101001050288 Homo sapiens Transcription factor Jun Proteins 0.000 description 1
- 229920000869 Homopolysaccharide Polymers 0.000 description 1
- 229920001612 Hydroxyethyl starch Polymers 0.000 description 1
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 1
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 1
- 102000009490 IgG Receptors Human genes 0.000 description 1
- 108010073807 IgG Receptors Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 1
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 1
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 1
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- MLFKVJCWGUZWNV-UHFFFAOYSA-N L-alanosine Natural products OC(=O)C(N)CN(O)N=O MLFKVJCWGUZWNV-UHFFFAOYSA-N 0.000 description 1
- SRBFZHDQGSBBOR-HWQSCIPKSA-N L-arabinopyranose Chemical compound O[C@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-HWQSCIPKSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 1
- WQZGKKKJIJFFOK-DHVFOXMCSA-N L-galactose Chemical compound OC[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O WQZGKKKJIJFFOK-DHVFOXMCSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 238000011050 LAL assay Methods 0.000 description 1
- 208000034693 Laceration Diseases 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108010085895 Laminin Proteins 0.000 description 1
- 208000006404 Large Granular Lymphocytic Leukemia Diseases 0.000 description 1
- 208000018142 Leiomyosarcoma Diseases 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 102000057248 Lipoprotein(a) Human genes 0.000 description 1
- 108010033266 Lipoprotein(a) Proteins 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 239000002616 MRI contrast agent Substances 0.000 description 1
- 238000012307 MRI technique Methods 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 101710156564 Major tail protein Gp23 Proteins 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 208000007054 Medullary Carcinoma Diseases 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 102000005431 Molecular Chaperones Human genes 0.000 description 1
- 108010006519 Molecular Chaperones Proteins 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101100447658 Mus musculus Gas1 gene Proteins 0.000 description 1
- 101100069392 Mus musculus Gzma gene Proteins 0.000 description 1
- 241000238367 Mya arenaria Species 0.000 description 1
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 1
- LKJPYSCBVHEWIU-UHFFFAOYSA-N N-[4-cyano-3-(trifluoromethyl)phenyl]-3-[(4-fluorophenyl)sulfonyl]-2-hydroxy-2-methylpropanamide Chemical compound C=1C=C(C#N)C(C(F)(F)F)=CC=1NC(=O)C(O)(C)CS(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-UHFFFAOYSA-N 0.000 description 1
- 108700010674 N-acetylVal-Nle(7,8)- allatotropin (5-13) Proteins 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 101710204212 Neocarzinostatin Proteins 0.000 description 1
- 241001045988 Neogene Species 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 201000004404 Neurofibroma Diseases 0.000 description 1
- 101100109406 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) aga-1 gene Proteins 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 208000022873 Ocular disease Diseases 0.000 description 1
- 201000010133 Oligodendroglioma Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 208000027190 Peripheral T-cell lymphomas Diseases 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 108010047620 Phytohemagglutinins Proteins 0.000 description 1
- 240000007643 Phytolacca americana Species 0.000 description 1
- 235000009074 Phytolacca americana Nutrition 0.000 description 1
- 101100413173 Phytolacca americana PAP2 gene Proteins 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 208000007641 Pinealoma Diseases 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 108010022233 Plasminogen Activator Inhibitor 1 Proteins 0.000 description 1
- 102100039418 Plasminogen activator inhibitor 1 Human genes 0.000 description 1
- 108010033737 Pokeweed Mitogens Proteins 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 208000006787 Port-Wine Stain Diseases 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Substances CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 102100027584 Protein c-Fos Human genes 0.000 description 1
- 108010071563 Proto-Oncogene Proteins c-fos Proteins 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 206010037649 Pyogenic granuloma Diseases 0.000 description 1
- XESARGFCSKSFID-UHFFFAOYSA-N Pyrazofurin Natural products OC1=C(C(=O)N)NN=C1C1C(O)C(O)C(CO)O1 XESARGFCSKSFID-UHFFFAOYSA-N 0.000 description 1
- 102000009609 Pyrophosphatases Human genes 0.000 description 1
- 108010009413 Pyrophosphatases Proteins 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 102000044126 RNA-Binding Proteins Human genes 0.000 description 1
- 108700020471 RNA-Binding Proteins Proteins 0.000 description 1
- 208000012322 Raynaud phenomenon Diseases 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 102000014400 SH2 domains Human genes 0.000 description 1
- 108050003452 SH2 domains Proteins 0.000 description 1
- 108050008861 SH3 domains Proteins 0.000 description 1
- 102000000395 SH3 domains Human genes 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 240000003946 Saponaria officinalis Species 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 201000010208 Seminoma Diseases 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 1
- 208000021386 Sjogren Syndrome Diseases 0.000 description 1
- 206010071051 Soft tissue mass Diseases 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 208000002847 Surgical Wound Diseases 0.000 description 1
- 208000004732 Systemic Vasculitis Diseases 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 208000031672 T-Cell Peripheral Lymphoma Diseases 0.000 description 1
- 201000008717 T-cell large granular lymphocyte leukemia Diseases 0.000 description 1
- 206010043189 Telangiectasia Diseases 0.000 description 1
- 102100036407 Thioredoxin Human genes 0.000 description 1
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- IVTVGDXNLFLDRM-HNNXBMFYSA-N Tomudex Chemical compound C=1C=C2NC(C)=NC(=O)C2=CC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)S1 IVTVGDXNLFLDRM-HNNXBMFYSA-N 0.000 description 1
- 239000000365 Topoisomerase I Inhibitor Substances 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- 241000390203 Trachoma Species 0.000 description 1
- 102100023132 Transcription factor Jun Human genes 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 1
- 206010064390 Tumour invasion Diseases 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 208000009443 Vascular Malformations Diseases 0.000 description 1
- 240000001866 Vernicia fordii Species 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 208000014070 Vestibular schwannoma Diseases 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 208000008383 Wilms tumor Diseases 0.000 description 1
- 210000003815 abdominal wall Anatomy 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- QAWIHIJWNYOLBE-OKKQSCSOSA-N acivicin Chemical compound OC(=O)[C@@H](N)[C@@H]1CC(Cl)=NO1 QAWIHIJWNYOLBE-OKKQSCSOSA-N 0.000 description 1
- 229950008427 acivicin Drugs 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 229950005033 alanosine Drugs 0.000 description 1
- 150000001299 aldehydes Chemical group 0.000 description 1
- IAJILQKETJEXLJ-RSJOWCBRSA-N aldehydo-D-galacturonic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-RSJOWCBRSA-N 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- AEMOLEFTQBMNLQ-WAXACMCWSA-N alpha-D-glucuronic acid Chemical compound O[C@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-WAXACMCWSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- XCPGHVQEEXUHNC-UHFFFAOYSA-N amsacrine Chemical compound COC1=CC(NS(C)(=O)=O)=CC=C1NC1=C(C=CC=C2)C2=NC2=CC=CC=C12 XCPGHVQEEXUHNC-UHFFFAOYSA-N 0.000 description 1
- 229960001220 amsacrine Drugs 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000002280 anti-androgenic effect Effects 0.000 description 1
- 230000003527 anti-angiogenesis Effects 0.000 description 1
- 230000001772 anti-angiogenic effect Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000003217 anti-cancerogenic effect Effects 0.000 description 1
- 229940046836 anti-estrogen Drugs 0.000 description 1
- 230000001833 anti-estrogenic effect Effects 0.000 description 1
- 230000003388 anti-hormonal effect Effects 0.000 description 1
- 230000001946 anti-microtubular Effects 0.000 description 1
- 229940044684 anti-microtubule agent Drugs 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 230000006023 anti-tumor response Effects 0.000 description 1
- 239000000051 antiandrogen Substances 0.000 description 1
- 229940030495 antiandrogen sex hormone and modulator of the genital system Drugs 0.000 description 1
- 230000005290 antiferromagnetic effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 102000025171 antigen binding proteins Human genes 0.000 description 1
- 108091000831 antigen binding proteins Proteins 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 159000000032 aromatic acids Chemical class 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000005744 arteriovenous malformation Effects 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 150000001508 asparagines Chemical class 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000012131 assay buffer Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical compound C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-QZABAPFNSA-N beta-D-glucosamine Chemical compound N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-QZABAPFNSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 201000007180 bile duct carcinoma Diseases 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 238000007469 bone scintigraphy Methods 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 208000003362 bronchogenic carcinoma Diseases 0.000 description 1
- 239000006189 buccal tablet Substances 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- BQRGNLJZBFXNCZ-UHFFFAOYSA-N calcein am Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(CN(CC(=O)OCOC(C)=O)CC(=O)OCOC(C)=O)=C(OC(C)=O)C=C1OC1=C2C=C(CN(CC(=O)OCOC(C)=O)CC(=O)OCOC(=O)C)C(OC(C)=O)=C1 BQRGNLJZBFXNCZ-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 229940127093 camptothecin Drugs 0.000 description 1
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 description 1
- 230000009400 cancer invasion Effects 0.000 description 1
- 239000012830 cancer therapeutic Substances 0.000 description 1
- 210000001043 capillary endothelial cell Anatomy 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 208000025188 carcinoma of pharynx Diseases 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 238000012219 cassette mutagenesis Methods 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 230000009766 cell sprouting Effects 0.000 description 1
- 230000017455 cell-cell adhesion Effects 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 230000003196 chaotropic effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000035605 chemotaxis Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- VDANGULDQQJODZ-UHFFFAOYSA-N chloroprocaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1Cl VDANGULDQQJODZ-UHFFFAOYSA-N 0.000 description 1
- 229960002023 chloroprocaine Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 239000003593 chromogenic compound Substances 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 208000037893 chronic inflammatory disorder Diseases 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 229960002436 cladribine Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 230000009137 competitive binding Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000004154 complement system Effects 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000003271 compound fluorescence assay Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011613 copenhagen rat Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 201000000159 corneal neovascularization Diseases 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 239000008406 cosmetic ingredient Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 208000002445 cystadenocarcinoma Diseases 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 230000001085 cytostatic effect Effects 0.000 description 1
- AEMOLEFTQBMNLQ-YBSDWZGDSA-N d-mannuronic acid Chemical compound O[C@@H]1O[C@@H](C(O)=O)[C@H](O)[C@@H](O)[C@H]1O AEMOLEFTQBMNLQ-YBSDWZGDSA-N 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 230000004340 degenerative myopia Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000005695 dehalogenation reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 229930191339 dianthin Natural products 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 208000018554 digestive system carcinoma Diseases 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 1
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 description 1
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 210000002969 egg yolk Anatomy 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- ZUBDGKVDJUIMQQ-UBFCDGJISA-N endothelin-1 Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)NC(=O)[C@H]1NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](C(C)C)NC(=O)[C@H]2CSSC[C@@H](C(N[C@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N2)=O)NC(=O)[C@@H](CO)NC(=O)[C@H](N)CSSC1)C1=CNC=N1 ZUBDGKVDJUIMQQ-UBFCDGJISA-N 0.000 description 1
- 108010028531 enomycin Proteins 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 108060002566 ephrin Proteins 0.000 description 1
- 102000012803 ephrin Human genes 0.000 description 1
- 229960001904 epirubicin Drugs 0.000 description 1
- 208000037828 epithelial carcinoma Diseases 0.000 description 1
- 230000000925 erythroid effect Effects 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 239000000328 estrogen antagonist Substances 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 229940012017 ethylenediamine Drugs 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 238000013100 final test Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- 229960005304 fludarabine phosphate Drugs 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 230000037433 frameshift Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 125000000404 glutamine group Chemical group N[C@@H](CCC(N)=O)C(=O)* 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 239000003966 growth inhibitor Substances 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 201000002222 hemangioblastoma Diseases 0.000 description 1
- 201000011066 hemangioma Diseases 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 108010038082 heparin proteoglycan Proteins 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000003118 histopathologic effect Effects 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 102000056549 human Fv Human genes 0.000 description 1
- 108700005872 human Fv Proteins 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 150000002433 hydrophilic molecules Chemical class 0.000 description 1
- 229940050526 hydroxyethylstarch Drugs 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000012216 imaging agent Substances 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 108010023260 immunoglobulin Fv Proteins 0.000 description 1
- 239000000367 immunologic factor Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 201000001371 inclusion conjunctivitis Diseases 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000012482 interaction analysis Methods 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000004068 intracellular signaling Effects 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- BQINXKOTJQCISL-GRCPKETISA-N keto-neuraminic acid Chemical compound OC(=O)C(=O)C[C@H](O)[C@@H](N)[C@@H](O)[C@H](O)[C@H](O)CO BQINXKOTJQCISL-GRCPKETISA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 238000012917 library technology Methods 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 206010024627 liposarcoma Diseases 0.000 description 1
- 239000008297 liquid dosage form Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 201000005296 lung carcinoma Diseases 0.000 description 1
- 210000004924 lung microvascular endothelial cell Anatomy 0.000 description 1
- 208000037841 lung tumor Diseases 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 208000037829 lymphangioendotheliosarcoma Diseases 0.000 description 1
- 208000012804 lymphangiosarcoma Diseases 0.000 description 1
- 229920001427 mPEG Polymers 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical class ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 1
- 229960004961 mechlorethamine Drugs 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- 229960001924 melphalan Drugs 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 206010027191 meningioma Diseases 0.000 description 1
- 229960001428 mercaptopurine Drugs 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 208000037819 metastatic cancer Diseases 0.000 description 1
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 229950000911 mitogillin Drugs 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 108010010621 modeccin Proteins 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 208000001611 myxosarcoma Diseases 0.000 description 1
- 150000005002 naphthylamines Chemical class 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 230000017066 negative regulation of growth Effects 0.000 description 1
- 101150091879 neo gene Proteins 0.000 description 1
- QZGIWPZCWHMVQL-UIYAJPBUSA-N neocarzinostatin chromophore Chemical compound O1[C@H](C)[C@H](O)[C@H](O)[C@@H](NC)[C@H]1O[C@@H]1C/2=C/C#C[C@H]3O[C@@]3([C@@H]3OC(=O)OC3)C#CC\2=C[C@H]1OC(=O)C1=C(O)C=CC2=C(C)C=C(OC)C=C12 QZGIWPZCWHMVQL-UIYAJPBUSA-N 0.000 description 1
- 208000025189 neoplasm of testis Diseases 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- CERZMXAJYMMUDR-UHFFFAOYSA-N neuraminic acid Natural products NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO CERZMXAJYMMUDR-UHFFFAOYSA-N 0.000 description 1
- 238000001216 nucleic acid method Methods 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 238000011580 nude mouse model Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 231100000590 oncogenic Toxicity 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 208000004019 papillary adenocarcinoma Diseases 0.000 description 1
- 201000010198 papillary carcinoma Diseases 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 1
- 229960002340 pentostatin Drugs 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 210000001322 periplasm Anatomy 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-M phenolate Chemical compound [O-]C1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-M 0.000 description 1
- 108010076042 phenomycin Proteins 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 230000001885 phytohemagglutinin Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 208000024724 pineal body neoplasm Diseases 0.000 description 1
- 201000004123 pineal gland cancer Diseases 0.000 description 1
- NJBFOOCLYDNZJN-UHFFFAOYSA-N pipobroman Chemical compound BrCCC(=O)N1CCN(C(=O)CCBr)CC1 NJBFOOCLYDNZJN-UHFFFAOYSA-N 0.000 description 1
- 229960000952 pipobroman Drugs 0.000 description 1
- XESARGFCSKSFID-FLLFQEBCSA-N pirazofurin Chemical compound OC1=C(C(=O)N)NN=C1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 XESARGFCSKSFID-FLLFQEBCSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229960003171 plicamycin Drugs 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 108040000983 polyphosphate:AMP phosphotransferase activity proteins Proteins 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 201000001514 prostate carcinoma Diseases 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 239000012521 purified sample Substances 0.000 description 1
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical group C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 238000002702 ribosome display Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 108010038196 saccharide-binding proteins Proteins 0.000 description 1
- 108091005725 scavenger receptor cysteine-rich superfamily Proteins 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 201000008407 sebaceous adenocarcinoma Diseases 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 239000008299 semisolid dosage form Substances 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229950006050 spiromustine Drugs 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 201000010965 sweat gland carcinoma Diseases 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 206010042863 synovial sarcoma Diseases 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 229940063683 taxotere Drugs 0.000 description 1
- 208000009056 telangiectasis Diseases 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 230000008542 thermal sensitivity Effects 0.000 description 1
- CNHYKKNIIGEXAY-UHFFFAOYSA-N thiolan-2-imine Chemical compound N=C1CCCS1 CNHYKKNIIGEXAY-UHFFFAOYSA-N 0.000 description 1
- ATGUDZODTABURZ-UHFFFAOYSA-N thiolan-2-ylideneazanium;chloride Chemical compound Cl.N=C1CCCS1 ATGUDZODTABURZ-UHFFFAOYSA-N 0.000 description 1
- 108060008226 thioredoxin Proteins 0.000 description 1
- 229940094937 thioredoxin Drugs 0.000 description 1
- 229960001196 thiotepa Drugs 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- FVRDYQYEVDDKCR-DBRKOABJSA-N tiazofurine Chemical compound NC(=O)C1=CSC([C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)=N1 FVRDYQYEVDDKCR-DBRKOABJSA-N 0.000 description 1
- 229960003723 tiazofurine Drugs 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- 229960000187 tissue plasminogen activator Drugs 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000759 toxicological effect Toxicity 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- QAEDZJGFFMLHHQ-UHFFFAOYSA-N trifluoroacetic anhydride Chemical compound FC(F)(F)C(=O)OC(=O)C(F)(F)F QAEDZJGFFMLHHQ-UHFFFAOYSA-N 0.000 description 1
- 229960001099 trimetrexate Drugs 0.000 description 1
- NOYPYLRCIDNJJB-UHFFFAOYSA-N trimetrexate Chemical compound COC1=C(OC)C(OC)=CC(NCC=2C(=C3C(N)=NC(N)=NC3=CC=2)C)=C1 NOYPYLRCIDNJJB-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 108010036927 trypsin-like serine protease Proteins 0.000 description 1
- 230000005747 tumor angiogenesis Effects 0.000 description 1
- 230000005748 tumor development Effects 0.000 description 1
- 238000010396 two-hybrid screening Methods 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 229960001055 uracil mustard Drugs 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- 210000002229 urogenital system Anatomy 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 229960004355 vindesine Drugs 0.000 description 1
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 1
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 230000037314 wound repair Effects 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
- 239000001018 xanthene dye Substances 0.000 description 1
- 229950009268 zinostatin Drugs 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
- 229910006297 γ-Fe2O3 Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/40—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/06—Antiglaucoma agents or miotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/55—Fab or Fab'
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
Definitions
- Angiogenesis is the biological process of producing new blood vessels by sprouting a new branch from an existing blood vessel. While angiogenesis is essential for normal development and growth, it rarely occurs in adulthood except under strictly regulated circumstances (e.g., wound healing; see, for example, Moses et al., Science, 248:1408-1410, 1990). Angiogenesis also occurs in a number of diseases, such as cancer, in which new vessels are formed to support the growth and proliferation of both primary and metastatic tumors.
- Blood vessels contain endothelial cells surrounded by a basement membrane.
- One of the first steps in angiogenesis is the degradation of the basement membrane by proteolytic enzymes produced by endothelial cells to form a breach in the membrane through which endothelial cells can migrate and proliferate to form a new vessel sprout.
- This step can be initiated as follows. First, components of the plasminogen activator (PA)-plasmin system stimulate a protease cascade that results in high concentrations of plasmin and active matrix metalloproteinases (MMPs) at the site of angiogenesis. This increased proteolytic activity leads to degradation of the extracellular matrix (ECM) and invasion of the vessel basal lamina. The release of ECM degradation products leads to chemotaxis of endothelial cells.
- PA plasminogen activator
- MMPs active matrix metalloproteinases
- VEGF vascular endothelial growth factor
- Other disorders characterized by unwanted angiogenesis include, for example, tissue inflammation, arthritis, diabetic retinopathy, and macular degeneration by neovascularization of retina (see, e.g., Folkman et al., Science, 235:442-447, 1987).
- the endotheliases are a class of membrane proteases that are expressed on cells, particularly endothelial cells.
- the invention features a protein ligand that binds to Endotheliase-2 (ET2) (also referred to herein as an ET2 ligand or ET2-binding ligand).
- ET2 Endotheliase-2
- the protein ligand includes a heavy chain variable domain sequence and a light chain variable domain sequence.
- the ligand is an antibody or an antigen-binding fragment of a full length antibody (also referred to herein as an anti-ET2 antibody).
- the ET2-ligand binds to human ET2 with high affinity and specificity, and thus can be used as diagnostic, prophylactic, or therapeutic agents in vivo and in vitro.
- the ligand specifically binds to ET2.
- “specific binding” refers to ability (1) to bind to ET2, e.g., human ET2, with an affinity (K d ) of better than (i.e., numerically smaller than) 1 ⁇ 10 ⁇ 7 M, and (2) to preferentially bind to ET2, e.g., human ET2, with an affinity that is at least two-fold, 10-fold, 50-fold, 100-fold, or better (smaller K d ) than its affinity for binding to a non-specific antigen (e.g., BSA, casein) other than ET2.
- a non-specific antigen e.g., BSA, casein
- the ligand modulates an activity of ET2, e.g., the proteolytic activity of ET2. In one embodiment, the ligand inhibits ET2.
- the ligand can have a K i of better than (i.e., numerically less than) 5 nM, 500 pM, 200 pM, 150 pM, 100 pM, 92 pM, or 75 pM, e.g., between 50 nM and 1 pM, or 200 pM and 5 pM.
- the ligand specifically inhibits ET2, e.g., relative to another protease (e.g., a protease whose protease domain is between 30-90% identical to the ET2 protease domain, or between 30-60% identical to the ET2 protease domain).
- another protease e.g., a protease whose protease domain is between 30-90% identical to the ET2 protease domain, or between 30-60% identical to the ET2 protease domain.
- the ligand does not inhibit other proteases, e.g., non-ET2 proteases such as trypsinogen-IV, membrane-type serine proteases-1, -6, -7, or Endotheliase-1 (ET1), e.g., the ligand inhibits another protease (e.g., such other proteases) with an inhibition constant at least 2-, 5-, 10-, 50-, or 100-fold worse (e.g., numerically greater) than its inhibition constant for ET2 (i.e., the ligand does not inhibit the other proteases as well as they inhibit ET2).
- non-ET2 proteases such as trypsinogen-IV, membrane-type serine proteases-1, -6, -7, or Endotheliase-1 (ET1)
- the ligand inhibits another protease (e.g., such other proteases) with an inhibition constant at least 2-, 5-, 10-, 50-, or 100-fold worse (e.g., numerically greater
- the ligand inhibits angiogenesis, e.g., inhibit proteolysis of one or more ECM components or vessel basement membrane components, in vitro or in vivo.
- the ligands have a statistically significant effect (e.g., on an angiogenic process) in one or more of the following assays: a cornea neovascularization assay; a chick embryo chorioallantoic membrane model assay; an assay using SCID mice injected with tumors (e.g., tumors arising from injection of DU145 or LnCaP cell lines, as described in Jankun et al., Canc.
- tumors e.g., tumors arising from injection of DU145 or LnCaP cell lines, as described in Jankun et al., Canc.
- mice are injected with bFGF, to stimulate angiogenesis (e.g., as described by Min et al., Canc. Res., 56: 2428-2433 (1996).
- exemplary effects in these assays include an at least 1.5, 2, 5, 10, or 20-fold improvement relative to a negative control (e.g., no antibody).
- the ligand agonizes ET2 e.g., activates or increases an activity of ET2, e.g., a proteolytic activity), e.g., increases activity at least 0.5, 1.5, 2, 5, 10, or 20 fold.
- the ligand contacts the active site of ET2, e.g., the active site cleft of ET2 or to an amino acid residues that is within 30, 20, or 10 Angstroms of a residue in the catalytic triad of ET2, e.g., histidine 361 of SEQ ID NO:94 or to serine 506 of SEQ ID NO:94, or to an amino acid residue within the sequence LTAAHC (amino acids 357-362 of SEQ ID NO:94) or to an amino acid within the sequence DSCQGDSGGPLV (amino acids 500-511 of SEQ ID NO:94).
- ET2 e.g., the active site cleft of ET2 or to an amino acid residues that is within 30, 20, or 10 Angstroms of a residue in the catalytic triad of ET2, e.g., histidine 361 of SEQ ID NO:94 or to serine 506 of SEQ ID NO:94, or to an amino acid residue within the sequence LTAAHC (amino acids 357
- the protein ligand typically interacts with, e.g., bind to ET2, preferably human ET2, with high affinity and specificity.
- the protein ligand binds to human ET2 with an affinity constant (K d ) of better than (i.e., numerically smaller than) 10 ⁇ 7 M, preferably, better than 10 ⁇ 8 M, 10 ⁇ 9 M, or 10 ⁇ 10 M.
- K d affinity constant
- the protein ligand interacts with, e.g., binds to, the extracellular domain of ET2, and most preferably, the extracellular domain of human ET2 (e.g., amino acids 161-562 of ET2-S or 161-688 of ET2-L).
- the ET2-ligand binds all or part of the epitope of an antibody described herein, e.g., A10, G3, A6, A7, C8, H9, G1′-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9.
- the ET2-ligand can inhibit, e.g., competitively inhibit, the binding of an antibody described herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9, to human ET2.
- An ET2-ligand may bind to an epitope, e.g., a conformational or a linear epitope, which epitope when bound prevents binding of an antibody described herein, A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9.
- an epitope e.g., a conformational or a linear epitope, which epitope when bound prevents binding of an antibody described herein, A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9.
- the epitope can be in close proximity spatially (e.g., within 3, 5, or 10 Angstroms of) or functionally-associated, e.g., an overlapping or adjacent epitope in linear sequence or conformationally similar to the one recognized by the A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9 antibody.
- the ET2-ligand binds to an epitope located wholly or partially within the region of the serine protease domain of ET2, e.g., between amino acids 321-562 for ET2-S and 321-688 for ET2-L.
- the invention provides anti-ET2 antibodies, antibody fragments, and pharmaceutical compositions thereof, as well as nucleic acids, recombinant expression vectors and host cells for making such antibodies and fragments.
- An exemplary pharmaceutical composition includes the ligand and a pharmaceutically acceptable carrier.
- Human ET2 is expressed at least on endothelial cells.
- an ET2 ligand binds to the cell surface of these cells, and in particular, to the cell surface of living cells, e.g., living endothelial cells.
- the protein ligand can be internalized within the cell, e.g., to permit the intracellular delivery of an agent conjugated to the antibody, e.g., a cytotoxic or a labeling agent.
- the protein ligands of the invention can be used to target living normal, benign hyperplastic, and cancerous cells that express ET2.
- an ET ligand binds to ET and alters its conformation and/or catalytic activity, e.g., it enhances catalytic activity or interaction with a substrate.
- an antibody refers to a protein that includes at least one immunoglobulin variable domain or immunoglobulin variable domain sequence.
- an antibody can include a heavy (H) chain variable region (abbreviated herein as VH), and a light (L) chain variable region (abbreviated herein as VL).
- an antibody includes two heavy (H) chain variable regions and two light (L) chain variable regions.
- the term “antibody” encompasses antigen-binding fragments of antibodies (e.g., single chain antibodies, Fab fragments, F(ab′) 2 , a Fd fragment, a Fv fragments, and dAb fragments) as well as complete antibodies.
- VH and VL regions can be further subdivided into regions of hypervariability, termed “complementarity determining regions” (“CDR”), interspersed with regions that are more conserved, termed “framework regions” (FR).
- CDR complementarity determining regions
- FR framework regions
- the extent of the framework region and CDR's has been precisely defined (see, Kabat, E. A., et al (1991) Sequences of Proteins of Immunological Interest, Fifth Edition , U.S. Department of Health and Human Services, NIH Publication No. 91-3242, and Chothia, C. et al. (1987) J. Mol. Biol. 196:901-917). Kabat definitions are used herein.
- Each VH and VL is typically composed of three CDR's and four FR's, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
- Immunoglobulin domain refers to a domain from the variable or constant domain of immunoglobulin molecules. Immunoglobulin domains typically contain two ⁇ -sheets formed of about seven ⁇ -strands, and a conserved disulphide bond (see, e.g., A. F. Williams and A. N. Barclay 1988 Ann. Rev Immunol. 6:381-405). The canonical structures of hypervariable loops of an immunoglobulin variable can be inferred from its sequence, as described in Chothia et al. (1992) J. Mol. Biol. 227:799-817; Tomlinson et al. (1992) J. Mol. Biol. 227:776-798); and Tomlinson et al. (1995) EMBO J. 14(18):4628-38.
- an “immunoglobulin variable domain sequence” refers to an amino acid sequence which can form the structure of an immunoglobulin variable domain.
- the sequence may include all or part of the amino acid sequence of a naturally-occurring variable domain.
- the sequence may omit one, two or more N- or C-terminal amino acids, internal amino acids, may include one or more insertions or additional terminal amino acids, or may include other alterations.
- a polypeptide that includes immunoglobulin variable domain sequence can associate with another immunoglobulin variable domain sequence to form a target binding structure (or “antigen binding site”), e.g., a structure that interacts with ET2, e.g., binds to or inhibits ET2.
- the VH or VL chain of the antibody can further include all or part of a heavy or light chain constant region, to thereby form a heavy or light immunoglobulin chain, respectively.
- the antibody is a tetramer of two heavy immunoglobulin chains and two light immunoglobulin chains, wherein the heavy and light immunoglobulin chains are inter-connected by, e.g., disulfide bonds.
- the heavy chain constant region includes three domains, CH1, CH2 and CH3.
- the light chain constant region includes a CL domain.
- the variable region of the heavy and light chains contains a binding domain that interacts with an antigen.
- the constant regions of the antibodies typically mediate the binding of the antibody to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (Clq) of the classical complement system.
- the term “antibody” includes intact immunoglobulins of types IgA, IgG, IgE, IgD, IgM (as well as subtypes thereof).
- the light chains of the immunoglobulin may be of types kappa or lambda.
- the antibody is glycosylated.
- An antibody can be functional for antibody-dependent cytotoxicity and/or complement-mediated cytotoxicity.
- the HC or LC of an antibody includes sequences that correspond (e.g., are identical to or have a threshold degree of similarity) to an amino acid sequence encoded by a human germline sequence, e.g., the framework regions and/or in the CDRs.
- the antibody can include sequences from the human DP47 antibody.
- one or more codons for the antibody are altered relative to the germline nucleic acid sequence, but are chosen to encode the same amino acid sequence. Codons can be selected, e.g., to optimize expression in a particular system, create restriction enzyme sites, create a silent fingerprint, etc.
- CDR sequences can also be substantially human, e.g., are at least 70, 80, 85, 87, 90, 91, 92, 93, 94, or 95% identical to a completely human CDR (e.g., a CDR in a human germline sequence or in a mature human antibody). Accordingly, synthetic nucleic acid sequences can be used to encode completely human or substantially human CDRs.
- CDR2 of the antibody HC includes at least 11, 12, 13, 14, or 15 amino acid positions that are identical to the amino acids found in CDR2 of DP47.
- immunoglobulin refers to a protein consisting of one or more polypeptides or regions thereof substantially encoded by immunoglobulin genes (e.g., natural or synthetic).
- immunoglobulin genes include the kappa, lambda, alpha (IgA1 and IgA2), gamma (IgG1, IgG2, IgG3, IgG4), delta, epsilon and mu constant region genes, as well as the myriad immunoglobulin variable region genes.
- Full-length immunoglobulin “light chains” (about 25 Kd or 214 amino acids) can be encoded by a variable region gene at the NH 2 -terminus (about 110 amino acids) and a kappa or lambda constant region gene at the COOH-terminus.
- Full-length immunoglobulin “heavy chains” (about 50 Kd or 446 amino acids), can be similarly encoded by a variable region gene (about 116 amino acids) and one of the other aforementioned constant region genes, e.g., gamma (encoding about 330 amino acids).
- antibody portion refers to one or more fragments of a full-length antibody that retain the ability to specifically bind to ET2 (e.g., human ET2).
- binding fragments encompassed within the term “antigen-binding fragment” of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab′) 2 fragment, a bivalent fragment including two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al., (1989) Nature 341:544-546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR).
- a Fab fragment a monovalent fragment consisting of the VL, VH, CL and CH1 domains
- a F(ab′) 2 fragment a bivalent fragment including two Fab fragments linked by a dis
- the two domains of the Fv fragment, VL and VH are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., Bird et al. (1988) Science 242:423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883).
- scFv single chain Fv
- Monomers and dimers of such single chain antibodies are also intended to be encompassed within the term “antigen-binding fragment” of an antibody.
- the antibody is preferably monospecific, e.g., a monoclonal antibody, or antigen-binding fragment thereof.
- the term “monospecific antibody” refers to an antibody that displays a single binding specificity and affinity for a particular target, e.g., epitope. This term includes a “monoclonal antibody” or “monoclonal antibody composition,” which as used herein refer to a preparation of antibodies or fragments thereof of a single molecular composition.
- the anti-ET2 antibodies can be full-length (e.g., an IgG (e.g., an IgG1, IgG2, IgG3, IgG4), IgM, IgA (e.g., IgA1, IgA2), IgD, and IgE, but preferably an IgG) or can include only an antigen-binding fragment (e.g., a Fab, F(ab′) 2 or scFv fragment).
- the antibody, or antigen-binding fragment thereof can include two heavy chain immunoglobulins and two light chain immunoglobulins, or can be a single chain antibody.
- the antibodies can, optionally, include a constant region chosen from a kappa, lambda, alpha, gamma, delta, epsilon or a mu constant region gene.
- a preferred anti-ET2 antibody includes a heavy and light chain constant region substantially from a human antibody, e.g., a human IgG1 constant region or a portion thereof.
- isotype refers to the antibody class (e.g., IgM or IgG1) that is encoded by heavy chain constant region genes.
- the antibody is a recombinant or modified anti-ET2 antibody, e.g., a chimeric, a humanized, a deimmunized, or an in vitro generated antibody.
- the term “recombinant” or “modified” human antibody, as used herein, is intended to include all antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies expressed using a recombinant expression vector transfected into a host cell, antibodies isolated from a recombinant, combinatorial antibody library, antibodies isolated from an animal (e.g., a mouse) that is transgenic for human immunoglobulin genes or antibodies prepared, expressed, created or isolated by any other means that involves splicing of human immunoglobulin gene sequences to other DNA sequences.
- an animal e.g., a mouse
- Such recombinant antibodies include humanized, CDR grafted, chimeric, deimmunized, in vitro generated antibodies, and may optionally include constant regions derived from human germline immunoglobulin sequences. In one embodiment, the antibody does not elicit an anti-globulin response in a human.
- the anti-ET2 antibody is a human antibody.
- anti-ET2 antibodies are within the scope of the invention, e.g., two or more antibodies that bind to different regions of ET2, e.g., antibodies that bind to two different epitopes on the serine protease domain of ET2, e.g., a bispecific antibody.
- the anti-ET2 antibody, or antigen-binding fragment thereof includes at least one light or heavy chain variable domain sequence (e.g., at least one light chain immunoglobulin and at least one heavy chain immunoglobulin).
- each immunoglobulin includes a light or a heavy chain variable domain sequence having at least one, two and, preferably, three complementarity determining regions (CDR's) substantially identical to a CDR from a light or heavy chain variable domain sequence of an antibody that interacts with ET2, e.g., an antibody described herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9.
- CDR's complementarity determining regions
- amino acid and nucleic acid sequences of exemplary light chain and heavy chain variable regions are shown in Table 1.
- the residue listed as a “q” in SEQ ID NO:10 and SEQ ID NO:89 of Table 1 and 2 is a lysine.
- the antibody includes at least one, two and preferably three CDR's from the light or heavy chain variable region of an antibody disclosed herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9, or a sequence substantially identical thereto, e.g., 80%, 85%, 90%, 95%, 99%, or more, identical.
- an antibody disclosed herein e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9, or a sequence substantially identical thereto, e.g., 80%, 85%, 90%, 95%, 99%, or more, identical.
- the antibody (or fragment thereof) can have at least one, two, and preferably three CDR's from the light or heavy chain variable region of an antibody disclosed herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9.
- the antibody, or antigen-binding fragment thereof includes all six CDR's from the human anti-ET2 antibody, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9.
- H-CDR1 H-CDR2 H-CDR3 A10 RYRMW (residues 31 YISSSGGFTNYADSVKG (residues NARRALPSMDV (residues 99 to 109 of to 35 of 50 to 66 of SEQ ID NO:25) SEQ ID NO:25) SEQ ID NO:25) G3 RYGMS (residues 31 VIYSSGGITRYADSVKG (residues RAPRGEVAFDI (residues 99 to 109 of to 35 of 50 to 66 of SEQ ID NO:29) SEQ ID NO:29) SEQ ID NO:29) A6 RYKMW (residues 31 YISPSGGYTGYADSVKG (residues NARRAFPSMDV (residues 99 to 109 of to 35 of SEQ ID
- the antibody includes at least one, two and preferably three CDR's from the light and/or heavy chain variable region of an antibody disclosed herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9, having an amino acid sequence that differs by no more than 3, 2.5, 2, 1.5, or 1, 0.5 substitutions, insertions or deletions for every 10 amino acids (e.g., the number of differences being proportional to the CDR length) relative to the corresponding CDR's of the disclosed antibody.
- an antibody disclosed herein e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9, having an amino acid sequence that differs by no more than 3, 2.5, 2, 1.5, or
- the antibody, or antigen-binding fragment thereof can include six CDR's, each of which differs by no more than 3, 2.5, 2, 1.5, or 1, 0.5 substitutions, insertions or deletions for every 10 amino acids relative to the corresponding CDRs of the human anti-ET2 antibody, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9.
- six CDR's each of which differs by no more than 3, 2.5, 2, 1.5, or 1, 0.5 substitutions, insertions or deletions for every 10 amino acids relative to the corresponding CDRs of the human anti-ET2 antibody, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9.
- the heavy chain variable region includes a CDR1 including the following amino acid sequence: Y-X-M-X-W (SEQ ID NO:95) or R-Y-X-M-X (SEQ ID NO: 96) or R-Y-(SRK)-M-(SYWH) (SEQ ID NO:97), wherein X is any amino acid.
- the heavy chain variable region includes a CDR2 including the following sequence: I/S-I/S-S-X-X-G-X-X-X-X*-Y-A-D-S (SEQ ID NO:98), wherein X is any amino acid and wherein X* may be absent, or (GSVYR)-I-(GSVYR)-(SP)-S-(GR)-G-(STIMYFKD)-T-(AGTFRKNQ)-Y-A-D-S-V-K-G (SEQ ID NO: 112) or (GSY)-I-(SVR)-(SP)-S-G-G-(SIYD)-T-(GRKN)-Y-A-D-S-V-K-G (SEQ ID NO:113).
- the heavy chain variable region includes a CDR3 that includes (GN)-(AG)-(RP)-R-(AG)-(FN)-(KP)-(SY)-(MY)-(FD)-(VD)-Y (SEQ ID NO:99) or (GRN)-(AG)-(RP)-(GR)-(AG)-(FNE)-(VKP)-(ASY)-(MYF)-(FD)-(IVD)-Y (SEQ ID NO:100) or one of the following sequences: GPRGNKYY (SEQ ID NO:101) or ARGTSQ (SEQ ID NO:102).
- the light chain variable region includes a CDR1 including the following sequence: R-A-S-Q-S-(IV)-S-(ST)-(SY)-(LY)-(ALN)-A (SEQ ID NO:103) or R-A-S-(LQ)-(STFDP)-(IV)-(STRDN)-(STYN)-(SYWD)-(LYD)-(ALN)-A (SEQ ID NO:104).
- the light chain variable region includes a CDR2 including the following sequence: X-A-S-S-L-X-X (SEQ ID NO:105) or (AG)-A-S-(STR)-(LR)-(AVKQ)-(STKD) (SEQ ID NO:106), wherein X is any amino acid.
- the light chain variable region includes a CDR3 including the following sequence: Q-Q-X-X-X-X-P-X-T-X (SEQ ID NO:107) or Q-Q-(AGSLY)-(GTVYFN)-(GSTINP)-(STYFN)-(STVP)-(AGSYWP)-(TIW)-T (SEQ ID NO:108).
- the light chain variable region includes a CDR1 including the following sequence: S-X-D-X-X-X-X-Y-X-S-W (SEQ ID NO:109) or R-A-S-Q-X-V/I-X-X-X-(X)-L-A/N-W (SEQ ID NO:110), wherein X is any amino acid and wherein (X) may be absent;
- the light chain variable region includes a CDR2 including the following sequence: A-S-S/T-R/L-X-X-G-R (SEQ ID NO:111), wherein X is any amino acid.
- two or three of the CDRs of the HC variable domain sequence match motifs described herein such that the motifs also match a HC variable domain of an antibody described herein.
- two or three of the CDRs of the LC variable domain sequence match motifs described herein such that the motifs also match a LC variable domain of an antibody described herein.
- the matched motifs for the CDRs are based on a HC and a LC that are paired in an antibody described herein.
- the H1 and H2 hypervariable loops have the same canonical structure as an antibody described herein. In one embodiment, the L1 and L2 hypervariable loops have the same canonical structure as an antibody described herein.
- the light or heavy chain immunoglobulin of the anti-ET2 antibody, or antigen-binding fragment thereof can further include a light or a heavy chain variable framework that has no more than 3, 2.5, 2, 1.5, or 1, 0.5 substitutions, insertions or deletions for every 10 amino acids in FR1, FR2, FR3, or FR4 relative to the corresponding frameworks of an antibody disclosed herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9.
- a light or a heavy chain variable framework that has no more than 3, 2.5, 2, 1.5, or 1, 0.5 substitutions, insertions or deletions for every 10 amino acids in FR1, FR2, FR3, or FR4 relative to the corresponding frameworks of an antibody disclosed herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3
- the light or heavy chain immunoglobulin of the anti-ET2 antibody, or antigen-binding fragment thereof further includes a light or a heavy chain variable framework, e.g., FR1, FR2, FR3, or FR4, that is identical to a framework of an antibody disclosed herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9.
- a light or a heavy chain variable framework e.g., FR1, FR2, FR3, or FR4 that is identical to a framework of an antibody disclosed herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9.
- the light or the heavy chain variable framework can be chosen from: (a) a light or heavy chain variable framework including at least 80%, 90%, 95%, or preferably 100% of the amino acid residues from a human light or heavy chain variable framework, e.g., a light or heavy chain variable framework residue from a human mature antibody, a human germline sequence, a consensus sequence, or an antibody described herein; (b) a light or heavy chain variable framework including from 20% to 80%, 40% to 80%, or 60% to 90% of the amino acid residues from a human light or heavy chain variable framework, e.g., a light or heavy chain variable framework residue from a human mature antibody, a human germline sequence, or a consensus sequence; (c) a non-human framework (e.g., a rodent framework); or (d) a non-human framework that has been modified, e.g., to remove antigenic or cytotoxic determinants, e.g., deimmunized, or partially humanized.
- the heavy or light chain framework includes an amino acid sequence, which is at least 80%, 85%, 90%, 95%, 97%, 98%, 99% or higher identical to the heavy chain framework of an antibody disclosed herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9; or which differs at least 1 or 5 but at less than 40, 30, 20, or 10 residues from, the amino acid sequence of a variable domain of an antibody disclosed herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9.
- the heavy or light chain variable domain sequence of the ET2 antibody includes an amino acid sequence, which is at least 80%, 85%, 90%, 95%, 97%, 98%, 99% or higher identical to a variable domain sequence of an antibody described herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9; or which differs at least 1 or 5 but at less than 40, 30, 20, or 10 residues from a variable domain sequence of an antibody described herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9.
- an anti-ET2 antibody includes at least one, preferably two, light chain variable regions that include a light chain variable domain sequence of an antibody described herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9, and at least one, preferably two, heavy chain variable regions that include a heavy chain variable domain sequence of an antibody described herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9.
- the light or heavy chain variable framework of the anti-ET2 antibody or antigen-binding fragment thereof includes at least one, two, three, four, five, six, seven, eight, nine, ten, fifteen, sixteen, or seventeen amino acid residues from a human light or heavy chain variable framework, e.g., a light or heavy chain variable framework residue from a human mature antibody, a human germline sequence, a consensus sequence, or an antibody described herein.
- the amino acid residue from the human light or heavy chain variable framework is the same as the residue found at the same position in a human germline.
- the amino acid residue from the human light or heavy chain variable framework is the most common residue in the human germline at the same position.
- ET2-ligand described herein can be used alone, e.g., can be administered to a subject or used in vitro in non-derivatized or unconjugated forms.
- the ET2-ligand can be derivatized, modified or linked to another functional molecule, e.g., another compound, peptide, protein, isotope, cell, or insoluble support.
- the ET2-ligand can be functionally linked (e.g., by chemical coupling, genetic fusion, non-covalent association or otherwise) to one or more other molecular entities, such as an antibody (e.g., if the ligand is an antibody to form a bi-specific or a multi-specific antibody), a toxin, a radioisotope, a therapeutic (e.g., a cytotoxic or cytostatic) agent or moiety, among others.
- an antibody e.g., if the ligand is an antibody to form a bi-specific or a multi-specific antibody
- a toxin e.g., if the ligand is an antibody to form a bi-specific or a multi-specific antibody
- a toxin e.g., if the ligand is an antibody to form a bi-specific or a multi-specific antibody
- a toxin e.g., if the ligand is an antibody to form a bi-specific or
- the ET2-ligand can be coupled to a radioactive ion (e.g., an ⁇ -, ⁇ -, or ⁇ -emitter), e.g., iodine ( 131 I or 125 I), yttrium ( 90 Y), lutetium ( 177 Lu), actinium ( 225 Ac), rhenium ( 186 Re), or bismuth ( 212 or 213 Bi).
- a radioactive ion e.g., an ⁇ -, ⁇ -, or ⁇ -emitter
- iodine 131 I or 125 I
- yttrium 90 Y
- lutetium 177 Lu
- actinium 225 Ac
- rhenium 186 Re
- bismuth 212 or 213 Bi
- compositions e.g., pharmaceutical compositions, which include a pharmaceutically acceptable carrier, excipient or stabilizer, and at least one of the ET2-ligands (e.g., antibodies or fragments thereof) described herein.
- the compositions e.g., the pharmaceutical compositions, include a combination of two or more of the aforesaid ET2-ligands.
- the invention features a kit that includes an anti-ET2 antibody (or fragment thereof), e.g., an anti-ET2 antibody (or fragment thereof) as described herein, for use alone or in combination with other therapeutic modalities, e.g., a cytotoxic or labeling agent, e.g., a cytotoxic or labeling agent as described herein, along with instructions on how to use the ET2 antibody or the combination of such agents, e.g., to treat, prevent or detect cancerous lesions.
- an anti-ET2 antibody or fragment thereof
- other therapeutic modalities e.g., a cytotoxic or labeling agent, e.g., a cytotoxic or labeling agent as described herein
- instructions on how to use the ET2 antibody or the combination of such agents e.g., to treat, prevent or detect cancerous lesions.
- the invention also features nucleic acid sequences that encode a heavy and light chain immunoglobulin or immunoglobulin fragment described herein.
- the invention features, a first and second nucleic acid encoding a heavy and light chain variable region, respectively, of an anti-ET2 antibody molecule as described herein.
- the invention features host cells and vectors containing the nucleic acids of the invention.
- the invention features, a method of producing an anti-ET2 antibody, or antigen-binding fragment thereof.
- the method includes: providing a first nucleic acid encoding a heavy chain variable region, e.g., a heavy chain variable region as described herein; providing a second nucleic acid encoding a light chain variable region, e.g., a light chain variable region as described herein; and expressing said first and second nucleic acids in a host cell under conditions that allow assembly of said light and heavy chain variable regions to form an antigen binding protein.
- the first and second nucleic acids can be linked or unlinked, e.g., expressed on the same or different vector, respectively.
- the first and second nucleic acids can further encode constant regions of heavy and light chains.
- the host cell can be a eukaryotic cell, e.g., a mammalian cell, an insect cell, a yeast cell, or a prokaryotic cell, e.g., E. coli .
- the mammalian cell can be a cultured cell or a cell line.
- Exemplary mammalian cells include lymphocytic cell lines (e.g., NSO), Chinese hamster ovary cells (CHO), COS cells, oocyte cells, and cells from a transgenic animal, e.g., mammary epithelial cells.
- lymphocytic cell lines e.g., NSO
- CHO Chinese hamster ovary cells
- COS cells e.g., oocyte cells
- nucleic acids encoding the antibodies described herein can be expressed in a transgenic animal.
- the nucleic acids are placed under the control of a tissue-specific promoter (e.g., a mammary specific promoter) and the antibody is produced in the transgenic animal.
- a tissue-specific promoter e.g., a mammary specific promoter
- the antibody molecule is secreted into the milk of the transgenic animal, such as a transgenic cow, pig, horse, sheep, goat or rodent.
- the invention also features a method of treating, e.g., inhibiting a cellular activity (e.g., cell growth, cell differentiation, cell migration, or cell organization), a physiological activity (e.g., blood vessel growth, organization, etc.) and/or cell or ablating, or killing, a cell, e.g., a normal, benign or hyperplastic cell (e.g., a cell found in pulmonary, breast, renal, urothelial, colonic, prostatic, or hepatic cancer and/or metastasis).
- the treating may have direct and/or indirect effects on the growth of a cancer, e.g., by targeting a tumor cell directly, or by inhibiting tumor angiogenesis, thereby inhibiting growth of tumor cell indirectly.
- Methods of the invention include contacting the cell with an ET2-ligand, in an amount sufficient to treat, e.g., inhibit cell growth, or ablate or kill, the cell.
- the ligand can include a cytotoxic entity.
- Methods of the invention can be used, for example, to treat or prevent a disorder, e.g., a cancerous (e.g., a malignant or metastatic disorder), or non-cancerous disorder (e.g., a benign or hyperplastic disorder) by administering to a subject an ET2-ligand in an amount effective to treat or prevent such disorder.
- a ET2-ligand that increases ET2 activity can be used, for example, to treat or prevent disorders, e.g., a disorder in which increased proteolysis and/or increased angiogenesis is desirable.
- the ligand can be used to treat a wound (e.g., to assist wound healing).
- the wound can be a laceration, a burn, or a surgical incision.
- the subject method can be used on cells in culture, e.g. in vitro or ex vivo.
- cancerous or metastatic cells e.g., pulmonary, breast, renal, urothelial, colonic, prostatic, or hepatic cancer or metastatic cells
- the contacting step can be effected by adding the ET2-ligand to the culture medium.
- the method can be performed on cells (e.g., cancerous or metastatic cells) present in a subject, as part of an in vivo (e.g., therapeutic or prophylactic) protocol.
- the contacting step is effected in a subject and includes administering the ET2-ligand to the subject under conditions effective to permit both binding of the ligand to the cell, and the treating, e.g., the inhibiting of cell growth and/or cell division, or the killing or ablating of the cell.
- the method of the invention can be used to treat or prevent disorders characterized by unwanted angiogenesis, such as cancerous disorders, e.g., including but are not limited to, solid tumors, soft tissue tumors, and metastatic lesions.
- solid tumors include malignancies, e.g., sarcomas, adenocarcinomas, and carcinomas, of the various organ systems, such as those affecting lung, breast, lymphoid, gastrointestinal (e.g., colon), and genitourinary tract (e.g., renal, urothelial cells), pharynx, as well as adenocarcinomas which include malignancies such as most colon cancers, rectal cancer, renal-cell carcinoma, liver cancer, non-small cell carcinoma of the lung, cancer of the small intestine and cancer of the esophagus. Metastatic lesions of the aforementioned cancers can also be treated or prevented using the methods and compositions of the invention.
- the method of the invention can be used to treat or prevent disorders in which increased angiogenesis is desirable, e.g., using an ET2-ligand that increases ET2 activity.
- the subject can be a mammal, e.g., a primate, preferably a higher primate, e.g., a human (e.g., a patient having, or at risk of, a disorder described herein, e.g., cancer).
- a primate e.g., a primate
- a higher primate e.g., a human
- a human e.g., a patient having, or at risk of, a disorder described herein, e.g., cancer
- the anti-ET2 antibody or fragment thereof e.g., an anti-ET2 antibody or fragment thereof as described herein, can be administered to the subject systemically (e.g., orally, parenterally, subcutaneously, intravenously, intramuscularly, intraperitoneally, intranasally, transdermally, or by inhalation), topically, or by application to mucous membranes, such as the nose, throat and bronchial tubes.
- the protein accumulates at sites of angiogenesis and/or tumor growth in vivo.
- the methods of the invention can further include the step of monitoring the subject, e.g., for a reduction in one or more of: a reduction in tumor size; reduction in cancer markers; reduction in the appearance of new lesions, e.g., in a bone scan; a reduction in the appearance of new disease-related symptoms; or decreased or stabilization of size of soft tissue mass; or any parameter related to improvement in clinical outcome.
- the subject can be monitored in one or more of the following periods: prior to beginning of treatment; during the treatment; or after one or more elements of the treatment have been administered. Monitoring can be used to evaluate the need for further treatment with the same ET2-ligand or for additional treatment with additional agents. Generally, a decrease in one or more of the parameters described above is indicative of the improved condition of the subject.
- the ET2-ligand can be used alone in unconjugated form to thereby ablate, kill, or inhibit growth of the ET2-expressing cells.
- the ligand is an antibody
- the ablation, killing, or growth inhibition can be mediated by an antibody-dependent cell killing mechanisms such as complement-mediated cell lysis and/or effector cell-mediated cell killing.
- the ET2-ligand can be bound to a substance, e.g., a cytotoxic agent or moiety, effective to kill or ablate the ET2-expressing cells.
- the ET2-ligand can be coupled to a radioactive ion (e.g., an ⁇ -, ⁇ -, or ⁇ -emitter), e.g., iodine ( 131 I or 125 I), yttrium ( 90 Y), lutetium ( 177 Lu), actinium ( 225 Ac), or bismuth ( 213 Bi).
- a radioactive ion e.g., an ⁇ -, ⁇ -, or ⁇ -emitter
- iodine 131 I or 125 I
- yttrium 90 Y
- lutetium 177 Lu
- actinium 225 Ac
- bismuth 213 Bi
- the methods of the invention include administering to the subject an ET2-ligand, e.g., an anti-ET2 antibody or fragment thereof, in combination with a cytotoxic agent, in an amount effective to treat or prevent said disorder.
- an ET2-ligand e.g., an anti-ET2 antibody or fragment thereof
- a cytotoxic agent e.g., an anti-ET2 antibody or fragment thereof
- the ligand and the cytotoxic agent can be administered simultaneously or sequentially.
- the methods and compositions of the invention are used in combination with surgical and/or radiation procedures.
- the invention features methods for detecting the presence of an ET2 protein, in a sample, in vitro (e.g., a biological sample, a tissue biopsy, e.g., a cancerous lesion).
- a sample in vitro
- the subject method can be used to evaluate, e.g., diagnose or stage a disorder described herein, e.g. a cancerous disorder or other disorder characterized by unwanted angiogenesis.
- the method includes: (i) contacting the sample (and optionally, a reference, e.g., control, sample) with an ET2-ligand, as described herein, under conditions that allow interaction of the ET2-ligand and the ET2 protein to occur; and (ii) detecting formation of a complex between the ET2-ligand, and the sample (and optionally, the reference, e.g., control, sample). Formation of the complex is indicative of the presence of ET2 protein, and can indicate the suitability or need for a treatment described herein. E.g., a statistically significant change in the formation of the complex in the sample relative to the reference sample, e.g., the control sample, is indicative of the presence and/or level of ET2 in the sample.
- the ET2-ligand may recognize and/or distinguish between a complex containing active ET2 and a complex containing an inactive (e.g., zymogen) form of ET2.
- the invention provides a method for detecting the presence of ET2 in vivo (e.g., in vivo imaging in a subject).
- the subject method can be used to evaluate, e.g., diagnose, localize, or stage a disorder described herein, e.g., a cancerous disorder or other disorder characterized by unwanted angiogenesis.
- the method includes: (i) administering to a subject (and optionally a control subject) an ET2-ligand (e.g., an antibody or antigen binding fragment thereof), under conditions that allow interaction of the ET2-ligand and the ET2 protein to occur; and (ii) detecting formation of a complex between the ligand and ET2, wherein a statistically significant change in the formation of the complex in the subject relative to the reference, e.g., the control subject or subject's baseline, is indicative of the presence and/or level of the ET2.
- a method of diagnosing or staging, a disorder as described herein e.g., a cancerous disorder or other disorder characterized by unwanted angiogenesis
- the method includes: (i) identifying a subject having, or at risk of having, the disorder; (ii) obtaining a sample of a tissue or cell affected with the disorder; (iii) contacting said sample or a control sample with an ET2-ligand, under conditions that allow interaction of the binding agent and the ET2 protein to occur, and (iv) detecting formation of a complex.
- the ET2-ligand used in the in vivo and in vitro diagnostic methods is directly or indirectly labeled with a detectable substance to facilitate detection of the bound or unbound binding agent.
- detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials and radioactive materials.
- the ET2-ligand is coupled to a radioactive ion, e.g., indium ( 111 In), iodine ( 131 or 125 I), yttrium ( 90 Y), actinium ( 225 Ac), bismuth ( 213 Bi), sulfur ( 35 S), carbon ( 14 C), tritium ( 3 H), rhodium ( 188 Rh), or phosphorous ( 32 P).
- the ligand is labeled with an NMR contrast agent.
- the invention also provides polypeptides and nucleic acids that encompass a range of amino acid and nucleic acid sequences.
- a ET2-binding ligand can be used to treat or prevent angiogenesis-related disorders, particularly angiogenesis-dependent cancers and tumors.
- Angiogenesis-related disorders include, but are not limited to, solid tumors; blood born tumors such as leukemias; tumor metastasis; benign tumors (e.g., hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic granulomas; rheumatoid arthritis); psoriasis; ocular angiogenic diseases, for example, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma, retrolental fibroplasia, rubeosis; Osler-Webber Syndrome; myocardial angiogenesis; plaque neovascularization; telangiectasia; hemophiliac joints; angiofibroma; and wound granulation.
- benign tumors e.g., hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic
- Angiogenesis-dependent cancers and tumors are cancers tumors that require, for their growth (expansion in volume and/or mass), an increase in the number and density of the blood vessels supplying then with blood.
- a ET2-binding ligand causes regression of such cancers and tumors. “Regression” refers to the reduction of tumor mass and size, e.g., a reduction of at least 2, 5, 10, or 25%.
- the invention features a method of contacting a cell (in vitro, ex vivo, or in vivo), e.g., an endothelial cell, e.g., an endothelial cell in the vicinity of a cancer, e.g., a tumor.
- the method can include providing a ligand that interacts with ET2, e.g., a ligand described herein, and contacting the cell with the ligand, in an amount sufficient to form at least one detectable ligand-cell complex.
- the ligand can include, for example, a label or cytotoxic entity, e.g., an immunoglobulin Fc domain or a cytotoxic drug.
- a method includes: providing a library and screening the library to identify a member that encodes a protein that binds to the ET2.
- the screening can be performed in a number of ways.
- the library can be a display library, e.g., a phage display library or a phagemid library.
- the phage/phagemid library can be an antibody (e.g., Fab) or Kunitz domain library.
- Methods utilizing phage display libraries can further include the steps of: recovering phage that bind ET2 and isolating a nucleic acid from the phage, wherein the nucleic acid encodes the protein or polypeptide ligand of ET2.
- the phage may be eluted from ET2 using a competitor peptide or by altering buffer conditions (e.g., pH).
- the ET2 can be recombinantly expressed and can be tagged.
- the ET2 is purified and attached to a support, e.g., to paramagnetic beads or other magnetically responsive particle.
- the ET2 can also be expressed on the surface of a cell.
- the display library can be screened to identify members that specifically bind to the cell, e.g., only if the ET2 is expressed.
- the ET2 can be human ET2.
- the ET2 can be treated or mutated to remove glycosylation.
- a fragment of ET2 may be used, e.g., a serine protease domain.
- the term “substantially identical” is used herein to refer to a first amino acid or nucleotide sequence that contains a sufficient number of identical or equivalent (e.g., with a similar side chain, e.g., conserved amino acid substitutions) amino acid residues or nucleotides to a second amino acid or nucleotide sequence such that the first and second amino acid or nucleotide sequences have similar activities.
- the second antibody has the same specificity and has at least 5%, 10%, 25%, or 50% of the affinity of the first antibody.
- sequences similar or homologous e.g., at least about 60%, 70%, 80%, 85%, 90%, 95% sequence identity
- sequence identity can be about 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or higher.
- substantial identity exists when the nucleic acid segments will hybridize under selective hybridization conditions (e.g., highly stringent hybridization conditions), to the complement of the strand encoding the ET2 ligand.
- the nucleic acids may be present in whole cells, in a cell lysate, or in a partially purified or substantially pure form.
- sequence identity is calculated as follows.
- the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes).
- the length of a reference sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 50%, even more preferably at least 60%, and even more preferably at least 70%, 80%, 90%, 100% of the length of the reference sequence.
- the amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared.
- amino acid or nucleic acid “identity” is equivalent to amino acid or nucleic acid “homology”.
- the percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.
- the comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm.
- the percent identity between two amino acid sequences is determined using the Needleman and Wunsch ((1970) J. Mol. Biol. 48:444-453) algorithm which has been incorporated into the GAP program in the GCG software package (Accelrys, San Diego, Calif.), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6.
- the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package, using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6.
- a particularly preferred set of parameters are a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.
- homologous is synonymous with “similarity” and means that a sequence of interest differs from a reference sequence by the presence of one or more amino acid substitutions (although modest amino acid insertions or deletions) may also be present.
- Presently preferred means of calculating degrees of homology or similarity to a reference sequence are through the use of BLAST algorithms (available from the National Center of Biotechnology Information (NCBI), National Institutes of Health, Bethesda Md.), in each case, using the algorithm default or recommended parameters for determining significance of calculated sequence relatedness.
- the percent identity between two amino acid or nucleotide sequences can also be determined using the algorithm of E. Meyers and W. Miller ((1989) CABIOS, 4:11-17) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.
- hybridizes under low stringency, medium stringency, high stringency, or very high stringency conditions describes conditions for hybridization and washing.
- Guidance for performing hybridization reactions can be found in Current Protocols in Molecular Biology , John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Aqueous and nonaqueous methods are described in that reference and either can be used.
- Specific hybridization conditions referred to herein are as follows: 1) low stringency hybridization conditions in 6 ⁇ sodium chloride/sodium citrate (SSC) at about 45° C., followed by two washes in 0.2 ⁇ SSC, 0.1% SDS at least at 50° C. (the temperature of the washes can be increased to 55° C.
- SSC sodium chloride/sodium citrate
- very high stringency hybridization conditions are 0.5M sodium phosphate, 7% SDS at 65° C., followed by one or more washes at 0.2 ⁇ SSC, 1% SDS at 65° C.
- Very high stringency conditions (4) are the preferred conditions and the ones that should be used unless otherwise specified.
- binding agent polypeptides of the invention may have additional conservative or non-essential amino acid substitutions, which do not have a substantial effect on the polypeptide functions. Whether or not a particular substitution will be tolerated, i.e., will not adversely affect desired biological properties, such as binding activity can be determined as described in Bowie, et al. (1990) Science 247:1306-1310.
- a “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art.
- amino acids with basic side chains e.g., lysine, arginine, histidine
- acidic side chains e.g., aspartic acid, glutamic acid
- uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine
- nonpolar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
- beta-branched side chains e.g., threonine, valine, isoleucine
- aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine
- non-essential amino acid residue is a residue that can be altered from the wild-type sequence of the binding agent, e.g., the antibody, without abolishing or more preferably, without substantially altering a biological activity, whereas an “essential” amino acid residue results in such a change.
- Binding affinity can be determined by a variety of methods including equilibrium dialysis, equilibrium binding, gel filtration, ELISA, or spectroscopy (e.g., using a fluorescence assay). These techniques can be used to measure the concentration of bound and free ligand as a function of ligand (or target) concentration.
- K a It is not always necessary to make an exact determination of K a , though, since sometimes it is sufficient to obtain a quantitative measurement of affinity, e.g., determined using a method such as ELISA or FACS analysis, is proportional to K a , and thus can be used for comparisons, such as determining whether a higher affinity is, e.g., 2 fold higher. Better binding can be indicated by a greater numerical K a , or a lesser numerical K d than a reference. Unless otherwise noted, binding affinities are determined in phosphate buffered saline at pH7.
- FIGS. 1A and 1B provide the nucleotide and amino acid sequence of human ET-2S (SEQ ID NO:93 and SEQ ID NO:94, respectively).
- FIGS. 2A and 2B provide the nucleotide and amino acid sequence of human ET-2L (SEQ ID NO:1 and SEQ ID NO:2, respectively).
- FIGS. 3A and 3B depict distribution of tumor volumes (5A) and tumor weights (5B) on day 39 for a treatment with the H10 antibody in a mouse model.
- Endotheliases are an attractive target for the treatment of diseases characterized by unwanted angiogenesis due to the role of these enzymes in the proteolytic processing of extracellular matrix components during new blood vessel formation.
- Endotheliase-2 (ET2) is a transmembrane serine protease expressed on the surface of endothelial cells.
- Exemplary nucleic acid and amino acid sequence of two forms of human ET2, ET2-S, and ET-2L are provided in FIGS. 1 and 2 . See also WO 01/36604.
- This disclosure provides, inter alia, ligands that bind to ET2, e.g., immunoglobulins that inhibit ET2 with high affinity and selectivity.
- the disclosure also provides methods for identifying proteins, e.g., antibodies, that bind to ET2. In many cases, the identified proteins are at least partially specific.
- ET2 is a type-II membrane-type serine protease and a member of the endotheliase class of angiogenesis-associated proteases.
- ET2 RNA is expressed in endothelial cells and some tumor cell lines (WO 01/36604).
- ET2 RNA has also been detected in other tissues.
- the ET2 protein has a transmembrane region at the N-terminus, followed by a single low density lipoprotein-A (LDR-A) receptor domain and a single scavenger-receptor cysteine-rich domain (WO 01/36604).
- LDR-A low density lipoprotein-A
- the C-terminus contains a trypsin-like serine protease domain characterized by the presence of the catalytic triad residues histidine, aspartate, and serine, in 3 conserved regions of the protease domain.
- Three repetitive sequences having the sequence ASPAGTPPGRASP (SEQ ID NO:144) are present near the transmembrane domain and contain a sequence motif for N-myristoylation (WO 01/36604).
- a display library can be used to identify proteins that bind to the ET2.
- a display library is a collection of entities; each entity includes an accessible polypeptide component and a recoverable component that encodes or identifies the polypeptide component.
- the polypeptide component can be of any length, e.g. from three amino acids to over 300 amino acids. In a selection, the polypeptide component of each member of the library is probed with the ET2 and if the polypeptide component binds to the ET2, the display library member is identified, typically by retention on a support.
- Retained display library members are recovered from the support and analyzed.
- the analysis can include amplification and a subsequent selection under similar or dissimilar conditions. For example, positive and negative selections can be alternated.
- the analysis can also include determining the amino acid sequence of the polypeptide component and purification of the polypeptide component for detailed characterization.
- a variety of formats can be used for display libraries. Examples include the following.
- Phage Display One format utilizes viruses, particularly bacteriophages. This format is termed “phage display.”
- the polypeptide component is typically covalently linked to a bacteriophage coat protein.
- the linkage results form translation of a nucleic acid encoding the polypeptide component fused to the coat protein.
- the linkage can include a flexible peptide linker, a protease site, or an amino acid incorporated as a result of suppression of a stop codon.
- Phage display is described, for example, in Ladner et al., U.S. Pat. No.
- Phage display systems have been developed for filamentous phage (phage fl, fd, and M13) as well as other bacteriophage (e.g. T7 bacteriophage and lambdoid phages; see, e.g., Santini (1998) J. Mol. Biol. 282:125-135; Rosenberg et al. (1996) Innovations 6:1-6; Houshmet al. (1999) Anal Biochem 268:363-370).
- phage fl, fd, and M13 filamentous phage
- other bacteriophage e.g. T7 bacteriophage and lambdoid phages
- the filamentous phage display systems typically use fusions to a minor coat protein, such as gene III protein, and gene VIII protein, a major coat protein, but fusions to other coat proteins such as gene VI protein, gene VII protein, gene 1 ⁇ protein, or domains thereof can also been used (see, e.g., WO 00/71694).
- the fusion is to a domain of the gene III protein, e.g., the anchor domain or “stump,” (see, e.g., U.S. Pat. No. 5,658,727 for a description of the gene III protein anchor domain).
- a non-peptide linkage e.g., a non-covalent bond or a non-peptide covalent bond.
- a disulfide bond and/or c-fos and c-jun coiled-coils can be used for physical associations (see, e.g., Crameri et al. (1993) Gene 137:69 and WO 01/05950).
- the valency of the polypeptide component can also be controlled. For example, cloning of the sequence encoding the polypeptide component into the complete phage genome results in multivariant display since all replicates of the gene III protein are fused to the polypeptide component.
- a phagemid system can be utilized.
- the nucleic acid encoding the polypeptide component fused to gene III is provided on a plasmid, typically of length less than 7000 nucleotides.
- the plasmid includes a phage origin of replication so that the plasmid is incorporated into bacteriophage particles when bacterial cells bearing the plasmid are infected with helper phage, e.g. M13K01.
- the helper phage provides an intact copy of gene III and other phage genes required for phage replication and assembly.
- the helper phage has a defective origin such that the helper phage genome is not efficiently incorporated into phage particles relative to the plasmid that has a wild type origin.
- Bacteriophage displaying the polypeptide component can be grown and harvested using standard phage preparatory methods, e.g. PEG precipitation from growth media.
- the nucleic acid encoding the selected peptide components is amplified by infecting cells using the selected phages. Individual colonies or plaques can be picked, the corresponding nucleic acid can be isolated and sequenced.
- the library is a cell-display library.
- Proteins are displayed on the surface of a cell, e.g., a eukaryotic or prokaryotic cell.
- exemplary prokaryotic cells include E. coli cells, B. subtilis cells, spores (see, e.g., Lu et al. (1995) Biotechnology 13:366).
- Exemplary eukaryotic cells include yeast (e.g., Saccharomyces cerevisiae, Schizosaccharomyces pombe, Hanseula , or Pichia pastoris ).
- yeast surface display is described, e.g., in Boder and Wittrup (1997) Nat. Biotechnol. 15:553-557 and WO 03/029,456. This application describes a yeast display system that can be used to display immunoglobulin proteins such as Fab fragments, and the use of mating to generate combinations of heavy and light chains.
- variegated nucleic acid sequences are cloned into a vector for yeast display.
- the cloning joins the variegated sequence with a domain (or complete) yeast cell surface protein, e.g., Aga2, Aga1, Flo1, or Gas1.
- a domain of these proteins can anchor the polypeptide encoded by the variegated nucleic acid sequence by a transmembrane domain (e.g., Flo1) or by covalent linkage to the phospholipid bilayer (e.g., Gas 1).
- the vector can be configured to express two polypeptide chains on the cell surface such that one of the chains is linked to the yeast cell surface protein.
- the two chains can be immunoglobulin chains.
- RNA and the polypeptide encoded by the RNA can be physically associated by stabilizing ribosomes that are translating the RNA and have the nascent polypeptide still attached.
- high divalent Mg 2+ concentrations and low temperature are used. See, e.g., Mattheakis et al. (1994) Proc. Natl. Acad. Sci. USA 91:9022 and Hanes et al. (2000) Nat Biotechnol 18:1287-92; Hanes et al. (2000) Methods Enzymol. 328:404-30. and Schaffitzel et al. (1999) J Immunol Methods. 231(1-2):119-35.
- Peptide-Nucleic Acid Fusions Another format utilizes peptide-nucleic acid fusions.
- Polypeptide-nucleic acid fusions can be generated by the in vitro translation of mRNA that include a covalently attached puromycin group, e.g., as described in Roberts and Szostak (1997) Proc. Natl. Acad. Sci. USA 94:12297-12302, and U.S. Pat. No. 6,207,446.
- the mRNA can then be reverse transcribed into DNA and crosslinked to the polypeptide.
- Yet another display format is a non-biological display in which the polypeptide component is attached to a non-nucleic acid tag that identifies the polypeptide.
- the tag can be a chemical tag attached to a bead that displays the polypeptide or a radiofrequency tag (see, e.g., U.S. Pat. No. 5,874,214).
- Scaffolds for display can include: antibodies (e.g., Fab fragments, single chain Fv molecules (scFV), single domain antibodies, camelid antibodies, and camelized antibodies); T-cell receptors; MHC proteins; extracellular domains (e.g., fibronectin Type III repeats, EGF repeats); protease inhibitors (e.g., Kunitz domains, ecotin, BPTI, and so forth); TPR repeats; trifoil structures; zinc finger domains; DNA-binding proteins; particularly monomeric DNA binding proteins; RNA binding proteins; enzymes, e.g., proteases (particularly inactivated proteases), RNase; chaperones, e.g., thioredoxin, and heat shock proteins; and intracellular signaling domains (such as SH2 and SH3 domains).
- antibodies e.g., Fab fragments, single chain Fv molecules (scFV), single domain antibodies, camelid antibodies, and camelized antibodies
- T-cell receptors M
- Appropriate criteria for evaluating a scaffolding domain can include: (1) amino acid sequence, (2) sequences of several homologous domains, (3) 3-dimensional structure, and/or (4) stability data over a range of pH, temperature, salinity, organic solvent, oxidant concentration.
- the scaffolding domain is a small, stable protein domains, e.g., a protein of less than 100, 70, 50, 40 or 30 amino acids.
- the domain may include one or more disulfide bonds or may chelate a metal, e.g., zinc.
- small scaffolding domains include: Kunitz domains (58 amino acids, 3 disulfide bonds), Cucurbida maxima trypsin inhibitor domains (31 amino acids, 3 disulfide bonds), domains related to guanylin (14 amino acids, 2 disulfide bonds), domains related to heat-stable enterotoxin IA from gram negative bacteria (18 amino acids, 3 disulfide bonds), EGF domains (50 amino acids, 3 disulfide bonds), kringle domains (60 amino acids, 3 disulfide bonds), fungal carbohydrate-binding domains (35 amino acids, 2 disulfide bonds), endothelin domains (18 amino acids, 2 disulfide bonds), and Streptococcal G IgG-binding domain (35 amino acids, no disulfide bonds).
- Kunitz domains 58 amino acids, 3 disulfide bonds
- Cucurbida maxima trypsin inhibitor domains 31 amino acids, 3 disulfide bonds
- domains related to guanylin
- small intracellular scaffolding domains include SH2, SH3, and EVH domains.
- any modular domain, intracellular or extracellular, can be used.
- immunoglobulin (Ig) domain Another useful type of scaffolding domain is the immunoglobulin (Ig) domain. Methods using immunoglobulin domains for display are described below (see, e.g., “Antibody Display Libraries”).
- Display technology can also be used to obtain ligands, e.g., antibody ligands that bind particular epitopes of a target. This can be done, for example, by using competing non-target molecules that lack the particular epitope or are mutated within the epitope, e.g., with alanine. Such non-target molecules can be used in a negative selection procedure as described below, as competing molecules when binding a display library to the target, or as a pre-elution agent, e.g., to capture in a wash solution dissociating display library members that are not specific to the target.
- ligands e.g., antibody ligands that bind particular epitopes of a target. This can be done, for example, by using competing non-target molecules that lack the particular epitope or are mutated within the epitope, e.g., with alanine.
- Such non-target molecules can be used in a negative selection procedure as described below, as competing molecules when binding a display
- display library technology is used in an iterative mode.
- a first display library is used to identify one or more ligands for a target. These identified ligands are then varied using a mutagenesis method to form a second display library. Higher affinity ligands are then selected from the second library, e.g., by using higher stringency or more competitive binding and washing conditions.
- the mutagenesis is targeted to regions known or likely to be at the binding interface. If, for example, the identified ligands are antibodies, then mutagenesis can be directed to the CDR regions of the heavy or light chains as described herein. Further, mutagenesis can be directed to framework regions near or adjacent to the CDRs. In the case of antibodies, mutagenesis can also be limited to one or a few of the CDRs, e.g., to make precise step-wise improvements. Likewise, if the identified ligands are enzymes, mutagenesis can be directed to the active site and vicinity.
- Some exemplary mutagenesis techniques include: error-prone PCR (Leung et al. (1989) Technique 1:11-15), recombination, DNA shuffling using random cleavage (Stemmer (1994) Nature 389-391; termed “nucleic acid shuffling”), random chimeragenesis on transient templates (RACHITTTM) (Coco et al. (2001) Nature Biotech. 19:354), site-directed mutagenesis (Zoller et al. (1987) Nucl Acids Res 10:6487-6504), cassette mutagenesis (Reidhaar-Olson (1991) Methods Enzymol. 208:564-586) and incorporation of degenerate oligonucleotides (Griffiths et al. (1994) EMBO J 13:3245).
- the methods described herein are used to first identify a protein ligand from a display library that binds a ET2 with at least a minimal binding specificity for a target or a minimal activity, e.g., an equilibrium dissociation constant for binding of less than 1 nM, 10 nM, or 100 nM.
- the nucleic acid sequence encoding the initial identified protein ligands are used as a template nucleic acid for the introduction of variations, e.g., to identify a second protein ligand that has enhanced properties (e.g., binding affinity, kinetics, or stability) relative to the initial protein ligand.
- the library is contacted to an immobilized target.
- the immobilized target is then washed with a first solution that removes non-specifically or weakly bound biomolecules.
- the bound ligands are eluted with a second solution that includes a saturating amount of free target, i.e., replicates of the target that are not attached to the particle.
- the free target binds to biomolecules that dissociate from the target. Rebinding is effectively prevented by the saturating amount of free target relative to the much lower concentration of immobilized target.
- the second solution can have solution conditions that are substantially physiological or that are stringent.
- the solution conditions of the second solution are identical to the solution conditions of the first solution. Fractions of the second solution are collected in temporal order to distinguish early from late fractions. Later fractions include biomolecules that dissociate at a slower rate from the target than biomolecules in the early fractions.
- phage bound to the target can be contacted to bacterial cells.
- the display library screening methods described herein can include a selection or screening process that discards display library members that bind to a non-target molecule.
- non-target molecules include, e.g., the Fc domain of the anti-ET2 antibody.
- a so-called “negative selection” step is used to discriminate between the target and related non-target molecule and a related, but distinct non-target molecules.
- the display library or a pool thereof is contacted to the non-target molecule.
- Members of the sample that do not bind the non-target are collected and used in subsequent selections for binding to the target molecule or even for subsequent negative selections.
- the negative selection step can be prior to or after selecting library members that bind to the target molecule.
- a screening step is used. After display library members are isolated for binding to the target molecule, each isolated library member is tested for its ability to bind to a non-target molecule (e.g., a non-target listed above). For example, a high-throughput ELISA screen can be used to obtain this data. The ELISA screen can also be used to obtain quantitative data for binding of each library member to the target. The non-target and target binding data are compared (e.g., using a computer and software) to identify library members that specifically bind to the target.
- a non-target molecule e.g., a non-target listed above.
- a high-throughput ELISA screen can be used to obtain this data.
- the ELISA screen can also be used to obtain quantitative data for binding of each library member to the target.
- the non-target and target binding data are compared (e.g., using a computer and software) to identify library members that specifically bind to the target.
- proteins with a particular property e.g., ability to bind ET2 and/or ability to inhibit ET2
- protein arrays of antibodies see, e.g., De Wildt et al. (2000) Nat. Biotechnol. 18:989-994
- lambda gt11 libraries two-hybrid libraries and so forth.
- Protein Arrays Different proteins can be immobilized on a solid support, for example, on a bead or an array.
- a protein array each of the proteins is immobilized at a unique address on a support.
- the address is a two-dimensional address.
- cells or phage that express the protein can be grown directly on a filter that is used as the array.
- recombinant protein production is used to produce at least partially purified samples of the protein. The partially purified or pure samples are disposed on the array.
- Proteins for the array can be spotted at high speed, e.g., using commercially available robotic apparati, e.g., from Genetic MicroSystems or BioRobotics.
- the array substrate can be, for example, nitrocellulose, plastic, glass, e.g., surface-modified glass.
- the array can be an array of antibodies, e.g., as described in De Wildt, supra.
- Display libraries include variation at one or more positions in the displayed polypeptide.
- the variation at a given position can be synthetic or natural.
- both synthetic and natural diversity are included.
- Synthetic Diversity Libraries can include regions of diverse nucleic acid sequence that originate from artificially synthesized sequences. Typically, these are formed from degenerate oligonucleotide populations that include a distribution of nucleotides at each given position. The inclusion of a given sequence is random with respect to the distribution.
- a degenerate source of synthetic diversity is an oligonucleotide that includes NNN wherein N is any of the four nucleotides in equal proportion.
- Synthetic diversity can also be more constrained, e.g., to limit the number of codons in a nucleic acid sequence at a given trinucleotide to a distribution that is smaller than NNN. For example, such a distribution can be constructed using less than four nucleotides at some positions of the codon.
- trinucleotide addition technology can be used to further constrain the distribution.
- Oligonucleotides are synthesized on a solid phase support, one codon (i.e., trinucleotide) at a time.
- the support includes many functional groups for synthesis such that many oligonucleotides are synthesized in parallel.
- the support is first exposed to a solution containing a mixture of the set of codons for the first position. The unit is protected so additional units are not added.
- Trinucleotide addition technology enables the synthesis of a nucleic acid that at a given position can encode a number of amino acids. The frequency of these amino acids can be regulated by the proportion of codons in the mixture. Further the choice of amino acids at the given position is not restricted to quadrants of the codon table as is the case if mixtures of single nucleotides are added during the synthesis.
- Natural Diversity Libraries can include regions of diverse nucleic acid sequence that originate (or are synthesized based on) from different naturally-occurring sequences.
- An example of natural diversity that can be included in a display library is the sequence diversity present in immune cells (see also below). Nucleic acids are prepared from these immune cells and are manipulated into a format for polypeptide display.
- Another example of naturally occurring diversity is the diversity of sequences among different species of organisms. For example, diverse nucleic acid sequences can be amplified from environmental samples, such as soil, and used to construct a display library.
- the display library presents a diverse pool of polypeptides, each of which includes an immunoglobulin domain, e.g., an immunoglobulin variable domain.
- Display libraries are particularly useful, for example for identifying human or “humanized” antibodies that recognize human antigens. Such antibodies can be used as therapeutics to treat human disorders such as cancer. Since the constant and framework regions of the antibody are human, these therapeutic antibodies may avoid themselves being recognized and targeted as antigens. The constant regions may also be optimized to recruit effector functions of the human immune system.
- the in vitro display selection process surmounts the inability of a normal human immune system to generate antibodies against self-antigens.
- antibody expression libraries can be used, including, e.g., protein arrays of antibodies (see, e.g., De Wildt et al. (2000) Nat. Biotechnol. 18:989-994), lambda gt11 libraries, and so forth.
- a typical antibody display library displays a polypeptide that includes a VH domain and a VL domain.
- An “immunoglobulin domain” refers to a domain from the variable or constant domain of immunoglobulin molecules. Immunoglobulin domains typically contain two ⁇ -sheets formed of about seven ⁇ -strands, and a conserved disulphide bond (see, e.g., A. F. Williams and A. N. Barclay 1988 Ann. Rev Immunol. 6:381-405).
- the display library can display the antibody as a Fab fragment (e.g., using two polypeptide chains) or a single chain Fv (e.g., using a single polypeptide chain). Other formats can also be used.
- the displayed antibody can include one or more constant regions as part of a light and/or heavy chain.
- each chain includes one constant region, e.g., as in the case of a Fab.
- additional constant regions are displayed.
- Antibody libraries can be constructed by a number of processes (see, e.g., de Haard et al. (1999) J. Biol. Chem 274:18218-30; Hoogenboom et al. (1998) Immunotechnology 4:1-20. and Hoogenboom et al. (2000) Immunol Today 21:371-8. Further, elements of each process can be combined with those of other processes. The processes can be used such that variation is introduced into a single immunoglobulin domain (e.g., VH or VL) or into multiple immunoglobulin domains (e.g., VH and VL).
- a single immunoglobulin domain e.g., VH or VL
- multiple immunoglobulin domains e.g., VH and VL
- the variation can be introduced into an immunoglobulin variable domain, e.g., in the region of one or more of CDR1, CDR2, CDR3, FR1, FR2, FR3, and FR4, referring to such regions of either and both of heavy and light chain variable domains.
- variation is introduced into all three CDRs of a given variable domain.
- the variation is introduced into CDR1 and CDR2, e.g., of a heavy chain variable domain. Any combination is feasible.
- antibody libraries are constructed by inserting diverse oligonucleotides that encode CDRs into the corresponding regions of the nucleic acid. The oligonucleotides can be synthesized using monomeric nucleotides or trinucleotides.
- Knappik et al. (2000) J. Mol. Biol. 296:57-86 describe a method for constructing CDR encoding oligonucleotides using trinucleotide synthesis and a template with engineered restriction sites for accepting the oligonucleotides.
- an animal e.g., a rodent
- the animal is optionally boosted with the antigen to further stimulate the response.
- spleen cells are isolated from the animal, and nucleic acid encoding VH and/or VL domains is amplified and cloned for expression in the display library.
- antibody libraries are constructed from nucleic acid amplified from na ⁇ ve germline immunoglobulin genes.
- the amplified nucleic acid includes nucleic acid encoding the VH and/or VL domain. Sources of immunoglobulin-encoding nucleic acids are described below.
- Amplification can include PCR, e.g., with primers that anneal to the conserved constant region, or another amplification method.
- Nucleic acid encoding immunoglobulin domains can be obtained from the immune cells of, e.g., a human, a primate, mouse, rabbit, camel, or rodent.
- the cells are selected for a particular property.
- B cells at various stages of maturity can be selected.
- the B cells are na ⁇ ve.
- fluorescent-activated cell sorting is used to sort B cells that express surface-bound IgM, IgD, or IgG molecules. Further, B cells expressing different isotypes of IgG can be isolated.
- the B or T cell is cultured in vitro. The cells can be stimulated in vitro, e.g., by culturing with feeder cells or by adding mitogens or other modulatory reagents, such as antibodies to CD40, CD40 ligand or CD20, phorbol myristate acetate, bacterial lipopolysaccharide, concanavalin A, phytohemagglutinin or pokeweed mitogen.
- the cells are isolated from a subject that has an immunological disorder, e.g., systemic lupus erythematosus (SLE), rheumatoid arthritis, vasculitis, Sjogren syndrome, systemic sclerosis, or anti-phospholipid syndrome.
- the subject can be a human, or an animal, e.g., an animal model for the human disease, or an animal having an analogous disorder.
- the cells are isolated from a transgenic non-human animal that includes a human immunoglobulin locus.
- the cells have activated a program of somatic hypermutation.
- Cells can be stimulated to undergo somatic mutagenesis of immunoglobulin genes, for example, by treatment with anti-immunoglobulin, anti-CD40, and anti-CD38 antibodies (see, e.g., Bergthorsdottir et al. (2001) J Immunol. 166:2228).
- the cells are na ⁇ ve.
- the nucleic acid encoding an immunoglobulin variable domain can be isolated from a natural repertoire by the following exemplary method.
- the reverse transcription of the first (antisense) strand can be done in any manner with any suitable primer. See, e.g., de Haard et al. (1999) J. Biol. Chem. 274:18218-30.
- the primer binding region can be constant among different immunoglobulins, e.g., in order to reverse transcribe different isotypes of immunoglobulin.
- the primer binding region can also be specific to a particular isotype of immunoglobulin.
- the primer is specific for a region that is 3′ to a sequence encoding at least one CDR.
- poly-dT primers may be used (and may be preferred for the heavy-chain genes).
- a synthetic sequence can be ligated to the 3′ end of the reverse transcribed strand.
- the synthetic sequence can be used as a primer binding site for binding of the forward primer during PCR amplification after reverse transcription.
- the use of the synthetic sequence can obviate the need to use a pool of different forward primers to fully capture the available diversity.
- variable domain-encoding gene is then amplified, e.g., using one or more rounds. If multiple rounds are used, nested primers can be used for increased fidelity.
- the amplified nucleic acid is then cloned into a display library vector.
- Any method for amplifying nucleic acid sequences may be used for amplification. Methods that maximize, and do not bias, diversity are preferred. A variety of techniques can be used for nucleic acid amplification.
- the polymerase chain reaction (PCR; U.S. Pat. Nos. 4,683,195 and 4,683,202, Saiki, et al. (1985) Science 230, 1350-1354) utilizes cycles of varying temperature to drive rounds of nucleic acid synthesis.
- Transcription-based methods utilize RNA synthesis by RNA polymerases to amplify nucleic acid (U.S. Pat. No. 6,066,457; U.S. Pat. No. 6,132,997; U.S. Pat. No. 5,716,785; Sarkar et.
- NASBA U.S. Pat. Nos. 5,130,238; 5,409,818; and 5,554,517
- Still other amplification methods include rolling circle amplification (RCA; U.S. Pat. Nos. 5,854,033 and 6,143,495) and strand displacement amplification (SDA; U.S. Pat. Nos. 5,455,166 and 5,624,825).
- each candidate display library member can be further analyzed, e.g., to further characterize its binding properties for the target.
- Each candidate display library member can be subjected to one or more secondary screening assays.
- the assay can be for a binding property, a catalytic property, an inhibitory property, a physiological property (e.g., cytotoxicity, renal clearance, immunogenicity), a structural property (e.g., stability, conformation, oligomerization state) or another functional property.
- the same assay can be used repeatedly, but with varying conditions, e.g., to determine pH, ionic, or thermal sensitivities.
- the assays can use the display library member directly, a recombinant polypeptide produced from the nucleic acid encoding a displayed polypeptide, or a synthetic peptide synthesized based on the sequence of a displayed peptide.
- Exemplary assays for binding properties include the following.
- Polypeptides encoded by a display library can also be screened for a binding property using an ELISA assay. For example, each polypeptide is contacted to a microtitre plate whose bottom surface has been coated with the target, e.g., a limiting amount of the target. The plate is washed with buffer to remove non-specifically bound polypeptides. Then the amount of the polypeptide bound to the plate is determined by probing the plate with an antibody that can recognize the polypeptide, e.g., a tag or constant portion of the polypeptide. The antibody is linked to an enzyme such as alkaline phosphatase, which produces a calorimetric product when appropriate substrates are provided.
- an enzyme such as alkaline phosphatase
- the polypeptide can be purified from cells or assayed in a display library format, e.g., as a fusion to a filamentous bacteriophage coat.
- a display library format e.g., as a fusion to a filamentous bacteriophage coat.
- each polypeptide of a diversity strand library is used to coat a different well of a microtitre plate. The ELISA then proceeds using a constant target molecule to query each well.
- FRET fluorescence resonance energy transfer
- a fluorophore label on the first molecule is selected such that its emitted fluorescent energy can be absorbed by a fluorescent label on a second molecule (e.g., the target) if the second molecule is in proximity to the first molecule.
- the fluorescent label on the second molecule fluoresces when it absorbs to the transferred energy. Since the efficiency of energy transfer between the labels is related to the distance separating the molecules, the spatial relationship between the molecules can be assessed. In a situation in which binding occurs between the molecules, the fluorescent emission of the ‘acceptor’ molecule label in the assay should be maximal.
- a binding event that is configured for monitoring by FRET can be conveniently measured through standard fluorometric detection means well known in the art (e.g., using a fluorimeter). By titrating the amount of the first or second binding molecule, a binding curve can be generated to estimate the equilibrium binding constant.
- Alpha Screen (Packard Bioscience, Meriden Conn.).
- Alpha Screen uses two labeled beads. One bead generates singlet oxygen when excited by a laser. The other bead generates a light signal when singlet oxygen diffuses from the first bead and collides with it. The signal is only generated when the two beads are in proximity.
- One bead can be attached to the display library member, the other to the target. Signals are measured to determine the extent of binding.
- the homogenous assays can be performed while the candidate polypeptide is attached to the display library vehicle, e.g., a bacteriophage.
- SPR Surface Plasmon Resonance
- the binding interaction of a molecule isolated from a display library and a target can be analyzed using SPR.
- SPR or Biomolecular Interaction Analysis (BIA) detects biospecific interactions in real time, without labeling any of the interactants. Changes in the mass at the binding surface (indicative of a binding event) of the BIA chip result in alterations of the refractive index of light near the surface (the optical phenomenon of surface plasmon resonance (SPR)). The changes in the refractivity generate a detectable signal, which are measured as an indication of real-time reactions between biological molecules.
- Methods for using SPR are described, for example, in U.S. Pat. No.
- Information from SPR can be used to provide an accurate and quantitative measure of the equilibrium dissociation constant (K d ), and kinetic parameters, including K on and K off , for the binding of a biomolecule to a target.
- K d equilibrium dissociation constant
- kinetic parameters including K on and K off
- Such data can be used to compare different biomolecules.
- proteins encoded by nucleic acid selected from a library of diversity strands can be compared to identify individuals that have high affinity for the target or that have a slow K off .
- This information can also be used to develop structure-activity relationships (SAR).
- SAR structure-activity relationships
- the kinetic and equilibrium binding parameters of matured versions of a parent protein can be compared to the parameters of the parent protein.
- Variant amino acids at given positions can be identified that correlate with particular binding parameters, e.g., high affinity and slow K off .
- This information can be combined with structural modeling (e.g., using homology modeling, energy minimization, or structure determination by x-ray crystallography or NMR).
- structural modeling e.g., using homology modeling, energy minimization, or structure determination by x-ray crystallography or NMR.
- Polypeptides identified from the display library can be immobilized on a solid support, for example, on a bead or an array.
- a protein array each of the polypeptides is immobilized at a unique address on a support.
- the address is a two-dimensional address. Protein arrays are described below (see, e.g., Diagnostics).
- a library of candidate polypeptides can be screened by transforming the library into a host cell.
- the library can include vector nucleic acid sequences that include segments that encode the polypeptides and that direct expression, e.g., such that the polypeptides are produced within the cell, secreted from the cell, or attached to the cell surface.
- the cells can be screened for polypeptides that bind to the ET2, e.g., as detected by a change in a cellular phenotype or a cell-mediated activity.
- the activity may be cell or complement-mediated cytotoxicity.
- Automated methods can be used for a high throughput screen, e.g., to detect interactions with ET2 such as binding interactions or enzymatic interaction (e.g., inhibition of ET2 activity).
- ET2 such as binding interactions or enzymatic interaction
- a robotic device can be automatically controlled to set up assays for each of the candidate ligands in a variety of formats, e.g., ELISA (using purified ligands or phage displaying the ligand), enzyme assays, cell based assays, and so forth.
- Enzymatic activity for example, can be detected by any of a variety of methods, including spectroscopically, colorimetrically, using mass spectroscopy, and so forth.
- Data indicating the performance of each clone for a particular assay can be stored in database.
- Software can be used to access the database and select clones that meet particular criteria, e.g., exceed a threshold for an assay.
- the software can then direct a robotic arm to pick the selected clones from the stored array, prepare nucleic acid encoding the ligand, prepare the ligand itself, and/or produce and screen secondary libraries whose members are mutated variants of the initially picked ligand.
- Various robotic devices that can be employed in the automation process include multi-well plate conveyance systems, magnetic bead particle processors, liquid handling units, colony picking units. These devices can be built on custom specifications or purchased from commercial sources, such as Autogen (Framingham Mass.), Beckman Coulter (USA), Biorobotics (Woburn Mass.), Genetix (New Milton, Hampshire UK), Hamilton (Reno Nev.), Hudson (Springfield N.J.), Labsystems (Helsinki, Finland), Perkin Elmer Lifesciences (Wellseley Mass.), Packard Bioscience (Meriden Conn.), and Tecan (Mannedorf, Switzerland).
- ET2-binding antibody In addition to the use of display libraries, other methods can be used to obtain a ET2-binding antibody.
- the ET2 protein or a region thereof can be used as an antigen in a non-human animal, e.g., a rodent.
- the non-human animal includes at least a part of a human immunoglobulin gene.
- a human immunoglobulin gene For example, it is possible to engineer mouse strains deficient in mouse antibody production with large fragments of the human Ig loci.
- antigen-specific Mabs derived from the genes with the desired specificity may be produced and selected. See, e.g., XENOMOUSETM, Green et al. Nature Genetics 7:13-21 (1994), U.S. 2003-0070185, WO 96/34096, published Oct. 31, 1996, and PCT Application No. PCT/US96/05928, filed Apr. 29, 1996.
- a monoclonal antibody is obtained from the non-human animal, and then modified, e.g., humanized or deimmunized.
- Winter describes a CDR-grafting method that may be used to prepare the humanized antibodies of the present invention (UK Patent Application GB 2188638A, filed on Mar. 26, 1987; U.S. Pat. No. 5,225,539. All of the CDRs of a particular human antibody may be replaced with at least a portion of a non-human CDR or only some of the CDRs may be replaced with non-human CDRs. It is only necessary to replace the number of CDRs required for binding of the humanized antibody to a predetermined antigen.
- Humanized antibodies can be generated by replacing sequences of the Fv variable region that are not directly involved in antigen binding with equivalent sequences from human Fv variable regions.
- General methods for generating humanized antibodies are provided by Morrison, S. L., 1985, Science 229:1202-1207, by Oi et al., 1986, BioTechniques 4:214, and by Queen et al. U.S. Pat. No. 5,585,089, U.S. Pat. No. 5,693,761 and U.S. Pat. No. 5,693,762.
- Those methods include isolating, manipulating, and expressing the nucleic acid sequences that encode all or part of immunoglobulin Fv variable regions from at least one of a heavy or light chain.
- Sources of such nucleic acid are well known to those skilled in the art and, for example, may be obtained from a hybridoma producing an antibody against a predetermined target, as described above.
- the recombinant DNA encoding the humanized antibody, or fragment thereof, can then be cloned into an appropriate expression vector.
- a ET2-binding antibody may also be modified by specific deletion of human T cell epitopes or “deimmunization” by the methods disclosed in WO 98/52976 and WO 00/34317, the contents of which are specifically incorporated by reference herein. Briefly, the heavy and light chain variable regions of an antibody can be analyzed for peptides that bind to MHC Class II; these peptides represent potential T-cell epitopes (as defined in WO 98/52976 and WO 00/34317).
- peptide threading For detection of potential T-cell epitopes, a computer modeling approach termed “peptide threading” can be applied, and in addition a database of human MHC class II binding peptides can be searched for motifs present in the VH and VL sequences, as described in WO 98/52976 and WO 00/34317. These motifs bind to any of the 18 major MHC class II DR allotypes, and thus constitute potential T cell epitopes.
- Potential T-cell epitopes detected can be eliminated by substituting small numbers of amino acid residues in the variable regions, or preferably, by single amino acid substitutions. As far as possible conservative substitutions are made, often but not exclusively, an amino acid common at this position in human germline antibody sequences may be used.
- nucleic acids encoding V H and V L can be constructed by mutagenesis or other synthetic methods (e.g., de novo synthesis, cassette replacement, and so forth).
- Mutagenized variable sequence can, optionally, be fused to a human constant region, e.g., human IgG1 or K constant regions.
- a potential T cell epitope will include residues which are known or predicted to be important for antibody function. For example, potential T cell epitopes are usually biased towards the CDRs. In addition, potential T cell epitopes can occur in framework residues important for antibody structure and binding. Changes to eliminate these potential epitopes will in some cases require more scrutiny, e.g., by making and testing chains with and without the change. Where possible, potential T cell epitopes that overlap the CDRs were eliminated by substitutions outside the CDRs. In some cases, an alteration within a CDR is the only option, and thus variants with and without this substitution should be tested.
- the substitution required to remove a potential T cell epitope is at a residue position within the framework that might be critical for antibody binding.
- variants with and without this substitution should be tested.
- several variant deimmunized heavy and light chain variable regions were designed and various heavy/light chain combinations tested in order to identify the optimal deimmunized antibody.
- the choice of the final deimmunized antibody can then be made by considering the binding affinity of the different variants in conjunction with the extent of deimmunization, i.e., the number of potential T cell epitopes remaining in the variable region.
- Deimmunization can be used to modify any antibody, e.g., an antibody that includes a non-human sequence, e.g., a synthetic antibody, a murine antibody other non-human monoclonal antibody, or an antibody isolated from a display library.
- a non-human sequence e.g., a synthetic antibody, a murine antibody other non-human monoclonal antibody, or an antibody isolated from a display library.
- an antibody that binds ET2 e.g., an antibody described herein
- an antibody can include one, two, three or more amino acid substitutions, e.g., in a framework or CDR region, to make it more similar to a reference germline sequence.
- One exemplary germlining method can include: identifying one or more germline sequences that are similar (e.g., most similar in a particular database) to the sequence of the isolated antibody. Then mutations (at the amino acid level) can be made in the isolated antibody, either incrementally, in combination, or both.
- a nucleic acid library that includes sequences encoding some or all possible germline mutations is made.
- the mutated antibodies are then evaluated, e.g., to identify an antibody that has one or more additional germline residues relative to the isolated antibody and that is still useful (e.g., has a functional activity).
- as many germline residues are introduced into an isolated antibody as possible.
- mutagenesis is used to substitute or insert one or more germline residues into a CDR region.
- the germline CDR residue can be from a germline sequence that is similar (e.g., most similar) to the variable region being modified.
- activity e.g., binding or other functional activity
- Similar mutagenesis can be performed in the framework regions.
- a germline sequence can be selected if it meets a predetermined criteria for selectivity or similarity, e.g., at least a certain percentage identity, e.g., at least 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 99.5% identity.
- the selection can be performed using at least 2, 3, 5, or 10 germline sequences.
- identifying a similar germline sequence can include selecting one such sequence.
- identifying a similar germline sequence can include selecting one such sequence, but may including using two germline sequences that separately contribute to the amino-terminal portion and the carboxy-terminal portion. In other implementations more than one or two germline sequences are used, e.g., to form a consensus sequence.
- a related variable domain sequence has at least 30, 40, 50, 60, 70, 80, 90, 95 or 100% of the CDR amino acid positions that are not identical to residues in the reference CDR sequences, residues that are identical to residues at corresponding positions in a human germline sequence (i.e., an amino acid sequence encoded by a human germline nucleic acid).
- a related variable domain sequence has at least 30, 50, 60, 70, 80, 90 or 100% of the FR regions are identical to FR sequence from a human germline sequence, e.g., a germline sequence related to the reference variable domain sequence.
- an antibody which has similar activity to a given antibody of interest, but is more similar to one or more germline sequences, particularly one or more human germline sequences.
- an antibody can be at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.5% identical to a germline sequence in a region outside the CDRs (e.g., framework regions).
- an antibody can include at least 1, 2, 3, 4, or 5 germline residues in a CDR region, the germline residue being from a germline sequence of similar (e.g., most similar) to the variable region being modified.
- Germline sequences of primary interest are human germline sequences.
- the activity of the antibody e.g., the binding activity
- Exemplary germline reference sequences for Vkappa include: O12/O2, O18/O8, A20, A30, L14, L1, L15, L4/18a, L5/L19, L8, L23, L9, L24, L11, L12, O11/O1, A17, A1, A18, A2, A19/A3, A23, A27, A11, L2/L16, L6, L20, L25, B3, B2, A26/A10, and A14. See, e.g., Tomlinson et al. (1995) EMBO J. 14(18):4628-3.
- a germline reference sequence for the HC variable domain can be based on a sequence that has particular canonical structures, e.g., 1-3 structures in the H1 and H2 hypervariable loops.
- the canonical structures of hypervariable loops of an immunoglobulin variable domain can be inferred from its sequence, as described in Chothia et al. (1992) J. Mol. Biol. 227:799-817; Tomlinson et al. (1992) J. Mol. Biol. 227:776-798); and Tomlinson et al. (1995) EMBO J. 14(18):4628-38.
- Exemplary sequences with a 1-3 structure include: DP-1, DP-8, DP-12, DP-2, DP-25, DP-15, DP-7, DP-4, DP-31, DP-32, DP-33, DP-35, DP-40, 7-2, hv3005, hv3005f3, DP-46, DP-47, DP-58, DP-49, DP-50, DP-51, DP-53, and DP-54.
- Standard recombinant nucleic acid methods can be used to express a protein ligand that binds to ET2.
- a nucleic acid sequence encoding the protein ligand is cloned into a nucleic acid expression vector.
- each chain must be cloned into an expression vector, e.g., the same or different vectors, that are expressed in the same or different cells.
- Some antibodies can be produced in bacterial cells, e.g., E. coli cells.
- the Fab is encoded by sequences in a phage display vector that includes a suppressible stop codon between the display entity and a bacteriophage protein (or fragment thereof)
- the vector nucleic acid can be transferred into a bacterial cell that cannot suppress a stop codon.
- the Fab is not fused to the gene III protein and is secreted into the periplasm and/or media.
- Antibodies can also be produced in eukaryotic cells.
- the antibodies e.g., scFv's
- the antibodies are expressed in a yeast cell such as Pichia (see, e.g., Powers et al. (2001) J Immunol Methods. 251:123-35), Hanseula , or Saccharomyces.
- antibodies are produced in mammalian cells.
- Preferred mammalian host cells for expressing the clone antibodies or antigen-binding fragments thereof include Chinese Hamster Ovary (CHO cells) (including dhfr-CHO cells, described in Urlaub and Chasin (1980) Proc. Natl. Acad. Sci. USA 77:4216-4220, used with a DHFR selectable marker, e.g., as described in Kaufman and Sharp (1982) Mol. Biol. 159:601-621), lymphocytic cell lines, e.g., NS0 myeloma cells and SP2 cells, COS cells, and a cell from a transgenic animal, e.g., a transgenic mammal.
- the cell is a mammary epithelial cell.
- the recombinant expression vectors may carry additional sequences, such as sequences that regulate replication of the vector in host cells (e.g., origins of replication) and selectable marker genes.
- the selectable marker gene facilitates selection of host cells into which the vector has been introduced (see e.g., U.S. Pat. Nos. 4,399,216, 4,634,665 and 5,179,017).
- the selectable marker gene confers resistance to drugs, such as G418, hygromycin or methotrexate, on a host cell into which the vector has been introduced.
- Preferred selectable marker genes include the dihydrofolate reductase (DHFR) gene (for use in dhfr ⁇ host cells with methotrexate selection/amplification) and the neo gene (for G418 selection).
- DHFR dihydrofolate reductase
- a recombinant expression vector encoding both the antibody heavy chain and the antibody light chain is introduced into dhfr-CHO cells by calcium phosphate-mediated transfection.
- the antibody heavy and light chain genes are each operatively linked to enhancer/promoter regulatory elements (e.g., derived from SV40, CMV, adenovirus and the like, such as a CMV enhancer/AdMLP promoter regulatory element or an SV40 enhancer/AdMLP promoter regulatory element) to drive high levels of transcription of the genes.
- the recombinant expression vector also carries a DHFR gene, which allows for selection of CHO cells that have been transfected with the vector using methotrexate selection/amplification.
- the selected transformant host cells are cultured to allow for expression of the antibody heavy and light chains and intact antibody is recovered from the culture medium.
- Standard molecular biology techniques are used to prepare the recombinant expression vector, transfect the host cells, select for transformants, culture the host cells and recover the antibody from the culture medium. For example, some antibodies can be isolated by affinity chromatography with a Protein A or Protein G coupled matrix.
- the antibody production system preferably synthesizes antibodies in which the Fc region is glycosylated.
- the Fc domain of IgG molecules is glycosylated at asparagine 297 in the CH2 domain.
- This asparagine is the site for modification with biantennary-type oligosaccharides. It has been demonstrated that this glycosylation is required for effector functions mediated by Fc ⁇ receptors and complement Clq (Burton and Woof (1992) Adv. Immunol. 51:1-84; Jefferis et al. (1998) Immunol. Rev. 163:59-76).
- the Fc domain is produced in a mammalian expression system that appropriately glycosylates the residue corresponding to asparagine 297.
- the Fc domain can also include other eukaryotic post-translational modifications.
- Antibodies can also be produced by a transgenic animal.
- U.S. Pat. No. 5,849,992 describes a method of expressing an antibody in the mammary gland of a transgenic mammal.
- a transgene is constructed that includes a milk-specific promoter and nucleic acids encoding the antibody of interest and a signal sequence for secretion.
- the milk produced by females of such transgenic mammals includes, secreted-therein, the antibody of interest.
- the antibody can be purified from the milk, or for some applications, used directly.
- transgenic animals are well known in the art.
- One method for producing a transgenic mouse is as follows. Briefly, a targeting construct that encodes the antibody is microinjected into the male pronucleus of fertilized oocytes. The oocytes are injected into the uterus of a pseudopregnant foster mother for the development into viable pups. Some offspring will have incorproted the transgene.
- ET2 ligands can be further characterized in assays that measure their modulatory activity toward ET2 or fragments thereof in vitro or in vivo.
- ET2 can be combined with a substrate under assay conditions permitting reaction of the ET2 with the substrate.
- the assay is performed in the absence of the potential ET2 ligand, and in the presence of increasing concentrations of the potential ET2 ligand.
- the concentration of ligand at which 50% of the ET2 activity is inhibited by the test compound is the IC 50 value (Inhibitory Concentration) or EC 50 (Effective Concentration) value for that compound.
- Preferred ligands have an IC 50 value of 100 nM or less as measured in an in vitro assay for inhibition of ET2 activity.
- the ligands can also be evaluated for selectivity toward ET2.
- a potential ET2 ligand can be assayed for its potency toward ET2 and a panel of serine proteases and other enzymes and an IC 50 value or EC 50 value can be determined for each enzymatic target.
- a compound that demonstrates a low IC 50 value or EC 50 value for the ET2, and a higher IC 50 value or EC 50 value for other enzymes within the test panel e.g., urokinase, tissue plasminogen activator, thrombin, Factor Xa
- a compound that demonstrates a low IC 50 value or EC 50 value for the ET2 and a higher IC 50 value or EC 50 value for ET1 than ET2 is considered to be selective toward ET2.
- ET2 ligands can also be evaluated for their activity in vivo.
- the procedures described by Jankun et al., Canc. Res., 57: 559-563 (1997) to evaluate PAI-1 can be employed. Briefly, the ATCC cell lines DU145 and LnCaP are injected into SCID mice. After tumors are established, the mice are administered the test ligand. Tumor volume measurements are taken twice a week for about five weeks. A ligand can be deemed active in this assay if an animal to which the ligand was administered exhibited decreased tumor volume, as compared to animals receiving appropriate control compounds (e.g., non-specific antibody molecules).
- a murine xenograft selected for high lung colonization potential in injected into C57B1/6 mice i.v. (experimental metastasis) or s.c. into the abdominal wall (spontaneous metastasis).
- concentrations of the compound to be tested can be admixed with the tumor cells in Matrigel prior to injection.
- Daily i.p. injections of the test compound are made either on days 1-6 or days 7-13 after tumor inoculation. The animals are sacrificed about three or four weeks after tumor inoculation, and the lung tumor colonies are counted. Evaluation of the resulting data permits a determination as to efficacy of the test compound, optimal dosing and route of administration.
- the activity of the ligands toward decreasing tumor volume and metastasis can be evaluated in model described in Rabbani et al., Int. J. Cancer 63: 840-845 (1995). See also Xing et al., Canc. Res., 57: 3585-3593 (1997).
- Mat LyLu tumor cells were injected into the flank of Copenhagen rats. The animals were implanted with osmotic minipumps to continuously administer various doses of test compound for up to three weeks. The tumor mass and volume of experimental and control animals were evaluated during the experiment, as were metastatic growths. Evaluation of the resulting data permits a determination as to efficacy of the test compound, optimal dosing, and route of administration.
- a rabbit cornea neovascularization model can be employed. See, e.g., Avery et al., Arch. Opthalmol., 108: 1474-1475 (1990).
- New Zealand albino rabbits are anesthetized.
- a central corneal incision is made, forming a radial corneal pocket.
- a slow release prostaglandin pellet is placed in the pocket to induce neovascularization.
- the test ligand is administered i. p. for five days, then the animals are sacrificed.
- test ligand The effect of the test ligand is evaluated by review of periodic photographs taken of the limbus, which can be used to calculate the area of neovascular response and, therefore, limbal neovascularization. A decreased area of neovascularization as compared with appropriate controls indicates the test ligand was effective at decreasing or inhibiting neovascularization.
- An exemplary angiogenesis model used to evaluate the effect of a test compound in preventing angiogenesis is described by Min et al., Canc. Res., 56: 2428-2433 (1996).
- C57BL6 mice receive subcutaneous injections of a Matrigel mixture containing bFGF, as the angiogenesis-inducing agent, with and without the test ligand. After five days, the animals are sacrificed and the Matrigel plugs, in which neovascularization can be visualized, are photographed.
- An experimental animal receiving Matrigel and an effective dose of test ligand will exhibit less vascularization than a control animal or an experimental animal receiving a less- or non-effective does of ligand.
- the CAM model (chick embryo chorioallantoic membrane model), first described by L. Ossowski ( J. Cell. Biol., 107: 2437-2445 (1988)), provides another method for evaluating the protease inhibitory activity of a test compound.
- the CAM assay is performed with CAM and tumor cells in the presence and absence of various concentrations of test compound. The invasiveness of tumor cells is measured under such conditions to provide an indication of the compound's inhibitory activity. A compound having inhibitory activity correlates with less tumor invasion.
- the CAM model is also used in to assay angiogenesis (i.e., effect on formation of new blood vessels (Brooks et al., Methods in Molecular Biology, 129: 257-269 (1999)).
- angiogenesis inducer such as basic fibroblast growth factor (bFDG) is placed onto the CAM. Diffusion of the cytokine into the CAM induces local angiogenesis, which may be measured in several ways such as by counting the number of blood vessel branch points within the CAM directly below the filter disc. The ability of identified compounds to inhibit cytokine-induced angiogenesis can be tested using this model.
- test compound can either be added to the filter disc that contains the angiogenesis inducer, be placed directly on the membrane or be administered systemically. The extent of new blood vessel formation in the presence and/or absence of test compound can be compared using this model. The formation of fewer new blood vessels in the presence of a test compound would be indicative of anti-angiogenesis activity.
- a candidate ET2-binding ligand can be tested for endothelial proliferation inhibiting activity using a biological activity assay such as the bovine capillary endothelial cell proliferation assay, the chick CAM assay, the mouse corneal assay, and evaluating the effect of the ligand on implanted tumors.
- a biological activity assay such as the bovine capillary endothelial cell proliferation assay, the chick CAM assay, the mouse corneal assay, and evaluating the effect of the ligand on implanted tumors.
- the chick CAM assay is described, e.g., by O'Reilly, et al. in “Angiogenic Regulation of Metastatic Growth” Cell, vol. 79 (2), Oct. 21, 1994, pp. 315-328. Briefly, three day old chicken embryos with intact yolks are separated from the egg and placed in a petri dish.
- the mouse corneal assay involves implanting a growth factor-containing pellet, along with another pellet containing the suspected endothelial growth inhibitor, in the cornea of a mouse and observing the pattern of capillaries that are elaborated in the cornea.
- Angiogenesis may be assayed, e.g., using various human endothelial cell systems, such as umbilical vein, coronary artery, or dermal cells. Suitable assays include Alamar Blue based assays (available from Biosource International) to measure proliferation; migration assays using fluorescent molecules, such as the use of Becton Dickinson Falcon HTS FluoroBlock cell culture inserts to measure migration of cells through membranes in presence or absence of angiogenesis enhancer or suppressors; and tubule formation assays based on the formation of tubular structures by endothelial cells on MATRIGELTM (Becton Dickinson).
- Alamar Blue based assays available from Biosource International
- migration assays using fluorescent molecules such as the use of Becton Dickinson Falcon HTS FluoroBlock cell culture inserts to measure migration of cells through membranes in presence or absence of angiogenesis enhancer or suppressors
- tubule formation assays based on the formation of tubular structures by
- Cell adhesion assays measure adhesion of cells to purified adhesion proteins or adhesion of cells to each other, in presence or absence of candidate ET2 binding ligands.
- Cell-protein adhesion assays measure the ability of agents to modulate the adhesion of cells to purified proteins. For example, recombinant proteins are produced, diluted to 2.5 g/mL in PBS, and used to coat the wells of a microtiter plate. The wells used for negative control are not coated. Coated wells are then washed, blocked with 1% BSA, and washed again. Compounds are diluted to 2 ⁇ final test concentration and added to the blocked, coated wells.
- Cell-cell adhesion assays can be used to measure the ability of candidate ET2 binding ligands to modulate binding of cells to each other. These assays can use cells that naturally or recombinantly express an adhesion protein of choice.
- cells expressing the cell adhesion protein are plated in wells of a multiwell plate together with other cells (either more of the same cell type, or another type of cell to which the cells adhere).
- the cells that can adhere are labeled with a membrane-permeable fluorescent dye, such as BCECF, and allowed to adhere to the monolayers in the presence of candidate ligands. Unbound cells are washed off, and bound cells are detected using a fluorescence plate reader.
- High-throughput cell adhesion assays have also been described. See, e.g., Falsey J R et al., Bioconjug Chem . May-June 2001; 12(3):346-53.
- Tubulogenesis assays can be used to monitor the ability of cultured cells, generally endothelial cells, to form tubular structures on a matrix substrate, which generally simulates the environment of the extracellular matrix.
- exemplary substrates include MATRIGELTM (Becton Dickinson), an extract of basement membrane proteins containing laminin, collagen IV, and heparin sulfate proteoglycan, which is liquid at 4° C. and forms a solid gel at 37° C.
- Other suitable matrices comprise extracellular components such as collagen, fibronectin, and/or fibrin. Cells are stimulated with a pro-angiogenic stimulant, and their ability to form tubules is detected by imaging.
- Tubules can generally be detected after an overnight incubation with stimuli, but longer or shorter time frames may also be used.
- Tube formation assays are well known in the art (e.g., Jones M K et al., 1999, Nature Medicine 5:1418-1423). These assays have traditionally involved stimulation with serum or with the growth factors FGF or VEGF.
- the assay is performed with cells cultured in serum free medium.
- the assay is performed in the presence of one or more pro-angiogenic agents, e.g., inflammatory angiogenic factors, such as TNF- ⁇ , FGF, VEGF, phorbol myristate acetate (PMA), TNF-alpha, ephrin, etc.
- pro-angiogenic agents e.g., inflammatory angiogenic factors, such as TNF- ⁇ , FGF, VEGF, phorbol myristate acetate (PMA), TNF-alpha, ephrin, etc.
- HMVEC human microvascular endothelial
- Migration assays are known in the art (e.g., Paik J H et al., 2001, J Biol Chem 276:11830-11837).
- cultured endothelial cells are seeded onto a matrix-coated porous lamina, with pore sizes generally smaller than typical cell size.
- the lamina is typically a membrane, such as the transwell polycarbonate membrane (Corning Costar Corporation, Cambridge, Mass.), and is generally part of an upper chamber that is in fluid contact with a lower chamber containing pro-angiogenic stimuli. Migration is generally assayed after an overnight incubation with stimuli, but longer or shorter time frames may also be used. Migration is assessed as the number of cells that crossed the lamina, and may be detected by staining cells with hemotoxylin solution (VWR Scientific.), or by any other method for determining cell number. In another exemplary set up, cells are fluorescently labeled and migration is detected using fluorescent readings, for instance using the Falcon HTS FluoroBlok (Becton Dickinson). While some migration is observed in the absence of stimulus, migration is greatly increased in response to pro-angiogenic factors. The assay can be used to test the effect of a ET2-binding ligand on endothelial cell migration.
- An exemplary sprouting assay is a three-dimensional in vitro angiogenesis assay that uses a cell-number defined spheroid aggregation of endothelial cells (“spheroid”), embedded in a collagen gel-based matrix.
- the spheroid can serve as a starting point for the sprouting of capillary-like structures by invasion into the extracellular matrix (termed “cell sprouting”) and the subsequent formation of complex anastomosing networks (Korff and Augustin, 1999, J Cell Sci 112:3249-58).
- spheroids are prepared by pipetting 400 human umbilical vein endothelial cells (HUMVECs) into individual wells of a nonadhesive 96-well plates to allow overnight spheroidal aggregation (Korff and Augustin, J Cell Biol 143: 1341-52, 1998). Spheroids are harvested and seeded in 900 ⁇ l of methocel-collagen solution and pipetted into individual wells of a 24 well plate to allow collagen gel polymerization. Test agents are added after 30 min by pipetting 100 ⁇ l of 10-fold concentrated working dilution of the test substances on top of the gel. Plates are incubated at 37° C. for 24 h. Dishes are fixed at the end of the experimental incubation period by addition of paraformaldehyde. Sprouting intensity of endothelial cells can be quantitated by an automated image analysis system to determine the cumulative sprout length per spheroid.
- HUMVECs human umbilical vein endotheli
- an ET2 binding ligand has a statistically significant effect in an assay described herein, e.g., a cellular assay described herein.
- compositions e.g., pharmaceutically acceptable compositions, which include an ET2-ligand, e.g., an antibody molecule, other polypeptide or peptide identified as binding to ET2, or described herein, formulated together with a pharmaceutically acceptable carrier.
- ET2-ligand e.g., an antibody molecule, other polypeptide or peptide identified as binding to ET2, or described herein
- pharmaceutically acceptable carrier e.g., a pharmaceutically acceptable carrier.
- pharmaceutical compositions encompass labeled ligands for in vivo imaging as well as therapeutic compositions.
- “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible.
- the carrier is suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g., by injection or infusion).
- the active compound i.e., protein ligand may be coated in a material to protect the compound from the action of acids and other natural conditions that may inactivate the compound.
- a “pharmaceutically acceptable salt” refers to a salt that retains the desired biological activity of the parent compound and does not impart any undesired toxicological effects (see e.g., Berge, S. M., et al. (1977) J. Pharm. Sci. 66:1-19). Examples of such salts include acid addition salts and base addition salts.
- Acid addition salts include those derived from nontoxic inorganic acids, such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydroiodic, phosphorous and the like, as well as from nontoxic organic acids such as aliphatic mono- and dicarboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, aromatic acids, aliphatic and aromatic sulfonic acids and the like.
- nontoxic inorganic acids such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydroiodic, phosphorous and the like
- nontoxic organic acids such as aliphatic mono- and dicarboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, aromatic acids, aliphatic and aromatic sulfonic acids and the like.
- Base addition salts include those derived from alkaline earth metals, such as sodium, potassium, magnesium, calcium and the like, as well as from nontoxic organic amines, such as N,N′-dibenzylethylenediamine, N-methylglucamine, chloroprocaine, choline, diethanolamine, ethylenediamine, procaine and the like.
- compositions of this invention may be in a variety of forms. These include, for example, liquid, semi-solid and solid dosage forms, such as liquid solutions (e.g., injectable and infusible solutions), dispersions or suspensions, tablets, pills, powders, liposomes and suppositories.
- liquid solutions e.g., injectable and infusible solutions
- dispersions or suspensions tablets, pills, powders, liposomes and suppositories.
- the preferred form depends on the intended mode of administration and therapeutic application. Typical preferred compositions are in the form of injectable or infusible solutions, such as compositions similar to those used for administration of humans with antibodies.
- the preferred mode of administration is parenteral (e.g., intravenous, subcutaneous, intraperitoneal, intramuscular).
- the ET2-ligand is administered by intravenous infusion or injection.
- the ET2-ligand is administered by intramuscular or subcutaneous injection.
- parenteral administration and “administered parenterally” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion.
- compositions typically must be sterile and stable under the conditions of manufacture and storage.
- a pharmaceutical composition can also be tested to insure it meets regulatory and industry standards for administration.
- endotoxin levels in the preparation can be tested using the Limulus amebocyte lysate assay (e.g., using the kit from Bio Whittaker lot # 7L3790, sensitivity 0.125 EU/mL) according to the USP 24/NF 19 methods.
- Sterility of pharmaceutical compositions can be determined using thioglycollate medium according to the USP 24/NF 19 methods.
- the preparation is used to inoculate the thioglycollate medium and incubated at 35° C. for 14 or more days. The medium is inspected periodically to detect growth of a microorganism.
- the composition can be formulated as a solution, microemulsion, dispersion, liposome, or other ordered structure suitable to high drug concentration.
- Sterile injectable solutions can be prepared by incorporating the active compound (i.e., the ligand) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above.
- the preferred methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- the proper fluidity of a solution can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- Prolonged absorption of injectable compositions can be brought about by including in the composition an agent that delays absorption, for example, monostearate salts and gelatin.
- the anti-ET2 protein ligands of the present invention can be administered by a variety of methods known in the art, although for many applications, the preferred route/mode of administration is intravenous injection or infusion.
- the ET2-ligand can be administered by intravenous infusion at a rate of less than 30, 20, 10, 5, or 1 mg/min to reach a dose of about 1 to 100 mg/m 2 or 7 to 25 mg/m 2 .
- the route and/or mode of administration will vary depending upon the desired results.
- the active compound may be prepared with a carrier that will protect the compound against rapid release, such as a controlled release formulation, including implants, and microencapsulated delivery systems.
- Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Many methods for the preparation of such formulations are patented or generally known. See, e.g., Sustained and Controlled Release Drug Delivery Systems , J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978.
- the ligand may be orally administered, for example, with an inert diluent or an assimilable edible carrier.
- the compound (and other ingredients, if desired) may also be enclosed in a hard or soft shell gelatin capsule, compressed into tablets, or incorporated directly into the subject's diet.
- the compounds may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.
- compositions can be administered with medical devices known in the art.
- a pharmaceutical composition of the invention can be administered with a needleless hypodermic injection device, such as the devices disclosed in U.S. Pat. Nos. 5,399,163, 5,383,851, 5,312,335, 5,064,413, 4,941,880, 4,790,824, or 4,596,556.
- a needleless hypodermic injection device such as the devices disclosed in U.S. Pat. Nos. 5,399,163, 5,383,851, 5,312,335, 5,064,413, 4,941,880, 4,790,824, or 4,596,556.
- Examples of well-known implants and modules useful in the present invention include: U.S. Pat. No. 4,487,603, which discloses an implantable micro-infusion pump for dispensing medication at a controlled rate; U.S. Pat. No. 4,486,194, which discloses a therapeutic device for administering medicants through the skin; U.S. Pat. No.
- the compounds of the invention can be formulated to ensure proper distribution in vivo.
- the blood-brain barrier excludes many highly hydrophilic compounds.
- the therapeutic compounds of the invention cross the BBB (if desired)
- they can be formulated, for example, in liposomes.
- liposomes For methods of manufacturing liposomes, see, e.g., U.S. Pat. Nos. 4,522,811; 5,374,548; and 5,399,331.
- the liposomes may comprise one or more moieties that are selectively transported into specific cells or organs, thus enhance targeted drug delivery (see, e.g., V. V. Ranade (1989) J. Clin. Pharmacol. 29:685).
- Dosage regimens are adjusted to provide the optimum desired response (e.g., a therapeutic response). For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage.
- Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subjects to be treated; each unit contains a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
- the specification for the dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active compound for the treatment of sensitivity in individuals.
- An exemplary, non-limiting range for a therapeutically or prophylactically effective amount of an antibody of the invention is 0.1-20 mg/kg, more preferably 1-10 mg/kg.
- the anti-ET2 antibody can be administered by intravenous infusion at a rate of less than 30, 20, 10, 5, or 1 mg/min to reach a dose of about 1 to 100 mg/m 2 or about 5 to 30 mg/m 2 .
- appropriate amounts can be proportionally less. It is to be noted that dosage values may vary with the type and severity of the condition to be alleviated.
- compositions of the invention may include a “therapeutically effective amount” or a “prophylactically effective amount” of an ET2-ligand of the invention.
- a “therapeutically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic result.
- a therapeutically effective amount of the composition may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the protein ligand to elicit a desired response in the individual.
- a therapeutically effective amount is also one in which any toxic or detrimental effects of the composition is outweighed by the therapeutically beneficial effects.
- a “therapeutically effective dosage” preferably inhibits a measurable parameter, e.g., tumor growth rate by at least about 20%, more preferably by at least about 40%, even more preferably by at least about 60%, and still more preferably by at least about 80% relative to untreated subjects.
- a measurable parameter e.g., tumor growth rate
- the ability of a compound to inhibit a measurable parameter, e.g., cancer, can be evaluated in an animal model system predictive of efficacy in human tumors. Alternatively, this property of a composition can be evaluated by examining the ability of the compound to inhibit, such inhibition in vitro by assays known to the skilled practitioner.
- prophylactically effective amount refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount will be less than the therapeutically effective amount.
- kits comprising the protein ligand that binds to ET2 and instructions for use, e.g., treatment, prophylactic, or diagnostic use.
- the instructions for diagnostic applications include the use of the ET2-ligand (e.g., antibody or antigen-binding fragment thereof, or other polypeptide or peptide) to detect ET2, in vitro, e.g., in a sample, e.g., a biopsy or cells from a patient having a cancer or neoplastic disorder, or in vivo.
- the instructions for therapeutic applications include suggested dosages and/or modes of administration in a patient with a cancer or neoplastic disorder.
- the kit can further contain a least one additional reagent, such as a diagnostic or therapeutic agent, e.g., a diagnostic or therapeutic agent as described herein, and/or one or more additional ET2-ligands, formulated as appropriate, in one or more separate pharmaceutical preparations.
- a diagnostic or therapeutic agent e.g., a diagnostic or therapeutic agent as described herein
- additional ET2-ligands formulated as appropriate, in one or more separate pharmaceutical preparations.
- an ET2-ligand is physically associated with a moiety that improves its stabilization and/or retention in circulation, e.g., in blood, serum, lymph, or other tissues, e.g., by at least 1.5, 2, 5, 10, or 50 fold.
- an ET2-ligand can be associated with a polymer, e.g., a substantially non-antigenic polymers, such as polyalkylene oxides or polyethylene oxides. Suitable polymers will vary substantially by weight. Polymers having molecular number average weights ranging from about 200 to about 35,000 (or about 1,000 to about 15,000, and 2,000 to about 12,500) can be used.
- an ET2-ligand can be conjugated to a water soluble polymer, e.g., hydrophilic polyvinyl polymers, e.g. polyvinylalcohol and polyvinylpyrrolidone.
- a water soluble polymer e.g., hydrophilic polyvinyl polymers, e.g. polyvinylalcohol and polyvinylpyrrolidone.
- a non-limiting list of such polymers include polyalkylene oxide homopolymers such as polyethylene glycol (PEG) or polypropylene glycols, polyoxyethylenated polyols, copolymers thereof and block copolymers thereof, provided that the water solubility of the block copolymers is maintained.
- Additional useful polymers include polyoxyalkylenes such as polyoxyethylene, polyoxypropylene, and block copolymers of polyoxyethylene and polyoxypropylene (Pluronics); polymethacrylates; carbomers; branched or unbranched polysaccharides which comprise the saccharide monomers D-mannose, D- and L-galactose, fucose, fructose, D-xylose, L-arabinose, D-glucuronic acid, sialic acid, D-galacturonic acid, D-mannuronic acid (e.g.
- polymannuronic acid or alginic acid
- D-glucosamine D-galactosamine
- D-glucose and neuraminic acid including homopolysaccharides and heteropolysaccharides such as lactose, amylopectin, starch, hydroxyethyl starch, amylose, dextrane sulfate, dextran, dextrins, glycogen, or the polysaccharide subunit of acid mucopolysaccharides, e.g. hyaluronic acid; polymers of sugar alcohols such as polysorbitol and polymannitol; heparin or heparon.
- PAO's Mono-activated, alkoxy-terminated polyalkylene oxides
- mPEG's monomethoxy-terminated polyethylene glycols
- C 1-4 alkyl-terminated polymers C 1-4 alkyl-terminated polymers
- bis-activated polyethylene oxides Glycols
- the polymer prior to cross-linking to the ligand need not be, but preferably is, water soluble.
- the product is water soluble, e.g., exhibits a water solubility of at least about 0.01 mg/ml, and more preferably at least about 0.1 mg/ml, and still more preferably at least about 1 mg/ml.
- the polymer should not be highly immunogenic in the conjugate form, nor should it possess viscosity that is incompatible with intravenous infusion or injection if the conjugate is intended to be administered by such routes.
- the polymer contains only a single group which is reactive. This helps to avoid cross-linking of ligand molecules to one another. However, it is within the scope herein to maximize reaction conditions to reduce cross-linking between ligand molecules, or to purify the reaction products through gel filtration or ion exchange chromatography to recover substantially homogenous derivatives. In other embodiments, the polymer contains two or more reactive groups for the purpose of linking multiple ligands to the polymer backbone. Again, gel filtration or ion exchange chromatography can be used to recover the desired derivative in substantially homogeneous form.
- the molecular weight of the polymer can range up to about 500,000 D, and preferably is at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D.
- the molecular weight chosen can depend upon the effective size of the conjugate to be achieved, the nature (e.g. structure, such as linear or branched) of the polymer, and the degree of derivatization.
- a covalent bond can be used to attach an ET2-ligand to a polymer, for example, crosslinking to the N-terminal amino group of the ligand and epsilon amino groups found on lysine residues of the ligand, as well as other amino, imino, carboxyl, sulfhydryl, hydroxyl or other hydrophilic groups.
- the polymer may be covalently bonded directly to the ET2-ligand without the use of a multifunctional (ordinarily bifunctional) crosslinking agent.
- Covalent binding to amino groups is accomplished by known chemistries based upon cyanuric chloride, carbonyl diimidazole, aldehyde reactive groups (PEG alkoxide plus diethyl acetal of bromoacetaldehyde; PEG plus DMSO and acetic anhydride, or PEG chloride plus the phenoxide of 4-hydroxybenzaldehyde, activated succinimidyl esters, activated dithiocarbonate PEG, 2,4,5-trichlorophenylcloroformate or P-nitrophenylcloroformate activated PEG.)
- Carboxyl groups can be derivatized by coupling PEG-amine using carbodiimide.
- Sulfhydryl groups can be derivatized by coupling to maleimido-substituted PEG (e.g. alkoxy-PEG amine plus sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate) WO 97/10847 or PEG-maleimide commercially available from Shearwater Polymers, Inc., Huntsville, Ala.).
- PEG e.g. alkoxy-PEG amine plus sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate
- PEG-maleimide commercially available from Shearwater Polymers, Inc., Huntsville, Ala.
- free amino groups on the ligand e.g.
- epsilon amino groups on lysine residues can be thiolated with 2-imino-thiolane (Traut's reagent) and then coupled to maleimide-containing derivatives of PEG, e.g., as described in Pedley et al., Br. J. Cancer, 70: 1126-1130 (1994).
- PEG polymers that can be attached to an ET2-ligand are available, e.g., from Shearwater Polymers, Inc. (Huntsville, Ala.).
- PEG derivatives include, e.g., amino-PEG, PEG amino acid esters, PEG-hydrazide, PEG-thiol, PEG-succinate, carboxymethylated PEG, PEG-propionic acid, PEG amino acids, PEG succinimidyl succinate, PEG succinimidyl propionate, succinimidyl ester of carboxymethylated PEG, succinimidyl carbonate of PEG, succinimidyl esters of amino acid PEGs, PEG-oxycarbonylimidazole, PEG-nitrophenyl carbonate, PEG tresylate, PEG-glycidyl ether, PEG-aldehyde, PEG vinylsulfone, PEG-maleimide, PEG-orthopyridyl-disulf
- the reaction conditions for coupling these PEG derivatives may vary depending on the ET2-ligand, the desired degree of PEGylation, and the PEG derivative utilized. Some factors involved in the choice of PEG derivatives include: the desired point of attachment (such as lysine or cysteine R-groups), hydrolytic stability and reactivity of the derivatives, stability, toxicity and antigenicity of the linkage, suitability for analysis, etc. Specific instructions for the use of any particular derivative are available from the manufacturer.
- the conjugates of an ET2-ligand and a polymer can be separated from the unreacted starting materials, e.g., by gel filtration or ion exchange chromatography, e.g., HPLC. Heterologous species of the conjugates are purified from one another in the same fashion. Resolution of different species (e.g. containing one or two PEG residues) is also possible due to the difference in the ionic properties of the unreacted amino acids. See, e.g., WO 96/34015.
- an ET2 ligand described herein can be provided in a kit, e.g., as a component of a kit.
- the kit includes (a) an ET2 ligand, e.g., a composition that includes an ET2 ligand, and, optionally (b) informational material.
- the informational material can be descriptive, instructional, marketing or other material that relates to the methods described herein and/or the use of an ET2 ligand for the methods described herein.
- the informational material of the kits is not limited in its form.
- the informational material can include information about production of the compound, molecular weight of the compound, concentration, date of expiration, batch or production site information, and so forth.
- the informational material relates to using the ligand to treat, prevent, or diagnosis a disorder described herein, e.g., an angiogenesis or an endothelial-cell related disorder.
- the informational material can include instructions to administer an ET2 ligand in a suitable manner to perform the methods described herein, e.g., in a suitable dose, dosage form, or mode of administration (e.g., a dose, dosage form, or mode of administration described herein).
- the informational material can include instructions to administer an ET2 ligand to a suitable subject, e.g., a human, e.g., a human having, or at risk for, increased angiogenesis (e.g., cancer or metastatic cancer.
- the material can include instructions to administer an ET2 ligand to a cancer patient, a patient with an inflammatory disorder, or a patient with excessive endothelial cell activity.
- the informational material of the kits is not limited in its form.
- the informational material e.g., instructions
- the informational material is provided in printed matter, e.g., a printed text, drawing, and/or photograph, e.g., a label or printed sheet.
- the informational material can also be provided in other formats, such as computer readable material, video recording, or audio recording.
- the informational material of the kit is contact information, e.g., a physical address, email address, website, or telephone number, where a user of the kit can obtain substantive information about an ET2 ligand and/or its use in the methods described herein.
- the informational material can also be provided in any combination of formats.
- the composition of the kit can include other ingredients, such as a solvent or buffer, a stabilizer, a preservative, a flavoring agent (e.g., a bitter antagonist or a sweetener), a fragrance or other cosmetic ingredient, and/or a second agent for treating a condition or disorder described herein, e.g., cancer or inflammation.
- the other ingredients can be included in the kit, but in different compositions or containers than an ET2 ligand.
- the kit can include instructions for admixing an ET2 ligand and the other ingredients, or for using an ET2 ligand together with the other ingredients.
- An ET2 ligand can be provided in any form, e.g., liquid, dried or lyophilized form. It is preferred that an ET2 ligand be substantially pure and/or sterile.
- the liquid solution preferably is an aqueous solution, with a sterile aqueous solution being preferred.
- reconstitution generally is by the addition of a suitable solvent.
- the solvent e.g., sterile water or buffer, can optionally be provided in the kit.
- the kit can include one or more containers for the composition containing an ET2 ligand.
- the kit contains separate containers, dividers or compartments for the composition and informational material.
- the composition can be contained in a bottle, vial, or syringe, and the informational material can be contained in a plastic sleeve or packet.
- the separate elements of the kit are contained within a single, undivided container.
- the composition is contained in a bottle, vial or syringe that has attached thereto the informational material in the form of a label.
- the kit includes a plurality (e.g., a pack) of individual containers, each containing one or more unit dosage forms (e.g., a dosage form described herein) of an ET2 ligand.
- the kit includes a plurality of syringes, ampules, foil packets, or blister packs, each containing a single unit dose of an ET2 ligand.
- the containers of the kits can be air tight, waterproof (e.g., impermeable to changes in moisture or evaporation), and/or light-tight.
- the kit optionally includes a device suitable for administration of the composition, e.g., a syringe, inhalant, pipette, forceps, measured spoon, dropper (e.g., eye dropper), swab (e.g., a cotton swab or wooden swab), or any such delivery device.
- a device suitable for administration of the composition e.g., a syringe, inhalant, pipette, forceps, measured spoon, dropper (e.g., eye dropper), swab (e.g., a cotton swab or wooden swab), or any such delivery device.
- the device is an implantable device that dispenses metered doses of the ligand.
- Protein ligands that bind to ET2 and identified by the method described herein and/or detailed herein have therapeutic and prophylactic utilities.
- these ligands can be administered to cells in culture, e.g. in vitro or ex vivo, or in a subject, e.g., in vivo, to treat, prevent, and/or diagnose a variety of disorders, such as diseases characterized by unwanted angiogenesis, e.g., cancers.
- the term “treat” or “treatment” is defined as the application or administration of an anti-ET2 antibody, alone or in combination with, a second agent to a subject, e.g., a patient, or application or administration of the agent to an isolated tissue or cell, e.g., cell line, from a subject, e.g., a patient, who has a disorder (e.g., a disorder as described herein), a symptom of a disorder or a predisposition toward a disorder, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve or affect the disorder, the symptoms of the disorder or the predisposition toward the disorder.
- a disorder e.g., a disorder as described herein
- Treating a cell refers to the inhibition, ablation or killing of a cell in vitro or in vivo, or otherwise reducing capacity of a cell, e.g., an aberrant cell, to mediate a disorder, e.g., a disorder as described herein (e.g., a cancerous disorder).
- “treating a cell” refers to a reduction in the activity and/or proliferation of a cell, e.g., a hyperproliferative cell. Such reduction does not necessarily indicate a total elimination of the cell, but a reduction, e.g., a statistically significant reduction, in the activity or the growth rate of the cell.
- an amount of an ET2-ligand effective to treat a disorder refers to an amount of the ligand which is effective, upon single or multiple dose administration to a subject, in treating a cell, e.g., a cancer cell (e.g., a ET2-expressing cancer cell), or in prolonging life of, curing, alleviating, relieving or improving the condition of a subject with a disorder as described herein beyond that expected in the absence of such treatment.
- a cancer cell e.g., a ET2-expressing cancer cell
- “inhibiting the growth” of the neoplasm refers to slowing, interrupting, arresting or stopping its growth and metastases and does not necessarily indicate a total elimination of the neoplastic growth.
- an amount of an ET2-ligand effective to prevent a disorder refers to an amount of an ET2-ligand, e.g., an anti-ET2 antibody described herein, which is effective, upon single- or multiple-dose administration to the subject, in preventing or delaying the occurrence of the onset or recurrence of a disorder, e.g., a cancer.
- induce refers to a difference, e.g., a statistically significant difference, between the two states.
- an amount effective to inhibit the proliferation of the ET2-expressing hyperproliferative cells means that the rate of growth of the cells will be different, e.g., statistically significantly different, from the untreated cells.
- the term “subject” is intended to include human and non-human animals.
- Preferred human animals include a human patient having a disorder characterized by abnormal cell proliferation or cell differentiation.
- non-human animals of the invention includes all vertebrates, e.g., non-mammals (such as chickens, amphibians, reptiles) and mammals, such as non-human primates, sheep, dog, cow, pig, etc.
- the subject is a human subject.
- the subject can be a mammal expressing a ET2-like antigen with which an antibody of the invention cross-reacts.
- a protein ligand of the invention can be administered to a human subject for therapeutic purposes (discussed further below).
- an ET2-ligand can be administered to a non-human mammal expressing the ET2-like antigen to which the ligand binds (e.g., a primate, pig or mouse) for veterinary purposes or as an animal model of human disease. Regarding the latter, such animal models may be useful for evaluating the therapeutic efficacy of the ligand (e.g., testing of dosages and time courses of administration).
- the invention provides a method of treating (e.g., ablating, killing, reducing growth of cell division of) a cell (e.g., a non-cancerous cell, e.g., a normal, benign or hyperplastic cell, or a cancerous cell, e.g., a malignant cell, e.g., cell found in a solid tumor, a soft tissue tumor, or a metastatic lesion (e.g., a cell found in renal, urothelial, colonic, rectal, pulmonary, breast or hepatic, cancers and/or metastasis))s.
- Methods of the invention include the steps of contacting the cell with an ET2-ligand, e.g., an anti-ET2 antibody described herein, in an amount sufficient to treat, e.g., inhibit cell growth or division, or ablate or kill the cell.
- the subject method can be used on cells in culture, e.g. in vitro or ex vivo.
- cancerous or metastatic cells e.g., renal, urothelial, colon, rectal, lung, breast, ovarian, prostatic, or liver cancerous or metastatic cells
- the contacting step can be effected by adding the ET2-ligand to the culture medium.
- the method can be performed on cells (e.g., cancerous or metastatic cells) present in a subject, as part of an in vivo (e.g., therapeutic or prophylactic) protocol.
- the contacting step is effected in a subject and includes administering the ET2-ligand to the subject under conditions effective to permit both binding of the ligand to the cell and the treating, e.g., the inhibition of growth or division, or the killing or ablating of the cell.
- the inhibitors of ET2 can reduce angiogenesis (e.g., uncontrolled or unwanted angiogenesis)—such as angiogenesis associated with vascular malformations and cardiovascular disorders (e.g., atherosclerosis, restenosis and arteriovenous malformations), chronic inflammatory diseases (e.g., diabetes mellitus, inflammatory bowel disease, psoriasis and rheumatoid arthritis), aberrant wound repairs (e.g., those that are observed following excimer laser eye surgery), circulatory disorders (e.g., Raynaud's phenomenon), crest syndromes (e.g., calcinosis, esophageal and dyomotiloty), dermatological disorders (e.g., Port-wine stains, arterial ulcers, systemic vasculitis and scleroderma), or ocular disorders (e.g., blindness caused by neovascular disease, neovascular glaucoma, corneal neovascularization, trachom
- the method can be used to treat a cancer.
- cancer hyperproliferative
- malignant and neoplastic
- neoplasm refers to those cells in an abnormal state or condition characterized by rapid proliferation or neoplasm.
- the terms include all types of cancerous growths or oncogenic processes, metastatic tissues or malignantly transformed cells, tissues, or organs, irrespective of histopathologic type or stage of invasiveness.
- Pathologic hyperproliferative occur in disease states characterized by malignant tumor growth.
- Neoplasia refers to “new cell growth” that results as a loss of responsiveness to normal growth controls, e.g. to neoplastic cell growth.
- a “hyperplasia” refers to cells undergoing an abnormally high rate of growth.
- neoplasia and hyperplasia can be used interchangeably, as their context will reveal, referring generally to cells experiencing abnormal cell growth rates.
- Neoplasias and hyperplasias include “tumors,” which may be benign, premalignant or malignant.
- cancerous disorders include, but are not limited to, solid tumors, soft tissue tumors, and metastatic lesions.
- solid tumors include malignancies, e.g., sarcomas, adenocarcinomas, and carcinomas, of the various organ systems, such as those affecting lung, breast, lymphoid, gastrointestinal (e.g., colon), and genitourinary tract (e.g., renal, urothelial cells), pharynx, prostate, ovary as well as adenocarcinomas which include malignancies such as most colon cancers, rectal cancer, renal-cell carcinoma, liver cancer, non-small cell carcinoma of the lung, cancer of the small intestine and so forth. Metastatic lesions of the aforementioned cancers can also be treated or prevented using the methods and compositions of the invention.
- the subject method can be useful in treating malignancies of the various organ systems, such as those affecting lung, breast, lymphoid, gastrointestinal (e.g., colon), and genitourinary tract, prostate, ovary, pharynx, as well as adenocarcinomas which include malignancies such as most colon cancers, renal-cell carcinoma, prostate cancer and/or testicular tumors, non-small cell carcinoma of the lung, cancer of the small intestine and cancer of the esophagus.
- malignancies of the various organ systems such as those affecting lung, breast, lymphoid, gastrointestinal (e.g., colon), and genitourinary tract, prostate, ovary, pharynx, as well as adenocarcinomas which include malignancies such as most colon cancers, renal-cell carcinoma, prostate cancer and/or testicular tumors, non-small cell carcinoma of the lung, cancer of the small intestine and cancer of the esophagus.
- Exemplary solid tumors that can be treated include: fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal
- carcinoma is recognized by those skilled in the art and refers to malignancies of epithelial or endocrine tissues including respiratory system carcinomas, gastrointestinal system carcinomas, genitourinary system carcinomas, testicular carcinomas, breast carcinomas, prostatic carcinomas, endocrine system carcinomas, and melanomas.
- Exemplary carcinomas include those forming from tissue of the cervix, lung, prostate, breast, head and neck, colon and ovary.
- carcinosarcomas e.g., which include malignant tumors composed of carcinomatous and sarcomatous tissues.
- An “adenocarcinoma” refers to a carcinoma derived from glandular tissue or in which the tumor cells form recognizable glandular structures.
- sarcoma is recognized by those skilled in the art and refers to malignant tumors of mesenchymal derivation.
- the subject method can also be used to inhibit the proliferation of hyperplastic/neoplastic cells of hematopoietic origin, e.g., arising from myeloid, lymphoid or erythroid lineages, or precursor cells thereof.
- hyperplastic/neoplastic cells of hematopoietic origin e.g., arising from myeloid, lymphoid or erythroid lineages, or precursor cells thereof.
- the present invention contemplates the treatment of various myeloid disorders including, but not limited to, acute promyeloid leukemia (APML), acute myelogenous leukemia (AML) and chronic myelogenous leukemia (CML) (reviewed in Vaickus, L. (1991) Crit Rev. in Oncol./Hemotol. 11:267-97).
- APML acute promyeloid leukemia
- AML acute myelogenous leukemia
- CML chronic myelogenous leukemia
- Lymphoid malignancies which may be treated by the subject method include, but are not limited to acute lymphoblastic leukemia (ALL), which includes B-lineage ALL and T-lineage ALL, chronic lymphocytic leukemia (CLL), prolymphocytic leukemia (PLL), hairy cell leukemia (HLL) and Waldenstrom's macroglobulinemia (WM).
- ALL acute lymphoblastic leukemia
- CLL chronic lymphocytic leukemia
- PLL prolymphocytic leukemia
- HLL hairy cell leukemia
- W Waldenstrom's macroglobulinemia
- malignant lymphomas contemplated by the treatment method of the present invention include, but are not limited to, non-Hodgkin's lymphoma and variants thereof, peripheral T-cell lymphomas, adult T-cell leukemia/lymphoma (ATL), cutaneous T-cell lymphoma (CTCL), large granular lymphocytic leukemia (LGF) and Hodgkin's disease.
- non-Hodgkin's lymphoma and variants thereof peripheral T-cell lymphomas
- ATL adult T-cell leukemia/lymphoma
- CTCL cutaneous T-cell lymphoma
- LGF large granular lymphocytic leukemia
- Hodgkin's disease Hodgkin's disease.
- ET2 ligands that are agonists can be used to stimulate angiogenesis, e.g., aid wound healing, burns, and other disorders which require increased angiogenesis.
- ET2-ligands are described in “Pharmaceutical Compositions”. Suitable dosages of the molecules used will depend on the age and weight of the subject and the particular drug used.
- the ligands can be used as competitive agents to inhibit, reduce an undesirable interaction, e.g., between a natural or pathological agent and the ET2.
- the ET2-ligands are used to kill, ablate, or inhibit the growth of cancerous cells and normal, benign hyperplastic, and cancerous cells in vivo.
- the ligands can be used by themselves or conjugated to an agent, e.g., a cytotoxic drug, radioisotope. This method includes: administering the ligand alone or attached to a cytotoxic drug, to a subject requiring such treatment.
- cytotoxic agent and “cytostatic agent” and “anti-tumor agent” are used interchangeably herein and refer to agents that have the property of inhibiting the growth or proliferation (e.g., a cytostatic agent), or inducing the killing, of hyperproliferative cells, e.g., an aberrant cancer cell.
- cytotoxic agent is used interchangeably with the terms “anti-cancer” or “anti-tumor” to mean an agent, which inhibits the development or progression of a neoplasm, particularly a solid tumor, a soft tissue tumor, or a metastatic lesion.
- Nonlimiting examples of anti-cancer agents include, e.g., antimicrotubule agents, topoisomerase inhibitors, antimetabolites, mitotic inhibitors, alkylating agents, intercalating agents, agents capable of interfering with a signal transduction pathway, agents that promote apoptosis, radiation, and antibodies against other tumor-associated antigens (including naked antibodies, immunotoxins and radioconjugates).
- anti-cancer agents examples include antitubulin/antimicrotubule, e.g., paclitaxel, vincristine, vinblastine, vindesine, vinorelbin, taxotere; topoisomerase I inhibitors, e.g., topotecan, camptothecin, doxorubicin, etoposide, mitoxantrone, daunorubicin, idarubicin, teniposide, amsacrine, epirubicin, merbarone, piroxantrone hydrochloride; antimetabolites, e.g., 5-fluorouracil (5-FU), methotrexate, 6-mercaptopurine, 6-thioguanine, fludarabine phosphate, cytarabine/Ara-C, trimetrexate, gemcitabine, acivicin, alanosine, pyrazofurin, N-Phosphoracetyl-L-
- topoisomerase I inhibitors
- ET2-ligands can recognize normal, endothelial cells.
- the ligands can also bind to cells in the vicinity of the cancerous cells.
- the ligands can inhibit the growth of, and/or kill these cells. In this manner, the ligands may indirectly attack the cancerous cells which may rely on surrounding cells for nutrients, growth signals and so forth.
- the ET2-ligands e.g., modified with a cytotoxin
- the ligands may be used to deliver a variety of cytotoxic drugs including therapeutic drugs, a compound emitting radiation, molecules of plants, fungal, or bacterial origin, biological proteins, and mixtures thereof.
- the cytotoxic drugs can be intracellularly acting cytotoxic drugs, such as short-range radiation emitters, including, for example, short-range, high-energy ⁇ -emitters, as described herein.
- Enzymatically active toxins and fragments thereof are exemplified by diphtheria toxin A fragment, nonbinding active fragments of diphtheria toxin, exotoxin A (from Pseudomonas aeruginosa ), ricin A chain, abrin A chain, modeccin A chain, ⁇ -sacrin, certain Aleurites fordii proteins, certain Dianthin proteins, Phytolacca americana proteins (PAP, PAPII and PAP-S), Morodica charantia inhibitor, curcin, crotin, Saponaria officinalis inhibitor, gelonin, mitogillin, restrictocin, phenomycin, and enomycin.
- cytotoxic moieties that can be conjugated to the antibodies include adriamycin, chlorambucil, daunomycin, methotrexate, neocarzinostatin, and platinum.
- recombinant nucleic acid techniques can be used to construct a nucleic acid that encodes the ligand (e.g., antibody or antigen-binding fragment thereof) and the cytotoxin (or a polypeptide component thereof) as translational fusions.
- the recombinant nucleic acid is then expressed, e.g., in cells and the encoded fusion polypeptide isolated.
- a first protein ligand is conjugated with a prodrug which is activated only when in close proximity with a prodrug activator.
- the prodrug activator is conjugated with a second protein ligand, preferably one which binds to a non-competing site on the target molecule. Whether two protein ligands bind to competing or non-competing binding sites can be determined by conventional competitive binding assays.
- Drug-prodrug pairs suitable for use in the practice of the present invention are described in Blakey et al., (1996) Cancer Research, 56:3287-3292.
- the ET2-ligand can be coupled to high energy radiation emitters, for example, a radioisotope, such as 131 I, a ⁇ -emitter, which, when localized at the tumor site, results in a killing of several cell diameters.
- a radioisotope such as 131 I
- a ⁇ -emitter which, when localized at the tumor site, results in a killing of several cell diameters.
- radioisotopes include ⁇ -emitters, such as 212 Bi, 213 Bi, and 211 At, and ⁇ -emitters, such as 186 Re and 90 Y.
- Lu 117 may also be used as both an imaging and cytotoxic agent.
- Radioimmunotherapy (RIT) using antibodies labeled with 131 I, 90 Y, and 177 Lu is under intense clinical investigation. There are significant differences in the physical characteristics of these three nuclides and as a result, the choice of radionuclide is very critical in order to deliver maximum radiation dose to the tumor.
- the higher beta energy particles of 90 Y may be good for bulky tumors.
- the relatively low energy beta particles of 131 I are ideal, but in vivo dehalogenation of radioiodinated molecules is a major disadvantage for internalizing antibody.
- 177 Lu has low energy beta particle with only 0.2-0.3 mm range and delivers much lower radiation dose to bone marrow compared to 90 Y.
- the ET2-ligands can be used directly in vivo to eliminate antigen-expressing cells via natural complement-dependent cytotoxicity (CDC) or antibody-dependent cellular cytotoxicity (ADCC).
- the protein ligands of the invention can include complement binding effector domain, such as the Fc portions from IgG1, -2, or -3 or corresponding portions of IgM which bind complement.
- a population of target cells is ex vivo treated with a binding agent of the invention and appropriate effector cells. The treatment can be supplemented by the addition of complement or serum containing complement.
- phagocytosis of target cells coated with a protein ligand of the invention can be improved by binding of complement proteins.
- cells coated with the protein ligand that includes a complement binding effector domain are lysed by complement.
- Also encompassed by the present invention is a method of killing or ablating which involves using the ET2-ligand for prophylaxis.
- these materials can be used to prevent or delay development or progression of cancers.
- ET2-ligands of the invention can be administered in combination with one or more of the existing modalities for treating cancers, including, but not limited to: surgery; radiation therapy, and chemotherapy.
- Protein ligands that bind to ET2 and identified by the method described herein and/or detailed herein have in vitro and in vivo diagnostic, therapeutic and prophylactic utilities.
- the present invention provides a diagnostic method for detecting the presence of a ET2, in vitro (e.g., a biological sample, such as tissue, biopsy, e.g., a cancerous tissue) or in vivo (e.g., in vivo imaging in a subject).
- a diagnostic method for detecting the presence of a ET2 in vitro (e.g., a biological sample, such as tissue, biopsy, e.g., a cancerous tissue) or in vivo (e.g., in vivo imaging in a subject).
- the method includes: (i) contacting a sample with ET2-ligand; and (ii) detecting formation of a complex between the ET2-ligand and the sample.
- the method can also include contacting a reference sample (e.g., a control sample) with the ligand, and determining the extent of formation of the complex between the ligand an the sample relative to the same for the reference sample.
- a change e.g., a statistically significant change, in the formation of the complex in the sample or subject relative to the control sample or subject can be indicative of the presence of ET2 in the sample.
- Another method includes: (i) administering the ET2-ligand to a subject; and (iii) detecting formation of a complex between the ET2-ligand, and the subject.
- the detecting can include determining location or time of formation of the complex.
- the ET2-ligand can be directly or indirectly labeled with a detectable substance to facilitate detection of the bound or unbound antibody.
- detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials and radioactive materials.
- Complex formation between the ET2-ligand and ET2 can be detected by measuring or visualizing either the ligand bound to the ET2 or unbound ligand.
- Conventional detection assays can be used, e.g., an enzyme-linked immunosorbent assays (ELISA), a radioimmunoassay (RIA) or tissue immunohistochemistry.
- ELISA enzyme-linked immunosorbent assays
- RIA radioimmunoassay
- tissue immunohistochemistry e.g., tissue immunohistochemistry.
- the presence of ET2 can be assayed in a sample by a competition immunoassay utilizing standards labeled with a detectable substance and an unlabeled ET2-ligand.
- the biological sample, the labeled standards and the ET2 binding agent are combined and the amount of labeled standard bound to the unlabeled ligand is determined.
- the amount of ET2 in the sample is inversely proportional to the amount of labeled standard bound to the ET2 binding agent.
- Fluorophore and chromophore labeled protein ligands can be prepared. Since antibodies and other proteins absorb light having wavelengths up to about 310 nm, the fluorescent moieties should be selected to have substantial absorption at wavelengths above 310 nm and preferably above 400 nm. A variety of suitable fluorescers and chromophores are described by Stryer (1968) Science, 162:526 and Brand, L. et al. (1972) Annual Review of Biochemistry, 41:843-868. The protein ligands can be labeled with fluorescent chromophore groups by conventional procedures such as those disclosed in U.S. Pat. Nos. 3,940,475, 4,289,747, and 4,376,110.
- fluorescers having a number of the desirable properties described above is the xanthene dyes, which include the fluoresceins and rhodamines.
- Another group of fluorescent compounds are the naphthylamines.
- the protein ligand can be used to detect the presence or localization of the ET2 in a sample, e.g., using fluorescent microscopy (such as confocal or deconvolution microscopy).
- Immunohistochemistry can be performed using the protein ligands described herein.
- the antibody in the case of an antibody, the antibody can synthesized with a label (such as a purification or epitope tag), or can be detectably labeled, e.g., by conjugating a label or label-binding group.
- a chelator can be attached to the antibody.
- the antibody is then contacted to a histological preparation, e.g., a fixed section of tissue that is on a microscope slide. After an incubation for binding, the preparation is washed to remove unbound antibody.
- the preparation is then analyzed, e.g., using microscopy, to identify if the antibody bound to the preparation.
- the antibody (or other polypeptide or peptide) can be unlabeled at the time of binding. After binding and washing, the antibody is labeled in order to render it detectable.
- the ET2-ligand can also be immobilized on a protein array.
- the protein array can be used as a diagnostic tool, e.g., to screen medical samples (such as isolated cells, blood, sera, biopsies, and the like).
- the protein array can also include other ligands, e.g., that bind to ET2 or to other target molecules.
- polypeptide arrays Methods of producing polypeptide arrays are described, e.g., in De Wildt et al. (2000) Nat. Biotechnol. 18:989-994; Lueking et al. (1999) Anal. Biochem. 270:103-111; Ge (2000) Nucleic Acids Res. 28, e3, I-VII; MacBeath and Schreiber (2000) Science 289:1760-1763; WO 01/40803 and WO 99/51773A1.
- Polypeptides for the array can be spotted at high speed, e.g., using commercially available robotic apparati, e.g., from Genetic MicroSystems or BioRobotics.
- the array substrate can be, for example, nitrocellulose, plastic, glass, e.g., surface-modified glass.
- the array can also include a porous matrix, e.g., acrylamide, agarose, or another polymer.
- the array can be an array of antibodies, e.g., as described in De Wildt, supra.
- Cells that produce the protein ligands can be grown on a filter in an arrayed format. Polypeptide production is induced, and the expressed polypeptides are immobilized to the filter at the location of the cell.
- a protein array can be contacted with a labeled target to determine the extent of binding of the target to each immobilized polypeptide from the diversity strand library. If the target is unlabeled, a sandwich method can be used, e.g., using a labeled probed, to detect binding of the unlabeled target.
- Information about the extent of binding at each address of the array can be stored as a profile, e.g., in a computer database.
- the protein array can be produced in replicates and used to compare binding profiles, e.g., of a target and a non-target.
- protein arrays can be used to identify individual members of the diversity strand library that have desired binding properties with respect to one or more molecules.
- the ET2-ligand can be used to label cells, e.g., cells in a sample (e.g., a patient sample).
- the ligand is also attached (or attachable) to a fluorescent compound.
- the cells can then be sorted using fluorescent activated cell sorted (e.g., using a sorter available from Becton Dickinson Immunocytometry Systems, San Jose Calif.; see also U.S. Pat. Nos. 5,627,037; 5,030,002; and 5,137,809).
- a laser beam excites the fluorescent compound while a detector counts cells that pass through and determines whether a fluorescent compound is attached to the cell by detecting fluorescence.
- the amount of label bound to each cell can be quantified and analyzed to characterize the sample.
- the sorter can also deflect the cell and separate cells bound by the ligand from those cells not bound by the ligand.
- the separated cells can be cultured and/or characterized.
- the invention provides a method for detecting the presence of a ET2-expressing cancerous tissues in vivo.
- the method includes (i) administering to a subject (e.g., a patient having a cancer or neoplastic disorder) an anti-ET2 antibody, conjugated to a detectable marker; (ii) exposing the subject to a means for detecting said detectable marker to the ET2-expressing tissues or cells.
- a subject e.g., a patient having a cancer or neoplastic disorder
- an anti-ET2 antibody conjugated to a detectable marker
- exposing the subject to a means for detecting said detectable marker to the ET2-expressing tissues or cells.
- the subject is imaged, e.g., by NMR or other tomographic means.
- labels useful for diagnostic imaging in accordance with the present invention include radiolabels such as 131 I, 111 In, 123 I, 99m Tc, 32 P, 125 I, 3 H, 14 C, and 188 Rh, fluorescent labels such as fluorescein and rhodamine, nuclear magnetic resonance active labels, positron emitting isotopes detectable by a positron emission tomography (“PET”) scanner, chemiluminescers such as luciferin, and enzymatic markers such as peroxidase or phosphatase.
- Short-range radiation emitters, such as isotopes detectable by short-range detector probes can also be employed.
- the protein ligand can be labeled with such reagents using known techniques.
- a radiolabeled ligand of this invention can also be used for in vitro diagnostic tests.
- the specific activity of a isotopically-labeled ligand depends upon the half-life, the isotopic purity of the radioactive label, and how the label is incorporated into the antibody.
- the ligand is administered to the patient, is localized to the tumor bearing the antigen with which the ligand reacts, and is detected or “imaged” in vivo using known techniques such as radionuclear scanning using e.g., a gamma camera or emission tomography. See e.g., A. R. Bradwell et al., “Developments in Antibody Imaging”, Monoclonal Antibodies for Cancer Detection and Therapy , R. W. Baldwin et al., (eds.), pp 65-85 (Academic Press 1985).
- a positron emission transaxial tomography scanner such as designated Pet VI located at Brookhaven National Laboratory, can be used where the radiolabel emits positrons (e.g., 11 C, 18 F, 15 O, and 13 N).
- Magnetic Resonance Imaging uses NMR to visualize internal features of living subject, and is useful for prognosis, diagnosis, treatment, and surgery. MRI can be used without radioactive tracer compounds for obvious benefit.
- Some MRI techniques are summarized in EP-A-0 502 814. Generally, the differences related to relaxation time constants T1 and T2 of water protons in different environments is used to generate an image. However, these differences can be insufficient to provide sharp high resolution images.
- contrast agents include a number of magnetic agents paramagnetic agents (which primarily alter T1) and ferromagnetic or superparamagnetic (which primarily alter T2 response).
- Chelates e.g., EDTA, DTPA and NTA chelates
- Some paramagnetic substances e.g., Fe +3 , Mn +2 , Gd +3 .
- Other agents can be in the form of particles, e.g., less than 10 ⁇ m to about 10 nM in diameter).
- Particles can have ferromagnetic, antiferromagnetic or superparamagnetic properties.
- Particles can include, e.g., magnetite (Fe 3 O 4 ), ⁇ -Fe 2 O 3 , ferrites, and other magnetic mineral compounds of transition elements.
- Magnetic particles may include: one or more magnetic crystals with and without nonmagnetic material.
- the nonmagnetic material can include synthetic or natural polymers (such as sepharose, dextran, dextrin, starch and the like.
- the ET2-ligands can also be labeled with an indicating group containing of the NMR-active 19 F atom, or a plurality of such atoms inasmuch as (i) substantially all of naturally abundant fluorine atoms are the 19 F isotope and, thus, substantially all fluorine-containing compounds are NMR-active; (ii) many chemically active polyfluorinated compounds such as trifluoracetic anhydride are commercially available at relatively low cost, and (iii) many fluorinated compounds have been found medically acceptable for use in humans such as the perfluorinated polyethers utilized to carry oxygen as hemoglobin replacements. After permitting such time for incubation, a whole body MRI is carried out using an apparatus such as one of those described by Pykett (1982) Scientific American, 246:78-88 to locate and image cancerous tissues.
- kits comprising the protein ligand that binds to ET2 and instructions for diagnostic use, e.g., the use of the ET2-ligand (e.g., antibody or antigen-binding fragment thereof, or other polypeptide or peptide) to detect ET2, in vitro, e.g., in a sample, e.g., a biopsy or cells from a patient having a cancer or neoplastic disorder, or in vivo, e.g., by imaging a subject.
- the kit can further contain a least one additional reagent, such as a label or additional diagnostic agent.
- the ligand can be formulated as a pharmaceutical composition.
- the biotinylated protease domain of ET2 was captured on streptavidin coated magnetic beads (M280-DYNAL).
- the ET2 coated beads were washed three times with 2% non-fat milk in PBS prior to addition of library phage.
- Library phage (10 12 particles) were added to the magnetic beads in a final volume of 100 ⁇ l. The mix was allowed to incubate at room temperature with end over end mixing for two hours. After this time, the supernatant was removed and the beads washed three times with 0.1% Tween 2% non-fat milk in PBS. After the final wash, the beads were transferred to a new tube. Phage were eluted from the beads by addition of 1 ml of 100 mM Triethanolamine buffer (TEA).
- TAA Triethanolamine buffer
- Exemplary data is provided in Table 4 below: TABLE 4 Exemplary Phage ELISA data BSA-Strept-rET2 BSA-STrept 0.342 0.120 0.323 0.090 0.320 0.086 0.278 0.082 0.261 0.090 0.280 0.086 0.247 0.091 0.244 0.088 0.263 0.131 0.264 0.102 0.172 0.087 0.223 0.088 0.200 0.100 0.272 0.083 0.263 0.087 0.233 0.097 0.158 0.129 0.490 0.111 0.225 0.092 0.191 0.092 0.193 0.113 0.210 0.089 0.186 0.103 0.259 0.098 0.198 0.143 0.177 0.116 0.197 0.097 0.173 0.094 0.198 0.148 0.202 0.102 0.270 0.108 0.204 0.095 0.189 0.164 0.202 0.128 0.163 0.110 0.188 0.106 0.199 0.122 0.187 0.109 0.246 0.120 0.215 0.102 0.178 0.162 0.169 0.158 0.189 0.114 0.210 0.125 0.192 0.
- An assay for evaluating inhibitors of ET2 can be performed as follows: Test compounds for inhibition of the protease activity of the protease domain of ET2 are assayed in Costar 96 well tissue culture plates (Corning N.Y.). Approximately 2-3 nM ET2 is mixed with varying concentrations of inhibitor in 29.2 mM Tris, pH 8.4, 29.2 mM imidazole, 217 mM NaCl (100 mL final volume), and allowed to incubate at room temperature for 30 minutes.
- An exemplary structure of S 2765 is:
- the assay buffer for assaying ET1 activity was HBSA (10 mM Hepes, 150 mM sodium chloride, pH 7.4, 0.1% bovine serum albumin). All reagents were from Sigma Chemical Co. (St. Louis, Mo.), unless otherwise indicated. Two IC 50 assays at 30-minute (a 30-minute preincubation of test Fab and enzyme) and at O-minutes (no preincubation of test Fab and enzyme) were conducted.
- IC 50 assay For the IC 50 assay at 30-minute, the following reagents were combined in appropriate wells of a Corning microtiter plate: 50 microliters of HBSA, 50 microliters of the test compound, diluted (covering a broad concentration range) in HBSA (or HBSA alone for uninhibited velocity measurement), and 50 microliters of the rET1 (Corvas International) diluted in buffer, yielding a final enzyme concentration of 250 pM.
- the assay was initiated by the addition of 50 microliters of the substrate Spectrozyme tPA (Methylsulfonyl-D-cyclohexyltyrosyl-L-glycyl-L-arginine-p-nitroaniline acetate, obtained from American Diagnostica, Inc. (Greenwich, Conn.) and reconstituted in deionized water, followed by dilution in HBSA prior to the assay) were added to the wells, yielding a final volume of 200 microliters and a final substrate concentration of 300 ⁇ M (about 1.5-times Km).
- substrate Spectrozyme tPA Metalsulfonyl-D-cyclohexyltyrosyl-L-glycyl-L-arginine-p-nitroaniline acetate, obtained from American Diagnostica, Inc. (Greenwich, Conn.) and reconstituted in deionized water, followed by dilution in HBSA prior to the
- IC 50 assay For the IC 50 assay at O-minute, the same reagents were combined: 50 microliters of HBSA, 50 microliters of the test compound, diluted (covering the identical concentration range) in HBSA (or HBSA alone for uninhibited velocity measurement), and 50 microliters of the substrate Spectrozyme tPA. The assay was initiated by the addition of 50 microliters of rET2. The final concentrations of all components were identical in both IC 50 assays (at 30- and 0-minute incubations).
- the initial velocity of chromogenic substrate hydrolysis was measured in both assays by the change of absorbance at 405 nM using a Thermo Max Kinetic Microplate Reader (Molecular Devices) over a 5 minute period, in which less than 5% of the added substrate was used.
- the concentration of added inhibitor, which caused a 50% decrease in the initial rate of hydrolysis was defined as the respective IC 50 value in each of the two assays (30- and 0-minute).
- the sequence data for the Fab inhibitors is shown in Table 1 (above, in the Summary section).
- Four clones (A2, B5, D2 & H10) share the same heavy chain sequence.
- This sequence contains a lysine to amber stop codon mutation. Although one would normally expect such a mutation to result in truncation of the heavy chain, and consequently result in a non-functional Fab, all propagations were performed in a supE mutant of E. coli .
- This mutant strain inserts a glutamine residue, shown as q in the sequence data, at the amber stop codon thus allowing production of the mature Fab.
- Fab reformatting is a two step process in which the Fab is first cloned into the IgG1 expression vector (pRRV) which provides a eukaryotic promoter to drive expression of the heavy and light chains and the heavy chain constant sequence.
- the E. coli promoter used to drive expression of the heavy chain is replaced with a eukaryotic internal ribosome entry sequence (IRES).
- IgG1 expression vector pRRV
- IgG1 expression vector which provides a eukaryotic promoter to drive expression of the heavy and light chains and the heavy chain constant sequence.
- the E. coli promoter used to drive expression of the heavy chain is replaced with a eukaryotic internal ribosome entry sequence (IRES).
- IRS eukaryotic internal ribosome entry sequence
- the antibodies were transiently expressed in HEK 293T cells and subsequently purified from the cell culture media using protein A affinity chromatography.
- the purified antibody was tested in the same continuous in vitro assay previously used for analysis of the Fabs.
- the Ki values are shown in Table 7.
- DU-145 tumor cells injected subcutaneously into the animal's flank 6-8 week old SCID mice (Charles River). Five to 10 days after tumor implantation the animals were randomized into groups of 10-15 animals. Treatment was by IP injection, either once a day with Fab (0, 200 or 400 ⁇ g/animal), or once every other day with IgG (0, 10, 50 or 500 ⁇ g/animal). The study was allowed to continue until the tumors reached the maximal allowable size. Tumor sizes were measured vernier calipers (Mitutoyo Model 573) and tumor volumes calculated. At the end of the study tumors were excised and weighed. Animal health was assessed during the study by regular weighing.
- Treatment with 400 ⁇ g of Fab H10 reduced the rate of tumor growth relative to the rate in animals given the control treatments. For example, 35 days after the first dose, average tumor volumes ( FIG. 3A ) and tumor weights ( FIG. 3B ) were reduced for animals treated with 400 ⁇ g of Fab H10.
- Other useful antibodies can similarly reduce tumor growth, e.g., reduce tumor weight by at least 10, 20, 30, 40, 50% relative to a control, e.g., after 35 days.
- A10 HC (1-344) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYRMWWVRQA PGKGLEWVSY (SEQ ID NO:25) 51 ISSSGGFTNY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCAKNA 101 RRALPSMDVW GKGT Translation of A10 LC (1-354) 1 QSALTQPPSA SGTPGQRVTI SCSGSSSNIG SNYVYWYQQL PGTAPKLLIY (SEQ ID NO:26) 51 SNNQRPSGVP DRFSGSKSGT SASLAISGLR SEDEADYYCA AWDDSLSGPV 101 FGGGTKLTVL GQPKAAPS A10 HC Nucleic Acid Sequence GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTCTTTACGTC (SEQ ID NO:27) TTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACC
- G3 HC Nucleic Acid Sequence GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTCTTTACGTC (SEQ ID NO:31) TTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACGGTATGTC
- A6 HC Nucleic Acid Sequence GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTCTTTACGTC (SEQ ID NO:35) TTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACAAG
- A7 HC 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYRMSWVRQA PGKGLEWVSS (SEQ ID NO:37) 51 ISSSGGITTY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED AAIYYCAKNA 101 RRAFPSMDVW GKGT Translation of A7 LC (1-348) 1 QDIQMTQSPS SLSASVGDRV TITCRASQSI SSYLNWYQQK PGKAPKLLIY (SEQ ID NO:38) 51 AASSLQSGVP SRFSGSGSGT EFTLTINSLQ PEDFATYYCQ QLTGYPSITF 101 GQGTRLDIKR TVAAPS A7 HC Nucleic Acid Sequence GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTCTTTACGTC (SEQ ID NO:39) TTTCTTGCGCTGCTTCCGGATTCACTTTCTCT
- C8 HC 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYTMSWVRQA PGKGLEWVSY (SEQ ID NO:41) 51 IVPSGGMTKY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCARRA 101 PRGEVAFDIW GQGT Translation of C8 LC (1-354) 1 QSVLTQPASV SGSPGQSITI SCTGTSSDVG GYNYVSWYQQ HPGKAPKLMI (SEQ ID NO:42) 51 YDVSKRPSGV SNRFSGSKSG NTASLTISGL QAEDEADYYC TSYTSSSTWV 101 FGGGTKLTVL GQPKAAPS C8 HC Nucleic Acid Sequence GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTCTTTACGTC (SEQ ID NO:43) TTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCTCTCTCTCT
- H9 HC 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYSMHWVRQA PGKGLEWVSS (SEQ ID NO:45) 51 IGPSGGKTKY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCARPF 101 RGSYYYFDYW GQGT Translation of H9 LC (1-345) 1 QDIQMTQSPS SLSASIGDRV TITCQASQDT YNRLHWYQQK SGKAPKLLIY (SEQ ID NO:46) 51 DAVNLKRGVP SRFRGSGSGT NFILTITNLQ PEDTATYFCQ HSDDLSLAFG 101 GGTKVEIKRT VAAPS H9 HC Nucleic Acid Sequence GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTCTTTACGTC (SEQ ID NO:47) TTTCTTGCGCTGCTTCCGGATTCACTTT
- G10-R2 HC (1-382) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYKMWWVRQA PGKGLEWVSY (SEQ ID NO:49) 51 ISPSGGYTGY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCAKNA 101 RRAFPSMDVW GKGTTVTVSS ASTKGPS Translation of G10-APSR2 LC (1-360) 1 QDIQMTQSPL SLPVTPGEPA SISCRSSQSL LYSNGYNYLD WYLQRPGQSP (SEQ ID NO:50) 51 QLLIYLGSNR ASGVPDRFSG SGTDFTLK ISRVEAKDVG VYYCMQALQI 101 PRTFGQGTKV EIKRTVAAPS G1 HC Coding Sequence0-R2 GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTCTTTACGTC (SEQ ID NO:51)
- F3-R2 HC (1-382) (SEQ ID NO:53) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYRMHWVRQA PGKGLEWVSG 51 ISSSGGDTNY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCAKNA 101 RRAFPSMDVW GKGTTVTVSS ASTKGPS Translation of F3-R2 LC (1-345) (SEQ ID NO:54) 1 QDIQMTQSPS SVSASVGDTV TITCRASLPV NTWLAWYQQK PGKAPKLLLY 51 AASRLQSGVP SRFSGSGSGT DFTLNISSLQ PEDFATYYCQ QANTFPYTFG 101 QGTKVDIKRT VAAPS F3 HC Coding Sequence-R2 (SEQ ID NO:55) GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC TTTACGTCTTTCTTTC
- C6-R2 HC (1-382) (SEQ ID NO:57) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYSMHWVRQA PGKGLEWVSR 51 IVPSGGTTFY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCAKNA 101 RRAFPSMDVW GKGTTVTVSS ASTKGPS Translation of C6-R2 LC (1-348) (SEQ ID NO:58) 1 QSALTQDPAV SVALGQTVRI TCQGDSLRSY YASWYQQKPG QAPVLVIYSK 51 SNRPSGIPDR FSGSSSGSTA SLTITGAQAE DEADYYCNSR DSSGNHLVFG 101 GGTKLTVLGQ PKAAPS C6 HC Coding Sequence-R (SEQ ID NO:59) GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC TTTACGTCTTTCTTGCG
- A4-R3 HC (1-382) (SEQ ID NO:61) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYNMYWVRQA PGKGLEWVSG 51 IRPSGGSTQY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCAKNA 101 RRAFPSMDVW GKGTTVTVSS ASTKGPS Translation of A4-R3 LC (1-345) (SEQ ID NO:62) 1 QSELTQDPAV SVALGQTVRI TCRGDRLRSY YSSWYQQKPR QAPVLVMFGR 51 KNRPSGIPDR FSGSTSGSTA SLTITATQAD DEADYFCSSR DGSGNFLFGG 101 GTKLTVLGQP KAAPS A4 HC Coding Sequence-R3 (SEQ ID NO:63) GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC TTTACGTCTTTCTTGC
- C1-R3 HC (1-382) (SEQ ID NO:65) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYSMHWVRQA PGKGLEWVSG 51 IRPSGGSTKY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCAKNA 101 RRAFPSMDVW GKGTTVTVSS ASTKGPS Translation of C1-R3 LC (1-345) (SEQ ID NO:66) 1 QDIQMTQSPS SLSASVGDRV TITCRASQSI STYLNWYQQR PGEAPKLLIY 51 GASSLVSGVP SRFSGSGSGT DFTLTISSLQ PEDFATYYCH QSYITSWTFG 101 QGTKVEIKRT VA C1 HC Coding Sequence-R3 (SEQ ID NO:67) GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC TTTACGTCTTTCTTGC
- A2 HC coding nucleic acid GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC TTTACGTCTTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTT
- B5 HC (1-341) (SEQ ID NO:73) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYRMYWVRQA PGKGLEWVSS 51 ISPSGGDTRY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCARGG 101 PRGNKYYFDY WGQ Translation of B5 LC (1-334) (SEQ ID NO:74) 1 QYELTQPPSV SVSLGQAANI SCSGDRLGDK YTSWYQQQSG QSPVLVIYQD 51 KKRPSGIPER FSGSSSGNTA TLTISGAQAI DEAAYYCQAW ATNVVFGAGT 101 KLTVLGQPKA
- a B5 HC coding nucleic acid (SEQ ID NO:75) GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC TTTACGTCTTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTT
- D2 HC (1-341) (SEQ ID NO:77) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYRMYWVRQA PGKGLEWVSS 51 ISPSGGDTRY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCARGG 101 PRGNKYYFDY WGQ Translation of D2 LC (1-340) (SEQ ID NO:78) 1 QDIQMTQSPS SLSASVGDRV TITCRASQTI DNYLNWYQQK PGKAPKLVVY 51 AASTLQTRVP SRFSGSGSGT DFTLTIDSLK PEDFATYFCQ QGFSNPWTFG 101 QGTTVAMIRT VAA D2 HC coding nucleic acid (SEQ ID NO:79) GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC TTTACGTCTTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTT
- D5 HC (1-332) (SEQ ID NO:81) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYDMHWVRQA PGKGLEWVSS 51 ISSSGGYTAY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCARGA 101 RGTSQGYWGQ Translation of D5 LC (1-346) (SEQ ID NO:82) 1 QDIQMTQSPG TLSLSPGERG TLSCRASQFV SYSYLAWYQQ KPGQAPRLLI 51 YGASSRAKGI PDRFSGSGSGSG TDFTLTITRL EPEDFAVYYC QQYVPSVPWT 101 FGQGTKVEVK RTVAA D5 HC coding nucleic acid (SEQ ID NO:83) GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC TTTACGTCTTTCTTGCGCTGCTTCCGGATTCACT
- F8 HC (1-341) (SEQ ID NO:85) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYHMWWVRQA PGKGLEWVSG 51 ISSSRGITKY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCARGG 101 PRGNKYYFDY WGQ Translation of F8 LC (1-343) (SEQ ID NO:86) 1 QDIQMTQSPG TLSLSPGERV TLSCRASQSV TSSDLAWYQQ KPGQAPRLLI 51 SGASSRATGI PDRFSGSGSG TDFTLTISRL EPEDFAVYYC QQYGNSPGTF 101 GQGTKVEIKR TVAA F8 HC coding nucleic acid (SEQ ID NO:87) GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC TTTACGTCTTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTT
- H10 HC (1-341) (SEQ ID NO:89) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYRMYWVRQA PGKGLEWVSS 51 ISPSGGDTRY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCARGG 101 PRGNKYYFDY WGQ Translation of H10 LC (1-343) 1 QDIQMTQSPG TLSLSPGERA TLSCRASQSV SSSYLAWYQQ KPGQAPRLLI 51 YGASSRATGI PDRFSGSGSG TDFTLTISRL EPEDFAVYYC QQYGSSTWTF 101 GQGTKVEIKR TVAA (SEQ ID NO:90) H10 HC coding nucleic acid (SEQ ID NO:91) GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC TTTACGTCTTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTT
- the stop codon in the middle of a coding nucleic acid can be replaced by another codon, e.g., a codon that encodes lysine.
- a bacterial strain with a tRNA suppressor can be used to introduce a lysine or other amino acid at this position.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Ophthalmology & Optometry (AREA)
- Diabetes (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Obesity (AREA)
- Pain & Pain Management (AREA)
- Endocrinology (AREA)
- Heart & Thoracic Surgery (AREA)
- Emergency Medicine (AREA)
- Cardiology (AREA)
- Dermatology (AREA)
- Hematology (AREA)
- Rheumatology (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
- This application is a divisional of U.S. application Ser. No. 10/916,758, filed Aug. 12, 2004, which claims priority to U.S. Application Ser. No. 60/495,005, filed on Aug. 14, 2003, and U.S. Application Ser. No. 60/520,164, filed on Nov. 14, 2003, the contents of all of which are hereby incorporated by reference in their entireties.
- Angiogenesis is the biological process of producing new blood vessels by sprouting a new branch from an existing blood vessel. While angiogenesis is essential for normal development and growth, it rarely occurs in adulthood except under strictly regulated circumstances (e.g., wound healing; see, for example, Moses et al., Science, 248:1408-1410, 1990). Angiogenesis also occurs in a number of diseases, such as cancer, in which new vessels are formed to support the growth and proliferation of both primary and metastatic tumors.
- Blood vessels contain endothelial cells surrounded by a basement membrane. One of the first steps in angiogenesis is the degradation of the basement membrane by proteolytic enzymes produced by endothelial cells to form a breach in the membrane through which endothelial cells can migrate and proliferate to form a new vessel sprout. This step can be initiated as follows. First, components of the plasminogen activator (PA)-plasmin system stimulate a protease cascade that results in high concentrations of plasmin and active matrix metalloproteinases (MMPs) at the site of angiogenesis. This increased proteolytic activity leads to degradation of the extracellular matrix (ECM) and invasion of the vessel basal lamina. The release of ECM degradation products leads to chemotaxis of endothelial cells.
- Numerous pathological conditions are associated with unwanted angiogenesis. For example, tumors can induce angiogenesis in order to grow beyond minimal size and to metastasize (Hanahan and Folkman Cell 1996, 86:353-64). Tumor development is associated with increased release of angiogenesis factors, most prominently of vascular endothelial growth factor (VEGF) (Brown L F et al., Exs 1997, 79:233-69). Other disorders characterized by unwanted angiogenesis include, for example, tissue inflammation, arthritis, diabetic retinopathy, and macular degeneration by neovascularization of retina (see, e.g., Folkman et al., Science, 235:442-447, 1987).
- The endotheliases are a class of membrane proteases that are expressed on cells, particularly endothelial cells.
- In one aspect, the invention features a protein ligand that binds to Endotheliase-2 (ET2) (also referred to herein as an ET2 ligand or ET2-binding ligand). Typically, the ligand is not naturally occurring. In one embodiment, the protein ligand includes a heavy chain variable domain sequence and a light chain variable domain sequence. For example, the ligand is an antibody or an antigen-binding fragment of a full length antibody (also referred to herein as an anti-ET2 antibody).
- In one embodiment, the ET2-ligand binds to human ET2 with high affinity and specificity, and thus can be used as diagnostic, prophylactic, or therapeutic agents in vivo and in vitro. For example, the ligand specifically binds to ET2. As used herein, “specific binding” refers to ability (1) to bind to ET2, e.g., human ET2, with an affinity (Kd) of better than (i.e., numerically smaller than) 1×10−7 M, and (2) to preferentially bind to ET2, e.g., human ET2, with an affinity that is at least two-fold, 10-fold, 50-fold, 100-fold, or better (smaller Kd) than its affinity for binding to a non-specific antigen (e.g., BSA, casein) other than ET2.
- In one embodiment, the ligand modulates an activity of ET2, e.g., the proteolytic activity of ET2. In one embodiment, the ligand inhibits ET2. For example, the ligand can have a Ki of better than (i.e., numerically less than) 5 nM, 500 pM, 200 pM, 150 pM, 100 pM, 92 pM, or 75 pM, e.g., between 50 nM and 1 pM, or 200 pM and 5 pM. In one embodiment, the ligand specifically inhibits ET2, e.g., relative to another protease (e.g., a protease whose protease domain is between 30-90% identical to the ET2 protease domain, or between 30-60% identical to the ET2 protease domain). For example, the ligand does not inhibit other proteases, e.g., non-ET2 proteases such as trypsinogen-IV, membrane-type serine proteases-1, -6, -7, or Endotheliase-1 (ET1), e.g., the ligand inhibits another protease (e.g., such other proteases) with an inhibition constant at least 2-, 5-, 10-, 50-, or 100-fold worse (e.g., numerically greater) than its inhibition constant for ET2 (i.e., the ligand does not inhibit the other proteases as well as they inhibit ET2).
- In one embodiment, the ligand inhibits angiogenesis, e.g., inhibit proteolysis of one or more ECM components or vessel basement membrane components, in vitro or in vivo. In one embodiment, the ligands have a statistically significant effect (e.g., on an angiogenic process) in one or more of the following assays: a cornea neovascularization assay; a chick embryo chorioallantoic membrane model assay; an assay using SCID mice injected with tumors (e.g., tumors arising from injection of DU145 or LnCaP cell lines, as described in Jankun et al., Canc. Res., 57: 559-563 (1997)); or an assay in which mice are injected with bFGF, to stimulate angiogenesis (e.g., as described by Min et al., Canc. Res., 56: 2428-2433 (1996). Exemplary effects in these assays include an at least 1.5, 2, 5, 10, or 20-fold improvement relative to a negative control (e.g., no antibody).
- In one embodiment, the ligand agonizes ET2 (e.g., activates or increases an activity of ET2, e.g., a proteolytic activity), e.g., increases activity at least 0.5, 1.5, 2, 5, 10, or 20 fold.
- In one embodiment, the ligand contacts the active site of ET2, e.g., the active site cleft of ET2 or to an amino acid residues that is within 30, 20, or 10 Angstroms of a residue in the catalytic triad of ET2, e.g., histidine 361 of SEQ ID NO:94 or to serine 506 of SEQ ID NO:94, or to an amino acid residue within the sequence LTAAHC (amino acids 357-362 of SEQ ID NO:94) or to an amino acid within the sequence DSCQGDSGGPLV (amino acids 500-511 of SEQ ID NO:94).
- The protein ligand typically interacts with, e.g., bind to ET2, preferably human ET2, with high affinity and specificity. For example, the protein ligand binds to human ET2 with an affinity constant (Kd) of better than (i.e., numerically smaller than) 10−7 M, preferably, better than 10−8 M, 10−9 M, or 10−10 M. Preferably, the protein ligand interacts with, e.g., binds to, the extracellular domain of ET2, and most preferably, the extracellular domain of human ET2 (e.g., amino acids 161-562 of ET2-S or 161-688 of ET2-L). In one embodiment, the ET2-ligand binds all or part of the epitope of an antibody described herein, e.g., A10, G3, A6, A7, C8, H9, G1′-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9. The ET2-ligand can inhibit, e.g., competitively inhibit, the binding of an antibody described herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9, to human ET2. An ET2-ligand may bind to an epitope, e.g., a conformational or a linear epitope, which epitope when bound prevents binding of an antibody described herein, A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9. The epitope can be in close proximity spatially (e.g., within 3, 5, or 10 Angstroms of) or functionally-associated, e.g., an overlapping or adjacent epitope in linear sequence or conformationally similar to the one recognized by the A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9 antibody. In one embodiment, the ET2-ligand binds to an epitope located wholly or partially within the region of the serine protease domain of ET2, e.g., between amino acids 321-562 for ET2-S and 321-688 for ET2-L.
- Accordingly, the invention provides anti-ET2 antibodies, antibody fragments, and pharmaceutical compositions thereof, as well as nucleic acids, recombinant expression vectors and host cells for making such antibodies and fragments. An exemplary pharmaceutical composition includes the ligand and a pharmaceutically acceptable carrier. Methods of using the antibodies of the invention to detect ET2, to kill, or to inhibit growth of an ET2-expressing cell, e.g., a ET2-expressing cell, either in vitro or in vivo, are also encompassed by the invention.
- Human ET2 is expressed at least on endothelial cells. In one embodiment, an ET2 ligand binds to the cell surface of these cells, and in particular, to the cell surface of living cells, e.g., living endothelial cells. In some cases, the protein ligand can be internalized within the cell, e.g., to permit the intracellular delivery of an agent conjugated to the antibody, e.g., a cytotoxic or a labeling agent. In some embodiments, the protein ligands of the invention can be used to target living normal, benign hyperplastic, and cancerous cells that express ET2.
- In one embodiment, an ET ligand binds to ET and alters its conformation and/or catalytic activity, e.g., it enhances catalytic activity or interaction with a substrate.
- As used herein, the term “antibody” refers to a protein that includes at least one immunoglobulin variable domain or immunoglobulin variable domain sequence. For example, an antibody can include a heavy (H) chain variable region (abbreviated herein as VH), and a light (L) chain variable region (abbreviated herein as VL). In another example, an antibody includes two heavy (H) chain variable regions and two light (L) chain variable regions. The term “antibody” encompasses antigen-binding fragments of antibodies (e.g., single chain antibodies, Fab fragments, F(ab′)2, a Fd fragment, a Fv fragments, and dAb fragments) as well as complete antibodies.
- The VH and VL regions can be further subdivided into regions of hypervariability, termed “complementarity determining regions” (“CDR”), interspersed with regions that are more conserved, termed “framework regions” (FR). The extent of the framework region and CDR's has been precisely defined (see, Kabat, E. A., et al (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242, and Chothia, C. et al. (1987) J. Mol. Biol. 196:901-917). Kabat definitions are used herein. Each VH and VL is typically composed of three CDR's and four FR's, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
- An “immunoglobulin domain” refers to a domain from the variable or constant domain of immunoglobulin molecules. Immunoglobulin domains typically contain two β-sheets formed of about seven β-strands, and a conserved disulphide bond (see, e.g., A. F. Williams and A. N. Barclay 1988 Ann. Rev Immunol. 6:381-405). The canonical structures of hypervariable loops of an immunoglobulin variable can be inferred from its sequence, as described in Chothia et al. (1992) J. Mol. Biol. 227:799-817; Tomlinson et al. (1992) J. Mol. Biol. 227:776-798); and Tomlinson et al. (1995) EMBO J. 14(18):4628-38.
- As used herein, an “immunoglobulin variable domain sequence” refers to an amino acid sequence which can form the structure of an immunoglobulin variable domain. For example, the sequence may include all or part of the amino acid sequence of a naturally-occurring variable domain. For example, the sequence may omit one, two or more N- or C-terminal amino acids, internal amino acids, may include one or more insertions or additional terminal amino acids, or may include other alterations. In one embodiment, a polypeptide that includes immunoglobulin variable domain sequence can associate with another immunoglobulin variable domain sequence to form a target binding structure (or “antigen binding site”), e.g., a structure that interacts with ET2, e.g., binds to or inhibits ET2.
- The VH or VL chain of the antibody can further include all or part of a heavy or light chain constant region, to thereby form a heavy or light immunoglobulin chain, respectively. In one embodiment, the antibody is a tetramer of two heavy immunoglobulin chains and two light immunoglobulin chains, wherein the heavy and light immunoglobulin chains are inter-connected by, e.g., disulfide bonds. The heavy chain constant region includes three domains, CH1, CH2 and CH3. The light chain constant region includes a CL domain. The variable region of the heavy and light chains contains a binding domain that interacts with an antigen. The constant regions of the antibodies typically mediate the binding of the antibody to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (Clq) of the classical complement system. The term “antibody” includes intact immunoglobulins of types IgA, IgG, IgE, IgD, IgM (as well as subtypes thereof). The light chains of the immunoglobulin may be of types kappa or lambda. In one embodiment, the antibody is glycosylated. An antibody can be functional for antibody-dependent cytotoxicity and/or complement-mediated cytotoxicity.
- In one embodiment, the HC or LC of an antibody includes sequences that correspond (e.g., are identical to or have a threshold degree of similarity) to an amino acid sequence encoded by a human germline sequence, e.g., the framework regions and/or in the CDRs. For example, the antibody can include sequences from the human DP47 antibody. In one embodiment, one or more codons for the antibody are altered relative to the germline nucleic acid sequence, but are chosen to encode the same amino acid sequence. Codons can be selected, e.g., to optimize expression in a particular system, create restriction enzyme sites, create a silent fingerprint, etc. CDR sequences can also be substantially human, e.g., are at least 70, 80, 85, 87, 90, 91, 92, 93, 94, or 95% identical to a completely human CDR (e.g., a CDR in a human germline sequence or in a mature human antibody). Accordingly, synthetic nucleic acid sequences can be used to encode completely human or substantially human CDRs.
- In one embodiment, CDR2 of the antibody HC includes at least 11, 12, 13, 14, or 15 amino acid positions that are identical to the amino acids found in CDR2 of DP47.
- As used herein, the term “immunoglobulin” refers to a protein consisting of one or more polypeptides or regions thereof substantially encoded by immunoglobulin genes (e.g., natural or synthetic). Exemplary natural human immunoglobulin genes include the kappa, lambda, alpha (IgA1 and IgA2), gamma (IgG1, IgG2, IgG3, IgG4), delta, epsilon and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Full-length immunoglobulin “light chains” (about 25 Kd or 214 amino acids) can be encoded by a variable region gene at the NH2-terminus (about 110 amino acids) and a kappa or lambda constant region gene at the COOH-terminus. Full-length immunoglobulin “heavy chains” (about 50 Kd or 446 amino acids), can be similarly encoded by a variable region gene (about 116 amino acids) and one of the other aforementioned constant region genes, e.g., gamma (encoding about 330 amino acids).
- The term “antigen-binding fragment” of an antibody (or simply “antibody portion,” or “fragment”), as used herein, refers to one or more fragments of a full-length antibody that retain the ability to specifically bind to ET2 (e.g., human ET2). Examples of binding fragments encompassed within the term “antigen-binding fragment” of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab′)2 fragment, a bivalent fragment including two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al., (1989) Nature 341:544-546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR). Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., Bird et al. (1988) Science 242:423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883). Monomers and dimers of such single chain antibodies are also intended to be encompassed within the term “antigen-binding fragment” of an antibody. These antibody fragments are obtained using conventional techniques known to those with skill in the art, and the fragments are screened for activity in the same manner as are intact antibodies.
- The antibody is preferably monospecific, e.g., a monoclonal antibody, or antigen-binding fragment thereof. The term “monospecific antibody” refers to an antibody that displays a single binding specificity and affinity for a particular target, e.g., epitope. This term includes a “monoclonal antibody” or “monoclonal antibody composition,” which as used herein refer to a preparation of antibodies or fragments thereof of a single molecular composition.
- The anti-ET2 antibodies can be full-length (e.g., an IgG (e.g., an IgG1, IgG2, IgG3, IgG4), IgM, IgA (e.g., IgA1, IgA2), IgD, and IgE, but preferably an IgG) or can include only an antigen-binding fragment (e.g., a Fab, F(ab′)2 or scFv fragment). The antibody, or antigen-binding fragment thereof, can include two heavy chain immunoglobulins and two light chain immunoglobulins, or can be a single chain antibody. The antibodies can, optionally, include a constant region chosen from a kappa, lambda, alpha, gamma, delta, epsilon or a mu constant region gene. A preferred anti-ET2 antibody includes a heavy and light chain constant region substantially from a human antibody, e.g., a human IgG1 constant region or a portion thereof. As used herein, “isotype” refers to the antibody class (e.g., IgM or IgG1) that is encoded by heavy chain constant region genes.
- In one embodiment, the antibody (or fragment thereof) is a recombinant or modified anti-ET2 antibody, e.g., a chimeric, a humanized, a deimmunized, or an in vitro generated antibody. The term “recombinant” or “modified” human antibody, as used herein, is intended to include all antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies expressed using a recombinant expression vector transfected into a host cell, antibodies isolated from a recombinant, combinatorial antibody library, antibodies isolated from an animal (e.g., a mouse) that is transgenic for human immunoglobulin genes or antibodies prepared, expressed, created or isolated by any other means that involves splicing of human immunoglobulin gene sequences to other DNA sequences. Such recombinant antibodies include humanized, CDR grafted, chimeric, deimmunized, in vitro generated antibodies, and may optionally include constant regions derived from human germline immunoglobulin sequences. In one embodiment, the antibody does not elicit an anti-globulin response in a human.
- In other embodiments, the anti-ET2 antibody is a human antibody.
- Also within the scope of the invention are antibodies, or antigen-binding fragments thereof, which bind overlapping epitopes of, or competitively inhibit, the binding of the anti-ET2 antibodies disclosed herein to ET2, e.g., antibodies which bind overlapping epitopes of, or competitively inhibit, the binding of monospecific antibodies A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9 to ET2. Any combination of anti-ET2 antibodies is within the scope of the invention, e.g., two or more antibodies that bind to different regions of ET2, e.g., antibodies that bind to two different epitopes on the serine protease domain of ET2, e.g., a bispecific antibody.
- In one embodiment, the anti-ET2 antibody, or antigen-binding fragment thereof, includes at least one light or heavy chain variable domain sequence (e.g., at least one light chain immunoglobulin and at least one heavy chain immunoglobulin). Preferably, each immunoglobulin includes a light or a heavy chain variable domain sequence having at least one, two and, preferably, three complementarity determining regions (CDR's) substantially identical to a CDR from a light or heavy chain variable domain sequence of an antibody that interacts with ET2, e.g., an antibody described herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9. The amino acid and nucleic acid sequences of exemplary light chain and heavy chain variable regions are shown in Table 1. In some embodiments, the residue listed as a “q” in SEQ ID NO:10 and SEQ ID NO:89 of Table 1 and 2 is a lysine.
TABLE 1 Exemplary Sequences Antibody Sequence Identifier C9 VLC CAGAGCGTCTTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTC SEQ ID NO:3 Nucleic GATCACCATCTCCTGCACTGGAACCAGTAGTGACGTTGGTCATTATAATT Acid ATGTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAAGTCATGATT Sequence TATGATGTCAGTAGTCGGCCCTCCGGGGTTTCTGATCGCTTCTCTGGGTC CAAGTCTGGCAACACGGCCTCCCTGGCCATCTCTGGGCTCCAGGCTGAGG ACGAGGCTGATTATTACTGCAGTTCGTATACAAGCGGTGACACTCTTTAT GTCTTCGGAACTGGGACCAAGGTCACCGTCCTAGGTCAGCCCAAGGCCAA CCCCACTGTCACTCTGTTCCCGCCCTCCTCTGAGGAGCTCCAAGCCAACA AGGCCACACTAGTGTGTCTGATCAGTGACTTCTACCCGGGAGCTGTGACA GTGGCCTGGAAGGCAGATGGCAGCCCCGTCAAGGCGGGAGTGGAGACCAC CAAACCCTCCAAACAGAGCAACAACAAGTACGCGGCCAGCAGCTACCTGA GCCTGACGCCCGAGCAGTGGAAGTCCCACAGAAGCTACAGCTGCCAGGTC ACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTGCAGAATGCTC TTAATAA C9 VLC QSVLTQPASVSGSPGQSITISCTGTSSDVGHYNYVSWYQQHPGKAPKVMI SEQ ID NO:4 Amino Acid YDVSSRPSGVSDRFSGSKSGNTASLAISGLQAEDEADYYCSSYTSGDTLY Sequence VFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFYPGAVT VAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQV THEGSTVEKTVAPAECS C9 VHC GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC SEQ ID NO:5 Nucleic TTTACGTCTTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACCCTA Acid TGTTTTGGGTTCGCCAAGCTCCTGGTAAAGGTTTGGAGTGGGTTTCTTAT Sequence ATCTCTTCTTCTGGTGGCTTTACTGGTTATGCTGACTCCGTTAAAGGTCG CTTCACTATCTCTAGAGACAACTCTAAGAATACTCTCTACTTGCAGATGA ACAGCTTAAGGGCTGAGGACACTGCAGTCTACTATTGTGCGAGAGGGGGA CCGCGGGGTAACAAGTACTACTTTGACTACTGGGGCCAGGGAACCCTGGT CACCGTCTCAAGCGCCTCCACCAAGGGCCCATCGGTCTTCCCGCTAGC C9 VHC EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYPMFWVRQAPGKGLEWVSY SEQ ID NO:6 Amino Acid ISSSGGFTGYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGG Sequence PRGNKYYFDYWGQGTLVTVSSASTKGPSVFPL B5 VLC AGCTACGAATTGACTCAGCCACCCTCAGTGTCCGTGTCCCTAGGACAGGC SEQ ID NO:7 Nucleic AGCCAACATCTCCTGCTCTGGAGATAGATTGGGGGATAAATATACTTCCT Acid GGTATCAACAACAGTCAGGACAGTCCCCTGTCCTGGTCATCTATCAAGAT Sequence AAGAAGCGACCCTCAGGGATCCCCGAGCGATTCTCTGGCTCCTCCTCTGG GAACACAGCCACTCTGACCATCAGCGGGGCCCAGGCCATAGATGAGGCTG CCTATTACTGTCAGGCGTGGGCCACCAATGTGGTTTTCGGCGCTGGGACC AAGCTGACCGTCCTAGGTCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTT CCCGCCCTCCTCTGAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTGTC TCATAAGTGACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAGAT AGCAGCCCCGTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAG CAACAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGCCTGAGCAGT GGAAGTCCCACAGAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACC GTGGAGAAGACAGTGGCCCCTACAGGATGTTCATAATAA B5 VLC SYELTQPPSVSVSLGQAANISCSGDRLGDKYTSWYQQQSGQSPVLVIYQD SEQ ID NO:8 Amino Acid KKRPSGIPERFSGSSSGNTATLTISGAQAIDEAAYYCQAWATNVVFGAGT Sequence KLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKAD SSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGST VEKTVAPTGCS B5-H10-A2- GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC SEQ ID NO:9 D2 VHC TTTACGTCTTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACCGTA Nucleic TGTATTGGGTTCGCCAAGCTCCTGGTAAAGGTTTGGAGTGGGTTTCTTCT Acid ATCTCTCCTTCTGGTGGCGATACTCGTTATGCTGACTCCGTTAAAGGTCG Sequence CTTCACTATCTCTAGAGACAACTCTTAGAATACTCTCTACTTGCAGATGA ACAGCTTAAGGGCTGAGGACACTGCAGTCTACTATTGTGCGAGAGGGGGA CCGCGGGGTAACAAGTACTACTTTGACTACTGGGGCCAGGGAACCCTGGT CACCGTCTCAAGCGCCTCCACCAAGGGCCCATCGGTCTTCCCGCTAGC B5-H10-A2- EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYRMYWVRQAPGKGLEWVSS SEQ ID NO:10 D2 VHC ISPSGGDTRYADSVKGRFTISRDNSqNTLYLQMNSLRAEDTAVYYCARGG Amino Acid PRGNKYYFDYWGQGTLVTVSSASTKGPSVFPL Sequence F8 VLC GACATCCAGATGACCCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGA SEQ ID NO:11 Nucleic AAGAGTCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTACCAGCAGCGACT Acid TAGCCTGGTACCAGCAGAAACCTGGTCAGGCTCCCAGGCTCCTCATTTCT Sequence GGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTGG GTCTGGGACAGACTTCACCCTCACCATCAGCAGACTGGAACCTGAAGATT TTGCAGTGTATTACTGTCAGCAGTATGGTAACTCACCTGGGACGTTCGGC CAAGGGACCAAGGTGGAAATCAAACGAACTGTGGCTGCACCATCTGTCTT CATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTG TGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAG GTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCA GGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCA AAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAG GGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAATA A F8 VLC DIQMTQSPGTLSLSPGERVTLSCRASQSVTSSDLAWYQQKPGQAPRLLIS SEQ ID NO:12 Amino Acid GASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGNSPGTFG Sequence QGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWK VDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQ GLSSPVTKSFNRGEC F8 VHC GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC SEQ ID NO:13 Nucleic TTTACGTCTTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACCATA Acid TGTGGTGGGTTCGCCAAGCTCCTGGTAAAGGTTTGGAGTGGGTTTCTGGT Sequence ATCTCTTCTTCTCGTGGCATTACTAAGTATGCTGACTCCGTTAAAGGTCG CTTCACTATCTCTAGAGACAACTCTAAGAATACTCTCTACTTGCAGATGA ACAGCTTAAGGGCTGAGGACACTGCAGTCTACTATTGTGCGAGAGGGGGA CCGCGGGGTAACAAGTACTACTTTGACTACTGGGGCCAGGGAACCCTGGT CACCGTCTCAAGCGCCTCCACCAAGGGCCCATCGGTCTTCCCGCTAGC F8 VHC EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYHMWWVRQAPGKGLEWVSG SEQ ID NO:14 Amino Acid ISSSRGITKYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGG Sequence PRGNKYYFDYWGQGTLVTVSSASTKGPSVFPL H10 VLC GACATCCAGATGACCCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGA SEQ ID NO:15 Nucleic AAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCAGCTACT Acid TAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTAT Aequence GGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTGG GTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATT TTGCAGTGTATTACTGTCAGCAGTATGGTAGCTCAACGTGGACGTTCGGC CAAGGGACCAAAGTGGAAATCAAACGAACTGTGGCTGCACCATCTGTCTT CATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTG TGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAG GTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCA GGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCA AAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAG GGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAATA A H10 VLC DIQMTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIY SEQ ID NO:16 Amino Acid GASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSTWTFG Sequence QGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWK VDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYFKHKVYACEVTHQ GLSSPVTKSFNRGEC A2 VLC GACATCCAGATGACCCAGTCTCCATCCTTCCTGTCTGCATTTGTAGGAGA SEQ ID NO:17 Nucleic CAGGGTCACCATCACTTGCCGGGCCAGTCAGGACATTAGAAGTGATTTAG Acid CCTGGTATCAGCAAACACCAGGGAAAGCCCCAAAGCTCCTGATCTATGCT Sequence GCATCCACTTTGAAAGATGGGGCCCCATCAAGATTCAGCGGCAGTGGATC TGGGACAGAATTTACTCTCACAATCAGCAGCCTGCACCCTGAAGATCTTG CGACTTATTACTGTCAACACCTTAATGGTCACCCTGCTTTCGGCCCTGGG ACCAAAGTGAATATCCAAAGAACTGTGGCTGCACCATCTGTCTTCATCTT CCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCC TGCTGAATAACTTCTATCCCAGAGAAGCCAAAGTACAGTGGAAGGTGGAT AACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAG CAAAGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAG ACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTG AGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAATAA A2 VLC DIQMTQSPSFLSAFVGDRVTITCRASQDIRSDLAWYQQTPGKAPKLLIYA SEQ ID NO:18 Amino Acid ASTLKDGAPSRFSGSGSGTEFTLTISSLHPEDLATYYCQHLNGHPAFGPG Sequence TKVNIQRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVD NALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGL SSPVTKSFNRGEC D2 VLC GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCTTCTGTTGGAGA SEQ ID NO:19 Nucleic CAGAGTCACCATCACTTGCCGGGCAAGCCAGACCATTGACAATTATTTGA Acid ATTGGTATCAGCAGAAACCAGGGAAAGCCCCCAAACTCGTGGTCTATGCT Sequence GCATCCACTTTGCAAACTAGGGTCCCATCAAGGTTCAGTGGCAGTGGGTC TGGGACAGACTTCACTCTCACCATCGACAGTCTGAAACCTGAAGATTTTG CAACTTACTTCTGTCAACAGGGTTTCAGTAATCCTTGGACGTTCGGCCAA GGGACCACGGTGGCAATGATACGAACTGTGGCTGCACCATCTGTCTTCAT CTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGT GCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTG GATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGA CAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAG CAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGC CTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAATAA D2 VLC DIQMTQSPSSLSASVGDRVTITCRASQTIDNYLNWYQQKPGKAPKLVVYA SEQ ID NO:20 Amino Acid ASTLQTRVPSRFSGSGSGTDFTLTIDSLKPEDFATYFCQQGFSNPWTFGQ Sequence GTTVAMIRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKV DNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQG LSSPVTKSFNRGEC D5 VLC GACATCCAGATGACCCAGTCTCCAGGCACCCTGTCATTGTCTCCAGGGGA SEQ ID NO:21 Nucleic AAGAGGCACCCTCTCCTGCAGGGCCAGTCAGTTTGTTAGTTACAGCTACT Acid TAGCCTGGTACCAGCAGAAGCCTGGCCAGGCTCCCCGGCTCCTCATCTAT Sequence GGCGCATCCAGCAGGGCCAAAGGCATCCCAGACAGGTTCAGTGGCAGTGG GTCTGGGACAGACTTCACTCTCACCATCACCAGACTGGAGCCTGAAGACT TTGCAGTTTATTACTGTCAGCAGTATGTTCCCTCAGTTCCGTGGACGTTC GGCCAAGGGACCAAGGTGGAAGTCAAACGAACTGTGGCTGCACCATCTGT CTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTG TTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGG AAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGA GCAGGACGGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGA GCAAAGCAGACTACGAGGAACACAAAGTCTACGCCTGCGAAGTCACCCAT CAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTA ATAA D5 VLC DIQMTQSPGTLSLSPGERGTLSCRASQFVSYSYLAWYQQKPGQAPRLLIY SEQ ID NO:22 Amino Acid GASSRAKGIPDRFSGSGSGTDFTLTITRLEPEDFAVYYCQQYVPSVPWTF Sequence GQGTKVEVKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQW KVDNALQSGNSQESVTEQDGKDSTYSLSSTLTLSKADYEEHKVYACEVTH QGLSSPVTKSFNRGEC D5 VHC GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC SEQ ID NO:23 Nucleic TTTACGTCTTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACGATA Acid TGCATTGGGTTCGCCAAGCTCCTGGTAAAGGTTTGGAGTGGGTTTCTTCT Sequence ATCTCTTCTTCTGGTGGCTATACTGCTTATGCTGACTCCGTTAAAGGTCG CTTCACTATCTCTAGAGACAACTCTAAGAATACTCTCTACTTGCAGATGA ACAGCTTAAGGGCTGAGGACACTGCAGTCTACTATTGTGCGAGAGGCGCC CGAGGTACCAGCCAAGGCTACTGGGGCCAGGGAACCCTGGTCACCGTCTC AAGCGCCTCCACCAAGGGCCCATCGGTCTTCCCGCTAGC D5 VHC EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYDMHWVRQAPGKGLEWVSS SEQ ID NO:24 Amino Acid ISSSGGYTAYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGA Sequence RGTSQGYWGQGTLVTVSSASTKGPSVFPL - In one embodiment, the antibody (or fragment thereof) includes at least one, two and preferably three CDR's from the light or heavy chain variable region of an antibody disclosed herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9, or a sequence substantially identical thereto, e.g., 80%, 85%, 90%, 95%, 99%, or more, identical. In other embodiments, the antibody (or fragment thereof) can have at least one, two, and preferably three CDR's from the light or heavy chain variable region of an antibody disclosed herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9. In one preferred embodiment, the antibody, or antigen-binding fragment thereof, includes all six CDR's from the human anti-ET2 antibody, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9.
- The CDR and framework sequences of some exemplary antibodies are shown in Table 2 and Table 3.
TABLE 2 HC CDRs Name H-CDR1 H-CDR2 H-CDR3 A10 RYRMW (residues 31 YISSSGGFTNYADSVKG (residues NARRALPSMDV (residues 99 to 109 of to 35 of 50 to 66 of SEQ ID NO:25) SEQ ID NO:25) SEQ ID NO:25) G3 RYGMS (residues 31 VIYSSGGITRYADSVKG (residues RAPRGEVAFDI (residues 99 to 109 of to 35 of 50 to 66 of SEQ ID NO:29) SEQ ID NO:29) SEQ ID NO:29) A6 RYKMW (residues 31 YISPSGGYTGYADSVKG (residues NARRAFPSMDV (residues 99 to 109 of to 35 of SEQ ID 50 to 66 of SEQ ID NO:33) SEQ ID NO:33) SEQ ID NO:33) A7 RYRMS (residues 31 SISSSGGITTYADSVKG (residues NARRAFPSMDV (residues 99 to 109 of to 35 of 50 to 66 of SEQ ID NO:37) SEQ ID NO:37) SEQ ID NO:37) C8 RYTMS (residues 31 YIVPSGGMTKYADSVKG (residues RAPRGEVAFDI (residues 99 to 109 of to 35 of 50 to 66 of SEQ ID NO:41) SEQ ID NO:41) SEQ ID NO:41) H9 RYSMH (residues 31 SIGPSGGKTKYADSVKG (residues PFRGSYYYFDY (residues 99 to 109 of to 35 of 50 to 66 of SEQ ID NO:45) SEQ ID NO:45) SEQ ID NO:45) G10-R2 RYKMW (residues 31 YISPSGGYTGYADSVKG (residues NARRAFPSMDV (residues 99 to 109 of to 35 of 50 to 66 of SEQ ID NO:49) SEQ ID NO:49) SEQ ID NO:49) F3-R2 RYRMH (residues 31 GISSSGGDTNYADSVKG (residues NARRAFPSMDV (residues 99 to 109 of to 35 of 50 to 66 of SEQ ID NO:53) SEQ ID NO:53) SEQ ID NO:53) C6-R2 RYSMH (residues 31 RIVPSGGTTFYADSVKG (residues NARRAFPSMDV (residues 99 to 109 of to 35 of 50 to 66 of SEQ ID NO:57) SEQ ID NO:57) SEQ ID NO:57) A4-R3 RYNMY (residues 31 GIRPSGGSTQYADSVKG (residues NARRAFPSMDV (residues 99 to 109 of to 35 of 50 to 66 of SEQ ID NO:61) SEQ ID NO:61) SEQ ID NO:61) C1-R3 RYSMH (residues 31 GIRPSGGSTKYADSVKG (residues NARRAFPSMDV (residues 99 to 109 of to 35 of 50 to 66 of SEQ ID NO:65) SEQ ID NO:65) SEQ ID NO:65) A2 RYRMY (residues 31 SISPSGGDTRYADSVKG (residues GGPRGNKYYFDY (residues 98 to 109 of to 35 of 50 to 66 of SEQ ID NO:69) SEQ ID NO:69) SEQ ID NO:69) B5 RYRMY (residues 31 SISPSGGDTRYADSVKG (residues GGPRGNKYYFDY (residues 98 to 109 of to 35 of 50 to 66 of SEQ ID NO:73) SEQ ID NO:73) SEQ ID NO:73) D2 RYRMY (residues 31 SISPSGGDTRYADSVKG (residues GGPRGNKYYFDY (residues 98 to 109 of to 35 of 50 to 66 of SEQ ID NO:77) SEQ ID NO:77) SEQ ID NO:77) D5 RYDMH (residues 31 SISSSGGYTAYADSVKG (residues GARGTSQGY (residues 99 to 107 of to 35 of 50 to 66 of SEQ ID NO:81) SEQ ID NO:81) SEQ ID NO:81) F8 RYHMW (residues 31 GISSSRGITKYADSVKG (residues GGPRGNKYYFDY (residues 99 to 110 of to 35 of 50 to 66 of SEQ ID NO:85) SEQ ID NO:85) SEQ ID NO:85) H10 RYRMY (residues 31 SISPSGGDTRYADSVKG (residues GGPRGNKYYFDY (residues 99 to 110 of to 35 of 50 to 66 of SEQ ID NO:89) SEQ ID NO:89) SEQ ID NO:89) C9 RYPMF (residues 31 YISSSGGFTGYADSVKG (residues GGPRGNKYYFDY (residues 99 to 110 of to 35 of 50 to 66 of SEQ ID NO:6) SEQ ID NO:6) SEQ ID NO:6) -
TABLE 3 LC CDRs Name L-CDR1 L-CDR2 L-CDR3 A10 SGSSSNIGSNYVY (residues SNNQRPS (residues 51 AAWDDSLSGPV (residues 90 to 100 of 23 to 35 of SEQ ID NO:26) to 57 of SEQ ID NO:26) SEQ ID NO:26) G3 WASQGISNYLA (residues 25 SASTLQS (residues 51 QQANSFPWT (residues 90 to 98 of to 35 of SEQ ID NO:30) to 57 of SEQ ID NO:30) SEQ ID NO:30) A6 RGDRLRSYYSS (residues 23 GRNNRPS (residues 49 SSRDGSGNFL (residues 88 to 97 of to 33 of SEQ ID NO:34) to 55x of SEQ ID NO:34) SEQ ID NO:34) A7 RASQSISSYLN (residues 25 AASSLQS (residues 51 QQLTGYPSIT (residues 90 to 99 of to 35 of SEQ ID NO:38) to 57 of SEQ ID NO:38) SEQ ID NO:38) C8 TGTSSDVGGYNYVS (residues DVSKRPS (residues 52 TSYTSSSTWV (residues 91 to 100 of 23 to 36 of SEQ ID NO:42) to 58 of SEQ ID NO:42) SEQ ID NO:42) H9 QASQDTYNRLH (residues 25 DAVNLKR (residues 51 QHSDDLSLA (residues 90 to 98 of to 35 of SEQ ID NO:46) to 57 of SEQ ID NO:46) SEQ ID NO:46) G10-R2 RSSQSLLYSNGYNYLD LGSNRAS (residues 56 MQALQIPRT (residues 95 to 103 of (residues 25 to 40 of to 62 of SEQ ID NO:50) SEQ ID NO:50) SEQ ID NO:50) F3-R2 RASLPVNTWLA (residues 25 AASRLQS (residues 51 QQANTFPYT (residues 90 to 98 of to 35 of SEQ ID NO:54) to 57 of SEQ ID NO:54) SEQ ID NO:54) C6-R2 QGDSLRSYYAS (residues 23 SKSNRPS (residues 49 NSRDSSGNHLV (residues 88 to 98 of to 33 of SEQ ID NO:58) to 55 of SEQ ID NO:58) SEQ ID NO:58) A4-R3 RGDRLRSYYSS (residues 23 GRKNRPS (residues 49 SSRDGSGNFL (residues 88 to 97 of to 33 of SEQ ID NO:62) to 55 of SEQ ID NO:62) SEQ ID NO:62) C1-R3 RASQSISTYLN (residues 25 GASSLVS (residues 51 HQSYITSWT (residues 90 to 98 of to 35 of SEQ ID NO:66) to 57 of SEQ ID NO:66) SEQ ID NO:66) A2 RASQDIRSDLA (residues 25 AASTLKD (residues 51 QHLNGHPA (residues 90 to 97 of to 35 of SEQ ID NO:70) to 57 of SEQ ID NO:70) SEQ ID NO:70) B5 SGDRLGDKYTS (residues 23 QDKKRPS (residues 49 QAWATNVV (residues 88 to 95 of to 33 of SEQ ID NO:74) to 55 of SEQ ID NO:74) SEQ ID NO:74) D2 RASQTIDNYLN (residues 25 AASTLQT (residues 51 QQGFSNPWT (residues 90 to 98 of to 35 of SEQ ID NO:78) to 57 of SEQ ID NO:78) SEQ ID NO:78) D5 RASQFVSYSYLA (residues 25 GASSRAK (residues 52 QQYVPSVPWT (residues 91 to 100 of to 35 of SEQ ID NO:82) to 58 of SEQ ID NO:82) SEQ ID NO:82) F8 RASQSVTSSDLA (residues 25 GASSRAT (residues 52 QQYGNSPGT (residues 91 to 99 of to 36 of SEQ ID NO:86) to 58 of SEQ ID NO:86) SEQ ID NO:86) H10 RASQSVSSSYLA (residues 25 GASSRAT (residues 52 QQYGSSTWT (residues 91 to 99 of to 36 of SEQ ID NO:90) to 58 of SEQ ID NO:90) SEQ ID NO:90) C9 TGTSSDVGHYNYVS (residues DVSSRPS (residues 52 SSYTSGDTLYV (residues 91 to 101 of 23 to 36 of SEQ ID NO:4) to 58 of SEQ ID NO:4) SEQ ID NO:4) - In another preferred embodiment, the antibody (or fragment thereof) includes at least one, two and preferably three CDR's from the light and/or heavy chain variable region of an antibody disclosed herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9, having an amino acid sequence that differs by no more than 3, 2.5, 2, 1.5, or 1, 0.5 substitutions, insertions or deletions for every 10 amino acids (e.g., the number of differences being proportional to the CDR length) relative to the corresponding CDR's of the disclosed antibody. Further, the antibody, or antigen-binding fragment thereof, can include six CDR's, each of which differs by no more than 3, 2.5, 2, 1.5, or 1, 0.5 substitutions, insertions or deletions for every 10 amino acids relative to the corresponding CDRs of the human anti-ET2 antibody, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9.
- In one embodiment, the heavy chain variable region includes a CDR1 including the following amino acid sequence: Y-X-M-X-W (SEQ ID NO:95) or R-Y-X-M-X (SEQ ID NO: 96) or R-Y-(SRK)-M-(SYWH) (SEQ ID NO:97), wherein X is any amino acid.
- In one embodiment, the heavy chain variable region includes a CDR2 including the following sequence: I/S-I/S-S-X-X-G-X-X-X-X*-Y-A-D-S (SEQ ID NO:98), wherein X is any amino acid and wherein X* may be absent, or (GSVYR)-I-(GSVYR)-(SP)-S-(GR)-G-(STIMYFKD)-T-(AGTFRKNQ)-Y-A-D-S-V-K-G (SEQ ID NO: 112) or (GSY)-I-(SVR)-(SP)-S-G-G-(SIYD)-T-(GRKN)-Y-A-D-S-V-K-G (SEQ ID NO:113).
- In one embodiment, the heavy chain variable region includes a CDR3 that includes (GN)-(AG)-(RP)-R-(AG)-(FN)-(KP)-(SY)-(MY)-(FD)-(VD)-Y (SEQ ID NO:99) or (GRN)-(AG)-(RP)-(GR)-(AG)-(FNE)-(VKP)-(ASY)-(MYF)-(FD)-(IVD)-Y (SEQ ID NO:100) or one of the following sequences: GPRGNKYY (SEQ ID NO:101) or ARGTSQ (SEQ ID NO:102).
- In one embodiment, the light chain variable region includes a CDR1 including the following sequence: R-A-S-Q-S-(IV)-S-(ST)-(SY)-(LY)-(ALN)-A (SEQ ID NO:103) or R-A-S-(LQ)-(STFDP)-(IV)-(STRDN)-(STYN)-(SYWD)-(LYD)-(ALN)-A (SEQ ID NO:104).
- In one embodiment, the light chain variable region includes a CDR2 including the following sequence: X-A-S-S-L-X-X (SEQ ID NO:105) or (AG)-A-S-(STR)-(LR)-(AVKQ)-(STKD) (SEQ ID NO:106), wherein X is any amino acid.
- In one embodiment, the light chain variable region includes a CDR3 including the following sequence: Q-Q-X-X-X-X-P-X-T-X (SEQ ID NO:107) or Q-Q-(AGSLY)-(GTVYFN)-(GSTINP)-(STYFN)-(STVP)-(AGSYWP)-(TIW)-T (SEQ ID NO:108).
- In one embodiment, the light chain variable region includes a CDR1 including the following sequence: S-X-D-X-X-X-X-X-Y-X-S-W (SEQ ID NO:109) or R-A-S-Q-X-V/I-X-X-X-(X)-L-A/N-W (SEQ ID NO:110), wherein X is any amino acid and wherein (X) may be absent;
- In one embodiment, the light chain variable region includes a CDR2 including the following sequence: A-S-S/T-R/L-X-X-G-R (SEQ ID NO:111), wherein X is any amino acid.
- In one embodiment, two or three of the CDRs of the HC variable domain sequence match motifs described herein such that the motifs also match a HC variable domain of an antibody described herein. Similarly, in one embodiment, two or three of the CDRs of the LC variable domain sequence match motifs described herein such that the motifs also match a LC variable domain of an antibody described herein. In still another embodiment, the matched motifs for the CDRs are based on a HC and a LC that are paired in an antibody described herein.
- In one embodiment, the H1 and H2 hypervariable loops have the same canonical structure as an antibody described herein. In one embodiment, the L1 and L2 hypervariable loops have the same canonical structure as an antibody described herein.
- In another embodiment, the light or heavy chain immunoglobulin of the anti-ET2 antibody, or antigen-binding fragment thereof, can further include a light or a heavy chain variable framework that has no more than 3, 2.5, 2, 1.5, or 1, 0.5 substitutions, insertions or deletions for every 10 amino acids in FR1, FR2, FR3, or FR4 relative to the corresponding frameworks of an antibody disclosed herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9. In one embodiment, the light or heavy chain immunoglobulin of the anti-ET2 antibody, or antigen-binding fragment thereof, further includes a light or a heavy chain variable framework, e.g., FR1, FR2, FR3, or FR4, that is identical to a framework of an antibody disclosed herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9.
- In one embodiment, the light or the heavy chain variable framework can be chosen from: (a) a light or heavy chain variable framework including at least 80%, 90%, 95%, or preferably 100% of the amino acid residues from a human light or heavy chain variable framework, e.g., a light or heavy chain variable framework residue from a human mature antibody, a human germline sequence, a consensus sequence, or an antibody described herein; (b) a light or heavy chain variable framework including from 20% to 80%, 40% to 80%, or 60% to 90% of the amino acid residues from a human light or heavy chain variable framework, e.g., a light or heavy chain variable framework residue from a human mature antibody, a human germline sequence, or a consensus sequence; (c) a non-human framework (e.g., a rodent framework); or (d) a non-human framework that has been modified, e.g., to remove antigenic or cytotoxic determinants, e.g., deimmunized, or partially humanized. In one embodiment, the ET2-ligand is not antigenic in humans.
- In one embodiment, the heavy or light chain framework includes an amino acid sequence, which is at least 80%, 85%, 90%, 95%, 97%, 98%, 99% or higher identical to the heavy chain framework of an antibody disclosed herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9; or which differs at least 1 or 5 but at less than 40, 30, 20, or 10 residues from, the amino acid sequence of a variable domain of an antibody disclosed herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9.
- In one embodiment, the heavy or light chain variable domain sequence of the ET2 antibody includes an amino acid sequence, which is at least 80%, 85%, 90%, 95%, 97%, 98%, 99% or higher identical to a variable domain sequence of an antibody described herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9; or which differs at least 1 or 5 but at less than 40, 30, 20, or 10 residues from a variable domain sequence of an antibody described herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9.
- In one embodiment, an anti-ET2 antibody includes at least one, preferably two, light chain variable regions that include a light chain variable domain sequence of an antibody described herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9, and at least one, preferably two, heavy chain variable regions that include a heavy chain variable domain sequence of an antibody described herein, e.g., A10, G3, A6, A7, C8, H9, G10-R2, F3-R2, C6-R2, A4-R3, C1-R3, A2, B5, D2, D5, F8, H10, or C9.
- In one embodiment, the light or heavy chain variable framework of the anti-ET2 antibody or antigen-binding fragment thereof includes at least one, two, three, four, five, six, seven, eight, nine, ten, fifteen, sixteen, or seventeen amino acid residues from a human light or heavy chain variable framework, e.g., a light or heavy chain variable framework residue from a human mature antibody, a human germline sequence, a consensus sequence, or an antibody described herein. In one embodiment, the amino acid residue from the human light or heavy chain variable framework is the same as the residue found at the same position in a human germline. Preferably, the amino acid residue from the human light or heavy chain variable framework is the most common residue in the human germline at the same position.
- An ET2-ligand described herein can be used alone, e.g., can be administered to a subject or used in vitro in non-derivatized or unconjugated forms. In other embodiments, the ET2-ligand can be derivatized, modified or linked to another functional molecule, e.g., another compound, peptide, protein, isotope, cell, or insoluble support. For example, the ET2-ligand can be functionally linked (e.g., by chemical coupling, genetic fusion, non-covalent association or otherwise) to one or more other molecular entities, such as an antibody (e.g., if the ligand is an antibody to form a bi-specific or a multi-specific antibody), a toxin, a radioisotope, a therapeutic (e.g., a cytotoxic or cytostatic) agent or moiety, among others. For example, the ET2-ligand can be coupled to a radioactive ion (e.g., an α-, γ-, or β-emitter), e.g., iodine (131I or 125I), yttrium (90Y), lutetium (177Lu), actinium (225Ac), rhenium (186Re), or bismuth (212 or 213Bi).
- In another aspect, the invention provides, compositions, e.g., pharmaceutical compositions, which include a pharmaceutically acceptable carrier, excipient or stabilizer, and at least one of the ET2-ligands (e.g., antibodies or fragments thereof) described herein. In one embodiment, the compositions, e.g., the pharmaceutical compositions, include a combination of two or more of the aforesaid ET2-ligands.
- In another aspect, the invention features a kit that includes an anti-ET2 antibody (or fragment thereof), e.g., an anti-ET2 antibody (or fragment thereof) as described herein, for use alone or in combination with other therapeutic modalities, e.g., a cytotoxic or labeling agent, e.g., a cytotoxic or labeling agent as described herein, along with instructions on how to use the ET2 antibody or the combination of such agents, e.g., to treat, prevent or detect cancerous lesions.
- The invention also features nucleic acid sequences that encode a heavy and light chain immunoglobulin or immunoglobulin fragment described herein. For example, the invention features, a first and second nucleic acid encoding a heavy and light chain variable region, respectively, of an anti-ET2 antibody molecule as described herein. In another aspect, the invention features host cells and vectors containing the nucleic acids of the invention.
- In another aspect, the invention features, a method of producing an anti-ET2 antibody, or antigen-binding fragment thereof. The method includes: providing a first nucleic acid encoding a heavy chain variable region, e.g., a heavy chain variable region as described herein; providing a second nucleic acid encoding a light chain variable region, e.g., a light chain variable region as described herein; and expressing said first and second nucleic acids in a host cell under conditions that allow assembly of said light and heavy chain variable regions to form an antigen binding protein. The first and second nucleic acids can be linked or unlinked, e.g., expressed on the same or different vector, respectively. The first and second nucleic acids can further encode constant regions of heavy and light chains.
- The host cell can be a eukaryotic cell, e.g., a mammalian cell, an insect cell, a yeast cell, or a prokaryotic cell, e.g., E. coli. For example, the mammalian cell can be a cultured cell or a cell line. Exemplary mammalian cells include lymphocytic cell lines (e.g., NSO), Chinese hamster ovary cells (CHO), COS cells, oocyte cells, and cells from a transgenic animal, e.g., mammary epithelial cells. For example, nucleic acids encoding the antibodies described herein can be expressed in a transgenic animal. In one embodiment, the nucleic acids are placed under the control of a tissue-specific promoter (e.g., a mammary specific promoter) and the antibody is produced in the transgenic animal. For example, the antibody molecule is secreted into the milk of the transgenic animal, such as a transgenic cow, pig, horse, sheep, goat or rodent.
- The invention also features a method of treating, e.g., inhibiting a cellular activity (e.g., cell growth, cell differentiation, cell migration, or cell organization), a physiological activity (e.g., blood vessel growth, organization, etc.) and/or cell or ablating, or killing, a cell, e.g., a normal, benign or hyperplastic cell (e.g., a cell found in pulmonary, breast, renal, urothelial, colonic, prostatic, or hepatic cancer and/or metastasis). The treating may have direct and/or indirect effects on the growth of a cancer, e.g., by targeting a tumor cell directly, or by inhibiting tumor angiogenesis, thereby inhibiting growth of tumor cell indirectly. Methods of the invention include contacting the cell with an ET2-ligand, in an amount sufficient to treat, e.g., inhibit cell growth, or ablate or kill, the cell. The ligand can include a cytotoxic entity. Methods of the invention can be used, for example, to treat or prevent a disorder, e.g., a cancerous (e.g., a malignant or metastatic disorder), or non-cancerous disorder (e.g., a benign or hyperplastic disorder) by administering to a subject an ET2-ligand in an amount effective to treat or prevent such disorder.
- A ET2-ligand that increases ET2 activity can be used, for example, to treat or prevent disorders, e.g., a disorder in which increased proteolysis and/or increased angiogenesis is desirable. For example, the ligand can be used to treat a wound (e.g., to assist wound healing). For example, the wound can be a laceration, a burn, or a surgical incision.
- The subject method can be used on cells in culture, e.g. in vitro or ex vivo. For example, cancerous or metastatic cells (e.g., pulmonary, breast, renal, urothelial, colonic, prostatic, or hepatic cancer or metastatic cells) can be cultured in vitro in culture medium and the contacting step can be effected by adding the ET2-ligand to the culture medium. The method can be performed on cells (e.g., cancerous or metastatic cells) present in a subject, as part of an in vivo (e.g., therapeutic or prophylactic) protocol. For in vivo embodiments, the contacting step is effected in a subject and includes administering the ET2-ligand to the subject under conditions effective to permit both binding of the ligand to the cell, and the treating, e.g., the inhibiting of cell growth and/or cell division, or the killing or ablating of the cell.
- The method of the invention can be used to treat or prevent disorders characterized by unwanted angiogenesis, such as cancerous disorders, e.g., including but are not limited to, solid tumors, soft tissue tumors, and metastatic lesions. Examples of solid tumors include malignancies, e.g., sarcomas, adenocarcinomas, and carcinomas, of the various organ systems, such as those affecting lung, breast, lymphoid, gastrointestinal (e.g., colon), and genitourinary tract (e.g., renal, urothelial cells), pharynx, as well as adenocarcinomas which include malignancies such as most colon cancers, rectal cancer, renal-cell carcinoma, liver cancer, non-small cell carcinoma of the lung, cancer of the small intestine and cancer of the esophagus. Metastatic lesions of the aforementioned cancers can also be treated or prevented using the methods and compositions of the invention.
- The method of the invention can be used to treat or prevent disorders in which increased angiogenesis is desirable, e.g., using an ET2-ligand that increases ET2 activity.
- The subject can be a mammal, e.g., a primate, preferably a higher primate, e.g., a human (e.g., a patient having, or at risk of, a disorder described herein, e.g., cancer).
- The anti-ET2 antibody or fragment thereof, e.g., an anti-ET2 antibody or fragment thereof as described herein, can be administered to the subject systemically (e.g., orally, parenterally, subcutaneously, intravenously, intramuscularly, intraperitoneally, intranasally, transdermally, or by inhalation), topically, or by application to mucous membranes, such as the nose, throat and bronchial tubes. In one embodiment, the protein accumulates at sites of angiogenesis and/or tumor growth in vivo.
- The methods of the invention can further include the step of monitoring the subject, e.g., for a reduction in one or more of: a reduction in tumor size; reduction in cancer markers; reduction in the appearance of new lesions, e.g., in a bone scan; a reduction in the appearance of new disease-related symptoms; or decreased or stabilization of size of soft tissue mass; or any parameter related to improvement in clinical outcome. The subject can be monitored in one or more of the following periods: prior to beginning of treatment; during the treatment; or after one or more elements of the treatment have been administered. Monitoring can be used to evaluate the need for further treatment with the same ET2-ligand or for additional treatment with additional agents. Generally, a decrease in one or more of the parameters described above is indicative of the improved condition of the subject.
- The ET2-ligand can be used alone in unconjugated form to thereby ablate, kill, or inhibit growth of the ET2-expressing cells. For example, if the ligand is an antibody, the ablation, killing, or growth inhibition can be mediated by an antibody-dependent cell killing mechanisms such as complement-mediated cell lysis and/or effector cell-mediated cell killing. In other embodiments, the ET2-ligand can be bound to a substance, e.g., a cytotoxic agent or moiety, effective to kill or ablate the ET2-expressing cells. For example, the ET2-ligand can be coupled to a radioactive ion (e.g., an α-, γ-, or β-emitter), e.g., iodine (131I or 125I), yttrium (90Y), lutetium (177Lu), actinium (225Ac), or bismuth (213Bi). The methods and compositions of the invention can be used in combination with other therapeutic modalities, e.g., other anti-cancer and/or anti-angiogenic treatments. In one embodiment, the methods of the invention include administering to the subject an ET2-ligand, e.g., an anti-ET2 antibody or fragment thereof, in combination with a cytotoxic agent, in an amount effective to treat or prevent said disorder. The ligand and the cytotoxic agent can be administered simultaneously or sequentially. In other embodiments, the methods and compositions of the invention are used in combination with surgical and/or radiation procedures.
- In another aspect, the invention features methods for detecting the presence of an ET2 protein, in a sample, in vitro (e.g., a biological sample, a tissue biopsy, e.g., a cancerous lesion). The subject method can be used to evaluate, e.g., diagnose or stage a disorder described herein, e.g. a cancerous disorder or other disorder characterized by unwanted angiogenesis. The method includes: (i) contacting the sample (and optionally, a reference, e.g., control, sample) with an ET2-ligand, as described herein, under conditions that allow interaction of the ET2-ligand and the ET2 protein to occur; and (ii) detecting formation of a complex between the ET2-ligand, and the sample (and optionally, the reference, e.g., control, sample). Formation of the complex is indicative of the presence of ET2 protein, and can indicate the suitability or need for a treatment described herein. E.g., a statistically significant change in the formation of the complex in the sample relative to the reference sample, e.g., the control sample, is indicative of the presence and/or level of ET2 in the sample. In one embodiment, the ET2-ligand may recognize and/or distinguish between a complex containing active ET2 and a complex containing an inactive (e.g., zymogen) form of ET2.
- In yet another aspect, the invention provides a method for detecting the presence of ET2 in vivo (e.g., in vivo imaging in a subject). The subject method can be used to evaluate, e.g., diagnose, localize, or stage a disorder described herein, e.g., a cancerous disorder or other disorder characterized by unwanted angiogenesis. The method includes: (i) administering to a subject (and optionally a control subject) an ET2-ligand (e.g., an antibody or antigen binding fragment thereof), under conditions that allow interaction of the ET2-ligand and the ET2 protein to occur; and (ii) detecting formation of a complex between the ligand and ET2, wherein a statistically significant change in the formation of the complex in the subject relative to the reference, e.g., the control subject or subject's baseline, is indicative of the presence and/or level of the ET2. In other embodiments, a method of diagnosing or staging, a disorder as described herein (e.g., a cancerous disorder or other disorder characterized by unwanted angiogenesis), is provided. The method includes: (i) identifying a subject having, or at risk of having, the disorder; (ii) obtaining a sample of a tissue or cell affected with the disorder; (iii) contacting said sample or a control sample with an ET2-ligand, under conditions that allow interaction of the binding agent and the ET2 protein to occur, and (iv) detecting formation of a complex. A statistically significant alteration in the formation of the complex between the ligand with respect to a reference sample, e.g., a control sample, is indicative of the disorder or the stage of the disorder.
- Preferably, the ET2-ligand used in the in vivo and in vitro diagnostic methods is directly or indirectly labeled with a detectable substance to facilitate detection of the bound or unbound binding agent. Suitable detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials and radioactive materials. In one embodiment, the ET2-ligand is coupled to a radioactive ion, e.g., indium (111In), iodine (131 or 125I), yttrium (90Y), actinium (225Ac), bismuth (213Bi), sulfur (35S), carbon (14C), tritium (3H), rhodium (188Rh), or phosphorous (32P). In another embodiment, the ligand is labeled with an NMR contrast agent.
- The invention also provides polypeptides and nucleic acids that encompass a range of amino acid and nucleic acid sequences.
- A ET2-binding ligand can be used to treat or prevent angiogenesis-related disorders, particularly angiogenesis-dependent cancers and tumors.
- Angiogenesis-related disorders include, but are not limited to, solid tumors; blood born tumors such as leukemias; tumor metastasis; benign tumors (e.g., hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic granulomas; rheumatoid arthritis); psoriasis; ocular angiogenic diseases, for example, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma, retrolental fibroplasia, rubeosis; Osler-Webber Syndrome; myocardial angiogenesis; plaque neovascularization; telangiectasia; hemophiliac joints; angiofibroma; and wound granulation.
- “Angiogenesis-dependent cancers and tumors” are cancers tumors that require, for their growth (expansion in volume and/or mass), an increase in the number and density of the blood vessels supplying then with blood. In one embodiment a ET2-binding ligand causes regression of such cancers and tumors. “Regression” refers to the reduction of tumor mass and size, e.g., a reduction of at least 2, 5, 10, or 25%.
- In another aspect, the invention features a method of contacting a cell (in vitro, ex vivo, or in vivo), e.g., an endothelial cell, e.g., an endothelial cell in the vicinity of a cancer, e.g., a tumor. The method can include providing a ligand that interacts with ET2, e.g., a ligand described herein, and contacting the cell with the ligand, in an amount sufficient to form at least one detectable ligand-cell complex. The ligand can include, for example, a label or cytotoxic entity, e.g., an immunoglobulin Fc domain or a cytotoxic drug.
- The invention also provides methods for identifying protein ligands (e.g., antibody ligands) of ET2. In one embodiment, a method includes: providing a library and screening the library to identify a member that encodes a protein that binds to the ET2. The screening can be performed in a number of ways. For example, the library can be a display library, e.g., a phage display library or a phagemid library. The phage/phagemid library can be an antibody (e.g., Fab) or Kunitz domain library. Methods utilizing phage display libraries can further include the steps of: recovering phage that bind ET2 and isolating a nucleic acid from the phage, wherein the nucleic acid encodes the protein or polypeptide ligand of ET2. The phage may be eluted from ET2 using a competitor peptide or by altering buffer conditions (e.g., pH).
- The ET2 can be recombinantly expressed and can be tagged. The ET2 is purified and attached to a support, e.g., to paramagnetic beads or other magnetically responsive particle. The ET2 can also be expressed on the surface of a cell. The display library can be screened to identify members that specifically bind to the cell, e.g., only if the ET2 is expressed. The ET2 can be human ET2. The ET2 can be treated or mutated to remove glycosylation. Also, a fragment of ET2 may be used, e.g., a serine protease domain.
- As used herein, the term “substantially identical” (or “substantially homologous”) is used herein to refer to a first amino acid or nucleotide sequence that contains a sufficient number of identical or equivalent (e.g., with a similar side chain, e.g., conserved amino acid substitutions) amino acid residues or nucleotides to a second amino acid or nucleotide sequence such that the first and second amino acid or nucleotide sequences have similar activities. In the case of antibodies, the second antibody has the same specificity and has at least 5%, 10%, 25%, or 50% of the affinity of the first antibody.
- Sequences similar or homologous (e.g., at least about 60%, 70%, 80%, 85%, 90%, 95% sequence identity) to the sequences disclosed herein are also part of this application. In some embodiments, the sequence identity can be about 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or higher. Alternatively, substantial identity exists when the nucleic acid segments will hybridize under selective hybridization conditions (e.g., highly stringent hybridization conditions), to the complement of the strand encoding the ET2 ligand. The nucleic acids may be present in whole cells, in a cell lysate, or in a partially purified or substantially pure form.
- Calculations of “homology” or “sequence identity” between two sequences (the terms are used interchangeably herein) are performed as follows. The sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In one embodiment, the length of a reference sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 50%, even more preferably at least 60%, and even more preferably at least 70%, 80%, 90%, 100% of the length of the reference sequence. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid “identity” is equivalent to amino acid or nucleic acid “homology”). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.
- The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. In one embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch ((1970) J. Mol. Biol. 48:444-453) algorithm which has been incorporated into the GAP program in the GCG software package (Accelrys, San Diego, Calif.), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package, using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. A particularly preferred set of parameters (and the one that should be used if the practitioner is uncertain about what parameters should be applied to determine if a molecule is within a sequence identity or homology limitation of the invention) are a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.
- As used herein, the term “homologous” is synonymous with “similarity” and means that a sequence of interest differs from a reference sequence by the presence of one or more amino acid substitutions (although modest amino acid insertions or deletions) may also be present. Presently preferred means of calculating degrees of homology or similarity to a reference sequence are through the use of BLAST algorithms (available from the National Center of Biotechnology Information (NCBI), National Institutes of Health, Bethesda Md.), in each case, using the algorithm default or recommended parameters for determining significance of calculated sequence relatedness. The percent identity between two amino acid or nucleotide sequences can also be determined using the algorithm of E. Meyers and W. Miller ((1989) CABIOS, 4:11-17) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.
- As used herein, the term “hybridizes under low stringency, medium stringency, high stringency, or very high stringency conditions” describes conditions for hybridization and washing. Guidance for performing hybridization reactions can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Aqueous and nonaqueous methods are described in that reference and either can be used. Specific hybridization conditions referred to herein are as follows: 1) low stringency hybridization conditions in 6× sodium chloride/sodium citrate (SSC) at about 45° C., followed by two washes in 0.2×SSC, 0.1% SDS at least at 50° C. (the temperature of the washes can be increased to 55° C. for low stringency conditions); 2) medium stringency hybridization conditions in 6×SSC at about 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 60° C.; 3) high stringency hybridization conditions in 6×SSC at about 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 65° C.; and preferably 4) very high stringency hybridization conditions are 0.5M sodium phosphate, 7% SDS at 65° C., followed by one or more washes at 0.2×SSC, 1% SDS at 65° C. Very high stringency conditions (4) are the preferred conditions and the ones that should be used unless otherwise specified.
- It is understood that the binding agent polypeptides of the invention may have additional conservative or non-essential amino acid substitutions, which do not have a substantial effect on the polypeptide functions. Whether or not a particular substitution will be tolerated, i.e., will not adversely affect desired biological properties, such as binding activity can be determined as described in Bowie, et al. (1990) Science 247:1306-1310. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).
- A “non-essential” amino acid residue is a residue that can be altered from the wild-type sequence of the binding agent, e.g., the antibody, without abolishing or more preferably, without substantially altering a biological activity, whereas an “essential” amino acid residue results in such a change.
- Binding affinity can be determined by a variety of methods including equilibrium dialysis, equilibrium binding, gel filtration, ELISA, or spectroscopy (e.g., using a fluorescence assay). These techniques can be used to measure the concentration of bound and free ligand as a function of ligand (or target) concentration. The concentration of bound ligand ([Bound]) is related to the concentration of free ligand ([Free]) and the concentration of binding sites for the ligand on the target where (N) is the number of binding sites per target molecule by the following equation:
[Bound]=N·[Free]/((1/K a)+[Free]) - It is not always necessary to make an exact determination of Ka, though, since sometimes it is sufficient to obtain a quantitative measurement of affinity, e.g., determined using a method such as ELISA or FACS analysis, is proportional to Ka, and thus can be used for comparisons, such as determining whether a higher affinity is, e.g., 2 fold higher. Better binding can be indicated by a greater numerical Ka, or a lesser numerical Kd than a reference. Unless otherwise noted, binding affinities are determined in phosphate buffered saline at pH7.
- The details of one or more non-limiting embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
-
FIGS. 1A and 1B provide the nucleotide and amino acid sequence of human ET-2S (SEQ ID NO:93 and SEQ ID NO:94, respectively). -
FIGS. 2A and 2B provide the nucleotide and amino acid sequence of human ET-2L (SEQ ID NO:1 and SEQ ID NO:2, respectively). -
FIGS. 3A and 3B depict distribution of tumor volumes (5A) and tumor weights (5B) onday 39 for a treatment with the H10 antibody in a mouse model. - Endotheliases are an attractive target for the treatment of diseases characterized by unwanted angiogenesis due to the role of these enzymes in the proteolytic processing of extracellular matrix components during new blood vessel formation. Endotheliase-2 (ET2) is a transmembrane serine protease expressed on the surface of endothelial cells. Exemplary nucleic acid and amino acid sequence of two forms of human ET2, ET2-S, and ET-2L (for short and long forms, respectively) are provided in
FIGS. 1 and 2 . See also WO 01/36604. - This disclosure provides, inter alia, ligands that bind to ET2, e.g., immunoglobulins that inhibit ET2 with high affinity and selectivity. The disclosure also provides methods for identifying proteins, e.g., antibodies, that bind to ET2. In many cases, the identified proteins are at least partially specific.
- ET2 is a type-II membrane-type serine protease and a member of the endotheliase class of angiogenesis-associated proteases. ET2 RNA is expressed in endothelial cells and some tumor cell lines (WO 01/36604). ET2 RNA has also been detected in other tissues. The ET2 protein has a transmembrane region at the N-terminus, followed by a single low density lipoprotein-A (LDR-A) receptor domain and a single scavenger-receptor cysteine-rich domain (WO 01/36604). The C-terminus contains a trypsin-like serine protease domain characterized by the presence of the catalytic triad residues histidine, aspartate, and serine, in 3 conserved regions of the protease domain. Three repetitive sequences having the sequence ASPAGTPPGRASP (SEQ ID NO:144) are present near the transmembrane domain and contain a sequence motif for N-myristoylation (WO 01/36604).
- Display Libraries
- In one embodiment, a display library can be used to identify proteins that bind to the ET2. A display library is a collection of entities; each entity includes an accessible polypeptide component and a recoverable component that encodes or identifies the polypeptide component. The polypeptide component can be of any length, e.g. from three amino acids to over 300 amino acids. In a selection, the polypeptide component of each member of the library is probed with the ET2 and if the polypeptide component binds to the ET2, the display library member is identified, typically by retention on a support.
- Retained display library members are recovered from the support and analyzed. The analysis can include amplification and a subsequent selection under similar or dissimilar conditions. For example, positive and negative selections can be alternated. The analysis can also include determining the amino acid sequence of the polypeptide component and purification of the polypeptide component for detailed characterization.
- A variety of formats can be used for display libraries. Examples include the following.
- Phage Display. One format utilizes viruses, particularly bacteriophages. This format is termed “phage display.” The polypeptide component is typically covalently linked to a bacteriophage coat protein. The linkage results form translation of a nucleic acid encoding the polypeptide component fused to the coat protein. The linkage can include a flexible peptide linker, a protease site, or an amino acid incorporated as a result of suppression of a stop codon. Phage display is described, for example, in Ladner et al., U.S. Pat. No. 5,223,409; Smith (1985) Science 228:1315-1317; WO 92/18619; WO 91/17271; WO 92/20791; WO 92/15679; WO 93/01288; WO 92/01047; WO 92/09690; WO 90/02809; de Haard et al. (1999) J. Biol. Chem 274:18218-30; Hoogenboom et al. (1998) Immunotechnology 4:1-20; Hoogenboom et al. (2000) Immunol Today 2:371-8; Fuchs et al. (1991) Bio/Technology 9:1370-1372; Hay et al. (1992) Hum Antibod Hybridomas 3:81-85; Huse et al. (1989) Science 246:1275-1281; Griffiths et al. (1993) EMBO J 12:725-734; Hawkins et al. (1992) J Mol Biol 226:889-896; Clackson et al. (1991) Nature 352:624-628; Gram et al. (1992) PNAS 89:3576-3580; Garrard et al. (1991) Bio/Technology 9:1373-1377; Rebar et al. (1996) Methods Enzymol. 267:129-49; Hoogenboom et al. (1991) Nuc Acid Res 19:4133-4137; and Barbas et al. (1991) PNAS 88:7978-7982.
- Phage display systems have been developed for filamentous phage (phage fl, fd, and M13) as well as other bacteriophage (e.g. T7 bacteriophage and lambdoid phages; see, e.g., Santini (1998) J. Mol. Biol. 282:125-135; Rosenberg et al. (1996) Innovations 6:1-6; Houshmet al. (1999) Anal Biochem 268:363-370). The filamentous phage display systems typically use fusions to a minor coat protein, such as gene III protein, and gene VIII protein, a major coat protein, but fusions to other coat proteins such as gene VI protein, gene VII protein,
gene 1× protein, or domains thereof can also been used (see, e.g., WO 00/71694). In one embodiment, the fusion is to a domain of the gene III protein, e.g., the anchor domain or “stump,” (see, e.g., U.S. Pat. No. 5,658,727 for a description of the gene III protein anchor domain). It is also possible to physically associate the protein being displayed to the coat using a non-peptide linkage, e.g., a non-covalent bond or a non-peptide covalent bond. For example, a disulfide bond and/or c-fos and c-jun coiled-coils can be used for physical associations (see, e.g., Crameri et al. (1993) Gene 137:69 and WO 01/05950). - The valency of the polypeptide component can also be controlled. For example, cloning of the sequence encoding the polypeptide component into the complete phage genome results in multivariant display since all replicates of the gene III protein are fused to the polypeptide component. For reduced valency, a phagemid system can be utilized. In this system, the nucleic acid encoding the polypeptide component fused to gene III is provided on a plasmid, typically of length less than 7000 nucleotides. The plasmid includes a phage origin of replication so that the plasmid is incorporated into bacteriophage particles when bacterial cells bearing the plasmid are infected with helper phage, e.g. M13K01. The helper phage provides an intact copy of gene III and other phage genes required for phage replication and assembly. The helper phage has a defective origin such that the helper phage genome is not efficiently incorporated into phage particles relative to the plasmid that has a wild type origin.
- Bacteriophage displaying the polypeptide component can be grown and harvested using standard phage preparatory methods, e.g. PEG precipitation from growth media.
- After selection of individual display phages, the nucleic acid encoding the selected peptide components is amplified by infecting cells using the selected phages. Individual colonies or plaques can be picked, the corresponding nucleic acid can be isolated and sequenced.
- Cell-based Display. In still another format the library is a cell-display library. Proteins are displayed on the surface of a cell, e.g., a eukaryotic or prokaryotic cell. Exemplary prokaryotic cells include E. coli cells, B. subtilis cells, spores (see, e.g., Lu et al. (1995) Biotechnology 13:366). Exemplary eukaryotic cells include yeast (e.g., Saccharomyces cerevisiae, Schizosaccharomyces pombe, Hanseula, or Pichia pastoris). Yeast surface display is described, e.g., in Boder and Wittrup (1997) Nat. Biotechnol. 15:553-557 and WO 03/029,456. This application describes a yeast display system that can be used to display immunoglobulin proteins such as Fab fragments, and the use of mating to generate combinations of heavy and light chains.
- In one embodiment, variegated nucleic acid sequences are cloned into a vector for yeast display. The cloning joins the variegated sequence with a domain (or complete) yeast cell surface protein, e.g., Aga2, Aga1, Flo1, or Gas1. A domain of these proteins can anchor the polypeptide encoded by the variegated nucleic acid sequence by a transmembrane domain (e.g., Flo1) or by covalent linkage to the phospholipid bilayer (e.g., Gas 1). The vector can be configured to express two polypeptide chains on the cell surface such that one of the chains is linked to the yeast cell surface protein. For example, the two chains can be immunoglobulin chains.
- Ribosome Display. RNA and the polypeptide encoded by the RNA can be physically associated by stabilizing ribosomes that are translating the RNA and have the nascent polypeptide still attached. Typically, high divalent Mg2+ concentrations and low temperature are used. See, e.g., Mattheakis et al. (1994) Proc. Natl. Acad. Sci. USA 91:9022 and Hanes et al. (2000) Nat Biotechnol 18:1287-92; Hanes et al. (2000) Methods Enzymol. 328:404-30. and Schaffitzel et al. (1999) J Immunol Methods. 231(1-2):119-35.
- Peptide-Nucleic Acid Fusions. Another format utilizes peptide-nucleic acid fusions. Polypeptide-nucleic acid fusions can be generated by the in vitro translation of mRNA that include a covalently attached puromycin group, e.g., as described in Roberts and Szostak (1997) Proc. Natl. Acad. Sci. USA 94:12297-12302, and U.S. Pat. No. 6,207,446. The mRNA can then be reverse transcribed into DNA and crosslinked to the polypeptide.
- Other Display Formats. Yet another display format is a non-biological display in which the polypeptide component is attached to a non-nucleic acid tag that identifies the polypeptide. For example, the tag can be a chemical tag attached to a bead that displays the polypeptide or a radiofrequency tag (see, e.g., U.S. Pat. No. 5,874,214).
- Scaffolds. Scaffolds for display can include: antibodies (e.g., Fab fragments, single chain Fv molecules (scFV), single domain antibodies, camelid antibodies, and camelized antibodies); T-cell receptors; MHC proteins; extracellular domains (e.g., fibronectin Type III repeats, EGF repeats); protease inhibitors (e.g., Kunitz domains, ecotin, BPTI, and so forth); TPR repeats; trifoil structures; zinc finger domains; DNA-binding proteins; particularly monomeric DNA binding proteins; RNA binding proteins; enzymes, e.g., proteases (particularly inactivated proteases), RNase; chaperones, e.g., thioredoxin, and heat shock proteins; and intracellular signaling domains (such as SH2 and SH3 domains).
- Appropriate criteria for evaluating a scaffolding domain can include: (1) amino acid sequence, (2) sequences of several homologous domains, (3) 3-dimensional structure, and/or (4) stability data over a range of pH, temperature, salinity, organic solvent, oxidant concentration. In one embodiment, the scaffolding domain is a small, stable protein domains, e.g., a protein of less than 100, 70, 50, 40 or 30 amino acids. The domain may include one or more disulfide bonds or may chelate a metal, e.g., zinc.
- Examples of small scaffolding domains include: Kunitz domains (58 amino acids, 3 disulfide bonds), Cucurbida maxima trypsin inhibitor domains (31 amino acids, 3 disulfide bonds), domains related to guanylin (14 amino acids, 2 disulfide bonds), domains related to heat-stable enterotoxin IA from gram negative bacteria (18 amino acids, 3 disulfide bonds), EGF domains (50 amino acids, 3 disulfide bonds), kringle domains (60 amino acids, 3 disulfide bonds), fungal carbohydrate-binding domains (35 amino acids, 2 disulfide bonds), endothelin domains (18 amino acids, 2 disulfide bonds), and Streptococcal G IgG-binding domain (35 amino acids, no disulfide bonds).
- Examples of small intracellular scaffolding domains include SH2, SH3, and EVH domains. Generally, any modular domain, intracellular or extracellular, can be used.
- Another useful type of scaffolding domain is the immunoglobulin (Ig) domain. Methods using immunoglobulin domains for display are described below (see, e.g., “Antibody Display Libraries”).
- Display technology can also be used to obtain ligands, e.g., antibody ligands that bind particular epitopes of a target. This can be done, for example, by using competing non-target molecules that lack the particular epitope or are mutated within the epitope, e.g., with alanine. Such non-target molecules can be used in a negative selection procedure as described below, as competing molecules when binding a display library to the target, or as a pre-elution agent, e.g., to capture in a wash solution dissociating display library members that are not specific to the target.
- Iterative Selection. In one preferred embodiment, display library technology is used in an iterative mode. A first display library is used to identify one or more ligands for a target. These identified ligands are then varied using a mutagenesis method to form a second display library. Higher affinity ligands are then selected from the second library, e.g., by using higher stringency or more competitive binding and washing conditions.
- In some implementations, the mutagenesis is targeted to regions known or likely to be at the binding interface. If, for example, the identified ligands are antibodies, then mutagenesis can be directed to the CDR regions of the heavy or light chains as described herein. Further, mutagenesis can be directed to framework regions near or adjacent to the CDRs. In the case of antibodies, mutagenesis can also be limited to one or a few of the CDRs, e.g., to make precise step-wise improvements. Likewise, if the identified ligands are enzymes, mutagenesis can be directed to the active site and vicinity.
- Some exemplary mutagenesis techniques include: error-prone PCR (Leung et al. (1989) Technique 1:11-15), recombination, DNA shuffling using random cleavage (Stemmer (1994) Nature 389-391; termed “nucleic acid shuffling”), random chimeragenesis on transient templates (RACHITT™) (Coco et al. (2001) Nature Biotech. 19:354), site-directed mutagenesis (Zoller et al. (1987) Nucl Acids Res 10:6487-6504), cassette mutagenesis (Reidhaar-Olson (1991) Methods Enzymol. 208:564-586) and incorporation of degenerate oligonucleotides (Griffiths et al. (1994) EMBO J 13:3245).
- In one example of iterative selection, the methods described herein are used to first identify a protein ligand from a display library that binds a ET2 with at least a minimal binding specificity for a target or a minimal activity, e.g., an equilibrium dissociation constant for binding of less than 1 nM, 10 nM, or 100 nM. The nucleic acid sequence encoding the initial identified protein ligands are used as a template nucleic acid for the introduction of variations, e.g., to identify a second protein ligand that has enhanced properties (e.g., binding affinity, kinetics, or stability) relative to the initial protein ligand.
- Off-Rate Selection. Since a slow dissociation rate can be predictive of high affinity, particularly with respect to interactions between polypeptides and their targets, the methods described herein can be used to isolate ligands with a desired kinetic dissociation rate (i.e. reduced) for a binding interaction to a target.
- To select for slow dissociating ligands from a display library, the library is contacted to an immobilized target. The immobilized target is then washed with a first solution that removes non-specifically or weakly bound biomolecules. Then the bound ligands are eluted with a second solution that includes a saturating amount of free target, i.e., replicates of the target that are not attached to the particle. The free target binds to biomolecules that dissociate from the target. Rebinding is effectively prevented by the saturating amount of free target relative to the much lower concentration of immobilized target.
- The second solution can have solution conditions that are substantially physiological or that are stringent. Typically, the solution conditions of the second solution are identical to the solution conditions of the first solution. Fractions of the second solution are collected in temporal order to distinguish early from late fractions. Later fractions include biomolecules that dissociate at a slower rate from the target than biomolecules in the early fractions.
- Further, it is also possible to recover display library members that remain bound to the target even after extended incubation. These can either be dissociated using chaotropic conditions or can be amplified while attached to the target. For example, phage bound to the target can be contacted to bacterial cells.
- Selecting or Screening for Specificity. The display library screening methods described herein can include a selection or screening process that discards display library members that bind to a non-target molecule. Examples of non-target molecules include, e.g., the Fc domain of the anti-ET2 antibody.
- In one implementation, a so-called “negative selection” step is used to discriminate between the target and related non-target molecule and a related, but distinct non-target molecules. The display library or a pool thereof is contacted to the non-target molecule. Members of the sample that do not bind the non-target are collected and used in subsequent selections for binding to the target molecule or even for subsequent negative selections. The negative selection step can be prior to or after selecting library members that bind to the target molecule.
- In another implementation, a screening step is used. After display library members are isolated for binding to the target molecule, each isolated library member is tested for its ability to bind to a non-target molecule (e.g., a non-target listed above). For example, a high-throughput ELISA screen can be used to obtain this data. The ELISA screen can also be used to obtain quantitative data for binding of each library member to the target. The non-target and target binding data are compared (e.g., using a computer and software) to identify library members that specifically bind to the target.
- Other Expression Libraries
- Other types of collections of proteins (e.g., expression libraries) can be used to identify proteins with a particular property (e.g., ability to bind ET2 and/or ability to inhibit ET2), including, e.g., protein arrays of antibodies (see, e.g., De Wildt et al. (2000) Nat. Biotechnol. 18:989-994), lambda gt11 libraries, two-hybrid libraries and so forth.
- Protein Arrays. Different proteins can be immobilized on a solid support, for example, on a bead or an array. For a protein array, each of the proteins is immobilized at a unique address on a support. Typically, the address is a two-dimensional address.
- In some implementations, cells or phage that express the protein can be grown directly on a filter that is used as the array. In other implementations, recombinant protein production is used to produce at least partially purified samples of the protein. The partially purified or pure samples are disposed on the array.
- Methods of producing protein arrays are described, e.g., in De Wildt et al. (2000) Nat. Biotechnol. 18:989-994; Lueking et al. (1999) Anal. Biochem. 270:103-111; Ge (2000) Nucleic Acids Res. 28, e3, I-VII; MacBeath and Schreiber (2000) Science 289:1760-1763; WO 01/40803 and WO 99/51773A1. Proteins for the array can be spotted at high speed, e.g., using commercially available robotic apparati, e.g., from Genetic MicroSystems or BioRobotics. The array substrate can be, for example, nitrocellulose, plastic, glass, e.g., surface-modified glass. For example, the array can be an array of antibodies, e.g., as described in De Wildt, supra.
- Diversity
- Display libraries include variation at one or more positions in the displayed polypeptide. The variation at a given position can be synthetic or natural. For some libraries, both synthetic and natural diversity are included.
- Synthetic Diversity. Libraries can include regions of diverse nucleic acid sequence that originate from artificially synthesized sequences. Typically, these are formed from degenerate oligonucleotide populations that include a distribution of nucleotides at each given position. The inclusion of a given sequence is random with respect to the distribution. One example of a degenerate source of synthetic diversity is an oligonucleotide that includes NNN wherein N is any of the four nucleotides in equal proportion.
- Synthetic diversity can also be more constrained, e.g., to limit the number of codons in a nucleic acid sequence at a given trinucleotide to a distribution that is smaller than NNN. For example, such a distribution can be constructed using less than four nucleotides at some positions of the codon. In addition, trinucleotide addition technology can be used to further constrain the distribution.
- So-called “trinucleotide addition technology” is described, e.g., in Wells et al. (1985) Gene 34:315-323, U.S. Pat. Nos. 4,760,025 and 5,869,644. Oligonucleotides are synthesized on a solid phase support, one codon (i.e., trinucleotide) at a time. The support includes many functional groups for synthesis such that many oligonucleotides are synthesized in parallel. The support is first exposed to a solution containing a mixture of the set of codons for the first position. The unit is protected so additional units are not added. The solution containing the first mixture is washed away and the solid support is deprotected so a second mixture containing a set of codons for a second position can be added to the attached first unit. The process is iterated to sequentially assemble multiple codons. Trinucleotide addition technology enables the synthesis of a nucleic acid that at a given position can encode a number of amino acids. The frequency of these amino acids can be regulated by the proportion of codons in the mixture. Further the choice of amino acids at the given position is not restricted to quadrants of the codon table as is the case if mixtures of single nucleotides are added during the synthesis.
- Natural Diversity. Libraries can include regions of diverse nucleic acid sequence that originate (or are synthesized based on) from different naturally-occurring sequences. An example of natural diversity that can be included in a display library is the sequence diversity present in immune cells (see also below). Nucleic acids are prepared from these immune cells and are manipulated into a format for polypeptide display. Another example of naturally occurring diversity is the diversity of sequences among different species of organisms. For example, diverse nucleic acid sequences can be amplified from environmental samples, such as soil, and used to construct a display library.
- Antibody Display Libraries
- In one embodiment, the display library presents a diverse pool of polypeptides, each of which includes an immunoglobulin domain, e.g., an immunoglobulin variable domain. Display libraries are particularly useful, for example for identifying human or “humanized” antibodies that recognize human antigens. Such antibodies can be used as therapeutics to treat human disorders such as cancer. Since the constant and framework regions of the antibody are human, these therapeutic antibodies may avoid themselves being recognized and targeted as antigens. The constant regions may also be optimized to recruit effector functions of the human immune system. The in vitro display selection process surmounts the inability of a normal human immune system to generate antibodies against self-antigens. Other types of antibody expression libraries can be used, including, e.g., protein arrays of antibodies (see, e.g., De Wildt et al. (2000) Nat. Biotechnol. 18:989-994), lambda gt11 libraries, and so forth.
- A typical antibody display library displays a polypeptide that includes a VH domain and a VL domain. An “immunoglobulin domain” refers to a domain from the variable or constant domain of immunoglobulin molecules. Immunoglobulin domains typically contain two β-sheets formed of about seven β-strands, and a conserved disulphide bond (see, e.g., A. F. Williams and A. N. Barclay 1988 Ann. Rev Immunol. 6:381-405). The display library can display the antibody as a Fab fragment (e.g., using two polypeptide chains) or a single chain Fv (e.g., using a single polypeptide chain). Other formats can also be used.
- As in the case of the Fab and other formats, the displayed antibody can include one or more constant regions as part of a light and/or heavy chain. In one embodiment, each chain includes one constant region, e.g., as in the case of a Fab. In other embodiments, additional constant regions are displayed.
- Antibody libraries can be constructed by a number of processes (see, e.g., de Haard et al. (1999) J. Biol. Chem 274:18218-30; Hoogenboom et al. (1998) Immunotechnology 4:1-20. and Hoogenboom et al. (2000) Immunol Today 21:371-8. Further, elements of each process can be combined with those of other processes. The processes can be used such that variation is introduced into a single immunoglobulin domain (e.g., VH or VL) or into multiple immunoglobulin domains (e.g., VH and VL). The variation can be introduced into an immunoglobulin variable domain, e.g., in the region of one or more of CDR1, CDR2, CDR3, FR1, FR2, FR3, and FR4, referring to such regions of either and both of heavy and light chain variable domains. In one embodiment, variation is introduced into all three CDRs of a given variable domain. In another preferred embodiment, the variation is introduced into CDR1 and CDR2, e.g., of a heavy chain variable domain. Any combination is feasible. In one process, antibody libraries are constructed by inserting diverse oligonucleotides that encode CDRs into the corresponding regions of the nucleic acid. The oligonucleotides can be synthesized using monomeric nucleotides or trinucleotides. For example, Knappik et al. (2000) J. Mol. Biol. 296:57-86 describe a method for constructing CDR encoding oligonucleotides using trinucleotide synthesis and a template with engineered restriction sites for accepting the oligonucleotides.
- In another process, an animal, e.g., a rodent, is immunized with the ET2. The animal is optionally boosted with the antigen to further stimulate the response. Then spleen cells are isolated from the animal, and nucleic acid encoding VH and/or VL domains is amplified and cloned for expression in the display library.
- In yet another process, antibody libraries are constructed from nucleic acid amplified from naïve germline immunoglobulin genes. The amplified nucleic acid includes nucleic acid encoding the VH and/or VL domain. Sources of immunoglobulin-encoding nucleic acids are described below. Amplification can include PCR, e.g., with primers that anneal to the conserved constant region, or another amplification method.
- Nucleic acid encoding immunoglobulin domains can be obtained from the immune cells of, e.g., a human, a primate, mouse, rabbit, camel, or rodent. In one example, the cells are selected for a particular property. B cells at various stages of maturity can be selected. In another example, the B cells are naïve.
- In one embodiment, fluorescent-activated cell sorting (FACS) is used to sort B cells that express surface-bound IgM, IgD, or IgG molecules. Further, B cells expressing different isotypes of IgG can be isolated. In another preferred embodiment, the B or T cell is cultured in vitro. The cells can be stimulated in vitro, e.g., by culturing with feeder cells or by adding mitogens or other modulatory reagents, such as antibodies to CD40, CD40 ligand or CD20, phorbol myristate acetate, bacterial lipopolysaccharide, concanavalin A, phytohemagglutinin or pokeweed mitogen.
- In still another embodiment, the cells are isolated from a subject that has an immunological disorder, e.g., systemic lupus erythematosus (SLE), rheumatoid arthritis, vasculitis, Sjogren syndrome, systemic sclerosis, or anti-phospholipid syndrome. The subject can be a human, or an animal, e.g., an animal model for the human disease, or an animal having an analogous disorder. In yet another embodiment, the cells are isolated from a transgenic non-human animal that includes a human immunoglobulin locus.
- In one preferred embodiment, the cells have activated a program of somatic hypermutation. Cells can be stimulated to undergo somatic mutagenesis of immunoglobulin genes, for example, by treatment with anti-immunoglobulin, anti-CD40, and anti-CD38 antibodies (see, e.g., Bergthorsdottir et al. (2001) J Immunol. 166:2228). In another embodiment, the cells are naïve.
- The nucleic acid encoding an immunoglobulin variable domain can be isolated from a natural repertoire by the following exemplary method. First, RNA is isolated from the immune cell. Full length (i.e., capped) mRNAs are separated (e.g. by degrading uncapped RNAs with calf intestinal phosphatase). The cap is then removed with tobacco acid pyrophosphatase and reverse transcription is used to produce the cDNAs.
- The reverse transcription of the first (antisense) strand can be done in any manner with any suitable primer. See, e.g., de Haard et al. (1999) J. Biol. Chem. 274:18218-30. The primer binding region can be constant among different immunoglobulins, e.g., in order to reverse transcribe different isotypes of immunoglobulin. The primer binding region can also be specific to a particular isotype of immunoglobulin. Typically, the primer is specific for a region that is 3′ to a sequence encoding at least one CDR. In another embodiment, poly-dT primers may be used (and may be preferred for the heavy-chain genes).
- A synthetic sequence can be ligated to the 3′ end of the reverse transcribed strand. The synthetic sequence can be used as a primer binding site for binding of the forward primer during PCR amplification after reverse transcription. The use of the synthetic sequence can obviate the need to use a pool of different forward primers to fully capture the available diversity.
- The variable domain-encoding gene is then amplified, e.g., using one or more rounds. If multiple rounds are used, nested primers can be used for increased fidelity. The amplified nucleic acid is then cloned into a display library vector.
- Any method for amplifying nucleic acid sequences may be used for amplification. Methods that maximize, and do not bias, diversity are preferred. A variety of techniques can be used for nucleic acid amplification. The polymerase chain reaction (PCR; U.S. Pat. Nos. 4,683,195 and 4,683,202, Saiki, et al. (1985) Science 230, 1350-1354) utilizes cycles of varying temperature to drive rounds of nucleic acid synthesis. Transcription-based methods utilize RNA synthesis by RNA polymerases to amplify nucleic acid (U.S. Pat. No. 6,066,457; U.S. Pat. No. 6,132,997; U.S. Pat. No. 5,716,785; Sarkar et. al., Science (1989) 244: 331-34; Stofler et al., Science (1988) 239: 491). NASBA (U.S. Pat. Nos. 5,130,238; 5,409,818; and 5,554,517) utilizes cycles of transcription, reverse-transcription, and RnaseH-based degradation to amplify a DNA sample. Still other amplification methods include rolling circle amplification (RCA; U.S. Pat. Nos. 5,854,033 and 6,143,495) and strand displacement amplification (SDA; U.S. Pat. Nos. 5,455,166 and 5,624,825).
- Secondary Screening Methods
- After selecting candidate display library members that bind to a target, each candidate display library member can be further analyzed, e.g., to further characterize its binding properties for the target. Each candidate display library member can be subjected to one or more secondary screening assays. The assay can be for a binding property, a catalytic property, an inhibitory property, a physiological property (e.g., cytotoxicity, renal clearance, immunogenicity), a structural property (e.g., stability, conformation, oligomerization state) or another functional property. The same assay can be used repeatedly, but with varying conditions, e.g., to determine pH, ionic, or thermal sensitivities.
- As appropriate, the assays can use the display library member directly, a recombinant polypeptide produced from the nucleic acid encoding a displayed polypeptide, or a synthetic peptide synthesized based on the sequence of a displayed peptide. Exemplary assays for binding properties include the following.
- ELISA. Polypeptides encoded by a display library can also be screened for a binding property using an ELISA assay. For example, each polypeptide is contacted to a microtitre plate whose bottom surface has been coated with the target, e.g., a limiting amount of the target. The plate is washed with buffer to remove non-specifically bound polypeptides. Then the amount of the polypeptide bound to the plate is determined by probing the plate with an antibody that can recognize the polypeptide, e.g., a tag or constant portion of the polypeptide. The antibody is linked to an enzyme such as alkaline phosphatase, which produces a calorimetric product when appropriate substrates are provided. The polypeptide can be purified from cells or assayed in a display library format, e.g., as a fusion to a filamentous bacteriophage coat. In another version of the ELISA assay, each polypeptide of a diversity strand library is used to coat a different well of a microtitre plate. The ELISA then proceeds using a constant target molecule to query each well.
- Homogeneous Binding Assays. The binding interaction of candidate polypeptide with a target can be analyzed using a homogenous assay, i.e., after all components of the assay are added, additional fluid manipulations are not required. For example, fluorescence resonance energy transfer (FRET) can be used as a homogenous assay (see, for example, Lakowicz et al., U.S. Pat. No. 5,631,169; Stavrianopoulos, et al., U.S. Pat. No. 4,868,103). A fluorophore label on the first molecule (e.g., the molecule identified in the fraction) is selected such that its emitted fluorescent energy can be absorbed by a fluorescent label on a second molecule (e.g., the target) if the second molecule is in proximity to the first molecule. The fluorescent label on the second molecule fluoresces when it absorbs to the transferred energy. Since the efficiency of energy transfer between the labels is related to the distance separating the molecules, the spatial relationship between the molecules can be assessed. In a situation in which binding occurs between the molecules, the fluorescent emission of the ‘acceptor’ molecule label in the assay should be maximal. A binding event that is configured for monitoring by FRET can be conveniently measured through standard fluorometric detection means well known in the art (e.g., using a fluorimeter). By titrating the amount of the first or second binding molecule, a binding curve can be generated to estimate the equilibrium binding constant.
- Another example of a homogenous assay is Alpha Screen (Packard Bioscience, Meriden Conn.). Alpha Screen uses two labeled beads. One bead generates singlet oxygen when excited by a laser. The other bead generates a light signal when singlet oxygen diffuses from the first bead and collides with it. The signal is only generated when the two beads are in proximity. One bead can be attached to the display library member, the other to the target. Signals are measured to determine the extent of binding.
- The homogenous assays can be performed while the candidate polypeptide is attached to the display library vehicle, e.g., a bacteriophage.
- Surface Plasmon Resonance (SPR). The binding interaction of a molecule isolated from a display library and a target can be analyzed using SPR. SPR or Biomolecular Interaction Analysis (BIA) detects biospecific interactions in real time, without labeling any of the interactants. Changes in the mass at the binding surface (indicative of a binding event) of the BIA chip result in alterations of the refractive index of light near the surface (the optical phenomenon of surface plasmon resonance (SPR)). The changes in the refractivity generate a detectable signal, which are measured as an indication of real-time reactions between biological molecules. Methods for using SPR are described, for example, in U.S. Pat. No. 5,641,640; Raether (1988) Surface Plasmons Springer Verlag; Sjolander and Urbaniczky (1991) Anal. Chem. 63:2338-2345; Szabo et al. (1995) Curr. Opin. Struct. Biol. 5:699-705 and on-line resources provide by BIAcore International AB (Uppsala, Sweden).
- Information from SPR can be used to provide an accurate and quantitative measure of the equilibrium dissociation constant (Kd), and kinetic parameters, including Kon and Koff, for the binding of a biomolecule to a target. Such data can be used to compare different biomolecules. For example, proteins encoded by nucleic acid selected from a library of diversity strands can be compared to identify individuals that have high affinity for the target or that have a slow Koff. This information can also be used to develop structure-activity relationships (SAR). For example, the kinetic and equilibrium binding parameters of matured versions of a parent protein can be compared to the parameters of the parent protein. Variant amino acids at given positions can be identified that correlate with particular binding parameters, e.g., high affinity and slow Koff. This information can be combined with structural modeling (e.g., using homology modeling, energy minimization, or structure determination by x-ray crystallography or NMR). As a result, an understanding of the physical interaction between the protein and its target can be formulated and used to guide other design processes.
- Protein Arrays. Polypeptides identified from the display library can be immobilized on a solid support, for example, on a bead or an array. For a protein array, each of the polypeptides is immobilized at a unique address on a support. Typically, the address is a two-dimensional address. Protein arrays are described below (see, e.g., Diagnostics).
- Cellular Assays. A library of candidate polypeptides (e.g., previously identified by a display library or otherwise) can be screened by transforming the library into a host cell. For example, the library can include vector nucleic acid sequences that include segments that encode the polypeptides and that direct expression, e.g., such that the polypeptides are produced within the cell, secreted from the cell, or attached to the cell surface. The cells can be screened for polypeptides that bind to the ET2, e.g., as detected by a change in a cellular phenotype or a cell-mediated activity. For example, in the case of an antibody that binds to the ET2, the activity may be cell or complement-mediated cytotoxicity.
- Automation
- In one embodiment, at least some aspects of the screening method are automated. Automated methods can be used for a high throughput screen, e.g., to detect interactions with ET2 such as binding interactions or enzymatic interaction (e.g., inhibition of ET2 activity). For example, clones isolated from a primary screen and encoding candidate ligands are stored in an arrayed format (e.g., microtitre plates). A robotic device can be automatically controlled to set up assays for each of the candidate ligands in a variety of formats, e.g., ELISA (using purified ligands or phage displaying the ligand), enzyme assays, cell based assays, and so forth. Enzymatic activity, for example, can be detected by any of a variety of methods, including spectroscopically, colorimetrically, using mass spectroscopy, and so forth.
- Data indicating the performance of each clone for a particular assay, e.g., a binding assay, an activity assay, or a cell-based assay, can be stored in database. Software can be used to access the database and select clones that meet particular criteria, e.g., exceed a threshold for an assay. The software can then direct a robotic arm to pick the selected clones from the stored array, prepare nucleic acid encoding the ligand, prepare the ligand itself, and/or produce and screen secondary libraries whose members are mutated variants of the initially picked ligand.
- Various robotic devices that can be employed in the automation process include multi-well plate conveyance systems, magnetic bead particle processors, liquid handling units, colony picking units. These devices can be built on custom specifications or purchased from commercial sources, such as Autogen (Framingham Mass.), Beckman Coulter (USA), Biorobotics (Woburn Mass.), Genetix (New Milton, Hampshire UK), Hamilton (Reno Nev.), Hudson (Springfield N.J.), Labsystems (Helsinki, Finland), Perkin Elmer Lifesciences (Wellseley Mass.), Packard Bioscience (Meriden Conn.), and Tecan (Mannedorf, Switzerland).
- Methods for Obtaining ET2-Binding Antibodies
- In addition to the use of display libraries, other methods can be used to obtain a ET2-binding antibody. For example, the ET2 protein or a region thereof can be used as an antigen in a non-human animal, e.g., a rodent.
- In one embodiment, the non-human animal includes at least a part of a human immunoglobulin gene. For example, it is possible to engineer mouse strains deficient in mouse antibody production with large fragments of the human Ig loci. Using the hybridoma technology, antigen-specific Mabs derived from the genes with the desired specificity may be produced and selected. See, e.g., XENOMOUSE™, Green et al. Nature Genetics 7:13-21 (1994), U.S. 2003-0070185, WO 96/34096, published Oct. 31, 1996, and PCT Application No. PCT/US96/05928, filed Apr. 29, 1996.
- In another embodiment, a monoclonal antibody is obtained from the non-human animal, and then modified, e.g., humanized or deimmunized. Winter describes a CDR-grafting method that may be used to prepare the humanized antibodies of the present invention (UK Patent Application GB 2188638A, filed on Mar. 26, 1987; U.S. Pat. No. 5,225,539. All of the CDRs of a particular human antibody may be replaced with at least a portion of a non-human CDR or only some of the CDRs may be replaced with non-human CDRs. It is only necessary to replace the number of CDRs required for binding of the humanized antibody to a predetermined antigen.
- Humanized antibodies can be generated by replacing sequences of the Fv variable region that are not directly involved in antigen binding with equivalent sequences from human Fv variable regions. General methods for generating humanized antibodies are provided by Morrison, S. L., 1985, Science 229:1202-1207, by Oi et al., 1986, BioTechniques 4:214, and by Queen et al. U.S. Pat. No. 5,585,089, U.S. Pat. No. 5,693,761 and U.S. Pat. No. 5,693,762. Those methods include isolating, manipulating, and expressing the nucleic acid sequences that encode all or part of immunoglobulin Fv variable regions from at least one of a heavy or light chain. Sources of such nucleic acid are well known to those skilled in the art and, for example, may be obtained from a hybridoma producing an antibody against a predetermined target, as described above. The recombinant DNA encoding the humanized antibody, or fragment thereof, can then be cloned into an appropriate expression vector.
- A ET2-binding antibody may also be modified by specific deletion of human T cell epitopes or “deimmunization” by the methods disclosed in WO 98/52976 and WO 00/34317, the contents of which are specifically incorporated by reference herein. Briefly, the heavy and light chain variable regions of an antibody can be analyzed for peptides that bind to MHC Class II; these peptides represent potential T-cell epitopes (as defined in WO 98/52976 and WO 00/34317). For detection of potential T-cell epitopes, a computer modeling approach termed “peptide threading” can be applied, and in addition a database of human MHC class II binding peptides can be searched for motifs present in the VH and VL sequences, as described in WO 98/52976 and WO 00/34317. These motifs bind to any of the 18 major MHC class II DR allotypes, and thus constitute potential T cell epitopes. Potential T-cell epitopes detected can be eliminated by substituting small numbers of amino acid residues in the variable regions, or preferably, by single amino acid substitutions. As far as possible conservative substitutions are made, often but not exclusively, an amino acid common at this position in human germline antibody sequences may be used. Human germline sequences are disclosed in Tomlinson, I. A. et al. (1992) J. Mol. Biol. 227:776-798; Cook, G. P. et al. (1995) Immunol. Today Vol. 16 (5): 237-242; Chothia, D. et al. (1992) J. Mol. Bio. 227:799-817. The V BASE directory provides a comprehensive directory of human immunoglobulin variable region sequences (compiled by Tomlinson, I. A. et al. MRC Centre for Protein Engineering, Cambridge, UK). After the deimmunizing changes are identified, nucleic acids encoding VH and VL can be constructed by mutagenesis or other synthetic methods (e.g., de novo synthesis, cassette replacement, and so forth). Mutagenized variable sequence can, optionally, be fused to a human constant region, e.g., human IgG1 or K constant regions.
- In some cases a potential T cell epitope will include residues which are known or predicted to be important for antibody function. For example, potential T cell epitopes are usually biased towards the CDRs. In addition, potential T cell epitopes can occur in framework residues important for antibody structure and binding. Changes to eliminate these potential epitopes will in some cases require more scrutiny, e.g., by making and testing chains with and without the change. Where possible, potential T cell epitopes that overlap the CDRs were eliminated by substitutions outside the CDRs. In some cases, an alteration within a CDR is the only option, and thus variants with and without this substitution should be tested. In other cases, the substitution required to remove a potential T cell epitope is at a residue position within the framework that might be critical for antibody binding. In these cases, variants with and without this substitution should be tested. Thus, in some cases several variant deimmunized heavy and light chain variable regions were designed and various heavy/light chain combinations tested in order to identify the optimal deimmunized antibody. The choice of the final deimmunized antibody can then be made by considering the binding affinity of the different variants in conjunction with the extent of deimmunization, i.e., the number of potential T cell epitopes remaining in the variable region. Deimmunization can be used to modify any antibody, e.g., an antibody that includes a non-human sequence, e.g., a synthetic antibody, a murine antibody other non-human monoclonal antibody, or an antibody isolated from a display library.
- Germlining Antibodies
- It is possible to modify an antibody that binds ET2, e.g., an antibody described herein, in order to make the variable regions of the antibody more similar to one or more germline sequences. For example, an antibody can include one, two, three or more amino acid substitutions, e.g., in a framework or CDR region, to make it more similar to a reference germline sequence. One exemplary germlining method can include: identifying one or more germline sequences that are similar (e.g., most similar in a particular database) to the sequence of the isolated antibody. Then mutations (at the amino acid level) can be made in the isolated antibody, either incrementally, in combination, or both. For example, a nucleic acid library that includes sequences encoding some or all possible germline mutations is made. The mutated antibodies are then evaluated, e.g., to identify an antibody that has one or more additional germline residues relative to the isolated antibody and that is still useful (e.g., has a functional activity). In one embodiment, as many germline residues are introduced into an isolated antibody as possible.
- In one embodiment, mutagenesis is used to substitute or insert one or more germline residues into a CDR region. For example, the germline CDR residue can be from a germline sequence that is similar (e.g., most similar) to the variable region being modified. After mutagenesis, activity (e.g., binding or other functional activity) of the antibody can be evaluated to determine if the germline residue or residues are tolerated. Similar mutagenesis can be performed in the framework regions.
- Selecting a germline sequence can be performed in different ways. For example, a germline sequence can be selected if it meets a predetermined criteria for selectivity or similarity, e.g., at least a certain percentage identity, e.g., at least 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 99.5% identity. The selection can be performed using at least 2, 3, 5, or 10 germline sequences. In the case of CDR1 and CDR2, identifying a similar germline sequence can include selecting one such sequence. In the case of CDR3, identifying a similar germline sequence can include selecting one such sequence, but may including using two germline sequences that separately contribute to the amino-terminal portion and the carboxy-terminal portion. In other implementations more than one or two germline sequences are used, e.g., to form a consensus sequence.
- In one embodiment, with respect to a particular reference variable domain sequence, e.g., a sequence described herein, a related variable domain sequence has at least 30, 40, 50, 60, 70, 80, 90, 95 or 100% of the CDR amino acid positions that are not identical to residues in the reference CDR sequences, residues that are identical to residues at corresponding positions in a human germline sequence (i.e., an amino acid sequence encoded by a human germline nucleic acid).
- In one embodiment, with respect to a particular reference variable domain sequence, e.g., a sequence described herein, a related variable domain sequence has at least 30, 50, 60, 70, 80, 90 or 100% of the FR regions are identical to FR sequence from a human germline sequence, e.g., a germline sequence related to the reference variable domain sequence.
- Accordingly, it is possible to isolate an antibody which has similar activity to a given antibody of interest, but is more similar to one or more germline sequences, particularly one or more human germline sequences. For example, an antibody can be at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.5% identical to a germline sequence in a region outside the CDRs (e.g., framework regions). Further an antibody can include at least 1, 2, 3, 4, or 5 germline residues in a CDR region, the germline residue being from a germline sequence of similar (e.g., most similar) to the variable region being modified. Germline sequences of primary interest are human germline sequences. The activity of the antibody (e.g., the binding activity) can be within a factor or 100, 10, 5, 2, 0.5, 0.1, and 0.001 of the original antibody.
- Exemplary germline reference sequences for Vkappa include: O12/O2, O18/O8, A20, A30, L14, L1, L15, L4/18a, L5/L19, L8, L23, L9, L24, L11, L12, O11/O1, A17, A1, A18, A2, A19/A3, A23, A27, A11, L2/L16, L6, L20, L25, B3, B2, A26/A10, and A14. See, e.g., Tomlinson et al. (1995) EMBO J. 14(18):4628-3.
- A germline reference sequence for the HC variable domain can be based on a sequence that has particular canonical structures, e.g., 1-3 structures in the H1 and H2 hypervariable loops. The canonical structures of hypervariable loops of an immunoglobulin variable domain can be inferred from its sequence, as described in Chothia et al. (1992) J. Mol. Biol. 227:799-817; Tomlinson et al. (1992) J. Mol. Biol. 227:776-798); and Tomlinson et al. (1995) EMBO J. 14(18):4628-38. Exemplary sequences with a 1-3 structure include: DP-1, DP-8, DP-12, DP-2, DP-25, DP-15, DP-7, DP-4, DP-31, DP-32, DP-33, DP-35, DP-40, 7-2, hv3005, hv3005f3, DP-46, DP-47, DP-58, DP-49, DP-50, DP-51, DP-53, and DP-54.
- Ligand Production
- Standard recombinant nucleic acid methods can be used to express a protein ligand that binds to ET2. Generally, a nucleic acid sequence encoding the protein ligand is cloned into a nucleic acid expression vector. Of course, if the protein includes multiple polypeptide chains, each chain must be cloned into an expression vector, e.g., the same or different vectors, that are expressed in the same or different cells.
- Antibody Production. Some antibodies, e.g., Fabs, can be produced in bacterial cells, e.g., E. coli cells. For example, if the Fab is encoded by sequences in a phage display vector that includes a suppressible stop codon between the display entity and a bacteriophage protein (or fragment thereof), the vector nucleic acid can be transferred into a bacterial cell that cannot suppress a stop codon. In this case, the Fab is not fused to the gene III protein and is secreted into the periplasm and/or media.
- Antibodies can also be produced in eukaryotic cells. In one embodiment, the antibodies (e.g., scFv's) are expressed in a yeast cell such as Pichia (see, e.g., Powers et al. (2001) J Immunol Methods. 251:123-35), Hanseula, or Saccharomyces.
- In one preferred embodiment, antibodies are produced in mammalian cells. Preferred mammalian host cells for expressing the clone antibodies or antigen-binding fragments thereof include Chinese Hamster Ovary (CHO cells) (including dhfr-CHO cells, described in Urlaub and Chasin (1980) Proc. Natl. Acad. Sci. USA 77:4216-4220, used with a DHFR selectable marker, e.g., as described in Kaufman and Sharp (1982) Mol. Biol. 159:601-621), lymphocytic cell lines, e.g., NS0 myeloma cells and SP2 cells, COS cells, and a cell from a transgenic animal, e.g., a transgenic mammal. For example, the cell is a mammary epithelial cell.
- In addition to the nucleic acid sequence encoding the diversified immunoglobulin domain, the recombinant expression vectors may carry additional sequences, such as sequences that regulate replication of the vector in host cells (e.g., origins of replication) and selectable marker genes. The selectable marker gene facilitates selection of host cells into which the vector has been introduced (see e.g., U.S. Pat. Nos. 4,399,216, 4,634,665 and 5,179,017). For example, typically the selectable marker gene confers resistance to drugs, such as G418, hygromycin or methotrexate, on a host cell into which the vector has been introduced. Preferred selectable marker genes include the dihydrofolate reductase (DHFR) gene (for use in dhfr− host cells with methotrexate selection/amplification) and the neo gene (for G418 selection).
- In an exemplary system for recombinant expression of an antibody, or antigen-binding portion thereof, of the invention, a recombinant expression vector encoding both the antibody heavy chain and the antibody light chain is introduced into dhfr-CHO cells by calcium phosphate-mediated transfection. Within the recombinant expression vector, the antibody heavy and light chain genes are each operatively linked to enhancer/promoter regulatory elements (e.g., derived from SV40, CMV, adenovirus and the like, such as a CMV enhancer/AdMLP promoter regulatory element or an SV40 enhancer/AdMLP promoter regulatory element) to drive high levels of transcription of the genes. The recombinant expression vector also carries a DHFR gene, which allows for selection of CHO cells that have been transfected with the vector using methotrexate selection/amplification. The selected transformant host cells are cultured to allow for expression of the antibody heavy and light chains and intact antibody is recovered from the culture medium. Standard molecular biology techniques are used to prepare the recombinant expression vector, transfect the host cells, select for transformants, culture the host cells and recover the antibody from the culture medium. For example, some antibodies can be isolated by affinity chromatography with a Protein A or Protein G coupled matrix.
- For antibodies that include an Fc domain, the antibody production system preferably synthesizes antibodies in which the Fc region is glycosylated. For example, the Fc domain of IgG molecules is glycosylated at asparagine 297 in the CH2 domain. This asparagine is the site for modification with biantennary-type oligosaccharides. It has been demonstrated that this glycosylation is required for effector functions mediated by Fcγ receptors and complement Clq (Burton and Woof (1992) Adv. Immunol. 51:1-84; Jefferis et al. (1998) Immunol. Rev. 163:59-76). In one embodiment, the Fc domain is produced in a mammalian expression system that appropriately glycosylates the residue corresponding to asparagine 297. The Fc domain can also include other eukaryotic post-translational modifications.
- Antibodies can also be produced by a transgenic animal. For example, U.S. Pat. No. 5,849,992 describes a method of expressing an antibody in the mammary gland of a transgenic mammal. A transgene is constructed that includes a milk-specific promoter and nucleic acids encoding the antibody of interest and a signal sequence for secretion. The milk produced by females of such transgenic mammals includes, secreted-therein, the antibody of interest. The antibody can be purified from the milk, or for some applications, used directly.
- Generation of transgenic animals are well known in the art. One method for producing a transgenic mouse is as follows. Briefly, a targeting construct that encodes the antibody is microinjected into the male pronucleus of fertilized oocytes. The oocytes are injected into the uterus of a pseudopregnant foster mother for the development into viable pups. Some offspring will have incorproted the transgene.
- Assay Systems for ET2 Ligands
- Potential ET2 ligands can be further characterized in assays that measure their modulatory activity toward ET2 or fragments thereof in vitro or in vivo. For example, ET2 can be combined with a substrate under assay conditions permitting reaction of the ET2 with the substrate. The assay is performed in the absence of the potential ET2 ligand, and in the presence of increasing concentrations of the potential ET2 ligand. The concentration of ligand at which 50% of the ET2 activity is inhibited by the test compound is the IC50 value (Inhibitory Concentration) or EC50 (Effective Concentration) value for that compound. Within a series or group of test ligands, those having lower IC50 or EC50 values are considered more potent inhibitors of ET2 than those compounds having higher IC50 or EC50 values. Preferred ligands have an IC50 value of 100 nM or less as measured in an in vitro assay for inhibition of ET2 activity.
- The ligands can also be evaluated for selectivity toward ET2. For example, a potential ET2 ligand can be assayed for its potency toward ET2 and a panel of serine proteases and other enzymes and an IC50 value or EC50 value can be determined for each enzymatic target. In one embodiment, a compound that demonstrates a low IC50 value or EC50 value for the ET2, and a higher IC50 value or EC50 value for other enzymes within the test panel (e.g., urokinase, tissue plasminogen activator, thrombin, Factor Xa) is considered to be selective toward ET2. In one embodiment, a compound that demonstrates a low IC50 value or EC50 value for the ET2, and a higher IC50 value or EC50 value for ET1 than ET2 is considered to be selective toward ET2.
- Potential ET2 ligands can also be evaluated for their activity in vivo. For example, to evaluate the activity of a ligand to reduce tumor growth through inhibition of endotheliase, the procedures described by Jankun et al., Canc. Res., 57: 559-563 (1997) to evaluate PAI-1 can be employed. Briefly, the ATCC cell lines DU145 and LnCaP are injected into SCID mice. After tumors are established, the mice are administered the test ligand. Tumor volume measurements are taken twice a week for about five weeks. A ligand can be deemed active in this assay if an animal to which the ligand was administered exhibited decreased tumor volume, as compared to animals receiving appropriate control compounds (e.g., non-specific antibody molecules).
- To evaluate the ability of a ligand to reduce the occurrence of, or inhibit, metastasis, the procedures described by Kobayashi et al., Int. J. Canc., 57: 727-733d (1994) can be employed. Briefly, a murine xenograft selected for high lung colonization potential in injected into C57B1/6 mice i.v. (experimental metastasis) or s.c. into the abdominal wall (spontaneous metastasis). Various concentrations of the compound to be tested can be admixed with the tumor cells in Matrigel prior to injection. Daily i.p. injections of the test compound are made either on days 1-6 or days 7-13 after tumor inoculation. The animals are sacrificed about three or four weeks after tumor inoculation, and the lung tumor colonies are counted. Evaluation of the resulting data permits a determination as to efficacy of the test compound, optimal dosing and route of administration.
- The activity of the ligands toward decreasing tumor volume and metastasis can be evaluated in model described in Rabbani et al., Int. J. Cancer 63: 840-845 (1995). See also Xing et al., Canc. Res., 57: 3585-3593 (1997). There, Mat LyLu tumor cells were injected into the flank of Copenhagen rats. The animals were implanted with osmotic minipumps to continuously administer various doses of test compound for up to three weeks. The tumor mass and volume of experimental and control animals were evaluated during the experiment, as were metastatic growths. Evaluation of the resulting data permits a determination as to efficacy of the test compound, optimal dosing, and route of administration. Some of these authors described a related protocol in Xing et al., Canc. Res., 57: 3585-3593 (1997).
- To evaluate the inhibitory activity of a ligand toward neovascularization, a rabbit cornea neovascularization model can be employed. See, e.g., Avery et al., Arch. Opthalmol., 108: 1474-1475 (1990). In this model, New Zealand albino rabbits are anesthetized. A central corneal incision is made, forming a radial corneal pocket. A slow release prostaglandin pellet is placed in the pocket to induce neovascularization. The test ligand is administered i. p. for five days, then the animals are sacrificed. The effect of the test ligand is evaluated by review of periodic photographs taken of the limbus, which can be used to calculate the area of neovascular response and, therefore, limbal neovascularization. A decreased area of neovascularization as compared with appropriate controls indicates the test ligand was effective at decreasing or inhibiting neovascularization.
- An exemplary angiogenesis model used to evaluate the effect of a test compound in preventing angiogenesis is described by Min et al., Canc. Res., 56: 2428-2433 (1996). In this model, C57BL6 mice receive subcutaneous injections of a Matrigel mixture containing bFGF, as the angiogenesis-inducing agent, with and without the test ligand. After five days, the animals are sacrificed and the Matrigel plugs, in which neovascularization can be visualized, are photographed. An experimental animal receiving Matrigel and an effective dose of test ligand will exhibit less vascularization than a control animal or an experimental animal receiving a less- or non-effective does of ligand.
- An in vivo system designed to test compound for their ability to limit the spread of primary tumors is described by Crowley et al., Proc. Natl. Acad. Sci., 90: 5021-5025 (1993). Nude mice are injected with tumor cells (PC3) engineered to express CAT (chloramphenicol acetyltransferase). Compounds to be tested for their ability to decrease tumor size and/or metastases are administered to the animals, and subsequent measurements of tumor size and/or metastatic growths are made. In addition, the level of CAT detected in various organs provides an indication of the ability of the test compound to inhibit metastasis; detection of less CAT in tissues of a treated animal versus a control animal indicates less CAT-expressing cells migrated to that tissue.
- In vivo experimental modes designed to evaluate the inhibitory potential of a test serine protease inhibitors, using a tumor cell line F311, are described by Alonso et al., Breast Canc. Res. Treat., 40:209-223 (1996). This group describes in vivo studies for toxicity determination, tumor growth, invasiveness, spontaneous metastasis, experimental lung metastasis, and an angiogenesis assay.
- The CAM model (chick embryo chorioallantoic membrane model), first described by L. Ossowski (J. Cell. Biol., 107: 2437-2445 (1988)), provides another method for evaluating the protease inhibitory activity of a test compound. In the CAM model, tumor cells invade through the chorioallantoic membrane containing CAM with tumor cells in the presence of several serine protease inhibitors results in less or no invasion of the tumor cells through the membrane. Thus, the CAM assay is performed with CAM and tumor cells in the presence and absence of various concentrations of test compound. The invasiveness of tumor cells is measured under such conditions to provide an indication of the compound's inhibitory activity. A compound having inhibitory activity correlates with less tumor invasion.
- The CAM model is also used in to assay angiogenesis (i.e., effect on formation of new blood vessels (Brooks et al., Methods in Molecular Biology, 129: 257-269 (1999)). According to this model, a filter disc containing an angiogenesis inducer, such as basic fibroblast growth factor (bFDG) is placed onto the CAM. Diffusion of the cytokine into the CAM induces local angiogenesis, which may be measured in several ways such as by counting the number of blood vessel branch points within the CAM directly below the filter disc. The ability of identified compounds to inhibit cytokine-induced angiogenesis can be tested using this model. A test compound can either be added to the filter disc that contains the angiogenesis inducer, be placed directly on the membrane or be administered systemically. The extent of new blood vessel formation in the presence and/or absence of test compound can be compared using this model. The formation of fewer new blood vessels in the presence of a test compound would be indicative of anti-angiogenesis activity.
- Endothelial cell proliferation. A candidate ET2-binding ligand can be tested for endothelial proliferation inhibiting activity using a biological activity assay such as the bovine capillary endothelial cell proliferation assay, the chick CAM assay, the mouse corneal assay, and evaluating the effect of the ligand on implanted tumors. The chick CAM assay is described, e.g., by O'Reilly, et al. in “Angiogenic Regulation of Metastatic Growth” Cell, vol. 79 (2), Oct. 21, 1994, pp. 315-328. Briefly, three day old chicken embryos with intact yolks are separated from the egg and placed in a petri dish. After three days of incubation a methylcellulose disc containing the protein to be tested is applied to the CAM of individual embryos. After 48 hours of incubation, the embryos and CAMs are observed to determine whether endothelial growth has been inhibited. The mouse corneal assay involves implanting a growth factor-containing pellet, along with another pellet containing the suspected endothelial growth inhibitor, in the cornea of a mouse and observing the pattern of capillaries that are elaborated in the cornea.
- Angiogenesis. Angiogenesis may be assayed, e.g., using various human endothelial cell systems, such as umbilical vein, coronary artery, or dermal cells. Suitable assays include Alamar Blue based assays (available from Biosource International) to measure proliferation; migration assays using fluorescent molecules, such as the use of Becton Dickinson Falcon HTS FluoroBlock cell culture inserts to measure migration of cells through membranes in presence or absence of angiogenesis enhancer or suppressors; and tubule formation assays based on the formation of tubular structures by endothelial cells on MATRIGEL™ (Becton Dickinson).
- Cell adhesion. Cell adhesion assays measure adhesion of cells to purified adhesion proteins or adhesion of cells to each other, in presence or absence of candidate ET2 binding ligands. Cell-protein adhesion assays measure the ability of agents to modulate the adhesion of cells to purified proteins. For example, recombinant proteins are produced, diluted to 2.5 g/mL in PBS, and used to coat the wells of a microtiter plate. The wells used for negative control are not coated. Coated wells are then washed, blocked with 1% BSA, and washed again. Compounds are diluted to 2×final test concentration and added to the blocked, coated wells. Cells are then added to the wells, and the unbound cells are washed off. Retained cells are labeled directly on the plate by adding a membrane-permeable fluorescent dye, such as calcein-AM, and the signal is quantified in a fluorescent microplate reader.
- Cell-cell adhesion assays can be used to measure the ability of candidate ET2 binding ligands to modulate binding of cells to each other. These assays can use cells that naturally or recombinantly express an adhesion protein of choice. In an exemplary assay, cells expressing the cell adhesion protein are plated in wells of a multiwell plate together with other cells (either more of the same cell type, or another type of cell to which the cells adhere). The cells that can adhere are labeled with a membrane-permeable fluorescent dye, such as BCECF, and allowed to adhere to the monolayers in the presence of candidate ligands. Unbound cells are washed off, and bound cells are detected using a fluorescence plate reader. High-throughput cell adhesion assays have also been described. See, e.g., Falsey J R et al., Bioconjug Chem. May-June 2001; 12(3):346-53.
- Tubulogenesis. Tubulogenesis assays can be used to monitor the ability of cultured cells, generally endothelial cells, to form tubular structures on a matrix substrate, which generally simulates the environment of the extracellular matrix. Exemplary substrates include MATRIGEL™ (Becton Dickinson), an extract of basement membrane proteins containing laminin, collagen IV, and heparin sulfate proteoglycan, which is liquid at 4° C. and forms a solid gel at 37° C. Other suitable matrices comprise extracellular components such as collagen, fibronectin, and/or fibrin. Cells are stimulated with a pro-angiogenic stimulant, and their ability to form tubules is detected by imaging. Tubules can generally be detected after an overnight incubation with stimuli, but longer or shorter time frames may also be used. Tube formation assays are well known in the art (e.g., Jones M K et al., 1999, Nature Medicine 5:1418-1423). These assays have traditionally involved stimulation with serum or with the growth factors FGF or VEGF. In one embodiment, the assay is performed with cells cultured in serum free medium. In one embodiment, the assay is performed in the presence of one or more pro-angiogenic agents, e.g., inflammatory angiogenic factors, such as TNF-α, FGF, VEGF, phorbol myristate acetate (PMA), TNF-alpha, ephrin, etc.
- Cell Migration. An exemplary assay for endothelial cell migration is the human microvascular endothelial (HMVEC) migration assay. See, e.g., Tolsma et al. (1993) J. Cell Biol 122, 497-511. Migration assays are known in the art (e.g., Paik J H et al., 2001, J Biol Chem 276:11830-11837). In one example, cultured endothelial cells are seeded onto a matrix-coated porous lamina, with pore sizes generally smaller than typical cell size. The lamina is typically a membrane, such as the transwell polycarbonate membrane (Corning Costar Corporation, Cambridge, Mass.), and is generally part of an upper chamber that is in fluid contact with a lower chamber containing pro-angiogenic stimuli. Migration is generally assayed after an overnight incubation with stimuli, but longer or shorter time frames may also be used. Migration is assessed as the number of cells that crossed the lamina, and may be detected by staining cells with hemotoxylin solution (VWR Scientific.), or by any other method for determining cell number. In another exemplary set up, cells are fluorescently labeled and migration is detected using fluorescent readings, for instance using the Falcon HTS FluoroBlok (Becton Dickinson). While some migration is observed in the absence of stimulus, migration is greatly increased in response to pro-angiogenic factors. The assay can be used to test the effect of a ET2-binding ligand on endothelial cell migration.
- Sprouting assay. An exemplary sprouting assay is a three-dimensional in vitro angiogenesis assay that uses a cell-number defined spheroid aggregation of endothelial cells (“spheroid”), embedded in a collagen gel-based matrix. The spheroid can serve as a starting point for the sprouting of capillary-like structures by invasion into the extracellular matrix (termed “cell sprouting”) and the subsequent formation of complex anastomosing networks (Korff and Augustin, 1999, J Cell Sci 112:3249-58). In an exemplary experimental set-up, spheroids are prepared by pipetting 400 human umbilical vein endothelial cells (HUMVECs) into individual wells of a nonadhesive 96-well plates to allow overnight spheroidal aggregation (Korff and Augustin, J Cell Biol 143: 1341-52, 1998). Spheroids are harvested and seeded in 900 μl of methocel-collagen solution and pipetted into individual wells of a 24 well plate to allow collagen gel polymerization. Test agents are added after 30 min by pipetting 100 μl of 10-fold concentrated working dilution of the test substances on top of the gel. Plates are incubated at 37° C. for 24 h. Dishes are fixed at the end of the experimental incubation period by addition of paraformaldehyde. Sprouting intensity of endothelial cells can be quantitated by an automated image analysis system to determine the cumulative sprout length per spheroid.
- In some embodiments, an ET2 binding ligand has a statistically significant effect in an assay described herein, e.g., a cellular assay described herein.
- Pharmaceutical Compositions
- In another aspect, the present invention provides compositions, e.g., pharmaceutically acceptable compositions, which include an ET2-ligand, e.g., an antibody molecule, other polypeptide or peptide identified as binding to ET2, or described herein, formulated together with a pharmaceutically acceptable carrier. As used herein, “pharmaceutical compositions” encompass labeled ligands for in vivo imaging as well as therapeutic compositions.
- As used herein, “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. Preferably, the carrier is suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g., by injection or infusion). Depending on the route of administration, the active compound, i.e., protein ligand may be coated in a material to protect the compound from the action of acids and other natural conditions that may inactivate the compound.
- A “pharmaceutically acceptable salt” refers to a salt that retains the desired biological activity of the parent compound and does not impart any undesired toxicological effects (see e.g., Berge, S. M., et al. (1977) J. Pharm. Sci. 66:1-19). Examples of such salts include acid addition salts and base addition salts. Acid addition salts include those derived from nontoxic inorganic acids, such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydroiodic, phosphorous and the like, as well as from nontoxic organic acids such as aliphatic mono- and dicarboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, aromatic acids, aliphatic and aromatic sulfonic acids and the like. Base addition salts include those derived from alkaline earth metals, such as sodium, potassium, magnesium, calcium and the like, as well as from nontoxic organic amines, such as N,N′-dibenzylethylenediamine, N-methylglucamine, chloroprocaine, choline, diethanolamine, ethylenediamine, procaine and the like.
- The compositions of this invention may be in a variety of forms. These include, for example, liquid, semi-solid and solid dosage forms, such as liquid solutions (e.g., injectable and infusible solutions), dispersions or suspensions, tablets, pills, powders, liposomes and suppositories. The preferred form depends on the intended mode of administration and therapeutic application. Typical preferred compositions are in the form of injectable or infusible solutions, such as compositions similar to those used for administration of humans with antibodies. The preferred mode of administration is parenteral (e.g., intravenous, subcutaneous, intraperitoneal, intramuscular). In one embodiment, the ET2-ligand is administered by intravenous infusion or injection. In another preferred embodiment, the ET2-ligand is administered by intramuscular or subcutaneous injection.
- The phrases “parenteral administration” and “administered parenterally” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion.
- Pharmaceutical compositions typically must be sterile and stable under the conditions of manufacture and storage. A pharmaceutical composition can also be tested to insure it meets regulatory and industry standards for administration. For example, endotoxin levels in the preparation can be tested using the Limulus amebocyte lysate assay (e.g., using the kit from Bio Whittaker lot # 7L3790, sensitivity 0.125 EU/mL) according to the USP 24/NF 19 methods. Sterility of pharmaceutical compositions can be determined using thioglycollate medium according to the USP 24/NF 19 methods. For example, the preparation is used to inoculate the thioglycollate medium and incubated at 35° C. for 14 or more days. The medium is inspected periodically to detect growth of a microorganism.
- The composition can be formulated as a solution, microemulsion, dispersion, liposome, or other ordered structure suitable to high drug concentration. Sterile injectable solutions can be prepared by incorporating the active compound (i.e., the ligand) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. The proper fluidity of a solution can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prolonged absorption of injectable compositions can be brought about by including in the composition an agent that delays absorption, for example, monostearate salts and gelatin.
- The anti-ET2 protein ligands of the present invention can be administered by a variety of methods known in the art, although for many applications, the preferred route/mode of administration is intravenous injection or infusion. For example, for therapeutic applications, the ET2-ligand can be administered by intravenous infusion at a rate of less than 30, 20, 10, 5, or 1 mg/min to reach a dose of about 1 to 100 mg/m2 or 7 to 25 mg/m2. The route and/or mode of administration will vary depending upon the desired results. In certain embodiments, the active compound may be prepared with a carrier that will protect the compound against rapid release, such as a controlled release formulation, including implants, and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Many methods for the preparation of such formulations are patented or generally known. See, e.g., Sustained and Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978.
- In certain embodiments, the ligand may be orally administered, for example, with an inert diluent or an assimilable edible carrier. The compound (and other ingredients, if desired) may also be enclosed in a hard or soft shell gelatin capsule, compressed into tablets, or incorporated directly into the subject's diet. For oral therapeutic administration, the compounds may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. To administer a compound of the invention by other than parenteral administration, it may be necessary to coat the compound with, or co-administer the compound with, a material to prevent its inactivation.
- Pharmaceutical compositions can be administered with medical devices known in the art. For example, in one embodiment, a pharmaceutical composition of the invention can be administered with a needleless hypodermic injection device, such as the devices disclosed in U.S. Pat. Nos. 5,399,163, 5,383,851, 5,312,335, 5,064,413, 4,941,880, 4,790,824, or 4,596,556. Examples of well-known implants and modules useful in the present invention include: U.S. Pat. No. 4,487,603, which discloses an implantable micro-infusion pump for dispensing medication at a controlled rate; U.S. Pat. No. 4,486,194, which discloses a therapeutic device for administering medicants through the skin; U.S. Pat. No. 4,447,233, which discloses a medication infusion pump for delivering medication at a precise infusion rate; U.S. Pat. No. 4,447,224, which discloses a variable flow implantable infusion apparatus for continuous drug delivery; U.S. Pat. No. 4,439,196, which discloses an osmotic drug delivery system having multi-chamber compartments; and U.S. Pat. No. 4,475,196, which discloses an osmotic drug delivery system. Of course, many other such implants, delivery systems, and modules are also known.
- In certain embodiments, the compounds of the invention can be formulated to ensure proper distribution in vivo. For example, the blood-brain barrier (BBB) excludes many highly hydrophilic compounds. To ensure that the therapeutic compounds of the invention cross the BBB (if desired), they can be formulated, for example, in liposomes. For methods of manufacturing liposomes, see, e.g., U.S. Pat. Nos. 4,522,811; 5,374,548; and 5,399,331. The liposomes may comprise one or more moieties that are selectively transported into specific cells or organs, thus enhance targeted drug delivery (see, e.g., V. V. Ranade (1989) J. Clin. Pharmacol. 29:685).
- Dosage regimens are adjusted to provide the optimum desired response (e.g., a therapeutic response). For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subjects to be treated; each unit contains a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active compound for the treatment of sensitivity in individuals.
- An exemplary, non-limiting range for a therapeutically or prophylactically effective amount of an antibody of the invention is 0.1-20 mg/kg, more preferably 1-10 mg/kg. The anti-ET2 antibody can be administered by intravenous infusion at a rate of less than 30, 20, 10, 5, or 1 mg/min to reach a dose of about 1 to 100 mg/m2 or about 5 to 30 mg/m2. For ligands smaller in molecular weight than an antibody, appropriate amounts can be proportionally less. It is to be noted that dosage values may vary with the type and severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that dosage ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition.
- The pharmaceutical compositions of the invention may include a “therapeutically effective amount” or a “prophylactically effective amount” of an ET2-ligand of the invention. A “therapeutically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic result. A therapeutically effective amount of the composition may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the protein ligand to elicit a desired response in the individual. A therapeutically effective amount is also one in which any toxic or detrimental effects of the composition is outweighed by the therapeutically beneficial effects. A “therapeutically effective dosage” preferably inhibits a measurable parameter, e.g., tumor growth rate by at least about 20%, more preferably by at least about 40%, even more preferably by at least about 60%, and still more preferably by at least about 80% relative to untreated subjects. The ability of a compound to inhibit a measurable parameter, e.g., cancer, can be evaluated in an animal model system predictive of efficacy in human tumors. Alternatively, this property of a composition can be evaluated by examining the ability of the compound to inhibit, such inhibition in vitro by assays known to the skilled practitioner.
- A “prophylactically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount will be less than the therapeutically effective amount.
- Also within the scope of the invention are kits comprising the protein ligand that binds to ET2 and instructions for use, e.g., treatment, prophylactic, or diagnostic use. In one embodiment, the instructions for diagnostic applications include the use of the ET2-ligand (e.g., antibody or antigen-binding fragment thereof, or other polypeptide or peptide) to detect ET2, in vitro, e.g., in a sample, e.g., a biopsy or cells from a patient having a cancer or neoplastic disorder, or in vivo. In another embodiment, the instructions for therapeutic applications include suggested dosages and/or modes of administration in a patient with a cancer or neoplastic disorder. The kit can further contain a least one additional reagent, such as a diagnostic or therapeutic agent, e.g., a diagnostic or therapeutic agent as described herein, and/or one or more additional ET2-ligands, formulated as appropriate, in one or more separate pharmaceutical preparations.
- Stabilization and Retention
- In one embodiment, an ET2-ligand is physically associated with a moiety that improves its stabilization and/or retention in circulation, e.g., in blood, serum, lymph, or other tissues, e.g., by at least 1.5, 2, 5, 10, or 50 fold.
- For example, an ET2-ligand can be associated with a polymer, e.g., a substantially non-antigenic polymers, such as polyalkylene oxides or polyethylene oxides. Suitable polymers will vary substantially by weight. Polymers having molecular number average weights ranging from about 200 to about 35,000 (or about 1,000 to about 15,000, and 2,000 to about 12,500) can be used.
- For example, an ET2-ligand can be conjugated to a water soluble polymer, e.g., hydrophilic polyvinyl polymers, e.g. polyvinylalcohol and polyvinylpyrrolidone. A non-limiting list of such polymers include polyalkylene oxide homopolymers such as polyethylene glycol (PEG) or polypropylene glycols, polyoxyethylenated polyols, copolymers thereof and block copolymers thereof, provided that the water solubility of the block copolymers is maintained. Additional useful polymers include polyoxyalkylenes such as polyoxyethylene, polyoxypropylene, and block copolymers of polyoxyethylene and polyoxypropylene (Pluronics); polymethacrylates; carbomers; branched or unbranched polysaccharides which comprise the saccharide monomers D-mannose, D- and L-galactose, fucose, fructose, D-xylose, L-arabinose, D-glucuronic acid, sialic acid, D-galacturonic acid, D-mannuronic acid (e.g. polymannuronic acid, or alginic acid), D-glucosamine, D-galactosamine, D-glucose and neuraminic acid including homopolysaccharides and heteropolysaccharides such as lactose, amylopectin, starch, hydroxyethyl starch, amylose, dextrane sulfate, dextran, dextrins, glycogen, or the polysaccharide subunit of acid mucopolysaccharides, e.g. hyaluronic acid; polymers of sugar alcohols such as polysorbitol and polymannitol; heparin or heparon.
- Other compounds can also be attached to the same polymer, e.g., a cytotoxin, a label, or another targeting agent, e.g., another ET2-ligand or an unrelated ligand. Mono-activated, alkoxy-terminated polyalkylene oxides (PAO's), e.g., monomethoxy-terminated polyethylene glycols (mPEG's); C1-4 alkyl-terminated polymers; and bis-activated polyethylene oxides (glycols) can be used for crosslinking. See, e.g., U.S. Pat. No. 5,951,974
- In one embodiment, the polymer prior to cross-linking to the ligand need not be, but preferably is, water soluble. Generally, after crosslinking, the product is water soluble, e.g., exhibits a water solubility of at least about 0.01 mg/ml, and more preferably at least about 0.1 mg/ml, and still more preferably at least about 1 mg/ml. In addition, the polymer should not be highly immunogenic in the conjugate form, nor should it possess viscosity that is incompatible with intravenous infusion or injection if the conjugate is intended to be administered by such routes.
- In one embodiment, the polymer contains only a single group which is reactive. This helps to avoid cross-linking of ligand molecules to one another. However, it is within the scope herein to maximize reaction conditions to reduce cross-linking between ligand molecules, or to purify the reaction products through gel filtration or ion exchange chromatography to recover substantially homogenous derivatives. In other embodiments, the polymer contains two or more reactive groups for the purpose of linking multiple ligands to the polymer backbone. Again, gel filtration or ion exchange chromatography can be used to recover the desired derivative in substantially homogeneous form.
- The molecular weight of the polymer can range up to about 500,000 D, and preferably is at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. The molecular weight chosen can depend upon the effective size of the conjugate to be achieved, the nature (e.g. structure, such as linear or branched) of the polymer, and the degree of derivatization.
- A covalent bond can be used to attach an ET2-ligand to a polymer, for example, crosslinking to the N-terminal amino group of the ligand and epsilon amino groups found on lysine residues of the ligand, as well as other amino, imino, carboxyl, sulfhydryl, hydroxyl or other hydrophilic groups. The polymer may be covalently bonded directly to the ET2-ligand without the use of a multifunctional (ordinarily bifunctional) crosslinking agent. Covalent binding to amino groups is accomplished by known chemistries based upon cyanuric chloride, carbonyl diimidazole, aldehyde reactive groups (PEG alkoxide plus diethyl acetal of bromoacetaldehyde; PEG plus DMSO and acetic anhydride, or PEG chloride plus the phenoxide of 4-hydroxybenzaldehyde, activated succinimidyl esters, activated dithiocarbonate PEG, 2,4,5-trichlorophenylcloroformate or P-nitrophenylcloroformate activated PEG.) Carboxyl groups can be derivatized by coupling PEG-amine using carbodiimide. Sulfhydryl groups can be derivatized by coupling to maleimido-substituted PEG (e.g. alkoxy-PEG amine plus sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate) WO 97/10847 or PEG-maleimide commercially available from Shearwater Polymers, Inc., Huntsville, Ala.). Alternatively, free amino groups on the ligand (e.g. epsilon amino groups on lysine residues) can be thiolated with 2-imino-thiolane (Traut's reagent) and then coupled to maleimide-containing derivatives of PEG, e.g., as described in Pedley et al., Br. J. Cancer, 70: 1126-1130 (1994).
- Functionalized PEG polymers that can be attached to an ET2-ligand are available, e.g., from Shearwater Polymers, Inc. (Huntsville, Ala.). Such commercially available PEG derivatives include, e.g., amino-PEG, PEG amino acid esters, PEG-hydrazide, PEG-thiol, PEG-succinate, carboxymethylated PEG, PEG-propionic acid, PEG amino acids, PEG succinimidyl succinate, PEG succinimidyl propionate, succinimidyl ester of carboxymethylated PEG, succinimidyl carbonate of PEG, succinimidyl esters of amino acid PEGs, PEG-oxycarbonylimidazole, PEG-nitrophenyl carbonate, PEG tresylate, PEG-glycidyl ether, PEG-aldehyde, PEG vinylsulfone, PEG-maleimide, PEG-orthopyridyl-disulfide, heterofunctional PEGs, PEG vinyl derivatives, PEG silanes, and PEG phospholides. The reaction conditions for coupling these PEG derivatives may vary depending on the ET2-ligand, the desired degree of PEGylation, and the PEG derivative utilized. Some factors involved in the choice of PEG derivatives include: the desired point of attachment (such as lysine or cysteine R-groups), hydrolytic stability and reactivity of the derivatives, stability, toxicity and antigenicity of the linkage, suitability for analysis, etc. Specific instructions for the use of any particular derivative are available from the manufacturer.
- The conjugates of an ET2-ligand and a polymer can be separated from the unreacted starting materials, e.g., by gel filtration or ion exchange chromatography, e.g., HPLC. Heterologous species of the conjugates are purified from one another in the same fashion. Resolution of different species (e.g. containing one or two PEG residues) is also possible due to the difference in the ionic properties of the unreacted amino acids. See, e.g., WO 96/34015.
- Kits
- An ET2 ligand described herein can be provided in a kit, e.g., as a component of a kit. For example, the kit includes (a) an ET2 ligand, e.g., a composition that includes an ET2 ligand, and, optionally (b) informational material. The informational material can be descriptive, instructional, marketing or other material that relates to the methods described herein and/or the use of an ET2 ligand for the methods described herein.
- The informational material of the kits is not limited in its form. In one embodiment, the informational material can include information about production of the compound, molecular weight of the compound, concentration, date of expiration, batch or production site information, and so forth. In one embodiment, the informational material relates to using the ligand to treat, prevent, or diagnosis a disorder described herein, e.g., an angiogenesis or an endothelial-cell related disorder.
- In one embodiment, the informational material can include instructions to administer an ET2 ligand in a suitable manner to perform the methods described herein, e.g., in a suitable dose, dosage form, or mode of administration (e.g., a dose, dosage form, or mode of administration described herein). In another embodiment, the informational material can include instructions to administer an ET2 ligand to a suitable subject, e.g., a human, e.g., a human having, or at risk for, increased angiogenesis (e.g., cancer or metastatic cancer. For example, the material can include instructions to administer an ET2 ligand to a cancer patient, a patient with an inflammatory disorder, or a patient with excessive endothelial cell activity.
- The informational material of the kits is not limited in its form. In many cases, the informational material, e.g., instructions, is provided in printed matter, e.g., a printed text, drawing, and/or photograph, e.g., a label or printed sheet. However, the informational material can also be provided in other formats, such as computer readable material, video recording, or audio recording. In another embodiment, the informational material of the kit is contact information, e.g., a physical address, email address, website, or telephone number, where a user of the kit can obtain substantive information about an ET2 ligand and/or its use in the methods described herein. Of course, the informational material can also be provided in any combination of formats.
- In addition to an ET2 ligand, the composition of the kit can include other ingredients, such as a solvent or buffer, a stabilizer, a preservative, a flavoring agent (e.g., a bitter antagonist or a sweetener), a fragrance or other cosmetic ingredient, and/or a second agent for treating a condition or disorder described herein, e.g., cancer or inflammation. Alternatively, the other ingredients can be included in the kit, but in different compositions or containers than an ET2 ligand. In such embodiments, the kit can include instructions for admixing an ET2 ligand and the other ingredients, or for using an ET2 ligand together with the other ingredients.
- An ET2 ligand can be provided in any form, e.g., liquid, dried or lyophilized form. It is preferred that an ET2 ligand be substantially pure and/or sterile. When an ET2 ligand is provided in a liquid solution, the liquid solution preferably is an aqueous solution, with a sterile aqueous solution being preferred. When an ET2 ligand is provided as a dried form, reconstitution generally is by the addition of a suitable solvent. The solvent, e.g., sterile water or buffer, can optionally be provided in the kit.
- The kit can include one or more containers for the composition containing an ET2 ligand. In some embodiments, the kit contains separate containers, dividers or compartments for the composition and informational material. For example, the composition can be contained in a bottle, vial, or syringe, and the informational material can be contained in a plastic sleeve or packet. In other embodiments, the separate elements of the kit are contained within a single, undivided container. For example, the composition is contained in a bottle, vial or syringe that has attached thereto the informational material in the form of a label. In some embodiments, the kit includes a plurality (e.g., a pack) of individual containers, each containing one or more unit dosage forms (e.g., a dosage form described herein) of an ET2 ligand. For example, the kit includes a plurality of syringes, ampules, foil packets, or blister packs, each containing a single unit dose of an ET2 ligand. The containers of the kits can be air tight, waterproof (e.g., impermeable to changes in moisture or evaporation), and/or light-tight.
- The kit optionally includes a device suitable for administration of the composition, e.g., a syringe, inhalant, pipette, forceps, measured spoon, dropper (e.g., eye dropper), swab (e.g., a cotton swab or wooden swab), or any such delivery device. In a preferred embodiment, the device is an implantable device that dispenses metered doses of the ligand.
- Treatments
- Protein ligands that bind to ET2 and identified by the method described herein and/or detailed herein have therapeutic and prophylactic utilities. For example, these ligands can be administered to cells in culture, e.g. in vitro or ex vivo, or in a subject, e.g., in vivo, to treat, prevent, and/or diagnose a variety of disorders, such as diseases characterized by unwanted angiogenesis, e.g., cancers.
- As used herein, the term “treat” or “treatment” is defined as the application or administration of an anti-ET2 antibody, alone or in combination with, a second agent to a subject, e.g., a patient, or application or administration of the agent to an isolated tissue or cell, e.g., cell line, from a subject, e.g., a patient, who has a disorder (e.g., a disorder as described herein), a symptom of a disorder or a predisposition toward a disorder, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve or affect the disorder, the symptoms of the disorder or the predisposition toward the disorder. Treating a cell refers to the inhibition, ablation or killing of a cell in vitro or in vivo, or otherwise reducing capacity of a cell, e.g., an aberrant cell, to mediate a disorder, e.g., a disorder as described herein (e.g., a cancerous disorder). In one embodiment, “treating a cell” refers to a reduction in the activity and/or proliferation of a cell, e.g., a hyperproliferative cell. Such reduction does not necessarily indicate a total elimination of the cell, but a reduction, e.g., a statistically significant reduction, in the activity or the growth rate of the cell.
- As used herein, an amount of an ET2-ligand effective to treat a disorder, or a “therapeutically effective amount” refers to an amount of the ligand which is effective, upon single or multiple dose administration to a subject, in treating a cell, e.g., a cancer cell (e.g., a ET2-expressing cancer cell), or in prolonging life of, curing, alleviating, relieving or improving the condition of a subject with a disorder as described herein beyond that expected in the absence of such treatment. As used herein, “inhibiting the growth” of the neoplasm refers to slowing, interrupting, arresting or stopping its growth and metastases and does not necessarily indicate a total elimination of the neoplastic growth.
- As used herein, an amount of an ET2-ligand effective to prevent a disorder, or a “a prophylactically effective amount” of the ligand refers to an amount of an ET2-ligand, e.g., an anti-ET2 antibody described herein, which is effective, upon single- or multiple-dose administration to the subject, in preventing or delaying the occurrence of the onset or recurrence of a disorder, e.g., a cancer.
- The terms “induce”, “inhibit”, “potentiate”, “elevate”, “increase”, “decrease” or the like, e.g., which denote quantitative differences between two states, refer to a difference, e.g., a statistically significant difference, between the two states. For example, “an amount effective to inhibit the proliferation of the ET2-expressing hyperproliferative cells” means that the rate of growth of the cells will be different, e.g., statistically significantly different, from the untreated cells.
- As used herein, the term “subject” is intended to include human and non-human animals. Preferred human animals include a human patient having a disorder characterized by abnormal cell proliferation or cell differentiation. The term “non-human animals” of the invention includes all vertebrates, e.g., non-mammals (such as chickens, amphibians, reptiles) and mammals, such as non-human primates, sheep, dog, cow, pig, etc.
- In one embodiment, the subject is a human subject. Alternatively, the subject can be a mammal expressing a ET2-like antigen with which an antibody of the invention cross-reacts. A protein ligand of the invention can be administered to a human subject for therapeutic purposes (discussed further below). Moreover, an ET2-ligand can be administered to a non-human mammal expressing the ET2-like antigen to which the ligand binds (e.g., a primate, pig or mouse) for veterinary purposes or as an animal model of human disease. Regarding the latter, such animal models may be useful for evaluating the therapeutic efficacy of the ligand (e.g., testing of dosages and time courses of administration).
- In one embodiment, the invention provides a method of treating (e.g., ablating, killing, reducing growth of cell division of) a cell (e.g., a non-cancerous cell, e.g., a normal, benign or hyperplastic cell, or a cancerous cell, e.g., a malignant cell, e.g., cell found in a solid tumor, a soft tissue tumor, or a metastatic lesion (e.g., a cell found in renal, urothelial, colonic, rectal, pulmonary, breast or hepatic, cancers and/or metastasis))s. Methods of the invention include the steps of contacting the cell with an ET2-ligand, e.g., an anti-ET2 antibody described herein, in an amount sufficient to treat, e.g., inhibit cell growth or division, or ablate or kill the cell.
- The subject method can be used on cells in culture, e.g. in vitro or ex vivo. For example, cancerous or metastatic cells (e.g., renal, urothelial, colon, rectal, lung, breast, ovarian, prostatic, or liver cancerous or metastatic cells) can be cultured in vitro in culture medium and the contacting step can be effected by adding the ET2-ligand to the culture medium. The method can be performed on cells (e.g., cancerous or metastatic cells) present in a subject, as part of an in vivo (e.g., therapeutic or prophylactic) protocol. For in vivo embodiments, the contacting step is effected in a subject and includes administering the ET2-ligand to the subject under conditions effective to permit both binding of the ligand to the cell and the treating, e.g., the inhibition of growth or division, or the killing or ablating of the cell.
- The inhibitors of ET2 can reduce angiogenesis (e.g., uncontrolled or unwanted angiogenesis)—such as angiogenesis associated with vascular malformations and cardiovascular disorders (e.g., atherosclerosis, restenosis and arteriovenous malformations), chronic inflammatory diseases (e.g., diabetes mellitus, inflammatory bowel disease, psoriasis and rheumatoid arthritis), aberrant wound repairs (e.g., those that are observed following excimer laser eye surgery), circulatory disorders (e.g., Raynaud's phenomenon), crest syndromes (e.g., calcinosis, esophageal and dyomotiloty), dermatological disorders (e.g., Port-wine stains, arterial ulcers, systemic vasculitis and scleroderma), or ocular disorders (e.g., blindness caused by neovascular disease, neovascular glaucoma, corneal neovascularization, trachoma, diabetic retinopathy and myopic degeneration). See, e.g., Carmeliet and Jain, Nature, 407: 249-257, 2000.
- The method can be used to treat a cancer. As used herein, the terms “cancer”, “hyperproliferative”, “malignant”, and “neoplastic” are used interchangeably, and refer to those cells in an abnormal state or condition characterized by rapid proliferation or neoplasm. The terms include all types of cancerous growths or oncogenic processes, metastatic tissues or malignantly transformed cells, tissues, or organs, irrespective of histopathologic type or stage of invasiveness. “Pathologic hyperproliferative” cells occur in disease states characterized by malignant tumor growth.
- The common medical meaning of the term “neoplasia” refers to “new cell growth” that results as a loss of responsiveness to normal growth controls, e.g. to neoplastic cell growth. A “hyperplasia” refers to cells undergoing an abnormally high rate of growth. However, as used herein, the terms neoplasia and hyperplasia can be used interchangeably, as their context will reveal, referring generally to cells experiencing abnormal cell growth rates. Neoplasias and hyperplasias include “tumors,” which may be benign, premalignant or malignant.
- Examples of cancerous disorders include, but are not limited to, solid tumors, soft tissue tumors, and metastatic lesions. Examples of solid tumors include malignancies, e.g., sarcomas, adenocarcinomas, and carcinomas, of the various organ systems, such as those affecting lung, breast, lymphoid, gastrointestinal (e.g., colon), and genitourinary tract (e.g., renal, urothelial cells), pharynx, prostate, ovary as well as adenocarcinomas which include malignancies such as most colon cancers, rectal cancer, renal-cell carcinoma, liver cancer, non-small cell carcinoma of the lung, cancer of the small intestine and so forth. Metastatic lesions of the aforementioned cancers can also be treated or prevented using the methods and compositions of the invention.
- The subject method can be useful in treating malignancies of the various organ systems, such as those affecting lung, breast, lymphoid, gastrointestinal (e.g., colon), and genitourinary tract, prostate, ovary, pharynx, as well as adenocarcinomas which include malignancies such as most colon cancers, renal-cell carcinoma, prostate cancer and/or testicular tumors, non-small cell carcinoma of the lung, cancer of the small intestine and cancer of the esophagus. Exemplary solid tumors that can be treated include: fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, non-small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma, and retinoblastoma.
- The term “carcinoma” is recognized by those skilled in the art and refers to malignancies of epithelial or endocrine tissues including respiratory system carcinomas, gastrointestinal system carcinomas, genitourinary system carcinomas, testicular carcinomas, breast carcinomas, prostatic carcinomas, endocrine system carcinomas, and melanomas. Exemplary carcinomas include those forming from tissue of the cervix, lung, prostate, breast, head and neck, colon and ovary. The term also includes carcinosarcomas, e.g., which include malignant tumors composed of carcinomatous and sarcomatous tissues. An “adenocarcinoma” refers to a carcinoma derived from glandular tissue or in which the tumor cells form recognizable glandular structures.
- The term “sarcoma” is recognized by those skilled in the art and refers to malignant tumors of mesenchymal derivation.
- The subject method can also be used to inhibit the proliferation of hyperplastic/neoplastic cells of hematopoietic origin, e.g., arising from myeloid, lymphoid or erythroid lineages, or precursor cells thereof. For instance, the present invention contemplates the treatment of various myeloid disorders including, but not limited to, acute promyeloid leukemia (APML), acute myelogenous leukemia (AML) and chronic myelogenous leukemia (CML) (reviewed in Vaickus, L. (1991) Crit Rev. in Oncol./Hemotol. 11:267-97). Lymphoid malignancies which may be treated by the subject method include, but are not limited to acute lymphoblastic leukemia (ALL), which includes B-lineage ALL and T-lineage ALL, chronic lymphocytic leukemia (CLL), prolymphocytic leukemia (PLL), hairy cell leukemia (HLL) and Waldenstrom's macroglobulinemia (WM). Additional forms of malignant lymphomas contemplated by the treatment method of the present invention include, but are not limited to, non-Hodgkin's lymphoma and variants thereof, peripheral T-cell lymphomas, adult T-cell leukemia/lymphoma (ATL), cutaneous T-cell lymphoma (CTCL), large granular lymphocytic leukemia (LGF) and Hodgkin's disease.
- ET2 ligands that are agonists can be used to stimulate angiogenesis, e.g., aid wound healing, burns, and other disorders which require increased angiogenesis.
- Methods of administering ET2-ligands are described in “Pharmaceutical Compositions”. Suitable dosages of the molecules used will depend on the age and weight of the subject and the particular drug used. The ligands can be used as competitive agents to inhibit, reduce an undesirable interaction, e.g., between a natural or pathological agent and the ET2.
- In one embodiment, the ET2-ligands are used to kill, ablate, or inhibit the growth of cancerous cells and normal, benign hyperplastic, and cancerous cells in vivo. The ligands can be used by themselves or conjugated to an agent, e.g., a cytotoxic drug, radioisotope. This method includes: administering the ligand alone or attached to a cytotoxic drug, to a subject requiring such treatment.
- The terms “cytotoxic agent” and “cytostatic agent” and “anti-tumor agent” are used interchangeably herein and refer to agents that have the property of inhibiting the growth or proliferation (e.g., a cytostatic agent), or inducing the killing, of hyperproliferative cells, e.g., an aberrant cancer cell. In cancer therapeutic embodiment, the term “cytotoxic agent” is used interchangeably with the terms “anti-cancer” or “anti-tumor” to mean an agent, which inhibits the development or progression of a neoplasm, particularly a solid tumor, a soft tissue tumor, or a metastatic lesion.
- Nonlimiting examples of anti-cancer agents include, e.g., antimicrotubule agents, topoisomerase inhibitors, antimetabolites, mitotic inhibitors, alkylating agents, intercalating agents, agents capable of interfering with a signal transduction pathway, agents that promote apoptosis, radiation, and antibodies against other tumor-associated antigens (including naked antibodies, immunotoxins and radioconjugates). Examples of the particular classes of anti-cancer agents are provided in detail as follows: antitubulin/antimicrotubule, e.g., paclitaxel, vincristine, vinblastine, vindesine, vinorelbin, taxotere; topoisomerase I inhibitors, e.g., topotecan, camptothecin, doxorubicin, etoposide, mitoxantrone, daunorubicin, idarubicin, teniposide, amsacrine, epirubicin, merbarone, piroxantrone hydrochloride; antimetabolites, e.g., 5-fluorouracil (5-FU), methotrexate, 6-mercaptopurine, 6-thioguanine, fludarabine phosphate, cytarabine/Ara-C, trimetrexate, gemcitabine, acivicin, alanosine, pyrazofurin, N-Phosphoracetyl-L-Asparate=PALA, pentostatin, 5-azacitidine, 5-Aza 2′-deoxycytidine, ara-A, cladribine, 5-fluorouridine, FUDR, tiazofurin, N-[5-[N-(3,4-dihydro-2-methyl-4-oxoquinazolin-6-ylmethyl)-N-methylamino]-2-thenoyl]-L-glutamic acid; alkylating agents, e.g., cisplatin, carboplatin, mitomycin C, BCNU=Carmustine, melphalan, thiotepa, busulfan, chlorambucil, plicamycin, dacarbazine, ifosfamide phosphate, cyclophosphamide, nitrogen mustard, uracil mustard, pipobroman, 4-ipomeanol; agents acting via other mechanisms of action, e.g., dihydrolenperone, spiromustine, and desipeptide; biological response modifiers, e.g., to enhance anti-tumor responses, such as interferon; apoptotic agents, such as actinomycin D; and anti-hormones, for example anti-estrogens such as tamoxifen or, for example antiandrogens such as 4′-cyano-3-(4-fluorophenylsulphonyl)-2-hydroxy-2-methyl-3′-(trifluoromethyl)propionanilide.
- ET2-ligands can recognize normal, endothelial cells. The ligands can also bind to cells in the vicinity of the cancerous cells. The ligands can inhibit the growth of, and/or kill these cells. In this manner, the ligands may indirectly attack the cancerous cells which may rely on surrounding cells for nutrients, growth signals and so forth. Thus, the ET2-ligands (e.g., modified with a cytotoxin) can selectively target cells in cancerous tissue (including the cancerous cells themselves).
- The ligands may be used to deliver a variety of cytotoxic drugs including therapeutic drugs, a compound emitting radiation, molecules of plants, fungal, or bacterial origin, biological proteins, and mixtures thereof. The cytotoxic drugs can be intracellularly acting cytotoxic drugs, such as short-range radiation emitters, including, for example, short-range, high-energy α-emitters, as described herein.
- Enzymatically active toxins and fragments thereof are exemplified by diphtheria toxin A fragment, nonbinding active fragments of diphtheria toxin, exotoxin A (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, α-sacrin, certain Aleurites fordii proteins, certain Dianthin proteins, Phytolacca americana proteins (PAP, PAPII and PAP-S), Morodica charantia inhibitor, curcin, crotin, Saponaria officinalis inhibitor, gelonin, mitogillin, restrictocin, phenomycin, and enomycin. Procedures for preparing enzymatically active polypeptides of the immunotoxins are described in WO84/03508 and WO85/03508. Examples of cytotoxic moieties that can be conjugated to the antibodies include adriamycin, chlorambucil, daunomycin, methotrexate, neocarzinostatin, and platinum.
- In the case of polypeptide toxins, recombinant nucleic acid techniques can be used to construct a nucleic acid that encodes the ligand (e.g., antibody or antigen-binding fragment thereof) and the cytotoxin (or a polypeptide component thereof) as translational fusions. The recombinant nucleic acid is then expressed, e.g., in cells and the encoded fusion polypeptide isolated.
- Procedures for conjugating protein ligands (e.g., antibodies) with the cytotoxic agents have been previously described. Procedures for conjugating chlorambucil with antibodies are described by Flechner (1973) European Journal of Cancer, 9:741-745; Ghose et al. (1972) British Medical Journal, 3:495-499; and Szekerke, et al. (1972) Neoplasma, 19:211-215. Procedures for conjugating daunomycin and adriamycin to antibodies are described by Hurwitz, E. et al. (1975) Cancer Research, 35:1175-1181 and Amon et al. (1982) Cancer Surveys, 1:429-449. Procedures for preparing antibody-ricin conjugates are described in U.S. Pat. No. 4,414,148 and by Osawa, T., et al. (1982) Cancer Surveys, 1:373-388 and the references cited therein. Coupling procedures as also described in EP 86309516.2.
- To kill or ablate normal, benign hyperplastic, or cancerous cells, a first protein ligand is conjugated with a prodrug which is activated only when in close proximity with a prodrug activator. The prodrug activator is conjugated with a second protein ligand, preferably one which binds to a non-competing site on the target molecule. Whether two protein ligands bind to competing or non-competing binding sites can be determined by conventional competitive binding assays. Drug-prodrug pairs suitable for use in the practice of the present invention are described in Blakey et al., (1996) Cancer Research, 56:3287-3292.
- Alternatively, the ET2-ligand can be coupled to high energy radiation emitters, for example, a radioisotope, such as 131I, a γ-emitter, which, when localized at the tumor site, results in a killing of several cell diameters. See, e.g., S. E. Order, “Analysis, Results, and Future Prospective of the Therapeutic Use of Radiolabeled Antibody in Cancer Therapy”, Monoclonal Antibodies for Cancer Detection and Therapy, R. W. Baldwin et al. (eds.), pp 303-316 (Academic Press 1985). Other suitable radioisotopes include α-emitters, such as 212Bi, 213Bi, and 211At, and β-emitters, such as 186Re and 90Y. Moreover, Lu117 may also be used as both an imaging and cytotoxic agent.
- Radioimmunotherapy (RIT) using antibodies labeled with 131I, 90Y, and 177Lu is under intense clinical investigation. There are significant differences in the physical characteristics of these three nuclides and as a result, the choice of radionuclide is very critical in order to deliver maximum radiation dose to the tumor. The higher beta energy particles of 90Y may be good for bulky tumors. The relatively low energy beta particles of 131I are ideal, but in vivo dehalogenation of radioiodinated molecules is a major disadvantage for internalizing antibody. In contrast, 177Lu has low energy beta particle with only 0.2-0.3 mm range and delivers much lower radiation dose to bone marrow compared to 90Y. In addition, due to longer physical half-life (compared to 90Y), the tumor residence times are higher. As a result, higher activities (more mCi amounts) of 177Lu labeled agents can be administered with comparatively less radiation dose to marrow. There have been several clinical studies investigating the use of 177Lu labeled antibodies in the treatment of various cancers. (Mulligan T et al. (1995) Clin Cancer Res. 1: 1447-1454; Meredith R F, et al. (1996) J Nucl Med 37:1491-1496; Alvarez R D, et al. (1997) Gynecologic Oncology 65: 94-101).
- The ET2-ligands can be used directly in vivo to eliminate antigen-expressing cells via natural complement-dependent cytotoxicity (CDC) or antibody-dependent cellular cytotoxicity (ADCC). The protein ligands of the invention, can include complement binding effector domain, such as the Fc portions from IgG1, -2, or -3 or corresponding portions of IgM which bind complement. In one embodiment, a population of target cells is ex vivo treated with a binding agent of the invention and appropriate effector cells. The treatment can be supplemented by the addition of complement or serum containing complement. Further, phagocytosis of target cells coated with a protein ligand of the invention can be improved by binding of complement proteins. In another embodiment target, cells coated with the protein ligand that includes a complement binding effector domain are lysed by complement.
- Also encompassed by the present invention is a method of killing or ablating which involves using the ET2-ligand for prophylaxis. For example, these materials can be used to prevent or delay development or progression of cancers.
- Use of the therapeutic methods of the present invention to treat cancers has a number of benefits. Since the protein ligands specifically recognize ET2, other tissue is spared and high levels of the agent are delivered directly to the site where therapy is required. Treatment in accordance with the present invention can be effectively monitored with clinical parameters. Alternatively, these parameters can be used to indicate when such treatment should be employed.
- ET2-ligands of the invention can be administered in combination with one or more of the existing modalities for treating cancers, including, but not limited to: surgery; radiation therapy, and chemotherapy.
- Diagnostic Uses
- Protein ligands that bind to ET2 and identified by the method described herein and/or detailed herein have in vitro and in vivo diagnostic, therapeutic and prophylactic utilities.
- In one aspect, the present invention provides a diagnostic method for detecting the presence of a ET2, in vitro (e.g., a biological sample, such as tissue, biopsy, e.g., a cancerous tissue) or in vivo (e.g., in vivo imaging in a subject).
- The method includes: (i) contacting a sample with ET2-ligand; and (ii) detecting formation of a complex between the ET2-ligand and the sample. The method can also include contacting a reference sample (e.g., a control sample) with the ligand, and determining the extent of formation of the complex between the ligand an the sample relative to the same for the reference sample. A change, e.g., a statistically significant change, in the formation of the complex in the sample or subject relative to the control sample or subject can be indicative of the presence of ET2 in the sample.
- Another method includes: (i) administering the ET2-ligand to a subject; and (iii) detecting formation of a complex between the ET2-ligand, and the subject. The detecting can include determining location or time of formation of the complex.
- The ET2-ligand can be directly or indirectly labeled with a detectable substance to facilitate detection of the bound or unbound antibody. Suitable detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials and radioactive materials.
- Complex formation between the ET2-ligand and ET2 can be detected by measuring or visualizing either the ligand bound to the ET2 or unbound ligand. Conventional detection assays can be used, e.g., an enzyme-linked immunosorbent assays (ELISA), a radioimmunoassay (RIA) or tissue immunohistochemistry. Further to labeling the ET2-ligand, the presence of ET2 can be assayed in a sample by a competition immunoassay utilizing standards labeled with a detectable substance and an unlabeled ET2-ligand. In one example of this assay, the biological sample, the labeled standards and the ET2 binding agent are combined and the amount of labeled standard bound to the unlabeled ligand is determined. The amount of ET2 in the sample is inversely proportional to the amount of labeled standard bound to the ET2 binding agent.
- Fluorophore and chromophore labeled protein ligands can be prepared. Since antibodies and other proteins absorb light having wavelengths up to about 310 nm, the fluorescent moieties should be selected to have substantial absorption at wavelengths above 310 nm and preferably above 400 nm. A variety of suitable fluorescers and chromophores are described by Stryer (1968) Science, 162:526 and Brand, L. et al. (1972) Annual Review of Biochemistry, 41:843-868. The protein ligands can be labeled with fluorescent chromophore groups by conventional procedures such as those disclosed in U.S. Pat. Nos. 3,940,475, 4,289,747, and 4,376,110. One group of fluorescers having a number of the desirable properties described above is the xanthene dyes, which include the fluoresceins and rhodamines. Another group of fluorescent compounds are the naphthylamines. Once labeled with a fluorophore or chromophore, the protein ligand can be used to detect the presence or localization of the ET2 in a sample, e.g., using fluorescent microscopy (such as confocal or deconvolution microscopy).
- Histological Analysis. Immunohistochemistry can be performed using the protein ligands described herein. For example, in the case of an antibody, the antibody can synthesized with a label (such as a purification or epitope tag), or can be detectably labeled, e.g., by conjugating a label or label-binding group. For example, a chelator can be attached to the antibody. The antibody is then contacted to a histological preparation, e.g., a fixed section of tissue that is on a microscope slide. After an incubation for binding, the preparation is washed to remove unbound antibody. The preparation is then analyzed, e.g., using microscopy, to identify if the antibody bound to the preparation.
- Of course, the antibody (or other polypeptide or peptide) can be unlabeled at the time of binding. After binding and washing, the antibody is labeled in order to render it detectable.
- Protein Arrays. The ET2-ligand can also be immobilized on a protein array. The protein array can be used as a diagnostic tool, e.g., to screen medical samples (such as isolated cells, blood, sera, biopsies, and the like). Of course, the protein array can also include other ligands, e.g., that bind to ET2 or to other target molecules.
- Methods of producing polypeptide arrays are described, e.g., in De Wildt et al. (2000) Nat. Biotechnol. 18:989-994; Lueking et al. (1999) Anal. Biochem. 270:103-111; Ge (2000) Nucleic Acids Res. 28, e3, I-VII; MacBeath and Schreiber (2000) Science 289:1760-1763; WO 01/40803 and WO 99/51773A1. Polypeptides for the array can be spotted at high speed, e.g., using commercially available robotic apparati, e.g., from Genetic MicroSystems or BioRobotics. The array substrate can be, for example, nitrocellulose, plastic, glass, e.g., surface-modified glass. The array can also include a porous matrix, e.g., acrylamide, agarose, or another polymer.
- For example, the array can be an array of antibodies, e.g., as described in De Wildt, supra. Cells that produce the protein ligands can be grown on a filter in an arrayed format. Polypeptide production is induced, and the expressed polypeptides are immobilized to the filter at the location of the cell.
- A protein array can be contacted with a labeled target to determine the extent of binding of the target to each immobilized polypeptide from the diversity strand library. If the target is unlabeled, a sandwich method can be used, e.g., using a labeled probed, to detect binding of the unlabeled target.
- Information about the extent of binding at each address of the array can be stored as a profile, e.g., in a computer database. The protein array can be produced in replicates and used to compare binding profiles, e.g., of a target and a non-target. Thus, protein arrays can be used to identify individual members of the diversity strand library that have desired binding properties with respect to one or more molecules.
- FACS. (Fluorescent Activated Cell Sorting). The ET2-ligand can be used to label cells, e.g., cells in a sample (e.g., a patient sample). The ligand is also attached (or attachable) to a fluorescent compound. The cells can then be sorted using fluorescent activated cell sorted (e.g., using a sorter available from Becton Dickinson Immunocytometry Systems, San Jose Calif.; see also U.S. Pat. Nos. 5,627,037; 5,030,002; and 5,137,809). As cells pass through the sorter, a laser beam excites the fluorescent compound while a detector counts cells that pass through and determines whether a fluorescent compound is attached to the cell by detecting fluorescence. The amount of label bound to each cell can be quantified and analyzed to characterize the sample.
- The sorter can also deflect the cell and separate cells bound by the ligand from those cells not bound by the ligand. The separated cells can be cultured and/or characterized.
- In vivo Imaging. In still another embodiment, the invention provides a method for detecting the presence of a ET2-expressing cancerous tissues in vivo. The method includes (i) administering to a subject (e.g., a patient having a cancer or neoplastic disorder) an anti-ET2 antibody, conjugated to a detectable marker; (ii) exposing the subject to a means for detecting said detectable marker to the ET2-expressing tissues or cells. For example, the subject is imaged, e.g., by NMR or other tomographic means.
- Examples of labels useful for diagnostic imaging in accordance with the present invention include radiolabels such as 131I, 111In, 123I, 99mTc, 32P, 125I, 3H, 14C, and 188Rh, fluorescent labels such as fluorescein and rhodamine, nuclear magnetic resonance active labels, positron emitting isotopes detectable by a positron emission tomography (“PET”) scanner, chemiluminescers such as luciferin, and enzymatic markers such as peroxidase or phosphatase. Short-range radiation emitters, such as isotopes detectable by short-range detector probes can also be employed. The protein ligand can be labeled with such reagents using known techniques. For example, see Wensel and Meares (1983) Radioimmunoimaging and Radioimmunotherapy, Elsevier, New York for techniques relating to the radiolabeling of antibodies and D. Colcher et al. (1986) Meth. Enzymol. 121: 802-816.
- A radiolabeled ligand of this invention can also be used for in vitro diagnostic tests. The specific activity of a isotopically-labeled ligand depends upon the half-life, the isotopic purity of the radioactive label, and how the label is incorporated into the antibody.
- Procedures for labeling polypeptides with the radioactive isotopes (such as 14C, 3H, 35S, 125I, 32P, 131I) are generally known. For example, tritium labeling procedures are described in U.S. Pat. No. 4,302,438. Iodinating, tritium labeling, and 35S labeling procedures, e.g., as adapted for murine monoclonal antibodies, are described, e.g., by Goding, J. W. (Monoclonal antibodies: principles and practice: production and application of monoclonal antibodies in cell biology, biochemistry, and immunology 2nd ed. London; Orlando: Academic Press, 1986. pp 124-126) and the references cited therein. Other procedures for iodinating polypeptides, such as antibodies, are described by Hunter and Greenwood (1962) Nature 144:945, David et al. (1974) Biochemistry 13:1014-1021, and U.S. Pat. Nos. 3,867,517 and 4,376,110. Radiolabeling elements which are useful in imaging include 123I, 131I, 111In, and 99mTc, for example. Procedures for iodinating antibodies are described by Greenwood, F. et al. (1963) Biochem. J. 89:114-123; Marchalonis, J. (1969) Biochem. J. 113:299-305; and Morrison, M. et al. (1971) Immunochemistry 289-297. Procedures for 99mTc-labeling are described by Rhodes, B. et al. in Burchiel, S. et al. (eds.), Tumor Imaging: The Radioimmunochemical Detection of Cancer, New York: Masson 111-123 (1982) and the references cited therein. Procedures suitable for 111In-labeling antibodies are described by Hnatowich, D. J. et al. (1983) J. Immul. Methods, 65:147-157, Hnatowich, D. et al. (1984) J. Applied Radiation, 35:554-557, and Buckley, R. G. et al. (1984) F.E.B.S. 166:202-204.
- In the case of a radiolabeled ligand, the ligand is administered to the patient, is localized to the tumor bearing the antigen with which the ligand reacts, and is detected or “imaged” in vivo using known techniques such as radionuclear scanning using e.g., a gamma camera or emission tomography. See e.g., A. R. Bradwell et al., “Developments in Antibody Imaging”, Monoclonal Antibodies for Cancer Detection and Therapy, R. W. Baldwin et al., (eds.), pp 65-85 (Academic Press 1985). Alternatively, a positron emission transaxial tomography scanner, such as designated Pet VI located at Brookhaven National Laboratory, can be used where the radiolabel emits positrons (e.g., 11C, 18F, 15O, and 13N).
- MRI Contrast Agents. Magnetic Resonance Imaging (MRI) uses NMR to visualize internal features of living subject, and is useful for prognosis, diagnosis, treatment, and surgery. MRI can be used without radioactive tracer compounds for obvious benefit. Some MRI techniques are summarized in EP-A-0 502 814. Generally, the differences related to relaxation time constants T1 and T2 of water protons in different environments is used to generate an image. However, these differences can be insufficient to provide sharp high resolution images.
- The differences in these relaxation time constants can be enhanced by contrast agents. Examples of such contrast agents include a number of magnetic agents paramagnetic agents (which primarily alter T1) and ferromagnetic or superparamagnetic (which primarily alter T2 response). Chelates (e.g., EDTA, DTPA and NTA chelates) can be used to attach (and reduce toxicity) of some paramagnetic substances (e.g., Fe+3, Mn+2, Gd+3). Other agents can be in the form of particles, e.g., less than 10 μm to about 10 nM in diameter). Particles can have ferromagnetic, antiferromagnetic or superparamagnetic properties. Particles can include, e.g., magnetite (Fe3O4), γ-Fe2O3, ferrites, and other magnetic mineral compounds of transition elements. Magnetic particles may include: one or more magnetic crystals with and without nonmagnetic material. The nonmagnetic material can include synthetic or natural polymers (such as sepharose, dextran, dextrin, starch and the like.
- The ET2-ligands can also be labeled with an indicating group containing of the NMR-active 19F atom, or a plurality of such atoms inasmuch as (i) substantially all of naturally abundant fluorine atoms are the 19F isotope and, thus, substantially all fluorine-containing compounds are NMR-active; (ii) many chemically active polyfluorinated compounds such as trifluoracetic anhydride are commercially available at relatively low cost, and (iii) many fluorinated compounds have been found medically acceptable for use in humans such as the perfluorinated polyethers utilized to carry oxygen as hemoglobin replacements. After permitting such time for incubation, a whole body MRI is carried out using an apparatus such as one of those described by Pykett (1982) Scientific American, 246:78-88 to locate and image cancerous tissues.
- Also within the scope of the invention are kits comprising the protein ligand that binds to ET2 and instructions for diagnostic use, e.g., the use of the ET2-ligand (e.g., antibody or antigen-binding fragment thereof, or other polypeptide or peptide) to detect ET2, in vitro, e.g., in a sample, e.g., a biopsy or cells from a patient having a cancer or neoplastic disorder, or in vivo, e.g., by imaging a subject. The kit can further contain a least one additional reagent, such as a label or additional diagnostic agent. For in vivo use the ligand can be formulated as a pharmaceutical composition.
- The following invention is further illustrated by the following examples, which should not be construed as further limiting. The contents of all references, pending patent applications and published patents, cited throughout this application are hereby expressly incorporated by reference.
- In order to isolate antibodies that bind ET2, a phagemid Fab library was screened against the protease domain of ET2.
- The biotinylated protease domain of ET2 was captured on streptavidin coated magnetic beads (M280-DYNAL). The ET2 coated beads were washed three times with 2% non-fat milk in PBS prior to addition of library phage. Library phage (1012 particles) were added to the magnetic beads in a final volume of 100 μl. The mix was allowed to incubate at room temperature with end over end mixing for two hours. After this time, the supernatant was removed and the beads washed three times with 0.1
% Tween 2% non-fat milk in PBS. After the final wash, the beads were transferred to a new tube. Phage were eluted from the beads by addition of 1 ml of 100 mM Triethanolamine buffer (TEA). After a 10 min incubation at room temperature the supernatant was removed and added to 5001 of Tris-HCl pH 7.5. The eluted phage were then amplified and used for a further round of selection. After three rounds of selection the output was analyzed as described below. (For methods, see also Chames et al. (2002) Methods Mol Biol. 178:147-57). - Library members recovered from the selections were tested for ET2 binding by phage ELISA (
FIG. 3 ). Each isolate was tested for binding to ET2, and a blank streptavidin well. Isolates that gave an ELISA signal for ET2 twice that for streptavidin binding were considered ‘positives’ and selected for small scale soluble Fab production. A total of 184 isolates were tested in the phage ELISA, of which 171 tested positive for ET-2 binding, according to this method. Exemplary data is provided in Table 4 below:TABLE 4 Exemplary Phage ELISA data BSA-Strept-rET2 BSA-STrept 0.342 0.120 0.323 0.090 0.320 0.086 0.278 0.082 0.261 0.090 0.280 0.086 0.247 0.091 0.244 0.088 0.263 0.131 0.264 0.102 0.172 0.087 0.223 0.088 0.200 0.100 0.272 0.083 0.263 0.087 0.233 0.097 0.158 0.129 0.490 0.111 0.225 0.092 0.191 0.092 0.193 0.113 0.210 0.089 0.186 0.103 0.259 0.098 0.198 0.143 0.177 0.116 0.197 0.097 0.173 0.094 0.198 0.148 0.202 0.102 0.270 0.108 0.204 0.095 0.189 0.164 0.202 0.128 0.163 0.110 0.188 0.106 0.199 0.122 0.187 0.109 0.246 0.120 0.215 0.102 0.178 0.162 0.169 0.158 0.189 0.114 0.210 0.125 0.192 0.134 0.182 0.151 0.251 0.115 0.185 0.114 - Small scale amounts of soluble Fab were produced in a 96-well format and tested for binding to ET2. To help further characterize the Fabs, the ELISA was performed in the presence and absence of a competing ligand that binds to the active site of ET2. When the Fab ELISA signal is reduced in the presence of the competing ligand, it is likely that these Fabs bind at or close to the active site. Exemplary data is provided in Table 5 below:
TABLE 5 Exemplary Soluble Fab ELISA data Soluble Soluable Fab + rET Fab − rET pept. Inhib. pept. Inhib. A1 0.21 0.31 B1 0.89 0.947 C1 0.135 0.143 D1 0.267 0.351 E1 0.118 0.204 F1 0.124 0.239 G1 0.22 0.392 H1 0.271 0.472 A2 0.872 0.992 B2 0.172 0.23 C2 0.154 0.191 D2 0.611 0.599 E2 0.128 0.205 F2 0.872 1.248 G2 0.126 0.192 H2 0.128 0.232 A3 0.241 0.435 B3 0.132 0.168 C3 0.114 0.145 D3 0.822 0.83 E3 0.118 0.143 F3 0.224 0.388 G3 0.332 0.591 H3 0.173 0.304 A4 0.168 0.167 B4 0.173 0.229 C4 0.112 0.155 D4 0.134 0.172 E4 0.119 0.168 F4 0.138 0.189 G4 0.652 0.735 H4 0.321 0.42 A5 0.182 0.26 B5 0.184 0.325 C5 0.236 0.419 D5 0.958 0.758 E5 0.154 0.169 F5 0.127 0.219 G5 0.315 0.322 H5 0.225 0.277 A6 0.133 0.128 B6 0.155 0.146 C6 1.091 1.063 D6 0.122 0.163 E6 0.137 0.15 F6 0.186 0.224 - A total of 64 soluble Fabs were identified that bound ET2 in this assay. Of these, 31 were strongly competed by the peptide, a further 8 showed weak competition in the presence of the peptide. We found that competition of the Fab binding to the target enzyme by a peptide inhibitor was a useful method to identify inhibitors. This was done by examining the inhibition by the Fabs by another type of assay. Soluble Fabs that bound ET2 were prepared on a large scale (450 ml cultures) and used to determine inhibition of ET2 in a continuous in vitro enzyme assay.
- An assay for evaluating inhibitors of ET2 can be performed as follows: Test compounds for inhibition of the protease activity of the protease domain of ET2 are assayed in Costar 96 well tissue culture plates (Corning N.Y.). Approximately 2-3 nM ET2 is mixed with varying concentrations of inhibitor in 29.2 mM Tris, pH 8.4, 29.2 mM imidazole, 217 mM NaCl (100 mL final volume), and allowed to incubate at room temperature for 30 minutes. 400 mM substrate S 2765 (DiaPharma, Westchester, Ohio) is added, and the reaction is monitored in a SpectraMAX Plus microplate reader (Molecular Devices, Sunnyvale Calif.) by following the change in absorbance at 405 nm for 1 hour at 37° C. All reagents unless indicated were obtained from Sigma Chemical Co. (St. Louis, Mo.). Additional details can be in accordance with the ET1 assay provided further below.
-
- We showed that those Fabs that show strong competition by the peptide are good enzyme inhibitors of ET2. The Ki values for the best inhibitors are shown in Table 6. These clones were subsequently sequenced.
TABLE 6 Inhibition Data for Fab Inhibitors Clone Coding Library Ki D5: R3 rET2 MP3 CJ Phagemid 70 ± 10 pM D2: R3 rET2 MP1 CJ Phagemid 90 ± 30 pM A2: R3 rET2 MP1 CJ Phagemid 160 ± 50 pM H10: R3 rET2 MP1 CJ Phagemid 190 ± 10 pM F8: R3 rET2 MP1 CJ Phagemid 240 ± 20 pM B5: R3 rET2 MP3 CJ Phagemid 250 ± 60 pM C9: R3 rET2 MP3 CJ Phagemid 260 ± 50 pM - The following is an assay for ET1 activity. The assay buffer for assaying ET1 activity was HBSA (10 mM Hepes, 150 mM sodium chloride, pH 7.4, 0.1% bovine serum albumin). All reagents were from Sigma Chemical Co. (St. Louis, Mo.), unless otherwise indicated. Two IC50 assays at 30-minute (a 30-minute preincubation of test Fab and enzyme) and at O-minutes (no preincubation of test Fab and enzyme) were conducted. For the IC50 assay at 30-minute, the following reagents were combined in appropriate wells of a Corning microtiter plate: 50 microliters of HBSA, 50 microliters of the test compound, diluted (covering a broad concentration range) in HBSA (or HBSA alone for uninhibited velocity measurement), and 50 microliters of the rET1 (Corvas International) diluted in buffer, yielding a final enzyme concentration of 250 pM. Following a 30-minute incubation at ambient temperature, the assay was initiated by the addition of 50 microliters of the substrate Spectrozyme tPA (Methylsulfonyl-D-cyclohexyltyrosyl-L-glycyl-L-arginine-p-nitroaniline acetate, obtained from American Diagnostica, Inc. (Greenwich, Conn.) and reconstituted in deionized water, followed by dilution in HBSA prior to the assay) were added to the wells, yielding a final volume of 200 microliters and a final substrate concentration of 300 μM (about 1.5-times Km).
- For the IC50 assay at O-minute, the same reagents were combined: 50 microliters of HBSA, 50 microliters of the test compound, diluted (covering the identical concentration range) in HBSA (or HBSA alone for uninhibited velocity measurement), and 50 microliters of the substrate Spectrozyme tPA. The assay was initiated by the addition of 50 microliters of rET2. The final concentrations of all components were identical in both IC50 assays (at 30- and 0-minute incubations).
- The initial velocity of chromogenic substrate hydrolysis was measured in both assays by the change of absorbance at 405 nM using a Thermo Max Kinetic Microplate Reader (Molecular Devices) over a 5 minute period, in which less than 5% of the added substrate was used. The concentration of added inhibitor, which caused a 50% decrease in the initial rate of hydrolysis was defined as the respective IC50 value in each of the two assays (30- and 0-minute).
- The sequence data for the Fab inhibitors is shown in Table 1 (above, in the Summary section). Four clones (A2, B5, D2 & H10) share the same heavy chain sequence. This sequence contains a lysine to amber stop codon mutation. Although one would normally expect such a mutation to result in truncation of the heavy chain, and consequently result in a non-functional Fab, all propagations were performed in a supE mutant of E. coli. This mutant strain inserts a glutamine residue, shown as q in the sequence data, at the amber stop codon thus allowing production of the mature Fab.
- The seven Fabs described above were reformatted into IgG1 antibodies. Fab reformatting is a two step process in which the Fab is first cloned into the IgG1 expression vector (pRRV) which provides a eukaryotic promoter to drive expression of the heavy and light chains and the heavy chain constant sequence. In the second step, the E. coli promoter used to drive expression of the heavy chain is replaced with a eukaryotic internal ribosome entry sequence (IRES). To allow expression in the mammalian system the four clones that had amber stop mutations, A2, B5, D2 & H10, had the amber mutation replaced with a lysine, the naturally occurring amino acid at this position.
- Once expression vector construction was complete the antibodies were transiently expressed in HEK 293T cells and subsequently purified from the cell culture media using protein A affinity chromatography. The purified antibody was tested in the same continuous in vitro assay previously used for analysis of the Fabs. The Ki values are shown in Table 7.
- In a selectivity screen all IgG's demonstrated <5% activity at 100 nM against proteases Trypsinogen-IV, MTSP-1, MTSP-6, MTSP-7, MTSP-10 and ET1.
TABLE 7 Comparison of Inhibition Data for Fab & IgG Inhibitors Clone Target Ki (Fab) Ki (IgG) D5 rET2 70 pM 86 pM D2 rET2 95 pM 44 pM A2 rET2 150 pM 53 pM H10 rET2 315 pM 136 pM F8 rET2 410 pM 840 pM B5 rET2 325 pM 102 pM C9 rET2 310 pM 110 pM - One antibody that binds to ET-2 was evaluated in a small animal efficacy study.
- DU-145 tumor cells injected subcutaneously into the animal's flank 6-8 week old SCID mice (Charles River). Five to 10 days after tumor implantation the animals were randomized into groups of 10-15 animals. Treatment was by IP injection, either once a day with Fab (0, 200 or 400 μg/animal), or once every other day with IgG (0, 10, 50 or 500 μg/animal). The study was allowed to continue until the tumors reached the maximal allowable size. Tumor sizes were measured vernier calipers (Mitutoyo Model 573) and tumor volumes calculated. At the end of the study tumors were excised and weighed. Animal health was assessed during the study by regular weighing. Treatment with 400 μg of Fab H10 reduced the rate of tumor growth relative to the rate in animals given the control treatments. For example, 35 days after the first dose, average tumor volumes (
FIG. 3A ) and tumor weights (FIG. 3B ) were reduced for animals treated with 400 μg of Fab H10. Other useful antibodies can similarly reduce tumor growth, e.g., reduce tumor weight by at least 10, 20, 30, 40, 50% relative to a control, e.g., after 35 days. -
Translation of A10 HC (1-344) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYRMWWVRQA PGKGLEWVSY (SEQ ID NO:25) 51 ISSSGGFTNY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCAKNA 101 RRALPSMDVW GKGT Translation of A10 LC (1-354) 1 QSALTQPPSA SGTPGQRVTI SCSGSSSNIG SNYVYWYQQL PGTAPKLLIY (SEQ ID NO:26) 51 SNNQRPSGVP DRFSGSKSGT SASLAISGLR SEDEADYYCA AWDDSLSGPV 101 FGGGTKLTVL GQPKAAPS A10 HC Nucleic Acid Sequence GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTCTTTACGTC (SEQ ID NO:27) TTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACCGTATGTGGTGGGTTCGCCA AGCTCCTGGTAAAGGTTTGGAGTGGGTTTCTTATATCTCTTCTTCTGGTGGCTTTACT AATTATGCTGACTCCGTTAAAGGTCGCTTCACTATCTCTAGAGACAACTCTAAGAATA CTCTCTACTTGCAGATGAACAGCTTAAGGGCTGAGGACACTGCAGTCTACTATTGTGC GAAAAACGCGCGAAGAGCTCTTCCCTCCATGGACGTCTGGGGCAAAGGGACCAC A10 LC Nucleic Acid Sequence CAGAGCGCTTTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCA (SEQ ID NO:28) TCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATTATGTATACTGGTACCAGCA GCTCCCAGGAACGGCCCCCAAACTCCTCATCTATAGTAATAATCAGCGGCCCTCAGGG GTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTG GGCTCCGGTCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGAG TGGTCCGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTAGGTCAGCCCAAGGCTGCC CCCTCG -
Translation of G3 HC (1-342) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYGMSWVRQA PGKGLEWVSV (SEQ ID NO:29) 51 IYSSGGITRY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCARRA 101 PRGEVAFDIW GQGT Translation of G3 LC (1-345) 1 QDIQMTQSPS FLSASIGDRV TITCWASQGI SNYLAWYQQK PGKAPKLLIS (SEQ ID NO:30) 51 SASTLQSGVP SRFSGSGSGT EFTLTISSLQ PEDSATYYCQ QANSFPWTFG 101 QGTRVEIRRT VAAPS G3 HC Nucleic Acid Sequence GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTCTTTACGTC (SEQ ID NO:31) TTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACGGTATGTCTTGGGTTCGCCA AGCTCCTGGTAAAGGTTTGGAGTGGGTTTCTGTTATCTATTCTTCTGGTGGCATTACT CGTTATGCTGACTCCGTTAAAGGTCGCTTCACTATCTCTAGAGACAACTCTAAGAATA CTCTCTACTTGCAGATGAACAGCTTAAGGGCTGAGGACACTGCAGTCTACTACTGTGC GAGACGGGCCCCGAGGGGGGAGGTCGCTTTTGATATCTGGGGCCAAGGGACA G3 LC Nucleic Acid Sequence CAAGACATCCAGATGACCCAGTCTCCATCCTTCCTGTCTGCATCTATAGGAGACAGAG (SEQ ID NO:32) TCACCATCACTTGCTGGGCCAGTCAGGGCATTAGTAATTATTTAGCCTGGTATCAGCA AAAACCAGGGAAAGCCCCTAAGCTCCTGATCTCTTCTGCATCCACTTTGCAAAGTGGG GTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCA GCCTGCAGCCTGAAGATTCTGCAACTTACTATTGTCAACAGGCTAACAGTTTCCCGTG GACGTTCGGCCAAGGGACCAGGGTGGAAATCAGACGAACTGTGGCTGCACCATCT -
Translation of A6 HC (1-344) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYKMWWVRQA PGKGLEWVSY (SEQ ID NO:33) 51 ISPSGGYTGY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCAKNA 101 RRAFPSMDVW GKGT Translation of A6 LC (1-345) 1 QSALTQDPAV SVALGQTVRI TCRGDRLRSY YSSWYQQKPR QAPVLVMFGR (SEQ ID NO:34) 51 NNRPSGIPDR FSGSTSGSTA SLTITATQAD DEADYFCSSR DGSGNFLFGG 101 GTKLTVLGQP KAAPS A6 HC Nucleic Acid Sequence GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTCTTTACGTC (SEQ ID NO:35) TTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACAAGATGTGGTGGGTTCGCCA AGCTCCTGGTAAAGGTTTGGAGTGGGTTTCTTATATCTCTCCTTCTGGTGGCTATACT GGTTATGCTGACTCCGTTAAAGGTCGCTTCACTATCTCTAGAGACAACTCTAAGAATA CTCTCTACTTGCAGATGAACAGCTTAAGGGCTGAGGACACTGCAGTCTACTATTGTGC GAAAAACGCGCGAAGAGCTTTTCCCTCCATGGACGTCTGGGGCAAAGGGACCAC A6 LC Nucleic Acid Sequence CAGAGCGCTTTGACTCAGGACCCTGCTGTGTCTGTGGCCTTGGGGCAGACAGTCAGGA (SEQ ID NO:36) TCACATGCCGAGGAGACAGACTCAGAAGTTATTATTCAAGTTGGTACCAGCAGAAGCC ACGACAGGCCCCTGTTCTTGTCATGTTTGGTAGAAACAACCGGCCCTCAGGGATCCCA GACCGATTCTCTGGCTCCACCTCAGGAAGCACAGCTTCCTTGACCATCACTGCGACTC AGGCGGACGATGAGGCTGACTATTTCTGTAGTTCCCGGGACGGCAGTGGTAATTTCCT CTTCGGCGGAGGGACCAAACTGACCGTCCTTGGTCAGCCCAAGGCTGCCCCCTCG -
Translation of A7 HC (1-342) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYRMSWVRQA PGKGLEWVSS (SEQ ID NO:37) 51 ISSSGGITTY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED AAIYYCAKNA 101 RRAFPSMDVW GKGT Translation of A7 LC (1-348) 1 QDIQMTQSPS SLSASVGDRV TITCRASQSI SSYLNWYQQK PGKAPKLLIY (SEQ ID NO:38) 51 AASSLQSGVP SRFSGSGSGT EFTLTINSLQ PEDFATYYCQ QLTGYPSITF 101 GQGTRLDIKR TVAAPS A7 HC Nucleic Acid Sequence GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTCTTTACGTC (SEQ ID NO:39) TTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACCGTATGTCTTGGGTTCGCCA AGCTCCTGGTAAAGGTTTGGAGTGGGTTTCTTCTATCTCTTCTTCTGGTGGCATTACT ACTTATGCTGACTCCGTTAAAGGTCGCTTCACTATCTCTAGAGACAACTCTAAGAATA CTCTCTACTTGCAGATGAACAGCTTAAGGGCTGAGGACGCTGCAATCTACTATTGTGC GAAAAACGCGCGAAGAGCTTTTCCCTCCATGGACGTCTGGGGCAAAGGGACC A7 LC Nucleic Acid Sequence CAAGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAG (SEQ ID NO:40) TCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCA GAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGG GTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAACA GCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCAACAACTTACTGGTTACCCCTC GATCACCTTCGGCCAAGGGACACGACTGGACATTAAACGAACTGTGGCTGCACCATCT -
Translation of C8 HC (1-342) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYTMSWVRQA PGKGLEWVSY (SEQ ID NO:41) 51 IVPSGGMTKY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCARRA 101 PRGEVAFDIW GQGT Translation of C8 LC (1-354) 1 QSVLTQPASV SGSPGQSITI SCTGTSSDVG GYNYVSWYQQ HPGKAPKLMI (SEQ ID NO:42) 51 YDVSKRPSGV SNRFSGSKSG NTASLTISGL QAEDEADYYC TSYTSSSTWV 101 FGGGTKLTVL GQPKAAPS C8 HC Nucleic Acid Sequence GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTCTTTACGTC (SEQ ID NO:43) TTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACACTATGTCTTGGGTTCGCCA AGCTCCTGGTAAAGGTTTGGAGTGGGTTTCTTATATCGTTCCTTCTGGTGGCATGACT AAGTATGCTGACTCCGTTAAAGGTCGCTTCACTATCTCTAGAGACAACTCTAAGAATA CTCTCTACTTGCAGATGAACAGCTTAAGGGCTGAGGACACTGCAGTCTACTATTGTGC GAGACGGGCCCCGAGGGGGGAGGTCGCTTTTGATATCTGGGGCCAAGGGACA C8 LC Nucleic Acid Sequence CAGAGCGTCTTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCA (SEQ ID NO:44) TCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTATGTCTCCTGGTACCA ACAGCACCCAGGCAAAGCCCCCAAACTCATGATTTATGATGTCAGTAAGCGGCCCTCA GGGGTTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCT CTGGGCTCCAGGCTGAGGACGAGGCTGATTATTACTGCACCTCATATACAAGTAGCAG CACTTGGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTAGGTCAGCCCAAGGCTGCC CCCTCG -
Translation of H9 HC (1-344) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYSMHWVRQA PGKGLEWVSS (SEQ ID NO:45) 51 IGPSGGKTKY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCARPF 101 RGSYYYFDYW GQGT Translation of H9 LC (1-345) 1 QDIQMTQSPS SLSASIGDRV TITCQASQDT YNRLHWYQQK SGKAPKLLIY (SEQ ID NO:46) 51 DAVNLKRGVP SRFRGSGSGT NFILTITNLQ PEDTATYFCQ HSDDLSLAFG 101 GGTKVEIKRT VAAPS H9 HC Nucleic Acid Sequence GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTCTTTACGTC (SEQ ID NO:47) TTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACTCTATGCATTGGGTTCGCCA AGCTCCTGGTAAAGGTTTGGAGTGGGTTTCTTCTATCGGTCCTTCTGGTGGCAAGACT AAGTATGCTGACTCCGTTAAAGGTCGCTTCACTATCTCTAGAGACAACTCTAAGAATA CTCTCTACTTGCAGATGAACAGCTTAAGGGCTGAGGACACTGCAGTCTACTATTGTGC GAGACCCTTCCGTGGGAGCTACTACTACTTTGACTACTGGGGCCAGGGAACCCT H9 LC Nucleic Acid Sequence CAAGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTATAGGAGACAGAG (SEQ ID NO:48) TCACCATAACTTGCCAGGCGAGTCAGGACACTTACAACCGTCTACATTGGTATCAGCA GAAATCAGGGAAAGCCCCTAAACTCCTCATCTACGATGCAGTCAATTTGAAAAGGGGG GTCCCTTCAAGGTTCCGTGGAAGTGGATCTGGGACAAATTTTATTTTGACCATCACCA ACCTGCAGCCTGAAGATACTGCAACATATTTCTGTCAACATTCTGATGATCTGTCACT CGCTTTCGGCGGAGGGACCAAGGTGGAGATCAAACGAACTGTGGCTGCACCATCT -
Translation of G10-R2 HC (1-382) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYKMWWVRQA PGKGLEWVSY (SEQ ID NO:49) 51 ISPSGGYTGY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCAKNA 101 RRAFPSMDVW GKGTTVTVSS ASTKGPS Translation of G10-APSR2 LC (1-360) 1 QDIQMTQSPL SLPVTPGEPA SISCRSSQSL LYSNGYNYLD WYLQRPGQSP (SEQ ID NO:50) 51 QLLIYLGSNR ASGVPDRFSG SGSGTDFTLK ISRVEAKDVG VYYCMQALQI 101 PRTFGQGTKV EIKRTVAAPS G1 HC Coding Sequence0-R2 GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTCTTTACGTC (SEQ ID NO:51) TTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACAAGATGTGGTGGGTTCGCCA AGCTCCTGGTAAAGGTTTGGAGTGGGTTTCTTATATCTCTCCTTCTGGTGGCTATACT GGTTATGCTGACTCCGTTAAAGGTCGCTTCACTATCTCTAGAGACAACTCTAAGAATA CTCTCTACTTGCAGATGAACAGCTTAAGGGCTGAGGACACTGCAGTCTACTATTGTGC GAAAAACGCGCGAAGAGCTTTTCCCTCCATGGACGTCTGGGGCAAAGGGACCACGGTC ACCGTCTCAAGCGCCTCCACCAAGGGCCCATCGG G1 LC Coding Sequence0-R2 CAAGACATCCAGATGACCCAGTCTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGG (SEQ ID NO:52) CCTCCATCTCCTGCAGGTCTAGTCAGAGCCTCCTGTATAGTAATGGATACAACTATTT GGATTGGTACCTGCAGAGACCAGGGCAGTCTCCACAGCTCCTGATCTATTTGGGTTCT AATCGGGCCTCCGGGGTCCCTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTCA CACTGAAAATCAGCAGAGTGGAGGCTAAGGATGTTGGGGTTTATTACTGCATGCAAGC TCTACAAATTCCTCGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACGAACTGTG GCTGCACCATCT -
Translation of F3-R2 HC (1-382) (SEQ ID NO:53) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYRMHWVRQA PGKGLEWVSG 51 ISSSGGDTNY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCAKNA 101 RRAFPSMDVW GKGTTVTVSS ASTKGPS Translation of F3-R2 LC (1-345) (SEQ ID NO:54) 1 QDIQMTQSPS SVSASVGDTV TITCRASLPV NTWLAWYQQK PGKAPKLLLY 51 AASRLQSGVP SRFSGSGSGT DFTLNISSLQ PEDFATYYCQ QANTFPYTFG 101 QGTKVDIKRT VAAPS F3 HC Coding Sequence-R2 (SEQ ID NO:55) GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC TTTACGTCTTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACCGTA TGCATTGGGTTCGCCAAGCTCCTGGTAAAGGTTTGGAGTGGGTTTCTGGT ATCTCTTCTTCTGGTGGCGATACTAATTATGCTGACTCCGTTAAAGGTCG CTTCACTATCTCTAGAGACAACTCTAAGAATACTCTCTACTTGCAGATGA ACAGCTTAAGGGCTGAGGACACTGCAGTCTACTATTGTGCGAAAAACGCG CGAAGAGCTTTTCCCTCCATGGACGTCTGGGGCAAAGGGACCACGGTCAC CGTCTCAAGCGCCTCCACCAAGGGCCCATCGG F3 LC Coding Sequence-R2 (SEQ ID NO:56) CAAGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGG AGACACAGTCACCATCACTTGTCGGGCGAGTCTGCCTGTTAACACCTGGT TAGCCTGGTATCAGCAGAAACCCGGGAAAGCCCCTAAACTCCTGCTCTAT GCTGCATCCAGATTACAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGG CTCTGGGACAGATTTCACTCTCAACATCAGCAGTCTGCAGCCTGAGGATT TTGCAACCTACTATTGTCAACAGGCGAACACTTTCCCGTACACTTTTGGC CAGGGGACCAAAGTGGATATCAAACGAACTGTGGCTGCACCATCT -
Translation of C6-R2 HC (1-382) (SEQ ID NO:57) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYSMHWVRQA PGKGLEWVSR 51 IVPSGGTTFY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCAKNA 101 RRAFPSMDVW GKGTTVTVSS ASTKGPS Translation of C6-R2 LC (1-348) (SEQ ID NO:58) 1 QSALTQDPAV SVALGQTVRI TCQGDSLRSY YASWYQQKPG QAPVLVIYSK 51 SNRPSGIPDR FSGSSSGSTA SLTITGAQAE DEADYYCNSR DSSGNHLVFG 101 GGTKLTVLGQ PKAAPS C6 HC Coding Sequence-R (SEQ ID NO:59) GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC TTTACGTCTTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACTCTA TGCATTGGGTTCGCCAAGCTCCTGGTAAAGGTTTGGAGTGGGTTTCTCGT ATCGTTCCTTCTGGTGGCACTACTTTTTATGCTGACTCCGTTAAAGGTCG CTTCACTATCTCTAGAGACAACTCTAAGAATACTCTCTACTTGCAGATGA ACAGCTTAAGGGCTGAGGACACTGCAGTCTACTATTGTGCGAAAAACGCG CGAAGAGCTTTTCCCTCCATGGACGTCTGGGGCAAAGGGACCACGGTCAC CGTCTCAAGCGCCTCCACCAAGGGCCCATCGG C6 LC Coding Sequence-R2 (SEQ ID NO:60) CAGAGCGCTTTGACTCAGGACCCTGCTGTGTCTGTGGCCTTGGGACAGAC AGTCAGGATCACATGCCAAGGAGACAGCCTCAGAAGCTATTATGCAAGCT GGTACCAGCAGAAGCCAGGACAGGCCCCTGTACTTGTCATATATAGTAAA AGTAACCGGCCCTCAGGGATCCCAGACCGATTCTCTGGCTCCAGCTCAGG AAGCACAGCTTCCTTGACCATCACTGGGGCTCAGGCGGAAGATGAGGCTG ACTATTATTGTAACTCCCGGGACAGCAGTGGTAACCATCTGGTATTCGGC GGAGGGACCAAGCTGACCGTCCTAGGTCAGCCCAAGGCTGCCCCCTCG -
Translation of A4-R3 HC (1-382) (SEQ ID NO:61) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYNMYWVRQA PGKGLEWVSG 51 IRPSGGSTQY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCAKNA 101 RRAFPSMDVW GKGTTVTVSS ASTKGPS Translation of A4-R3 LC (1-345) (SEQ ID NO:62) 1 QSELTQDPAV SVALGQTVRI TCRGDRLRSY YSSWYQQKPR QAPVLVMFGR 51 KNRPSGIPDR FSGSTSGSTA SLTITATQAD DEADYFCSSR DGSGNFLFGG 101 GTKLTVLGQP KAAPS A4 HC Coding Sequence-R3 (SEQ ID NO:63) GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC TTTACGTCTTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACAATA TGTATTGGGTTCGCCAAGCTCCTGGTAAAGGTTTGGAGTGGGTTTCTGGT ATCCGTCCTTCTGGTGGCTCTACTCAGTATGCTGACTCCGTTAAAGGTCG CTTCACTATCTCTAGAGACAACTCTAAGAATACTCTCTACTTGCAGATGA ACAGCTTAAGGGCTGAGGACACTGCAGTCTACTATTGTGCGAAAAACGCG CGAAGAGCTTTTCCCTCCATGGACGTCTGGGGCAAAGGGACCACGGTCAC CGTCTCAAGCGCCTCCACCAAGGGCCCATCGG A4 LC Coding Sequence-R3 (SEQ ID NO:64) CAGAGCGAATTGACTCAGGACCCTGCTGTGTCTGTGGCCTTGGGGCAGAC AGTCAGGATTACATGCCGAGGAGACAGACTCAGAAGTTATTATTCAAGTT GGTACCAGCAGAAGCCACGACAGGCCCCTGTTCTTGTCATGTTTGGTAGA AAGAACCGGCCCTCAGGGATCCCAGACCGATTCTCTGGCTCCACCTCAGG AAGCACAGCTTCCTTGACCATCACTGCGACTCAGGCGGACGATGAGGCTG ACTATTTCTGTAGTTCCCGGGACGGCAGTGGTAATTTCCTCTTCGGCGGA GGGACCAAACTGACCGTCCTTGGTCAGCCCAAGGCTGCCCCCTCG -
Translation of C1-R3 HC (1-382) (SEQ ID NO:65) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYSMHWVRQA PGKGLEWVSG 51 IRPSGGSTKY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCAKNA 101 RRAFPSMDVW GKGTTVTVSS ASTKGPS Translation of C1-R3 LC (1-345) (SEQ ID NO:66) 1 QDIQMTQSPS SLSASVGDRV TITCRASQSI STYLNWYQQR PGEAPKLLIY 51 GASSLVSGVP SRFSGSGSGT DFTLTISSLQ PEDFATYYCH QSYITSWTFG 101 QGTKVEIKRT VA C1 HC Coding Sequence-R3 (SEQ ID NO:67) GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC TTTACGTCTTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACTCTA TGCATTGGGTTCGCCAAGCTCCTGGTAAAGGTTTGGAGTGGGTTTCTGGT ATCCGTCCTTCTGGTGGCTCTACTAAGTATGCTGACTCCGTTAAAGGTCG CTTCACTATCTCTAGAGACAACTCTAAGAATACTCTCTACTTGCAGATGA ACAGCTTAAGGGCTGAGGACACTGCAGTCTACTATTGTGCGAAAAACGCG CGAAGAGCTTTTCCCTCCATGGACGTCTGGGGCAAAGGGACCACGGTCAC CGTCTCAAGCGCCTCCACCAAGGGCCCATCGG C1 LC Coding Sequence-R3 (SEQ ID NO:68) CAAGACATCCAGATGACCCAGTCTCCTTCCTCCCTGTCTGCATCTGTAGG AGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCACCTACT TAAACTGGTATCAGCAGAGACCAGGGGAAGCCCCTAAACTCCTGATCTAT GGTGCATCCAGTTTGGTGAGTGGGGTCCCATCAAGATTTAGTGGCAGCGG ATCTGGGACAGATTTCACTCTCACCATCTCCAGTCTGCAACCTGAAGATT TTGCAACTTACTACTGTCACCAGAGTTACATTACCTCGTGGACGTTCGGC CAAGGGACCAAGGTGGAAATCAAACGAACTGTGGCTGCACCATCT -
Translation of A2 HC (1-341) (SEQ ID NO:69) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYRMYWVRQA PGKGLEWVSS 51 ISPSGGDTRY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCARGG 101 PRGNKYYFDY WGQ Translation of A2 LC (1-337) (SEQ ID NO:70) 1 QDIQMTQSPS FLSAFVGDRV TITCRASQDI RSDLAWYQQT PGKAPKLLIY 51 AASTLKDGAP SRFSGSGSGT EFTLTISSLH PEDLATYYCQ HLNGHPAFGP 101 GTKVNIQRTV AA A2 HC coding nucleic acid (SEQ ID NO:71) GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC TTTACGTCTTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACCGTA TGTATTGGGTTCGCCAAGCTCCTGGTAAAGGTTTGGAGTGGGTTTCTTCT ATCTCTCCTTCTGGTGGCGATACTCGTTATGCTGACTCCGTTAAAGGTCG CTTCACTATCTCTAGAGACAACTCTTAGAATACTCTCTACTTGCAGATGA ACAGCTTAAGGGCTGAGGACACTGCAGTCTACTATTGTGCGAGAGGGGGA CCGCGGGGTAACAAGTACTACTTTGACTACTGGGGCCAGGG A2 LC coding nucleic acid (SEQ ID NO:72) CAAGACATCCAGATGACCCAGTCTCCATCCTTCCTGTCTGCATTTGTAGG AGACAGGGTCACCATCACTTGCCGGGCCAGTCAGGACATTAGAAGTGATT TAGCCTGGTATCAGCAAACACCAGGGAAAGCCCCAAAGCTCCTGATCTAT GCTGCATCCACTTTGAAAGATGGGGCCCCATCAAGATTCAGCGGCAGTGG ATCTGGGACAGAATTTACTCTCACAATCAGCAGCCTGCACCCTGAAGATC TTGCGACTTATTACTGTCAACACCTTAATGGTCACCCTGCTTTCGGCCCT GGGACCAAAGTGAATATCCAAAGAACTGTGGCTGCAC -
Translation of B5 HC (1-341) (SEQ ID NO:73) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYRMYWVRQA PGKGLEWVSS 51 ISPSGGDTRY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCARGG 101 PRGNKYYFDY WGQ Translation of B5 LC (1-334) (SEQ ID NO:74) 1 QYELTQPPSV SVSLGQAANI SCSGDRLGDK YTSWYQQQSG QSPVLVIYQD 51 KKRPSGIPER FSGSSSGNTA TLTISGAQAI DEAAYYCQAW ATNVVFGAGT 101 KLTVLGQPKA A B5 HC coding nucleic acid (SEQ ID NO:75) GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC TTTACGTCTTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACCGTA TGTATTGGGTTCGCCAAGCTCCTGGTAAAGGTTTGGAGTGGGTTTCTTCT ATCTCTCCTTCTGGTGGCGATACTCGTTATGCTGACTCCGTTAAAGGTCG CTTCACTATCTCTAGAGACAACTCTTAGAATACTCTCTACTTGCAGATGA ACAGCTTAAGGGCTGAGGACACTGCAGTCTACTATTGTGCGAGAGGGGGA CCGCGGGGTAACAAGTACTACTTTGACTACTGGGGCCAGGG B5 LC coding nucleic acid (SEQ ID NO:76) CAGTACGAATTGACTCAGCCACCCTCAGTGTCCGTGTCCCTAGGACAGGC AGCCAACATCTCCTGCTCTGGAGATAGATTGGGGGATAAATATACTTCCT GGTATCAACAACAGTCAGGACAGTCCCCTGTCCTGGTCATCTATCAAGAT AAGAAGCGACCCTCAGGGATCCCCGAGCGATTCTCTGGCTCCTCCTCTGG GAACACAGCCACTCTGACCATCAGCGGGGCCCAGGCCATAGATGAGGCTG CCTATTACTGTCAGGCGTGGGCCACCAATGTGGTTTTCGGCGCTGGGACC AAGCTGACCGTCCTAGGTCAGCCCAAGGCTGCCC -
Translation of D2 HC (1-341) (SEQ ID NO:77) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYRMYWVRQA PGKGLEWVSS 51 ISPSGGDTRY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCARGG 101 PRGNKYYFDY WGQ Translation of D2 LC (1-340) (SEQ ID NO:78) 1 QDIQMTQSPS SLSASVGDRV TITCRASQTI DNYLNWYQQK PGKAPKLVVY 51 AASTLQTRVP SRFSGSGSGT DFTLTIDSLK PEDFATYFCQ QGFSNPWTFG 101 QGTTVAMIRT VAA D2 HC coding nucleic acid (SEQ ID NO:79) GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC TTTACGTCTTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACCGTA TGTATTGGGTTCGCCAAGCTCCTGGTAAAGGTTTGGAGTGGGTTTCTTCT ATCTCTCCTTCTGGTGGCGATACTCGTTATGCTGACTCCGTTAAAGGTCG CTTCACTATCTCTAGAGACAACTCTTAGAATACTCTCTACTTGCAGATGA ACAGCTTAAGGGCTGAGGACACTGCAGTCTACTATTGTGCGAGAGGGGGA CCGCGGGGTAACAAGTACTACTTTGACTACTGGGGCCAGGG D2 LC coding nucleic acid (SEQ ID NO:80) CAAGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCTTCTGTTGG AGACAGAGTCACCATCACTTGCCGGGCAAGCCAGACCATTGACAATTATT TGAATTGGTATCAGCAGAAACCAGGGAAAGCCCCCAAACTCGTGGTCTAT GCTGCATCCACTTTGCAAACTAGGGTCCCATCAAGGTTCAGTGGCAGTGG GTCTGGGACAGACTTCACTCTCACCATCGACAGTCTGAAACCTGAAGATT TTGCAACTTACTTCTGTCAACAGGGTTTCAGTAATCCTTGGACGTTCGGC CAAGGGACCACGGTGGCAATGATACGAACTGTGGCTGCAC -
Translation of D5 HC (1-332) (SEQ ID NO:81) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYDMHWVRQA PGKGLEWVSS 51 ISSSGGYTAY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCARGA 101 RGTSQGYWGQ Translation of D5 LC (1-346) (SEQ ID NO:82) 1 QDIQMTQSPG TLSLSPGERG TLSCRASQFV SYSYLAWYQQ KPGQAPRLLI 51 YGASSRAKGI PDRFSGSGSG TDFTLTITRL EPEDFAVYYC QQYVPSVPWT 101 FGQGTKVEVK RTVAA D5 HC coding nucleic acid (SEQ ID NO:83) GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC TTTACGTCTTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACGATA TGCATTGGGTTCGCCAAGCTCCTGGTAAAGGTTTGGAGTGGGTTTCTTCT ATCTCTTCTTCTGGTGGCTATACTGCTTATGCTGACTCCGTTAAAGGTCG CTTCACTATCTCTAGAGACAACTCTAAGAATACTCTCTACTTGCAGATGA ACAGCTTAAGGGCTGAGGACACTGCAGTCTACTATTGTGCGAGAGGCGCC CGAGGTACCAGCCAAGGCTACTGGGGCCAGGG D5 LC coding nucleic acid (SEQ ID NO:84) CAAGACATCCAGATGACTCAGTCTCCAGGCACCCTGTCATTGTCTCCAGG GGAAAGAGGCACCCTCTCCTGCAGGGCCAGTCAGTTTGTTAGTTACAGCT ACTTAGCCTGGTACCAGCAGAAGCCTGGCCAGGCTCCCCGGCTCCTCATC TATGGCGCATCCAGCAGGGCCAAAGGCATCCCAGACAGGTTCAGTGGCAG TGGGTCTGGGACAGACTTCACTCTCACCATCACCAGACTGGAGCCTGAAG ACTTTGCAGTTTATTACTGTCAGCAGTATGTTCCCTCAGTTCCGTGGACG TTCGGCCAAGGGACCAAGGTGGAAGTCAAACGAACTGTGGCTGCAC -
Translation of F8 HC (1-341) (SEQ ID NO:85) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYHMWWVRQA PGKGLEWVSG 51 ISSSRGITKY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCARGG 101 PRGNKYYFDY WGQ Translation of F8 LC (1-343) (SEQ ID NO:86) 1 QDIQMTQSPG TLSLSPGERV TLSCRASQSV TSSDLAWYQQ KPGQAPRLLI 51 SGASSRATGI PDRFSGSGSG TDFTLTISRL EPEDFAVYYC QQYGNSPGTF 101 GQGTKVEIKR TVAA F8 HC coding nucleic acid (SEQ ID NO:87) GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC TTTACGTCTTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACCATA TGTGGTGGGTTCGCCAAGCTCCTGGTAAAGGTTTGGAGTGGGTTTCTGGT ATCTCTTCTTCTCGTGGCATTACTAAGTATGCTGACTCCGTTAAAGGTCG CTTCACTATCTCTAGAGACAACTCTAAGAATACTCTCTACTTGCAGATGA ACAGCTTAAGGGCTGAGGACACTGCAGTCTACTATTGTGCGAGAGGGGGA CCGCGGGGTAACAAGTACTACTTTGACTACTGGGGCCAGGG F8 LC coding nucleic acid (SEQ ID NO:88) CAAGACATCCAGATGACCCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGG GGAAAGAGTCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTACCAGCAGCG ACTTAGCCTGGTACCAGCAGAAACCTGGTCAGGCTCCCAGGCTCCTCATT TCTGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAG TGGGTCTGGGACAGACTTCACCCTCACCATCAGCAGACTGGAACCTGAAG ATTTTGCAGTGTATTACTGTCAGCAGTATGGTAACTCACCTGGGACGTTC GGCCAAGGGACCAAGGTGGAAATCAAACGAACTGTGGCTGCAC -
Translation of H10 HC (1-341) (SEQ ID NO:89) 1 EVQLLESGGG LVQPGGSLRL SCAASGFTFS RYRMYWVRQA PGKGLEWVSS 51 ISPSGGDTRY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCARGG 101 PRGNKYYFDY WGQ Translation of H10 LC (1-343) 1 QDIQMTQSPG TLSLSPGERA TLSCRASQSV SSSYLAWYQQ KPGQAPRLLI 51 YGASSRATGI PDRFSGSGSG TDFTLTISRL EPEDFAVYYC QQYGSSTWTF 101 GQGTKVEIKR TVAA (SEQ ID NO:90) H10 HC coding nucleic acid (SEQ ID NO:91) GAAGTTCAATTGTTAGAGTCTGGTGGCGGTCTTGTTCAGCCTGGTGGTTC TTTACGTCTTTCTTGCGCTGCTTCCGGATTCACTTTCTCTCGTTACCGTA TGTATTGGGTTCGCCAAGCTCCTGGTAZkAGGTTTGGAGTGGGTTTCTTC TATCTCTCCTTCTGGTGGCGATACTCGTTATGCTGACTCCGTTAkAGGTC GCTTCACTATCTCTAGAGACAACTCTTAGAATACTCTCTACTTGCAGATG AACAGCTTAAGGGCTGAGGACACTGCAGTCTACTATTGTGCGAGAGGGGG ACCGCGGGGTAACAAGTACTACTTTGACTACTGGGGCCAGGG H10 LC coding nucleic acid (SEQ ID NO:92) CAAGACATCCAGATGACCCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGG GGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCAGCT ACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATC TATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAG TGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAG ATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTCAACGTGGACGTTC GGCCAAGGGACCAAAGTGGAAATCAAACGAACTGTGGCTGCAC - The stop codon in the middle of a coding nucleic acid can be replaced by another codon, e.g., a codon that encodes lysine. Alternatively, a bacterial strain with a tRNA suppressor can be used to introduce a lysine or other amino acid at this position.
- A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/838,677 US20080019962A1 (en) | 2003-08-14 | 2007-08-14 | Endotheliase-2 ligands |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US49500503P | 2003-08-14 | 2003-08-14 | |
US52016403P | 2003-11-14 | 2003-11-14 | |
US10/916,758 US7273610B2 (en) | 2003-08-14 | 2004-08-12 | Endotheliase-2 ligands |
US11/838,677 US20080019962A1 (en) | 2003-08-14 | 2007-08-14 | Endotheliase-2 ligands |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/916,758 Division US7273610B2 (en) | 2003-08-14 | 2004-08-12 | Endotheliase-2 ligands |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080019962A1 true US20080019962A1 (en) | 2008-01-24 |
Family
ID=34221374
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/916,758 Expired - Fee Related US7273610B2 (en) | 2003-08-14 | 2004-08-12 | Endotheliase-2 ligands |
US11/838,677 Abandoned US20080019962A1 (en) | 2003-08-14 | 2007-08-14 | Endotheliase-2 ligands |
US11/859,178 Abandoned US20080075723A1 (en) | 2003-08-14 | 2007-09-21 | Endotheliase 2 ligands |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/916,758 Expired - Fee Related US7273610B2 (en) | 2003-08-14 | 2004-08-12 | Endotheliase-2 ligands |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/859,178 Abandoned US20080075723A1 (en) | 2003-08-14 | 2007-09-21 | Endotheliase 2 ligands |
Country Status (6)
Country | Link |
---|---|
US (3) | US7273610B2 (en) |
EP (1) | EP1660537A2 (en) |
JP (1) | JP2007528721A (en) |
AU (1) | AU2004266246A1 (en) |
CA (1) | CA2535859A1 (en) |
WO (1) | WO2005019270A2 (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6057287A (en) | 1994-01-11 | 2000-05-02 | Dyax Corp. | Kallikrein-binding "Kunitz domain" proteins and analogues thereof |
KR20120011898A (en) * | 2000-02-10 | 2012-02-08 | 아보트 러보러터리즈 | Antibodies that Bind to Human Interleukin-13 and Methods of Making and Using the Same |
US7658924B2 (en) * | 2001-10-11 | 2010-02-09 | Amgen Inc. | Angiopoietin-2 specific binding agents |
US7153829B2 (en) | 2002-06-07 | 2006-12-26 | Dyax Corp. | Kallikrein-inhibitor therapies |
CA2488558C (en) | 2002-06-07 | 2013-08-20 | Dyax Corp. | Prevention and reduction of blood loss |
EP1660537A2 (en) * | 2003-08-14 | 2006-05-31 | Dyax Corp. | Endotheliase-2 ligands |
AR045563A1 (en) | 2003-09-10 | 2005-11-02 | Warner Lambert Co | ANTIBODIES DIRECTED TO M-CSF |
US7235530B2 (en) | 2004-09-27 | 2007-06-26 | Dyax Corporation | Kallikrein inhibitors and anti-thrombolytic agents and uses thereof |
EP1957531B1 (en) * | 2005-11-07 | 2016-04-13 | Genentech, Inc. | Binding polypeptides with diversified and consensus vh/vl hypervariable sequences |
US8828703B2 (en) | 2005-12-29 | 2014-09-09 | Dyax Corp. | Protease inhibition |
WO2009026334A2 (en) * | 2007-08-21 | 2009-02-26 | Genzyme Corporation | Treatment with kallikrein inhibitors |
FR2924440B1 (en) * | 2007-12-04 | 2015-01-09 | Pf Medicament | NEW METHOD FOR GENERATING AND SCREENING AN ANTIBODY BANK |
JO2913B1 (en) | 2008-02-20 | 2015-09-15 | امجين إنك, | Antibodies directed to angiopoietin-1 and angiopoietin-2 and uses thereof |
CA2744235A1 (en) | 2009-01-06 | 2010-07-15 | Dyax Corp. | Treatment of mucositis with kallikrein inhibitors |
PL2521568T3 (en) | 2010-01-06 | 2019-03-29 | Dyax Corp. | Plasma kallikrein binding proteins |
EP2661450A4 (en) | 2011-01-06 | 2014-04-23 | Dyax Corp | Plasma kallikrein binding proteins |
RU2660370C2 (en) | 2011-07-22 | 2018-07-05 | Цсл Беринг Гмбх | INHIBITORY ANTI-FACTOR XII/XIIa MONOCLONAL ANTIBODIES AND THEIR USE |
IL247942B (en) | 2014-03-27 | 2022-09-01 | Dyax Corp | Compositions and methods for drops in macular edema as a result of diabetes |
US10301386B2 (en) | 2014-04-16 | 2019-05-28 | Sorrento Therapeutics, Inc. | Antibody therapeutics that bind CD147 |
BR112017003472A2 (en) | 2014-08-22 | 2018-01-30 | Sorrento Therapeutics Inc | antibodies, antibody fab fragment and method for treating an inflammatory disease |
JP7003354B2 (en) | 2015-12-11 | 2022-03-04 | 武田薬品工業株式会社 | Plasma kallikrein inhibitors and their uses for the treatment of hereditary angioedema attacks |
US11897942B2 (en) * | 2018-05-25 | 2024-02-13 | Temple University—Of the Commonwealth System of Higher Education | Eradication of bacterial biofilm using anti-amyloid monoclonal antibodies |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5530101A (en) * | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US20020068320A1 (en) * | 2000-03-14 | 2002-06-06 | Yanggu Shi | Serine protease polynucleotides, polypeptides, and antibodies |
US20040001801A1 (en) * | 2002-05-23 | 2004-01-01 | Corvas International, Inc. | Conjugates activated by cell surface proteases and therapeutic uses thereof |
US20040048335A1 (en) * | 2000-09-15 | 2004-03-11 | Genentech, Inc. | Secreted and transmembrane polypeptides and nucleic acids encoding the same |
US20040067505A1 (en) * | 2001-09-26 | 2004-04-08 | Enrique Alvarez | Therapeutic polypeptides, nucleic acids encoding same, and methods of use |
US20040073015A1 (en) * | 1998-09-23 | 2004-04-15 | Genentech, Inc. | Secreted and transmembrane polypeptides and nucleic acids encoding the same |
US6734006B2 (en) * | 2000-06-13 | 2004-05-11 | Bayer Aktiengesellschaft | Regulation of human transmembrane serine protease |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US530101A (en) * | 1894-12-04 | Door-check | ||
NZ531664A (en) | 1998-09-01 | 2005-07-29 | Genentech Inc | Pro1317 polypeptides and sequences thereof with homology to the semaphorin B glycoprotein family |
CN1328571B (en) | 1998-12-23 | 2016-08-31 | 辉瑞大药厂 | The human monoclonal antibodies of anti-CTLA-4 |
AU1068900A (en) | 1999-02-26 | 2000-09-14 | Ohio State University Research Foundation, The | Detecting the expression of the desc1 gene in squamous cell carcinoma |
WO2000068247A2 (en) | 1999-05-07 | 2000-11-16 | Human Genome Sciences, Inc. | Serine proteases |
AU2883700A (en) | 1999-06-23 | 2001-01-09 | Genentech Inc. | Secreted and transmembrane polypeptides and nucleic acids encoding the same |
WO2001036645A2 (en) * | 1999-11-17 | 2001-05-25 | Curagen Corporation | Serine/threonine kinase and serine protease polypeptides and nucleic acids encoding same |
JP2003514524A (en) * | 1999-11-18 | 2003-04-22 | コルバス・インターナショナル・インコーポレイテッド | Nucleic acid encoding an endoceliase, endotheliase and uses thereof |
AU6802801A (en) | 2000-03-01 | 2001-09-24 | Genentech Inc | Secreted and transmembrane polypeptides and nucleic acids encoding the same |
ATE432343T1 (en) * | 2000-11-17 | 2009-06-15 | Kyowa Hakko Kirin Co Ltd | EXPRESSION OF XENOGENIC (HUMAN) IMMUNOLOBULINS IN CLONED, TRANSGENIC CATTLE |
DE60237969D1 (en) * | 2001-04-24 | 2010-11-25 | Bayer Corp | HUMAN ANTIBODIES AGAINST TIMP-1 |
IL149701A0 (en) * | 2001-05-23 | 2002-11-10 | Pfizer Prod Inc | Use of anti-ctla-4 antibodies |
EP1660537A2 (en) * | 2003-08-14 | 2006-05-31 | Dyax Corp. | Endotheliase-2 ligands |
-
2004
- 2004-08-12 EP EP04780912A patent/EP1660537A2/en not_active Withdrawn
- 2004-08-12 JP JP2006523367A patent/JP2007528721A/en not_active Withdrawn
- 2004-08-12 US US10/916,758 patent/US7273610B2/en not_active Expired - Fee Related
- 2004-08-12 AU AU2004266246A patent/AU2004266246A1/en not_active Abandoned
- 2004-08-12 CA CA002535859A patent/CA2535859A1/en not_active Abandoned
- 2004-08-12 WO PCT/US2004/026148 patent/WO2005019270A2/en active Application Filing
-
2007
- 2007-08-14 US US11/838,677 patent/US20080019962A1/en not_active Abandoned
- 2007-09-21 US US11/859,178 patent/US20080075723A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5530101A (en) * | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US20040073015A1 (en) * | 1998-09-23 | 2004-04-15 | Genentech, Inc. | Secreted and transmembrane polypeptides and nucleic acids encoding the same |
US20020068320A1 (en) * | 2000-03-14 | 2002-06-06 | Yanggu Shi | Serine protease polynucleotides, polypeptides, and antibodies |
US6734006B2 (en) * | 2000-06-13 | 2004-05-11 | Bayer Aktiengesellschaft | Regulation of human transmembrane serine protease |
US20040048335A1 (en) * | 2000-09-15 | 2004-03-11 | Genentech, Inc. | Secreted and transmembrane polypeptides and nucleic acids encoding the same |
US20040067505A1 (en) * | 2001-09-26 | 2004-04-08 | Enrique Alvarez | Therapeutic polypeptides, nucleic acids encoding same, and methods of use |
US20040001801A1 (en) * | 2002-05-23 | 2004-01-01 | Corvas International, Inc. | Conjugates activated by cell surface proteases and therapeutic uses thereof |
Also Published As
Publication number | Publication date |
---|---|
AU2004266246A1 (en) | 2005-03-03 |
EP1660537A2 (en) | 2006-05-31 |
US20050180977A1 (en) | 2005-08-18 |
US7273610B2 (en) | 2007-09-25 |
WO2005019270A2 (en) | 2005-03-03 |
US20080075723A1 (en) | 2008-03-27 |
CA2535859A1 (en) | 2005-03-03 |
WO2005019270A3 (en) | 2005-06-23 |
JP2007528721A (en) | 2007-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080019962A1 (en) | Endotheliase-2 ligands | |
US11505620B2 (en) | Methods of detecting plasma kallikrein | |
US9051377B2 (en) | Method for treating breast cancer using antibody binding to MMP-14 | |
US20050009136A1 (en) | PAPP-A ligands | |
US20100291001A1 (en) | Metalloproteinase-binding proteins | |
US20110059105A1 (en) | Tie complex binding proteins | |
US20080254021A1 (en) | Tie1-binding ligands | |
US20050164945A1 (en) | Endotheliase-1 ligands | |
AU2016244213A1 (en) | Plasma kallikrein binding proteins | |
HK40077094A (en) | Plasma kallikrein binding proteins | |
HK40006299A (en) | Plasma kallikrein binding proteins | |
HK40006299B (en) | Plasma kallikrein binding proteins | |
HK1123740B (en) | Metalloproteinase binding proteins | |
HK1176886B (en) | Plasma kallikrein binding proteins | |
HK1176886A (en) | Plasma kallikrein binding proteins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DENDREON CORPORATION, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MADISON, EDWIN L.;REEL/FRAME:019747/0228 Effective date: 20050307 Owner name: DYAX CORP., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NIXON, ANDREW;REEL/FRAME:019746/0895 Effective date: 20050202 Owner name: DYAX CORP., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DENDREON CORPORATION;REEL/FRAME:019746/0478 Effective date: 20060707 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |