US20080089903A1 - Cd4+t-lymphocyte-specific hepatitis c virus epitopes - Google Patents
Cd4+t-lymphocyte-specific hepatitis c virus epitopes Download PDFInfo
- Publication number
- US20080089903A1 US20080089903A1 US11/837,953 US83795307A US2008089903A1 US 20080089903 A1 US20080089903 A1 US 20080089903A1 US 83795307 A US83795307 A US 83795307A US 2008089903 A1 US2008089903 A1 US 2008089903A1
- Authority
- US
- United States
- Prior art keywords
- virus
- epitopes
- hepatitis
- hcv
- lymphocyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000001744 T-lymphocyte Anatomy 0.000 title claims abstract description 32
- 241000711549 Hepacivirus C Species 0.000 title abstract description 20
- 239000000203 mixture Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 230000002163 immunogen Effects 0.000 claims description 4
- 230000008105 immune reaction Effects 0.000 claims description 3
- 241000700662 Fowlpox virus Species 0.000 claims description 2
- 241001183012 Modified Vaccinia Ankara virus Species 0.000 claims description 2
- 230000003014 reinforcing effect Effects 0.000 claims description 2
- 239000000277 virosome Substances 0.000 claims description 2
- 108091034117 Oligonucleotide Proteins 0.000 claims 1
- 229960005486 vaccine Drugs 0.000 abstract description 17
- 108090000765 processed proteins & peptides Proteins 0.000 description 35
- 241000700605 Viruses Species 0.000 description 33
- 102000004196 processed proteins & peptides Human genes 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 16
- 208000015181 infectious disease Diseases 0.000 description 13
- 208000005176 Hepatitis C Diseases 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 108090000623 proteins and genes Proteins 0.000 description 9
- 150000001413 amino acids Chemical class 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- 230000001684 chronic effect Effects 0.000 description 7
- 238000011081 inoculation Methods 0.000 description 7
- 201000010099 disease Diseases 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 230000000069 prophylactic effect Effects 0.000 description 6
- 230000000638 stimulation Effects 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 5
- 230000008030 elimination Effects 0.000 description 5
- 238000003379 elimination reaction Methods 0.000 description 5
- 230000002068 genetic effect Effects 0.000 description 5
- 230000035876 healing Effects 0.000 description 4
- 208000010710 hepatitis C virus infection Diseases 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 206010065051 Acute hepatitis C Diseases 0.000 description 3
- 208000006154 Chronic hepatitis C Diseases 0.000 description 3
- 230000005867 T cell response Effects 0.000 description 3
- 208000037621 acute hepatitis C virus infection Diseases 0.000 description 3
- 238000001516 cell proliferation assay Methods 0.000 description 3
- 208000019425 cirrhosis of liver Diseases 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 208000006454 hepatitis Diseases 0.000 description 3
- 230000001900 immune effect Effects 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 2
- 206010016654 Fibrosis Diseases 0.000 description 2
- 102000043131 MHC class II family Human genes 0.000 description 2
- 108091054438 MHC class II family Proteins 0.000 description 2
- 241000282577 Pan troglodytes Species 0.000 description 2
- 108010076039 Polyproteins Proteins 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 230000007882 cirrhosis Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 231100000283 hepatitis Toxicity 0.000 description 2
- 208000002672 hepatitis B Diseases 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 229940021747 therapeutic vaccine Drugs 0.000 description 2
- 238000002255 vaccination Methods 0.000 description 2
- 101710117545 C protein Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 108010041986 DNA Vaccines Proteins 0.000 description 1
- 229940021995 DNA vaccine Drugs 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- 206010013654 Drug abuse Diseases 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 241000710781 Flaviviridae Species 0.000 description 1
- 206010019791 Hepatitis post transfusion Diseases 0.000 description 1
- 206010019799 Hepatitis viral Diseases 0.000 description 1
- 102000018713 Histocompatibility Antigens Class II Human genes 0.000 description 1
- 108010027412 Histocompatibility Antigens Class II Proteins 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 description 1
- 102100021696 Syncytin-1 Human genes 0.000 description 1
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000010836 blood and blood product Substances 0.000 description 1
- 229940125691 blood product Drugs 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 208000020403 chronic hepatitis C virus infection Diseases 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000037029 cross reaction Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 208000018191 liver inflammation Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 229940023041 peptide vaccine Drugs 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 229940021993 prophylactic vaccine Drugs 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 229960000329 ribavirin Drugs 0.000 description 1
- HZCAHMRRMINHDJ-DBRKOABJSA-N ribavirin Natural products O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1N=CN=C1 HZCAHMRRMINHDJ-DBRKOABJSA-N 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 208000011117 substance-related disease Diseases 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 201000001862 viral hepatitis Diseases 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/24011—Flaviviridae
- C12N2770/24211—Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
- C12N2770/24222—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
Definitions
- the invention relates to hepatitis C virus epitopes which are CD4 + T-lymphocyte specific, and to vaccines that contain these epitopes.
- the hepatitis C virus called HCV in the following, was identified in 1989 and is an RNA virus from the family of Flaviviridae. It consists of a single RNA strand of approx. 9400 nucleotides which encode a precursor polyprotein approx. 3,000 amino acids long. This polyprotein is translated in an open reading frame and split proteolytically after translation.
- the virus is highly variable, and various virus isolates exist which are designated as genotypes and whose geographical distribution varies considerably. A distinction is made between more than six genotypes worldwide today. These genotypes are subdivided in turn into sub-types. The genetic variability exists inter-individually and intra-individually (within an infected individual). The intra-individual subtypes are the so-called HCV quasispecies, which are related but different virus sequences which form where there is imprecise replication.
- hepatitis C is one of the most significant chronic virus infections. At present, it is assumed that at least 180 million people are infected. According to calculations by the Centers for Disease Control in the USA, because of the long latency period after infection with the HCV, there will, in addition, be a rise in diseases associated with hepatitis C by the year 2010.
- the HCV is mainly transmitted parenterally and was, until its discovery, the main cause of non-A, non-B post-transfusion hepatitis.
- the routine testing of all blood products with 2nd and 3rd generation HCV-antibody tests has dramatically reduced the number of post-transfusion hepatitides.
- “Sporadic” hepatitis C and i.v. drug abuse are now regarded as the main routes for the transmission of new HCV infections. At the moment, there are no known measures for effectively preventing new infections caused in these ways.
- the HCV causes chronic liver inflammation (hepatitis) which, over the course of many years, can lead to further complications such as cirrhosis of the liver. Where cirrhosis of the liver exists for years, around 5% of all infected persons will develop a hepatocellular carcinoma. In the Western world, hepatitis C is therefore the primary indication of the need for a liver transplant. The costs of these transplants for the health service are considerable.
- the object of the present invention is the identification of HCV epitopes which are CD4+T-lymphocyte specific and which are associated with virus elimination or virus suppression.
- n 1 is the sum of the reactions with 3 ⁇ SI ⁇ 6,
- n 2 is the sum of the reactions with SI ⁇ 6 and
- m is the number of tests against the peptide in question, whereby m ⁇ 15 and MV is the mean value of all impact factors.
- the impact factor of the CD4 + T-lymphocyte-specific HCV epitopes >MV and ⁇ MV+1 *Sta, especially>MV+1 *Sta and ⁇ MV+2*Sta, with particular preference for ⁇ MV+2*Sta.
- CD4 + T-lymphocyte-specific HCV epitopes covering one or more peptides, selected from the group (SEQ ID NOS: 1-17):
- CD4+T-lymphocyte-specific HCV epitopes listed below, containing the sequence (SEQ ID NOS: 1-17): EP001 GPRLGVRATRKTSER EP002 ARSLTPCTCGSSDLY EP003 SSDLYLVTRHADVIP EP004 MWKCLIRLKPTLHGP EP005 VLVDILAGYGAGVAG EP006 THYVPESDAAARVTQILSSL EP007 TITQLLKRLHQWINEDCSTP EP008 CSGSWLRDVWDWICTVLTDF EP009 GAQITGHVKNGSMRIVGPKT EP010 EVTRVGDFHYVTGMTTDNVK EP011 CPCQVPAPEFFTEVDGVRLH EP012 FTEVDGVRLHRYAPACKPLL EP013 TSMLTDPSHITAETAKRRLA EP014 SSSASQLSAPSLKATCTTHH EP015 REVSVAAEILRKSRKFPPAM EP016 PLLESWKDPDYV
- CD 4 +T-lymphocyte-specific HCV epitopes selected from the group of epitopes EP001 to EP017 with the above-named sequence.
- These epitopes EP001 to EP017 according to the invention have an impact factor of ⁇ MV+2*Sta.
- HCV epitopes are to be used further for an immune therapy of chronic hepatitis C or a vaccine, further criteria are a high degree of conservation between various virus sub-types and a high degree of promiscuity of binding to various HLA class II molecules.
- the HCV epitopes identified and characterised in this way are to be available for a vaccine for the prevention and/or treatment of an HCV infection.
- a unique patient collective was identified, namely patients with acute hepatitis C who reach a lasting or at least temporary virus elimination in over 50% of cases.
- the whole virus was covered with overlapping synthetic peptides from 15 to 20 amino acids long.
- a standardised lymphocyte proliferation assay was used as the test system.
- a formula was defined based on the frequency of detection of an epitope and the strength of the immune reaction in question.
- the invention is based on the selection of a special patient collective, studies with defined peptides and an algorithm to identify highly immunogenic CD4+T-cell epitopes which are suitable for the development of a prophylactic or therapeutic vaccine.
- n 1 is the sum of the reactions with 3 ⁇ SI ⁇ 6,
- n 2 is the sum of the reactions with SI ⁇ 6 and
- n is the number of tests carried out against the peptide in question; this is used for standardization of the values. In the case of the peptides found by us, m was ⁇ 15.
- the stimulation index (SI) is normally calculated from the raw data of a proliferation assay and represents the multiplication factor of the measured sample in comparison with the control. An SI of 3 is regarded as significant.
- the mean value was calculated from the impact factor, of all the tested peptides, whereby every impact factor was determined according to formula 1.
- our solution to the task is limited to the peptides whose IFs are two standard deviations above the mean value of all IFs.
- CD4 + T-lymphocyte-specific HCV epitopes means a defined region of a hepatitis C protein which, because of its structure, “fits” into the complementary binding site of a CD4+T-lymphocyte receptor and thus triggers a reaction highly specifically.
- a “peptide screening” with approx. 450 selected different peptides (15-22-mers) was carried out as regards a virus-specific CD4+T-cell response with the patient collective described above.
- the peptides represent the entire virus protein, whereby we used 15-mers with 5 amino acid long overlapping areas and 20-22-mers with 10 amino acid overlapping areas in order to cover all possible relevant epitopes.
- Table 1 shows the various positions in the HCV genome of the epitopes according to the invention, giving the relevant virus isolate reference (Table 1, column 4).
- the information on the amino acid position (Table 1, column 2) are only to be understood as approximations, since, because of the high mutation rate of the virus with the various virus isolates, there may be changes in position.
- the conserved epitopes should probably be seen as particularly important for prophylactic and therapeutic inoculations, as reflected in the consistent sequence of the different virus isolates of an epitope (see also Table 1, column 5).
- TITLE Nucleotide sequence of the genomic RNA of hepatitis C virus isolated from a human JOURNAL J. Gen. Virol. 72 (Pt 11), 2697-2704 (1991) 5 Genotype: 2b AUTHORS Okamoto, H., Kurai, K., Okada, S., Yamamoto, K., Lizuka, H., Tanaka, T., Fukuda, S., Tsuda, F. and Mishiro, S.
- TITLE Full-length sequence of a hepatitis C virus genome having poor homology to reported isolates: comparative study of four distinct genotypes JOURNAL Virology 188 (1), 331-341 (1992) 6 Genotype: la AUTHORS Choo, Q.-L., Richman, K. H., Han, J. H., Berger, K., Lee, C., Dong C., Gallegos, C., Coit, D., Medina-Selby, A., Barr, P. J., Weiner, A. J., Bradley, D. W., Kuo, G. and Houghton, M. TITLE Genetic organization and diversity of the hepatitis C virus JOURNAL Proc. Natl. Acad.
- Genotype: 1b AUTHORS Kato, N., Hijikata, M., Ootsuyama, Y., Nakagawa, M., Ohkoshi, S., Sugimura, T. and Shimotohno, K. TITLE Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis JOURNAL Proc. Natl. Acad. Sci. U.S.A. 87 (24), 9524-9528 (1990) 9 Genotype: 1b AUTHORS Chen, P. J., Lin, M. H., Tai, K. F., Liu, P. C., Lin, C. J.
- Taiwanese hepatitis C virus genome sequence determination and mapping the 5′ termini of viral genomic and antigenomic RNA JOURNAL Virology 188 (1), 102-113 (1992) 10 Genotype: 1a AUTHORS Inchauspe, G., Zebedee, S., Lee, D. H., Sugitani, M., Nasoff, M. and Prince, A. M. TITLE Genomic structure of the human prototype strain H of hepatitis C virus: comparison with American and Japanese isolates JOURNAL Proc. Natl. Acad. Sci. U.S.A. 88 (22), 10292-10296 (1991) 11 Genotype: 3b AUTHORS Chayama, K.
- TITLE Genetic drift of hepatitis C virus during an 8.2-year infection in a chimpanzee: variability and stability JOURNAL Virology 190 (2), 894-899 (1992) 17 Genotype: 1a AUTHORS Choo, Q. L., Kuo, G., Weiner, A. J., Overby, L. R., Bradley, D. W., Houghton, M. TITLE Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome JOURNAL Science 1989 Apr 21; 244 (4902):359-82 C Genotype: 1b Primary consensus sequence complete lb genomes available in EMBL database (January 2000) Test system:
- the so-called “proliferation assay” was carried out according to the following protocol: After density gradient centrifugation on Ficoll gradients of heparinised blood, the fresh peripheral blood mononuclear cells (PBMC) were isolated and suspended in a culture medium (RPMI1640, Gibco). 50 ⁇ l of this cell suspension (concentration of 1 ⁇ 10 6 cells per ml) were placed on sterile 96-well culture plates. The cells were stimulated by the addition of the peptides. The final concentration of the peptides was 10 ⁇ g/ml. The cell culture plates were cultivated over 5 days at 37° C. and 5% CO 2 , then mixed with 3 H-thymidine and the incorporation of the radioactive 3 H was measured as a measure of the cell stimulation.
- the impact factor (IF) is based on a points system which not only uses the frequency of relevant reactions, i.e. stimulation index (SI) greater than 3, as normal, but also takes into account the strength of these reactions.
- SI stimulation index
- n 1 is the sum of the reactions with 3 ⁇ SI ⁇ 6,
- n 2 is the sum of the reactions with SI ⁇ 6 and
- n is the number of tests carried out against in question; whereby m ⁇ 15.
- SIs stimulation indexes
- Peptides with a high impact factor are not only characterised by a high stimulation index, i.e. a strong specific reactivity, but also by the consistently specific reaction, i.e. found in different people.
- the epitopes according to the invention are further characterised by the fact that a clear specific CD4+T-cell activity to these peptides correlates with a reduction in the virus titre. It is thus specifically these epitopes that would probably be ideal candidates for a vaccine.
- a specific inoculation reaction to these peptides could, on the one hand, prevent the disease and/or, on the other hand, lead to its cure, but could at least have a favourable influence on the course of an HCV infection.
- the epitopes according to the invention are highly immunogenic, highly conserved HCV sequences which are partly positioned in the immediate vicinity of known CD8+T-lymphocyte-specific HCV epitopes.
- CD4+T-lymphocyte-specific HCV epitopes these can, in addition to the induction of CD4+T-lymphocytes, also provide so-called T-cell assistance for cytotoxic CD8+T-lymphocytes.
- CD8+T-lymphocytes are activated by the cytokines of stimulated CD4+T-lymphocytes.
- the peptides are characterised by frequent significant reaction in the case of various patients with different MHC (major histocompability complex) class II types.
- the MHC class II system is markedly polymorphous.
- the task of the MHC molecules is to bind peptide fragments originating from the body's own, pathogenic (e.g. hepatitis C virus) proteins and to express them for the detection and activation of specific CD4+T-lymphocytes at the cell surface. This system facilitates an effective, specific immune response against pathogens such as HCV. Because various MHC class II types, i.e.
- epitopes according to the invention are extremely suitable both for a therapeutic and for a prophylactic peptide vaccine which is directed against the HCV.
- a further solution is a vaccine which contains a combination of the epitopes EP001 to EP017 according to the invention.
- the vaccine may as a particular preference contain a mixture of the epitopes EP001 to EP017 according to the invention.
- further HCV epitopes may also be present.
- the epitopes according to the invention may be used alone or with one or more auxiliary substances as a medication, preferably as a vaccine.
- the vaccine according to the invention contains at least one epitope according to the invention—preferably a mixture of epitopes according to the invention. However, further HCV epitopes may also be present.
- the auxiliary substances are selected preferably from the group consisting of fowl pox virus, modified vaccinia virus Ankara, virosomes, TRANSVAX® (a tuberculosis epitope vaccine and other substances reinforcing the immune reaction.
- the vaccine according to the invention may be administered orally, parenterally, intramuscularly, intravenously, subcutaneously or intracutaneously.
- the epitopes according to the invention are epitopes which can be used as T-cell-stimulating vaccine.
- a vaccine containing the epitopes according to the invention has the advantage over an inoculation with the entire virus protein, which contains the most different epitopes for virus-specific T-lymphocytes and only induces B-lymphocytes and CD4 + T-lymphocytes, that it selectively induces specific T-lymphocytes, CD4 + and/or CD8 + T-lymphocytes. In addition, it avoids antagonistic effects or the danger of iatrogenically produced autoimmune reactions which can appear following inoculation with whole proteins.
- the epitopes according to the invention have, in addition, a higher immunogenity in comparison with the entire virus protein, which means that a better vaccine result is achieved.
- the vaccine according to the invention thus allows, in healthy people, the induction of an immune response and thus acts as a prophylactic vaccination.
- the vaccine according to the invention can also induce an immune response in chronically HCV-infected people and thus act as a therapeutic vaccine.
- the encoding cDNA of these epitopes can be used in a DNA vaccine, a special method of vaccination.
- the DNA encoding for the corresponding epitopes is cloned into a vector. This construct is then administered parenterally to the individual to be vaccinated (e.g. Immunology and Cell Biology, Volume 75, pages 382 to 388).
- various DNA sequences can encode one of the epitopes according to the invention (see Current protocols, Wiley).
- the epitopes according to the invention can also be used in the diagnosis of the progress of an HCV infection, in that the volume of CD4 + T-lymphocytes which specifically recognise the epitope in question is monitored in the blood of the patient with a hepatitis C infection.
- This can be done, for example, with a diagnostic kit which comprises one or more of the epitopes according to the invention.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Genetics & Genomics (AREA)
- Public Health (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The invention relates to hepatitis C virus epitopes which are CD4+ T-lymphocyte specific, and to vaccines containing these epitopes.
Description
- This application is a continuation of U.S. application Ser. No. 10/962,145, filed Oct. 7, 2004, which is a continuation of International application no. PCT/EP03/03732, filed Apr. 10, 2003, which claims priority to European Patent Office application no. 02008033.9, filed Apr. 10, 2002, all of which are incorporated herein by reference in their entirety.
- The invention relates to hepatitis C virus epitopes which are CD4+ T-lymphocyte specific, and to vaccines that contain these epitopes.
- The hepatitis C virus, called HCV in the following, was identified in 1989 and is an RNA virus from the family of Flaviviridae. It consists of a single RNA strand of approx. 9400 nucleotides which encode a precursor polyprotein approx. 3,000 amino acids long. This polyprotein is translated in an open reading frame and split proteolytically after translation. The virus is highly variable, and various virus isolates exist which are designated as genotypes and whose geographical distribution varies considerably. A distinction is made between more than six genotypes worldwide today. These genotypes are subdivided in turn into sub-types. The genetic variability exists inter-individually and intra-individually (within an infected individual). The intra-individual subtypes are the so-called HCV quasispecies, which are related but different virus sequences which form where there is imprecise replication.
- With a prevalence of approx. one to three percent worldwide, hepatitis C is one of the most significant chronic virus infections. At present, it is assumed that at least 180 million people are infected. According to calculations by the Centers for Disease Control in the USA, because of the long latency period after infection with the HCV, there will, in addition, be a rise in diseases associated with hepatitis C by the year 2010.
- The HCV is mainly transmitted parenterally and was, until its discovery, the main cause of non-A, non-B post-transfusion hepatitis. The routine testing of all blood products with 2nd and 3rd generation HCV-antibody tests has dramatically reduced the number of post-transfusion hepatitides. “Sporadic” hepatitis C and i.v. drug abuse are now regarded as the main routes for the transmission of new HCV infections. At the moment, there are no known measures for effectively preventing new infections caused in these ways.
- The HCV causes chronic liver inflammation (hepatitis) which, over the course of many years, can lead to further complications such as cirrhosis of the liver. Where cirrhosis of the liver exists for years, around 5% of all infected persons will develop a hepatocellular carcinoma. In the Western world, hepatitis C is therefore the primary indication of the need for a liver transplant. The costs of these transplants for the health service are considerable.
- With chronic hepatitis C, antibodies have been detected against almost all virus proteins, but, in contrast to hepatitis B, there is no anti-HCV antibody constellation which displays an immunity to HCV or any healing capacity. Nor does the presence of antibodies against the HCV during a chronic HCV infection reduce its progression. On the contrary, successful treatment seems to be associated with a lowering of the antibody titre. It is therefore not possible to prevent an infection with hepatitis C through the use of a conventional prophylactic inoculation with envelope protein, as has been done successfully with hepatitis B. No prophylactic inoculation is therefore available at the moment.
- The only currently approved therapy for chronic hepatitis C is a treatment with Interferon alpha alone or in combination with Ribavirin for 6 to 12 months. This form of therapy is very cost-intensive, has considerable side-effects and only leads to a permanent elimination of the virus in approx. 50% of cases. Peptide epitopes containing T-cell epitopes have already been identified (Diepolder et al., J. Virol. 1997; EP: 00 121 138.2; PCT: WO 02/26785A2). These epitopes were identified in a patient collective through the culture of virus-specific CD4+T-cell clones.
- In addition, systematic investigations to date have essentially been based on data obtained from patients with a chronic hepatitis C infection, and a spontaneous elimination of the virus at the point in time when a chronic HCV infection already exists is extremely rare. Epitopes which were found in patients with a chronic HCV infection are therefore not associated with the healing of the disease.
- For this reason, the object of the present invention is the identification of HCV epitopes which are CD4+T-lymphocyte specific and which are associated with virus elimination or virus suppression.
- This object is solved by CD4+ T-lymphocyte-specific HCV epitopes with an impact factor (IF)≧mean value (MV)+2*Sta,
- where
where - n1 is the sum of the reactions with 3<SI<6,
- n2 is the sum of the reactions with SI≧6 and
- m is the number of tests against the peptide in question, whereby m≧15 and MV is the mean value of all impact factors.
- Preference is given to the impact factor of the CD4+ T-lymphocyte-specific HCV epitopes>MV and≦MV+1 *Sta, especially>MV+1 *Sta and<MV+2*Sta, with particular preference for≧MV+2*Sta.
- A preferred solution to the task is CD4+ T-lymphocyte-specific HCV epitopes, covering one or more peptides, selected from the group (SEQ ID NOS: 1-17):
- (EP001) GPRLGVRATRKTSER,
- (EP002) ARSLTPCTCGSSDLY,
- (EP003) SSDLYLVTRHADVIP,
- (EP004) MWKCLIRLKPTLHGP,
- (EP005) VLVDILAGYGAGVAG,
- (EP006) THYVPESDAAARVTQILSSL,
- (EP007) TITQLLKRLHQWINEDCSTP,
- (EP008) CSGSWLRDVWDWICTVLTDF,
- (EP009) GAQITGHVKNGSMRIVGPKT,
- (EP010) EVTRVGDFHYVTGMTTDNVK,
- (EP011) CPCQVPAPEFFTEVDGVRLH,
- (EP012) FTEVDGVRLHRYAPACKPLL,
- (EP013) TSMLTDPSHITAETAKRRLA,
- (EP014) SSSASQLSAPSLKATCTTHH,
- (EP015) REVSVAAEILRKSRKFPPAM,
- (EP016) PLLESWKDPDYVPPVVHGCP, and
- (EP017) DVVCCSMSYTWTGALITPCA and derivatives hereof with the same or similar specificity.
- A further preferred solution to the task are the CD4+T-lymphocyte-specific HCV epitopes listed below, containing the sequence (SEQ ID NOS: 1-17):
EP001 GPRLGVRATRKTSER EP002 ARSLTPCTCGSSDLY EP003 SSDLYLVTRHADVIP EP004 MWKCLIRLKPTLHGP EP005 VLVDILAGYGAGVAG EP006 THYVPESDAAARVTQILSSL EP007 TITQLLKRLHQWINEDCSTP EP008 CSGSWLRDVWDWICTVLTDF EP009 GAQITGHVKNGSMRIVGPKT EP010 EVTRVGDFHYVTGMTTDNVK EP011 CPCQVPAPEFFTEVDGVRLH EP012 FTEVDGVRLHRYAPACKPLL EP013 TSMLTDPSHITAETAKRRLA EP014 SSSASQLSAPSLKATCTTHH EP015 REVSVAAEILRKSRKFPPAM EP016 PLLESWKDPDYVPPVVHGCP and/or EP017 DVVCCSMSYTWTGALITPCA. - Particular preference is given to the CD4+T-lymphocyte-specific HCV epitopes according to the invention, selected from the group of epitopes EP001 to EP017 with the above-named sequence. These epitopes EP001 to EP017 according to the invention have an impact factor of≧MV+2*Sta.
- Because these epitopes are to be used further for an immune therapy of chronic hepatitis C or a vaccine, further criteria are a high degree of conservation between various virus sub-types and a high degree of promiscuity of binding to various HLA class II molecules. The HCV epitopes identified and characterised in this way are to be available for a vaccine for the prevention and/or treatment of an HCV infection.
- To solve the task, a unique patient collective was identified, namely patients with acute hepatitis C who reach a lasting or at least temporary virus elimination in over 50% of cases. In order to test all possible CD4+T-cell epitopes, the whole virus was covered with overlapping synthetic peptides from 15 to 20 amino acids long. A standardised lymphocyte proliferation assay was used as the test system. In order to determine both the degree of conservation between various virus sub-types and also the binding promiscuity as regards the relevant genetic background of the patients, a formula was defined based on the frequency of detection of an epitope and the strength of the immune reaction in question.
- The invention is based on the selection of a special patient collective, studies with defined peptides and an algorithm to identify highly immunogenic CD4+T-cell epitopes which are suitable for the development of a prophylactic or therapeutic vaccine.
- The algorithm determines the “impact factor” (IF) of the epitope in question and is defined as follows:
where - n1 is the sum of the reactions with 3<SI<6,
- n2 is the sum of the reactions with SI≧6 and
- m is the number of tests carried out against the peptide in question; this is used for standardization of the values. In the case of the peptides found by us, m was≧15.
- The stimulation index (SI) is normally calculated from the raw data of a proliferation assay and represents the multiplication factor of the measured sample in comparison with the control. An SI of 3 is regarded as significant.
- In addition, the mean value was calculated from the impact factor, of all the tested peptides, whereby every impact factor was determined according to formula 1. In order to determine relevant epitopes with statistical precision, our solution to the task is limited to the peptides whose IFs are two standard deviations above the mean value of all IFs.
- Under the terms of the present invention, “CD4+ T-lymphocyte-specific HCV epitopes” means a defined region of a hepatitis C protein which, because of its structure, “fits” into the complementary binding site of a CD4+T-lymphocyte receptor and thus triggers a reaction highly specifically.
- Because the primary amino acid structure of the HCV proteins is known, over 450 synthetic peptides (15-20-mers) were used here in total, which each overlap between 5 and 10 amino acids and cover the known structured and non-structured proteins.
- Collective:
- A special patient collective was chosen and examined for HCV specific CD4+T-cell epitopes relevant for the healing of the disease. The patient collective, namely patients with acute hepatitis C, is difficult to identify, since, on the one hand, they occur with a frequency of approx. 1:100,000 in the German population and, on the other hand, only T-lymphocytes were tested in the acute phase of the disease. This means a considerable limitation in the number of usable samples. Finally, within this patient collective, only patients were considered who were able to clear the virus spontaneously or to control it temporarily (this is only approx. 60% of the patients with acute hepatitis C), since only here has the immune system successfully taken action against the virus.
- In contrast, a spontaneous elimination of the virus at a later time (chronic HCV) is a rarity. In the late, chronic phase, there is also only a small or undetectable CD4+T-cell response against the virus. Epitopes which are associated with temporary or permanent virus control in particular are therefore of outstanding importance. These epitopes or the measured reaction to these peptides are therefore associated directly or indirectly with the healing of the HCV infection and are thus ideal candidates for future “peptide inoculations”. This is the case with the peptide sequences or peptides according to the invention.
- Peptides:
- A “peptide screening” with approx. 450 selected different peptides (15-22-mers) was carried out as regards a virus-specific CD4+T-cell response with the patient collective described above.
- The peptides represent the entire virus protein, whereby we used 15-mers with 5 amino acid long overlapping areas and 20-22-mers with 10 amino acid overlapping areas in order to cover all possible relevant epitopes.
- Table 1 shows the various positions in the HCV genome of the epitopes according to the invention, giving the relevant virus isolate reference (Table 1, column 4). The information on the amino acid position (Table 1, column 2) are only to be understood as approximations, since, because of the high mutation rate of the virus with the various virus isolates, there may be changes in position. The conserved epitopes should probably be seen as particularly important for prophylactic and therapeutic inoculations, as reflected in the consistent sequence of the different virus isolates of an epitope (see also Table 1, column 5).
- Earlier investigations of our own had shown that particular areas of the virus have a special immunological significance, and so these areas of the virus genome (NS3-NS4) were additionally tested using peptides (20-mers with 10 amino acid long overlapping areas). Table 1 lists the epitopes according to the invention.
TABLE 1 (SEQ ID NOS: 1-17, respectively, in order of appearance): Virus isolate reference (see No. Item IF Amino acid sequence list 1) EP00 40 24.0 GPRLGVRATRKTSER c, 3, 4, 5, 6, 1 8, 10, 12, 14, 15, 16 EP00 112 27.6 ARSLTPCTCGSSDLY c, 1, 2, 7, 9 2 0 EP00 113 23.2 SSDLYLVTRHADVIP c, 1, 2, 3, 6, 3 0 7, 9, 10, 15, 16 EP00 161 24.1 MWKCLIRLKPTLHGP c, 1, 2, 3, 6, 4 0 7, 8, 12, 15, 16 EP00 185 24.1 VLVDILAGYGAGVAG c, 1, 2, 7, 8, 5 0 10, 15, 16 EP00 193 26.7 THYVPESDAAARVTQILSSL c, 1, 2, 7, 8, 6 5 16 EP00 195 43.8 TITQLLKRLHQWINEDCSTP c, 1, 2, 7, 8, 7 5 16 EP00 197 23.3 CSGSWLRDVWDWICTVLTDF c, 1, 2, 15, 8 5 16 EP00 203 23.3 GAQITGHVKNGSMRIVGPKT c, 1, 2, 7, 8, 9 5 15 EP01 209 21.9 EVTRVGDFHYVTGMTTDNVK c, 1, 2, 8, 0 5 15, 16 EP01 211 23.3 CPCQVPAPEFFTEVDGVRLH c, 1, 8, 9, 1 5 15, 16 EP01 212 28.1 FTEVDGVRLHRYAPACKPLL c, 1, 9, 15, 2 5 16 EP01 217 26.7 TSMLTDPSHITAETAKRRLA c, 2, 7, 8, 9, 3 5 15, 16 EP01 220 23.3 SSSASQLSAPSLKATCTTHH c, 2, 7, 8, 16 4 5 EPOI 227 25.0 REVSVAAEILRKSRKFPPAM C 5 5 EP01 230 26.7 PLLESWKDPDYVPPVVHGCP c, 1, 2, 15, 6 5 16 EP01 242 23.3 DVVCCSMSYTWTGALITPCA c, 1, 2, 8, 16 7 5
List 1: Virus Isolates
1
Genotype: 1b AUTHORS Trowbridge, R. and Gowans, E. J.
TITLE Molecular cloning of an Australian isolate of hepatitis C virus
JOURNAL Arch. Virol. 143 (3), 501-511 (1998)
2
Genotype: 1b AUTHORS Takamizawa, A., Mori, C., Fuke, I., Manabe, S., Murakami, S., Fujita, J., Onishi, E., Andoh, T., Yoshida, I. and Okayama, H.
TITLE Structure and organization of the hepatitis C virus genome isolated from human carriers
JOURNAL J. Virol. 65(3), 1105-1113 (1991)
3
Genotype: 1a AUTHORS Yanagi, M., Purcell, R. H., Emerson, S. U. and Bukh, J.
TITLE Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into the liver of a chimpanzee
JOURNAL Proc. Natl. Acad. Sci. U.S.A. 94 (16), 8738-8743 (1997)
4
Genotype: 2a AUTHORS Okamoto, H., Okada, S., Sugiyama, Y., Kurai, K., Ilzuka, H., Machida, A., Miyakawa, Y. and Mayumi, M.
TITLE Nucleotide sequence of the genomic RNA of hepatitis C virus isolated from a human
JOURNAL J. Gen. Virol. 72 (Pt 11), 2697-2704 (1991)
5
Genotype: 2b AUTHORS Okamoto, H., Kurai, K., Okada, S., Yamamoto, K., Lizuka, H., Tanaka, T., Fukuda, S., Tsuda, F. and Mishiro, S.
TITLE Full-length sequence of a hepatitis C virus genome having poor homology to reported isolates: comparative study of four distinct genotypes
JOURNAL Virology 188 (1), 331-341 (1992)
6
Genotype: la AUTHORS Choo, Q.-L., Richman, K. H., Han, J. H., Berger, K., Lee, C., Dong C., Gallegos, C., Coit, D., Medina-Selby, A., Barr, P. J., Weiner, A. J., Bradley, D. W., Kuo, G. and Houghton, M.
TITLE Genetic organization and diversity of the hepatitis C virus
JOURNAL Proc. Natl. Acad. Sci. U.S.A. 88 (6), 2451-2455 (1991)
7
Genotype: 1b AUTHORS Tanaka, T., Kato, N., Nakagawa, M., Ootsuyama, Y., Cho, M. J., Nakazawa, T., Hijikata, M., Ishimura, Y. and Shimotohno, K.
TITLE Molecular cloning of hepatitis C virus genome from a single Japanese carrier: sequence variation within the same individual and among infected individuals
JOURNAL Virus Res. 23 (1-2), 39-53 (1992)
8
Genotype: 1b AUTHORS Kato, N., Hijikata, M., Ootsuyama, Y., Nakagawa, M., Ohkoshi, S., Sugimura, T. and Shimotohno, K.
TITLE Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis
JOURNAL Proc. Natl. Acad. Sci. U.S.A. 87 (24), 9524-9528 (1990)
9
Genotype: 1b AUTHORS Chen, P. J., Lin, M. H., Tai, K. F., Liu, P. C., Lin, C. J. and Chen, D. S.
TITLE The Taiwanese hepatitis C virus genome: sequence determination and mapping the 5′ termini of viral genomic and antigenomic RNA
JOURNAL Virology 188 (1), 102-113 (1992)
10
Genotype: 1a AUTHORS Inchauspe, G., Zebedee, S., Lee, D. H., Sugitani, M., Nasoff, M. and Prince, A. M.
TITLE Genomic structure of the human prototype strain H of hepatitis C virus: comparison with American and Japanese isolates
JOURNAL Proc. Natl. Acad. Sci. U.S.A. 88 (22), 10292-10296 (1991)
11
Genotype: 3b AUTHORS Chayama, K. Toranomon Hospital, Department of Gastroenterology; 2-2-2 Toranomon, Minato-ku, Tokyo 105, Japan
TITLE Direct Submission
JOURNAL Submitted (18 Feb 1995) to the DDBJ/EMBL/GenBank databases
COMMENT D26556: Submitted (20 Jan 1994) to DDBJ by: Kazuaki Chayama
12
Genotype: 4 AUTHORS Chamberlain, R. W., Adams, N., Saeed, A. A., Simmonds, P., Elliott, R. M.
TITLE Complete nucleotide sequence of a type 4 hepatitis C virus variant, the predominant genotype in the Middle East
JOURNAL J Gen Virol. 1997 Jun; 78 (Pt 6):1341-7
13
Genotype: 5a AUTHORS Chamberlain, R. W., Adams, N. J., Taylor, L. A., Simmonds, P., Elliott, R. M.
TITLE The complete coding sequence of hepatitis C virus genotype 5a, the predominant genotype in South Africa
JOURNAL Biochem Biophys Res Commun. 1997 Jul 9; 236 (1):44-9
14
Genotype: 6a AUTHORS Adams, N. J., Chamberlain, R. W., Taylor, L. A., Davidson, F., Lin, C. K., Elliott, R. M. and Simmonds, P.
TITLE Complete coding sequence of hepatitis C virus genotype 6a
JOURNAL Biochem. Biophys. Res. Commun. 234 (2), 393-396 (1997)
15
Genotype: 1 b AUTHORS Honda, M., Kaneko, S., Unoura, M., Kobayashi, K. and Murakami, S.
TITLE Sequence comparisons for a hepatitis C virus genome RNA isolated from a patient with liver cirrhosis
JOURNAL Gene 120 (2), 317-318 (1992)
16
Genotype: 1b AUTHORS Okamoto, H., Kojima, M., Okada, S., Yoshizawa, H., Ilzuka, H., Tanaka, T., Muchmore, E. E., Peterson, D. A., Ito, Y. and Mishiro, S.
TITLE Genetic drift of hepatitis C virus during an 8.2-year infection in a chimpanzee: variability and stability
JOURNAL Virology 190 (2), 894-899 (1992)
17
Genotype: 1a AUTHORS Choo, Q. L., Kuo, G., Weiner, A. J., Overby, L. R., Bradley, D. W., Houghton, M.
TITLE Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome
JOURNAL Science 1989 Apr 21; 244 (4902):359-82
C
Genotype: 1b
Primary consensus sequence complete lb genomes available in EMBL database (January 2000)
Test system: - As the test system, the so-called “proliferation assay” was carried out according to the following protocol: After density gradient centrifugation on Ficoll gradients of heparinised blood, the fresh peripheral blood mononuclear cells (PBMC) were isolated and suspended in a culture medium (RPMI1640, Gibco). 50 μl of this cell suspension (concentration of 1×106 cells per ml) were placed on sterile 96-well culture plates. The cells were stimulated by the addition of the peptides. The final concentration of the peptides was 10 μg/ml. The cell culture plates were cultivated over 5 days at 37° C. and 5% CO2, then mixed with 3H-thymidine and the incorporation of the radioactive 3H was measured as a measure of the cell stimulation.
- Evaluation:
- In our studies, only peptide reactions were regarded as significant whose stimulation index (SI) was greater than 3 (3x higher compared with the controls, or the irrelevant peptides). In order, on the one hand, to minimise the possibility of falsely positive reactions and irrelevant cross-reactions and, on the other hand, to create a hierarchy as regards the biological valency of relevant epitopes, an additional filter was defined and described in the following as the impact factor (IF).
- The impact factor (IF) is based on a points system which not only uses the frequency of relevant reactions, i.e. stimulation index (SI) greater than 3, as normal, but also takes into account the strength of these reactions.
- This assessment system was applied for every peptide tested and is defined according to the following formula:
where - n1 is the sum of the reactions with 3<SI<6,
- n2 is the sum of the reactions with SI≧6 and
- m is the number of tests carried out against in question; whereby m≧15.
- The following specific SIs (stimulation indexes) were measured against EP007 in 16 (m) independent tests: 0.91; 1.07; 1.10; 1.24; 1.32; 1.33; 1.40; 1.46; 1.81; 1.84; 3.01; 3.25; 4.38; 5.32; 7.58 and 12.77.
- This produces n1=4 (4 values>3 and<6); n2=2 (2 values≧6), or, used in the formula
an impact factor of 43.75 for this peptide. Because, with the peptides tested by us, the mean value of all impact factors was 7.36 and the standard deviation was 6.75, this impact factor of 43.75 corresponds to a value of≧MV+2*Sta. The relevant impact factor was calculated for every peptide tested. The mean value and standard deviation were then calculated from all the impact factors. - This then gives, depending on the level of the impact factor, a biologically and immunologically significant hierarchy. Peptides with a high impact factor are not only characterised by a high stimulation index, i.e. a strong specific reactivity, but also by the consistently specific reaction, i.e. found in different people.
- The selection made here aims to give better consideration to the immunological valency of the peptides listed here. Epitopes which trigger HCV specific CD4+T-cell responses which are strong and which are measured in different patients are of great relevance for future vaccine approaches.
- The epitopes according to the invention are further characterised by the fact that a clear specific CD4+T-cell activity to these peptides correlates with a reduction in the virus titre. It is thus specifically these epitopes that would probably be ideal candidates for a vaccine. A specific inoculation reaction to these peptides could, on the one hand, prevent the disease and/or, on the other hand, lead to its cure, but could at least have a favourable influence on the course of an HCV infection.
- The epitopes according to the invention are highly immunogenic, highly conserved HCV sequences which are partly positioned in the immediate vicinity of known CD8+T-lymphocyte-specific HCV epitopes. As CD4+T-lymphocyte-specific HCV epitopes, these can, in addition to the induction of CD4+T-lymphocytes, also provide so-called T-cell assistance for cytotoxic CD8+T-lymphocytes. These CD8+T-lymphocytes are activated by the cytokines of stimulated CD4+T-lymphocytes.
- In addition, the peptides are characterised by frequent significant reaction in the case of various patients with different MHC (major histocompability complex) class II types. The MHC class II system is markedly polymorphous. The task of the MHC molecules is to bind peptide fragments originating from the body's own, pathogenic (e.g. hepatitis C virus) proteins and to express them for the detection and activation of specific CD4+T-lymphocytes at the cell surface. This system facilitates an effective, specific immune response against pathogens such as HCV. Because various MHC class II types, i.e. different people, can express the same peptide on their MHC class II molecule, which is seen again in vitro in CD4+activity that is directed against the same peptide and which can be measured in different people, it can be assumed that these peptides are promiscuous. This means that the epitopes according to the invention have an immunological relevance with various individuals.
- In summary, specifically the epitopes according to the invention are extremely suitable both for a therapeutic and for a prophylactic peptide vaccine which is directed against the HCV.
- A further solution is a vaccine which contains a combination of the epitopes EP001 to EP017 according to the invention. The vaccine may as a particular preference contain a mixture of the epitopes EP001 to EP017 according to the invention. However, further HCV epitopes may also be present.
- The epitopes according to the invention may be used alone or with one or more auxiliary substances as a medication, preferably as a vaccine. The vaccine according to the invention contains at least one epitope according to the invention—preferably a mixture of epitopes according to the invention. However, further HCV epitopes may also be present.
- The auxiliary substances are selected preferably from the group consisting of fowl pox virus, modified vaccinia virus Ankara, virosomes, TRANSVAX® (a tuberculosis epitope vaccine and other substances reinforcing the immune reaction.
- The vaccine according to the invention may be administered orally, parenterally, intramuscularly, intravenously, subcutaneously or intracutaneously.
- The epitopes according to the invention are epitopes which can be used as T-cell-stimulating vaccine. A vaccine containing the epitopes according to the invention has the advantage over an inoculation with the entire virus protein, which contains the most different epitopes for virus-specific T-lymphocytes and only induces B-lymphocytes and CD4+ T-lymphocytes, that it selectively induces specific T-lymphocytes, CD4+ and/or CD8+ T-lymphocytes. In addition, it avoids antagonistic effects or the danger of iatrogenically produced autoimmune reactions which can appear following inoculation with whole proteins. The epitopes according to the invention have, in addition, a higher immunogenity in comparison with the entire virus protein, which means that a better vaccine result is achieved.
- The vaccine according to the invention thus allows, in healthy people, the induction of an immune response and thus acts as a prophylactic vaccination. The vaccine according to the invention can also induce an immune response in chronically HCV-infected people and thus act as a therapeutic vaccine.
- The encoding cDNA of these epitopes can be used in a DNA vaccine, a special method of vaccination. Here, the DNA encoding for the corresponding epitopes is cloned into a vector. This construct is then administered parenterally to the individual to be vaccinated (e.g. Immunology and Cell Biology, Volume 75, pages 382 to 388). According to the degenerated genetic code, various DNA sequences can encode one of the epitopes according to the invention (see Current protocols, Wiley).
- The epitopes according to the invention can also be used in the diagnosis of the progress of an HCV infection, in that the volume of CD4+ T-lymphocytes which specifically recognise the epitope in question is monitored in the blood of the patient with a hepatitis C infection. This can be done, for example, with a diagnostic kit which comprises one or more of the epitopes according to the invention.
Claims (4)
1.-13. (canceled)
14. A composition comprising at least one isolated CD4+ T-lymphocyte-specific HCV epitope wherein the HCV epitope consists of
15. An immunogenic composition comprising the HCV epitope according to claim 14 .
16. The immunogenic composition according to claim 15 , additionally comprising at least one auxiliary substance selected from the group consisting of fowl pox virus, modified vaccinia virus Ankara, virosomes, CpG containing oligonucleotide, and other substances reinforcing the immune reaction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/837,953 US20080089903A1 (en) | 2002-04-10 | 2007-08-13 | Cd4+t-lymphocyte-specific hepatitis c virus epitopes |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02008033A EP1357127A1 (en) | 2002-04-10 | 2002-04-10 | Hepatitis c virus epitopes specific for cd4+ t-cell lymphocytes |
EP02008033.9 | 2002-04-10 | ||
PCT/EP2003/003732 WO2003084988A2 (en) | 2002-04-10 | 2003-04-10 | Cd4+ t-lymphocyte-specific hepatitis c virus epitopes |
US10/962,145 US7270820B2 (en) | 2002-04-10 | 2004-10-07 | CD4+ T-lymphocyte-specific hepatitis C virus epitopes |
US11/837,953 US20080089903A1 (en) | 2002-04-10 | 2007-08-13 | Cd4+t-lymphocyte-specific hepatitis c virus epitopes |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/962,145 Division US7270820B2 (en) | 2002-04-10 | 2004-10-07 | CD4+ T-lymphocyte-specific hepatitis C virus epitopes |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080089903A1 true US20080089903A1 (en) | 2008-04-17 |
Family
ID=28685850
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/962,145 Expired - Fee Related US7270820B2 (en) | 2002-04-10 | 2004-10-07 | CD4+ T-lymphocyte-specific hepatitis C virus epitopes |
US11/837,953 Abandoned US20080089903A1 (en) | 2002-04-10 | 2007-08-13 | Cd4+t-lymphocyte-specific hepatitis c virus epitopes |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/962,145 Expired - Fee Related US7270820B2 (en) | 2002-04-10 | 2004-10-07 | CD4+ T-lymphocyte-specific hepatitis C virus epitopes |
Country Status (4)
Country | Link |
---|---|
US (2) | US7270820B2 (en) |
EP (2) | EP1357127A1 (en) |
AU (1) | AU2003221569A1 (en) |
WO (1) | WO2003084988A2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA009782B1 (en) * | 2003-09-22 | 2008-04-28 | Грин Пептайд Ко., Лтд. | Peptide originating in hepatitis c virus |
WO2013150450A1 (en) * | 2012-04-02 | 2013-10-10 | Universidade Do Porto | Hcv homolog fragments, cell-lines and applications thereof |
US10351604B2 (en) * | 2015-06-25 | 2019-07-16 | Nanyang Technological University | Broad-spectrum anti-infective peptides |
NZ751943A (en) | 2016-09-21 | 2025-08-29 | Univ Alberta | Hepatitis c virus immunogenic compositions and methods of use thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5980899A (en) * | 1992-06-10 | 1999-11-09 | The United States Of America As Represented By The Department Of Health And Human Services | Identification of peptides that stimulate hepatitis C virus specific cytotoxic T cells |
US6007982A (en) * | 1990-12-14 | 1999-12-28 | Innogenetics N.V. | Synthetic antigens for the detection of antibodies to hepatitis C virus |
US6027729A (en) * | 1989-04-20 | 2000-02-22 | Chiron Corporation | NANBV Diagnostics and vaccines |
US6183949B1 (en) * | 1991-07-04 | 2001-02-06 | Roche Diagnostics Gmbh | HCV peptide antigens and methods for the determination of HCV |
US6221355B1 (en) * | 1997-12-10 | 2001-04-24 | Washington University | Anti-pathogen system and methods of use thereof |
US20030186224A1 (en) * | 2000-09-28 | 2003-10-02 | Immusystems Gmbh | CD4+ T-lymphocyte-specific hepatitis C virus-epitopes |
US6689363B1 (en) * | 1992-01-29 | 2004-02-10 | Epimmune Inc. | Inducing cellular immune responses to hepatitis B virus using peptide and nucleic acid compositions |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IE65424B1 (en) * | 1991-03-01 | 1995-10-18 | Akzo Nv | Peptides immunochemically reactive with antibodies directed against hepatitis non-A non-B virus |
CA2070952A1 (en) * | 1991-06-11 | 1992-12-12 | Makoto Seki | Gene of hepatitis c virus or fragment thereof, polypeptide encoded by the same |
EP1200109A4 (en) * | 1999-07-19 | 2005-06-15 | Epimmune Inc | Inducing cellular immune responses to hepatitis c virus using peptide and nucleic acid compositions |
IL150736A0 (en) * | 2000-03-14 | 2003-02-12 | Mayr Anton | Altered strain of the modified vaccinia virus ankara (mva) |
AUPQ776100A0 (en) * | 2000-05-26 | 2000-06-15 | Australian National University, The | Synthetic molecules and uses therefor |
WO2002004484A2 (en) * | 2000-07-07 | 2002-01-17 | Medmira Inc. | Hcv mosaic antigen composition |
-
2002
- 2002-04-10 EP EP02008033A patent/EP1357127A1/en not_active Withdrawn
-
2003
- 2003-04-10 WO PCT/EP2003/003732 patent/WO2003084988A2/en not_active Application Discontinuation
- 2003-04-10 EP EP03717293A patent/EP1497324A2/en not_active Withdrawn
- 2003-04-10 AU AU2003221569A patent/AU2003221569A1/en not_active Abandoned
-
2004
- 2004-10-07 US US10/962,145 patent/US7270820B2/en not_active Expired - Fee Related
-
2007
- 2007-08-13 US US11/837,953 patent/US20080089903A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6027729A (en) * | 1989-04-20 | 2000-02-22 | Chiron Corporation | NANBV Diagnostics and vaccines |
US6007982A (en) * | 1990-12-14 | 1999-12-28 | Innogenetics N.V. | Synthetic antigens for the detection of antibodies to hepatitis C virus |
US6183949B1 (en) * | 1991-07-04 | 2001-02-06 | Roche Diagnostics Gmbh | HCV peptide antigens and methods for the determination of HCV |
US6689363B1 (en) * | 1992-01-29 | 2004-02-10 | Epimmune Inc. | Inducing cellular immune responses to hepatitis B virus using peptide and nucleic acid compositions |
US5980899A (en) * | 1992-06-10 | 1999-11-09 | The United States Of America As Represented By The Department Of Health And Human Services | Identification of peptides that stimulate hepatitis C virus specific cytotoxic T cells |
US6221355B1 (en) * | 1997-12-10 | 2001-04-24 | Washington University | Anti-pathogen system and methods of use thereof |
US20030186224A1 (en) * | 2000-09-28 | 2003-10-02 | Immusystems Gmbh | CD4+ T-lymphocyte-specific hepatitis C virus-epitopes |
Also Published As
Publication number | Publication date |
---|---|
EP1497324A2 (en) | 2005-01-19 |
AU2003221569A8 (en) | 2003-10-20 |
US20050249754A1 (en) | 2005-11-10 |
US7270820B2 (en) | 2007-09-18 |
WO2003084988A3 (en) | 2004-11-11 |
WO2003084988A2 (en) | 2003-10-16 |
EP1357127A1 (en) | 2003-10-29 |
AU2003221569A1 (en) | 2003-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kato et al. | Genetic drift in hypervariable region 1 of the viral genome in persistent hepatitis C virus infection | |
Weiner et al. | Evidence for immune selection of hepatitis C virus (HCV) putative envelope glycoprotein variants: potential role in chronic HCV infections. | |
US6762024B2 (en) | Sequences of hepatitis C virus genotypes and their use as therapeutic and diagnostic agents | |
AU746965B2 (en) | Cloned genomes of infectious hepatitis C viruses and uses thereof | |
Kurosaki et al. | Rapid sequence variation of the hypervariable region of hepatitis C virus during the course of chronic infection | |
Diepolder et al. | The role of hepatitis C virus specific CD4+ T lymphocytes in acute and chronic hepatitis C | |
US7557199B2 (en) | Hepatitis C virus vaccine | |
EP0419182A1 (en) | New HCV isolates | |
Sekiya et al. | Genetic alterations of the putative envelope proteins encoding region of the hepatitis C virus in the progression to relapsed phase from acute hepatitis: humoral immune response to hypervariable region 1 | |
Cerny et al. | Immunological aspects of HCV infection | |
CA2197569A1 (en) | Nucleotide and amino acid sequences of the envelope 1 and core genes of hepatitis c virus | |
Jackson et al. | Reactivity of synthetic peptides representing selected sections of hepatitis C virus core and envelope proteins with a panel of hepatitis C virus‐seropositive human plasma | |
US20070141668A1 (en) | Cloned genome of infectious hepatitis C virus of genotype 2A and uses thereof | |
EP0754193B1 (en) | Hepatitis c virus core peptide for stimulation of cytotoxic t lymphocytes and diagnosis of hcv exposure | |
EP1185664B1 (en) | CLONED GENONE OF INFECTIOUS HEPATITIS C VIRUS OF GENOTYPE 2a AND USES THEREOF | |
US20080089903A1 (en) | Cd4+t-lymphocyte-specific hepatitis c virus epitopes | |
Wei et al. | 93G, a novel sporadic strain of hepatitis E virus in South China isolated by cell culture | |
US20070048333A1 (en) | CD4+ T-lymphocyte-specific Hepatitis C virus-epitopes | |
Gaud et al. | Changes in hypervariable region 1 of the envelope 2 glycoprotein of hepatitis C virus in children and adults with humoral immune defects | |
Kato et al. | High prevalence of GB virus C/hepatitis G virus infection among the Jewish population in Uzbekistan | |
Kato et al. | Virus isolate‐specific antibodies against hypervariable region 1 of the hepatitis C virus second envelope protein, gp70 | |
Nakamoto et al. | B‐cell epitopes in hypervariable region 1 of hepatitis C virus obtained from patients with chronic persistent hepatitis | |
US7070790B1 (en) | Nucleotide and deduced amino acid sequences of the envelope 1 and core genes of isolates of hepatitis C virus and the use of reagents derived from these sequences in diagnostic methods and vaccines | |
Hitomi et al. | Sequence analysis of the hepatitis C virus (HCV) core gene suggests the core protein as an appropriate target for HCV vaccine strategies | |
Cong et al. | Sequence heterogeneity within three different regions of the hepatitis G virus genome |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |