US20080139535A1 - Inhibitors of histone deacetylase - Google Patents
Inhibitors of histone deacetylase Download PDFInfo
- Publication number
- US20080139535A1 US20080139535A1 US12/019,356 US1935608A US2008139535A1 US 20080139535 A1 US20080139535 A1 US 20080139535A1 US 1935608 A US1935608 A US 1935608A US 2008139535 A1 US2008139535 A1 US 2008139535A1
- Authority
- US
- United States
- Prior art keywords
- substituted
- alkylene
- thiazole
- carboxylic acid
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 102000003964 Histone deacetylase Human genes 0.000 title abstract description 27
- 108090000353 Histone deacetylase Proteins 0.000 title abstract description 27
- 239000003112 inhibitor Substances 0.000 title description 7
- 150000001875 compounds Chemical class 0.000 claims abstract description 140
- 238000000034 method Methods 0.000 claims abstract description 49
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 16
- 230000002062 proliferating effect Effects 0.000 claims abstract description 10
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical class C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 claims description 93
- 125000002947 alkylene group Chemical group 0.000 claims description 83
- -1 4-acetylphenyl Chemical group 0.000 claims description 71
- 125000001072 heteroaryl group Chemical group 0.000 claims description 62
- 125000003118 aryl group Chemical group 0.000 claims description 49
- 125000000623 heterocyclic group Chemical group 0.000 claims description 47
- 125000000217 alkyl group Chemical group 0.000 claims description 38
- 125000003107 substituted aryl group Chemical group 0.000 claims description 35
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 29
- 229910052757 nitrogen Inorganic materials 0.000 claims description 27
- 239000001257 hydrogen Substances 0.000 claims description 26
- 229910052739 hydrogen Inorganic materials 0.000 claims description 26
- 150000003839 salts Chemical class 0.000 claims description 22
- 125000001424 substituent group Chemical group 0.000 claims description 21
- 125000004450 alkenylene group Chemical group 0.000 claims description 18
- 239000002253 acid Substances 0.000 claims description 17
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 17
- 125000002993 cycloalkylene group Chemical group 0.000 claims description 16
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 16
- 229940002612 prodrug Drugs 0.000 claims description 16
- 239000000651 prodrug Substances 0.000 claims description 16
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 12
- ZXKINMCYCKHYFR-UHFFFAOYSA-N aminooxidanide Chemical compound [O-]N ZXKINMCYCKHYFR-UHFFFAOYSA-N 0.000 claims description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 10
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 10
- NQRYJNQNLNOLGT-UHFFFAOYSA-N tetrahydropyridine hydrochloride Natural products C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 claims description 10
- 229910052720 vanadium Inorganic materials 0.000 claims description 10
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical class C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 claims description 9
- 230000000259 anti-tumor effect Effects 0.000 claims description 9
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 8
- 230000002401 inhibitory effect Effects 0.000 claims description 8
- 125000005717 substituted cycloalkylene group Chemical group 0.000 claims description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 7
- KPDDJYNSRQPTKP-UHFFFAOYSA-N n-hydroxy-2-[4-[4-(trifluoromethyl)phenyl]sulfonylpiperazin-1-yl]-1,3-thiazole-5-carboxamide Chemical compound S1C(C(=O)NO)=CN=C1N1CCN(S(=O)(=O)C=2C=CC(=CC=2)C(F)(F)F)CC1 KPDDJYNSRQPTKP-UHFFFAOYSA-N 0.000 claims description 7
- 229940127084 other anti-cancer agent Drugs 0.000 claims description 7
- GBYHFKMJQQDMBI-UHFFFAOYSA-N 2-[4-(3,4-dimethoxyphenyl)sulfonylpiperazin-1-yl]-n-hydroxy-1,3-thiazole-5-carboxamide Chemical compound C1=C(OC)C(OC)=CC=C1S(=O)(=O)N1CCN(C=2SC(=CN=2)C(=O)NO)CC1 GBYHFKMJQQDMBI-UHFFFAOYSA-N 0.000 claims description 6
- WPIKKUSJZBLVPY-UHFFFAOYSA-N 2-[4-(4-acetylphenyl)sulfonylpiperazin-1-yl]-n-hydroxy-1,3-thiazole-5-carboxamide Chemical compound C1=CC(C(=O)C)=CC=C1S(=O)(=O)N1CCN(C=2SC(=CN=2)C(=O)NO)CC1 WPIKKUSJZBLVPY-UHFFFAOYSA-N 0.000 claims description 6
- SOJXWCHXNJFSHA-UHFFFAOYSA-N 2-[4-[5-(dimethylamino)naphthalen-1-yl]sulfonylpiperazin-1-yl]-n-hydroxy-1,3-thiazole-5-carboxamide Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(=O)(=O)N(CC1)CCN1C1=NC=C(C(=O)NO)S1 SOJXWCHXNJFSHA-UHFFFAOYSA-N 0.000 claims description 6
- PUEIPAZPNFIMBW-UHFFFAOYSA-N n-hydroxy-2-[4-[4-(trifluoromethoxy)phenyl]sulfonylpiperazin-1-yl]-1,3-thiazole-5-carboxamide Chemical compound S1C(C(=O)NO)=CN=C1N1CCN(S(=O)(=O)C=2C=CC(OC(F)(F)F)=CC=2)CC1 PUEIPAZPNFIMBW-UHFFFAOYSA-N 0.000 claims description 6
- 239000012440 retinoic acid metabolism blocking agent Substances 0.000 claims description 6
- 229930192474 thiophene Natural products 0.000 claims description 6
- BEPFYWFQTNUTIV-UHFFFAOYSA-N 2-[4-(2-aminoethyl)piperazin-1-yl]-n-hydroxy-1,3-thiazole-5-carboxamide Chemical compound C1CN(CCN)CCN1C1=NC=C(C(=O)NO)S1 BEPFYWFQTNUTIV-UHFFFAOYSA-N 0.000 claims description 5
- 125000006163 5-membered heteroaryl group Chemical group 0.000 claims description 5
- 229940100198 alkylating agent Drugs 0.000 claims description 5
- 239000002168 alkylating agent Substances 0.000 claims description 5
- 239000012634 fragment Substances 0.000 claims description 5
- 239000003276 histone deacetylase inhibitor Substances 0.000 claims description 5
- VGEMTTAUJZRGRU-UHFFFAOYSA-N n-hydroxy-2-(4-methylpiperazin-1-yl)-1,3-thiazole-5-carboxamide Chemical compound C1CN(C)CCN1C1=NC=C(C(=O)NO)S1 VGEMTTAUJZRGRU-UHFFFAOYSA-N 0.000 claims description 5
- IJNSDNBROSGXKW-UHFFFAOYSA-N n-hydroxy-2-(4-naphthalen-2-ylsulfonyl-1,4-diazepan-1-yl)-1,3-thiazole-5-carboxamide Chemical compound S1C(C(=O)NO)=CN=C1N1CCN(S(=O)(=O)C=2C=C3C=CC=CC3=CC=2)CCC1 IJNSDNBROSGXKW-UHFFFAOYSA-N 0.000 claims description 5
- SSKYNXSNIGUKDC-UHFFFAOYSA-N n-hydroxy-2-[4-(2-hydroxyethyl)piperazin-1-yl]-1,3-thiazole-5-carboxamide Chemical compound C1CN(CCO)CCN1C1=NC=C(C(=O)NO)S1 SSKYNXSNIGUKDC-UHFFFAOYSA-N 0.000 claims description 5
- VXHMTVRPLIJNIN-UHFFFAOYSA-N n-hydroxy-2-[4-(2-phenylethyl)piperazin-1-yl]-1,3-thiazole-5-carboxamide Chemical compound S1C(C(=O)NO)=CN=C1N1CCN(CCC=2C=CC=CC=2)CC1 VXHMTVRPLIJNIN-UHFFFAOYSA-N 0.000 claims description 5
- SINFIJWJVFHMHP-UHFFFAOYSA-N n-hydroxy-2-[4-(4-nitrophenyl)sulfonylpiperazin-1-yl]-1,3-thiazole-5-carboxamide Chemical compound S1C(C(=O)NO)=CN=C1N1CCN(S(=O)(=O)C=2C=CC(=CC=2)[N+]([O-])=O)CC1 SINFIJWJVFHMHP-UHFFFAOYSA-N 0.000 claims description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 5
- 125000004193 piperazinyl group Chemical group 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 229940095743 selective estrogen receptor modulator Drugs 0.000 claims description 5
- 239000000333 selective estrogen receptor modulator Substances 0.000 claims description 5
- 125000000335 thiazolyl group Chemical group 0.000 claims description 5
- WFYBTESVTKBMEB-UHFFFAOYSA-N 2-[4-(4-fluorophenyl)sulfonylpiperazin-1-yl]-n-hydroxy-1,3-thiazole-5-carboxamide Chemical compound S1C(C(=O)NO)=CN=C1N1CCN(S(=O)(=O)C=2C=CC(F)=CC=2)CC1 WFYBTESVTKBMEB-UHFFFAOYSA-N 0.000 claims description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 claims description 4
- 229940102550 Estrogen receptor antagonist Drugs 0.000 claims description 4
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical class C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 claims description 4
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 claims description 4
- 125000002619 bicyclic group Chemical group 0.000 claims description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 4
- UZIAKLZEFQSJTJ-UHFFFAOYSA-N n-hydroxy-2-(4-naphthalen-2-ylsulfonylpiperazin-1-yl)-1,3-thiazole-4-carboxamide Chemical compound ONC(=O)C1=CSC(N2CCN(CC2)S(=O)(=O)C=2C=C3C=CC=CC3=CC=2)=N1 UZIAKLZEFQSJTJ-UHFFFAOYSA-N 0.000 claims description 4
- SGGNCDFJUATHLZ-UHFFFAOYSA-N n-hydroxy-2-(4-naphthalen-2-ylsulfonylpiperazin-1-yl)-1,3-thiazole-5-carboxamide Chemical compound S1C(C(=O)NO)=CN=C1N1CCN(S(=O)(=O)C=2C=C3C=CC=CC3=CC=2)CC1 SGGNCDFJUATHLZ-UHFFFAOYSA-N 0.000 claims description 4
- MJVJWSFORBDMKN-UHFFFAOYSA-N n-hydroxy-2-[(1-naphthalen-2-ylsulfonylpiperidin-4-yl)amino]-1,3-thiazole-5-carboxamide Chemical compound S1C(C(=O)NO)=CN=C1NC1CCN(S(=O)(=O)C=2C=C3C=CC=CC3=CC=2)CC1 MJVJWSFORBDMKN-UHFFFAOYSA-N 0.000 claims description 4
- LTLUYPHZNVNMLF-UHFFFAOYSA-N n-hydroxy-2-[1-(4-phenylphenyl)sulfonylpiperidin-4-yl]-1,3-thiazole-5-carboxamide Chemical compound S1C(C(=O)NO)=CN=C1C1CCN(S(=O)(=O)C=2C=CC(=CC=2)C=2C=CC=CC=2)CC1 LTLUYPHZNVNMLF-UHFFFAOYSA-N 0.000 claims description 4
- JAKVOGDXLVPKKT-UHFFFAOYSA-N n-hydroxy-2-[3-(4-methylphenyl)sulfonyl-1,3-diazinan-1-yl]-1,3-thiazole-5-carboxamide Chemical compound C1=CC(C)=CC=C1S(=O)(=O)N1CN(C=2SC(=CN=2)C(=O)NO)CCC1 JAKVOGDXLVPKKT-UHFFFAOYSA-N 0.000 claims description 4
- RATBWZHUVLLJOB-UHFFFAOYSA-N n-hydroxy-2-[6-[(4-methylphenyl)sulfonylamino]-3-azabicyclo[3.1.0]hexan-3-yl]-1,3-thiazole-5-carboxamide Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC1C2CN(C=3SC(=CN=3)C(=O)NO)CC21 RATBWZHUVLLJOB-UHFFFAOYSA-N 0.000 claims description 4
- 125000001624 naphthyl group Chemical group 0.000 claims description 4
- 125000003386 piperidinyl group Chemical group 0.000 claims description 4
- JYRKKOKBUMZIPS-UHFFFAOYSA-N 2-(4-acetylpiperazin-1-yl)-1,3-thiazole-5-carboxylic acid Chemical compound C1CN(C(=O)C)CCN1C1=NC=C(C(O)=O)S1 JYRKKOKBUMZIPS-UHFFFAOYSA-N 0.000 claims description 3
- GALLLEJEOZLPMY-UHFFFAOYSA-N 2-(4-benzoylpiperazin-1-yl)-1,3-thiazole-5-carboxylic acid Chemical compound S1C(C(=O)O)=CN=C1N1CCN(C(=O)C=2C=CC=CC=2)CC1 GALLLEJEOZLPMY-UHFFFAOYSA-N 0.000 claims description 3
- HEUFSDCAWMYPTG-UHFFFAOYSA-N 2-[4-(2-phenylacetyl)piperazin-1-yl]-1,3-thiazole-5-carboxylic acid Chemical compound S1C(C(=O)O)=CN=C1N1CCN(C(=O)CC=2C=CC=CC=2)CC1 HEUFSDCAWMYPTG-UHFFFAOYSA-N 0.000 claims description 3
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 claims description 3
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 claims description 3
- 229940122803 Vinca alkaloid Drugs 0.000 claims description 3
- 229930003316 Vitamin D Natural products 0.000 claims description 3
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 claims description 3
- 229940045799 anthracyclines and related substance Drugs 0.000 claims description 3
- 239000003886 aromatase inhibitor Substances 0.000 claims description 3
- 229940046844 aromatase inhibitors Drugs 0.000 claims description 3
- 125000000732 arylene group Chemical group 0.000 claims description 3
- HONIICLYMWZJFZ-UHFFFAOYSA-N azetidine Chemical class C1CNC1 HONIICLYMWZJFZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000003968 dna methyltransferase inhibitor Substances 0.000 claims description 3
- 125000005549 heteroarylene group Chemical group 0.000 claims description 3
- 229940043355 kinase inhibitor Drugs 0.000 claims description 3
- NDDBGRAAXATVPM-UHFFFAOYSA-N n-hydroxy-2-[4-(4-phenylphenyl)sulfonylpiperazin-1-yl]-1,3-thiazole-5-carboxamide Chemical compound S1C(C(=O)NO)=CN=C1N1CCN(S(=O)(=O)C=2C=CC(=CC=2)C=2C=CC=CC=2)CC1 NDDBGRAAXATVPM-UHFFFAOYSA-N 0.000 claims description 3
- KVVQPAMTKKMZRJ-UHFFFAOYSA-N n-hydroxy-2-[4-[3-(1h-indol-3-yl)propanoyl]piperazin-1-yl]-1,3-thiazole-5-carboxamide Chemical compound S1C(C(=O)NO)=CN=C1N1CCN(C(=O)CCC=2C3=CC=CC=C3NC=2)CC1 KVVQPAMTKKMZRJ-UHFFFAOYSA-N 0.000 claims description 3
- YCPQCXLHKLCZQE-UHFFFAOYSA-N n-hydroxy-2-[4-[[(2-phenylphenyl)sulfonylamino]methyl]piperidin-1-yl]-1,3-thiazole-5-carboxamide Chemical compound S1C(C(=O)NO)=CN=C1N1CCC(CNS(=O)(=O)C=2C(=CC=CC=2)C=2C=CC=CC=2)CC1 YCPQCXLHKLCZQE-UHFFFAOYSA-N 0.000 claims description 3
- 239000003757 phosphotransferase inhibitor Substances 0.000 claims description 3
- 239000003528 protein farnesyltransferase inhibitor Substances 0.000 claims description 3
- 235000019166 vitamin D Nutrition 0.000 claims description 3
- 239000011710 vitamin D Substances 0.000 claims description 3
- 150000003710 vitamin D derivatives Chemical class 0.000 claims description 3
- 229940046008 vitamin d Drugs 0.000 claims description 3
- QFCMBRXRVQRSSF-UHFFFAOYSA-N 1,2,3,3a,4,5,6,6a-octahydropyrrolo[3,4-c]pyrrole Chemical class C1NCC2CNCC21 QFCMBRXRVQRSSF-UHFFFAOYSA-N 0.000 claims description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical class CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 claims description 2
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 claims description 2
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 claims description 2
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 claims description 2
- VSWICNJIUPRZIK-UHFFFAOYSA-N 2-piperideine Chemical class C1CNC=CC1 VSWICNJIUPRZIK-UHFFFAOYSA-N 0.000 claims description 2
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 claims description 2
- 125000003762 3,4-dimethoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C(OC([H])([H])[H])C([H])=C1* 0.000 claims description 2
- 125000001255 4-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1F 0.000 claims description 2
- 125000000590 4-methylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 claims description 2
- 125000004863 4-trifluoromethoxyphenyl group Chemical group [H]C1=C([H])C(OC(F)(F)F)=C([H])C([H])=C1* 0.000 claims description 2
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 claims description 2
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 claims description 2
- BFYIZQONLCFLEV-DAELLWKTSA-N Aromasine Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC(=C)C2=C1 BFYIZQONLCFLEV-DAELLWKTSA-N 0.000 claims description 2
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 claims description 2
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 claims description 2
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 claims description 2
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 claims description 2
- 229940123780 DNA topoisomerase I inhibitor Drugs 0.000 claims description 2
- 229940124087 DNA topoisomerase II inhibitor Drugs 0.000 claims description 2
- ZQZFYGIXNQKOAV-OCEACIFDSA-N Droloxifene Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=C(O)C=CC=1)\C1=CC=C(OCCN(C)C)C=C1 ZQZFYGIXNQKOAV-OCEACIFDSA-N 0.000 claims description 2
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 claims description 2
- VWUXBMIQPBEWFH-WCCTWKNTSA-N Fulvestrant Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3[C@H](CCCCCCCCCS(=O)CCCC(F)(F)C(F)(F)F)CC2=C1 VWUXBMIQPBEWFH-WCCTWKNTSA-N 0.000 claims description 2
- SHGAZHPCJJPHSC-NUEINMDLSA-N Isotretinoin Chemical compound OC(=O)C=C(C)/C=C/C=C(C)C=CC1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-NUEINMDLSA-N 0.000 claims description 2
- 239000005411 L01XE02 - Gefitinib Substances 0.000 claims description 2
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 claims description 2
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 claims description 2
- WYNCHZVNFNFDNH-UHFFFAOYSA-N Oxazolidine Chemical class C1COCN1 WYNCHZVNFNFDNH-UHFFFAOYSA-N 0.000 claims description 2
- 229930012538 Paclitaxel Natural products 0.000 claims description 2
- 239000000365 Topoisomerase I Inhibitor Substances 0.000 claims description 2
- 239000000317 Topoisomerase II Inhibitor Substances 0.000 claims description 2
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 claims description 2
- BIIVYFLTOXDAOV-YVEFUNNKSA-N alvocidib Chemical compound O[C@@H]1CN(C)CC[C@@H]1C1=C(O)C=C(O)C2=C1OC(C=1C(=CC=CC=1)Cl)=CC2=O BIIVYFLTOXDAOV-YVEFUNNKSA-N 0.000 claims description 2
- 229960002932 anastrozole Drugs 0.000 claims description 2
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 claims description 2
- 229960002756 azacitidine Drugs 0.000 claims description 2
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 claims description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 2
- 239000004305 biphenyl Substances 0.000 claims description 2
- 235000010290 biphenyl Nutrition 0.000 claims description 2
- 229960004117 capecitabine Drugs 0.000 claims description 2
- 229960004562 carboplatin Drugs 0.000 claims description 2
- 229960005243 carmustine Drugs 0.000 claims description 2
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 claims description 2
- 229960004630 chlorambucil Drugs 0.000 claims description 2
- 229960004397 cyclophosphamide Drugs 0.000 claims description 2
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 claims description 2
- 229960000975 daunorubicin Drugs 0.000 claims description 2
- 229960003668 docetaxel Drugs 0.000 claims description 2
- 229960004679 doxorubicin Drugs 0.000 claims description 2
- 229950004203 droloxifene Drugs 0.000 claims description 2
- 229960005420 etoposide Drugs 0.000 claims description 2
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 claims description 2
- 229960000255 exemestane Drugs 0.000 claims description 2
- 229940087861 faslodex Drugs 0.000 claims description 2
- 229960002949 fluorouracil Drugs 0.000 claims description 2
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 claims description 2
- 229960002584 gefitinib Drugs 0.000 claims description 2
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 claims description 2
- 229960005277 gemcitabine Drugs 0.000 claims description 2
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical class O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 claims description 2
- 229940091173 hydantoin Drugs 0.000 claims description 2
- 229960003685 imatinib mesylate Drugs 0.000 claims description 2
- YLMAHDNUQAMNNX-UHFFFAOYSA-N imatinib methanesulfonate Chemical compound CS(O)(=O)=O.C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 YLMAHDNUQAMNNX-UHFFFAOYSA-N 0.000 claims description 2
- 229960004768 irinotecan Drugs 0.000 claims description 2
- 229960005280 isotretinoin Drugs 0.000 claims description 2
- 229960003881 letrozole Drugs 0.000 claims description 2
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 claims description 2
- 229960002247 lomustine Drugs 0.000 claims description 2
- 229960001156 mitoxantrone Drugs 0.000 claims description 2
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 claims description 2
- 150000003833 nucleoside derivatives Chemical class 0.000 claims description 2
- 125000000636 p-nitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)[N+]([O-])=O 0.000 claims description 2
- 229960001592 paclitaxel Drugs 0.000 claims description 2
- IWELDVXSEVIIGI-UHFFFAOYSA-N piperazin-2-one Chemical class O=C1CNCCN1 IWELDVXSEVIIGI-UHFFFAOYSA-N 0.000 claims description 2
- JTHRRMFZHSDGNJ-UHFFFAOYSA-N piperazine-2,3-dione Chemical class O=C1NCCNC1=O JTHRRMFZHSDGNJ-UHFFFAOYSA-N 0.000 claims description 2
- 150000003053 piperidines Chemical class 0.000 claims description 2
- 229960004622 raloxifene Drugs 0.000 claims description 2
- GZUITABIAKMVPG-UHFFFAOYSA-N raloxifene Chemical compound C1=CC(O)=CC=C1C1=C(C(=O)C=2C=CC(OCCN3CCCCC3)=CC=2)C2=CC=C(O)C=C2S1 GZUITABIAKMVPG-UHFFFAOYSA-N 0.000 claims description 2
- 229960001603 tamoxifen Drugs 0.000 claims description 2
- DKPFODGZWDEEBT-QFIAKTPHSA-N taxane Chemical class C([C@]1(C)CCC[C@@H](C)[C@H]1C1)C[C@H]2[C@H](C)CC[C@@H]1C2(C)C DKPFODGZWDEEBT-QFIAKTPHSA-N 0.000 claims description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 claims description 2
- 229960001278 teniposide Drugs 0.000 claims description 2
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 claims description 2
- 229960000303 topotecan Drugs 0.000 claims description 2
- XFCLJVABOIYOMF-QPLCGJKRSA-N toremifene Chemical compound C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 XFCLJVABOIYOMF-QPLCGJKRSA-N 0.000 claims description 2
- 229960005026 toremifene Drugs 0.000 claims description 2
- 229960003048 vinblastine Drugs 0.000 claims description 2
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 claims description 2
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 claims description 2
- 229960004528 vincristine Drugs 0.000 claims description 2
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 claims description 2
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 claims description 2
- 229960002066 vinorelbine Drugs 0.000 claims description 2
- 229960001771 vorozole Drugs 0.000 claims description 2
- XLMPPFTZALNBFS-INIZCTEOSA-N vorozole Chemical compound C1([C@@H](C2=CC=C3N=NN(C3=C2)C)N2N=CN=C2)=CC=C(Cl)C=C1 XLMPPFTZALNBFS-INIZCTEOSA-N 0.000 claims description 2
- 125000006588 heterocycloalkylene group Chemical group 0.000 claims 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 claims 1
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 claims 1
- 230000002255 enzymatic effect Effects 0.000 abstract description 4
- 230000001404 mediated effect Effects 0.000 abstract description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 187
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 142
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 136
- 239000011541 reaction mixture Substances 0.000 description 83
- 239000000243 solution Substances 0.000 description 82
- 238000006243 chemical reaction Methods 0.000 description 75
- 238000005160 1H NMR spectroscopy Methods 0.000 description 74
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 72
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 70
- 239000000203 mixture Substances 0.000 description 67
- 235000019439 ethyl acetate Nutrition 0.000 description 66
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 60
- 238000004128 high performance liquid chromatography Methods 0.000 description 55
- 239000012044 organic layer Substances 0.000 description 54
- 239000007787 solid Substances 0.000 description 53
- 229940093499 ethyl acetate Drugs 0.000 description 52
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 48
- 238000002360 preparation method Methods 0.000 description 47
- 239000000543 intermediate Substances 0.000 description 44
- 230000002829 reductive effect Effects 0.000 description 42
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 41
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 40
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 40
- 239000002904 solvent Substances 0.000 description 40
- 0 *[3H]C.[12*]C(=O)*C1=[Y]C=[V](CC)[W]1 Chemical compound *[3H]C.[12*]C(=O)*C1=[Y]C=[V](CC)[W]1 0.000 description 39
- WTDHULULXKLSOZ-UHFFFAOYSA-N Hydroxylamine hydrochloride Chemical compound Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 description 38
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 38
- 239000012299 nitrogen atmosphere Substances 0.000 description 38
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 34
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 33
- 229910052938 sodium sulfate Inorganic materials 0.000 description 33
- 235000011152 sodium sulphate Nutrition 0.000 description 33
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 30
- 238000007429 general method Methods 0.000 description 30
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 26
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 25
- 239000000706 filtrate Substances 0.000 description 25
- 239000004480 active ingredient Substances 0.000 description 24
- 125000004432 carbon atom Chemical group C* 0.000 description 24
- 239000000741 silica gel Substances 0.000 description 24
- 229910002027 silica gel Inorganic materials 0.000 description 24
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 23
- 238000004440 column chromatography Methods 0.000 description 22
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 22
- 239000011734 sodium Substances 0.000 description 22
- 229910052708 sodium Inorganic materials 0.000 description 22
- 238000004809 thin layer chromatography Methods 0.000 description 22
- 125000000753 cycloalkyl group Chemical group 0.000 description 21
- 239000010410 layer Substances 0.000 description 21
- 238000002953 preparative HPLC Methods 0.000 description 21
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 20
- 230000015572 biosynthetic process Effects 0.000 description 20
- 238000009472 formulation Methods 0.000 description 20
- DTQVDTLACAAQTR-UHFFFAOYSA-N trifluoroacetic acid Substances OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 20
- 239000002244 precipitate Substances 0.000 description 19
- 125000004104 aryloxy group Chemical group 0.000 description 18
- 238000003786 synthesis reaction Methods 0.000 description 18
- HNLVIKMXFBRZDF-UHFFFAOYSA-N methyl 2-bromo-1,3-thiazole-5-carboxylate Chemical compound COC(=O)C1=CN=C(Br)S1 HNLVIKMXFBRZDF-UHFFFAOYSA-N 0.000 description 17
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 15
- 230000000875 corresponding effect Effects 0.000 description 14
- 239000003814 drug Substances 0.000 description 14
- 239000004615 ingredient Substances 0.000 description 14
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 13
- 125000005346 substituted cycloalkyl group Chemical group 0.000 description 13
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical class ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 12
- 125000003342 alkenyl group Chemical group 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 229910000027 potassium carbonate Inorganic materials 0.000 description 12
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 11
- 238000001704 evaporation Methods 0.000 description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 11
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical compound ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 11
- 239000003826 tablet Substances 0.000 description 11
- 108020004414 DNA Proteins 0.000 description 10
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 10
- 229920002472 Starch Polymers 0.000 description 10
- 229940079593 drug Drugs 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 230000008020 evaporation Effects 0.000 description 10
- 238000010992 reflux Methods 0.000 description 10
- 235000019698 starch Nutrition 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- 125000002252 acyl group Chemical group 0.000 description 9
- 125000004442 acylamino group Chemical group 0.000 description 9
- 125000003545 alkoxy group Chemical group 0.000 description 9
- 125000000266 alpha-aminoacyl group Chemical group 0.000 description 9
- 150000001408 amides Chemical class 0.000 description 9
- 238000007796 conventional method Methods 0.000 description 9
- 229910052736 halogen Inorganic materials 0.000 description 9
- 150000002367 halogens Chemical class 0.000 description 9
- 239000000546 pharmaceutical excipient Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000008107 starch Substances 0.000 description 9
- 125000005415 substituted alkoxy group Chemical group 0.000 description 9
- DRSHXJFUUPIBHX-UHFFFAOYSA-N COc1ccc(cc1)N1N=CC2C=NC(Nc3cc(OC)c(OC)c(OCCCN4CCN(C)CC4)c3)=NC12 Chemical compound COc1ccc(cc1)N1N=CC2C=NC(Nc3cc(OC)c(OC)c(OCCCN4CCN(C)CC4)c3)=NC12 DRSHXJFUUPIBHX-UHFFFAOYSA-N 0.000 description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- 238000003556 assay Methods 0.000 description 8
- 239000002585 base Substances 0.000 description 8
- 125000004093 cyano group Chemical group *C#N 0.000 description 8
- 238000001914 filtration Methods 0.000 description 8
- 235000019359 magnesium stearate Nutrition 0.000 description 8
- 125000006239 protecting group Chemical group 0.000 description 8
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 7
- 238000004587 chromatography analysis Methods 0.000 description 7
- 125000000392 cycloalkenyl group Chemical group 0.000 description 7
- 150000002148 esters Chemical class 0.000 description 7
- 239000000284 extract Substances 0.000 description 7
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- 239000007858 starting material Substances 0.000 description 7
- 229910052717 sulfur Inorganic materials 0.000 description 7
- 229910052727 yttrium Inorganic materials 0.000 description 7
- GCDPERPXPREHJF-UHFFFAOYSA-N 1-iodododecane Chemical compound CCCCCCCCCCCCI GCDPERPXPREHJF-UHFFFAOYSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 108010033040 Histones Proteins 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 125000003277 amino group Chemical group 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000002775 capsule Substances 0.000 description 6
- 150000001721 carbon Chemical group 0.000 description 6
- 230000004663 cell proliferation Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 239000005457 ice water Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- CWXPZXBSDSIRCS-UHFFFAOYSA-N tert-butyl piperazine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCNCC1 CWXPZXBSDSIRCS-UHFFFAOYSA-N 0.000 description 6
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 5
- FPIRBHDGWMWJEP-UHFFFAOYSA-N 1-hydroxy-7-azabenzotriazole Chemical compound C1=CN=C2N(O)N=NC2=C1 FPIRBHDGWMWJEP-UHFFFAOYSA-N 0.000 description 5
- NEAQRZUHTPSBBM-UHFFFAOYSA-N 2-hydroxy-3,3-dimethyl-7-nitro-4h-isoquinolin-1-one Chemical compound C1=C([N+]([O-])=O)C=C2C(=O)N(O)C(C)(C)CC2=C1 NEAQRZUHTPSBBM-UHFFFAOYSA-N 0.000 description 5
- BQXUPNKLZNSUMC-YUQWMIPFSA-N CCN(CCCCCOCC(=O)N[C@H](C(=O)N1C[C@H](O)C[C@H]1C(=O)N[C@@H](C)c1ccc(cc1)-c1scnc1C)C(C)(C)C)CCOc1ccc(cc1)C(=O)c1c(sc2cc(O)ccc12)-c1ccc(O)cc1 Chemical compound CCN(CCCCCOCC(=O)N[C@H](C(=O)N1C[C@H](O)C[C@H]1C(=O)N[C@@H](C)c1ccc(cc1)-c1scnc1C)C(C)(C)C)CCOc1ccc(cc1)C(=O)c1c(sc2cc(O)ccc12)-c1ccc(O)cc1 BQXUPNKLZNSUMC-YUQWMIPFSA-N 0.000 description 5
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 102000006947 Histones Human genes 0.000 description 5
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 5
- 239000002246 antineoplastic agent Substances 0.000 description 5
- 239000012267 brine Substances 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 239000002552 dosage form Substances 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 229940011871 estrogen Drugs 0.000 description 5
- 239000000262 estrogen Substances 0.000 description 5
- 238000003818 flash chromatography Methods 0.000 description 5
- 239000007903 gelatin capsule Substances 0.000 description 5
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 5
- 239000012442 inert solvent Substances 0.000 description 5
- LXSUVYGZODASAI-UHFFFAOYSA-N methyl 2-chloro-3-oxopropanoate Chemical compound COC(=O)C(Cl)C=O LXSUVYGZODASAI-UHFFFAOYSA-N 0.000 description 5
- 150000004702 methyl esters Chemical class 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 5
- 125000005017 substituted alkenyl group Chemical group 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 4
- JLAKCHGEEBPDQI-UHFFFAOYSA-N 4-(4-fluorobenzyl)piperidine Chemical compound C1=CC(F)=CC=C1CC1CCNCC1 JLAKCHGEEBPDQI-UHFFFAOYSA-N 0.000 description 4
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 4
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000024245 cell differentiation Effects 0.000 description 4
- 235000010980 cellulose Nutrition 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 238000010511 deprotection reaction Methods 0.000 description 4
- 102000015694 estrogen receptors Human genes 0.000 description 4
- 108010038795 estrogen receptors Proteins 0.000 description 4
- OAYLNYINCPYISS-UHFFFAOYSA-N ethyl acetate;hexane Chemical compound CCCCCC.CCOC(C)=O OAYLNYINCPYISS-UHFFFAOYSA-N 0.000 description 4
- 125000005553 heteroaryloxy group Chemical group 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 125000005844 heterocyclyloxy group Chemical group 0.000 description 4
- 230000006195 histone acetylation Effects 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- ULRIIEXOWKYHAA-UHFFFAOYSA-N methyl 2-[4-(2-aminoethyl)piperazin-1-yl]-1,3-thiazole-5-carboxylate Chemical compound S1C(C(=O)OC)=CN=C1N1CCN(CCN)CC1 ULRIIEXOWKYHAA-UHFFFAOYSA-N 0.000 description 4
- MVLZCGUQAASTDZ-UHFFFAOYSA-N methyl 2-[4-(4-acetylphenyl)sulfonylpiperazin-1-yl]-1,3-thiazole-5-carboxylate Chemical compound S1C(C(=O)OC)=CN=C1N1CCN(S(=O)(=O)C=2C=CC(=CC=2)C(C)=O)CC1 MVLZCGUQAASTDZ-UHFFFAOYSA-N 0.000 description 4
- RSYMFJRVOZLTLB-UHFFFAOYSA-N methyl 2-[4-[5-(dimethylamino)naphthalen-1-yl]sulfonylpiperazin-1-yl]-1,3-thiazole-5-carboxylate Chemical compound S1C(C(=O)OC)=CN=C1N1CCN(S(=O)(=O)C=2C3=CC=CC(=C3C=CC=2)N(C)C)CC1 RSYMFJRVOZLTLB-UHFFFAOYSA-N 0.000 description 4
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 4
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 4
- 239000008108 microcrystalline cellulose Substances 0.000 description 4
- 229940016286 microcrystalline cellulose Drugs 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000006187 pill Substances 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- 150000003512 tertiary amines Chemical class 0.000 description 4
- 125000000464 thioxo group Chemical group S=* 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- HUWSZNZAROKDRZ-RRLWZMAJSA-N (3r,4r)-3-azaniumyl-5-[[(2s,3r)-1-[(2s)-2,3-dicarboxypyrrolidin-1-yl]-3-methyl-1-oxopentan-2-yl]amino]-5-oxo-4-sulfanylpentane-1-sulfonate Chemical compound OS(=O)(=O)CC[C@@H](N)[C@@H](S)C(=O)N[C@@H]([C@H](C)CC)C(=O)N1CCC(C(O)=O)[C@H]1C(O)=O HUWSZNZAROKDRZ-RRLWZMAJSA-N 0.000 description 3
- KQZLRWGGWXJPOS-NLFPWZOASA-N 1-[(1R)-1-(2,4-dichlorophenyl)ethyl]-6-[(4S,5R)-4-[(2S)-2-(hydroxymethyl)pyrrolidin-1-yl]-5-methylcyclohexen-1-yl]pyrazolo[3,4-b]pyrazine-3-carbonitrile Chemical compound ClC1=C(C=CC(=C1)Cl)[C@@H](C)N1N=C(C=2C1=NC(=CN=2)C1=CC[C@@H]([C@@H](C1)C)N1[C@@H](CCC1)CO)C#N KQZLRWGGWXJPOS-NLFPWZOASA-N 0.000 description 3
- WZZBNLYBHUDSHF-DHLKQENFSA-N 1-[(3s,4s)-4-[8-(2-chloro-4-pyrimidin-2-yloxyphenyl)-7-fluoro-2-methylimidazo[4,5-c]quinolin-1-yl]-3-fluoropiperidin-1-yl]-2-hydroxyethanone Chemical compound CC1=NC2=CN=C3C=C(F)C(C=4C(=CC(OC=5N=CC=CN=5)=CC=4)Cl)=CC3=C2N1[C@H]1CCN(C(=O)CO)C[C@@H]1F WZZBNLYBHUDSHF-DHLKQENFSA-N 0.000 description 3
- OJWPAXRMRPPQBG-UHFFFAOYSA-N 1-naphthalen-2-ylsulfonylpiperazine Chemical compound C=1C=C2C=CC=CC2=CC=1S(=O)(=O)N1CCNCC1 OJWPAXRMRPPQBG-UHFFFAOYSA-N 0.000 description 3
- HGKGJEZYUNSVHC-UHFFFAOYSA-N 2-(4-benzylpiperazin-1-yl)-n-hydroxy-1,3-thiazole-5-carboxamide Chemical compound S1C(C(=O)NO)=CN=C1N1CCN(CC=2C=CC=CC=2)CC1 HGKGJEZYUNSVHC-UHFFFAOYSA-N 0.000 description 3
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 3
- DJUWIZUEHXRECB-UHFFFAOYSA-N 2-bromo-1,3-thiazole-5-carbaldehyde Chemical compound BrC1=NC=C(C=O)S1 DJUWIZUEHXRECB-UHFFFAOYSA-N 0.000 description 3
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 3
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 3
- 208000026310 Breast neoplasm Diseases 0.000 description 3
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 229940126639 Compound 33 Drugs 0.000 description 3
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 3
- 102000003893 Histone acetyltransferases Human genes 0.000 description 3
- 108090000246 Histone acetyltransferases Proteins 0.000 description 3
- 238000006546 Horner-Wadsworth-Emmons reaction Methods 0.000 description 3
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 3
- LVDRREOUMKACNJ-BKMJKUGQSA-N N-[(2R,3S)-2-(4-chlorophenyl)-1-(1,4-dimethyl-2-oxoquinolin-7-yl)-6-oxopiperidin-3-yl]-2-methylpropane-1-sulfonamide Chemical compound CC(C)CS(=O)(=O)N[C@H]1CCC(=O)N([C@@H]1c1ccc(Cl)cc1)c1ccc2c(C)cc(=O)n(C)c2c1 LVDRREOUMKACNJ-BKMJKUGQSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- PNUZDKCDAWUEGK-CYZMBNFOSA-N Sitafloxacin Chemical compound C([C@H]1N)N(C=2C(=C3C(C(C(C(O)=O)=CN3[C@H]3[C@H](C3)F)=O)=CC=2F)Cl)CC11CC1 PNUZDKCDAWUEGK-CYZMBNFOSA-N 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 230000006907 apoptotic process Effects 0.000 description 3
- XSCHRSMBECNVNS-UHFFFAOYSA-N benzopyrazine Natural products N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 3
- 230000008499 blood brain barrier function Effects 0.000 description 3
- 210000001218 blood-brain barrier Anatomy 0.000 description 3
- 229940127093 camptothecin Drugs 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 230000025084 cell cycle arrest Effects 0.000 description 3
- 125000001309 chloro group Chemical group Cl* 0.000 description 3
- 229940125877 compound 31 Drugs 0.000 description 3
- 239000012043 crude product Substances 0.000 description 3
- 125000004980 cyclopropylene group Chemical group 0.000 description 3
- FAMRKDQNMBBFBR-BQYQJAHWSA-N diethyl azodicarboxylate Substances CCOC(=O)\N=N\C(=O)OCC FAMRKDQNMBBFBR-BQYQJAHWSA-N 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 description 3
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 230000006197 histone deacetylation Effects 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- QKDOEERVGLWCDJ-UHFFFAOYSA-N methyl 2-[4-(3,4-dimethoxyphenyl)sulfonylpiperazin-1-yl]-1,3-thiazole-5-carboxylate Chemical compound S1C(C(=O)OC)=CN=C1N1CCN(S(=O)(=O)C=2C=C(OC)C(OC)=CC=2)CC1 QKDOEERVGLWCDJ-UHFFFAOYSA-N 0.000 description 3
- DWHSGLYSXGTVLG-UHFFFAOYSA-N methyl 2-[4-[4-(trifluoromethoxy)phenyl]sulfonylpiperazin-1-yl]-1,3-thiazole-5-carboxylate Chemical compound S1C(C(=O)OC)=CN=C1N1CCN(S(=O)(=O)C=2C=CC(OC(F)(F)F)=CC=2)CC1 DWHSGLYSXGTVLG-UHFFFAOYSA-N 0.000 description 3
- OPECTNGATDYLSS-UHFFFAOYSA-N naphthalene-2-sulfonyl chloride Chemical compound C1=CC=CC2=CC(S(=O)(=O)Cl)=CC=C21 OPECTNGATDYLSS-UHFFFAOYSA-N 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- NLXXVSKHVGDQAT-UHFFFAOYSA-N o-(oxan-2-yl)hydroxylamine Chemical compound NOC1CCCCO1 NLXXVSKHVGDQAT-UHFFFAOYSA-N 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- DVWOYOSIEJRHKW-UIRZNSHLSA-M sodium (2S)-2-[[(2S)-2-[[(4,4-difluorocyclohexyl)-phenylmethoxy]carbonylamino]-4-methylpentanoyl]amino]-1-hydroxy-3-[(3S)-2-oxopyrrolidin-3-yl]propane-1-sulfonate Chemical compound FC1(CCC(CC1)C(OC(=O)N[C@H](C(=O)N[C@H](C(S(=O)(=O)[O-])O)C[C@H]1C(NCC1)=O)CC(C)C)C1=CC=CC=C1)F.[Na+] DVWOYOSIEJRHKW-UIRZNSHLSA-M 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 239000000829 suppository Substances 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- 235000012222 talc Nutrition 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 230000037426 transcriptional repression Effects 0.000 description 3
- RTKIYFITIVXBLE-QEQCGCAPSA-N trichostatin A Chemical compound ONC(=O)/C=C/C(/C)=C/[C@@H](C)C(=O)C1=CC=C(N(C)C)C=C1 RTKIYFITIVXBLE-QEQCGCAPSA-N 0.000 description 3
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical compound CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 2
- UDQTXCHQKHIQMH-KYGLGHNPSA-N (3ar,5s,6s,7r,7ar)-5-(difluoromethyl)-2-(ethylamino)-5,6,7,7a-tetrahydro-3ah-pyrano[3,2-d][1,3]thiazole-6,7-diol Chemical compound S1C(NCC)=N[C@H]2[C@@H]1O[C@H](C(F)F)[C@@H](O)[C@@H]2O UDQTXCHQKHIQMH-KYGLGHNPSA-N 0.000 description 2
- YQOLEILXOBUDMU-KRWDZBQOSA-N (4R)-5-[(6-bromo-3-methyl-2-pyrrolidin-1-ylquinoline-4-carbonyl)amino]-4-(2-chlorophenyl)pentanoic acid Chemical compound CC1=C(C2=C(C=CC(=C2)Br)N=C1N3CCCC3)C(=O)NC[C@H](CCC(=O)O)C4=CC=CC=C4Cl YQOLEILXOBUDMU-KRWDZBQOSA-N 0.000 description 2
- RXNPEQZHMGFNAY-GEALJGNFSA-N (5R)-4-[(1S,6R)-5-[(2S)-2-(4-chlorophenyl)-3-(propan-2-ylamino)propanoyl]-2,5-diazabicyclo[4.1.0]heptan-2-yl]-5-methyl-6,8-dihydro-5H-pyrido[2,3-d]pyrimidin-7-one Chemical compound C[C@@H]1CC(=O)NC2=C1C(=NC=N2)N3CCN([C@H]4[C@@H]3C4)C(=O)[C@H](CNC(C)C)C5=CC=C(C=C5)Cl RXNPEQZHMGFNAY-GEALJGNFSA-N 0.000 description 2
- UWYZHKAOTLEWKK-UHFFFAOYSA-N 1,2,3,4-tetrahydroisoquinoline Chemical compound C1=CC=C2CNCCC2=C1 UWYZHKAOTLEWKK-UHFFFAOYSA-N 0.000 description 2
- OXTVBHDILDPYAS-UHFFFAOYSA-N 1-[4-(aminomethyl)-2,6-di(propan-2-yl)phenyl]-3-[1-butyl-4-[3-(3-hydroxypropoxy)phenyl]-2-oxo-1,8-naphthyridin-3-yl]urea;hydrochloride Chemical compound Cl.CC(C)C=1C=C(CN)C=C(C(C)C)C=1NC(=O)NC=1C(=O)N(CCCC)C2=NC=CC=C2C=1C1=CC=CC(OCCCO)=C1 OXTVBHDILDPYAS-UHFFFAOYSA-N 0.000 description 2
- QXOGPTXQGKQSJT-UHFFFAOYSA-N 1-amino-4-[4-(3,4-dimethylphenyl)sulfanylanilino]-9,10-dioxoanthracene-2-sulfonic acid Chemical compound Cc1ccc(Sc2ccc(Nc3cc(c(N)c4C(=O)c5ccccc5C(=O)c34)S(O)(=O)=O)cc2)cc1C QXOGPTXQGKQSJT-UHFFFAOYSA-N 0.000 description 2
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 2
- WGFNXGPBPIJYLI-UHFFFAOYSA-N 2,6-difluoro-3-[(3-fluorophenyl)sulfonylamino]-n-(3-methoxy-1h-pyrazolo[3,4-b]pyridin-5-yl)benzamide Chemical compound C1=C2C(OC)=NNC2=NC=C1NC(=O)C(C=1F)=C(F)C=CC=1NS(=O)(=O)C1=CC=CC(F)=C1 WGFNXGPBPIJYLI-UHFFFAOYSA-N 0.000 description 2
- NQOZPTYIJQUKTJ-UHFFFAOYSA-N 2-[2-(3-methoxyphenyl)-4-oxo-6-(3-piperidin-1-ylpropoxy)quinazolin-3-yl]-n-propan-2-ylacetamide Chemical compound COC1=CC=CC(C=2N(C(=O)C3=CC(OCCCN4CCCCC4)=CC=C3N=2)CC(=O)NC(C)C)=C1 NQOZPTYIJQUKTJ-UHFFFAOYSA-N 0.000 description 2
- PYRKKGOKRMZEIT-UHFFFAOYSA-N 2-[6-(2-cyclopropylethoxy)-9-(2-hydroxy-2-methylpropyl)-1h-phenanthro[9,10-d]imidazol-2-yl]-5-fluorobenzene-1,3-dicarbonitrile Chemical compound C1=C2C3=CC(CC(C)(O)C)=CC=C3C=3NC(C=4C(=CC(F)=CC=4C#N)C#N)=NC=3C2=CC=C1OCCC1CC1 PYRKKGOKRMZEIT-UHFFFAOYSA-N 0.000 description 2
- IOOMXAQUNPWDLL-UHFFFAOYSA-N 2-[6-(diethylamino)-3-(diethyliminiumyl)-3h-xanthen-9-yl]-5-sulfobenzene-1-sulfonate Chemical compound C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=C(S(O)(=O)=O)C=C1S([O-])(=O)=O IOOMXAQUNPWDLL-UHFFFAOYSA-N 0.000 description 2
- ASSKVPFEZFQQNQ-UHFFFAOYSA-N 2-benzoxazolinone Chemical compound C1=CC=C2OC(O)=NC2=C1 ASSKVPFEZFQQNQ-UHFFFAOYSA-N 0.000 description 2
- JUIKUQOUMZUFQT-UHFFFAOYSA-N 2-bromoacetamide Chemical compound NC(=O)CBr JUIKUQOUMZUFQT-UHFFFAOYSA-N 0.000 description 2
- RSJSYCZYQNJQPY-UHFFFAOYSA-N 3,4-dimethoxybenzenesulfonyl chloride Chemical compound COC1=CC=C(S(Cl)(=O)=O)C=C1OC RSJSYCZYQNJQPY-UHFFFAOYSA-N 0.000 description 2
- GOLXRNDWAUTYKT-UHFFFAOYSA-N 3-(1H-indol-3-yl)propanoic acid Chemical compound C1=CC=C2C(CCC(=O)O)=CNC2=C1 GOLXRNDWAUTYKT-UHFFFAOYSA-N 0.000 description 2
- BGAJNPLDJJBRHK-UHFFFAOYSA-N 3-[2-[5-(3-chloro-4-propan-2-yloxyphenyl)-1,3,4-thiadiazol-2-yl]-3-methyl-6,7-dihydro-4h-pyrazolo[4,3-c]pyridin-5-yl]propanoic acid Chemical compound C1=C(Cl)C(OC(C)C)=CC=C1C1=NN=C(N2C(=C3CN(CCC(O)=O)CCC3=N2)C)S1 BGAJNPLDJJBRHK-UHFFFAOYSA-N 0.000 description 2
- GAIOPWBQKZMUNO-UHFFFAOYSA-N 3-[[5-fluoro-4-[4-methyl-2-(methylamino)-1,3-thiazol-5-yl]pyrimidin-2-yl]amino]benzenesulfonamide Chemical compound S1C(NC)=NC(C)=C1C1=NC(NC=2C=C(C=CC=2)S(N)(=O)=O)=NC=C1F GAIOPWBQKZMUNO-UHFFFAOYSA-N 0.000 description 2
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 2
- UHCDBMIOLNKDHG-UHFFFAOYSA-N 4-(trifluoromethoxy)benzenesulfonyl chloride Chemical compound FC(F)(F)OC1=CC=C(S(Cl)(=O)=O)C=C1 UHCDBMIOLNKDHG-UHFFFAOYSA-N 0.000 description 2
- OZDCZHDOIBUGAJ-UHFFFAOYSA-N 4-(trifluoromethyl)benzenesulfonyl chloride Chemical compound FC(F)(F)C1=CC=C(S(Cl)(=O)=O)C=C1 OZDCZHDOIBUGAJ-UHFFFAOYSA-N 0.000 description 2
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 2
- BFXHJFKKRGVUMU-UHFFFAOYSA-N 4-fluorobenzenesulfonyl chloride Chemical compound FC1=CC=C(S(Cl)(=O)=O)C=C1 BFXHJFKKRGVUMU-UHFFFAOYSA-N 0.000 description 2
- JXRGUPLJCCDGKG-UHFFFAOYSA-N 4-nitrobenzenesulfonyl chloride Chemical compound [O-][N+](=O)C1=CC=C(S(Cl)(=O)=O)C=C1 JXRGUPLJCCDGKG-UHFFFAOYSA-N 0.000 description 2
- ALBQXDHCMLLQMB-UHFFFAOYSA-N 4-phenylbenzenesulfonyl chloride Chemical compound C1=CC(S(=O)(=O)Cl)=CC=C1C1=CC=CC=C1 ALBQXDHCMLLQMB-UHFFFAOYSA-N 0.000 description 2
- SRSGVKWWVXWSJT-ATVHPVEESA-N 5-[(z)-(5-fluoro-2-oxo-1h-indol-3-ylidene)methyl]-2,4-dimethyl-n-(2-pyrrolidin-1-ylethyl)-1h-pyrrole-3-carboxamide Chemical compound CC=1NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C(C)C=1C(=O)NCCN1CCCC1 SRSGVKWWVXWSJT-ATVHPVEESA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 102000014654 Aromatase Human genes 0.000 description 2
- 108010078554 Aromatase Proteins 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 102100038715 Histone deacetylase 8 Human genes 0.000 description 2
- 101001032118 Homo sapiens Histone deacetylase 8 Proteins 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- OPFJDXRVMFKJJO-ZHHKINOHSA-N N-{[3-(2-benzamido-4-methyl-1,3-thiazol-5-yl)-pyrazol-5-yl]carbonyl}-G-dR-G-dD-dD-dD-NH2 Chemical compound S1C(C=2NN=C(C=2)C(=O)NCC(=O)N[C@H](CCCN=C(N)N)C(=O)NCC(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(N)=O)=C(C)N=C1NC(=O)C1=CC=CC=C1 OPFJDXRVMFKJJO-ZHHKINOHSA-N 0.000 description 2
- 108010047956 Nucleosomes Proteins 0.000 description 2
- SAIBMQAHQLFEON-SOFGYWHQSA-N O=C(/C=C/C1=CN=C(N2CCN(S(=O)(=O)C3=CC4=C(C=CC=C4)C=C3)CC2)S1)NO Chemical compound O=C(/C=C/C1=CN=C(N2CCN(S(=O)(=O)C3=CC4=C(C=CC=C4)C=C3)CC2)S1)NO SAIBMQAHQLFEON-SOFGYWHQSA-N 0.000 description 2
- JKQNLWHUSXGUNL-ONEGZZNKSA-N O=C(/C=C/C1=CN=C(N2CCN(S(=O)(=O)C3=CC=CS3)CC2)S1)NO Chemical compound O=C(/C=C/C1=CN=C(N2CCN(S(=O)(=O)C3=CC=CS3)CC2)S1)NO JKQNLWHUSXGUNL-ONEGZZNKSA-N 0.000 description 2
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical class [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229940123237 Taxane Drugs 0.000 description 2
- 241001116500 Taxus Species 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- RTKIYFITIVXBLE-UHFFFAOYSA-N Trichostatin A Natural products ONC(=O)C=CC(C)=CC(C)C(=O)C1=CC=C(N(C)C)C=C1 RTKIYFITIVXBLE-UHFFFAOYSA-N 0.000 description 2
- SMNRFWMNPDABKZ-WVALLCKVSA-N [[(2R,3S,4R,5S)-5-(2,6-dioxo-3H-pyridin-3-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [[[(2R,3S,4S,5R,6R)-4-fluoro-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl] hydrogen phosphate Chemical compound OC[C@H]1O[C@H](OP(O)(=O)OP(O)(=O)OP(O)(=O)OP(O)(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)C2C=CC(=O)NC2=O)[C@H](O)[C@@H](F)[C@@H]1O SMNRFWMNPDABKZ-WVALLCKVSA-N 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 230000021736 acetylation Effects 0.000 description 2
- 238000006640 acetylation reaction Methods 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- OQIQSTLJSLGHID-WNWIJWBNSA-N aflatoxin B1 Chemical compound C=1([C@@H]2C=CO[C@@H]2OC=1C=C(C1=2)OC)C=2OC(=O)C2=C1CCC2=O OQIQSTLJSLGHID-WNWIJWBNSA-N 0.000 description 2
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 2
- 150000008041 alkali metal carbonates Chemical class 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 125000001246 bromo group Chemical group Br* 0.000 description 2
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 2
- 229910000024 caesium carbonate Inorganic materials 0.000 description 2
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical class C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 description 2
- 150000001718 carbodiimides Chemical class 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229940125800 compound 12j Drugs 0.000 description 2
- 229940126086 compound 21 Drugs 0.000 description 2
- 229940127573 compound 38 Drugs 0.000 description 2
- 229940126540 compound 41 Drugs 0.000 description 2
- 229940125936 compound 42 Drugs 0.000 description 2
- 229940125844 compound 46 Drugs 0.000 description 2
- 125000006165 cyclic alkyl group Chemical group 0.000 description 2
- 125000000000 cycloalkoxy group Chemical group 0.000 description 2
- 238000003381 deacetylation reaction Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000008387 emulsifying waxe Substances 0.000 description 2
- 239000012055 enteric layer Substances 0.000 description 2
- YJGVMLPVUAXIQN-UHFFFAOYSA-N epipodophyllotoxin Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YJGVMLPVUAXIQN-UHFFFAOYSA-N 0.000 description 2
- 229960005309 estradiol Drugs 0.000 description 2
- 229930182833 estradiol Natural products 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 125000002541 furyl group Chemical group 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 239000003701 inert diluent Substances 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 2
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- 229940057995 liquid paraffin Drugs 0.000 description 2
- RENRQMCACQEWFC-UGKGYDQZSA-N lnp023 Chemical compound C1([C@H]2N(CC=3C=4C=CNC=4C(C)=CC=3OC)CC[C@@H](C2)OCC)=CC=C(C(O)=O)C=C1 RENRQMCACQEWFC-UGKGYDQZSA-N 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 238000001819 mass spectrum Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- AGANYKBWPVMFGA-UHFFFAOYSA-N methyl 2-(4-acetylpiperazin-1-yl)-1,3-thiazole-5-carboxylate Chemical compound S1C(C(=O)OC)=CN=C1N1CCN(C(C)=O)CC1 AGANYKBWPVMFGA-UHFFFAOYSA-N 0.000 description 2
- RWNSNWYEEZNILF-UHFFFAOYSA-N methyl 2-(4-benzoylpiperazin-1-yl)-1,3-thiazole-5-carboxylate Chemical compound S1C(C(=O)OC)=CN=C1N1CCN(C(=O)C=2C=CC=CC=2)CC1 RWNSNWYEEZNILF-UHFFFAOYSA-N 0.000 description 2
- UPQVULHVHJNQLT-UHFFFAOYSA-N methyl 2-(4-methylpiperazin-1-yl)-1,3-thiazole-5-carboxylate Chemical compound S1C(C(=O)OC)=CN=C1N1CCN(C)CC1 UPQVULHVHJNQLT-UHFFFAOYSA-N 0.000 description 2
- UXQIGZIEUCYANU-UHFFFAOYSA-N methyl 2-[4-(2-hydroxyethyl)piperazin-1-yl]-1,3-thiazole-5-carboxylate Chemical compound S1C(C(=O)OC)=CN=C1N1CCN(CCO)CC1 UXQIGZIEUCYANU-UHFFFAOYSA-N 0.000 description 2
- VTJWWIIXTZSYPC-UHFFFAOYSA-N methyl 2-[4-(2-phenylacetyl)piperazin-1-yl]-1,3-thiazole-5-carboxylate Chemical compound S1C(C(=O)OC)=CN=C1N1CCN(C(=O)CC=2C=CC=CC=2)CC1 VTJWWIIXTZSYPC-UHFFFAOYSA-N 0.000 description 2
- JTOVQPYPFGGHJM-UHFFFAOYSA-N methyl 2-[4-(2-phenylethyl)piperazin-1-yl]-1,3-thiazole-5-carboxylate Chemical compound S1C(C(=O)OC)=CN=C1N1CCN(CCC=2C=CC=CC=2)CC1 JTOVQPYPFGGHJM-UHFFFAOYSA-N 0.000 description 2
- VGQZKSLNDQXINC-UHFFFAOYSA-N methyl 2-[4-(4-phenylphenyl)sulfonylpiperazin-1-yl]-1,3-thiazole-5-carboxylate Chemical compound S1C(C(=O)OC)=CN=C1N1CCN(S(=O)(=O)C=2C=CC(=CC=2)C=2C=CC=CC=2)CC1 VGQZKSLNDQXINC-UHFFFAOYSA-N 0.000 description 2
- IJAQZEWBMCDXJN-UHFFFAOYSA-N methyl 2-[4-[4-(trifluoromethyl)phenyl]sulfonylpiperazin-1-yl]-1,3-thiazole-5-carboxylate Chemical compound S1C(C(=O)OC)=CN=C1N1CCN(S(=O)(=O)C=2C=CC(=CC=2)C(F)(F)F)CC1 IJAQZEWBMCDXJN-UHFFFAOYSA-N 0.000 description 2
- QABLOFMHHSOFRJ-UHFFFAOYSA-N methyl 2-chloroacetate Chemical compound COC(=O)CCl QABLOFMHHSOFRJ-UHFFFAOYSA-N 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- YBCDLDBTHSAECC-UHFFFAOYSA-N n-hydroxy-2-(4-phenacylpiperazin-1-yl)-1,3-thiazole-5-carboxamide Chemical compound S1C(C(=O)NO)=CN=C1N1CCN(CC(=O)C=2C=CC=CC=2)CC1 YBCDLDBTHSAECC-UHFFFAOYSA-N 0.000 description 2
- 230000005949 negative regulation of histone deacetylation Effects 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 210000001623 nucleosome Anatomy 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- PIDFDZJZLOTZTM-KHVQSSSXSA-N ombitasvir Chemical compound COC(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@H]1C(=O)NC1=CC=C([C@H]2N([C@@H](CC2)C=2C=CC(NC(=O)[C@H]3N(CCC3)C(=O)[C@@H](NC(=O)OC)C(C)C)=CC=2)C=2C=CC(=CC=2)C(C)(C)C)C=C1 PIDFDZJZLOTZTM-KHVQSSSXSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000008177 pharmaceutical agent Substances 0.000 description 2
- 229940124531 pharmaceutical excipient Drugs 0.000 description 2
- RDOWQLZANAYVLL-UHFFFAOYSA-N phenanthridine Chemical compound C1=CC=C2C3=CC=CC=C3C=NC2=C1 RDOWQLZANAYVLL-UHFFFAOYSA-N 0.000 description 2
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 2
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 2
- LTEKQAPRXFBRNN-UHFFFAOYSA-N piperidin-4-ylmethanamine Chemical compound NCC1CCNCC1 LTEKQAPRXFBRNN-UHFFFAOYSA-N 0.000 description 2
- 229960001237 podophyllotoxin Drugs 0.000 description 2
- YJGVMLPVUAXIQN-XVVDYKMHSA-N podophyllotoxin Chemical class COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H]3[C@@H]2C(OC3)=O)=C1 YJGVMLPVUAXIQN-XVVDYKMHSA-N 0.000 description 2
- YVCVYCSAAZQOJI-UHFFFAOYSA-N podophyllotoxin Natural products COC1=C(O)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YVCVYCSAAZQOJI-UHFFFAOYSA-N 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 125000004076 pyridyl group Chemical group 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 2
- QEVHRUUCFGRFIF-MDEJGZGSSA-N reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C(C5=CC=C(OC)C=C5N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 QEVHRUUCFGRFIF-MDEJGZGSSA-N 0.000 description 2
- 150000004508 retinoic acid derivatives Chemical class 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- TZSZZENYCISATO-WIOPSUGQSA-N rodatristat Chemical compound CCOC(=O)[C@@H]1CC2(CN1)CCN(CC2)c1cc(O[C@H](c2ccc(Cl)cc2-c2ccccc2)C(F)(F)F)nc(N)n1 TZSZZENYCISATO-WIOPSUGQSA-N 0.000 description 2
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 2
- 239000004299 sodium benzoate Substances 0.000 description 2
- 235000010234 sodium benzoate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 125000005338 substituted cycloalkoxy group Chemical group 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- FDDDEECHVMSUSB-UHFFFAOYSA-N sulfanilamide Chemical compound NC1=CC=C(S(N)(=O)=O)C=C1 FDDDEECHVMSUSB-UHFFFAOYSA-N 0.000 description 2
- 229940124530 sulfonamide Drugs 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- LZRDHSFPLUWYAX-UHFFFAOYSA-N tert-butyl 4-aminopiperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC(N)CC1 LZRDHSFPLUWYAX-UHFFFAOYSA-N 0.000 description 2
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 2
- VNNLHYZDXIBHKZ-UHFFFAOYSA-N thiophene-2-sulfonyl chloride Chemical compound ClS(=O)(=O)C1=CC=CS1 VNNLHYZDXIBHKZ-UHFFFAOYSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 229960000575 trastuzumab Drugs 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 239000000230 xanthan gum Substances 0.000 description 2
- 235000010493 xanthan gum Nutrition 0.000 description 2
- 229920001285 xanthan gum Polymers 0.000 description 2
- 229940082509 xanthan gum Drugs 0.000 description 2
- DNXHEGUUPJUMQT-UHFFFAOYSA-N (+)-estrone Natural products OC1=CC=C2C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 DNXHEGUUPJUMQT-UHFFFAOYSA-N 0.000 description 1
- QYYZXEPEVBXNNA-QGZVFWFLSA-N (1R)-2-acetyl-N-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl]-5-methylsulfonyl-1,3-dihydroisoindole-1-carboxamide Chemical compound C(C)(=O)N1[C@H](C2=CC=C(C=C2C1)S(=O)(=O)C)C(=O)NC1=CC=C(C=C1)C(C(F)(F)F)(C(F)(F)F)O QYYZXEPEVBXNNA-QGZVFWFLSA-N 0.000 description 1
- ASGMFNBUXDJWJJ-JLCFBVMHSA-N (1R,3R)-3-[[3-bromo-1-[4-(5-methyl-1,3,4-thiadiazol-2-yl)phenyl]pyrazolo[3,4-d]pyrimidin-6-yl]amino]-N,1-dimethylcyclopentane-1-carboxamide Chemical compound BrC1=NN(C2=NC(=NC=C21)N[C@H]1C[C@@](CC1)(C(=O)NC)C)C1=CC=C(C=C1)C=1SC(=NN=1)C ASGMFNBUXDJWJJ-JLCFBVMHSA-N 0.000 description 1
- ABJSOROVZZKJGI-OCYUSGCXSA-N (1r,2r,4r)-2-(4-bromophenyl)-n-[(4-chlorophenyl)-(2-fluoropyridin-4-yl)methyl]-4-morpholin-4-ylcyclohexane-1-carboxamide Chemical compound C1=NC(F)=CC(C(NC(=O)[C@H]2[C@@H](C[C@@H](CC2)N2CCOCC2)C=2C=CC(Br)=CC=2)C=2C=CC(Cl)=CC=2)=C1 ABJSOROVZZKJGI-OCYUSGCXSA-N 0.000 description 1
- IUSARDYWEPUTPN-OZBXUNDUSA-N (2r)-n-[(2s,3r)-4-[[(4s)-6-(2,2-dimethylpropyl)spiro[3,4-dihydropyrano[2,3-b]pyridine-2,1'-cyclobutane]-4-yl]amino]-3-hydroxy-1-[3-(1,3-thiazol-2-yl)phenyl]butan-2-yl]-2-methoxypropanamide Chemical compound C([C@H](NC(=O)[C@@H](C)OC)[C@H](O)CN[C@@H]1C2=CC(CC(C)(C)C)=CN=C2OC2(CCC2)C1)C(C=1)=CC=CC=1C1=NC=CS1 IUSARDYWEPUTPN-OZBXUNDUSA-N 0.000 description 1
- YJLIKUSWRSEPSM-WGQQHEPDSA-N (2r,3r,4s,5r)-2-[6-amino-8-[(4-phenylphenyl)methylamino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound C=1C=C(C=2C=CC=CC=2)C=CC=1CNC1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O YJLIKUSWRSEPSM-WGQQHEPDSA-N 0.000 description 1
- VIJSPAIQWVPKQZ-BLECARSGSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-acetamido-5-(diaminomethylideneamino)pentanoyl]amino]-4-methylpentanoyl]amino]-4,4-dimethylpentanoyl]amino]-4-methylpentanoyl]amino]propanoyl]amino]-5-(diaminomethylideneamino)pentanoic acid Chemical compound NC(=N)NCCC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(C)=O VIJSPAIQWVPKQZ-BLECARSGSA-N 0.000 description 1
- STBLNCCBQMHSRC-BATDWUPUSA-N (2s)-n-[(3s,4s)-5-acetyl-7-cyano-4-methyl-1-[(2-methylnaphthalen-1-yl)methyl]-2-oxo-3,4-dihydro-1,5-benzodiazepin-3-yl]-2-(methylamino)propanamide Chemical compound O=C1[C@@H](NC(=O)[C@H](C)NC)[C@H](C)N(C(C)=O)C2=CC(C#N)=CC=C2N1CC1=C(C)C=CC2=CC=CC=C12 STBLNCCBQMHSRC-BATDWUPUSA-N 0.000 description 1
- TWYYFYNJOJGNFP-CUXYNZQBSA-N (2s,4r,5s,6s)-2-[(4s,5r)-4-acetyloxy-5-methyl-3-methylidene-6-phenylhexyl]-2-carbamoyl-4-[[(e,4s,6s)-4,6-dimethyloct-2-enoyl]oxymethyl]-5-hydroxy-1,3-dioxane-4,5,6-tricarboxylic acid Chemical compound O1[C@H](C(O)=O)[C@](C(O)=O)(O)[C@](COC(=O)/C=C/[C@@H](C)C[C@@H](C)CC)(C(O)=O)O[C@]1(C(N)=O)CCC(=C)[C@@H](OC(C)=O)[C@H](C)CC1=CC=CC=C1 TWYYFYNJOJGNFP-CUXYNZQBSA-N 0.000 description 1
- MPDDTAJMJCESGV-CTUHWIOQSA-M (3r,5r)-7-[2-(4-fluorophenyl)-5-[methyl-[(1r)-1-phenylethyl]carbamoyl]-4-propan-2-ylpyrazol-3-yl]-3,5-dihydroxyheptanoate Chemical compound C1([C@@H](C)N(C)C(=O)C2=NN(C(CC[C@@H](O)C[C@@H](O)CC([O-])=O)=C2C(C)C)C=2C=CC(F)=CC=2)=CC=CC=C1 MPDDTAJMJCESGV-CTUHWIOQSA-M 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- 125000005838 1,3-cyclopentylene group Chemical group [H]C1([H])C([H])([H])C([H])([*:2])C([H])([H])C1([H])[*:1] 0.000 description 1
- KKHFRAFPESRGGD-UHFFFAOYSA-N 1,3-dimethyl-7-[3-(n-methylanilino)propyl]purine-2,6-dione Chemical compound C1=NC=2N(C)C(=O)N(C)C(=O)C=2N1CCCN(C)C1=CC=CC=C1 KKHFRAFPESRGGD-UHFFFAOYSA-N 0.000 description 1
- HYJQWMUBCRPGDS-UHFFFAOYSA-N 1,3-thiazole-2-sulfonyl chloride Chemical compound ClS(=O)(=O)C1=NC=CS1 HYJQWMUBCRPGDS-UHFFFAOYSA-N 0.000 description 1
- OGYGFUAIIOPWQD-UHFFFAOYSA-N 1,3-thiazolidine Chemical compound C1CSCN1 OGYGFUAIIOPWQD-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical group CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- PVOAHINGSUIXLS-UHFFFAOYSA-N 1-Methylpiperazine Chemical compound CN1CCNCC1 PVOAHINGSUIXLS-UHFFFAOYSA-N 0.000 description 1
- IQXXEPZFOOTTBA-UHFFFAOYSA-N 1-benzylpiperazine Chemical compound C=1C=CC=CC=1CN1CCNCC1 IQXXEPZFOOTTBA-UHFFFAOYSA-N 0.000 description 1
- KXUGUWTUFUWYRS-UHFFFAOYSA-N 1-methylimidazole-4-sulfonyl chloride Chemical compound CN1C=NC(S(Cl)(=O)=O)=C1 KXUGUWTUFUWYRS-UHFFFAOYSA-N 0.000 description 1
- CHXUFRRQOZZSNV-UHFFFAOYSA-N 1-methylpiperidine Chemical compound [CH2]N1CCCCC1 CHXUFRRQOZZSNV-UHFFFAOYSA-N 0.000 description 1
- RDAVKKQKMLINOH-UHFFFAOYSA-N 1-methylpyrazole-4-sulfonyl chloride Chemical compound CN1C=C(S(Cl)(=O)=O)C=N1 RDAVKKQKMLINOH-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- TZMSYXZUNZXBOL-UHFFFAOYSA-N 10H-phenoxazine Chemical compound C1=CC=C2NC3=CC=CC=C3OC2=C1 TZMSYXZUNZXBOL-UHFFFAOYSA-N 0.000 description 1
- DGHHQBMTXTWTJV-BQAIUKQQSA-N 119413-54-6 Chemical compound Cl.C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 DGHHQBMTXTWTJV-BQAIUKQQSA-N 0.000 description 1
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical compound C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 description 1
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 1
- PVJZBZSCGJAWNG-UHFFFAOYSA-N 2,4,6-trimethylbenzenesulfonyl chloride Chemical compound CC1=CC(C)=C(S(Cl)(=O)=O)C(C)=C1 PVJZBZSCGJAWNG-UHFFFAOYSA-N 0.000 description 1
- JJKSHSHZJOWSEC-UHFFFAOYSA-N 2,5-dichlorothiophene-3-sulfonyl chloride Chemical compound ClC1=CC(S(Cl)(=O)=O)=C(Cl)S1 JJKSHSHZJOWSEC-UHFFFAOYSA-N 0.000 description 1
- RYWCQJDEHXJHRI-XJMXIVSISA-N 2-[3-[5-[6-[3-[3-(carboxymethyl)phenyl]-4-[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]hexyl]-2-[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]phenyl]acetic acid Chemical compound O[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC(C(=C1)C=2C=C(CC(O)=O)C=CC=2)=CC=C1CCCCCCC(C=C1C=2C=C(CC(O)=O)C=CC=2)=CC=C1O[C@@H]1[C@@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 RYWCQJDEHXJHRI-XJMXIVSISA-N 0.000 description 1
- MCIYRNAFHJDMOV-UHFFFAOYSA-N 2-[4-(4-phenylphenyl)sulfonylpiperazin-1-yl]-1,3-thiazole-5-carboxylic acid Chemical compound S1C(C(=O)O)=CN=C1N1CCN(S(=O)(=O)C=2C=CC(=CC=2)C=2C=CC=CC=2)CC1 MCIYRNAFHJDMOV-UHFFFAOYSA-N 0.000 description 1
- RXNZFHIEDZEUQM-UHFFFAOYSA-N 2-bromo-1,3-thiazole Chemical compound BrC1=NC=CS1 RXNZFHIEDZEUQM-UHFFFAOYSA-N 0.000 description 1
- ATOANBAQAPGTRD-UHFFFAOYSA-N 2-chloro-3-oxopropanoic acid Chemical compound OC(=O)C(Cl)C=O ATOANBAQAPGTRD-UHFFFAOYSA-N 0.000 description 1
- ZRWICZHXYMHBDP-UHFFFAOYSA-N 2-chlorosulfonylbenzoic acid Chemical compound OC(=O)C1=CC=CC=C1S(Cl)(=O)=O ZRWICZHXYMHBDP-UHFFFAOYSA-N 0.000 description 1
- FDLFJMALQUAPDM-UHFFFAOYSA-N 2-ethyl-1-phenylpiperazine Chemical compound CCC1CNCCN1C1=CC=CC=C1 FDLFJMALQUAPDM-UHFFFAOYSA-N 0.000 description 1
- AUVALWUPUHHNQV-UHFFFAOYSA-N 2-hydroxy-3-propylbenzoic acid Chemical class CCCC1=CC=CC(C(O)=O)=C1O AUVALWUPUHHNQV-UHFFFAOYSA-N 0.000 description 1
- NQVMZRZWNPTCJC-UHFFFAOYSA-N 2-methyl-1,3-thiazole-4-sulfonyl chloride Chemical compound CC1=NC(S(Cl)(=O)=O)=CS1 NQVMZRZWNPTCJC-UHFFFAOYSA-N 0.000 description 1
- HDECRAPHCDXMIJ-UHFFFAOYSA-N 2-methylbenzenesulfonyl chloride Chemical compound CC1=CC=CC=C1S(Cl)(=O)=O HDECRAPHCDXMIJ-UHFFFAOYSA-N 0.000 description 1
- VLRSADZEDXVUPG-UHFFFAOYSA-N 2-naphthalen-1-ylpyridine Chemical compound N1=CC=CC=C1C1=CC=CC2=CC=CC=C12 VLRSADZEDXVUPG-UHFFFAOYSA-N 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- VMZCDNSFRSVYKQ-UHFFFAOYSA-N 2-phenylacetyl chloride Chemical compound ClC(=O)CC1=CC=CC=C1 VMZCDNSFRSVYKQ-UHFFFAOYSA-N 0.000 description 1
- LKFNLHZZPHHFEC-UHFFFAOYSA-N 2-phenylethanesulfonyl chloride Chemical compound ClS(=O)(=O)CCC1=CC=CC=C1 LKFNLHZZPHHFEC-UHFFFAOYSA-N 0.000 description 1
- WFCSWCVEJLETKA-UHFFFAOYSA-N 2-piperazin-1-ylethanol Chemical compound OCCN1CCNCC1 WFCSWCVEJLETKA-UHFFFAOYSA-N 0.000 description 1
- VHMICKWLTGFITH-UHFFFAOYSA-N 2H-isoindole Chemical compound C1=CC=CC2=CNC=C21 VHMICKWLTGFITH-UHFFFAOYSA-N 0.000 description 1
- NYIBPWGZGSXURD-UHFFFAOYSA-N 3,4-dichlorobenzenesulfonyl chloride Chemical compound ClC1=CC=C(S(Cl)(=O)=O)C=C1Cl NYIBPWGZGSXURD-UHFFFAOYSA-N 0.000 description 1
- BTRCVKADYDVSLI-UHFFFAOYSA-N 3,5-bis(trifluoromethyl)benzenesulfonyl chloride Chemical compound FC(F)(F)C1=CC(C(F)(F)F)=CC(S(Cl)(=O)=O)=C1 BTRCVKADYDVSLI-UHFFFAOYSA-N 0.000 description 1
- RJSQINMKOSOUGT-UHFFFAOYSA-N 3,5-dichlorobenzenesulfonyl chloride Chemical compound ClC1=CC(Cl)=CC(S(Cl)(=O)=O)=C1 RJSQINMKOSOUGT-UHFFFAOYSA-N 0.000 description 1
- ALFPDTHZOVXWLS-UHFFFAOYSA-N 3-[4-[(2-methylpropan-2-yl)oxycarbonyl]piperazin-1-yl]-1h-1,2,4-triazole-5-carboxylic acid Chemical compound C1CN(C(=O)OC(C)(C)C)CCN1C1=NN=C(C(O)=O)N1 ALFPDTHZOVXWLS-UHFFFAOYSA-N 0.000 description 1
- MVRGLMCHDCMPKD-UHFFFAOYSA-N 3-amino-1h-1,2,4-triazole-5-carboxylic acid Chemical compound NC1=NNC(C(O)=O)=N1 MVRGLMCHDCMPKD-UHFFFAOYSA-N 0.000 description 1
- MNUHYQZBNHDABI-UHFFFAOYSA-N 3-azabicyclo[3.1.0]hexan-6-amine Chemical compound C1NCC2C(N)C21 MNUHYQZBNHDABI-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- CBKDCOKSXCTDAA-UHFFFAOYSA-N 4,5,6,7-tetrahydro-1-benzothiophene Chemical compound C1CCCC2=C1C=CS2 CBKDCOKSXCTDAA-UHFFFAOYSA-N 0.000 description 1
- GRDXCFKBQWDAJH-UHFFFAOYSA-N 4-acetamidobenzenesulfonyl chloride Chemical compound CC(=O)NC1=CC=C(S(Cl)(=O)=O)C=C1 GRDXCFKBQWDAJH-UHFFFAOYSA-N 0.000 description 1
- FXVDNCRTKXMSEZ-UHFFFAOYSA-N 4-acetylbenzenesulfonyl chloride Chemical compound CC(=O)C1=CC=C(S(Cl)(=O)=O)C=C1 FXVDNCRTKXMSEZ-UHFFFAOYSA-N 0.000 description 1
- KMMHZIBWCXYAAH-UHFFFAOYSA-N 4-bromobenzenesulfonyl chloride Chemical compound ClS(=O)(=O)C1=CC=C(Br)C=C1 KMMHZIBWCXYAAH-UHFFFAOYSA-N 0.000 description 1
- DBMFYTQPPBBKHI-UHFFFAOYSA-N 4-cyanobenzenesulfonyl chloride Chemical compound ClS(=O)(=O)C1=CC=C(C#N)C=C1 DBMFYTQPPBBKHI-UHFFFAOYSA-N 0.000 description 1
- DTJVECUKADWGMO-UHFFFAOYSA-N 4-methoxybenzenesulfonyl chloride Chemical compound COC1=CC=C(S(Cl)(=O)=O)C=C1 DTJVECUKADWGMO-UHFFFAOYSA-N 0.000 description 1
- UUBHGAXBJMFHCV-UHFFFAOYSA-N 4-methyl-2-piperazin-1-yl-1,3-thiazole-5-carboxylic acid Chemical compound S1C(C(O)=O)=C(C)N=C1N1CCNCC1 UUBHGAXBJMFHCV-UHFFFAOYSA-N 0.000 description 1
- YEZADZMMVHWFIY-UHFFFAOYSA-N 4-tert-butylbenzenesulfonyl chloride Chemical compound CC(C)(C)C1=CC=C(S(Cl)(=O)=O)C=C1 YEZADZMMVHWFIY-UHFFFAOYSA-N 0.000 description 1
- GDRVFDDBLLKWRI-UHFFFAOYSA-N 4H-quinolizine Chemical compound C1=CC=CN2CC=CC=C21 GDRVFDDBLLKWRI-UHFFFAOYSA-N 0.000 description 1
- KUZSBKJSGSKPJH-VXGBXAGGSA-N 5-[(9R)-6-[(3R)-3-methylmorpholin-4-yl]-11-oxa-1,3,5-triazatricyclo[7.4.0.02,7]trideca-2,4,6-trien-4-yl]pyrazin-2-amine Chemical compound C[C@@H]1COCCN1c1nc(nc2N3CCOC[C@H]3Cc12)-c1cnc(N)cn1 KUZSBKJSGSKPJH-VXGBXAGGSA-N 0.000 description 1
- PDLIDTOGYMYMLD-UHFFFAOYSA-N 5-bromo-1h-1,2,4-triazole-3-carboxylic acid Chemical compound OC(=O)C1=NN=C(Br)N1 PDLIDTOGYMYMLD-UHFFFAOYSA-N 0.000 description 1
- GFBVUFQNHLUCPX-UHFFFAOYSA-N 5-bromothiophene-2-carbaldehyde Chemical compound BrC1=CC=C(C=O)S1 GFBVUFQNHLUCPX-UHFFFAOYSA-N 0.000 description 1
- ZKLBPUYMTHPNOQ-UHFFFAOYSA-N 5-bromothiophene-3-carbaldehyde Chemical compound BrC1=CC(C=O)=CS1 ZKLBPUYMTHPNOQ-UHFFFAOYSA-N 0.000 description 1
- HWGVUNSKAPCFNF-UHFFFAOYSA-N 5-chloro-1,3-dimethylpyrazole-4-sulfonyl chloride Chemical compound CC1=NN(C)C(Cl)=C1S(Cl)(=O)=O HWGVUNSKAPCFNF-UHFFFAOYSA-N 0.000 description 1
- SORSTNOXGOXWAO-UHFFFAOYSA-N 5-chlorothiophene-2-sulfonyl chloride Chemical compound ClC1=CC=C(S(Cl)(=O)=O)S1 SORSTNOXGOXWAO-UHFFFAOYSA-N 0.000 description 1
- RSIWALKZYXPAGW-NSHDSACASA-N 6-(3-fluorophenyl)-3-methyl-7-[(1s)-1-(7h-purin-6-ylamino)ethyl]-[1,3]thiazolo[3,2-a]pyrimidin-5-one Chemical compound C=1([C@@H](NC=2C=3N=CNC=3N=CN=2)C)N=C2SC=C(C)N2C(=O)C=1C1=CC=CC(F)=C1 RSIWALKZYXPAGW-NSHDSACASA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 235000006491 Acacia senegal Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- RCLPHCJMHYUGSX-UHFFFAOYSA-N B.CC Chemical compound B.CC RCLPHCJMHYUGSX-UHFFFAOYSA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- JQUCWIWWWKZNCS-LESHARBVSA-N C(C1=CC=CC=C1)(=O)NC=1SC[C@H]2[C@@](N1)(CO[C@H](C2)C)C=2SC=C(N2)NC(=O)C2=NC=C(C=C2)OC(F)F Chemical compound C(C1=CC=CC=C1)(=O)NC=1SC[C@H]2[C@@](N1)(CO[C@H](C2)C)C=2SC=C(N2)NC(=O)C2=NC=C(C=C2)OC(F)F JQUCWIWWWKZNCS-LESHARBVSA-N 0.000 description 1
- AOLAPCGQAHIDDA-UHFFFAOYSA-N C1=NC=NN1.C1=NC=NN1.C1=NN=CN1 Chemical compound C1=NC=NN1.C1=NC=NN1.C1=NN=CN1 AOLAPCGQAHIDDA-UHFFFAOYSA-N 0.000 description 1
- VBVYLNNSKNPOQV-UHFFFAOYSA-N CC(=O)N1CCN(C2=NC=C(C(=O)NO)S2)CC1 Chemical compound CC(=O)N1CCN(C2=NC=C(C(=O)NO)S2)CC1 VBVYLNNSKNPOQV-UHFFFAOYSA-N 0.000 description 1
- GULOQTVZWYOWAH-UHFFFAOYSA-N CC(C)(C)OC(=O)B1CCC(C(N)=S)CC1.CN1CCC(C2=NC=C(C(=O)NO)S2)CC1.COC(=O)C(Cl)C=O.COC(=O)C1=CN=C(C2CCB(C(=O)OC(C)(C)C)CC2)S1.COC(=O)C1=CN=C(C2CCB(C)CC2)S1.[H]B1CCC(C2=NC=C(C(=O)OC)S2)CC1 Chemical compound CC(C)(C)OC(=O)B1CCC(C(N)=S)CC1.CN1CCC(C2=NC=C(C(=O)NO)S2)CC1.COC(=O)C(Cl)C=O.COC(=O)C1=CN=C(C2CCB(C(=O)OC(C)(C)C)CC2)S1.COC(=O)C1=CN=C(C2CCB(C)CC2)S1.[H]B1CCC(C2=NC=C(C(=O)OC)S2)CC1 GULOQTVZWYOWAH-UHFFFAOYSA-N 0.000 description 1
- NTTOENMUSGYPSC-UHFFFAOYSA-N CC(C)(C)OC(=O)N1C=NCCC1.CC(C)(C)OC(=O)N1C=NCCC1.CC1=CC=C(S(=O)(=O)N2CCCN(C3=NC=C(C(=O)NO)S3)C2)C=C1.CCOC(=O)C1=CN=C(Br)S1.CCOC(=O)C1=CN=C(N2CCCN(C(=O)OC(C)(C)C)C2)S1.CCOC(=O)C1=CN=C(N2CCCN(S(=O)(=O)C3=CC=C(C)C=C3)C2)S1.CO Chemical compound CC(C)(C)OC(=O)N1C=NCCC1.CC(C)(C)OC(=O)N1C=NCCC1.CC1=CC=C(S(=O)(=O)N2CCCN(C3=NC=C(C(=O)NO)S3)C2)C=C1.CCOC(=O)C1=CN=C(Br)S1.CCOC(=O)C1=CN=C(N2CCCN(C(=O)OC(C)(C)C)C2)S1.CCOC(=O)C1=CN=C(N2CCCN(S(=O)(=O)C3=CC=C(C)C=C3)C2)S1.CO NTTOENMUSGYPSC-UHFFFAOYSA-N 0.000 description 1
- CIULBSBJPPOVBT-UHFFFAOYSA-N CC(C)(C)OC(=O)N1CCC(C(N)=S)CC1.CN1CCC(C2=NC=C(C(=O)NO)S2)CC1.COC(=O)C(Cl)C=O.COC(=O)C1=CN=C(C2CCN(C(=O)OC(C)(C)C)CC2)S1.COC(=O)C1=CN=C(C2CCN(C)CC2)S1.[H]N1CCC(C2=NC=C(C(=O)OC)S2)CC1 Chemical compound CC(C)(C)OC(=O)N1CCC(C(N)=S)CC1.CN1CCC(C2=NC=C(C(=O)NO)S2)CC1.COC(=O)C(Cl)C=O.COC(=O)C1=CN=C(C2CCN(C(=O)OC(C)(C)C)CC2)S1.COC(=O)C1=CN=C(C2CCN(C)CC2)S1.[H]N1CCC(C2=NC=C(C(=O)OC)S2)CC1 CIULBSBJPPOVBT-UHFFFAOYSA-N 0.000 description 1
- FOHFSXXXOGKYFS-UHFFFAOYSA-N CC(C)(C)OC(=O)N1CCC(O)CC1.COC(=O)C1=CN=C(Br)S1.COC(=O)C1=CN=C(OC2CCN(C(=O)OC(C)(C)C)CC2)S1 Chemical compound CC(C)(C)OC(=O)N1CCC(O)CC1.COC(=O)C1=CN=C(Br)S1.COC(=O)C1=CN=C(OC2CCN(C(=O)OC(C)(C)C)CC2)S1 FOHFSXXXOGKYFS-UHFFFAOYSA-N 0.000 description 1
- VHOPKOCUEPXAQY-UHFFFAOYSA-N CC(C)(C)OC(=O)N1CCN(C2=NN=C(C(=O)O)N2)CC1.NC1=NN=C(C(=O)O)N1.O=C(O)C1=NN=C(Br)N1 Chemical compound CC(C)(C)OC(=O)N1CCN(C2=NN=C(C(=O)O)N2)CC1.NC1=NN=C(C(=O)O)N1.O=C(O)C1=NN=C(Br)N1 VHOPKOCUEPXAQY-UHFFFAOYSA-N 0.000 description 1
- ORRPYKJCMFURKE-UHFFFAOYSA-M CC(C)(C)OC(=O)N1CCNCC1.COC(=O)C(Cl)C=O.COC(=O)C1=CN=C(CN2CCN(S(=O)(=O)C3=CC4=C(C=CC=C4)C=C3)CC2)S1.NC(=O)CBr.NC(=O)CN1CCN(S(=O)(=O)C2=CC3=C(C=CC=C3)C=C2)CC1.NC(=S)CN1CCN(S(=O)(=O)C2=CC3=C(C=CC=C3)C=C2)CC1.NO.O=C(NO)C1=CN=C(CN2CCN(S(=O)(=O)C3=CC4=C(C=CC=C4)C=C3)CC2)S1.O=S(=O)(C1=CC2=C(C=CC=C2)C=C1)N1CCNCC1.O=S(=O)(Cl)C1=CC2=C(C=CC=C2)C=C1.O[Na].S=PP=S=S=S=S Chemical compound CC(C)(C)OC(=O)N1CCNCC1.COC(=O)C(Cl)C=O.COC(=O)C1=CN=C(CN2CCN(S(=O)(=O)C3=CC4=C(C=CC=C4)C=C3)CC2)S1.NC(=O)CBr.NC(=O)CN1CCN(S(=O)(=O)C2=CC3=C(C=CC=C3)C=C2)CC1.NC(=S)CN1CCN(S(=O)(=O)C2=CC3=C(C=CC=C3)C=C2)CC1.NO.O=C(NO)C1=CN=C(CN2CCN(S(=O)(=O)C3=CC4=C(C=CC=C4)C=C3)CC2)S1.O=S(=O)(C1=CC2=C(C=CC=C2)C=C1)N1CCNCC1.O=S(=O)(Cl)C1=CC2=C(C=CC=C2)C=C1.O[Na].S=PP=S=S=S=S ORRPYKJCMFURKE-UHFFFAOYSA-M 0.000 description 1
- HTWJZCQGZYXDRQ-UHFFFAOYSA-N CC(C)(C)OC(=O)N1CCNCC1.COC(=O)C1=CN=C(Br)S1.COC(=O)C1=CN=C(C(=O)N2CCN(C(=O)OC(C)(C)C)CC2)S1.COC(=O)C1=CN=C(C(=O)O)S1 Chemical compound CC(C)(C)OC(=O)N1CCNCC1.COC(=O)C1=CN=C(Br)S1.COC(=O)C1=CN=C(C(=O)N2CCN(C(=O)OC(C)(C)C)CC2)S1.COC(=O)C1=CN=C(C(=O)O)S1 HTWJZCQGZYXDRQ-UHFFFAOYSA-N 0.000 description 1
- GXVSBUUFWFEWRW-UHFFFAOYSA-N CC(C)(C)OC(=O)N1CCNCC1.COC(=O)C1=CN=C(Br)S1.COC(=O)C1=CN=C(S(=O)(=O)Cl)S1.COC(=O)C1=CN=C(S(=O)(=O)N2CCN(C(=O)OC(C)(C)C)CC2)S1 Chemical compound CC(C)(C)OC(=O)N1CCNCC1.COC(=O)C1=CN=C(Br)S1.COC(=O)C1=CN=C(S(=O)(=O)Cl)S1.COC(=O)C1=CN=C(S(=O)(=O)N2CCN(C(=O)OC(C)(C)C)CC2)S1 GXVSBUUFWFEWRW-UHFFFAOYSA-N 0.000 description 1
- AISAMHZFPAATMK-UHFFFAOYSA-N CC(C)(C)OC(=O)NC1CCNCC1.COC(=O)C1=CN=C(N2CCC(NC(=O)OC(C)(C)C)CC2)S1.COC(=O)C1=CN=C(N2CCC(NS(=O)(=O)C3=CC4=C(C=CC=C4)C=C3)CC2)S1.COC(=O)C1CN=C(Br)S1.O=C(NO)C1=CN=C(N2CCC(NS(=O)(=O)C3=CC=C4C=CC=CC4=C3)CC2)S1 Chemical compound CC(C)(C)OC(=O)NC1CCNCC1.COC(=O)C1=CN=C(N2CCC(NC(=O)OC(C)(C)C)CC2)S1.COC(=O)C1=CN=C(N2CCC(NS(=O)(=O)C3=CC4=C(C=CC=C4)C=C3)CC2)S1.COC(=O)C1CN=C(Br)S1.O=C(NO)C1=CN=C(N2CCC(NS(=O)(=O)C3=CC=C4C=CC=CC4=C3)CC2)S1 AISAMHZFPAATMK-UHFFFAOYSA-N 0.000 description 1
- HXKDKASSZUQWBA-QPJJXVBHSA-N CC1=CC=C(S(=O)(=O)N2CCN(C3=NC=C(/C=C/C(=O)NO)S3)CC2)C=C1 Chemical compound CC1=CC=C(S(=O)(=O)N2CCN(C3=NC=C(/C=C/C(=O)NO)S3)CC2)C=C1 HXKDKASSZUQWBA-QPJJXVBHSA-N 0.000 description 1
- OJOGBBGUOSVPJB-UHFFFAOYSA-N CC1=CC=C(S(=O)(=O)N2CCN(C3=NC=C(C(=O)NO)S3)CC2)C=C1 Chemical compound CC1=CC=C(S(=O)(=O)N2CCN(C3=NC=C(C(=O)NO)S3)CC2)C=C1 OJOGBBGUOSVPJB-UHFFFAOYSA-N 0.000 description 1
- NIBSBFUZSSJWEU-UHFFFAOYSA-N CC1=CC=C(S(=O)(=O)NC2C3CN(C4=NC=C(C(=O)NO)S4)CC32)C=C1.COC(=O)C1=CN=C(Br)S1.COC(=O)C1=CN=C(N2CC3C(C2)C3NS(=O)(=O)C2=CC=C(C)C=C2)S1.COC(=O)C1=CN=C(N2CC3C(N)C3C2)S1.NC1C2CNCC12 Chemical compound CC1=CC=C(S(=O)(=O)NC2C3CN(C4=NC=C(C(=O)NO)S4)CC32)C=C1.COC(=O)C1=CN=C(Br)S1.COC(=O)C1=CN=C(N2CC3C(C2)C3NS(=O)(=O)C2=CC=C(C)C=C2)S1.COC(=O)C1=CN=C(N2CC3C(N)C3C2)S1.NC1C2CNCC12 NIBSBFUZSSJWEU-UHFFFAOYSA-N 0.000 description 1
- GSVTWIMECVNFJF-UHFFFAOYSA-N CC1=CC=C(S(=O)(=O)NC2CCN(C3=NC=C(C(=O)NO)S3)CC2)C=C1 Chemical compound CC1=CC=C(S(=O)(=O)NC2CCN(C3=NC=C(C(=O)NO)S3)CC2)C=C1 GSVTWIMECVNFJF-UHFFFAOYSA-N 0.000 description 1
- ZQWRLTNJOIBMFD-UHFFFAOYSA-N CCOC(=O)C1=CN=C(N2CCNCC2)N1.CCOC(=O)C1=CN=C(S)N1.CS(=O)(=O)C1=NC=C(C(=O)O)N1 Chemical compound CCOC(=O)C1=CN=C(N2CCNCC2)N1.CCOC(=O)C1=CN=C(S)N1.CS(=O)(=O)C1=NC=C(C(=O)O)N1 ZQWRLTNJOIBMFD-UHFFFAOYSA-N 0.000 description 1
- FOCBYVRXZQBGKV-UHFFFAOYSA-N CCOC(=O)C1=NNN=N1.O=C(O)C1=CC(Br)=NO1 Chemical compound CCOC(=O)C1=NNN=N1.O=C(O)C1=CC(Br)=NO1 FOCBYVRXZQBGKV-UHFFFAOYSA-N 0.000 description 1
- VATRQOPILGHEOG-MDZDMXLPSA-N CN(C)C1=CC=CC2=C1C=CC=C2S(=O)(=O)N1CCN(C2=NC=C(/C=C/C(=O)NO)S2)CC1 Chemical compound CN(C)C1=CC=CC2=C1C=CC=C2S(=O)(=O)N1CCN(C2=NC=C(/C=C/C(=O)NO)S2)CC1 VATRQOPILGHEOG-MDZDMXLPSA-N 0.000 description 1
- YLFYVVMYCIKIEE-UHFFFAOYSA-N COC1=C(C)C=CC(S(=O)(=O)NC2CCN(C3=NC=C(C(=O)NO)S3)CC2)=C1 Chemical compound COC1=C(C)C=CC(S(=O)(=O)NC2CCN(C3=NC=C(C(=O)NO)S3)CC2)=C1 YLFYVVMYCIKIEE-UHFFFAOYSA-N 0.000 description 1
- MUCCGMZNGAIKAP-ZZXKWVIFSA-N COC1=C(OC)C=C(S(=O)(=O)N2CCN(C3=NC=C(/C=C/C(=O)NO)S3)CC2)C=C1 Chemical compound COC1=C(OC)C=C(S(=O)(=O)N2CCN(C3=NC=C(/C=C/C(=O)NO)S3)CC2)C=C1 MUCCGMZNGAIKAP-ZZXKWVIFSA-N 0.000 description 1
- RYUMLDROQAJUHX-QPJJXVBHSA-N COC1=CC=C(S(=O)(=O)N2CCN(C3=NC=C(/C=C/C(=O)NO)S3)CC2)C=C1 Chemical compound COC1=CC=C(S(=O)(=O)N2CCN(C3=NC=C(/C=C/C(=O)NO)S3)CC2)C=C1 RYUMLDROQAJUHX-QPJJXVBHSA-N 0.000 description 1
- MEPMGRTXSDREOM-MWLZBDIHSA-N C[C@@H]1C[C@H]1C.C[C@H]1C[C@@H]1C Chemical compound C[C@@H]1C[C@H]1C.C[C@H]1C[C@@H]1C MEPMGRTXSDREOM-MWLZBDIHSA-N 0.000 description 1
- MEPMGRTXSDREOM-DKKVAAJZSA-N C[C@H]1C[C@H]1C.C[C@H]1C[C@H]1C Chemical compound C[C@H]1C[C@H]1C.C[C@H]1C[C@H]1C MEPMGRTXSDREOM-DKKVAAJZSA-N 0.000 description 1
- 101100314454 Caenorhabditis elegans tra-1 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 240000001829 Catharanthus roseus Species 0.000 description 1
- PTHCMJGKKRQCBF-UHFFFAOYSA-N Cellulose, microcrystalline Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC)C(CO)O1 PTHCMJGKKRQCBF-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 229940127007 Compound 39 Drugs 0.000 description 1
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 1
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 102000003915 DNA Topoisomerases Human genes 0.000 description 1
- 108090000323 DNA Topoisomerases Proteins 0.000 description 1
- 230000007067 DNA methylation Effects 0.000 description 1
- 231100001074 DNA strand break Toxicity 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- XPDXVDYUQZHFPV-UHFFFAOYSA-N Dansyl Chloride Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(Cl)(=O)=O XPDXVDYUQZHFPV-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- YXHKONLOYHBTNS-UHFFFAOYSA-N Diazomethane Chemical compound C=[N+]=[N-] YXHKONLOYHBTNS-UHFFFAOYSA-N 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 241001504495 Erithacus Species 0.000 description 1
- DNXHEGUUPJUMQT-CBZIJGRNSA-N Estrone Chemical compound OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 DNXHEGUUPJUMQT-CBZIJGRNSA-N 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 230000010190 G1 phase Effects 0.000 description 1
- 230000010337 G2 phase Effects 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 1
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 1
- WRYCSMQKUKOKBP-UHFFFAOYSA-N Imidazolidine Chemical compound C1CNCN1 WRYCSMQKUKOKBP-UHFFFAOYSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 1
- 102000016397 Methyltransferase Human genes 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- QOVYHDHLFPKQQG-NDEPHWFRSA-N N[C@@H](CCC(=O)N1CCC(CC1)NC1=C2C=CC=CC2=NC(NCC2=CN(CCCNCCCNC3CCCCC3)N=N2)=N1)C(O)=O Chemical compound N[C@@H](CCC(=O)N1CCC(CC1)NC1=C2C=CC=CC2=NC(NCC2=CN(CCCNCCCNC3CCCCC3)N=N2)=N1)C(O)=O QOVYHDHLFPKQQG-NDEPHWFRSA-N 0.000 description 1
- ZNSPHKJFQDEABI-NZQKXSOJSA-N Nc1nc(O[C@H](c2ccc(Cl)cc2-c2ccccc2)C(F)(F)F)cc(n1)N1CCC2(CN[C@@H](C2)C(O)=O)CC1 Chemical compound Nc1nc(O[C@H](c2ccc(Cl)cc2-c2ccccc2)C(F)(F)F)cc(n1)N1CCC2(CN[C@@H](C2)C(O)=O)CC1 ZNSPHKJFQDEABI-NZQKXSOJSA-N 0.000 description 1
- 241000060390 Nothapodytes nimmoniana Species 0.000 description 1
- FCFQGMZCWZKVRG-ZZXKWVIFSA-N O=C(/C=C/C1=CN=C(N2CCN(S(=O)(=O)C3=CC=C(C(F)(F)F)C=C3)CC2)S1)NO Chemical compound O=C(/C=C/C1=CN=C(N2CCN(S(=O)(=O)C3=CC=C(C(F)(F)F)C=C3)CC2)S1)NO FCFQGMZCWZKVRG-ZZXKWVIFSA-N 0.000 description 1
- JBCWSDDVKFBLTH-DHZHZOJOSA-N O=C(/C=C/C1=CN=C(N2CCN(S(=O)(=O)C3=CC=C(C4=CC=CC=C4)C=C3)CC2)S1)NO Chemical compound O=C(/C=C/C1=CN=C(N2CCN(S(=O)(=O)C3=CC=C(C4=CC=CC=C4)C=C3)CC2)S1)NO JBCWSDDVKFBLTH-DHZHZOJOSA-N 0.000 description 1
- UVJUPWZVBDPWQJ-ZZXKWVIFSA-N O=C(/C=C/C1=CN=C(N2CCN(S(=O)(=O)C3=CC=C(F)C=C3)CC2)S1)NO Chemical compound O=C(/C=C/C1=CN=C(N2CCN(S(=O)(=O)C3=CC=C(F)C=C3)CC2)S1)NO UVJUPWZVBDPWQJ-ZZXKWVIFSA-N 0.000 description 1
- ZWMWORNLZYJHED-ZZXKWVIFSA-N O=C(/C=C/C1=CN=C(N2CCN(S(=O)(=O)C3=CC=C(OC(F)(F)F)C=C3)CC2)S1)NO Chemical compound O=C(/C=C/C1=CN=C(N2CCN(S(=O)(=O)C3=CC=C(OC(F)(F)F)C=C3)CC2)S1)NO ZWMWORNLZYJHED-ZZXKWVIFSA-N 0.000 description 1
- DVMYLPRGYNBANT-ZZXKWVIFSA-N O=C(/C=C/C1=CN=C(N2CCN(S(=O)(=O)C3=CC=C([N+](=O)[O-])C=C3)CC2)S1)NO Chemical compound O=C(/C=C/C1=CN=C(N2CCN(S(=O)(=O)C3=CC=C([N+](=O)[O-])C=C3)CC2)S1)NO DVMYLPRGYNBANT-ZZXKWVIFSA-N 0.000 description 1
- VEJVMHWJIHWXRG-VOTSOKGWSA-N O=C(/C=C/C1=CN=C(N2CCN(S(=O)(=O)C3=CC=CC=C3)CC2)S1)NO Chemical compound O=C(/C=C/C1=CN=C(N2CCN(S(=O)(=O)C3=CC=CC=C3)CC2)S1)NO VEJVMHWJIHWXRG-VOTSOKGWSA-N 0.000 description 1
- WDWCLHRPQOTMOS-UHFFFAOYSA-N O=C(NO)C1=CN=C(CN2CCN(O(O)SC3=CC=C4C=CC=CC4=C3)CC2)S1 Chemical compound O=C(NO)C1=CN=C(CN2CCN(O(O)SC3=CC=C4C=CC=CC4=C3)CC2)S1 WDWCLHRPQOTMOS-UHFFFAOYSA-N 0.000 description 1
- HZVOTKYPBIOCOV-UHFFFAOYSA-N O=C(NO)C1=CN=C(CN2CCN(S(=O)(=O)C3=CC4=C(C=CC=C4)C=C3)CC2)S1 Chemical compound O=C(NO)C1=CN=C(CN2CCN(S(=O)(=O)C3=CC4=C(C=CC=C4)C=C3)CC2)S1 HZVOTKYPBIOCOV-UHFFFAOYSA-N 0.000 description 1
- RVLIZCNWMFKKJO-UHFFFAOYSA-N O=C(NO)C1=CN=C(N2CCC(CNS(=O)(=O)C3=CC=C(C4=CC=CC=C4)C=C3)CC2)S1 Chemical compound O=C(NO)C1=CN=C(N2CCC(CNS(=O)(=O)C3=CC=C(C4=CC=CC=C4)C=C3)CC2)S1 RVLIZCNWMFKKJO-UHFFFAOYSA-N 0.000 description 1
- CDYKWSGBQNMEMC-UHFFFAOYSA-N O=C(NO)C1=CN=C(N2CCC(NS(=O)(=O)C3=CC=C(C4=CC=CC=C4)C=C3)CC2)S1 Chemical compound O=C(NO)C1=CN=C(N2CCC(NS(=O)(=O)C3=CC=C(C4=CC=CC=C4)C=C3)CC2)S1 CDYKWSGBQNMEMC-UHFFFAOYSA-N 0.000 description 1
- XTVZHOVBRQIKLP-UHFFFAOYSA-N O=C(NO)C1=CN=C(N2CCC(NS(=O)(=O)C3=CC=C4C=CC=CC4=C3)CC2)S1 Chemical compound O=C(NO)C1=CN=C(N2CCC(NS(=O)(=O)C3=CC=C4C=CC=CC4=C3)CC2)S1 XTVZHOVBRQIKLP-UHFFFAOYSA-N 0.000 description 1
- SICOHPOOEVDKFF-UHFFFAOYSA-N O=C(NO)C1=CN=C(N2CCN(C(=O)C3=CC=CC=C3)CC2)S1 Chemical compound O=C(NO)C1=CN=C(N2CCN(C(=O)C3=CC=CC=C3)CC2)S1 SICOHPOOEVDKFF-UHFFFAOYSA-N 0.000 description 1
- DJCQNVKFKIZHMT-UHFFFAOYSA-N O=C(NO)C1=CN=C(N2CCN(C(=O)CC3=CC=CC=C3)CC2)S1 Chemical compound O=C(NO)C1=CN=C(N2CCN(C(=O)CC3=CC=CC=C3)CC2)S1 DJCQNVKFKIZHMT-UHFFFAOYSA-N 0.000 description 1
- ZRJUABKPNNHWEB-UHFFFAOYSA-N O=C(NO)C1=CN=C(N2CCN(S(=O)(=O)C3=CC=CS3)CC2)S1 Chemical compound O=C(NO)C1=CN=C(N2CCN(S(=O)(=O)C3=CC=CS3)CC2)S1 ZRJUABKPNNHWEB-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 244000236480 Podophyllum peltatum Species 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical compound CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 108700025695 Suppressor Genes Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 101710183280 Topoisomerase Proteins 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 241000863480 Vinca Species 0.000 description 1
- KSQVGVMZECCPAT-AEFFLSMTSA-N [(1R)-4-phenyl-1-[[(2R)-2-(pyrazine-2-carbonylamino)pentanoyl]amino]butyl]boronic acid Chemical compound B([C@H](CCCC1=CC=CC=C1)NC(=O)[C@@H](CCC)NC(=O)C2=NC=CN=C2)(O)O KSQVGVMZECCPAT-AEFFLSMTSA-N 0.000 description 1
- SPXSEZMVRJLHQG-XMMPIXPASA-N [(2R)-1-[[4-[(3-phenylmethoxyphenoxy)methyl]phenyl]methyl]pyrrolidin-2-yl]methanol Chemical compound C(C1=CC=CC=C1)OC=1C=C(OCC2=CC=C(CN3[C@H](CCC3)CO)C=C2)C=CC=1 SPXSEZMVRJLHQG-XMMPIXPASA-N 0.000 description 1
- NPUXORBZRBIOMQ-RUZDIDTESA-N [(2R)-1-[[4-[[3-(benzenesulfonylmethyl)-5-methylphenoxy]methyl]phenyl]methyl]-2-pyrrolidinyl]methanol Chemical compound C=1C(OCC=2C=CC(CN3[C@H](CCC3)CO)=CC=2)=CC(C)=CC=1CS(=O)(=O)C1=CC=CC=C1 NPUXORBZRBIOMQ-RUZDIDTESA-N 0.000 description 1
- PSLUFJFHTBIXMW-WYEYVKMPSA-N [(3r,4ar,5s,6s,6as,10s,10ar,10bs)-3-ethenyl-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-6-(2-pyridin-2-ylethylcarbamoyloxy)-5,6,6a,8,9,10-hexahydro-2h-benzo[f]chromen-5-yl] acetate Chemical compound O([C@@H]1[C@@H]([C@]2(O[C@](C)(CC(=O)[C@]2(O)[C@@]2(C)[C@@H](O)CCC(C)(C)[C@@H]21)C=C)C)OC(=O)C)C(=O)NCCC1=CC=CC=N1 PSLUFJFHTBIXMW-WYEYVKMPSA-N 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 229940081735 acetylcellulose Drugs 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229930013930 alkaloid Natural products 0.000 description 1
- 150000003797 alkaloid derivatives Chemical class 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 230000002152 alkylating effect Effects 0.000 description 1
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical group C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 229940030486 androgens Drugs 0.000 description 1
- AEMFNILZOJDQLW-QAGGRKNESA-N androst-4-ene-3,17-dione Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 AEMFNILZOJDQLW-QAGGRKNESA-N 0.000 description 1
- 229960005471 androstenedione Drugs 0.000 description 1
- AEMFNILZOJDQLW-UHFFFAOYSA-N androstenedione Natural products O=C1CCC2(C)C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 AEMFNILZOJDQLW-UHFFFAOYSA-N 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940045719 antineoplastic alkylating agent nitrosoureas Drugs 0.000 description 1
- 229940045696 antineoplastic drug podophyllotoxin derivative Drugs 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 239000012131 assay buffer Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- CSKNSYBAZOQPLR-UHFFFAOYSA-N benzenesulfonyl chloride Chemical compound ClS(=O)(=O)C1=CC=CC=C1 CSKNSYBAZOQPLR-UHFFFAOYSA-N 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000003181 biological factor Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- WEDIIKBPDQQQJU-UHFFFAOYSA-N butane-1-sulfonyl chloride Chemical compound CCCCS(Cl)(=O)=O WEDIIKBPDQQQJU-UHFFFAOYSA-N 0.000 description 1
- WCAIAPBIIVWAHA-UHFFFAOYSA-N butyl 4-carbamothioylpiperidine-1-carboxylate Chemical group CCCCOC(=O)N1CCC(C(N)=S)CC1 WCAIAPBIIVWAHA-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 229960003340 calcium silicate Drugs 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 210000004289 cerebral ventricle Anatomy 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010568 chiral column chromatography Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- WCZVZNOTHYJIEI-UHFFFAOYSA-N cinnoline Chemical compound N1=NC=CC2=CC=CC=C21 WCZVZNOTHYJIEI-UHFFFAOYSA-N 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 229940125876 compound 15a Drugs 0.000 description 1
- 229940125810 compound 20 Drugs 0.000 description 1
- 229940125878 compound 36 Drugs 0.000 description 1
- 229940125807 compound 37 Drugs 0.000 description 1
- 229940127271 compound 49 Drugs 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- SSJXIUAHEKJCMH-UHFFFAOYSA-N cyclohexane-1,2-diamine Chemical compound NC1CCCCC1N SSJXIUAHEKJCMH-UHFFFAOYSA-N 0.000 description 1
- VKIRRGRTJUUZHS-UHFFFAOYSA-N cyclohexane-1,4-diamine Chemical compound NC1CCC(N)CC1 VKIRRGRTJUUZHS-UHFFFAOYSA-N 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- WPJRFCZKZXBUNI-HCWXCVPCSA-N daunosamine Chemical compound C[C@H](O)[C@@H](O)[C@@H](N)CC=O WPJRFCZKZXBUNI-HCWXCVPCSA-N 0.000 description 1
- 230000003413 degradative effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 229940112141 dry powder inhaler Drugs 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 239000008157 edible vegetable oil Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 239000000328 estrogen antagonist Substances 0.000 description 1
- 229960003399 estrone Drugs 0.000 description 1
- AEOCXXJPGCBFJA-UHFFFAOYSA-N ethionamide Chemical compound CCC1=CC(C(N)=S)=CC=N1 AEOCXXJPGCBFJA-UHFFFAOYSA-N 0.000 description 1
- FAMRKDQNMBBFBR-UHFFFAOYSA-N ethyl n-ethoxycarbonyliminocarbamate Chemical compound CCOC(=O)N=NC(=O)OCC FAMRKDQNMBBFBR-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000003777 experimental drug Substances 0.000 description 1
- 230000006126 farnesylation Effects 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 239000012054 flavored emulsion Substances 0.000 description 1
- 235000020375 flavoured syrup Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 229940014259 gelatin Drugs 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- JAXFJECJQZDFJS-XHEPKHHKSA-N gtpl8555 Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)N[C@H](B1O[C@@]2(C)[C@H]3C[C@H](C3(C)C)C[C@H]2O1)CCC1=CC=C(F)C=C1 JAXFJECJQZDFJS-XHEPKHHKSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 230000006607 hypermethylation Effects 0.000 description 1
- 239000000819 hypertonic solution Substances 0.000 description 1
- 229940021223 hypertonic solution Drugs 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- 239000003290 indole 3-propionic acid Substances 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- LPAGFVYQRIESJQ-UHFFFAOYSA-N indoline Chemical compound C1=CC=C2NCCC2=C1 LPAGFVYQRIESJQ-UHFFFAOYSA-N 0.000 description 1
- HOBCFUWDNJPFHB-UHFFFAOYSA-N indolizine Chemical compound C1=CC=CN2C=CC=C21 HOBCFUWDNJPFHB-UHFFFAOYSA-N 0.000 description 1
- 125000003406 indolizinyl group Chemical group C=1(C=CN2C=CC=CC12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- GURKHSYORGJETM-WAQYZQTGSA-N irinotecan hydrochloride (anhydrous) Chemical compound Cl.C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 GURKHSYORGJETM-WAQYZQTGSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical class ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 1
- 229960004961 mechlorethamine Drugs 0.000 description 1
- LULAYUGMBFYYEX-UHFFFAOYSA-N metachloroperbenzoic acid Natural products OC(=O)C1=CC=CC(Cl)=C1 LULAYUGMBFYYEX-UHFFFAOYSA-N 0.000 description 1
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- AHBGQWZTGIEBBX-UHFFFAOYSA-N methyl 2-(4-benzylpiperazin-1-yl)-1,3-thiazole-5-carboxylate Chemical compound S1C(C(=O)OC)=CN=C1N1CCN(CC=2C=CC=CC=2)CC1 AHBGQWZTGIEBBX-UHFFFAOYSA-N 0.000 description 1
- JEGNQJVKAWSQFE-UHFFFAOYSA-N methyl 2-[1-(4-phenylphenyl)sulfonylpiperidin-4-yl]-1,3-thiazole-5-carboxylate Chemical compound S1C(C(=O)OC)=CN=C1C1CCN(S(=O)(=O)C=2C=CC(=CC=2)C=2C=CC=CC=2)CC1 JEGNQJVKAWSQFE-UHFFFAOYSA-N 0.000 description 1
- AUBRCNWDLGHKKU-UHFFFAOYSA-N methyl 2-[4-(4-fluorophenyl)sulfonylpiperazin-1-yl]-1,3-thiazole-5-carboxylate Chemical compound S1C(C(=O)OC)=CN=C1N1CCN(S(=O)(=O)C=2C=CC(F)=CC=2)CC1 AUBRCNWDLGHKKU-UHFFFAOYSA-N 0.000 description 1
- AONQBKSTKFJXGM-UHFFFAOYSA-N methyl 2-[4-(4-nitrophenyl)sulfonylpiperazin-1-yl]-1,3-thiazole-5-carboxylate Chemical compound S1C(C(=O)OC)=CN=C1N1CCN(S(=O)(=O)C=2C=CC(=CC=2)[N+]([O-])=O)CC1 AONQBKSTKFJXGM-UHFFFAOYSA-N 0.000 description 1
- YOWKNNKTQWCYNC-UHFFFAOYSA-N methyl 2-bromo-1,3-thiazole-4-carboxylate Chemical compound COC(=O)C1=CSC(Br)=N1 YOWKNNKTQWCYNC-UHFFFAOYSA-N 0.000 description 1
- HUNUAFNLLYVTQD-UHFFFAOYSA-N methyl 2-chlorosulfonylbenzoate Chemical compound COC(=O)C1=CC=CC=C1S(Cl)(=O)=O HUNUAFNLLYVTQD-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- DASJFYAPNPUBGG-UHFFFAOYSA-N naphthalene-1-sulfonyl chloride Chemical compound C1=CC=C2C(S(=O)(=O)Cl)=CC=CC2=C1 DASJFYAPNPUBGG-UHFFFAOYSA-N 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- OSTGTTZJOCZWJG-UHFFFAOYSA-N nitrosourea Chemical compound NC(=O)N=NO OSTGTTZJOCZWJG-UHFFFAOYSA-N 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000012053 oil suspension Substances 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- LXNAVEXFUKBNMK-UHFFFAOYSA-N palladium(II) acetate Substances [Pd].CC(O)=O.CC(O)=O LXNAVEXFUKBNMK-UHFFFAOYSA-N 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 230000009038 pharmacological inhibition Effects 0.000 description 1
- LIGACIXOYTUXAW-UHFFFAOYSA-N phenacyl bromide Chemical compound BrCC(=O)C1=CC=CC=C1 LIGACIXOYTUXAW-UHFFFAOYSA-N 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- LFSXCDWNBUNEEM-UHFFFAOYSA-N phthalazine Chemical compound C1=NN=CC2=CC=CC=C21 LFSXCDWNBUNEEM-UHFFFAOYSA-N 0.000 description 1
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- LWMPFIOTEAXAGV-UHFFFAOYSA-N piperidin-1-amine Chemical compound NN1CCCCC1 LWMPFIOTEAXAGV-UHFFFAOYSA-N 0.000 description 1
- PEUGKEHLRUVPAN-UHFFFAOYSA-N piperidin-3-amine Chemical compound NC1CCCNC1 PEUGKEHLRUVPAN-UHFFFAOYSA-N 0.000 description 1
- BCIIMDOZSUCSEN-UHFFFAOYSA-N piperidin-4-amine Chemical compound NC1CCNCC1 BCIIMDOZSUCSEN-UHFFFAOYSA-N 0.000 description 1
- 239000003600 podophyllotoxin derivative Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000000524 positive electrospray ionisation mass spectrometry Methods 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000036515 potency Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 150000003141 primary amines Chemical group 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- DRINJBFRTLBHNF-UHFFFAOYSA-N propane-2-sulfonyl chloride Chemical compound CC(C)S(Cl)(=O)=O DRINJBFRTLBHNF-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- CPNGPNLZQNNVQM-UHFFFAOYSA-N pteridine Chemical compound N1=CN=CC2=NC=CN=C21 CPNGPNLZQNNVQM-UHFFFAOYSA-N 0.000 description 1
- 230000000541 pulsatile effect Effects 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- CDRNYKLYADJTMN-UHFFFAOYSA-N pyridine-3-sulfonyl chloride Chemical compound ClS(=O)(=O)C1=CC=CN=C1 CDRNYKLYADJTMN-UHFFFAOYSA-N 0.000 description 1
- CULAGHAXBSYDOC-UHFFFAOYSA-N pyrimidine-2-sulfonyl chloride Chemical compound ClS(=O)(=O)C1=NC=CC=N1 CULAGHAXBSYDOC-UHFFFAOYSA-N 0.000 description 1
- AUKXFNABVHIUAC-UHFFFAOYSA-N pyrrolidin-2-ylmethylamine Chemical compound NCC1CCCN1 AUKXFNABVHIUAC-UHFFFAOYSA-N 0.000 description 1
- NGXSWUFDCSEIOO-UHFFFAOYSA-N pyrrolidin-3-amine Chemical compound NC1CCNC1 NGXSWUFDCSEIOO-UHFFFAOYSA-N 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000007420 reactivation Effects 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 125000006413 ring segment Chemical group 0.000 description 1
- 239000012056 semi-solid material Substances 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000005783 single-strand break Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000000707 stereoselective effect Effects 0.000 description 1
- 239000012058 sterile packaged powder Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- NBNBICNWNFQDDD-UHFFFAOYSA-N sulfuryl dibromide Chemical compound BrS(Br)(=O)=O NBNBICNWNFQDDD-UHFFFAOYSA-N 0.000 description 1
- OBTWBSRJZRCYQV-UHFFFAOYSA-N sulfuryl difluoride Chemical compound FS(F)(=O)=O OBTWBSRJZRCYQV-UHFFFAOYSA-N 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000007916 tablet composition Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- WDPWEXWMQDRXAL-UHFFFAOYSA-N tert-butyl 1,4-diazepane-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCCNCC1 WDPWEXWMQDRXAL-UHFFFAOYSA-N 0.000 description 1
- ZJFAJXKVQGTZRK-UHFFFAOYSA-N tert-butyl 5,6-dihydro-4h-pyrimidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCCN=C1 ZJFAJXKVQGTZRK-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- CKXZPVPIDOJLLM-UHFFFAOYSA-N tert-butyl n-piperidin-4-ylcarbamate Chemical compound CC(C)(C)OC(=O)NC1CCNCC1 CKXZPVPIDOJLLM-UHFFFAOYSA-N 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical group 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- 150000007979 thiazole derivatives Chemical class 0.000 description 1
- 150000003557 thiazoles Chemical class 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- 239000012049 topical pharmaceutical composition Substances 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000563 toxic property Toxicity 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 108091006108 transcriptional coactivators Proteins 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000004565 tumor cell growth Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- WAEXFXRVDQXREF-UHFFFAOYSA-N vorinostat Chemical compound ONC(=O)CCCCCCC(=O)NC1=CC=CC=C1 WAEXFXRVDQXREF-UHFFFAOYSA-N 0.000 description 1
- 229960000237 vorinostat Drugs 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/02—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
- C07D277/20—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D277/32—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D277/56—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/02—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
- C07D277/20—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D277/32—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D277/38—Nitrogen atoms
- C07D277/42—Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
Definitions
- This invention relates to compounds which inhibit histone deacetylase (HDAC) enzymatic activity.
- This invention is also directed to pharmaceutical compositions comprising such compounds as well as to treat conditions, particularly proliferative conditions, mediated at least in part by HDAC.
- HDAC histone deacetylase
- nucleosomes In all eukaryotic cells, genomic DNA in chromatine associates with histones to form nucleosomes. Each nucleosome consists of a protein octamer made up of two copies of each histone: H2A, H2B, H3 and H4. DNA winds around this protein core, with the basic amino acids of the histones interacting with the negatively charged phosphate groups of the DNA. The most common posttranslational modification of these core histones is the reversible acetylation of the ⁇ -amino groups of conserved highly basic N-terminal lysine residues.
- HDAC histone deacetylase
- histone deacetylation is correlated with transcriptional repression.
- Histone acetyltransferases were shown to act as transcriptional coactivators, whereas deacetylases were found to belong to transcriptional repression pathways.
- HDAC inhibitors can have great therapeutic potential in the treatment of cell proliferative diseases or conditions.
- HDAC histone deacetylases
- Trichostatin A has also been reported to be useful in the treatment of fibrosis, e.g., liver fibrosis and liver chirrhosis. 3
- This invention provides compounds which inhibit HDAC activity and, accordingly, are useful as anti-proliferative agents in the treatment of proliferative diseases.
- this invention is directed to a compound of Formula I:
- R is selected from the group consisting of hydrogen, aryl, substituted aryl, heteroaryl substituted heteroaryl, alkyl and substituted alkyl;
- R 12 is selected from the group consisting of —NR 14 OH, —OH, —NR 14 R 15 , —OR 14 , —(C 1 -C 6 )alkylene-SR 14 , —(C 1 -C 6 )alkylene-OR 14 , —(C 1 -C 6 )alkylene-NR 14 R 15 , —CF 3 ;
- R 14 and R 15 are independently selected from the group consisting of hydrogen, (C 1 -C 6 )alkyl, (C 1 -C 6 )substituted alkyl, aryl, substituted aryl and where R 14 and R 15 together with the nitrogen atom bound thereto form a heterocyclic or substituted heterocyclic ring;
- V, W, X, Y, and Z form a 5-membered heteroaryl where W, X, and Y are independently selected from ⁇ C(R 11 )—, —N ⁇ , —N(R 14 )—, —O—, —S—, —S(O)—, and/or —S(O) 2 —, and V and Z independently form ⁇ C(R 14 )— and/or >N— where R 14 is as defined above and provided that at least one of V, W, X, Y and Z is ⁇ C(R 14 )—, and further provided that the ring formed by V, W, X, Y, and Z is not a thiophene;
- the ring defined by A above is selected from the group consisting of cycloakylene, substituted cycloalkylene, heterocyclene, substituted heterocyclene, arylene, heteroarylene, -het-(L 2 ) b -het-, -het-(L 2 ) b -cyclo-, -cyclo-(L 2 ) b -het-, and -cyclo-(L 2 ) b -cyclo-;
- each b is independently 0 or 1;
- L 2 is selected from the group consisting of a covalent bond, (C 1 -C 4 )alkylene, substituted (C 1 -C 4 )alkylene, —NH(C 1 -C 4 )alkylene, (C 1 -C 4 )alkyleneNH—, provided that the nitrogen atom of the —NH(C 1 -C 4 )alkylene and (C 1 -C 4 )alkyleneNH— group are not attached to a nitrogen atom in the het or in cyclo groups;
- T is selected from the group consisting of a bond, —SO 2 —[(C 1 -C 3 )alkylene] p -, —[(C 1 -C 3 )alkylene], —SO 2 —, —NR 16 SO 2 —[(C 1 -C 3 )alkylene] p -, —SO 2 NR 16 —[(C 1 -C 3 )alkylene] p -, —C(O)—[(C 1 -C 3 )alkylene] p -, —[(C 1 -C 3 )alkylene] p -C(O)—, —NR 16 C(O)—[(C 1 -C 3 )alkylene] p —, —C(O)NR 16 —[(C 1 -C 3 )alkylene] p —, —C(O)NR 16 —[(C 1 -C 3 )alkylene] p —,
- Q is selected from the group consisting of a covalent bond, —O—, (C 1 -C 3 )alkylene, —C(O)—, —SO 2 —, —NR 1 C(O)NR 1 —, —NR 1 C(O)—, —C(O)NR 1 —, —(C 1 -C 3 -alkylene) p NR 1 — and —NR 1 —(C 1 -C 3 -alkylene) p where R 1 is hydrogen or alkyl and p is zero or one, provided that when Q is one of —NR 1 C(O)NR 1 —, —NR 1 C(O)—, —C(O)NR 1 —, —(C 1 -C 3 -alkylene) p NR 1 —, or —NR 1 —(C 1 -C 3 -alkylene) p and p is not zero Q is not attached to a nitrogen atom;
- L is selected from the group consisting of a covalent bond, (C 1 -C 4 )alkylene, substituted (C 1 -C 4 )alkylene, (C 2 -C 4 )alkenylene, and substituted (C 2 -C 4 )alkenylene, (C 3 -C 8 )cycloalkylene, and substituted (C 3 -C 8 )cycloalkylene;
- Preferred heteroaryl groups defined by V, W, X, Y and Z include furan, imidazole, pyrrazole, isoxazole, isothiazole, oxadiazole, thiazole, tetrazole, triazole, oxazole, pyrrole, thiadiazole, and the like, excluding thiophene.
- this invention is directed to a compound of Formula Ia:
- R is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl and substituted heteroaryl;
- R 12 is selected from the group consisting of —NR 14 OH, —OH, —NR 14 R 15 , —OR 14 , —(C 1 -C 6 )alkylene-SR 14 , —(C 1 -C 6 )alkylene-OR 14 , —(C 1 -C 6 )alkylene-NR 14 R 15 , —CF 3 ;
- R 14 , R 15 are independently selected from the group consisting of hydrogen, (C 1 -C 6 )alkyl, (C 1 -C 6 )substituted alkyl, aryl, substituted aryl and where R 14 and R 15 together with the nitrogen atom bound thereto form a heterocyclic or substituted heterocyclic ring;
- the ring defined by A above is selected from the group consisting of cycloakylene, substituted cycloalkylene, hetrocyclene, substituted heterocyclene, arylene, heteroarylene, -het-(L 2 ) b -het-, -het-(L 2 ) b -cyclo-, -cyclo-(L 2 ) b -het-, and cyclo-(L 2 ) b -cyclo-;
- each b is independently 0 or 1;
- L 2 is selected from the group consisting of a covalent bond, (C 1 -C 4 )alkylene, substituted (C 1 -C 4 )alkylene, —NH(C 1 -C 4 )alkylene, (C 1 -C 4 )alkyleneNH—, provided that the nitrogen atom of the —NH(C 1 -C 4 )alkylene and (C 1 -C 4 )alkyleneNH— group are not attached to a nitrogen atom in the het or in cyclo groups;
- T is selected from the group consisting of —SO 2 —[(C 1 -C 3 )alkylene] p -, —[(C 1 -C 3 )alkylene] p -SO 2 —, —NR 16 SO 2 —[(C 1 -C 3 )alkylene] p -, —SO 2 NR 16 —[(C 1 -C 3 )alkylene] p -, —C(O)—[(C 1 -C 3 )alkylene] p -, —[(C 1 -C 3 )alkylene] p -C(O)—, —NR 16 C(O)—[(C 1 -C 3 )alkylene] p -, —C(O)NR 16 —[(C 1 -C 3 )alkylene] p -, —N(R 16 )—[(C 1 -C 3 )alkylene] p and (C 1 -
- W is selected from the group consisting of —O—, —S—, —S(O)—, —S(O) 2 — and —NR 1 — where R 1 is as defined below;
- X and Y is selected from the group consisting of >CH and >N such that the 5 membered ring defined by W, X, Y and the two >CH groups is a heteroaryl ring, with the proviso that the ring is not thiophene;
- Q is selected from the group consisting of a covalent bond, —O—, (C 1 -C 3 )alkylene, —C(O)—, —SO 2 —, —NR 1 C(O)NR 1 —, —NR 1 C(O)—, —C(O)NR 1 —, —(C 1 -C 3 -alkylene) p NR 1 — and —NR 1 —(C 1 -C 3 -alkylene) p where R 1 is hydrogen or alkyl and p is zero or one; provided that Q is not attached to X, Y or W when W is —O—, —S—, —S(O)—, —S(O) 2 — and further provided that when Q is —NR 1 — then Q is attached to a carbon atom of the ring defined by A above;
- L is selected from the group consisting of a covalent bond, (C 1 -C 4 )alkylene, substituted (C 1 -C 4 )alkylene, (C 2 -C 4 )alkenylene, and substituted (C 2 -C 4 )alkenylene, (C 3 -C 8 )cycloalkylene, and substituted (C 3 -C 8 )cycloalkylene;
- Preferred A rings in Formulae I and Ia include by are not limited to optionally substituted piperidine, piperazine, morpholine, piperazinone, piperazindione, azetidine, hydantoin, oxazolidine, octahydro-pyrrolo[3,4-c]pyrrole, tetrahydropyridine, hexene, pyrrolidine, and the like.
- the R-T-A-Q fragment of Formulae I and Ia above is selected from the following structures, wherein b is 0 or 1, each R, R 1 and R 16 are as defined herein above, and further wherein each depicted A ring is optionally substituted with from 1 to 3 substituents selected from hydrogen, (C 1 -C 6 )alkyl, (C 1 -C 6 )substituted alkyl, aryl, and substituted aryl.
- Additional preferred A rings include by are not limited to optionally substituted bicyclic or spirocyclic groups.
- the R-T-A-Q fragment of Formulae I and Ia above is selected from the following structures, wherein b is 0 or 1, each R and R 16 are as defined herein above, and further wherein each depicted A ring is optionally substituted with from 1 to 3 substituents selected from hydrogen, (C 1 -C 6 )alkyl, (C 1 -C 6 )substituted alkyl, aryl, and substituted aryl.
- Preferred A rings also include aromatic rings, including, but not limited to, optionally substituted phenyl, pyridine, pyridazine, pyrimidine, triazine, and the like. More preferably, when A is an aromatic ring, the R-T-A-Q fragment of Formulae I and Ia above is selected from the following structures, wherein R and T are as defined hereinabove, and further wherein each depicted A ring is optionally substituted with from 1 to 3 substituents selected from hydrogen, (C 1 -C 6 )alkyl, (C 1 -C 6 )substituted alkyl, aryl, and substituted aryl.
- the compounds of this invention are represented by formula II:
- each R 3 is independently selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl and substituted heteroaryl; n, z, and z′ are independently integers equal to zero, one or two, with the proviso that both z and z′ are not zero;
- n, z, L, R, R 3 , T, X and Y are as defined above; as well as tautomers, isomers, prodrugs and pharmaceutically acceptable salts thereof.
- n, z, L, Q, R, R 3 , T, X and Y are as defined above, z is zero or one,
- n, z, L, Q, R, R 3 , T, X and Y are as defined above as well as tautomers, isomers, prodrugs, and pharmaceutically acceptable salts thereof.
- R is preferably aryl and more preferably is phenyl or naphthyl (e.g., 2-napthyl).
- R is preferably substituted aryl and more preferably, 3,4-dimethoxyphenyl, 4-trifluoromethoxyphenyl, 4-methylphenyl. 4-trifluororomethylphenyl, 4-nitrophenyl, 4-acetylphenyl, thiophen-2-yl, biphenyl, 5-(N,N-dimethylamino)-naphthalenyl, and 4-fluorophenyl.
- R is preferably alkyl or substituted alkyl, more preferably methyl, benzyl, 2-hydroxyethyl, 2-aminoethyl, and 2-phenylethyl.
- R 3 is alkyl and n is one. In another embodiment, n is zero.
- Q is preferably a covalent bond, —NR 1 —, —(CH 2 )NR 1 —, —SO 2 —, —C(O)—, or —O—.
- Q is a covalent bond and the ring defined by A above is piperidinyl. In still another embodiment, Q is a covalent bond and the ring defined by A above is piperazinyl.
- X is preferably nitrogen and Y is preferably CH.
- T is preferably selected from the group consisting of a bond, —SO 2 —, —SO 2 NH—, —CH 2 NR 16 —.
- L is a covalent bond.
- L is an alkenylene group which is preferably ethenylene and more preferably trans (or Z) ethenylene.
- L is a cycloalkylene group, and more preferably cyclopropylene including cis-cyclopropylene and trans-cyclopropylene.
- cis-cyclopropylene (as well as cis-cycloalkylene) refers to the groups:
- trans-cyclopropylene (as well as trans-cycloalkylene) refers to the groups:
- Still another class of compounds of this invention includes compounds of formula VI:
- R is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl and substituted heteroaryl;
- the ring defined by A above is selected from the group consisting of cycloalkylene, substituted cycloalkylene, heterocyclene and substituted heterocyclene;
- T is selected from the group consisting of —SO 2 —[(C 1 -C 3 )alkylene] p —, —[(C 1 -C 3 )alkylene] p -SO 2 —, —NR 16 SO 2 —[(C 1 -C 3 )alkylene] p -, —SO 2 NR 16 —[(C 1 -C 3 )alkylene] p -, —C(O)—[(C 1 -C 3 )alkylene] p —, —[(C 1 -C 3 )alkylene] p —C(O)—, —NR 16 C(O)—[(C 1 -C 3 )alkylene] p —, —C(O)NR 16 —[(C 1 -C 3 )alkylene] p —, —N(R 16 )—[(C 1 -C 3 )alkylene] p and (C 1 -
- W is selected from the group consisting of —O—, —S—, —S(O)—, —S(O) 2 — and —NR 1 — where R 1 is as defined above;
- X is selected from the group consisting of >CH and >N such that the 5 membered ring defined by W, X and the pendant >CH groups is a heteroaryl ring;
- Q is selected from the group consisting of a covalent bond, —O—, (C 1 -C 3 )alkylene, —C(O)—, —SO 2 —, —NR 1 C(O)NR 1 —, —NR 1 C(O)—, —C(O)NR 1 —, —(C 1 -C 3 -alkylene) p NR 1 — and —NR 1 —(C 1 -C 3 -alkylene) p where R 1 is hydrogen or alkyl and p is zero or one, provided that Q is not attached to X or W when W is —O—, —S—, —S(O)—, —S(O) 2 — and further provided that when Q is —NR 1 — then Q is attached to a carbon atom of the ring defined by A above;
- L is selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkenylene, cycloalkylene, and substituted cycloalkylene provided that L is attached to a carbon atom of the 5 membered heteroaryl group;
- the cyclic structure defined by B together with the unsaturation in the heteroaryl ring, is selected from the group consisting of cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, unsaturated heterocyclc and substituted unsaturated heterocyclic; and
- Particularly preferred compounds of formula VI include those of formula VII:
- n, z, K, R 3 , L, Q, T, and X are as defined above as well as tautomers, isomers, prodrugs, and pharmaceutically acceptable salts thereof.
- this invention is directed to a pharmaceutical composition comprising an effective amount of a compound according to any of formulas I-VII and a pharmaceutically inert carrier.
- this invention is directed to pharmaceutical compositions comprising an effective amount of a compound according to any of formulas I-VII, an effective amount of at least one anti-cancer agent, and a pharmaceutically inert carrier.
- this invention is directed to a method for inhibiting a proliferative disorder in a mammalian patient which method comprises administering to said patient a pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of formula I-VII or a mixture thereof.
- this invention is directed to a method for inhibiting a proliferative disorder in a mammalian patient which method comprises administering to said patient a pharmaceutical composition comprising a pharmaceutically acceptable carrier, an effective amount of at least one anti-cancer agent, and a therapeutically effective amount of a compound of formula I-VII or a mixture thereof.
- this invention is directed to a method for inhibiting a proliferative disorder in a mammalian patient which method comprises administering to said patient a pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of formula I-VII or a mixture thereof in combination with at least one anti-cancer agent.
- the compounds of the invention may be advantageously employed in combination with one or more other medicinal agents, more particularly, with other anti-cancer agents.
- Preferred compounds of this invention include those found in the Tables below:
- Particularly preferred compounds include the following compounds and pharmaceutically acceptable salts thereof:
- this invention is directed to compounds, pharmaceutical compositions and methods for inhibiting histone deacetylase (HDAC) enzymatic activity.
- HDAC histone deacetylase
- Alkyl refers to monovalent alkyl groups having from 1 to 10 carbon atoms, preferably from 1 to 5 carbon atoms and more preferably 1 to 3 carbon atoms. This term is exemplified by groups such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, t-butyl, n-pentyl and the like.
- Substituted alkyl refers to a monovalent alkyl group having from 1 to 3, and preferably 1 to 2, substituents selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, amino, substituted amino, aminoacyl, aryl, substituted aryl, aryloxy, substituted aryloxy, cyano, halogen, hydroxyl, nitro, carboxyl, carboxyl esters, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
- Alkylene refers to divalent alkylene groups having from 1 to 10 carbon atoms, preferably from 1 to 5 carbon atoms and more preferably 1 to 3 carbon atoms. This term is exemplified by groups such as methylene, ethylene, n-propylene (1,3-propylene), iso-propylene (1,2-propylene), n-butylene (1,4-butylene), n-pentylene (1,5-pentylene), and the like.
- Substituted alkylene refers to a divalent alkylene group having from 1 to 3, and preferably 1 to 2, substituents selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, amino, substituted amino, aminoacyl, aryl, substituted aryl, aryloxy, substituted aryloxy, cyano, halogen, hydroxyl, nitro, carboxyl, carboxyl esters, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
- Alkoxy refers to the group “alkyl-O—” which includes, by way of example, methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, t-butoxy, sec-butoxy, n-pentoxy and the like.
- Substituted alkoxy refers to the group “substituted alkyl-O—”.
- Acyl refers to the groups H—C(O)—, alkyl-C(O)—, substituted alkyl-C(O)—, alkenyl-C(O)—, substituted alkenyl-C(O)—, cycloalkyl-C(O)—, substituted cycloalkyl-C(O)—, aryl-C(O)—, substituted aryl-C(O)—, heteroaryl-C(O)—, substituted heteroaryl-C(O), heterocyclic-C(O)—, and substituted heterocyclic-C(O)—.
- “Acylamino” refers to the group —C(O)NR 10 R 10 where each R 10 is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic and where each R 10 is joined to form together with the nitrogen atom a heterocyclic or substituted heterocyclic ring.
- Alkenyl refers to a monovalent alkenyl group having from 2 to 6 carbon atoms and more preferably 2 to 4 carbon atoms and having at least 1 and preferably from 1-2 sites of alkenyl unsaturation.
- alkenyl encompasses any and all combinations of cis and trans isomers arising from the presence of unsaturation.
- Substituted alkenyl refers to alkenyl groups having from 1 to 3 substituents, and preferably 1 to 2 substituents, selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, amino, substituted amino, aminoacyl, aryl, substituted aryl, aryloxy, substituted aryloxy, cyano, halogen, hydroxyl, nitro, carboxyl, carboxyl esters, cycloalkyl substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic provided that any hydroxyl substitution is not on a vinyl carbon atom.
- Alkenylene refers to a divalent alkenyl group having from 2 to 6 carbon atoms and more preferably 2 to 4 carbon atoms and having at least 1 and preferably from 1-2 sites of alkenyl unsaturation.
- alkenylene encompasses any and all combinations of cis and trans isomers arising from the presence of unsaturation.
- Substituted alkenylene refers to alkenylene groups having from 1 to 3 substituents, and preferably 1 to 2 substituents, selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminoacyl, aryl, substituted aryl, aryloxy, substituted aryloxy, cyano, halogen, hydroxyl, nitro, carboxyl, carboxyl esters, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic provided that any hydroxyl substitution is not on a vinyl carbon atom.
- Amino refers to the group —NH 2 .
- Substituted amino refers to the group —NR′R′′ where R′ and R′′ are independently selected from the group consisting of hydrogen, alkyl substituted alkyl, alkenyl, substituted alkenyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic and where R′ and R′′ are joined, together with the nitrogen bound thereto to form a heterocyclic or substituted heterocylic group provided that R′ and R′′ are both not hydrogen.
- R′ is hydrogen and R′′ is alkyl
- the substituted amino group is sometimes referred to herein as alkylamino.
- R′ and R′′ are alkyl
- the substituted amino group is sometimes referred to herein as dialkylamino.
- “Aminoacyl” refers to the groups —NR 11 C(O)alkyl, —NR 11 C(O)substituted alkyl, —NR 11 C(O)cycloalkyl, —NR 11 C(O)substituted cycloalkyl, —NR 11 C(O)alkenyl, —NR 11 C(O)substituted alkenyl, —NR 11 C(O)aryl, —NR 11 C(O)substituted aryl, —NR 11 C(O)heteroaryl, —NR 11 C(O)substituted heteroaryl, —NR 11 C(O)heterocyclic, and —NR 11 C(O)substituted heterocyclic where R 11 is hydrogen or alkyl.
- Aryl or “Ar” refers to a monovalent aromatic carbocyclic group of from 6 to 14 carbon atoms having a single ring (e.g., phenyl) or multiple condensed rings (e.g., naphthyl or anthryl) which condensed rings may or may not be aromatic (e.g., 2-benzoxazolinone, 2H-1,4-benzoxazin-3(4H)-one-7-yl, and the like) provided that the point of attachment is to an aromatic ring atom.
- Preferred aryls include phenyl and naphthyl, e.g, 2-naphthyl.
- Substituted aryl refers to aryl groups which are substituted with from 1 to 3 substituents, and preferably 1 to 2 substituents, selected from the group consisting of hydroxy, acyl, acylamino, alkyl, substituted alkyl, alkoxy, substituted alkoxy, alkenyl, substituted alkenyl, amino, substituted amino, aminoacyl, aryl, substituted aryl, aryloxy, substituted aryloxy, cycloalkoxy, substituted cycloalkoxy, carboxyl, carboxyl esters, cyano, cycloalkyl, substituted cycloalkyl, halo, nitro, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, heteroaryloxy, substituted heteroaryloxy, heterocyclyloxy, and substituted heterocyclyloxy.
- Aryloxy refers to the group aryl-O— that includes, by way of example, phenoxy, naphthoxy, and the like.
- Substituted aryloxy refers to substituted aryl-O— groups.
- Carboxyl refers to —COOH or pharmaceutically acceptable salts thereof.
- Carboxyl esters refers to the groups —C(O)O-alkyl, —C(O)O-substituted alkyl, —C(O)O-aryl, and —C(O)O-substituted aryl wherein alkyl, substituted alkyl, aryl and substituted aryl are as defined herein.
- Cycloalkyl refers to monovalent cyclic alkyl groups of from 3 to 10 carbon atoms having single or multiple condensed rings which condensed rings may or may not be cycloalkyl provided that the point of attachment is to a cycloalkyl ring atom.
- Examples of cycloalkyl groups include, by way of example, adamantyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclooctyl and the like.
- “Substituted cycloalkyl” refers to a cycloalkyl group, having from 1 to 5 substituents selected from the group consisting of oxo ( ⁇ O), thioxo ( ⁇ S), alkyl, substituted alkyl, alkoxy, substituted alkoxy, acyl, acylamino, amino, substituted amino, aminoacyl, aryl, substituted aryl, aryloxy, substituted aryloxy, cyano, halogen, hydroxyl, nitro, carboxyl, carboxyl esters, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
- substituents selected from the group consisting of oxo ( ⁇ O), thioxo ( ⁇ S), alkyl, substituted alkyl, alkoxy, substituted alkoxy, acyl, acylamino, amino, substituted amino, aminoacyl, aryl
- Cycloalkenyl refers to monovalent cyclic alkenyl groups of from 4 to 10 carbon atoms, preferably 5 to 8 carbon atoms, having single or multiple condensed rings which condensed rings may or may not be cycloalkenyl provided that the point of attachment is to a cycloalkenyl ring atom.
- Examples of cycloalkenyl groups include, by way of example, cyclopenten-4-yl, cyclooctene-5-yl and the like.
- “Substituted cycloalkenyl” refers to a cycloalkenyl group, having from 1 to 5 substituents selected from the group consisting of oxo ( ⁇ O), thioxo ( ⁇ S), alkyl, substituted alkyl, alkoxy, substituted alkoxy, acyl, acylamino, amino, substituted amino, aminoacyl, aryl, substituted aryl, aryloxy, substituted aryloxy, cyano, halogen, hydroxyl, nitro, carboxyl, carboxyl esters, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic provided that any hydroxyl substitution is not on an ethylenic carbon atom.
- Cycloalkylene refers to divalent cyclic alkyl groups of from 3 to 10 carbon atoms having single or multiple condensed rings which condensed rings may or may not be cycloalkyl provided that the points of attachment are to cycloalkyl ring atoms. Cycloalkylene rings include, by way of example, cyclopropylene, 1,2-cyclobutylene, 1,3-cyclopentylene, 1,4-cyclooctylene, and the like. Cycloalkylene includes all cis and trans isomers encompassed by the particular cycloalkylene group.
- “Substituted cycloalkylene” refers to a cycloalkylene group, having from 1 to 5 substituents selected from the group consisting of oxo ( ⁇ O), thioxo ( ⁇ S), alkyl, substituted alkyl, alkoxy, substituted alkoxy, acyl, acylamino, amino, substituted amino, aminoacyl, aryl, substituted aryl, aryloxy, substituted aryloxy, cyano, halogen, hydroxyl, nitro, carboxyl, carboxyl esters, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
- substituents selected from the group consisting of oxo ( ⁇ O), thioxo ( ⁇ S), alkyl, substituted alkyl, alkoxy, substituted alkoxy, acyl, acylamino, amino, substituted amino, aminoacyl, aryl
- Cycloalkoxy refers to —O-cycloalkyl groups.
- Substituted cycloalkoxy refers to —O-substituted cycloalkyl groups.
- Halo or “halogen” refers to fluoro, chloro, bromo and iodo and preferably is fluoro or chloro.
- Heteroaryl refers to a monovalent aromatic group of from 1 to 15 carbon atoms, preferably from 1 to 10 carbon atoms, and 1 to 4 heteroatoms selected from the group consisting of oxygen, nitrogen, —S—, —SO—, and —SO 2 — within the ring.
- Such heteroaryl groups can have a single ring (e.g., pyridyl or furyl) or multiple condensed rings (e.g., indolizinyl or benzothienyl) provided that the point of attachment is through a heteroaryl ring atom.
- Preferred heteroaryls include pyridyl, pyrrolyl, indolyl, thiophenyl, and furyl.
- Substituted heteroaryl refers to heteroaryl groups that are substituted with from 1 to 3 substituents selected from the same group of substituents defined for substituted aryl.
- Heteroaryloxy refers to the group —O-heteroaryl and “substituted heteroaryloxy” refers to the group —O-substituted heteroaryl.
- Heterocycle or “heterocyclic” refers to a monovalent saturated or unsaturated group having a single ring or multiple rings, including fused rings, spiro rings, bicyclic rings, and rings connected by an “exo single bond,” from 1 to 10 carbon atoms and from 1 to 4 hetero atoms selected from the group consisting of nitrogen, sulfur, —S(O)—, —S(O) 2 —, or oxygen within the ring wherein, in fused ring systems, one or more the rings can be aryl or heteroaryl provided that the point of attachment is to a heterocyclic (non-aromatic) ring atom. In addition one or more carbon atoms within the ring may contain an oxo ( ⁇ O) or a thioxo ( ⁇ S) group.
- Exo-single bond refers to a bond between two heterocycle or heterocyclic rings, as exemplified as follows, wherein the bond between A and B is an exo-single bond:
- Heterocyclene refers to a divalent saturated or unsaturated group having a single ring or multiple condensed rings, from 1 to 10 carbon atoms and from 1 to 4 hetero atoms selected from the group consisting of nitrogen, sulfur or oxygen within the ring wherein, in fused ring systems, one or more the rings can be aryl or heteroaryl.
- Substituted heterocyclene refers to heterocyclene groups that are substituted with from 1 to 3 of the same substituents as defined for substituted cycloalkylene.
- heterocycles and heteroaryls include, but are not limited to, azetidine, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, dihydroindole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthylpyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, isothiazole, phenazine, isoxazole, phenoxazine, phenothiazine, imidazolidine, imidazoline, piperidine, piperazine, indoline, phthalimide, 1,2,3,4-tetrahydro-isoquinoline, 4,5,
- Heterocyclyloxy refers to the group —O-heterocyclic and “substituted heterocyclyloxy” refers to the group —O-substituted heterocyclic.
- cyclo refers to an cycloalkyl ring of from 3 to 7 carbon atoms.
- the “cyclo” ring may optionally contain 1 or 2 points of unsaturation within the ring and the ring is optionally substituted with from about 1 to about 3 substituents selected from the group consisting of alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, and the like.
- the cycloalkyl ring may also have one or two of the carbon atoms in the ring replaced by a >C ⁇ O or by >C ⁇ S moiety.
- heterocyclic ring refers to a heterocyclic ring of from 3 to 7 carbon atoms and from 1 to 4 hetero atoms selected from N, O and S.
- the heterocyclic ring may optionally contain 1 or 2 points of unsaturation within the ring and the ring is optionally substituted with from about 1 to about 3 substituents selected from the group consisting of alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, and the like.
- the heterocyclic ring may also have one or two of the carbon atoms in the ring replaced by a >C ⁇ O or by >C ⁇ S moiety.
- -het-(L 2 ) b -het- refers to any combinations of “het” and “cyclo” groups linked together by a linker (when b is 1) selected from the group consisting of a bond, alkylene, substituted alkylene, alkenylene, and substituted alkenylene, cycloalkylene, and substituted cycloalkylene.
- a linker when b is 1
- the combinations of het and cyclo include multicyclic groups (of from 1 to 3 rings) wherein the rings may be fused multicyclic rings, or spirocyclic rings.
- “Pharmaceutically acceptable salt” refers to pharmaceutically acceptable salts of a compound of Formula I which salts are derived from a variety of organic and inorganic counter ions well known in the art and include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, tetraalkylammonium, and the like; and when the molecule contains a basic functionality, salts of organic or inorganic acids, such as hydrochloride, hydrobromide, tartrate, mesylate, acetate, maleate, oxalate and the like.
- Tautomers refers to structures which are art recognized to be in equilibrium with the depicted structure.
- 1,2,4-imidazole has the following tautomeric structures:
- platinum coordination compound is used herein to denote any tumor cell growth inhibiting platinum coordination compound which provides platinum in the form of an ion.
- taxane compounds indicates a class of compounds having the taxane ring system and related to or derived form extracts from certain species of yew (Taxus) trees.
- topisomerase inhibitors is used to indicate enzymes that are capable of altering DNA topology in eukaryotic cells. They are critical for important cellular functions and cell proliferation. There are two classes of topoisomerases in eukaryotic cells, namely type I and type II. Topoisomerase I is a monomeric enzyme of approximately 100,000 molecular weight. The enzyme binds to DNA and introduces a transient single-strand break, unwinds the double helix (or allows it to unwind) and subsequently reseals the break before dissociating from the DNA strand. Topisomerase II has similar mechanism of action which involves the introduction of DNA strand breaks of the formation of free radicals.
- camptothecin compounds is used to indicate compounds that are related to or derived from the parent camptothecin compound which is water-insoluble alkaloid derived from the Chinese tree Camptothecin acuminate and the Indian tree Nothapodytes foetida.
- podophyllotoxin compounds is used to indicate compounds that are related to or derived from the parent podophyllotoxin, which is extracted from the mandrake plant.
- anti-tumour vinca alkaloids is used to indicate compounds that are related to or derived from extracts of the periwinkle plant (Vinca rosea).
- alkylating agents encompass a divers group of chemicals that have the common feature that they have the capacity to contribute, under physiological conditions, alkyl groups to biologically vital macromolecules such as DNA. With most of the more important agents such as the nitrogen mustards and the nitrosoureas, the active alkylating moieties are generated in vivo after complex degradative reactions, some of which are enzymatic. The most important pharmacological actions of the alkylating agents are those that disturb the fundamental mechanisms concerned with cell proliferation in particular DNA synthesis and cell division. The capacity of alkylating agents to interfere with DNA function and integrity in rapidly proliferating tissues provides the basis for their therapeutic applications and for many of their toxic properties.
- anti-tumour anthracycline derivatives comprise antibiotics obtained from the fungus Strep. Strep.
- Strep. Strep.
- Strep. Strep.
- caesius and their derivatives, characterized by having a tetracycline ring structure with an unusual sugar, daunosamine, attached by a glycosidic linkage.
- Trastuzumab is highly purified recombinant DNA-derived humanized monoclonal IgG1 kappa antibody that binds with high affinity and specificity to the extracellular domain of the HER2 receptor.
- estrogen receptor antagonists and “selective estrogen receptor modulators” are used to indicate competitive inhibitors of estradiol binding to the estrogen receptor (ER). Selective estrogen receptor modulators, when bound to the ER, induces a change in the three-dimensional shape of the receptor, inhibiting its binding to the estrogen responsive element (ERE) on DNA.
- EEE estrogen responsive element
- estrogen deprivation through aromatase inhibition or inactivation is an effective and selective treatment for some postmenopausal patients with hormone-dependent breast cancer.
- antiestrogen agent is used herein to include not only estrogen receptor antagonists and selective estrogen receptor modulators but also aromatase inhibitors as discussed above.
- the term “differentiating agents” encompass compounds that can, in various ways, inhibit cell proliferation and induce differentiation.
- Vitamin D and retinoids are known to play a major role in regulating growth and differentiation of a wide variety of normal and malignant cell types.
- Retinoic acid metabolism blocking agents RAMBA's
- DNA methylation changes are among the most common abnormalities in human neoplasia. Hypermethylation within the promoters of selected genes is usually associated with inactivation of the involved genes.
- the term “DNA methyl transferase inhibitors” is used to indicate compounds that act through pharmacological inhibition of DNA methyl transferase and reactivation of tumour suppressor gene expression.
- kinase inhibitors comprises potent inhibitors of kinases that are involved in cell cycle progression and programmed cell death (apoptosis).
- farnesyltransferase inhibitors is used to indicate compounds that were designed to prevent farnesylation of Ras and other intracellular proteins. They have been shown to have effect on malignant cell proliferation and survival.
- the compounds of this invention can be prepared from readily available starting materials using the following general methods and procedures. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are given, other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.
- protecting groups may be necessary to prevent certain functional groups from undergoing undesired reactions
- Suitable protecting groups for various functional groups as well as suitable conditions for protecting and deprotecting particular functional groups are well known in the art. For example, numerous protecting groups are described in T. W. Greene and G. M. Wuts, Protecting Groups in Organic Synthesis , Third Edition, Wiley, New York, 1999, and references cited therein.
- the compounds of this invention will typically contain one or more chiral centers. Accordingly, if desired, such compounds can be prepared or isolated as pure stereoisomers, i.e., as individual enantiomers or diastereomers, or as stereoisomer-enriched mixtures. All such stereoisomers (and enriched mixtures) are included within the scope of this invention, unless otherwise indicated. Pure stereoisomers (or enriched mixtures) may be prepared using, for example, optically active starting materials or stereoselective reagents well-known in the art. Alternatively, racemic mixtures of such compounds can be separated using, for example, chiral column chromatography, chiral resolving agents and the like.
- Still fiber some of the compounds defined herein include vinyl groups which can exist in cis, trans or a mixture of cis and trans forms. All combinations being within the scope of this invention.
- the starting materials for the following reactions are generally known compounds or can be prepared by known procedures or obvious modifications thereof.
- many of the starting materials are available from commercial suppliers such as Aldrich Chemical Co. (Milwaukee, Wis., USA), Bachem (Torrance, Calif., USA), Emka-Chemce or Sigma (St. Louis, Mo., USA).
- Scheme 1 illustrates a general method for synthesis wherein L is a covalent bond, X is N and Y is CH, and the ring defined by A contains two ring amino groups.
- R 21 and R 22 are —C(O)OPg where Pg is a carboxyl protecting group such as an alkyl group, e.g., methyl and the other is hydrogen, and R, R 2 and z are as defined above.
- z will be assigned the value 1
- R 21 will be carboxy methyl ester (—COOCH 3 )
- R 22 will be hydrogen. It is understood, of course, that other diaminoheterocycles such as where z is zero or one and other thiazole compounds can similarly be employed.
- methyl 2-halo-5-carboxylthiazole, compound 30 is condensed with at least an equivalent and preferably and excess of mono-protected 1-t-butoxycarbonyl (Boc) piperazine, compound 31, under conventional conditions to provide for methyl 2-[(1-t-butoxycarbonyl)piperazin-4-yl]-5-carboxylthiazole, compound 32.
- the reaction is typically conducted in an inert solvent such as acetonitrile, chloroform, and the like in the presence of a suitable base such as potassium carbonate which scavenges the acid generated during the reaction.
- the reaction is typically conducted at an elevated temperature of from about 40° to 100° C.
- the resulting product, compound 32 can be recovered by conventional methods, such as chromatography, filtration, crystallization, evaporation and the like or, alternatively, used in the next step without purification and/or isolation.
- the reaction is conducted at a temperature ranging from about 0° C. to about 40° C. for about 1 to about 24 hours.
- this reaction is conducted in the presence of a suitable base to scavenge the acid generated during the reaction.
- suitable bases include, by way of example, tertiary amines, such as triethylamine, diisopropylethylamine, N-methylmorpholine and the like.
- the reaction can be conducted under Schotten-Baumann-type conditions using aqueous alkali, such as sodium hydroxide and the like, as the base.
- the resulting N-sulfonyl amino acid, compound 33 is recovered by conventional methods including neutralization, extraction, precipitation, chromatography, filtration, evaporation and the like.
- the sulfonyl chlorides employed in the above reaction are either known compounds or compounds that can be prepared from known compounds by conventional synthetic procedures. Such compounds are typically prepared from the corresponding sulfonic acid, i.e., from compounds of the formula RSO 3 H where R is as defined above, using phosphorous trichloride and phosphorous pentachloride.
- This reaction is generally conducted by contacting the sulfonic acid with about 2 to 5 molar equivalents of phosphorous trichloride and phosphorous pentachloride, either neat or in an inert solvent, such as dichloromethane, at temperature in the range of about 0 to about 80° C. for about 1 to about 48 hours to afford the sulfonyl chloride.
- the sulfonyl chlorides can be prepared from the corresponding thiol compound, i.e., from compounds of the formula R—SH where R is as defined herein, by treating the thiol with chlorine (Cl 2 ) and water under conventional reaction conditions.
- sulfonyl chlorides suitable for use in this invention include, but are not limited to, methanesulfonyl chloride, 2-propanesulfonyl chloride, 1-butanesulfonyl chloride, benzenesulfonyl chloride, 1-naphthalenesulfonyl chloride, 2-naphthalenesulfonyl chloride, p-toluenesulfonyl chloride, 0.2-methylphenylsulfonyl chloride, 4 acetamidobenzenesulfonyl chloride, 4-tert-butylbenzenesulfonyl chloride, 4 bromobenzenesulfonyl chloride, 2-carboxybenzenesulfonyl chloride, 4-cyanobenzenesulfonyl chloride, 3,4-dichlorobenzenesulfonyl chloride, 3,5-dichlorobenzenesulfonyl
- a sulfonyl fluoride, sulfonyl bromide or sulfonic acid anhydride may be used in place of the sulfonyl chloride in the above reaction to form the N-sulfonyl amino acids.
- the R 21 methyl carboxyl group of compound 33 can then be converted to a variety of amides including hydroxyamides by reaction with a 2-20 fold excess of a suitable amine such as hydroxylamine.
- the reaction is typically conducted in a suitable diluent such as a 5:2 mixture of methanol to water under basic conditions, e.g, the addition of sodium hydroxide.
- the reaction is typically conducted at a temperature of from about ⁇ 20° to 20° C. for a period of time sufficient for substantial completion of the reaction which typically occurs within about 0.5 to 10 hours.
- the resulting amide, compound 34 can be recovered by conventional methods, such as chromatography, filtration, crystallization, evaporation and the like.
- ester 33 is converted to the hydroxamic acid 34 as shown in Scheme 1B.
- HX is a strong acid and MOH is an alkali metal hydroxide.
- the ester prepared by the methods of Scheme 1 is hydrolyzed to a carboxylic acid 33′ with about 1-20 equivalents of an alkali metal hydroxide such as, but not limited to, sodium hydroxide or potassium hydroxide in a mixture of water and a suitable organic solvent in about one to 48 hours at about 20 to 100° C.
- Suitable organic solvents include, but are not limited to, tetrahydrofuran, ethanol, methanol, or dioxane.
- the reaction mixture is neutralized with an inorganic acid such as hydrochloric, hydrobromic, or sulfuric acid and the solvents are evaporated.
- the residue is suspended in a suitable solvent and treated with about one to five equivalents of a tertiary amine such as, but not limited to, triethylamine or diisopropyletoelamine (DIEA) about one to five equivalents of N-hydroxybenzotriazole (HOBT) and about one to five equivalents of a carbodiimide coupling reagent such as, but not limited to, dicyclohexylcarbodiimide or 1-[3-(dimethylamino)propyl]-1-ethylcarbodiimide (EDC) and about one to five equivalents of O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (NH 2 OTHP) for about one to 48 hours at about 20 to 100° C.
- a tertiary amine such as, but not limited to, triethylamine or diisopropyletoelamine (DIEA) about one to five equivalents of N-hydroxybenzotriazo
- Scheme 1C shows the synthesis of compounds of formula I where T is a bond and where R, R 2 , R 21 , R 22 , Boc, X′ and z are as defined above.
- methyl 2-halo-5-carboxylthiazole, compound 30 is condensed with at least an equivalent and preferably an excess of a mono-N-substituted piperazine 1C.1 under conventional conditions to provide for a methyl 2-[(1-substituted)piperazin-4-yl]-5-carboxylthiazole, 1C.2.
- the reaction is typically conducted in an inert solvent such as acetonitrile, chloroform, and the like in the presence of a suitable base such as potassium carbonate that scavenges the acid generated during the reaction.
- R, R 2 , R 21 , R 22 , Boc, X′ and z are as defined above.
- compound 32 is prepared as per Scheme 1 above.
- Conventional removal of the Bloc group provides for the free amino group on the piperazine ring (not shown).
- the amino group is then acylated by conventional means such as reaction with an excess of the acid chloride, RC(O)Cl, in a suitable inert diluent such as dichloromethane and preferably in the presence of an tertiary amine to scavenge the acid generated during the reaction.
- the free amine group of the piperazine is treated with about one to five equivalents of a carboxylic acid in the presence of a suitable carbodiimide coupling reagent such as, but not limited to, EDCI or dicyclohexylcarbodiimide in the presence of about one to five equivalents of HOBT or HOAT and about one to five equivalents of a tertiary amine base such as, but not limited to, diisopropylethylamine or triethylamine in a suitable solvent such as tetrahydrofuran or methylene chloride at about 0 to 60° C. for about one to 72 hours.
- a suitable carbodiimide coupling reagent such as, but not limited to, EDCI or dicyclohexylcarbodiimide in the presence of about one to five equivalents of HOBT or HOAT and about one to five equivalents of a tertiary amine base such as, but not limited to, diisopropyle
- the resulting amide, compound 35 can be recovered by conventional methods, such as chromatography, The reaction is typically conducted at an elevated temperature of from about 40° to 100° C. for a period of time sufficient for substantial completion of the reaction that typically occurs within about 2 to 48 hours.
- the resulting product, compound 1C.2 can be recovered by conventional methods, such as chromatography, filtration, crystallization, evaporation and the like or, alternatively, used in the next step without purification and/or isolation.
- the R 21 methyl carboxylate group of IC.2 is then converted to a variety of amides including hydroxyamides 1C.3 by any of the methods described for Scheme 1.
- compound 32 in Scheme 1 is deprotected as described above and the secondary nitrogen of the piperazine ring of the resulting product is alkylated with about one to five equivalents of an alkyl or substituted alkyl halide in a suitable solvent at about 0 to 100° C. in the presence of about one to five equivalents of an alkali metal carbonate in about one to 72 hours.
- Suitable alkyl and substituted alkyl halides include chlorides, bromides, and iodides.
- Suitable solvents are, but are not limited to, methylene chloride, tetrahydrofuran, dioxane, and dimethylformamide.
- Preferred alkali metal carbonates are potassium and cesium carbonate.
- the resulting ester 1C.4 is converted to the desired amides such as 1C.3 by any of the methods described above.
- Scheme 2 illustrates the synthesis of compounds of formula I where T is a carbonyl group.
- 2-bromo-5-formylthiazole compound 37
- 2-bromo-5-formylthiazole compound 37
- 2-bromo-5-formylthiazole can be prepared from the 5-carboxyl precursor, compound 30 where R 21 is carboxyl or a carboxyl ester, by conventional reduction procedures.
- Removal of the Boc protecting group proceeds via conventional conditions to provide for the free amine, not shown, which is then contacted with an excess of sulfonyl chloride in the manner described above to provide for compound 40.
- Conversion of the methyl ester of compound 40 to the corresponding amide, e.g., hydroxylamide, proceeds via contacting the ester with an excess of amine in the manner described above thereby providing for compound 41.
- the sulfonyl chloride, RSO 2 Cl can be replaced with an acid chloride, RC(O)Cl, to provide for compounds where T is carbonyl.
- the vinylene group of compound 40 can be converted to a cyclopropylene moiety by conventional reaction with at least an equivalent and preferably an excess of diazomethane (CH 2 N 2 ) in the presence of a palladium diacetate as in Scheme 3A below:
- Scheme 4 illustrates the synthesis of compounds of formula I where Q is an alkylene group.
- T is a sulfonyl group
- the ring defined by A is a piperazine ring
- W is S
- X is N
- Y is CH.
- Coupling of compound 42 with an ⁇ -halocarboxylamide, illustrated by 2-bromoacetamide, provides for compound 43.
- This conventional coupling reaction is preferably conducted in an inert solvent such as methanol, ethanol, and the like preferably in the presence of a suitable base such as potassium carbonate to scavenge the acid generated during reaction.
- the reaction is preferably conducted at an elevated temperature of from about 50 to about 100° C.
- the reaction is continued until substantial completion which typically occurs within a period of from about 2 to 48 hours.
- compound 34 is recovered by conventional methods including neutralization, extraction, precipitation, chromatography, filtration, evaporation and the like or, alternatively, is used in the next step without isolation and/or purification.
- the amide of compound 43 is converted to the corresponding thioamide by conventional methods including reaction with P 2 S 5 to provide for compound 44 which can be recovered by conventional methods including neutralization, extraction, precipitation, chromatography, filtration, evaporation and the like or, alternatively, is used in the next step without isolation and/or purification
- Compound 44 is converted to the corresponding thiazole derivative by reaction with methyl 2-chloro-2-formyl acetate, compound 45.
- this compound is prepared by reaction of methyl 2-chloroacetate and methyl formate in the presence of a suitable base. Cyclization provides for the 5-carboxylate (methyl ester) of the thiazole.
- Scheme 4′ shows the synthesis of compounds of formula I where Q is a carbon-carbon bond between the ring defined by A and V.
- T is a sulfonyl group
- the ring defined by A is a piperidine ring
- W is S
- X is N
- Y is CH.
- a Boc protected 4-(aminocarbothioyl)tetrahydropyridinle-1(2H)carboxylate 4′.1 is treated with about one to 20 equivalents of methyl chloro(formyl)acetate in a suitable solvent at about 0 to 140° C. for about 30 minutes to 72 hours to give thiazole ester 4′.2.
- suitable solvents include, but are not limited to, methylene chloride, toluene, dioxane, tetrahydrofuran, and dimethylformamide.
- the Boc group of 4′.2 is cleaved by any of the methods described above to give piperidine 4′.3.
- Piperidine 4′.3 is sulfonylated by any of the methods described above to give sulfonylated piperidine 4′.4.
- Sulfonylated piperidine 4′.4 is converted to hydroxamate 4′.5 by any of the methods described above.
- ethyl 2-thiol-5-carboxylimidazole compound 48 is converted to the corresponding methyl sulfone, compound 49, prepared by methylation using methyl iodide, followed by oxidation using metachloroperbenzoic acid.
- compound 50 which can be used in the procedures set forth above to provide for compounds of this invention.
- conversion of the ethyl carboxylate to the formyl functionality proceeds via well documented reduction procedures.
- the formyl functionality can then be employed in a Wittig Horner reaction to provide for the vinylene carboxylate derivative in the manner described in Scheme 3 above.
- Scheme 4B illustrates how commercially available 2-amino-5-carboxyl-1,3,4-triazole can be converted into intermediates which can be used in the above schemes for the synthesis of compounds of this invention.
- Compound 51 can be converted via conventional methods to the corresponding 2-bromo-5-carboxyl-1,3,4-triazole or the 2-(4-Boc-piperazin-1-yl)-5-carboxyl-1,3,4-triazole.
- heteroaryls useful in the synthetic schemes recited herein include the following commercially available compounds:
- Compound 63 is an intermediate that, after deprotection, can be converted to various analogs as exemplified herein.
- compound 60 in Scheme 5 above can be converted to compound 61 by using the methods described in T. Hamada et al Synthesis, 1986, 852. Coupling of the sulfonyl chloride, compound 61, with compound 62 is accomplished as discussed herein above (see for example Scheme 4).
- compound 60 is reacted with compound 64 by reaction with triphenylphospine and DEAD in an inert solvent such as THF.
- intermediate 65 after deprotection, can be converted to various analogs as exemplified herein.
- compound 60 is carboxylated with butyl lithium and carbon dioxide to form compound 66.
- a coupling agent such as DCC
- the compounds of this invention are usually administered in the form of pharmaceutical compositions. These compounds can be administered by a variety of routes including oral, rectal, transdermal, subcutaneous, intravenous, intramuscular, and intranasal. These compounds are effective as both injectable and oral compositions. Such compositions are prepared in a manner well known in the pharmaceutical art and comprise at least one active compound.
- compositions which contain, as the active ingredient, one or more of the compounds of formula I-VII above associated with pharmaceutically acceptable carriers.
- the active ingredient is usually mixed with an excipient, diluted by an excipient or enclosed within such a carrier which can be in the form of a capsule, sachet, paper or other container.
- the excipient employed is typically an excipient suitable for administration to human subjects or other mammals.
- the excipient serves as a diluent, it can be a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient.
- compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, suppositories, sterile injectable solutions, and sterile packaged powders.
- the active compound In preparing a formulation, it may be necessary to mill the active compound to provide the appropriate particle size prior to combining with the other ingredients. If the active compound is substantially insoluble, it ordinarily is milled to a particle size of less than 200 mesh. If the active compound is substantially water soluble, the particle size is normally adjusted by milling to provide a substantially uniform distribution in the formulation, e.g. about 40 mesh.
- excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, and methyl cellulose.
- the formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents.
- the compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
- compositions are preferably formulated in a unit dosage form.
- unit dosage forms refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient.
- the compounds of the present invention maybe administered to patients either alone or in combination with other known anti-tumor agents.
- When administered alone about 0.005 to about 100 mg/kg, more preferably about 0.005 to about 10 mg/kg, are administered to the patient Higher and lower dosages may be used. Administration may occur once a day, or several times in a day. In addition the treatment may be repeated every 7, 14, 21 or 28 days.
- the compounds of the present invention may be prepared in a formulation that includes both the compounds of Formula I-VII and one or more other anti-cancer agents.
- the other anti-cancer agents may be administered in a separate formulation which may be administered before, after or simultaneously with the compounds of this invention.
- about 5 to about 100 mg/kg, more preferably about 0.005 to about 10 mg/kg, of the present HDAC inhibitors are administered to the patient. Higher and lower dosages may be used.
- the dosages of the other anti-cancer agents are known in the art. Administration may occur once a day, or several times in a day. In addition the treatment may be repeated every 7, 14, 21 or 28 days.
- the active compound is effective over a wide dosage range and is generally administered in a pharmaceutically effective amount. It, will be understood, however, that the amount of the compound actually administered will be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
- the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention.
- a solid preformulation composition containing a homogeneous mixture of a compound of the present invention.
- the active ingredient is dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules.
- This solid preformulation is then subdivided into unit dosage forms of the type described above containing from, for example, 0.1 to about 500 mg of the active ingredient of the present invention.
- the tablets or pills of the present invention may be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action.
- the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former.
- the two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release.
- enteric layers or coatings such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
- liquid forms in which the novel compositions of the present invention may be incorporated for administration orally or by injection include aqueous solutions suitably flavored syrups, aqueous or oil suspensions, and flavored emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil, or peanut oil, as well as elixirs and similar pharmaceutical vehicles.
- compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders.
- the liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra.
- the compositions are administered by the oral or nasal respiratory route for local or systemic effect.
- Compositions in preferably pharmaceutically acceptable solvents may be nebulized by use of inert gases. Nebulized solutions may be breathed directly from the nebulizing device or the nebulizing device may be attached to a face masks tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions may be administered, preferably orally or nasally, from devices which deliver the formulation in an appropriate manner.
- Hard gelatin capsules containing the following ingredients are prepared:
- Quantity Ingredient (mg/capsule) Active Ingredient 30.0 Starch 305.0 Magnesium stearate 5.0
- the above ingredients are mixed and filled into hard gelatin capsules in 340 mg quantities.
- a tablet formula is prepared using the ingredients below.
- Quantity Ingredient (mg/tablet) Active Ingredient 25.0 Cellulose, microcrystalline 200.0 Colloidal silicon dioxide 10.0 Stearic acid 5.0
- the components are blended and compressed to form tablets, each weighing 240 mg.
- a dry powder inhaler formulation is prepared containing the following components:
- the active mixture is mixed with the lactose and the mixture is added to a dry powder inhaling appliance.
- Tablets each containing 30 mg of active ingredient, are prepared as follows:
- Quantity Ingredient (mg/tablet) Active Ingredient 30.0 mg Starch 45.0 mg Microcrystalline cellulose 35.0 mg Polyvinylpyrrolidone 4.0 mg (as 10% solution in water) Sodium carboxymethyl starch 4.5 mg Magnesium stearate 0.5 mg Talc 1.0 mg Total 120 mg
- the active ingredient, starch and cellulose are passed through a No. 20 mesh U.S. sieve and mixed thoroughly.
- the solution of polyvinyl-pyrrolidone is mixed with the resultant powders, which are then passed through a 16 mesh U.S. sieve.
- the granules so produced are dried at 50° to 60° C. and passed through a 16 mesh U.S. sieve.
- the sodium carboxymethyl starch, magnesium stearate, and talc previously passed through a No. 30 mesh U.S. sieve, are then added to the granules which, after mixing, are compressed on a tablet machine to yield tablets each weighing 150 mg.
- Capsules each containing 40 mg of medicament are made as follows:
- Quantity Ingredient (mg/capsule) Active Ingredient 40.0 mg Starch 109.0 mg Magnesium stearate 1.0 mg Total 150.0 mg
- the active ingredient, cellulose, starch, an magnesium stearate are blended, passed through a No. 20 mesh U.S. sieve, and filled into hard gelatin capsules in 150 mg quantities.
- Suppositories each containing 25 mg of active ingredient are made as follows:
- Ingredient Amount Active Ingredient 25 mg Saturated fatty acid glycerides to 2,000 mg
- the active ingredient is passed through a No. 60 mesh U.S. sieve and suspended in the saturated fatty acid glycerides previously melted using the minimum heat necessary. The mixture is then poured into a suppository mold of nominal 2.0 g capacity and allowed to cool.
- Suspensions each containing 50 mg of medicament per 5.0 mL dose are made as follows:
- Ingredient Amount Active Ingredient 50.0 mg Xanthan gum 4.0 mg Sodium carboxymethyl cellulose (11%) 50.0 mg Microcrystalline cellulose (89%) Sucrose 1.75 g Sodium benzoate 10.0 mg Flavor and Color q.v. Purified water to 5.0 mL
- the medicament, sucrose and xanthan gum are blended, passed through a No. 10 mesh U.S. sieve, and then mixed with a previously made solution of the microcrystalline cellulose and sodium carboxymethyl cellulose in water.
- the sodium benzoate, flavor, and color are diluted with some of the water and added with stirring. Sufficient water is then added to produce the required volume.
- Quantity Ingredient (mg/capsule) Active Ingredient 15.0 mg Starch 407.0 mg Magnesium stearate 3.0 mg Total 425.0 mg
- the active ingredient, cellulose, starch, and magnesium stearate are blended, passed through a No. 20 mesh U.S. sieve, and filled into hard gelatin capsules in 560 mg quantities.
- An intravenous formulation may be prepared as follows:
- a topical formulation may be prepared as follows:
- Ingredient Quantity Active Ingredient 1-10 g Emulsifying Wax 30 g Liquid Paraffin 20 g White Soft Paraffin to 100 g
- the white soft paraffin is heated until molten.
- the liquid paraffin and emulsifying wax are incorporated and stirred until dissolved.
- the active ingredient is added and stirring is continued until dispersed.
- the mixture is then cooled until solid.
- transdermal delivery devices Such transdermal patches may be used to provide continuous or discontinuous infusion of the compounds of the present invention in controlled amounts.
- the construction and use of transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, e.g., U.S. Pat. No. 5,023,252, issued Jun. 11, 1991, herein incorporated by reference.
- patches may be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.
- Direct or indirect placement techniques may be used when it is desirable or necessary to introduce the pharmaceutical composition to the brain.
- Direct techniques usually involve placement of a drug delivery catheter into the host's ventricular system to bypass the blood-brain barrier.
- a drug delivery catheter into the host's ventricular system to bypass the blood-brain barrier.
- One such implantable delivery system used for the transport of biological factors to specific anatomical regions of the body is described in U.S. Pat. No. 5,011,472 which is herein incorporated by reference.
- Indirect techniques usually involve formulating the compositions to provide for drug latentiation by the conversion of hydrophilic drugs into lipid-soluble drugs.
- Latentiation is generally achieved through blocking of the hydroxy, carbonyl, sulfate, and primary amine groups present on the drug to render the drug more lipid soluble and amenable to transportation across the blood-brain barrier.
- the delivery of hydrophilic drugs may be enhanced by intraarterial infusion of hypertonic solutions which can transiently open the blood-brain barrier.
- HDAC histone deacetylases
- the title compound 20 was obtained by employing the general Method C using the intermediate 19.
- N-tert-butyoxycarbonylpiperazine (2a) (1.86 g) in DCM (1001 mL) and N,N-di-2-propyl-ethylamine (2 mL) was cooled in ice-water as a solution of 2-naphthalenesulfonylchloride (2.27 g) in DCM (50 mL) was added drop-wise. After addition, the cooling was removed and the reaction stirred overnight. The solvent was evaporated and the residue partitioned between water and ethyl acetate. The organic phase was sequentially washed with 0.5 N hydrochloric acid, water, saturated aqueous sodium bicarbonate and brine.
- Methyl chloroacetate (3.2 g) and methyl formate (1.8 g) were dissolved in toluene (5 mL) and the mixture was cooled in ice-water.
- Sodium methoxide (2 g) was added in portions and the reaction stirred for five hours.
- the reaction was quenched with water (100 mL) and the mixture was extracted with toluene (100 mL) and ether (100 mL).
- the aqueous layer was separated, cooled in ice-water, and the pH of the solution adjusted to 4 using 6 N hydrochloric acid. The aqueous layer was then extracted with ethyl acetate.
- This product was purified by HPLC using a 19 ⁇ 50 mm C-18 column eluting with a ten minute linear gradient that started with 100% water-0.1% trifluoroacetic acid and ended with 30% water-0.1% trifluoroacetic acid/70% acetonitrile-0.1% trifluoroacetic acid.
- the pure fractions of the component eluting at 4.8 minutes were freeze dried to give a white solid (0.1 mg).
- Histone deacetylase (HDAC) activity assays were performed using the HDAC fluorescent activity assay/drug discovery kit (Biomol Research Laboratories, Plymouth Meeting, Pa.) essentially according to the manufacturer's instructions.
- the final substrate concentration in the assay mixture was 50 ⁇ M.
- Test compounds were prepared as 20 mM stock solutions in DMSO (Molecular Biology grade, Sigma-Aldrich Co., St. Louis, Mo.) and stored at ⁇ 70° C. Serial dilutions of test compounds were prepared in assay buffer immediately prior to testing.
- DMSO was determined in a separate trial to have no significant effect on the activity of this assay at concentrations up to 5%; the final DMSO concentration in the wells was no more than 2% and therefore DMSO effects were safely neglected.
- Assays were performed in white polystyrene 96-well half-area assay plates (Corning, Corning, N.Y.) and measured on a Wallace 1420 fluorescent plate reader (Wallac Oy, Turku, Finland) with an excitation wavelength of 355 nm, an emission wavelength of 460 nm, and a 1 sec signal averaging time.
- HDAC8 (Biomol) was used as the source of the enzyme activity; here the final substrate concentration was 250 ⁇ M, the final concentration of HDAC8 was 0.02 u/ ⁇ L and the reaction was allowed to proceed at 37° C. for 1 h before stopping.
- IC 50 values were calculated with the GraFit curve-fitting program (Erithacus, Horley, Surrey, UK).
- Human tumor cell lines of HT29, A549 and MCF7 are grown in DNEM containing 10% fetal bovine serum and 2 mM L-glutamine. Cells are plated in a 96 well plate at a density of 5000 cells per well in 100 ⁇ L of growth medium and incubated at 37° C., 5% CO 2 , for 24 hours prior to the addition of experimental compounds
- Experimental drugs are solubilized in DMSO for a final concentration of 20 mM immediately prior to use. Drugs are farther diluted in growth media for a total of nine drug concentrations and a growth control. At the 24-hour time point, one plate of cells is fixed in situ with TCA as a measurement of the cell population at time zero, or the time of drug addition.
- the cells are fixed in situ by gently aspirating off the culture media and then adding 50 ⁇ L of ice cold 10% TCA per well and incubated at 4° C. for 60 minutes. The plates are washed with tap water five times and allowed to air dry for 5 minute.
- Stain is solubilized with 100 ⁇ L of 10 mM Tris pH 10.5 per well and placed on an orbital rotator for 5 minutes.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Disclosed are compounds which inhibit histone deacetylase (HDAC) enzymatic activity. Also disclosed are pharmaceutical compositions comprising such compounds as well as methods to treat conditions, particularly proliferative conditions, mediated at least in part by HDAC.
Description
- This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application Ser. No. 60/559,692 flied Apr. 1, 2004, which is incorporated herein by reference in its entirety.
- 1. Field of the Invention
- This invention relates to compounds which inhibit histone deacetylase (HDAC) enzymatic activity. This invention is also directed to pharmaceutical compositions comprising such compounds as well as to treat conditions, particularly proliferative conditions, mediated at least in part by HDAC.
- The following publications, patents and patent applications are cited in this application as superscript numbers:
- 1 Marks, et al., Nature Reviews: Cancer 1: 194-202 (2001)
- 2 Finnin, et al., Nature, 401:188-193 (1999)
- 3 Geerts, et al., European Patent Application Publication No. 0 827 742, published Mar. 11, 1998
- All of the above publications, patents and patent applications are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.
- 2. State of the Art
- In all eukaryotic cells, genomic DNA in chromatine associates with histones to form nucleosomes. Each nucleosome consists of a protein octamer made up of two copies of each histone: H2A, H2B, H3 and H4. DNA winds around this protein core, with the basic amino acids of the histones interacting with the negatively charged phosphate groups of the DNA. The most common posttranslational modification of these core histones is the reversible acetylation of the ε-amino groups of conserved highly basic N-terminal lysine residues. The steady state of histone acetylation is established by the dynamic equilibrium between competing histone acetyltransferase(s) and histone deacetylase(s) herein referred to as HDAC. Histone acetylation and deacetylation has long been linked to transcriptional control. The recent cloning of the genes encoding different histone acetyltransferases and histone deacetylases provide a possible explanation for the relationship between histone acetylation and transcriptional control. The reversible acetylation of histones can result in chromatin remodeling and as such act as a control mechanism for gene transcription. In general, hyperacetylation of histones facilitates gene expression, whereas histone deacetylation is correlated with transcriptional repression. Histone acetyltransferases were shown to act as transcriptional coactivators, whereas deacetylases were found to belong to transcriptional repression pathways.
- The dynamic equilibrium between histone acetylation and deacetylation is essential for normal cell growth. Inhibition of histone deacetylation results in cell cycle arrest, cellular differentiation, apoptosis and reversal of the transformed phenotype. Therefore, HDAC inhibitors can have great therapeutic potential in the treatment of cell proliferative diseases or conditions.1
- The study of inhibitors of histone deacetylases (HDAC) indicates that indeed these enzymes play an important role in cell proliferation and differentiation. The inhibitor Trichostatin A (TSA) causes cell cycle arrest at both the G1 and G2 phases, reverts the transformed phenotype of different cell lines, and induces differentiation of Friend leukemia cells and others. TSA (and suberoylanilide hydroxamic acid SAHA) have been reported to inhibit cell growth, induce terminal differentiation, and prevent formation of tumors in mice.2
- Trichostatin A has also been reported to be useful in the treatment of fibrosis, e.g., liver fibrosis and liver chirrhosis.3
- In view of the above, there is an ongoing need for inhibitors/antagonists of HDAC.
- This invention provides compounds which inhibit HDAC activity and, accordingly, are useful as anti-proliferative agents in the treatment of proliferative diseases.
- Accordingly, in one of its composition aspects, this invention is directed to a compound of Formula I:
- wherein:
- R is selected from the group consisting of hydrogen, aryl, substituted aryl, heteroaryl substituted heteroaryl, alkyl and substituted alkyl;
- R12 is selected from the group consisting of —NR14OH, —OH, —NR14R15, —OR14, —(C1-C6)alkylene-SR14, —(C1-C6)alkylene-OR14, —(C1-C6)alkylene-NR14R15, —CF3;
- where R14 and R15 are independently selected from the group consisting of hydrogen, (C1-C6)alkyl, (C1-C6)substituted alkyl, aryl, substituted aryl and where R14 and R15 together with the nitrogen atom bound thereto form a heterocyclic or substituted heterocyclic ring;
- V, W, X, Y, and Z form a 5-membered heteroaryl where W, X, and Y are independently selected from ═C(R11)—, —N═, —N(R14)—, —O—, —S—, —S(O)—, and/or —S(O)2—, and V and Z independently form ═C(R14)— and/or >N— where R14 is as defined above and provided that at least one of V, W, X, Y and Z is ═C(R14)—, and further provided that the ring formed by V, W, X, Y, and Z is not a thiophene;
- the ring defined by A above is selected from the group consisting of cycloakylene, substituted cycloalkylene, heterocyclene, substituted heterocyclene, arylene, heteroarylene, -het-(L2)b-het-, -het-(L2)b-cyclo-, -cyclo-(L2)b-het-, and -cyclo-(L2)b-cyclo-;
- where each b is independently 0 or 1;
- L2 is selected from the group consisting of a covalent bond, (C1-C4)alkylene, substituted (C1-C4)alkylene, —NH(C1-C4)alkylene, (C1-C4)alkyleneNH—, provided that the nitrogen atom of the —NH(C1-C4)alkylene and (C1-C4)alkyleneNH— group are not attached to a nitrogen atom in the het or in cyclo groups;
- T is selected from the group consisting of a bond, —SO2—[(C1-C3)alkylene]p-, —[(C1-C3)alkylene], —SO2—, —NR16SO2—[(C1-C3)alkylene]p-, —SO2NR16—[(C1-C3)alkylene]p-, —C(O)—[(C1-C3)alkylene]p-, —[(C1-C3)alkylene]p-C(O)—, —NR16C(O)—[(C1-C3)alkylene]p—, —C(O)NR16—[(C1-C3)alkylene]p-, —N(R16)—[(C1-C3)alkylene]p and (C1-C3)alkylene where p is zero or one and R16 is hydrogen, alkyl, aryl, or heteroaryl, provided that when T is connected to A at a nitrogen atom and T is —SO2NR16—[(C1-C3)alkylene]p-, —C(O)NR16—[(C1-C3)alkylene]p-, or —N(R16)—[(C1-C3)alkylene]p then p is not zero;
- Q is selected from the group consisting of a covalent bond, —O—, (C1-C3)alkylene, —C(O)—, —SO2—, —NR1C(O)NR1—, —NR1C(O)—, —C(O)NR1—, —(C1-C3-alkylene)pNR1— and —NR1—(C1-C3-alkylene)p where R1 is hydrogen or alkyl and p is zero or one, provided that when Q is one of —NR1C(O)NR1—, —NR1C(O)—, —C(O)NR1—, —(C1-C3-alkylene)pNR1—, or —NR1—(C1-C3-alkylene)p and p is not zero Q is not attached to a nitrogen atom;
- L is selected from the group consisting of a covalent bond, (C1-C4)alkylene, substituted (C1-C4)alkylene, (C2-C4)alkenylene, and substituted (C2-C4)alkenylene, (C3-C8)cycloalkylene, and substituted (C3-C8)cycloalkylene;
- and tautomers, isomers, prodrugs and pharmaceutically acceptable salts thereof.
- Preferred heteroaryl groups defined by V, W, X, Y and Z include furan, imidazole, pyrrazole, isoxazole, isothiazole, oxadiazole, thiazole, tetrazole, triazole, oxazole, pyrrole, thiadiazole, and the like, excluding thiophene.
- In another of its composition aspects, this invention is directed to a compound of Formula Ia:
- wherein:
- R is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl and substituted heteroaryl;
- R12 is selected from the group consisting of —NR14OH, —OH, —NR14R15, —OR14, —(C1-C6)alkylene-SR14, —(C1-C6)alkylene-OR14, —(C1-C6)alkylene-NR14R15, —CF3;
- where R14, R15 are independently selected from the group consisting of hydrogen, (C1-C6)alkyl, (C1-C6)substituted alkyl, aryl, substituted aryl and where R14 and R15 together with the nitrogen atom bound thereto form a heterocyclic or substituted heterocyclic ring;
- the ring defined by A above is selected from the group consisting of cycloakylene, substituted cycloalkylene, hetrocyclene, substituted heterocyclene, arylene, heteroarylene, -het-(L2)b-het-, -het-(L2)b-cyclo-, -cyclo-(L2)b-het-, and cyclo-(L2)b-cyclo-;
- where each b is independently 0 or 1;
- L2 is selected from the group consisting of a covalent bond, (C1-C4)alkylene, substituted (C1-C4)alkylene, —NH(C1-C4)alkylene, (C1-C4)alkyleneNH—, provided that the nitrogen atom of the —NH(C1-C4)alkylene and (C1-C4)alkyleneNH— group are not attached to a nitrogen atom in the het or in cyclo groups;
- T is selected from the group consisting of —SO2—[(C1-C3)alkylene]p-, —[(C1-C3)alkylene]p-SO2—, —NR16SO2—[(C1-C3)alkylene]p-, —SO2NR16—[(C1-C3)alkylene]p-, —C(O)—[(C1-C3)alkylene]p-, —[(C1-C3)alkylene]p-C(O)—, —NR16C(O)—[(C1-C3)alkylene]p-, —C(O)NR16—[(C1-C3)alkylene]p-, —N(R16)—[(C1-C3)alkylene]p and (C1-C3)alkylene where p is zero or one and R16 is hydrogen, alkyl, aryl, or heteroaryl, provided that when T is connected to A at a nitrogen atom and T is —SO2NR16—[(C1-C3)alkylene]p-, —C(O)NR16—[(C1-C3)alkylene]p—, or —N(R16)—[(C1-C3)alkylene]p then p is not zero;
- W is selected from the group consisting of —O—, —S—, —S(O)—, —S(O)2— and —NR1— where R1 is as defined below;
- X and Y is selected from the group consisting of >CH and >N such that the 5 membered ring defined by W, X, Y and the two >CH groups is a heteroaryl ring, with the proviso that the ring is not thiophene;
- Q is selected from the group consisting of a covalent bond, —O—, (C1-C3)alkylene, —C(O)—, —SO2—, —NR1C(O)NR1—, —NR1C(O)—, —C(O)NR1—, —(C1-C3-alkylene)pNR1— and —NR1—(C1-C3-alkylene)p where R1 is hydrogen or alkyl and p is zero or one; provided that Q is not attached to X, Y or W when W is —O—, —S—, —S(O)—, —S(O)2— and further provided that when Q is —NR1— then Q is attached to a carbon atom of the ring defined by A above;
- L is selected from the group consisting of a covalent bond, (C1-C4)alkylene, substituted (C1-C4)alkylene, (C2-C4)alkenylene, and substituted (C2-C4)alkenylene, (C3-C8)cycloalkylene, and substituted (C3-C8)cycloalkylene;
- and tautomers, isomers, prodrugs and pharmaceutically acceptable salts thereof.
- Preferred A rings in Formulae I and Ia include by are not limited to optionally substituted piperidine, piperazine, morpholine, piperazinone, piperazindione, azetidine, hydantoin, oxazolidine, octahydro-pyrrolo[3,4-c]pyrrole, tetrahydropyridine, hexene, pyrrolidine, and the like.
- More preferably, when A is a heterocyclic group, the R-T-A-Q fragment of Formulae I and Ia above is selected from the following structures, wherein b is 0 or 1, each R, R1 and R16 are as defined herein above, and further wherein each depicted A ring is optionally substituted with from 1 to 3 substituents selected from hydrogen, (C1-C6)alkyl, (C1-C6)substituted alkyl, aryl, and substituted aryl.
- Additional preferred A rings include by are not limited to optionally substituted bicyclic or spirocyclic groups.
- More preferably, when the A moiety is a bicyclic or spirocyclic group, the R-T-A-Q fragment of Formulae I and Ia above is selected from the following structures, wherein b is 0 or 1, each R and R16 are as defined herein above, and further wherein each depicted A ring is optionally substituted with from 1 to 3 substituents selected from hydrogen, (C1-C6)alkyl, (C1-C6)substituted alkyl, aryl, and substituted aryl.
- Preferred A rings also include aromatic rings, including, but not limited to, optionally substituted phenyl, pyridine, pyridazine, pyrimidine, triazine, and the like. More preferably, when A is an aromatic ring, the R-T-A-Q fragment of Formulae I and Ia above is selected from the following structures, wherein R and T are as defined hereinabove, and further wherein each depicted A ring is optionally substituted with from 1 to 3 substituents selected from hydrogen, (C1-C6)alkyl, (C1-C6)substituted alkyl, aryl, and substituted aryl.
- In one preferred embodiment, the compounds of this invention are represented by formula II:
- where L, R, T, X and Y are as defined above; each R3 is independently selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl and substituted heteroaryl; n, z, and z′ are independently integers equal to zero, one or two, with the proviso that both z and z′ are not zero;
- as well as tautomers, isomers, prodrugs, and pharmaceutically acceptable salts thereof.
- In another preferred embodiment, the compounds of this invention are represented by formula III:
- where n, z, L, R, R3, T, X and Y are as defined above; as well as tautomers, isomers, prodrugs and pharmaceutically acceptable salts thereof.
- In still another preferred embodiment, the compounds of this invention are represented by formula IV:
- where n, z, L, Q, R, R3, T, X and Y are as defined above, z is zero or one,
- as well as tautomers, isomers, prodrugs, and pharmaceutically acceptable salts thereof.
- In still another preferred embodiment, the compounds of this invention are represented by formula V:
- where n, z, L, Q, R, R3, T, X and Y are as defined above as well as tautomers, isomers, prodrugs, and pharmaceutically acceptable salts thereof.
- In one embodiment, R is preferably aryl and more preferably is phenyl or naphthyl (e.g., 2-napthyl).
- In another embodiment, R is preferably substituted aryl and more preferably, 3,4-dimethoxyphenyl, 4-trifluoromethoxyphenyl, 4-methylphenyl. 4-trifluororomethylphenyl, 4-nitrophenyl, 4-acetylphenyl, thiophen-2-yl, biphenyl, 5-(N,N-dimethylamino)-naphthalenyl, and 4-fluorophenyl.
- In yet another embodiment, R is preferably alkyl or substituted alkyl, more preferably methyl, benzyl, 2-hydroxyethyl, 2-aminoethyl, and 2-phenylethyl.
- In one embodiment, R3 is alkyl and n is one. In another embodiment, n is zero.
- Q is preferably a covalent bond, —NR1—, —(CH2)NR1—, —SO2—, —C(O)—, or —O—.
- In one embodiment, Q is a covalent bond and the ring defined by A above is piperidinyl. In still another embodiment, Q is a covalent bond and the ring defined by A above is piperazinyl.
- X is preferably nitrogen and Y is preferably CH.
- T is preferably selected from the group consisting of a bond, —SO2—, —SO2NH—, —CH2NR16—.
- In one embodiment, L is a covalent bond. In another embodiment, L is an alkenylene group which is preferably ethenylene and more preferably trans (or Z) ethenylene. In still another embodiment, L is a cycloalkylene group, and more preferably cyclopropylene including cis-cyclopropylene and trans-cyclopropylene. In this application, cis-cyclopropylene (as well as cis-cycloalkylene) refers to the groups:
- whereas trans-cyclopropylene (as well as trans-cycloalkylene) refers to the groups:
- Still another class of compounds of this invention includes compounds of formula VI:
- where:
- R is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl and substituted heteroaryl;
- the ring defined by A above is selected from the group consisting of cycloalkylene, substituted cycloalkylene, heterocyclene and substituted heterocyclene;
- T is selected from the group consisting of —SO2—[(C1-C3)alkylene]p—, —[(C1-C3)alkylene]p-SO2—, —NR16SO2—[(C1-C3)alkylene]p-, —SO2NR16—[(C1-C3)alkylene]p-, —C(O)—[(C1-C3)alkylene]p—, —[(C1-C3)alkylene]p—C(O)—, —NR16C(O)—[(C1-C3)alkylene]p—, —C(O)NR16—[(C1-C3)alkylene]p—, —N(R16)—[(C1-C3)alkylene]p and (C1-C3)alkylene where p is zero or one and R16 is hydrogen, alkyl, aryl, or heteroaryl, provided that when T is connected to A at a nitrogen atom and T is —SO2NR16—[(C1-C3)alkylene]p-, —C(O)NR16—[(C1-C3)alkylene]p-, or —N(R16)—[(C1-C3)alkylene]p then p is not zero;
- W is selected from the group consisting of —O—, —S—, —S(O)—, —S(O)2— and —NR1— where R1 is as defined above;
- X is selected from the group consisting of >CH and >N such that the 5 membered ring defined by W, X and the pendant >CH groups is a heteroaryl ring;
- Q is selected from the group consisting of a covalent bond, —O—, (C1-C3)alkylene, —C(O)—, —SO2—, —NR1C(O)NR1—, —NR1C(O)—, —C(O)NR1—, —(C1-C3-alkylene)pNR1— and —NR1—(C1-C3-alkylene)p where R1 is hydrogen or alkyl and p is zero or one, provided that Q is not attached to X or W when W is —O—, —S—, —S(O)—, —S(O)2— and further provided that when Q is —NR1— then Q is attached to a carbon atom of the ring defined by A above;
- L is selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkenylene, cycloalkylene, and substituted cycloalkylene provided that L is attached to a carbon atom of the 5 membered heteroaryl group;
- the cyclic structure defined by B, together with the unsaturation in the heteroaryl ring, is selected from the group consisting of cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, unsaturated heterocyclc and substituted unsaturated heterocyclic; and
- and tautomers, isomers, prodrugs, and pharmaceutically acceptable salts thereof.
- Particularly preferred compounds of formula VI include those of formula VII:
- where n, z, K, R3, L, Q, T, and X are as defined above as well as tautomers, isomers, prodrugs, and pharmaceutically acceptable salts thereof.
- In one of its pharmaceutical composition aspect, this invention is directed to a pharmaceutical composition comprising an effective amount of a compound according to any of formulas I-VII and a pharmaceutically inert carrier.
- In another of its pharmaceutical aspects, this invention is directed to pharmaceutical compositions comprising an effective amount of a compound according to any of formulas I-VII, an effective amount of at least one anti-cancer agent, and a pharmaceutically inert carrier.
- In one of its method aspects, this invention is directed to a method for inhibiting a proliferative disorder in a mammalian patient which method comprises administering to said patient a pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of formula I-VII or a mixture thereof.
- In another of its method aspects, this invention is directed to a method for inhibiting a proliferative disorder in a mammalian patient which method comprises administering to said patient a pharmaceutical composition comprising a pharmaceutically acceptable carrier, an effective amount of at least one anti-cancer agent, and a therapeutically effective amount of a compound of formula I-VII or a mixture thereof.
- In yet another of its method aspects, this invention is directed to a method for inhibiting a proliferative disorder in a mammalian patient which method comprises administering to said patient a pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of formula I-VII or a mixture thereof in combination with at least one anti-cancer agent.
- For the treatment of the above conditions, the compounds of the invention may be advantageously employed in combination with one or more other medicinal agents, more particularly, with other anti-cancer agents. Examples of anti-cancer agents are: platinum coordination compounds for example cisplatin, carboplatin or oxalyplatin; taxane compounds for example paclitaxel or docetaxel; topoisomerase I inhibitors such as camptothecin compounds for example irinotecan or topotecan; topoisomerase II inhibitors such as anti-tumour podophyllotoxin derivatives for example etoposide or teniposide; anti-tumour vinca alkaloids for example vinblastine, vincristine or vinorelbine; anti-tumor nucleoside derivatives for example 5-fluorouracil, gemcitabine or capecitabine; alkylating agents such as nitrogen mustard or nitrosourea for example cyclophosphamide, chlorambucil, carmustine or lomustine; anti-tumour anthracycline derivatives for example daunorubicin, doxorubicin, idarubicin or mitoxantrone; BIER antibodies for example trastuzumab; estrogen receptor antagonists or selective estrogen receptor modulators for example tamoxifen, toremifene, droloxifene, faslodex or raloxifene; aromatase inhibitors such as exemestane, anastrozole, letrazole and vorozole; differentiating agents such as retinoids, vitamin D and retinoic acid metabolism blocking agents (RAMBA) for example accutane; DNA methyl transferase inhibitors for example azacytidine; kinase inhibitors for example flavoperidol, imatinib mesylate or gefitinib; farnesyltransferase inhibitors; or other HDAC inhibitors.
- Preferred compounds of this invention include those found in the Tables below:
- Particularly preferred compounds include the following compounds and pharmaceutically acceptable salts thereof:
- 1-(2-naphthylsulfonyl)-4-(5-hydroxyaminocarbonylthiazol-2-yl)piperazine;
- 1-(2-naphthylsulfonyl)-4-(5-hydroxyaminocarbonylthiazol-2-yl)-1,4-diazepane;
- 1-(2-naphthylsulfonyl)-4-(4-hydroxyaminocarbonylthiazol-2-yl)piperazine;
- 1-(2-naphthylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
- 1-(phenylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
- 1-(3,4-dimethoxyphenylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
- 1-(4-methoxyphenylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
- 1-(4-trifluoromethoxyphenylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
- 1-(4-methylphenylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
- 1-(4-trifluoromethylphenylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
- 1-(4-nitrophenylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
- 1-(thien-2-ylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
- 1-(1,1′biphenylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
- 1-(5-dimethylamino-naphthalene-1-sulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
- 1-(4-fluorophenylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
- 4-(2-naphthylsulfonylamino)-1-[(5-(2-hydroxyaminocarbonyl-thiazol-2-yl)-piperadine;
- 4-(1,1′-biphenylsulfonylamino)-1-[(5-(2-hydroxyaminocarbonyl-thiazol-2-yl)-piperadine;
- 4-(3,4-dimethoxyphenylsulfonylamino)-1-[(5-(2-hydroxyaminocarbonyl-thiazol-2-yl)-piperadine;
- 4-(4-methylphenylsulfonylamino)-1-[(5-(2-hydroxyaminocarbonyl-thiazol-2-yl)-piperadine;
- 2-(4-{[(1,1′-biphenylsulfonyl)amino]methyl}piperidin-1-yl)-1,3-thiazole-5-carboxylic acid hydroxyamide;
- 2-{[1-(2-naphthylsulfonyl)piperidin-4-yl]amino}-1,3-thiazole-5-carboxylic acid hydroxyamide;
- 2-(6-{[(4-methylphenyl)sulfonyl]amino}-3-azabicyclo[3.1.0]hex-3-yl)-1,3-thiazole-5-carboxylic acid hydroxyamide;
- 2-[3-[(4-methylphenyl)sulfonyl]tetrahydropyrimidin-1(2H)-yl]-1,3-thiazole-5-carboxylic acid hydroxylamide;
- 2-[4-(3,4-dimethoxy-benzene sulfonyl)-piperazin-1-yl]-thiazole-5-carboxylic acid hydroxyamide;
- 2-[4-(4-trifluoromethoxy-benzene sulfonyl)-piperazin-1-yl]-thiazole-5-carboxylic acid hydroxyamide;
- 2-[4-(4 toluene-4-sulfonyl)-piperazin-1-yl]-thiazole-5-carboxylic acid hydroxyamide;
- 2-[4-(4-trifluoromethyl-benzenesulfonyl)-piperazin-1-yl]-thiazole-5-carboxylic acid hydroxyamide;
- 2-[4-(4-nitro-benzenesulfonyl)-piperazin-1-yl]-thiazole-5-carboxylic acid hydroxyamide;
- 2-[4-(4-acetyl-benzenesulfonyl)-piperazin-1-yl]-thiazole-5-carboxylic acid hydroxyamide;
- 2-[4-(thiophene-2-benzenesulfonyl)-piperazin-1-yl]-thiazole-5-carboxylic acid hydroxyamide;
- 2-[4-(biphenyl-4-sulfonyl)-piperazin-1-yl]-thiazole-5-carboxylic acid hydroxyamide;
- 2-[4-(5-dimethylamino-naphthalene-1-sulfonyl)-piperazin-1-yl]-thiazole-5-carboxylic acid hydroxyamide;
- 2-[4-(4-fluoro-benzenesulfonyl)-piperazin-1-yl]-thiazole-5-carboxylic acid hydroxyamide;
- 2-(4-methyl-piperazin-1-yl)-thiazole-5-carboxylic acid hydroxyamide;
- 2-(4-Benzyl-piperazin-1-yl)-thiazole-5-carboxylic acid hydroxyamide (16b-hydroxamate);
- 2-(4-(2-hydroxyethyl)-piperazin-1-yl)-thiazole-5-carboxylic acid hydroxyamide;
- 2-(4-(2-aminoethyl)-piperazin-1-yl)-thiazole-5-carboxylic acid hydroxyamide;
- 2-(4-phenylethyl -piperazin-1-yl)-thiazole-5-carboxylic acid hydroxyamide;
- 2-(4-(2-oxo-2-phenylethyl)piperazin-1-yl)-1,3-thiazole-5-carboxylic acid hydroxyamide;
- 2-(4-acetyl-piperazin-1-yl)-thiazole-5-carboxylic acid hydroxamide;
- 2-(4-benzoyl-piperazin-1-yl)-thiazole-5-carboxylic acid hydroxamide;
- 2-(4-phenylacetyl-piperazin-1-yl)-thiazole-5-carboxylic acid hydroxamide;
- 2-[4-(3-{1H-indol-3-yl}propanoyl)-piperazin-1-yl-1,3-thiazole-5-carboxylic acid hydroxyamide;
- N-(2-naphthylsulfonyl)-N′-{2-[5-(N-hydroxycarboxamido)]thiazolyl}-piperazine;
- 2-[1-(1,1′-biphenyl-4-ylsulfonyl)piperidin-4-yl]-1,3-thiazole-5-carboxylic acid hydroxyamide;
- and pharmaceutically acceptable salts, isomers, tautomers, and prodrugs thereof.
- As noted above, this invention is directed to compounds, pharmaceutical compositions and methods for inhibiting histone deacetylase (HDAC) enzymatic activity. However, prior to describing this invention in more detail, the following terms will first be defined.
- Unless otherwise limited by a specific recitation herein, the following terms have the following meanings;
- “Alkyl” refers to monovalent alkyl groups having from 1 to 10 carbon atoms, preferably from 1 to 5 carbon atoms and more preferably 1 to 3 carbon atoms. This term is exemplified by groups such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, t-butyl, n-pentyl and the like.
- “Substituted alkyl” refers to a monovalent alkyl group having from 1 to 3, and preferably 1 to 2, substituents selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, amino, substituted amino, aminoacyl, aryl, substituted aryl, aryloxy, substituted aryloxy, cyano, halogen, hydroxyl, nitro, carboxyl, carboxyl esters, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
- “Alkylene” refers to divalent alkylene groups having from 1 to 10 carbon atoms, preferably from 1 to 5 carbon atoms and more preferably 1 to 3 carbon atoms. This term is exemplified by groups such as methylene, ethylene, n-propylene (1,3-propylene), iso-propylene (1,2-propylene), n-butylene (1,4-butylene), n-pentylene (1,5-pentylene), and the like.
- “Substituted alkylene” refers to a divalent alkylene group having from 1 to 3, and preferably 1 to 2, substituents selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, amino, substituted amino, aminoacyl, aryl, substituted aryl, aryloxy, substituted aryloxy, cyano, halogen, hydroxyl, nitro, carboxyl, carboxyl esters, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
- “Alkoxy” refers to the group “alkyl-O—” which includes, by way of example, methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, t-butoxy, sec-butoxy, n-pentoxy and the like.
- “Substituted alkoxy” refers to the group “substituted alkyl-O—”.
- “Acyl” refers to the groups H—C(O)—, alkyl-C(O)—, substituted alkyl-C(O)—, alkenyl-C(O)—, substituted alkenyl-C(O)—, cycloalkyl-C(O)—, substituted cycloalkyl-C(O)—, aryl-C(O)—, substituted aryl-C(O)—, heteroaryl-C(O)—, substituted heteroaryl-C(O), heterocyclic-C(O)—, and substituted heterocyclic-C(O)—.
- “Acylamino” refers to the group —C(O)NR10R10 where each R10 is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic and where each R10 is joined to form together with the nitrogen atom a heterocyclic or substituted heterocyclic ring.
- “Alkenyl” refers to a monovalent alkenyl group having from 2 to 6 carbon atoms and more preferably 2 to 4 carbon atoms and having at least 1 and preferably from 1-2 sites of alkenyl unsaturation. The term “alkenyl” encompasses any and all combinations of cis and trans isomers arising from the presence of unsaturation.
- “Substituted alkenyl” refers to alkenyl groups having from 1 to 3 substituents, and preferably 1 to 2 substituents, selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, amino, substituted amino, aminoacyl, aryl, substituted aryl, aryloxy, substituted aryloxy, cyano, halogen, hydroxyl, nitro, carboxyl, carboxyl esters, cycloalkyl substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic provided that any hydroxyl substitution is not on a vinyl carbon atom.
- “Alkenylene” refers to a divalent alkenyl group having from 2 to 6 carbon atoms and more preferably 2 to 4 carbon atoms and having at least 1 and preferably from 1-2 sites of alkenyl unsaturation. The term “alkenylene” encompasses any and all combinations of cis and trans isomers arising from the presence of unsaturation.
- “Substituted alkenylene” refers to alkenylene groups having from 1 to 3 substituents, and preferably 1 to 2 substituents, selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminoacyl, aryl, substituted aryl, aryloxy, substituted aryloxy, cyano, halogen, hydroxyl, nitro, carboxyl, carboxyl esters, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic provided that any hydroxyl substitution is not on a vinyl carbon atom.
- “Amino” refers to the group —NH2.
- “Substituted amino” refers to the group —NR′R″ where R′ and R″ are independently selected from the group consisting of hydrogen, alkyl substituted alkyl, alkenyl, substituted alkenyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic and where R′ and R″ are joined, together with the nitrogen bound thereto to form a heterocyclic or substituted heterocylic group provided that R′ and R″ are both not hydrogen. When R′ is hydrogen and R″ is alkyl, the substituted amino group is sometimes referred to herein as alkylamino. When R′ and R″ are alkyl, the substituted amino group is sometimes referred to herein as dialkylamino.
- “Aminoacyl” refers to the groups —NR11C(O)alkyl, —NR11C(O)substituted alkyl, —NR11C(O)cycloalkyl, —NR11C(O)substituted cycloalkyl, —NR11C(O)alkenyl, —NR11C(O)substituted alkenyl, —NR11C(O)aryl, —NR11C(O)substituted aryl, —NR11C(O)heteroaryl, —NR11C(O)substituted heteroaryl, —NR11C(O)heterocyclic, and —NR11C(O)substituted heterocyclic where R11 is hydrogen or alkyl.
- “Aryl” or “Ar” refers to a monovalent aromatic carbocyclic group of from 6 to 14 carbon atoms having a single ring (e.g., phenyl) or multiple condensed rings (e.g., naphthyl or anthryl) which condensed rings may or may not be aromatic (e.g., 2-benzoxazolinone, 2H-1,4-benzoxazin-3(4H)-one-7-yl, and the like) provided that the point of attachment is to an aromatic ring atom. Preferred aryls include phenyl and naphthyl, e.g, 2-naphthyl.
- “Substituted aryl” refers to aryl groups which are substituted with from 1 to 3 substituents, and preferably 1 to 2 substituents, selected from the group consisting of hydroxy, acyl, acylamino, alkyl, substituted alkyl, alkoxy, substituted alkoxy, alkenyl, substituted alkenyl, amino, substituted amino, aminoacyl, aryl, substituted aryl, aryloxy, substituted aryloxy, cycloalkoxy, substituted cycloalkoxy, carboxyl, carboxyl esters, cyano, cycloalkyl, substituted cycloalkyl, halo, nitro, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, heteroaryloxy, substituted heteroaryloxy, heterocyclyloxy, and substituted heterocyclyloxy.
- “Aryloxy” refers to the group aryl-O— that includes, by way of example, phenoxy, naphthoxy, and the like.
- “Substituted aryloxy” refers to substituted aryl-O— groups.
- “Carboxyl” refers to —COOH or pharmaceutically acceptable salts thereof.
- “Carboxyl esters” refers to the groups —C(O)O-alkyl, —C(O)O-substituted alkyl, —C(O)O-aryl, and —C(O)O-substituted aryl wherein alkyl, substituted alkyl, aryl and substituted aryl are as defined herein.
- “Cycloalkyl” refers to monovalent cyclic alkyl groups of from 3 to 10 carbon atoms having single or multiple condensed rings which condensed rings may or may not be cycloalkyl provided that the point of attachment is to a cycloalkyl ring atom. Examples of cycloalkyl groups include, by way of example, adamantyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclooctyl and the like.
- “Substituted cycloalkyl” refers to a cycloalkyl group, having from 1 to 5 substituents selected from the group consisting of oxo (═O), thioxo (═S), alkyl, substituted alkyl, alkoxy, substituted alkoxy, acyl, acylamino, amino, substituted amino, aminoacyl, aryl, substituted aryl, aryloxy, substituted aryloxy, cyano, halogen, hydroxyl, nitro, carboxyl, carboxyl esters, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
- “Cycloalkenyl” refers to monovalent cyclic alkenyl groups of from 4 to 10 carbon atoms, preferably 5 to 8 carbon atoms, having single or multiple condensed rings which condensed rings may or may not be cycloalkenyl provided that the point of attachment is to a cycloalkenyl ring atom. Examples of cycloalkenyl groups include, by way of example, cyclopenten-4-yl, cyclooctene-5-yl and the like.
- “Substituted cycloalkenyl” refers to a cycloalkenyl group, having from 1 to 5 substituents selected from the group consisting of oxo (═O), thioxo (═S), alkyl, substituted alkyl, alkoxy, substituted alkoxy, acyl, acylamino, amino, substituted amino, aminoacyl, aryl, substituted aryl, aryloxy, substituted aryloxy, cyano, halogen, hydroxyl, nitro, carboxyl, carboxyl esters, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic provided that any hydroxyl substitution is not on an ethylenic carbon atom.
- “Cycloalkylene” refers to divalent cyclic alkyl groups of from 3 to 10 carbon atoms having single or multiple condensed rings which condensed rings may or may not be cycloalkyl provided that the points of attachment are to cycloalkyl ring atoms. Cycloalkylene rings include, by way of example, cyclopropylene, 1,2-cyclobutylene, 1,3-cyclopentylene, 1,4-cyclooctylene, and the like. Cycloalkylene includes all cis and trans isomers encompassed by the particular cycloalkylene group.
- “Substituted cycloalkylene” refers to a cycloalkylene group, having from 1 to 5 substituents selected from the group consisting of oxo (═O), thioxo (═S), alkyl, substituted alkyl, alkoxy, substituted alkoxy, acyl, acylamino, amino, substituted amino, aminoacyl, aryl, substituted aryl, aryloxy, substituted aryloxy, cyano, halogen, hydroxyl, nitro, carboxyl, carboxyl esters, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
- “Cycloalkoxy” refers to —O-cycloalkyl groups.
- “Substituted cycloalkoxy” refers to —O-substituted cycloalkyl groups.
- “Halo” or “halogen” refers to fluoro, chloro, bromo and iodo and preferably is fluoro or chloro.
- “Heteroaryl” refers to a monovalent aromatic group of from 1 to 15 carbon atoms, preferably from 1 to 10 carbon atoms, and 1 to 4 heteroatoms selected from the group consisting of oxygen, nitrogen, —S—, —SO—, and —SO2— within the ring. Such heteroaryl groups can have a single ring (e.g., pyridyl or furyl) or multiple condensed rings (e.g., indolizinyl or benzothienyl) provided that the point of attachment is through a heteroaryl ring atom. Preferred heteroaryls include pyridyl, pyrrolyl, indolyl, thiophenyl, and furyl.
- “Substituted heteroaryl” refers to heteroaryl groups that are substituted with from 1 to 3 substituents selected from the same group of substituents defined for substituted aryl.
- “Heteroaryloxy” refers to the group —O-heteroaryl and “substituted heteroaryloxy” refers to the group —O-substituted heteroaryl.
- “Heterocycle” or “heterocyclic” refers to a monovalent saturated or unsaturated group having a single ring or multiple rings, including fused rings, spiro rings, bicyclic rings, and rings connected by an “exo single bond,” from 1 to 10 carbon atoms and from 1 to 4 hetero atoms selected from the group consisting of nitrogen, sulfur, —S(O)—, —S(O)2—, or oxygen within the ring wherein, in fused ring systems, one or more the rings can be aryl or heteroaryl provided that the point of attachment is to a heterocyclic (non-aromatic) ring atom. In addition one or more carbon atoms within the ring may contain an oxo (═O) or a thioxo (═S) group.
- “Exo-single bond” refers to a bond between two heterocycle or heterocyclic rings, as exemplified as follows, wherein the bond between A and B is an exo-single bond:
- “Heterocyclene” refers to a divalent saturated or unsaturated group having a single ring or multiple condensed rings, from 1 to 10 carbon atoms and from 1 to 4 hetero atoms selected from the group consisting of nitrogen, sulfur or oxygen within the ring wherein, in fused ring systems, one or more the rings can be aryl or heteroaryl.
- “Substituted heterocyclene” refers to heterocyclene groups that are substituted with from 1 to 3 of the same substituents as defined for substituted cycloalkylene.
- Examples of heterocycles and heteroaryls include, but are not limited to, azetidine, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, dihydroindole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthylpyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, isothiazole, phenazine, isoxazole, phenoxazine, phenothiazine, imidazolidine, imidazoline, piperidine, piperazine, indoline, phthalimide, 1,2,3,4-tetrahydro-isoquinoline, 4,5,6,7-tetrahydro-benzo[b]thiophene, thiazole, thiazolidine, thiophene, benzo[b]thiophene, morpholinyl, thiomorpholinyl (also referred to as thiamorpholinyl), piperidinyl, pyrrolidine, tetrahydrofuranyl, and the like.
- “Heterocyclyloxy” refers to the group —O-heterocyclic and “substituted heterocyclyloxy” refers to the group —O-substituted heterocyclic.
- The term “cyclo” refers to an cycloalkyl ring of from 3 to 7 carbon atoms. The “cyclo” ring may optionally contain 1 or 2 points of unsaturation within the ring and the ring is optionally substituted with from about 1 to about 3 substituents selected from the group consisting of alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, and the like. The cycloalkyl ring may also have one or two of the carbon atoms in the ring replaced by a >C═O or by >C═S moiety.
- The term “het” refers to a heterocyclic ring of from 3 to 7 carbon atoms and from 1 to 4 hetero atoms selected from N, O and S. The heterocyclic ring may optionally contain 1 or 2 points of unsaturation within the ring and the ring is optionally substituted with from about 1 to about 3 substituents selected from the group consisting of alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, and the like. The heterocyclic ring may also have one or two of the carbon atoms in the ring replaced by a >C═O or by >C═S moiety.
- The terms “-het-(L2)b-het-”, “-het-(L2)b-cyclo-”, “-cyclo-(L2)b-het-” and “-cyclo-(L2)b-cyclo-” refer to any combinations of “het” and “cyclo” groups linked together by a linker (when b is 1) selected from the group consisting of a bond, alkylene, substituted alkylene, alkenylene, and substituted alkenylene, cycloalkylene, and substituted cycloalkylene. When b is 0, the combinations of het and cyclo include multicyclic groups (of from 1 to 3 rings) wherein the rings may be fused multicyclic rings, or spirocyclic rings.
- “Pharmaceutically acceptable salt” refers to pharmaceutically acceptable salts of a compound of Formula I which salts are derived from a variety of organic and inorganic counter ions well known in the art and include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, tetraalkylammonium, and the like; and when the molecule contains a basic functionality, salts of organic or inorganic acids, such as hydrochloride, hydrobromide, tartrate, mesylate, acetate, maleate, oxalate and the like.
- “Tautomers” refers to structures which are art recognized to be in equilibrium with the depicted structure. For example, 1,2,4-imidazole has the following tautomeric structures:
- all of which are art recognized.
- The term “platinum coordination compound” is used herein to denote any tumor cell growth inhibiting platinum coordination compound which provides platinum in the form of an ion.
- The term “taxane compounds” indicates a class of compounds having the taxane ring system and related to or derived form extracts from certain species of yew (Taxus) trees.
- The term “topisomerase inhibitors” is used to indicate enzymes that are capable of altering DNA topology in eukaryotic cells. They are critical for important cellular functions and cell proliferation. There are two classes of topoisomerases in eukaryotic cells, namely type I and type II. Topoisomerase I is a monomeric enzyme of approximately 100,000 molecular weight. The enzyme binds to DNA and introduces a transient single-strand break, unwinds the double helix (or allows it to unwind) and subsequently reseals the break before dissociating from the DNA strand. Topisomerase II has similar mechanism of action which involves the introduction of DNA strand breaks of the formation of free radicals.
- The term “camptothecin compounds” is used to indicate compounds that are related to or derived from the parent camptothecin compound which is water-insoluble alkaloid derived from the Chinese tree Camptothecin acuminate and the Indian tree Nothapodytes foetida.
- The term “podophyllotoxin compounds” is used to indicate compounds that are related to or derived from the parent podophyllotoxin, which is extracted from the mandrake plant.
- The term “anti-tumour vinca alkaloids” is used to indicate compounds that are related to or derived from extracts of the periwinkle plant (Vinca rosea).
- The term “alkylating agents” encompass a divers group of chemicals that have the common feature that they have the capacity to contribute, under physiological conditions, alkyl groups to biologically vital macromolecules such as DNA. With most of the more important agents such as the nitrogen mustards and the nitrosoureas, the active alkylating moieties are generated in vivo after complex degradative reactions, some of which are enzymatic. The most important pharmacological actions of the alkylating agents are those that disturb the fundamental mechanisms concerned with cell proliferation in particular DNA synthesis and cell division. The capacity of alkylating agents to interfere with DNA function and integrity in rapidly proliferating tissues provides the basis for their therapeutic applications and for many of their toxic properties.
- The term “anti-tumour anthracycline derivatives” comprise antibiotics obtained from the fungus Strep. peuticus var. caesius and their derivatives, characterized by having a tetracycline ring structure with an unusual sugar, daunosamine, attached by a glycosidic linkage.
- Amplification of the human epidermal growth factor receptor 2 protein (HER 2) in primary breast carcinomas has been shown to correlate with a poor clinical prognosis for certain patients. Trastuzumab is highly purified recombinant DNA-derived humanized monoclonal IgG1 kappa antibody that binds with high affinity and specificity to the extracellular domain of the HER2 receptor.
- Many breast cancers have estrogen receptors and growth of these tumors can be stimulated by estrogen. The terms “estrogen receptor antagonists” and “selective estrogen receptor modulators” are used to indicate competitive inhibitors of estradiol binding to the estrogen receptor (ER). Selective estrogen receptor modulators, when bound to the ER, induces a change in the three-dimensional shape of the receptor, inhibiting its binding to the estrogen responsive element (ERE) on DNA.
- In postmenopausal women, the principal source of circulating estrogen is from conversion of adrenal and ovarian androgens (androstenedione and testosterone) to estrogens (estrone and estradiol) by the aromatase enzyme in peripheral tissues. Estrogen deprivation through aromatase inhibition or inactivation is an effective and selective treatment for some postmenopausal patients with hormone-dependent breast cancer.
- The term “antiestrogen agent” is used herein to include not only estrogen receptor antagonists and selective estrogen receptor modulators but also aromatase inhibitors as discussed above.
- The term “differentiating agents” encompass compounds that can, in various ways, inhibit cell proliferation and induce differentiation. Vitamin D and retinoids are known to play a major role in regulating growth and differentiation of a wide variety of normal and malignant cell types. Retinoic acid metabolism blocking agents (RAMBA's) increase the levels of endogenous retinoic acids by inhibiting the cytochrome P450-mediated catabolism of retinoic acids.
- DNA methylation changes are among the most common abnormalities in human neoplasia. Hypermethylation within the promoters of selected genes is usually associated with inactivation of the involved genes. The term “DNA methyl transferase inhibitors” is used to indicate compounds that act through pharmacological inhibition of DNA methyl transferase and reactivation of tumour suppressor gene expression.
- The term “kinase inhibitors” comprises potent inhibitors of kinases that are involved in cell cycle progression and programmed cell death (apoptosis).
- The term “farnesyltransferase inhibitors” is used to indicate compounds that were designed to prevent farnesylation of Ras and other intracellular proteins. They have been shown to have effect on malignant cell proliferation and survival.
- The compounds of this invention can be prepared from readily available starting materials using the following general methods and procedures. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are given, other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.
- Additionally, as will be apparent to those skilled in the art, conventional protecting groups may be necessary to prevent certain functional groups from undergoing undesired reactions, Suitable protecting groups for various functional groups as well as suitable conditions for protecting and deprotecting particular functional groups are well known in the art. For example, numerous protecting groups are described in T. W. Greene and G. M. Wuts, Protecting Groups in Organic Synthesis, Third Edition, Wiley, New York, 1999, and references cited therein.
- Furthermore, the compounds of this invention will typically contain one or more chiral centers. Accordingly, if desired, such compounds can be prepared or isolated as pure stereoisomers, i.e., as individual enantiomers or diastereomers, or as stereoisomer-enriched mixtures. All such stereoisomers (and enriched mixtures) are included within the scope of this invention, unless otherwise indicated. Pure stereoisomers (or enriched mixtures) may be prepared using, for example, optically active starting materials or stereoselective reagents well-known in the art. Alternatively, racemic mixtures of such compounds can be separated using, for example, chiral column chromatography, chiral resolving agents and the like.
- Still fiber, some of the compounds defined herein include vinyl groups which can exist in cis, trans or a mixture of cis and trans forms. All combinations being within the scope of this invention.
- The starting materials for the following reactions are generally known compounds or can be prepared by known procedures or obvious modifications thereof. For example, many of the starting materials are available from commercial suppliers such as Aldrich Chemical Co. (Milwaukee, Wis., USA), Bachem (Torrance, Calif., USA), Emka-Chemce or Sigma (St. Louis, Mo., USA). Others may be prepared by procedures, or obvious modifications thereof, described in standard reference texts such as Fieser and Fieser's Reagents for Organic Synthesis, Volumes 1-15 (John Wiley and Sons, 1991), Rodd's Chemistry of Carbon Compounds, Volumes 1-5 and Supplementals (Elsevier Science Publishers, 1989), Organic Reactions, Volumes 1-40 (John Wiley and Sons, 1991), March's Advanced Organic Chemistry, (John Wiley and Sons, 4th Edition), and Larock's Comprehensive Organic Transformations (VCH Publishers Inc., 1989).
- As to the synthesis of compounds of this invention, Scheme 1 below illustrates a general method for synthesis wherein L is a covalent bond, X is N and Y is CH, and the ring defined by A contains two ring amino groups.
- where X′ is a halogen such as bromo or chloro, one of R21 and R22 is —C(O)OPg where Pg is a carboxyl protecting group such as an alkyl group, e.g., methyl and the other is hydrogen, and R, R2 and z are as defined above. For illustrative purposes in the discussion below, z will be assigned the value 1, R21 will be carboxy methyl ester (—COOCH3), and R22 will be hydrogen. It is understood, of course, that other diaminoheterocycles such as where z is zero or one and other thiazole compounds can similarly be employed.
- Specifically, commercially available methyl 2-halo-5-carboxylthiazole, compound 30, is condensed with at least an equivalent and preferably and excess of mono-protected 1-t-butoxycarbonyl (Boc) piperazine, compound 31, under conventional conditions to provide for methyl 2-[(1-t-butoxycarbonyl)piperazin-4-yl]-5-carboxylthiazole, compound 32. The reaction is typically conducted in an inert solvent such as acetonitrile, chloroform, and the like in the presence of a suitable base such as potassium carbonate which scavenges the acid generated during the reaction. The reaction is typically conducted at an elevated temperature of from about 40° to 100° C. for a period of time sufficient for substantial completion of the reaction which typically occurs within about 2 to 48 hours. The resulting product, compound 32, can be recovered by conventional methods, such as chromatography, filtration, crystallization, evaporation and the like or, alternatively, used in the next step without purification and/or isolation.
- Conventional deprotection of the Boc-protected amino group (e.g., TFA) of methyl 2-[(1-t-butoxycarbonyl)piperazin-4-yl]-5-carboxylthiazole, compound 32, provides for the corresponding methyl 2-(piperazin-4-yl)-5-carboxylthiazole, not shown, which is then reacted with a suitable sulfonyl chloride (RSO2Cl) to provide for the corresponding sulfonyl amide, compound 33. This latter reaction is typically conducted by combining preferably from about 1.5 to about 2.5 equivalents, of the sulfonyl chloride in an inert diluent such as dichloromethane and the like. Generally, the reaction is conducted at a temperature ranging from about 0° C. to about 40° C. for about 1 to about 24 hours. Preferably, this reaction is conducted in the presence of a suitable base to scavenge the acid generated during the reaction. Suitable bases include, by way of example, tertiary amines, such as triethylamine, diisopropylethylamine, N-methylmorpholine and the like. Alternatively, the reaction can be conducted under Schotten-Baumann-type conditions using aqueous alkali, such as sodium hydroxide and the like, as the base. Upon completion of the reaction, the resulting N-sulfonyl amino acid, compound 33 is recovered by conventional methods including neutralization, extraction, precipitation, chromatography, filtration, evaporation and the like.
- The sulfonyl chlorides employed in the above reaction are either known compounds or compounds that can be prepared from known compounds by conventional synthetic procedures. Such compounds are typically prepared from the corresponding sulfonic acid, i.e., from compounds of the formula RSO3H where R is as defined above, using phosphorous trichloride and phosphorous pentachloride. This reaction is generally conducted by contacting the sulfonic acid with about 2 to 5 molar equivalents of phosphorous trichloride and phosphorous pentachloride, either neat or in an inert solvent, such as dichloromethane, at temperature in the range of about 0 to about 80° C. for about 1 to about 48 hours to afford the sulfonyl chloride. Alternatively, the sulfonyl chlorides can be prepared from the corresponding thiol compound, i.e., from compounds of the formula R—SH where R is as defined herein, by treating the thiol with chlorine (Cl2) and water under conventional reaction conditions.
- Examples of sulfonyl chlorides suitable for use in this invention include, but are not limited to, methanesulfonyl chloride, 2-propanesulfonyl chloride, 1-butanesulfonyl chloride, benzenesulfonyl chloride, 1-naphthalenesulfonyl chloride, 2-naphthalenesulfonyl chloride, p-toluenesulfonyl chloride, 0.2-methylphenylsulfonyl chloride, 4 acetamidobenzenesulfonyl chloride, 4-tert-butylbenzenesulfonyl chloride, 4 bromobenzenesulfonyl chloride, 2-carboxybenzenesulfonyl chloride, 4-cyanobenzenesulfonyl chloride, 3,4-dichlorobenzenesulfonyl chloride, 3,5-dichlorobenzenesulfonyl chloride, 3,4-dimethoxybenzenesulfonyl chloride, 3,5-ditrifluoromethylbenzenesulfonyl chloride, 4-fluorobenzenesulfonyl chloride, 4-methoxybenzenesulfonyl chloride, 2-methoxycarbonylbenzenesulfonyl chloride, 4-methylamidobenzenesulfonyl chloride, 4-nitrobenzenesulfonyl chloride, 4-thioamidobenzenesulfonyl chloride, 4-trifluoromethyl-benzenesulfonyl chloride, 4-trifluoromethoxybenzenesulfonyl chloride, 2,4,6-trimethylbenzenesulfonyl chloride, 2-phenylethanesulfonyl chloride, 2-thiophenesulfonyl chloride, 5-chloro-2-thiophenesulfonyl chloride, 2,5-dichloro-4-thiophenesulfonyl chloride, 2-thiazolesulfonyl chloride, 2-methyl-4-thiazolesulfonyl chloride, 1-methyl-4-imidazolesulfonyl chloride, 1-methyl-4-pyrazolesulfonyl chloride, 5-chloro-1,3-dimethyl-4-pyrazolesulfonyl chloride, 3-pyridinesulfonyl chloride, 2-pyrimidinesulfonyl chloride and the like. If desired, a sulfonyl fluoride, sulfonyl bromide or sulfonic acid anhydride may be used in place of the sulfonyl chloride in the above reaction to form the N-sulfonyl amino acids.
- The R21 methyl carboxyl group of compound 33 can then be converted to a variety of amides including hydroxyamides by reaction with a 2-20 fold excess of a suitable amine such as hydroxylamine. The reaction is typically conducted in a suitable diluent such as a 5:2 mixture of methanol to water under basic conditions, e.g, the addition of sodium hydroxide. The reaction is typically conducted at a temperature of from about −20° to 20° C. for a period of time sufficient for substantial completion of the reaction which typically occurs within about 0.5 to 10 hours. The resulting amide, compound 34, can be recovered by conventional methods, such as chromatography, filtration, crystallization, evaporation and the like.
- Alternatively, ester 33 is converted to the hydroxamic acid 34 as shown in Scheme 1B.
- where HX is a strong acid and MOH is an alkali metal hydroxide.
- The ester prepared by the methods of Scheme 1 is hydrolyzed to a carboxylic acid 33′ with about 1-20 equivalents of an alkali metal hydroxide such as, but not limited to, sodium hydroxide or potassium hydroxide in a mixture of water and a suitable organic solvent in about one to 48 hours at about 20 to 100° C. Suitable organic solvents include, but are not limited to, tetrahydrofuran, ethanol, methanol, or dioxane. The reaction mixture is neutralized with an inorganic acid such as hydrochloric, hydrobromic, or sulfuric acid and the solvents are evaporated. The residue is suspended in a suitable solvent and treated with about one to five equivalents of a tertiary amine such as, but not limited to, triethylamine or diisopropyletoelamine (DIEA) about one to five equivalents of N-hydroxybenzotriazole (HOBT) and about one to five equivalents of a carbodiimide coupling reagent such as, but not limited to, dicyclohexylcarbodiimide or 1-[3-(dimethylamino)propyl]-1-ethylcarbodiimide (EDC) and about one to five equivalents of O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (NH2OTHP) for about one to 48 hours at about 20 to 100° C. to produce a protected hydroxamic acid 33″ A solution of about 1 to 50% strong acid such as, but not limited to, hydrochloric acid or trifluoroacetic acid in an organic solvent such as, but not limited to, dichloromethane, dichloroethane, methanol, ethanol, or dioxane at about 0° to 80° C. in about one minute to 24 hours converts 33″ to the hydroxamic acid 34 that is recovered by the means previously described.
- Scheme 1C shows the synthesis of compounds of formula I where T is a bond and where R, R2, R21, R22, Boc, X′ and z are as defined above.
- Specifically, commercially available methyl 2-halo-5-carboxylthiazole, compound 30, is condensed with at least an equivalent and preferably an excess of a mono-N-substituted piperazine 1C.1 under conventional conditions to provide for a methyl 2-[(1-substituted)piperazin-4-yl]-5-carboxylthiazole, 1C.2. The reaction is typically conducted in an inert solvent such as acetonitrile, chloroform, and the like in the presence of a suitable base such as potassium carbonate that scavenges the acid generated during the reaction.
- where R, R2, R21, R22, Boc, X′ and z are as defined above.
- Specifically, in Scheme 2, compound 32 is prepared as per Scheme 1 above. Conventional removal of the Bloc group provides for the free amino group on the piperazine ring (not shown). The amino group is then acylated by conventional means such as reaction with an excess of the acid chloride, RC(O)Cl, in a suitable inert diluent such as dichloromethane and preferably in the presence of an tertiary amine to scavenge the acid generated during the reaction. Alternatively, the free amine group of the piperazine is treated with about one to five equivalents of a carboxylic acid in the presence of a suitable carbodiimide coupling reagent such as, but not limited to, EDCI or dicyclohexylcarbodiimide in the presence of about one to five equivalents of HOBT or HOAT and about one to five equivalents of a tertiary amine base such as, but not limited to, diisopropylethylamine or triethylamine in a suitable solvent such as tetrahydrofuran or methylene chloride at about 0 to 60° C. for about one to 72 hours. The resulting amide, compound 35, can be recovered by conventional methods, such as chromatography, The reaction is typically conducted at an elevated temperature of from about 40° to 100° C. for a period of time sufficient for substantial completion of the reaction that typically occurs within about 2 to 48 hours. The resulting product, compound 1C.2, can be recovered by conventional methods, such as chromatography, filtration, crystallization, evaporation and the like or, alternatively, used in the next step without purification and/or isolation. The R21 methyl carboxylate group of IC.2 is then converted to a variety of amides including hydroxyamides 1C.3 by any of the methods described for Scheme 1.
- Alternatively, compound 32 in Scheme 1 is deprotected as described above and the secondary nitrogen of the piperazine ring of the resulting product is alkylated with about one to five equivalents of an alkyl or substituted alkyl halide in a suitable solvent at about 0 to 100° C. in the presence of about one to five equivalents of an alkali metal carbonate in about one to 72 hours. Suitable alkyl and substituted alkyl halides include chlorides, bromides, and iodides. Suitable solvents are, but are not limited to, methylene chloride, tetrahydrofuran, dioxane, and dimethylformamide. Preferred alkali metal carbonates are potassium and cesium carbonate. The resulting ester 1C.4 is converted to the desired amides such as 1C.3 by any of the methods described above.
- Scheme 2 illustrates the synthesis of compounds of formula I where T is a carbonyl group.
- filtration, crystallization, evaporation and the like. Conversion of the amide 35 to compound 36 proceeds in the manner described above.
- In Schemes 1 and 2, replacement of 4-Boc-piperazine with mono-amino protected diamino compounds provides for compounds of formula I such as those where Q is amino, T is a sulfonylamide, etc. Examples of commercially available diamino compounds include 1,4-diaminocyclohexane, 1,2-diaminocyclohexane, 4-aminopiperidine, 3-aminopiperidine, 3-aminopyrrolidine, 4-(aminomethyl)piperidine, 2-(aminomethyl)pyrrolidine, and the like. These compounds can be conventionally mono-amino protected to provide for suitable reagents for use in this invention.
- Scheme 3 illustrates the synthesis of compounds of formula I where L is an alkenylene group.
- where X′, R and Boc are as defined above.
- Specifically, commercially available 2-bromo-5-formylthiazole, compound 37, is condensed with at least an equivalent and preferably and excess of mono-protected 1-t-butoxycarbonyl (Boc) piperazine, compound 31, as described above to provide for methyl 2-[(1-t-butoxycarbonyl)piperazin-4-yl]-5-formylthiazole, compound 38. Alternatively, 2-bromo-5-formylthiazole can be prepared from the 5-carboxyl precursor, compound 30 where R21 is carboxyl or a carboxyl ester, by conventional reduction procedures.
- Conversion of compound 38 to compound 39 proceeds via a conventional Wittig Horner reaction.
- Removal of the Boc protecting group proceeds via conventional conditions to provide for the free amine, not shown, which is then contacted with an excess of sulfonyl chloride in the manner described above to provide for compound 40. Conversion of the methyl ester of compound 40 to the corresponding amide, e.g., hydroxylamide, proceeds via contacting the ester with an excess of amine in the manner described above thereby providing for compound 41.
- In one alternative embodiment, commercially available 2-bromo-4-formylthiophene or 2-bromo-5-formylthiophene can be employed in the reactions recited above to provide for thiophene compounds the corresponding to thiazole compound 41.
- In another alternative embodiment, the sulfonyl chloride, RSO2Cl, can be replaced with an acid chloride, RC(O)Cl, to provide for compounds where T is carbonyl.
- Still further, conventional oxidation of the sulfur in the thiophene or the thiazolyl to the corresponding sulfoxide or sulfone proceeds, for example, by contact with m-chloroperbenzoic acid.
- In yet another embodiment, the vinylene group of compound 40 can be converted to a cyclopropylene moiety by conventional reaction with at least an equivalent and preferably an excess of diazomethane (CH2N2) in the presence of a palladium diacetate as in Scheme 3A below:
- Subsequent conversion of the carboxyl ester to the hydroxylamide proceeds as discussed above.
- Scheme 4 illustrates the synthesis of compounds of formula I where Q is an alkylene group. For illustrative purposes, T is a sulfonyl group, the ring defined by A is a piperazine ring, and W is S, X is N and Y is CH.
- where R and Boc are as defined above.
- Specifically, an excess of sulfonyl chloride, RSO2Cl, is combined in the manner described above with 1-t-butoxycarbonylpiperazine, compound 31, to provide 4(RSO2—)-1-t-butoxycarbonylpiperazine (not shown). Conventional removal of the Boc protecting group provides for 4-(RSO2—)-piperazine, compound 42.
- Coupling of compound 42 with an ω-halocarboxylamide, illustrated by 2-bromoacetamide, provides for compound 43. This conventional coupling reaction is preferably conducted in an inert solvent such as methanol, ethanol, and the like preferably in the presence of a suitable base such as potassium carbonate to scavenge the acid generated during reaction. The reaction is preferably conducted at an elevated temperature of from about 50 to about 100° C. The reaction is continued until substantial completion which typically occurs within a period of from about 2 to 48 hours. Upon completion of the reaction, compound 34 is recovered by conventional methods including neutralization, extraction, precipitation, chromatography, filtration, evaporation and the like or, alternatively, is used in the next step without isolation and/or purification.
- The amide of compound 43 is converted to the corresponding thioamide by conventional methods including reaction with P2S5 to provide for compound 44 which can be recovered by conventional methods including neutralization, extraction, precipitation, chromatography, filtration, evaporation and the like or, alternatively, is used in the next step without isolation and/or purification
- Compound 44 is converted to the corresponding thiazole derivative by reaction with methyl 2-chloro-2-formyl acetate, compound 45. In turn, this compound is prepared by reaction of methyl 2-chloroacetate and methyl formate in the presence of a suitable base. Cyclization provides for the 5-carboxylate (methyl ester) of the thiazole.
- In scheme 4, the 5-carboxylate is converted to the corresponding hydroxylamide in the manner described above. It is understood, of course, that this carboxylate can be reduced to the corresponding formyl group via conventional reduction conditions well known in the art and then used in the manner of Scheme 3 to provide for the alkenylene linking group.
- Compounds in Scheme 4 can be used to prepare similar compounds of formula I where T is a carbonyl group. For example, retention of the Boc protecting group throughout this reaction scheme allows for the synthesis of a Boc protected equivalent to compound 46. Removal of the Boc group followed by reaction with an acid chloride, RC(O)Cl, provides for a carbonyl equivalent of compound 46 which can then be converted to the corresponding N-hydroxylamide.
- Scheme 4′ shows the synthesis of compounds of formula I where Q is a carbon-carbon bond between the ring defined by A and V. For illustrative purposes, T is a sulfonyl group, the ring defined by A is a piperidine ring, and W is S, X is N and Y is CH.
- A Boc protected 4-(aminocarbothioyl)tetrahydropyridinle-1(2H)carboxylate 4′.1 is treated with about one to 20 equivalents of methyl chloro(formyl)acetate in a suitable solvent at about 0 to 140° C. for about 30 minutes to 72 hours to give thiazole ester 4′.2. Suitable solvents include, but are not limited to, methylene chloride, toluene, dioxane, tetrahydrofuran, and dimethylformamide. The Boc group of 4′.2 is cleaved by any of the methods described above to give piperidine 4′.3. Piperidine 4′.3 is sulfonylated by any of the methods described above to give sulfonylated piperidine 4′.4. Sulfonylated piperidine 4′.4 is converted to hydroxamate 4′.5 by any of the methods described above.
- Still further, other 5 membered heteroaryl ring systems for use in this invention can be readily prepared by conventional means as shown in Schemes 4A and 4B below:
- Specifically, in Scheme 4A, ethyl 2-thiol-5-carboxylimidazole compound 48, is converted to the corresponding methyl sulfone, compound 49, prepared by methylation using methyl iodide, followed by oxidation using metachloroperbenzoic acid. Subsequent re-esterification and reaction with piperazine provides for compound 50 which can be used in the procedures set forth above to provide for compounds of this invention. For example, conversion of the ethyl carboxylate to the formyl functionality proceeds via well documented reduction procedures. The formyl functionality can then be employed in a Wittig Horner reaction to provide for the vinylene carboxylate derivative in the manner described in Scheme 3 above.
- Still further, Scheme 4B illustrates how commercially available 2-amino-5-carboxyl-1,3,4-triazole can be converted into intermediates which can be used in the above schemes for the synthesis of compounds of this invention.
- Compound 51 can be converted via conventional methods to the corresponding 2-bromo-5-carboxyl-1,3,4-triazole or the 2-(4-Boc-piperazin-1-yl)-5-carboxyl-1,3,4-triazole.
- Still other heteroaryls useful in the synthetic schemes recited herein include the following commercially available compounds:
- Compounds where Q is —SO2—, V, Y and Z are carbon, X is S, W is O, and ring A is piperidine are prepared using methods described in T. Hamada et al Synthesis, 1986, 852 and shown in Scheme 5 below. This preparation is also useful for any A ring containing a nitrogen atom that may be bound to the sulfonyl group.
- Compound 63, is an intermediate that, after deprotection, can be converted to various analogs as exemplified herein.
- For example, compound 60 in Scheme 5 above can be converted to compound 61 by using the methods described in T. Hamada et al Synthesis, 1986, 852. Coupling of the sulfonyl chloride, compound 61, with compound 62 is accomplished as discussed herein above (see for example Scheme 4).
- In Scheme 6 below, compounds where Q is —O—, V, Y and Z are carbon, X is S, W is O, and ring A is piperidine are prepared using methods described herein and methods described in W. Huang et al. Biorg. Med. Chem. Lett. 2003, 13 (3) 561. This preparation is also useful for any A ring containing at least one carbon atom that may be bound to the oxygen linking the A ring to the 5-membered heteroaryl ring.
- For example, compound 60 is reacted with compound 64 by reaction with triphenylphospine and DEAD in an inert solvent such as THF. Again, intermediate 65, after deprotection, can be converted to various analogs as exemplified herein.
- Compounds where Q is —O—, V, Y and Z are carbon, X is S, W is C(O), and ring A is piperidine are prepared as discussed in Morimoto et al. J. med. Chem. 2001, 44 (21) 3369. This preparation is also useful for any A ring containing at least one carbon atom that may be bound to the carbonyl linking the A ring to the 5-membered heteroaryl ring.
- For Example, compound 60 is carboxylated with butyl lithium and carbon dioxide to form compound 66. Reaction of compound 66 with mono-protected piperazine in the presence of a coupling agent, such as DCC, affords compound 67, which after deprotection, can be converted to various analogs as exemplified herein.
- Pharmaceutical Formulations
- When employed as pharmaceuticals, the compounds of this invention are usually administered in the form of pharmaceutical compositions. These compounds can be administered by a variety of routes including oral, rectal, transdermal, subcutaneous, intravenous, intramuscular, and intranasal. These compounds are effective as both injectable and oral compositions. Such compositions are prepared in a manner well known in the pharmaceutical art and comprise at least one active compound.
- This invention also includes pharmaceutical compositions which contain, as the active ingredient, one or more of the compounds of formula I-VII above associated with pharmaceutically acceptable carriers. In making the compositions of this invention, the active ingredient is usually mixed with an excipient, diluted by an excipient or enclosed within such a carrier which can be in the form of a capsule, sachet, paper or other container. The excipient employed is typically an excipient suitable for administration to human subjects or other mammals. When the excipient serves as a diluent, it can be a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient. Thus, the compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, suppositories, sterile injectable solutions, and sterile packaged powders.
- In preparing a formulation, it may be necessary to mill the active compound to provide the appropriate particle size prior to combining with the other ingredients. If the active compound is substantially insoluble, it ordinarily is milled to a particle size of less than 200 mesh. If the active compound is substantially water soluble, the particle size is normally adjusted by milling to provide a substantially uniform distribution in the formulation, e.g. about 40 mesh.
- Some examples of suitable excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, and methyl cellulose. The formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents. The compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
- The compositions are preferably formulated in a unit dosage form. The term “unit dosage forms” refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient.
- The compounds of the present invention maybe administered to patients either alone or in combination with other known anti-tumor agents. When administered alone about 0.005 to about 100 mg/kg, more preferably about 0.005 to about 10 mg/kg, are administered to the patient Higher and lower dosages may be used. Administration may occur once a day, or several times in a day. In addition the treatment may be repeated every 7, 14, 21 or 28 days.
- When administered in combination with other anti-cancer agents, the compounds of the present invention may be prepared in a formulation that includes both the compounds of Formula I-VII and one or more other anti-cancer agents. Alternatively the other anti-cancer agents may be administered in a separate formulation which may be administered before, after or simultaneously with the compounds of this invention. When administered in combination with at least one other anti-cancer agent about 5 to about 100 mg/kg, more preferably about 0.005 to about 10 mg/kg, of the present HDAC inhibitors are administered to the patient. Higher and lower dosages may be used. The dosages of the other anti-cancer agents are known in the art. Administration may occur once a day, or several times in a day. In addition the treatment may be repeated every 7, 14, 21 or 28 days.
- The active compound is effective over a wide dosage range and is generally administered in a pharmaceutically effective amount. It, will be understood, however, that the amount of the compound actually administered will be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
- For preparing solid compositions such as tablets, the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention. When referring to these preformulation compositions as homogeneous, it is meant that the active ingredient is dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules. This solid preformulation is then subdivided into unit dosage forms of the type described above containing from, for example, 0.1 to about 500 mg of the active ingredient of the present invention.
- The tablets or pills of the present invention may be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. The two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
- The liquid forms in which the novel compositions of the present invention may be incorporated for administration orally or by injection include aqueous solutions suitably flavored syrups, aqueous or oil suspensions, and flavored emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil, or peanut oil, as well as elixirs and similar pharmaceutical vehicles.
- Compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders. The liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra. Preferably, the compositions are administered by the oral or nasal respiratory route for local or systemic effect. Compositions in preferably pharmaceutically acceptable solvents may be nebulized by use of inert gases. Nebulized solutions may be breathed directly from the nebulizing device or the nebulizing device may be attached to a face masks tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions may be administered, preferably orally or nasally, from devices which deliver the formulation in an appropriate manner.
- The following formulation examples illustrate the pharmaceutical compositions of the present invention.
- Hard gelatin capsules containing the following ingredients are prepared:
-
Quantity Ingredient (mg/capsule) Active Ingredient 30.0 Starch 305.0 Magnesium stearate 5.0 - The above ingredients are mixed and filled into hard gelatin capsules in 340 mg quantities.
- A tablet formula is prepared using the ingredients below.
-
Quantity Ingredient (mg/tablet) Active Ingredient 25.0 Cellulose, microcrystalline 200.0 Colloidal silicon dioxide 10.0 Stearic acid 5.0 - The components are blended and compressed to form tablets, each weighing 240 mg.
- A dry powder inhaler formulation is prepared containing the following components:
-
Ingredient Weight % Lactose 5 Active Ingredient 95 - The active mixture is mixed with the lactose and the mixture is added to a dry powder inhaling appliance.
- Tablets, each containing 30 mg of active ingredient, are prepared as follows:
-
Quantity Ingredient (mg/tablet) Active Ingredient 30.0 mg Starch 45.0 mg Microcrystalline cellulose 35.0 mg Polyvinylpyrrolidone 4.0 mg (as 10% solution in water) Sodium carboxymethyl starch 4.5 mg Magnesium stearate 0.5 mg Talc 1.0 mg Total 120 mg - The active ingredient, starch and cellulose are passed through a No. 20 mesh U.S. sieve and mixed thoroughly. The solution of polyvinyl-pyrrolidone is mixed with the resultant powders, which are then passed through a 16 mesh U.S. sieve. The granules so produced are dried at 50° to 60° C. and passed through a 16 mesh U.S. sieve. The sodium carboxymethyl starch, magnesium stearate, and talc, previously passed through a No. 30 mesh U.S. sieve, are then added to the granules which, after mixing, are compressed on a tablet machine to yield tablets each weighing 150 mg.
- Capsules, each containing 40 mg of medicament are made as follows:
-
Quantity Ingredient (mg/capsule) Active Ingredient 40.0 mg Starch 109.0 mg Magnesium stearate 1.0 mg Total 150.0 mg - The active ingredient, cellulose, starch, an magnesium stearate are blended, passed through a No. 20 mesh U.S. sieve, and filled into hard gelatin capsules in 150 mg quantities.
- Suppositories, each containing 25 mg of active ingredient are made as follows:
-
Ingredient Amount Active Ingredient 25 mg Saturated fatty acid glycerides to 2,000 mg - The active ingredient is passed through a No. 60 mesh U.S. sieve and suspended in the saturated fatty acid glycerides previously melted using the minimum heat necessary. The mixture is then poured into a suppository mold of nominal 2.0 g capacity and allowed to cool.
- Suspensions, each containing 50 mg of medicament per 5.0 mL dose are made as follows:
-
Ingredient Amount Active Ingredient 50.0 mg Xanthan gum 4.0 mg Sodium carboxymethyl cellulose (11%) 50.0 mg Microcrystalline cellulose (89%) Sucrose 1.75 g Sodium benzoate 10.0 mg Flavor and Color q.v. Purified water to 5.0 mL - The medicament, sucrose and xanthan gum are blended, passed through a No. 10 mesh U.S. sieve, and then mixed with a previously made solution of the microcrystalline cellulose and sodium carboxymethyl cellulose in water. The sodium benzoate, flavor, and color are diluted with some of the water and added with stirring. Sufficient water is then added to produce the required volume.
-
-
Quantity Ingredient (mg/capsule) Active Ingredient 15.0 mg Starch 407.0 mg Magnesium stearate 3.0 mg Total 425.0 mg - The active ingredient, cellulose, starch, and magnesium stearate are blended, passed through a No. 20 mesh U.S. sieve, and filled into hard gelatin capsules in 560 mg quantities.
- An intravenous formulation may be prepared as follows:
-
Ingredient Quantity Active Ingredient 250.0 mg Isotonic saline 1000 mL - A topical formulation may be prepared as follows:
-
Ingredient Quantity Active Ingredient 1-10 g Emulsifying Wax 30 g Liquid Paraffin 20 g White Soft Paraffin to 100 g - The white soft paraffin is heated until molten. The liquid paraffin and emulsifying wax are incorporated and stirred until dissolved. The active ingredient is added and stirring is continued until dispersed. The mixture is then cooled until solid.
- Another preferred formulation employed in the methods of the present invention employs transdermal delivery devices (“patches”). Such transdermal patches may be used to provide continuous or discontinuous infusion of the compounds of the present invention in controlled amounts. The construction and use of transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, e.g., U.S. Pat. No. 5,023,252, issued Jun. 11, 1991, herein incorporated by reference. Such patches may be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.
- Direct or indirect placement techniques may be used when it is desirable or necessary to introduce the pharmaceutical composition to the brain. Direct techniques usually involve placement of a drug delivery catheter into the host's ventricular system to bypass the blood-brain barrier. One such implantable delivery system used for the transport of biological factors to specific anatomical regions of the body is described in U.S. Pat. No. 5,011,472 which is herein incorporated by reference.
- Indirect techniques, which are generally preferred, usually involve formulating the compositions to provide for drug latentiation by the conversion of hydrophilic drugs into lipid-soluble drugs. Latentiation is generally achieved through blocking of the hydroxy, carbonyl, sulfate, and primary amine groups present on the drug to render the drug more lipid soluble and amenable to transportation across the blood-brain barrier. Alternatively, the delivery of hydrophilic drugs may be enhanced by intraarterial infusion of hypertonic solutions which can transiently open the blood-brain barrier.
- Deacetylases are found in transcriptional repression pathways. In addition, histone deacetylases (HDAC) play an important role in cell proliferation and differentiation. Inhibition of histone deacetylation results in cell cycle arrest, cellular differentiation, apoptosis and reversal of the transformed phenotype. Therefore, HDAC inhibitors are useful in the treatment and/or amelioration of cell proliferative diseases or conditions, such as cancers.
- The following synthetic and biological examples are offered to illustrate this invention and are not to be construed in any way as limiting the scope of this invention. Unless otherwise stated, all temperatures are in degrees Celsius.
- In the examples below, the following abbreviations have the following meanings. If an abbreviation is not defined, it has its generally accepted meaning.
-
- Boc=N-tert-butoxycarbonyl
- d=doublet
- dd=doublet of doublets
- DCM=dichloromethane
- DMEM=Delbaco's minimum eagle's medium
- DMSO=dimethylsulfoxide
- DEAD=Diethyl azodicarboxylate
- DIEA=diisopropylethylamine
- EtOAc=ethyl acetate
- g=grams
- h=hour
- HOAT=1-hydroxy-7-azabenzotriazole
- HOBT=1-hydroxybenzotriazole
- HPLC high performance liquid chromatography
- hr or h=hour
- L=liter
- m=multiplet
- M=molar
- Me=methyl
- min=minutes
- mg=milligram
- mL=milliliter
- mm=millimeter
- mM=millimolar
- mmol=millimol
- MHz=megahertz
- m/e or m/z=mass to charge ratio from mass spectrum
- N=normal
- nm=nanometers
- NMR=nuclear magnetic resonance
- PDA=
- q.s.=means adding a quantity sufficient to achieve a certain state
- RPHPLC reverse phase high performance liquid chromatography
- rt=room temperature
- Rt=Retention time
- s=singlet
- sec=seconds
- t=triplet
- TCA=trichloroacetic acid
- TFA=trifluoroacetic acid
- THF=tetrahydrofuran
- TLC or tlc=thin layer chromatography
- w/v=weight to volume
- v/v volume to volume
- μL=microliter
- μM=micromolar
- All the chemicals starting materials were obtained from commercial suppliers and used without further purification.
- Flash column chromatography was performed with silica (60-120 mesh). Analytical RPHPLC was done using Shimadzu HPLC equipped with a PDA detector using the following columns and systems: a Thermo Hypersil BDS, 4.6×150 mmm, 5 μM particle size, C-18 column, isocratic using acetonitrile:0.1% TFA in water (60:40), flow rate=0.5 mL/min (System-1); Thermo Hypersil BDS, 4.6×250 mm, 5 μM particle size, C-18 column, linear gradient A-acetonitrile: B-0.1% TFA in water; 0.01 min A(10%):B(90%); 5.00 min A(10%):B(90%); 15.0 min A(90%):B(10%); 20.00 min A(90%):B(10%); 25.00 min A(10%):B(90%); 30.00 min A(10%):B(90%); 30.00 min Stop; flow rate=1.5 mL/min (System-2).
- 1H NMR spectra were recorded at 200 or 300 MHz and the proton chemical shifts are expressed in ppm relative to internal tetramethylsilane and coupling constants (J) are expressed in hertz. Mass spectra were carried out using a Micromass model.
- To bromothiazole 1 (1 g, 4.18 mmol) in acetonitrile (40 mL) was added potassium (1.32 g, 10 mmol) followed by N-Boc piperizine 2a (0.935 g, 5 mmol). The reaction mixture was held at 80° C. for 16 h. At the end of the reaction time, acetonitrile was removed on roto-evaporation and the residue was taken in ethyl acetate (50 mL) and washed with brine (30 mL). The crude product 3 obtained (1.4 g, 99%) on removal of solvent was taken as such for the next reaction.
- To the crude product 3 obtained from general method A (1.4 g, 4.15 mmol) TFA (20%) in dichloromethane was added and stirred at room temperature for an h. After removing the solvent, the residue was kept under high vacuum for 1 h. The residue was then redissolved in DCM (20 mL) to which triethylamine (6.0 mL, 41.5 mmol) and 2-naphthalene sulfonyl chloride (1.85 g, 8.2 mmol) was added and stirred at room temperature over night. Subsequently more DCM (50 mL) was added and washed with 1N hydrochloric acid (20 nit). The crude product obtained on removal of solvent was purified on a column chromatography using ethyl acetate in hexanes (1:1) to obtain product 4 (1.15 g, %) as white crystalline solid.
- To the product 4 (200 mg, 0.46 mmol) in methanol (5 mL), aqueous hydroxyl amine (30 μL, 4.60 mmol, 50% solution) and sodium hydroxide (118 mg, 3.22 mmol, 2 mL) in water (2 mL) was added and the reaction mixture was held at 0° C. for 4 hours. After acidification with 1N HCl, the solvent was removed and the residue was taken up in ethyl acetate and washed with brine. The product 5 obtained (100 mg) on removal of solvent was purified on a RPHPLC.
- To the product 4 (200 mg, 0.46 mmol) in methanol (5 mL) and dioxane (5 mL) was added potassium hydroxide (285 mg) and the mixture was stirred at reflux temperature for 3 hours. The solvent was evaporated, the residue mixed with water, and the mixture acidified with 2N hydrochloric acid. The mixture was extracted with ethyl acetate, the extracts were dried, and the solvent evaporated to give the carboxylic acid 5d (173 mg). To a solution of 5d (100 mg, 0.264 mmol) in dichloromethane (10 mL) were added EDCI.HCl (101.13 mg, 0.52 mmol), HOBT (35.64 mg, 0.26 mmol), DIPEA (68.18 mg, 0.527 mm01) and NH2OTHP (29.81 mg, 0.264 mmol) under N2 atmosphere. The reaction mixture was stirred at room temperature for 12 h progress of the reaction was monitored by TLC analysis). Water (10 mL) followed by dichloromethane (10 ml) were added to the reaction mixture and the organic layer was separated, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using silica gel to obtain THP hydroxamate 5e (81 mg). To a solution of 5e (60 mg) in methanol (1 mL) was added 23% v/v HCl in ether (4 mL) at 0° C. The reaction mixture was stirred at 0° C. temperature for 15 min progress of the reaction was monitored by TLC analysis). Solvent was completely removed and to the crude residue was added diethyl ether and filtered to give 5f as a solid (42 mg).
-
- Intermediate 3a was obtained by the general Method A using methyl 2-bromothiazole-5-carboxylate 1a and N-Boc piperazine 2a. TLC(Rt): 0.41 (30% EtOAc in hexanes).
- 1H NMR (300 MHz, CDCl3) δ 7.76 (s, 1), 3.78 (s, 3), 3.66-3.69 (m, 4), 3.19-3.22 (m, 4), 1.49 (s, 9).
- MS (ES +): 328 (M+1).
- Intermediate 4a was obtained by employing the general Method B using the intermediate 3a. TLC(Rt): 0.41 (30% EtOAc in hexanes).
- 1H NMR (300 MHz, CDCl3): δ8.32 (d, J=1.5 Hz, 1H), 7.89-7.98 (m, 4H), 7.76 (s, 1H), 7.70-7.73 (dd, J=1.8, 8.4 Hz, 1H), 7.61-7.66 (m, 2H), 3.78 (s, 3H), 3.66-3.69 (m, 4H), 3.19-3.22 (m, 4H).
- MS (ES +): 418 (M+1).
- The title compound was obtained by employing the general Method C using the intermediate 4a. TLC(Rt): 0.41 (30% EtOAc in hexanes).
- 1H NMR (300 MHz, CD3OD) δ: 8.41 (m, 1H), 7.97-8.10 (m, 3H), 7.76-7.80 (dd, J=1.8, 8.4 Hz, 1H), 7.76 (s, 1H), 7.64-7.69 (m, 2H), 3.66-3.69 (m, 4H), 3.23-3.20 (m, 4H).
- MS (ES +): 419 (M+1).
-
- Intermediate 3b was obtained by the general Method A using methyl 2-bromothiazole-5-carboxylate 1a and N-Boc homopiperazine 2b. Yield (1.56 g, 99%). TLC (Rt): 0.33 (25% EtOAc in hexanes).
- 1H NMR (300 MHz, CDCl3) 6; 7.70 (s, 1), 3.82-3.85 (m, 2H) 3.78 (s, 3H), 3.68-3.72 (m, 2H), 3.52-3.56 (m, 21), 3.33-3.37 (m, 2H), 2.09-2.13 (s, 2H) 1.49 (s, 9H).
- MS (ES +): 342 (M+1).
- Intermediate 4b was obtained by employing the general Method B using the intermediate 3b. Yield: 50%. TLC(Rt); 0.33 (50% EtOAc in hexanes).
- 1H NMR (300 MHz. CDCl3) 6; 8.32 (m, 1H), 7.84-7.96 (m, 3H), 7.70 (s, 1H), 7.67-7.71 (m, 1H), 7.58-7.62 (m, 2H), 3.82-3.85 (m, 2H) 3.78 (s, 3H), 3.68-3.72 (m, 2H), 3.52-3.56 (m, 2H), 3.33-3.37 (m, 2H), 2.09-2.13 (s, 2H).
- MS (ES +): 432 (M+1).
- The title compound was obtained by employing the general Method C using the intermediate 4b. TLC(Rt): 0.41 (30% EtOAc in hexanes).
- 1H NMR (300 MHz, CD3OD) δ: 8.35 (m, 1H), 7.90-8.00 (m, 3H), 7.72-7.59 (dd, J=1.8, 8.4 Hz, 1H), 7.60-7.64 (m, 2H), 7.52 (s, 1H), 3.74-3.76 (m, 2H), 3.66-3.69 (m, 4H), 3.50-3.52 (m, 2H), 1.95-2.00 (m, 2H);
- MS (ES +): 433 (M+1).
-
- Intermediate 3c was obtained by the general Method A using methyl 2-bromothiazole-4-carboxylate 1a and N-Boc piperazine 2a. Yield (1.4 g, 99%). TLC(Rt): 0.37 (20% EtOAc in hexanes).
- 1H NMR (300 MHz, CDCl3) δ: 7.40 (s, 1H), 4.31 (q, J=6.9, 13.8 Hz, 2H), 3.62-3.66 (m, 4H), 3.19-3.22 (m, 4H), 1.57 (s, 9H), 1.30 (t, J=7.2 Hz, 3H).
- MS (ES +): 342 (M+1).
- Intermediate 4a was obtained by employing the general Method B using the intermediate 3a. TLC(Rt): 0.41 (30% EtOAc in hexanes).
- 1H NMR (300 MHz, CDCl3) δ: 8.32 (d, J=1.5 Hz, 1H), 7.89-7.98 (m, 3H), 7.70-7.74 (dd, J=1.8, 8.4 Hz, 1H), 7.61-7.66 (m, 2H), 7.40 (s, 1H), 4.31 (q, J=6.9, 13.8 Hz, 2H), 3.62-3.66 (m, 4H), 3.19-3.22 (m, 4H), 1.57 (s, 9H), 1.30 (t, J=7.2 Hz, 3H).
- MS (ES +): 432 (M+1).
- The title compound was obtained by employing the general Method C using the intermediate 4c.
- 1H NMR (300 MHz, CD3OD) δ 8.41 (m, 1H), 7.97-8.10 (m, 3H), 7.56-7.79 (dd J=1.8, 8.4 Hz, 1H), 7.64-7.69 (m, 2H), 7.37 (s, 1H), 3.61-3.58 (ma, 4H), 3.17-3.21 (m, 4H);
- MS (ES +): 419 (M+1).
-
- Intermediate 7 was obtained by the general Method A using 2-bromo-5-formylthiazole 6 and N-Boc piperazine 2a. Yield: 99%. TLC(Rt): 0.31 (50% EtOAc in hexanes).
- 1H NMR (300 MHz, CDCl3) δ: 9.69 (s, 1H), 7.85 (s, 1H), 3.57-3.64 (m, 8H), 1.48 (s, 9H).
- MS (ES +); 298 (M+1).
- Intermediate 8 was obtained by employing the Wittig Horner reaction. Accordingly, to trimethylphosphano acetate (0.23 mL, 1.60 mmol) in THF (10 mL) at −30° C., butyl lithium (0.64 μL, 2.5 M solution in THF) was added and stirred at −30° C. for an hour. Intermediate 7 (0.4 g, 1.35 mmol) in THF (5 mL) was then added and stirred for another 2 hours while the temperature was brought to 0° C. After quenching the reaction with saturated aqueous ammonium chloride solution (20 mL), the product was extracted with ethyl acetate. The residue obtained on removal of solvent was purified on silica gel column chromatography using 30% ethyl acetate in hexanes (0.4 g, 84%). TLC(Rt): 0.57 (33% EtOAc in hexanes).
- 1H NMR (300 MHz, CDCl3) δ: 7.68 (d, J=15.9 Hz, 1H), 7.34 (s, 1H), 5.80 (d, J=15.3 Hz, 1H), 3.75 (s, 3H), 3.55 (m, 8H), 1.48 (s, 9H).
- MS (ES +): 354 (M+1).
- Intermediate 9 was obtained by employing the general Method B using the intermediate 8. Yield: 0.3 g, 40%). TLC(Rt): 0.52 (50% EtOAc in hexanes).
- 1H NMR (300 MHz, CDCl3) δ: 8.32 (d, J=1.5 Hz, 1H), 7.89-7.98 (m, 3H), 7.70-7.73 (dd, J=1.8, 8.4 Hz, 1H), 7.61-7.66 (m, 3H), 7.61 (s, 1H), 5.70 (d, J=15.3 Hz, 1H), 3.73 (s, 3H), 3.66-3.69 (m, 4H), 3.19-3.22 (m, 4H).
- MS (ES +): 444 (M+1).
- The title compound was obtained by employing the general Method C using the intermediate 9.
- 1H NMR (300 MHz, DMSO-d6) δ: 10.51 (s, 1H), 8.92 (s, 1H), 8.44 (s, 1H), 8.05-8.21 (m, 3H), 7.67-7.76 (m, 3H), 7.39 (s, 1H), 5.70 (d, J=15.3 Hz, 1H), 3.59 (m, 4), 3.10 (m, 4H).
- MS (ES +): 445 (M+1).
- Following the procedures set forth in Example 4 above, except that Method C′ rather than Method C was used for the hydroxamic acid formation, the compounds of Examples 4b-4m were prepared using the appropriate starting materials and the 1H NMR data, HPLC and/or mass spectral data are presented below.
-
- A solid (42 mg); HPLC (RT=13.09 min); 1H NMR (200 MHz, CD3OD) δ; 3.26-3.34 (m, 4H), 3.78-3.83 (m, 4H), 6.03-6.1 (d, 1H, J=15.4 Hz), 7.54-7.92 (m, 7H).
-
- A solid (30 mg); HPLC (RT=12.88 nm); 1H NMR (200 MHz, CD-OD) δ: 3.23-4H), 3.79-3.81 (m, 4H), 3.925 (s, 6H), 5.99-6.07 (d, 1H, J=15.2 Hz), 7.15-7.62 (m,
-
- A solid (30 mg); HPLC (RT=13.26 min); 1H NMR (200 MHz, CD3OD) δ: 3.25-3.31 (m, 4H), 3.8 (m, 4H), 3.9 (s, 3H), 6.03-6.1 (d, 1H, J=15.4 Hz), 7.13-7.18 (d, 2H, J=8.8 Hz), 7.62-7.65 (m, 1H), 7.76-7.8 (d, 2H, J=8.8 Hz), 7.92 (s, 1H).
-
- A solid (38 mg); HPLC (RT=14.61 min); 1H NMR (200 MHz, CD3OD) δ: 3.31-3.34 (m, 4H), 3.8 (m, 4H), 5.99-6.07 (d, 1H, J=15.4 Hz), 7.55-7.62 (m, 3H), 7.92-7.99 (m, 3H).
-
- A solid (25 mg); HPLC (RT=13.6 min); 1H NMR (200 MHz, CD3OD) δ: 2.46 (s, 3H), 3.24-3.31 (m, 4H), 3.78-3.8 (m, 4H), 6.03-6.11 (d, 1H, J=15.4 Hz), 7.45-7.74 (m, 6H).
-
- A solid (45 mg); HPLC (RT=14.49 min); 1H NMR (200 MHz, CD3OD) δ: 3.31-3.36 (m, 4H), 3.83 (m, 4H), 6.04-6.12 (d, 1H, J=15.4 Hz), 7.13-7.18 (d, 2H, J=8.8 Hz), 7.54-7.66 (m, 2H), 7.96-8.08 (m, 4H).
-
- A solid (45 mg); HPLC (RT=13.47 min); 1H NMR (200 MHz, CD3OD) δ: 3.33 (m, 4H), 3.84 (m, 4H), 6.02-6.09 (d, 1H, J=15.4 Hz), 7.54-7.65 (m, 2H), 8.08-8.12 (d, 2H, J=8.8 Hz), 8.47-8.51 (d, 2H, J=8.8 Hz).
-
- A solid (45 mg); HPLC (RT=12.99 min); 1H NMR (200 MHz, CD3OD) 6; 3.27-3.36 (m, 4H), 3.79-3.84 (m, 4H), 5.99-6.07 (d, 1H, J=15.8 Hz), 7.25-7.30 (m, 1H), 7.55-7.70 (m, 3H), 7.91-7.94 (d, 1H, J=6.2 Hz).
-
- A solid (45 mg); HPLC (RT=14.91 min); 1H NMR (200 MHz, CD3OD) δ: 3.31-3.36 (m, 4H), 3.79-3.82 (m, 4H), 6.0-6.08 (d, 1H, J=15.4 Hz), 7.44-7.73 (m, 7H), 7.92 (m, 4H).
-
- A solid (35 mg); HPLC (RT=13.41 min); 1H NMR (200 MHz, CD3OD) δ: 3.33 (m, 4H), 3.47 (s, 6H), 3.75 (m, 4H), 6.06 (d, 1H, J=15.4 Hz), 7.57 (m, 2H), 7.92-8.0 (m, 2H), 8.09-8.13 (d, 1H, J=7.6 Hz), 8.44-8.48 (d, 1H, J=7 Hz), 8.63-8.68 (d, 1H, J=8.4 Hz), 8.92-8.97 (d, 1H, J=8.8 Hz).
-
- A solid (15 mg); HPLC (RT=13.30 min); 1H NMR (200 MHz, CD3OD) δ 3.33 (m, 4H), 3.81 (m, 4H), 6.02-6.09 (d, 1H, J=15.4 Hz), 7.36-7.44 (m, 2H), 7.64 (m, 2H), 7.92 (m, 2H).
-
- Intermediate 18 was obtained by the general Method A using methyl 2-bromothiazole-5-carboxylate 1 and 4-N-Boc-aminopiperidine 17. TLC (Rt): 0.28 (25% EtOAc in hexanes).
- 1H NMR (300 MHz, CDCl3) δ 7.79 (s, 1H), 4.63 (d, J=7.8 Hz, 1H), 3.86-3.91 (m, 2H), 3.50 (m, 1H), 3.07-3.17 (m, 2H), 1.88-1.93 (m, 1H), 1.47-1.60 (m, 2H), 1.49 (s, 9H).
- MS (ES +): 342 (M+1).
- Intermediate 19 was obtained by employing the general Method B using the intermediate 18. TLC (Rt): 0.41 (30% EtOAc in hexanes).
- 1H NMR (300 MHz, CDCl3) δ: 8.45 (d, J=1.5 Hz, 1H), 7.89-7.98 (m, 3H), 7.80-7.84 (dd, J=1.8, 8.4 Hz, 1H), 7.79 (s, 1H), 7.61-7.66 (m, 2H), 4.63 (d, J=7.8 Hz, 1H), 3.86-3.91 (m, 2H), 3.50 (m, 1H), 3.07-3.17 (m, 2H), 1.88-1.93 (m, 1H), 1.47-1.60 (m, 2H), 1.49 (s, 9H).
- MS (ES +); 432 (M+1).
- The title compound 20 was obtained by employing the general Method C using the intermediate 19.
- 1H NMR (300 MHz, CDCl3) δ: 8.45 (d, J=1.5 Hz, 1H), 7.96-8.07 (m, 3H), 7.85-7.89 (dd, J=1.8, 8.4 Hz, 1H), 7.74 (s, 1H), 7.61-7.68 (m, 2H), 3.81-3.86 (m, 2H), 3.50 (m, 1H), 3.17-3.27 (m, 2H), 1.88-1.93 (m, 2H), 1.47-1.60 (m, 2H).
- MS (ES +): 433 (M+1).
- Following the procedures set forth in Example 5 above, except that Method C′ rather than Method C was used for the hydroxamic acid formation, the compounds of Examples 5b-5d were prepared using the appropriate starting materials and the 1H NMR data, HPLC and/or mass spectral data are presented below.
-
- A white solid (50 mg); HPLC (RT=14.26 min); 1H NMR (CD3OD, 200 MHz) δ: 7.91 (4H, s), 7.74-7.44 (6H, m), 3.87-3.52 (3H, m), 2.76 (2H, m), 2.13 (2H, m), 1.78 (2H, m); MS (m/z) 455 (M+H+).
-
- A white solid (49 mg); HPLC (RT=12.12 min); 1H NMR (CD3OD, 200 MHz) δ: 7.45 (1H, dd, J=2.2, 8.4 Hz), 7.29 (1H, d, J=2.2 Hz), 7.12 (1H, d, J=8.4 Hz), 3.94 (3H, s), 3.87 (3H, s), 3.75-3.57 (3H, m), 2.70 (2H, m), 2.17 (2H, m), 1.75 (2H, m); MS (m/z) 442 (M+H3.
-
- A white solid (50 mg); HPLC (RT=12.86 min); 1H NMR (CD3OD, 200 MHz) δ: 7.77 (2H, d, J=8.4 Hz), 7.50 (2H, d, J=8.4 Hz), 3.80-3.48 (3H, m), 2.64 (2H, m), 2.52 (3H, s), 2.17 (2H, m), 1.75 (2H, m); MS (m/z) 396 (M+H+).
-
- Intermediate 7B.2 was obtained by the general Method A using methyl 2-bromothiazole-5-carboxylate 1 and 4-aminomethylpiperidine 7B.1. 1HNMR 200 MHz (CDCl3) δ: 1.25-1.4 (m, 4H), 1.53-1.59 (m, 1H), 1.84-1.89 (d, 2H, J=11.8 Hz), 2.65-2.65 (d, 2H, J=6.6 Hz), 3.02-3.16 (t, 3H), 3.82 (s, 3H), 4.06-4.13 (d, 2H, J=12.4 Hz), 7.86 (s, 1H).
- Intermediate 7B.3 was obtained by employing the general Method B using the intermediate 7B.2. 1HNMR 200 MHz (CDCl3) 6; 1.25-1.36 (m, 3H), 1.60 (m, 2H), 1.82-1.886 (m, 2H), 2.88-2.989 (m, 2H), 3.81 (s, 3H), 4.037-4.10 (m, 2H), 4.67 (t, 1H), 7.26-7.94 (m, 10H).
- The title compound 7B.4 (Example 5e) was obtained by employing the general Method C′ using the intermediate 7B.3.
- A white solid (75 mg); HPLC (RT=14.56 min); 1H NMR 200 MHz (CD3OD) δ: 1.3-1.47 (m, 1H), 1.95-2.02 (m, 4H), 2.85-2.88 (d, 2H, J=6.4 Hz), 3.31-3.48 (m, 2H), 3.95-4.01 (d, 2H, J=12.8 Hz), 7.43-7.96 (m, 10H)
-
- Intermediate 7C.2 was obtained by the general Method A using methyl 2-bromothiazole-5-carboxylate 1 and 1-N-Boc-4-aminopiperidine 7C.1. HPLC 90.47% (RT 6.66 min); 1H NMR 200 MHz (CDCl3) δ: 7.81 (1H, s), 6.13 (1H, bs), 4.11 (2H, m), 3.83 (3H, s), 3.46 (1H, m), 2.93 (2H, m), 2.14 (2H, m), 1.47 (11H, m).
- Intermediate 7C.3 was obtained by employing the general Method B using the intermediate 7C.2. A white solid (170 mg); HPLC (RT=10.88 min); 1H NMR (CDCl3, 200 MHz) 6; 8.35 (1H, s), 8.02-7.93 (3H, m), 7.78-7.63 (4H, m), 5.62 (1H, d, J=7.2 Hz), 3.79 (3H, s), 3.76 (2H, m), 3.42 (1H, m), 2.62 (2H, m), 2.18 (2H, m), 1.63 (2H, m).
- The title compound 7C.4 (Example 5f) was obtained by employing the general Method C′ using the intermediate 7C.3. A white solid (40 mg); HPLC (RT=13.55 min); MS (m/z) 438 (M+H+),
-
- Intermediate 7D.2 was obtained by the general Method A using methyl 2-bromothiazole-5-carboxylate 1 and 3-azabicyclo[3.1.0]hexan-6-amine 7D.1. MS m/e: 240 (M+H+).
- Intermediate 7D.3 was obtained by employing the general Method B using the intermediate 7D.2. 1HNMR (200 MHz, CD3OD) δ: 7.79 (s, 1H), 7.71 (d, 2H, J=8.0 Hz), 7.35 (d, 2H, J=8.0 Hz), 3.81 (s, 3H), 3.57 (m, 5H), 2.44 (s, 3H), 2.095 (m, 2H); MS m/e=394 (M+H+).
- The title compound 7D.4 (Example 5g) was obtained by employing the general Method C′ using the intermediate 7D.3. A white solid (44 mg); 1H NMR (CD3OD, 200 MHz) 6; 7.95 (s, 1H), 7.81 (d, 2H, J=8.2 Hz), 7.46 (d, 2H, J=8.2 Hz); 3.95-3.61 (m, 5H), 2.44 (s, 3H), 2.16 (m, 2H); MS m/e=395 (M+H+); HPLC (RT: 12.14 min).
-
- To a solution of tert-butyl 5,6-dihydropyrimidine-1(4H)-carboxylate 7E.1 (350 mg, 1190 mmole) in methanol (10 mL) was added potassium borohydride (205 mg, 3.80 mmoles) at 0° C. The reaction mixture was stirred at room temperature for 2 hours. After completion of the reaction, ice (10 g) was added to the mixture and stirred for 10 min. Solvent was evaporated under reduced pressure and the compound was extracted twice with dichloromethane (5 ml). The organic layer was separated, dried over sodium sulfate, filtered and the solvent was removed under reduced pressure to give crude residue, which was purified by column chromatography using silica gel to provide compound 7E.2 (350 mg, 94%); 1HNMR (CDCl3) δ: 4.31 (s, 2H), 3.54 (t, 2H, J=5.4 Hz), 2.94 (t, 2H, J=5.4 Hz), 1.54 (m, 2H), 1.46 (s, 9H); MS m/c=186 (M+H+).
- Intermediate 7E.3 was obtained by the general Method A using methyl 2-bromothiazole-5-carboxylate 1 and 7E.2. 1HNMR (CDCl3) δ: 7.83 (s, 1H), 5.05 (s, 2H), 4.27 (q, 2H, J=5.0, 7.2 Hz), 3.72 (t, 211, J=5.4 Hz), 3.59 (t, 2H, J=5.4 Hz), 1.77 (m, 2H), 1.48 (s, 9H), 1.38 (t, 3H, J=7.2 Hz); MS m/e=342(M+H+).
- Intermediate 7E.4 was obtained by employing the general Method B using the intermediate 7E.3. 1H NMR (CDCl3+DMSO-D6, 200 MHz) δ: 7.85 (s, 1H), 5.08 (s, 2H), 4.31 (q, 2H, J=5.1, 7.2 Hz), 3.75 (t, 2H, J=5.2 Hz), 3.44 (t, 2H, J=5.2 Hz), 2.09 (m, 2H), 1.37 (t, 3H, J=7.2 Hz); MS m/e=242 (M+H+).
- The title compound 7E.5 (Example 5h) was obtained by employing the general Method C′ using the intermediate 7E.4. A solid (36 mg, 68% yield); 1H NMR (CD3OD, 200 MHz) δ: 7.91 (bs, 1H), 7.73 (d, 2H, J=8.6 Hz), 7.39 (d, 2H, J=8.6 Hz); 5.12 (s, 2H), 3.64-3.54 (m, 4H), 2.43 (s, 3H), 1.76 (m, 2H); MS m/e=383 (M+1); HPLC (RT: 12.89 min).
-
- To a solution of methyl 2-bromothiazole-5-carboxylate (1a) (5.00 g, 22.50 mmol) in acetonitrile (50 mL) were added piperazine 2 (2.32 g, 26.97 mmol) and potassium carbonate (6.22 g, 45.05 mmol) under a N2 atmosphere. The reaction mixture was heated to reflux at 80° C. for 10 h. The reaction mixture was filtered through Celite and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography using silica gel to give the compound II as a solid (4.10 g, 79.8%). HPLC: 92% (Rt=3.883 min).
- 1H NMR (CDCl3, 200 MHz) δ: 7.88 (1H, s), 3.89 (3H, s), 3.55 (4H, t J=6.0 Hz), 2.98 (4H, t, J=6.0 Hz).
- MS (m/z): 228 (M+1).
- To a solution of intermediate 11 (200 mg, 0.886 mmol) in dichloromethane (7.5 mL) were added 3,4-dimethoxybenzenesulfonyl chloride (320 mg, 1.320 mmol) and triethylamine (220 mg, 2.169 mmol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 4 h. Water (10 mL) followed by dichloromethane (10 mL) were added to the reaction mixture and the organic layer was separated, dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using silica gel to give the compound 12b as a solid (200 mg, 53.0%). HPLC: 99% (Rt=6.507 min).
- 1H NMR (CDCl3, 200 MHz) δ: 7.82 (1H, s), 7.38 (1H, dd, J=2.2, 8.6 Hz), 7.19 (1H, d, J=2.2 Hz), 6.96 (1H, d, J=8.6 Hz), 3.93 (6H, 2s), 3.83 (3H, s), 3.68 (4H, t, J=5.2 Hz), 3.14 (4H, t, J=5.2 Hz).
- MS (m/z): 427 (M+1).
- To a solution of compound (12b) (125 mg, 0.292 mmol) in 1,4-dioxane (2 mL) were added hydroxylamine hydrochloride (202 mg, 2.92 mmol) and a freshly prepared solution of sodium methoxide in methanol (100 mg, 4.35 mmol of sodium dissolved in 1 mL of methanol) under N2 atmosphere. The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was acidified to pH˜6 with 1M HCl and the formed precipitates were filtered off. The filtrate was diluted with ethylacetate (5 mL) and water (2 mL) and the organic layer was separated. The aqueous layer was washed with ethyl acetate (5 mL) and the combined organic layers were dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC to give 13b as a solid. HPLC: 86.09% (Rt=12.51 min).
- 1H NMR (CD3OD, 200 MHz) δ: 8.14 (1H, s), 7.61-7.08 (3H, m), 3.83 (6H, s), 3.54 (4H, m), 3.03 (4H, m).
- MS (ES+): 429 (M+1).
-
- To a solution of compound II (200 mg, 0.886 mmol) in dichloromethane (7.5 mL) were added 4-trifluoromethoxybenzenesulfonyl chloride (344 mg, 1.320 mmol) and triethylamine (220 mg, 2.169 mmol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 4 h. Water (10 mL) followed by dichloromethane (10 mL) were added to the reaction mixture and the organic layer was separated, dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using silica gel to give the compound 12d as a solid (313 mg, 78.8%). HPLC: 98% (Rt=12.22 min).
- 1H NMR (CDCl3, 200 MHz) δ: 7.82 (3H, m), 7.44 (2H, d, J=8.0 Hz), 3.84 (3H, s), 3.74 (4H, t, J=5.8 Hz), 3.20 (4H, t, J=5.8 Hz).
- MS (m/z): 451 (M+1).
- To a solution of compound (12d) (125 mg, 0.276 mmol) in 1,4-dioxane (2 mL) were added hydroxylamine hydrochloride (191 mg, 2.76 mmol) and a freshly prepared solution of sodium methoxide in methanol (95 mg, 4.14 mmol of sodium dissolved in 1 mL of methanol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was acidified to pH 6 with 1M HCl and the formed precipitates were filtered off. The filtrate was diluted with ethyl acetate (5 mL) and water (2 mL) and the organic layer was separated. The aqueous layer was washed with ethyl acetate (5 mL) and the combined organic layers were dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC to give 13d as a solid. HPLC: 92% (Rt=14.16 min).
- 1H NMR (CD3OD, 200 MHz) δ: 8.00 (3H, m), 7.57 (2H, m), 3.64 (4H, m), 3.19 (4H, m);
- MS (m/z): 453 (M+1).
-
- To a solution of compound II (200 mg, 0.886 mmol) in dichloromethane (7.5 mL) were added 4-methyl benzenesulfonyl chloride (251 mg, 1.320 mmol) and triethylamine (220 mg, 2.169 mmol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 4 h. Water (10 mL) followed by dichloromethane (10 mL) were added to the reaction mixture and the organic layer was separated, dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using silica gel to give the compound 12e as a solid (275 mg, 82%). HPLC: 99.62% (Rt=9.22 min).
- 1H NMR (CDCl3, 200 MHz) δ 7.82 (1H, s), 7.66 (2H, d, J=8.4 Hz), 7.35 (2H, d, J=8.4 Hz), 3.82 (3H, s), 3.68 (4H, t, J=5.6 Hz), 3.14 (4H, t, J=5.6 Hz), 2.44 (3H, s).
- MS (m/z): 382 (M+1).
- To a solution of compound 12e (125 mg, 0.327 mmol) in 1,4-dioxane (2 mL) were added hydroxylamine hydrochloride (227 mg, 3.27 mmol) and a freshly prepared solution of sodium methoxide in methanol (112 mg, 4.91 mmol of sodium dissolved in 1 mL of methanol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was acidified to pH˜6 with 1M HCl and the formed precipitates were filtered off. The filtrate was diluted with ethyl acetate (5 mL) and water (2 mL) and the organic layer was separated. The aqueous layer was washed with ethyl acetate (5 mL) and the combined organic layers were dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC to give 13e as a solid. HPLC: 90% (Rt=13.23 min).
- 1H NMR (CD3OD, 200 MHz) δ: 7.79 (3H, m), 7.44 (2H, d, J=8.6 Hz), 3.65 (4H, t, J=5.4 Hz), 3.12 (4H, t, J=5.4 Hz), 2.46 (3H, s).
- MS (m/z): 382.6 (M+1).
-
- To a solution of compound 11 (200 mg, 0.886 mmol) in dichloromethane (7.5 mL) were added 4-trifluoromethyl benzenesulfonyl chloride (322 mg, 1.320 mmol) and triethylamine (220 mg, 2.169 mmol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 4 h. Water (10 mL) followed by dichloromethane (10 ml) were added to the reaction mixture and the organic layer was separated, dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using silica gel to give the compound 12f as a solid (333 mg, 86.9%). HPLC: 99.42% (Rt=11.936 min).
- 1H HNMR (CDCl3 200 MHz) δ: 7.88-7.82 (5H, m), 3.81 (3H, s), 3.70 (4H, t, J=5.2 Hz), 3.19 (4H, t, J=5.2 Hz).
- MS (m/z): 435 (M+1), 245.
- To a solution of compound 12f (125 mg, 0.287 mmol) in 1,4-dioxane (2 mL) were added hydroxylamine hydrochloride (199 mg, 2.87 mmol) and a freshly prepared solution of sodium methoxide in methanol (99 mg, 4.30 mmol of sodium dissolved in 1 mL of methanol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was acidified to pH˜6 with 1M ECl and the formed precipitates were filtered off. The filtrate was diluted with ethyl acetate (5 mL) and water (2 mL) and the organic layer was separated. The aqueous layer was washed with ethyl acetate (5 mL) and the combined organic layers were dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC to give 13f (20 mg, yield 16%). HPLC 85.42% (Rt=14.11 min).
- 1H NMR (CD3OD, 200 MHz): δ 8.03 (4H, m), 7.81 (1H, s), 3.75 (4H, m), 3.21 (4H, m).
- MS (m/z): 436 (M+1).
-
- To a solution of compound 11 (200 mg, 0.886 mmol) in dichloromethane (7.5 mL) were added 4-nitro benzenesulfonyl chloride (292 mg, 1.320 mmol) and triethylamine (220 mg, 2.169 mmol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 4 h. Water (10 mL) followed by dichloromethane (10 mL) were added to the reaction mixture and the organic layer was separated, dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using silica gel to give the compound 12g as a solid (120 mg, 33.3%). HPLC: 97% (Rt=7.76 min).
- 1H NMR (CDCl3 DMSO-D6, 200 MHz) δ: 8.50 (2H, d, J=8.0 Hz), 8.01 (2H, d, J=8.0 Hz), 7.84 (1H, s), 3.81 (3H, s), 3.71 (4H, t, J=5.6 Hz), 3.23 (4H, t, J=5.6 Hz).
- To a solution of compound 12g (125 mg, 0.303 mmol) in 1,4-dioxane (2 mL) were added hydroxylamine hydrochloride (210 mg, 3.03 mmol) and a freshly prepared solution of sodium methoxide in methanol (104 mg, 4.50 mmol of sodium dissolved in 1 mL of methanol) under N2 atmosphere. The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was acidified to pH 6 with 1M HCl and the formed precipitates were filtered off. The filtrate was diluted with ethyl acetate (5 mL) and water (2 mL) and the organic layer was separated. The aqueous layer was washed with ethyl acetate (5 mL) and the combined organic layers were dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC to give 13g
-
- To a solution of compound II (200 mg, 0.886 mmol) in dichloromethane (7.5 mL) were added 4-acetyl-benzenesulfonyl chloride (288 mg, 1.320 mmol) and triethylamine (220 mg, 2.169 mmol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 4 h. Water (10 mL) followed by dichloromethane (10 mL) were added to the reaction mixture and the organic layer was separated, dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using silica gel to give the compound 12h as a solid (346 mg, 96.2%). HPLC: 99.72% (Rt=6.56 min).
- 1H NMR (CDCl3, DMSO-D6, 200 MHz) δ: 8.10 (2H, d, J=8.0 Hz), 7.89 (2H, d, J=8.0 Hz), 7.79 (1H, s), 3.80 (3H, s), 3.69 (4H, t, J=5.4 Hz), 3.18 (4H, t, J=5.4 Hz), 2.66 (3H, s).
- MS (m/z): 410 (M+1).
- To a solution of compound (12h) (125 mg, 0.305 mmol) in 1,4-dioxane (2 mL) were added hydroxylamine hydrochloride (211 mg, 3.05 mmol) and a freshly prepared solution of sodium methoxide in methanol (105 mg, 4.57 mmol of sodium dissolved in 1 mL of methanol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was acidified to pH˜6 with 1M HCl and the formed precipitates were filtered off. The filtrate was diluted with ethyl acetate (5 mL) and water (2 mL) and the organic layer was separated. The aqueous layer was washed with ethyl acetate (5 mL) and the combined organic layers were dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC to give 13h (15 mg, yield 12.0%). HPLC: 92.26% (Rt=12.51 min).
- 1H NMR (CD3OD, 200 MHz): δ 7.86-7.68 (5H, m), 3.64 (4H, m), 3.17 (4H, m), 2.26 (3H, s).
-
- To a solution of compound II (200 mg, 0.886 mmol) in dichloromethane (7.5 mL) were added 2-thiophene sulfonyl chloride (241 mg, 1.320 mmol) and triethylamine (220 mg, 2.169 mmol) under a N7 atmosphere. The reaction mixture was stirred at room temperature for 4 h. Water (10 mL) followed by dichloromethane (10 mL) were added to the reaction mixture and the organic layer was separated, dried on sodium sulphate, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using silica gel to give the compound 12i as a solid (300 mg, 91.4%). HPLC: 99.74% (Rt=7.22 min).
- 1H NMR (CDCl3, 200 MHz) δ: 7.83 (1H, s), 7.67-7.55 (2H, m), 7.16 (1H, m), 3.82 (3H, s), 3.71 (4H, t, J=5.4 Hz), 3.20 (4H, t, J=5.4 Hz).
- MS (m/z): 373 (M+1).
- To a solution of compound 12i (125 mg, 0.334 mmol) in 1,4-dioxane (2 mL) were added hydroxylamine hydrochloride (232 mg, 3.34 mmol) and a freshly prepared solution of sodium methoxide in methanol (115 mg, 5.10 mmol of sodium dissolved in 1 mL of methanol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was acidified to pH 6 with 1M HCl and the formed precipitates were filtered off. The filtrate was diluted with ethyl acetate (5 mL) and water (2 mL) and the organic layer was separated. The aqueous layer was washed with ethyl acetate (5 mL) and the combined organic layers were dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC to give 13i (14 mg, yield 11.2%). HPLC: 58.9% (Rt=12.55 min).
- 1H NMR (CD3OD, 200 MHz) δ: 8.67 (1H, m), 7.85 (1H, m), 7.78 (1H, s), 7.59 (1H, m), 7.20 (1H, m), 3.67 (4H, m), 3.17 (4H, m).
-
- To a solution of compound II (200 mg, 0.886 mmol) in dichloromethane (7.5 mL) were added 4-biphenyl sulfonyl chloride (333 mg, 1.320 mmol) and triethylamine (220 mg, 2.169 mmol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 4 h. Water (10 mL) followed by dichloromethane (10 mL) were added to the reaction mixture and the organic layer was separated, dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using silica gel to give the compound 12j as a solid (200 mg, 51.2%). HPLC; 99.88% (Rt=15.46 min).
- 1H NMR (CDCl3, 200 MHz) δ: 7.89-7.76 (5H, m), 7.64-7.47 (5H, m), 3.82 (3H, s), 3.72 (4H, t, J=5.1 Hz), 3.22 (4H, t, J=5.1 Hz).
- To a solution of compound 12j (125 mg, 0.281 mmol) in 1,4-dioxane (2 mL) were added hydroxylamine hydrochloride (194 mg, 2.80 mmol) and a freshly prepared solution of sodium methoxide in methanol (96 mg, 4.20 mmol of sodium dissolved in 1 mL of methanol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was acidified to pH˜6 with 1M HCl and the formed precipitates were filtered off. The filtrate was diluted with ethyl acetate (5 mL) and water (2 mL) and the organic layer was separated. The aqueous layer was washed with ethyl acetate (5 mL) and the combined organic layers were dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC to give 13j (9 mg, yield 7.2%). HPLC: 97.51% Rt=14.61 min).
- 1H NMR (CD3OD, 200 MHz) δ: 7.91 (1H, s), 7.76-7.41 (9H, m), 3.69 (4H, m), 3.21 (4H, m).
- MS (m/z): 445 (M+1).
- To a solution of compound II (200 mg, 0.886 mmol) in dichloromethane (7.5 mL) were added 5-dimethylamino-naphthalene-1-sulfonyl chloride (356 mg, 1.320 mmol) and triethylamine (220 mg, 2.169 mmol) under N2 atmosphere. The reaction mixture was stirred at room temperature for 4 h. Water (10 mL) followed by dichloromethane (10 mL) were added to the reaction mixture and the organic layer was separated, dried on sodium sulphate, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using silica gel to give the compound 12k as a solid (233 mg, 57.50%). HPLC: 99.04% (Rt=12.33 min).
- 1H NMR (CDCl3, 200 MHz) 5; 8.59 (1H, d, J=8.4 Hz), 8.37 (1H, d, J=8.4 Hz), 8.21 (1H, d, J=7.4 Hz), 7.80 (1H, s), 7.55 (2H, m), 7.19 (1H, d, J=7.4 Hz), 3.80 (3H, s), 3.62 (4H, t, J=5.6 Hz), 3.32 (4H, t, J=5.6 Hz), 2.88 (6H, s).
- MS (m/z): 460 (M+1).
- To a solution of compound (12k) (125 mg, 0.270 mmol) in 1,4-dioxane (2 mL) were added hydroxylamine hydrochloride (187 mg, 2.70 mmol) and a freshly prepared solution of sodium methoxide in methanol (92 mg, 4.00 mmol of sodium dissolved in 1 mL of methanol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 2 h (progress of the reaction was monitored by TLC analysis). The reaction mixture was acidified to pH 6 with 1M HCl and the formed precipitates were filtered off. The filtrate was diluted with ethyl acetate (5 mid) and water (2 mL) and the organic layer was separated. The aqueous layer was washed with ethyl acetate (5 mL) and the combined organic layers were dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC to give 13k (10 mg, yield 8.0%). HPLC: 90.69% (Rt=12.77 min).
- 1H NMR (CD3OD, 200 MHz) δ: 8.12 (2H, m), 8.33 (1H, m), 7.86-7.59 (4H, m), 3.62 (4H, m), 3.36 (4H, m), 3.16 (6H, s).
-
- To a solution of compound II (200 mg, 0.886 mmol) in dichloromethane (7.5 mL) were added 4-fluorobenzene-sulfonyl chloride (256 mg, 1.320 mmol) and triethylamine (220 mg, 2.169 mmol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 4 h. Water (10 mL) followed by dichloromethane (10 mL) were added to the reaction mixture and the organic layer was separated, dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using silica gel to give the compound 12m as a solid (300 mg, 88.4%). HPLC: 86.16% (Rt=7.72 min).
- 1H NMR (CDCl3, 200 MHz) δ: 7.82 (IS Hs), 7.78-7.75 (2H, m), 7.23 (211, d, J=8.8 Hz), 3.81 (3H, s), 3.69 (4H, t, J=4.8 Hz), 3.14 (4H, t, JA 4.8 Hz).
- MS (m/z): 385(M+1), 101.
- To a solution of compound (12m) (125 mg, 0.320 mmol) in 1,4-dioxane (2 mL) were added hydroxylamine hydrochloride (225 mg, 3.20 mmol) and a freshly prepared solution of sodium methoxide in methanol (110 mg, 4.80 mmol of sodium dissolved in 1 mL of methanol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 2 h (progress of the reaction was monitored by TLC analysis). The reaction mixture was acidified to pH˜6 with 1M HCl and the formed precipitates were filtered off. The filtrate was diluted with ethylacetate (5 mL) and water (2 mL) and the organic layer was separated. The aqueous layer was washed with ethylacetate (5 mL) and the combined organic layers were dried on sodium sulphate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC to give 13m.
- HPLC: (Rt=3.89 min).
-
- To a solution of methyl 2-bromothiazole-5-carboxylate 1 (222 mg, 1.00 mmol) in acetonitrile (20 mL) were added N-methyl piperazine 14a (120 mg, 1.20 mmol) and potassium carbonate (152 mg, 1.10 mmol) under a N2 atmosphere. The reaction mixture was heated to reflux at 80° C. for 10 h. The reaction mixture was filtered through Celite and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography using silica gel to give the compound 16a (188 mg, 78.1%).
- 1H NMR (CD3OD, 200 MHz) δ: 7.93 (1H, s), 3.83 (3H, s), 3.67 (4H, m), 2.75 (4H, t, J=5.0 Hz), 2.49 (3H, s).
- MS (m/z): 242 (M+1).
- To a solution of compound 15a (125 mg, 0.518 mmol) in 1,4-dioxane (2 mL) were added hydroxylamine hydrochloride (360 mg, 5.18 mmol) and a freshly prepared solution of sodium methoxide in methanol (178 mg, 7.72 mmol of sodium dissolved in 1.5 mL of methanol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was acidified to pH 6 with 1M HCl and the formed precipitates were filtered off. The filtrate was diluted with ethyl acetate (5 mL) and water (2 mL) and the organic layer was separated. The aqueous layer was washed with ethyl acetate (5 mL) and the combined organic layers were dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC to give 16a.
- HPLC: (Rt=10.74 min).
-
- To a solution of methyl 2-bromothiazole-5-carboxylate 1 (222 mg, 1.00 mmol) in acetonitrile (20 mL) were added N-benzyl piperazine 14b (211 mg, 1.20 mmol) and potassium carbonate (152 mg, 1.10 mmol) under a N2 atmosphere. The reaction mixture was heated to reflux at 80° C. for 10 h. The reaction mixture was filtered through Celite and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography using silica gel to give the compound 15b (229 mg, 72.7%).
- 1H NMR (CD3OD, 200 MHz) δ: 7.87 (1H, s), 7.40 (5H, m), 3.84 (3H, s), 3.61 (6H, m), 2.60 (4H, t, J=5.0 Hz).
- MS (m/z): 318 (M+1).
- To a solution of compound 15b (125 mg, 0.394 mmol) in 1,4-dioxane (2 mL) were added hydroxylamine hydrochloride (273 mg, 3.94 mmol) and a freshly prepared solution of sodium methoxide in methanol (136 mg, 5.911 mmol of sodium dissolved in 1.5 mL of methanol) under N2 atmosphere. The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was acidified to pH 6 with 1M HCl and the formed precipitates were filtered off. The filtrate was diluted with ethyl acetate (5 mL) and water (2 mL) and the organic layer was separated. The aqueous layer was washed with ethyl acetate (5 mL) and the combined organic layers were dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC to give 16b.
- HPLC: (Rt=4.45 min).
-
- To a solution of methyl 2-bromothiazole-5-carboxylate 1 (222 mg, 1.00 mmol) in acetonitrile (20 mL) were added N-(2-hydroxyethyl)piperazine 14c (156 mg, 1.20 mmol) and potassium carbonate (152 mg, 1.10 mmol) under a N2 atmosphere. The reaction mixture was heated to reflux at 80° C. for 10 h. The reaction mixture was filtered through Celite and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography using silica gel to give the compound 15c (185 mg, 68.2%).
- 1H NMR (CD3OD, 200 MHz) δ: 7.81 (1H, s), 3.79 (3H, s), 3.70 (2H, t, J=5.4 Hz), 3.63 (4H, t, J=5.6 Hz), 2.70 (6H, m).
- MS (m/z): 272 (M+1).
- To a solution of compound 15c (125 mg, 0.461 mmol) in 1,4-dioxane (2 mL) were added hydroxylamine hydrochloride (320 mg, 4.61 mmol) and a freshly prepared solution of sodium methoxide in methanol (159 mg, 6.91 mmol of sodium dissolved in 1.5 mL of methanol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was acidified to pH˜6 with 1M HCl and the formed precipitates were filtered off. The filtrate was diluted with ethyl acetate (5 mL) and water (2 mL) and the organic layer was separated. The aqueous layer was washed with ethyl acetate (5 mL) and the combined organic layers were dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC to give 16c.
- HPLC: (Rt=2.97 min).
-
- To a solution of methyl 2-bromothiazole-5-carboxylate 1 (222 mg, 1.00 mmol) in acetonitrile (20 mL) were added N-(2-amino ethyl)piperazine 14d (155 mg, 1.20 mmol) and potassium carbonate (152 mg, 1.10 mmol) under a N2 atmosphere. The reaction mixture was heated to reflux at 80° C. for 10 h. The reaction mixture was filtered through Celite and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography using silica gel to give the compound 15d (176 mg, 65.2%).
- 1H NMR (CD3OD, 200 MHz) δ: 7.82 (1H, s), 7.23 (5H, m), 3.81 (3H, s), 3.60 (4H, t, J=5.0 Hz), 2.90-2.63 (8H, m).
- To a solution of compound 15d (125 mg, 0.462 mmol) in 1,4-dioxane (2 mL) were added hydroxylamine hydrochloride (321 mg, 4.62 mmol) and a freshly prepared solution of sodium methoxide in methanol (159 mg, 6.91 mmol of sodium dissolved in 1.5 mL of methanol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 2h. The reaction mixture was acidified to pH˜6 with 1M HCl and the formed precipitates were filtered off. The filtrate was diluted with ethylacetate (5 mL) and water (2 mL) and the organic layer was separated. The aqueous layer was washed with ethylacetate (5 mL) and the combined organic layers were dried on sodium sulphate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC to give 16d.
- HPLC: (Rt=293 min).
-
- To a solution of methyl 2-bromothiazole-5-carboxylate 1 (222 mg, 1.00 mmol) in acetonitrile (20 mL) were added N-phenyl ethyl piperazine 14e (228 mg, 1.20 mmol) and potassium carbonate (152 mg, 1.10 mmol) under a N2 atmosphere. The reaction mixture was heated to reflux at 80° C. for 10 h. The reaction mixture was filtered through Celite and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography using silica gel to give the compound 15c (245 mg, 66.4%).
- 1HNMR (CD3OD, 200 MHz); 67.78 (i, Hs), 3.81 (3H, s), 3.62 (4H, m), 2.77-2.31 (8H, m).
- To a solution of compound 15e (125 mg, 0.377 mmol) in 1,4-dioxane (2 mL) were added hydroxylamine hydrochloride (262 mg, 3.77 mmol) and a freshly prepared solution of sodium methoxide in methanol (130 mg, 5.655 mmol of sodium dissolved in 1.5 mL of methanol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was acidified to pH˜6 with 1 M HCl and the formed precipitates were filtered off. The filtrate was diluted with ethyl acetate (5 mL) and water (2 mL) and the organic layer was separated. The aqueous layer was washed with ethyl acetate (5 mL) and the combined organic layers were dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC to give 16e.
- HPLC: (Rt=13.41 min).
-
- A mixture of intermediate ester 11 (Scheme 8) (115 mg, 0.504 mmol), α-bromoacetophenone (128 mg, 0.604 mmol), cesium carbonate (326 mg, 1.0 mmol) and DCM was stirred at room temperature for 12 hours. The reaction was poured into water and extracted with DCM (20 mL). The solvent was dried, the solvent evaporated, and the residue chromatographed using 50% ethyl acetate in hexanes to give the intermediate alkylated ester (120 mg, 67%); MS 360 (M+H+).
- The alkylated ester (100 mg, 0.278 mmol) in methanol (5 mL) at 0° C. was treated with 50% aqueous hydroxylamine (1 mL) and aqueous sodium hydroxide (80 mg in 0.5 mL of water) and stirred for 4 hours. The reaction was acidified with hydrochloric acid (6N) and the solvent was removed to obtain a solid that was purified by preparative HPLC to give Example 20B. 1H NMR (CDCl3, 300 MHz) δ: 7.69 (d, J=8.1 Hz, 2H), 7.28 (d, J=8.1 Hz, 2H), 4.57 (s, 2H), 3.74 (m, 4H), 3.37 (m, 4H), 2.27 (s, 3H).
-
- 1 NMR (CDCl3, 200 MHz) δ: 7.82 (1H, s), 3.84 (3H, s), 3.77 (4H, t, J=5.4 Hz), 3.54 (4H, t, J=5.4 Hz), 2.15 (3H, s).
- To a solution of compound 22a (100 mg, 0.300 mmol) in 1,4-dioxane (2 mL) were added hydroxylamine hydrochloride (208 mg, 2.991 mmol) and a freshly prepared solution of sodium methoxide in methanol (103 mg, 4.511 mmol of sodium dissolved in 1.5 mL of methanol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was acidified to pH˜6 with 1M HCl and the formed precipitates were filtered off. The filtrate was diluted with ethyl acetate (5 mL) and water (2 mL) and the organic layer was separated. The aqueous layer was washed with ethyl acetate (5 ml) and the combined organic layers were dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC to give 23a. HPLC: Rt=4.42 min.
-
- To a solution of compound 21 (200 mg, 0.886 mmol) in dichloromethane (7.5 mL) were added benzoyl chloride (148 mg, 1.056 mmol) and triethylamine (106 mg, 1.047 mmol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 4 h (progress of the reaction was monitored by TLC analysis). Water (10 mL) followed by dichloromethane (10 mL) were added to the reaction mixture and the organic layer was separated, dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using silica gel to give the compound 22b (180 mg, yield 61.8%).
- To a solution of compound 22b (100 mg, 0.321 mmol) in 1,4-dioxane (2 mL) were added hydroxylamine hydrochloride (222 mg, 3.191 mmol) and a freshly prepared solution of sodium methoxide in methanol (110 mg, 4.712 mmol of sodium dissolved in 1.5 mL of methanol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was acidified to pH˜6 with 1M HCl and the formed precipitates were filtered off. The filtrate was diluted with ethyl acetate (5 mL) and water (2 mL) and the organic layer was separated. The aqueous layer was washed with ethyl acetate (5 mL) and the combined organic layers were dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC to give 23b. HPLC: Rt=3.69 nm in.
-
- To a solution of compound 21 (200 mg, 0.886 mmol) in dichloromethane (7.5 mL) were added phenyl acetyl chloride (162 mg, 1.056 mmol) and triethylamine (106 mg, 1.047 mmol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 4 h (progress of the reaction was monitored by TLC analysis). Water (10 mL) followed by dichloromethane (10 mL) were added to the reaction mixture and the organic layer was separated, dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using silica gel to give the compound 22c (130 mg, yield 42.9%). HPLC: 99.40 0% (Rt=11.93 min).
- 1H NMR (CDCl3, 200 MHz) δ: 7.85 (1H, s), 7.27 (5H, m), 3.82 (3H, s), 3.73 (4H, m), 3.51 (4H, m), 3.34 (2H, m).
- To a solution of compound 22c (100 mg, 0.377 mmol) in 1,4-dioxane (2 mL) were added hydroxylamine hydrochloride (208 mg, 3.771 mmol) and a freshly prepared solution of sodium methoxide in methanol (103 mg, 4.471 mmol of sodium dissolved in 1.5 mL of methanol) under a N2 atmosphere. The reaction mixture was stirred at room temperature for 2 h, The reaction mixture was acidified to pH˜6 with 1M HCl and the formed precipitates were filtered off. The filtrate was diluted with ethyl acetate (5 mL) and water (2 mL) and the organic layer was separated. The aqueous layer was washed with ethyl acetate (5 mL) and the combined organic layers were dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC to give 23c. HPLC: Rt=5.62 min.
-
- To a solution of 21 (100 mg, 0.440 mmol) in tetrahydrofuran (10 mL) was added EDCI (92 mg, 0.480 mmol), 1-hydroxy-7-azabenzotriazole (HOAT) (65 mg, 0.478 mmol), DIEA (75 mg, 0.564 mm) and indole-3-propionic acid (83 mg, 0.440 mmol) under N2 atmosphere. The reaction mixture was stirred at room temperature for 12 h. Water (10 nm) followed by dichloromethane (10 mL) were added to the reaction mixture and the organic layer was separated, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue obtained was purified by column chromatography using silica gel to obtain compound amide 22 (120 mg). 1H NMR (CDCl3, 200 MHz) 6; 7.99 (1H, s), 7.85 (1H, s), 7.63-7.05 (5H, m), 3.83 (3H, s), 3.74 (4H, t, J=5.2 Hz), 3.42 (4H, t, JA 5.2 Hz), 3.18 (2H, t, J=7.2 Hz), 2.75 (2H, t, J=7.2 Hz).
- To a solution of the amide 22 (100 mg, 0.25 mmol) in 1,4-dioxane (2 mL) were added hydroxylamine hydrochloride (174 mg, 2.51 mmol) and a freshly prepared solution sodium methoxide in methanol (86 mg, 3.73 mmol of sodium dissolved in 1.5 mL of methanol) under N2 atmosphere. The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was acidified to pH˜6 with 1M HCl and the precipitates were filtered off. The filtrate was diluted with ethylacetate (5 mL) and water (2 mL) and the organic layer was separated. The aqueous layer was washed with ethylacetate (5 mL) and the combined organic layers were dried on sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by preparative HPLC to give Example 23b; m/c=400 (M+H+).
-
- A solution of N-tert-butyoxycarbonylpiperazine (2a) (1.86 g) in DCM (1001 mL) and N,N-di-2-propyl-ethylamine (2 mL) was cooled in ice-water as a solution of 2-naphthalenesulfonylchloride (2.27 g) in DCM (50 mL) was added drop-wise. After addition, the cooling was removed and the reaction stirred overnight. The solvent was evaporated and the residue partitioned between water and ethyl acetate. The organic phase was sequentially washed with 0.5 N hydrochloric acid, water, saturated aqueous sodium bicarbonate and brine. After drying, the solvent was evaporated to provide a white solid. The white solid was dissolved in DCM (35 mL) and treated with trifluoroacetic acid (15 mL). After one hour, the solvent was evaporated, the residue suspended in water and the solution made basic with 1 N sodium hydroxide. The mixture was extracted with ethyl acetate. The extracts were washed with water, dried, and the solvent evaporated to give a white solid (2.7 g).
- 1HNMR (CD3OD, 300 MHz) δ: 8.41 (s, 1H), 8-8.13 (3H, m), 7.6-7.8 (3H, m), 3.17-3.21 (4H, m), 3.09-3.13 (4H, m).
- A mixture of 25 (2.2 g), 2-bromoacetamide (1.15 g) potassium carbonate (1.16 g) and ethanol (40 mL) was heated to reflux overnight. The solvent was evaporated and the residue suspended in water and stirred for 30 minutes. The solid was collected by filtration and thoroughly dried to give a white solid (2.8 g).
- hu 1H NMR (CD3OD, 300 MHz) δ: 8.39 (s, 1M, 7.99-8.11 (m, 3H), 7.63-7.79 (m, 3H), 3.14 (m, 4H), 2.98 (s, 2H), 2.60 (t, 4H).
- A suspension of 26 (0.94 g) in tetrahydrofuran (10 mL) was stirred as phosphorus pentasulfide (1.89 g) was added in portions. The reaction was then heated to reflux for one hour. The solvent was decanted and the solid residue triturated with tetrahydrofuran. The solvent was evaporated from the extracts and the residue purified by flash chromatography on 30 g of silica gel eluting with 1:1 ethyl acetate:hexane. The desired component was finally eluted with 60% ethyl acetate-hexane. Evaporation of the pure fractions gave a white solid (0.23 g).
- 1H NMR(CD3OD, 300 MHz) δ: 8.27 (s, 1H), 7.88-8.0 (m, 3H), 7.52-7.68 (m, 3H), 3.23 (s, 2H), 3.03 (m, 4H), 2.46 (t, 4H).
- MS (EI+): 350 (m+1).
- Methyl chloroacetate (3.2 g) and methyl formate (1.8 g) were dissolved in toluene (5 mL) and the mixture was cooled in ice-water. Sodium methoxide (2 g) was added in portions and the reaction stirred for five hours. The reaction was quenched with water (100 mL) and the mixture was extracted with toluene (100 mL) and ether (100 mL). The aqueous layer was separated, cooled in ice-water, and the pH of the solution adjusted to 4 using 6 N hydrochloric acid. The aqueous layer was then extracted with ethyl acetate. The organic extracts were dried and the solvent thoroughly evaporated to give a tacky solid (2 g) that was used without further purification. TLC on silica gel eluting with 1:1 ethyl acetate:hexane shows two spots Rf=0.36 and 0.38.
- A mixture of 27 (84 mg) and methyl chloro(formyl)acetate (180 mg) in toluene (3 mL) was heated to reflux for three hours. The reaction was diluted with ethyl acetate and washed sequentially with aqueous, saturated sodium bicarbonate, 10% aqueous potassium carbonate and water. The organic layer was dried and the solvent evaporated to give a brown, oily residue. The residue was purified by flash chromatography on silica gel (15 g) eluting with 1:1 ethyl acetate:hexane. The desired fractions were eluted with 60% ethyl acetate-hexane. Evaporation of the purest fraction gave a brown glass (40 mg).
- 1H NMR (CDCl3, 300 MHz) δ: 8.33 (s, 1H), 8.23 (s, 1H), 7.92-8.0 (m, 3H), 7.6-7.76 (m, 3H), 3.836 (s, 3H), 3.828 (s, 2H), 3.15 (m, 4H), 2.71 (m, 4H).
- MS (EI+): 432 (m+1).
- A solution of 28 (32 mg) in ethanol (1.5 mL) was cooled in ice-water. A solution of 50% aqueous hydroxylamine (50 μL) was added followed by 1 N sodium hydroxide (53 μL). After four hours, the cooling was stopped and the reaction stirred overnight. Additional 50% hydroxylamine (25 μL) and 1 N sodium hydroxide (20 μL) were added and stirring continued for eight hours. The reaction was neutralized with 1 N hydrochloric acid (70 μL) and the solvent was evaporated to give a yellowish solid. This product was purified by HPLC using a 19×50 mm C-18 column eluting with a ten minute linear gradient that started with 100% water-0.1% trifluoroacetic acid and ended with 30% water-0.1% trifluoroacetic acid/70% acetonitrile-0.1% trifluoroacetic acid. The pure fractions of the component eluting at 4.8 minutes were freeze dried to give a white solid (0.1 mg).
- MS (EI+): 433 (m+1).
-
- A mixture of tertiary butyl 4(aminocarbothioyl)tetrahydropyridine-1(2H)carboxylate 25.1 (1 g) and methyl chloro(formyl)acetate (1.3 g) in toluene (20 mL) was heated in an 80°-90° C. oil bath for 1.75 hours. Another spatula full of the chloro(formyl)acetate was added and the heating continued another hour. The reaction was cooled and partitioned between saturated aqueous sodium bicarbonate and ethyl acetate. The organics were washed with water and brine. Drying and evaporation of the solvent gave an oily residue that was purified by flash chromatography eluting with 30% ethyl acetate hexane to give the thiazole 25.2 as a yellow oil (0.6 g).
- A solution of 25.2 (0.55 g) in methylene chloride (3 mL) was treated with trifluoroacetic acid (1 mL). After three hours, another portion of trifluoroacetic acid (1 mL) was added and stirring continued for three hours. The solvent was evaporated and the residue partitioned between water and ether. The aqueous phase was made basic with 1 N sodium hydroxide and extracted with chloroform. The chloroform solution was dried and the solvent evaporated to give 25.3 as a dark gum (0.187 g). A solution of the gum in methylene chloride (5 mL) and diisopropylethylamine (0.3 mL) was cooled in ice-water and treated with 4-biphenylsulphonyl chloride (0.21 g) in methylene chloride (2 mL). The cooling was removed and the reaction stirred one hour. A crystal of 4-dimethylaminopyridine was added and stirring was continued overnight. The solvent was evaporated and the residue partitioned between water and ethyl acetate. The organics were washed with 1 N hydrochloric acid, aqueous saturated sodium bicarbonate, and brine. The solvent was dried and evaporated to give a tan solid. The solid was purified by flash chromatography eluting with 60-80% ethyl acetate-hexane to give 25.3 as a tan powder (91 mg) with the expected m/e of 443 (M+H+).
- A mixture of methyl 2-[1-(1,1′-biphenyl-4-ylsulfonyl)piperidin-4-yl]-1,3-thiazole-5-carboxylate 25.3 (9 mg), 50% hydroxylamine in water (0.05 mL), and dioxane (1 mL) were cooled in ice-water. To the reaction was added 1N sodium hydroxide (0.053 mL) followed by removal of the cooling bath. After stirring overnight, the reaction was neutralized with 1 N hydrochloric acid (0.053 mL) and the solvent evaporated. The residue was purified by preparative hplc to give Example 25 as a floculant white solid (3.5 mg). 1H NMR (DMSO) δ: 2.75 (m, 2H), 2.15 (m, 2H), 2.5 (m, 2H), 3.1 (m, 1H), 3.75 (m, 2H), 7.45-7.55 (m, 3H), 7.72-7.96 (m, 6H), 8.08 (s, 1H), 11.3 (s, 1H); m/e=444 (M+H+).
- Histone deacetylase (HDAC) activity assays were performed using the HDAC fluorescent activity assay/drug discovery kit (Biomol Research Laboratories, Plymouth Meeting, Pa.) essentially according to the manufacturer's instructions. The included HeLa cell nuclear extract, which contains a mosaic of HDAC enzymes and other nuclear factors, was used as the source of HDAC activity. The final substrate concentration in the assay mixture was 50 μM. The reaction was allowed to proceed for 10 min at room temperature before stopping the reaction. Test compounds were prepared as 20 mM stock solutions in DMSO (Molecular Biology grade, Sigma-Aldrich Co., St. Louis, Mo.) and stored at −70° C. Serial dilutions of test compounds were prepared in assay buffer immediately prior to testing. DMSO was determined in a separate trial to have no significant effect on the activity of this assay at concentrations up to 5%; the final DMSO concentration in the wells was no more than 2% and therefore DMSO effects were safely neglected. Assays were performed in white polystyrene 96-well half-area assay plates (Corning, Corning, N.Y.) and measured on a Wallace 1420 fluorescent plate reader (Wallac Oy, Turku, Finland) with an excitation wavelength of 355 nm, an emission wavelength of 460 nm, and a 1 sec signal averaging time.
- In some assays recombinant HDAC8 (Biomol) was used as the source of the enzyme activity; here the final substrate concentration was 250 μM, the final concentration of HDAC8 was 0.02 u/μL and the reaction was allowed to proceed at 37° C. for 1 h before stopping. For all curves, IC50 values were calculated with the GraFit curve-fitting program (Erithacus, Horley, Surrey, UK).
- The HDAC inhibition data for representative examples of this invention is presented in Table 1.
-
TABLE 1 HDAC inhibition potencies for selected examples of the present invention Example No. IC50 HDAC Inhibition (μM) 2 5.9 4 0.045 4b 0.44 4c 0.16 4d 0.4 4e 3.24 4f 0.55 4g 14.5 4h 1.63 4i 0.65 4j 11.4 4k 318 4m 4.7 5 0.05 5b 4.7 5c 12.6 5d 8.4 5e 2.15 5f 18.8 5g 0.6 5h 0.67 16 671 17 755 18 7.7 20 118 20B 0.33 21 2.75 22 3.5 23 31.6 23b 0.87 24 6.9 25 13.1 - The following procedure can be found on the Developmental Therapeutics Program NCI/NIH web site at http:dtp.nci.nih.gov/brancehes/btb/ivclsp.html.
- 1. Human tumor cell lines of HT29, A549 and MCF7 are grown in DNEM containing 10% fetal bovine serum and 2 mM L-glutamine. Cells are plated in a 96 well plate at a density of 5000 cells per well in 100 μL of growth medium and incubated at 37° C., 5% CO2, for 24 hours prior to the addition of experimental compounds
- 2. Experimental drugs are solubilized in DMSO for a final concentration of 20 mM immediately prior to use. Drugs are farther diluted in growth media for a total of nine drug concentrations and a growth control. At the 24-hour time point, one plate of cells is fixed in situ with TCA as a measurement of the cell population at time zero, or the time of drug addition.
- 3. The plates are further incubated with drug for an additional 48 hours.
- 4. The cells are fixed in situ by gently aspirating off the culture media and then adding 50 μL of ice cold 10% TCA per well and incubated at 4° C. for 60 minutes. The plates are washed with tap water five times and allowed to air dry for 5 minute.
- 5. 50 μl of a 0.4% (w/v) Sulforhodamine B solution in 1% (v/v) acetic acid is added per well and incubated for 30 minutes at room temperature.
- 6. Following staining, plates are washed five times with 1% acetic acid to remove any unbound dye and then allowed to air dry for 5 minutes.
- 7. Stain is solubilized with 100 μL of 10 mM Tris pH 10.5 per well and placed on an orbital rotator for 5 minutes.
- 8. Absorbance is read at 570 nm. Representative GI50's against MCF7 cells for selected examples of this invention are shown in Table 2.
-
TABLE 2 Activity of selected examples of this invention against MCF7 cells Example No. GI50 in MCF7 cells (μM) 2 10 4 0.7 4b 3 4c 4 4d 1 4e 6 4f 2 4g 3 4h 5 4i 18 4j 1.5 4k 4 4m 2.5 5 6 5b 10 5c 5d 15 5e 2 5f 20 5g 8 5h 3.5 16 17 4 18 20 20B 4 21 22 40 23 20 23b 30 24 10 25 100
Claims (20)
1. A compound of formula I:
wherein:
R is selected from the group consisting of hydrogen, aryl, substituted aryl, heteroaryl substituted heteroaryl, alkyl and substituted alkyl;
R12 is selected from the group consisting of —NR14OH, —OH, —NR14R15, —OR14, —(C1-C6)alkylene-SR4, —(C1-C6)alkylene-OR14, —(C1-C6)alkylene-NR14R15, —CF3;
where R14 and R15 are independently selected from the group consisting of hydrogen, (C1-C6)alkyl, (C1-C6)substituted alkyl, aryl, substituted aryl and where R14 and R15 together with the nitrogen atom bound thereto form a heterocyclic or substituted heterocyclic ring;
V, W, X, Y, and Z form a 5-membered heteroaryl where W, X, and Y are independently selected from ═C(R11)—, —N═, —N(R14)—, —O—, —S—, —S(O)—, and/or —S(O)2—, and V and Z independently form ═C(R14)— and/or >N— where R14 is as defined above, provided that at least one of V, W, X, Y and Z is ═C(R14)—, and further provided that the ring formed by V, W, X, Y, and Z is not a thiophene;
R11 is hydrogen or alkyl;
the ring defined by A above is selected from the group consisting of cycloakylene, substituted cycloalkylene, hetrocyclene, substituted heterocyclene, arylene, heteroarylene, -het-(L2)b-het-, -het-(L2)b-cyclo-, -cyclo-(L2)b-het-, and -cyclo-(L2)b-cyclo-;
where each b is independently 0 or 1;
L2 is selected from the group consisting of a covalent bond, (C1-C4)alkylene, substituted (C1-C4)alkylene, —NH(C1-C4)alkylene, (C1-C4)alkyleneNH—, provided that the nitrogen atom of the —NH(C1-C4)alkylene and (C1-C4)alkyleneNH— group are not attached to a nitrogen atom in the het or in cyclo groups;
T is selected from the group consisting of —SO2—[(C1-C3)alkylene]p-, —[(C1-C3)alkylene]p-SO2—, —NR16SO2—[(C1-C3)alkylene]p—, —SO2NR16—[(C1-C3)alkylene]p-, —C(O)—[(C1-C3)alkylene]p-, —[(C1-C3)alkylene]p-C(O)—, —NR6C(O)—[(C1-C3)alkylene]p-, —C(O)NR16—[(C1-C3)alkylene]p-, —N(R16)—[(C1-C3)alkylene]p and (C1-C3)alkylene where p is zero or one and R16 is hydrogen, alkyl, aryl, or heteroaryl, provided that when T is connected to A at a nitrogen atom and T is —SO2NR16—[(C1-C3)alkylene]p—, —C(O)NR16—[(C1-C3)alkylene]p—, or —N(R16)—[(C1-C3)alkylene]p then p is not zero;
Q is selected from the group consisting of a covalent bond, —O—, (C1-C3)alkylene, —C(O)—, —SO2—, —NR1C(O)NR1—, —NR1C(O)—, —C(O)NR1—, —(C1-C3-alkylene)pNR1— and —NR1—(C1-C3-alkylene)p where R1 is hydrogen or alkyl and p is zero or one, provided that when Q is one of —NR1C(O)NR1—, —NR1C(O)—, —C(O)NR1—, —(C1-C3-alkylene)pNR1, or —NR1—(C1-C3-alkylene)p and p is not zero Q is not attached to a nitrogen atom;
L is selected from the group consisting of a covalent bond, (C1-C4)alkylene, substituted (C1-C4)alkylene, (C2-C4)alkenylene, and substituted (C2-C4)alkenylene, (C3-C8)cycloalkylene, and substituted (C3-C8)cycloalkylene;
and tautomers, isomers, prodrugs and pharmaceutically acceptable salts thereof.
4. The compound according to claim 3 , wherein said compound is represented by formula II:
where
each R3 is independently selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl and substituted heteroaryl;
n and z, and z′ are independently integers equal to zero, one or two; with the proviso that both z and z′ are not zero; and
tautomers, isomers, prodrugs, and pharmaceutically acceptable salts thereof.
5. The compound according to claim 3 , wherein said compound is represented by formula III:
where
each R3 is independently selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl and substituted heteroaryl;
n and z, are independently integers equal to zero, one or two; and
tautomers, isomers, prodrugs, and pharmaceutically acceptable salts thereof.
6. The compound according to claim 3 , wherein said compound is represented by formula IV:
where
each R3 is independently selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl and substituted heteroaryl;
n and z, are independently integers equal to zero, one or two; and
tautomers, isomers, prodrugs, and pharmaceutically acceptable salts thereof.
7. The compound of claim 3 wherein the fragment “ring A” is selected from the group consisting of optionally substituted piperidine, piperazine, morpholine, piperazinone, piperazindione, azetidine, hydantoin, oxazolidine, octahydro-pyrrolo[3,4-c]pyrrole, tetrahydropyridine, hexene, pyrrolidine
9. The compound of claim 3 wherein “ring A” is a cycloalkylene or substituted heterocycloalkylene, which is an optionally substituted bicyclic or spirocyclic group.
11. The compound according to claim 3 , wherein R is aryl or substituted aryl.
12. The compound according to claim 3 , wherein t is selected from the group consisting of phenyl, naphthyl, 3,4-dimethoxyphenyl, 4-trifluoromethoxyphenyl, 4 methylphenyl, 4-trifluororomethylphenyl, 4-nitrophenyl, 4-acetylphenyl, thiophen-2-yl, biphenyl, 5-(N,N-dimethylamino)-naphthalenyl, 4-fluorophenyl, methyl, benzyl, 2-hydroxyethyl, 2-aminoethyl, and 2-phenylethyl.
13. The compound of claim 3 , wherein Q is a covalent bond and the ring defined by A above is piperidinyl or piperazinyl.
14. The compound according to claim 3 , wherein X is —N═ and Y is ═CH—.
15. The compound according to claim 14 , wherein L is alkenylene.
16. The compound according to claim 15 , wherein L is a (E)-ethylenylene.
17. The compound of claim 3 wherein T is selected from the group consisting of a bond, —SO2—, —SO2NH—, and —CH2NR16—.
18. A compound according to claim 1 , which compound is selected from the group consisting of:
1-(2-naphthylsulfonyl)-4-(5-hydroxyaminocarbonylthiazol-2-yl)piperazine;
1-(2-naphthylsulfonyl)-4-(5-hydroxyaminocarbonylthiazol-2-yl)-1,4-diazepane;
1-(2-naphthylsulfonyl)-4-(4-hydroxyaminocarbonylthiazol-2-yl)piperazine;
1-(2-naphthylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
1-(phenylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
1-(3,4-dimethoxyphenylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
1-(4-methoxyphenylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
1-(4-trifluoromethoxyphenylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
1-(4-methylphenylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
1-(4-trifluoromethylphenylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
1-(4-nitrophenylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
1-(thien-2-ylsulfonyl-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
1-(1,1′biphenylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
1-(5-dimethylamino-naphthalene-1-sulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
1-(4-fluorophenylsulfonyl)-4-[(5-(2-hydroxyaminocarbonylethen-1(E)-yl-thiazol-2-yl)piperazine;
4-(2-naphthylsulfonylamino)-1-[(5-(2-hydroxyaminocarbonyl-thiazol-2-yl)-piperadine;
4-(1,1′-biphenylsulfonylamino)-1-[(5-(2-hydroxyaminocarbonyl-thiazol-2-yl)-piperadine;
4-(3,4-dimethoxyphenylsulfonylamino)-1-[(5-(2-hydroxyaminocarbonyl-thiazol-2-yl)-piperadine;
4-(4-methylphenylsulfonylamino)-1-[(5-(2-hydroxyaminocarbonyl-thiazol-2-yl)-piperadine;
2-(4-{[(1,1′-biphenylsulfonyl)amino]methyl}piperidin 1-yl)-1,3-thiazole-5-carboxylic acid hydroxyamide;
2-{[1-(2-naphthylsulfonyl)piperidin-4-yl]amino}-1,3-thiazole-5-carboxylic acid hydroxyamide;
2-(6-{[(4-methylphenyl)sulfonyl]amino}-3-azabicyclo[3.1.0]hex-3-yl)-1,3-thiazole-5-carboxylic acid hydroxyamide;
2-[3-[(4-methylphenyl)sulfonyl]tetrahydropyrimidin-1(2H)-yl]-1,3-thiazole-5-carboxylic acid hydroxylamide;
2-[4-(3,4-dimethoxy-benzene sulfonyl)-piperazin-1-yl]-thiazole-5-carboxylic acid hydroxyamide;
2-[4-(4-trifluoromethoxy-benzene sulfonyl)-piperazin-1-yl]-thiazole-5-carboxylic acid hydroxyamide;
2-[4-(4 toluene-4-sulfonyl)-piperazin-1-yl]-thiazole-5-carboxylic acid hydroxyamide;
2-[4-(4-trifluoromethyl-benzenesulfonyl)-piperazin-1-yl]-thiazole-5-carboxylic acid hydroxyamide;
2-[4-(4-nitro-benzene sulfonyl)-piperazin-1-yl]-thiazole-5-carboxylic acid hydroxyamide;
2-[4-(4-acetyl-benzenesulfonyl)-piperazin-1-yl]-thiazole-5-carboxylic acid hydroxyamide;
2-[4-(thiophene-2-benzenesulfonyl)-piperazin-1-yl]-thiazole-5-carboxylic acid hydroxyamide;
2-[4-(biphenyl-4-sulfonyl)-piperazin-1-yl]-thiazole-5-carboxylic acid hydroxyamide;
2-[4-(5-dimethylamino-naphthalene-1-sulfonyl)-piperazin-1-yl]-thiazole-5-carboxylic acid hydroxyamide;
2-[4-(4-fluoro-benzenesulfonyl)-piperazin-1-yl]-thiazole-5-carboxylic acid hydroxyamide;
2-(4-methyl-piperazin-1-yl)-thiazole-5-carboxylic acid hydroxyamide;
2-(4-Benzyl-piperazin-1-yl)-thiazole-5-carboxylic acid hydroxyamide (16b-hydroxamate);
2-(4-(2-hydroxyethyl)-piperazin-1-yl)-thiazole-5-carboxylic acid hydroxyamide;
2-(4-(2-aminoethyl)-piperazin-1-yl)-thiazole-5-carboxylic acid hydroxyamide;
2-(4-phenylethyl-piperazin-1-yl)-thiazole-5-carboxylic acid hydroxyamide;
2-(4-(2-oxo-2-phenylethyl % piperazin-1-yl)-1,3-thiazole-5-carboxylic acid hydroxyamide;
2-(4-acetyl-piperazin-1-yl)-thiazole-5-carboxylic acid hydroxamide;
2-(4-benzoyl-piperazin-1-yl)-thiazole-5-carboxylic acid hydroxamide;
2-(4-phenylacetyl-piperazin-1-yl)-thiazole-5-carboxylic acid hydroxamide;
2-[4-(3-{1H-indol-3-yl}propanoyl)-piperazin-1-yl]-1,3-thiazole-5-carboxylic acid hydroxyamide;
N-(2-naphthylsulfonyl)-N′-{2-[5-(N-hydroxycarboxamido)]thiazolyl}-piperazine;
2-[1-(1,1′-biphenyl-4-ylsulfonyl)piperidin-4-yl]-1,3-thiazole-5-carboxylic acid hydroxyamide;
and pharmaceutically acceptable salts, isomers, tautomers, and prodrugs thereof
19. A pharmaceutical composition comprising an effective amount of a compound according to claim 1 , a pharmaceutically inert carrier, and, optionally, at least one other anti-cancer agent selected from the group consisting of platinum coordination compounds, taxane compounds, topoisomerase I inhibitors, topoisomerase II inhibitors, anti-tumour vinca alkaloids, anti-tumour nucleoside derivatives, alkylating agents, anti-tumour anthracycline derivatives, HER2 antibodies, estrogen receptor antagonists, selective estrogen receptor modulators, aromatase inhibitors, retinoids, retinoic acid metabolism blocking agents (RAMBA), DNA methyl transferase inhibitors, kinase inhibitors, farnesyltransferase inhibitors, other HDAC inhibitors, carboplatin, oxalyplatin, paclitaxel, docetaxel, irinotecan, topotecan, etoposide, teniposide, vinblastine, vincristine, vinorelbine, 5-fluorouracil, gemcitabine, capecitabine, cyclophosphamide, chlorambucil, carmustine, lomustine, daunorubicin, doxorubicin, darubicin, mitoxantrone, trastuzuma, tamoxifen, toremifene, droloxifene, faslodex, raloxifene, exemestane, anastrozole, letrazole, vorozole, vitamin D, accutane, azacytidine, flavoperidol, imatinib mesylate, and gefitinib.
20. A method for inhibiting a proliferative disorder in a mammalian patient which method comprises administering to said patient a pharmaceutical composition according to claim 19 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/019,356 US20080139535A1 (en) | 2004-04-01 | 2008-01-24 | Inhibitors of histone deacetylase |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US55969204P | 2004-04-01 | 2004-04-01 | |
US11/096,550 US7345043B2 (en) | 2004-04-01 | 2005-04-01 | Inhibitors of histone deacetylase |
US12/019,356 US20080139535A1 (en) | 2004-04-01 | 2008-01-24 | Inhibitors of histone deacetylase |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/096,550 Division US7345043B2 (en) | 2004-04-01 | 2005-04-01 | Inhibitors of histone deacetylase |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080139535A1 true US20080139535A1 (en) | 2008-06-12 |
Family
ID=35097052
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/096,550 Expired - Fee Related US7345043B2 (en) | 2004-04-01 | 2005-04-01 | Inhibitors of histone deacetylase |
US12/019,356 Abandoned US20080139535A1 (en) | 2004-04-01 | 2008-01-24 | Inhibitors of histone deacetylase |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/096,550 Expired - Fee Related US7345043B2 (en) | 2004-04-01 | 2005-04-01 | Inhibitors of histone deacetylase |
Country Status (1)
Country | Link |
---|---|
US (2) | US7345043B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8551984B2 (en) | 2009-12-17 | 2013-10-08 | Merck Sharp & Dohme Corp. | Aminopyrimidines as SYK inhibitors |
US8623853B2 (en) | 2008-07-23 | 2014-01-07 | The Brigham And Women's Hospital, Inc. | Treatment of cancers characterized by chromosomal rearrangement of the NUT gene |
US8735417B2 (en) | 2009-12-17 | 2014-05-27 | Merck Sharp & Dohme Corp. | Aminopyrimidines as Syk inhibitors |
US9120785B2 (en) | 2011-05-10 | 2015-09-01 | Merck Sharp & Dohme Corp. | Pyridyl aminopyridines as Syk inhibitors |
US9145391B2 (en) | 2011-05-10 | 2015-09-29 | Merck Sharp & Dohme Corp. | Bipyridylaminopyridines as Syk inhibitors |
US9290490B2 (en) | 2011-05-10 | 2016-03-22 | Merck Sharp & Dohme Corp. | Aminopyrimidines as Syk inhibitors |
Families Citing this family (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050119251A1 (en) * | 2001-12-21 | 2005-06-02 | Jian-Min Fu | Nicotinamide derivatives and their use as therapeutic agents |
TW200526626A (en) * | 2003-09-13 | 2005-08-16 | Astrazeneca Ab | Chemical compounds |
US20050197336A1 (en) * | 2004-03-08 | 2005-09-08 | Miikana Therapeutics Corporation | Inhibitors of histone deacetylase |
AR048427A1 (en) * | 2004-03-11 | 2006-04-26 | Altana Pharma Ag | DERIVATIVES OF SULFONILPIRROLES WITH INHIBITORY ACTIVITY OF HISTONE DEACETILASE, PHARMACEUTICAL COMPOSITIONS CONTAINING THEM AND THE USE OF THE SAME FOR THE TREATMENT OF RELATED DISEASES. |
US7345043B2 (en) * | 2004-04-01 | 2008-03-18 | Miikana Therapeutics | Inhibitors of histone deacetylase |
JP5094398B2 (en) * | 2004-09-20 | 2012-12-12 | ゼノン・ファーマシューティカルズ・インコーポレイテッド | Heterocyclic derivatives and their use as mediators of stearoyl-CoA desaturases |
CN101083994A (en) | 2004-09-20 | 2007-12-05 | 泽农医药公司 | Heterocyclic derivatives and their use as therapeutic agents |
CN101083986A (en) * | 2004-09-20 | 2007-12-05 | 泽农医药公司 | Bicyclic heterocyclic derivatives and their use as stearoyl CoA desaturase (SCD) inhibitors |
BRPI0515482A (en) * | 2004-09-20 | 2008-07-22 | Xenon Pharmaceuticals Inc | heterocyclic derivatives and their uses as therapeutic agents |
AR051095A1 (en) * | 2004-09-20 | 2006-12-20 | Xenon Pharmaceuticals Inc | HETEROCICLIC DERIVATIVES AND ITS USE AS INHIBITORS OF ESTEAROIL-COA DESATURASA |
AR051094A1 (en) * | 2004-09-20 | 2006-12-20 | Xenon Pharmaceuticals Inc | HETEROCICLIC DERIVATIVES AND THEIR USE AS INHIBITORS OF ESTEAROIL-COA DESATURASA |
BRPI0515489A (en) * | 2004-09-20 | 2008-07-29 | Xenon Pharmaceuticals Inc | heterocyclic derivatives and their use as stearoyl coat desaturase inhibitors |
CN101084211A (en) * | 2004-09-20 | 2007-12-05 | 泽农医药公司 | Heterocyclic derivatives and their use as therapeutic agents |
CA2580787A1 (en) | 2004-09-20 | 2006-03-30 | Xenon Pharmaceuticals Inc. | Heterocyclic derivatives for the treatment of diseases mediated by stearoyl-coa desaturase enzymes |
US7772245B2 (en) * | 2005-02-14 | 2010-08-10 | Miikana Therapeutics, Inc. | Inhibitors of histone deacetylase |
ES2430569T3 (en) * | 2005-02-18 | 2013-11-21 | Astrazeneca Ab | Piperidine-derived antibacterial compounds |
WO2006087548A2 (en) * | 2005-02-18 | 2006-08-24 | Astrazeneca Ab | Pyrrole derivatives as dna gyrase and topoisomerase inhibitors |
CN101171250A (en) * | 2005-03-04 | 2008-04-30 | 阿斯利康(瑞典)有限公司 | Tricyclic derivatives of azetidine and pyrrole having antibacterial activity |
JP2008531671A (en) * | 2005-03-04 | 2008-08-14 | アストラゼネカ アクチボラグ | Compound |
DE602006007558D1 (en) * | 2005-03-15 | 2009-08-13 | 4Sc Ag | N-sulfonylpyrroles and their use as histone deacetylase inhibitors |
CA2603398A1 (en) * | 2005-04-07 | 2006-10-12 | Nycomed Gmbh | Sulfonylpyrroles as histone deacetylase inhibitors |
CN101208089A (en) * | 2005-06-03 | 2008-06-25 | 泽农医药公司 | Aminothiazole derivatives as human stearoyl-CoA desaturase inhibitors |
EP1910352A1 (en) * | 2005-07-20 | 2008-04-16 | Merck Frosst Canada Ltd. | Heteroaromatic compounds as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
ES2381962T3 (en) | 2005-09-21 | 2012-06-04 | 4Sc Ag | New sulfonylpirroles as HDAC inhibitors |
KR101314158B1 (en) * | 2005-09-21 | 2013-10-04 | 4에스체 악티엔게젤샤프트 | Sulphonylpyrrole hydrochloride salts as histone deacetylases inhibitors |
AR057579A1 (en) * | 2005-11-23 | 2007-12-05 | Merck & Co Inc | SPIROCICLICAL COMPOUNDS AS INHIBITORS OF ACETYLASE HISTONE (HDAC) |
GB0603041D0 (en) * | 2006-02-15 | 2006-03-29 | Angeletti P Ist Richerche Bio | Therapeutic compounds |
EP1832585A1 (en) * | 2006-03-10 | 2007-09-12 | ORIDIS BIOMED Forschungs- und Entwicklungs GmbH | Thiazole-piperidine derivatives for treatment of hyperproliferative diseases |
US8017612B2 (en) | 2006-04-18 | 2011-09-13 | Japan Tobacco Inc. | Piperazine compound and use thereof as a HCV polymerase inhibitor |
SG174790A1 (en) * | 2006-09-11 | 2011-10-28 | Curis Inc | Tyrosine kinase inhibitors containing a zinc binding moiety |
SG174772A1 (en) * | 2006-09-11 | 2011-10-28 | Curis Inc | Multi-functional small molecules as anti-proliferative agents |
TW200826936A (en) * | 2006-12-01 | 2008-07-01 | Merck Frosst Canada Ltd | Azacycloalkane derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
CN101622245B (en) * | 2007-01-25 | 2014-09-10 | 纳幕尔杜邦公司 | Fungicidal amides |
AR064965A1 (en) * | 2007-01-26 | 2009-05-06 | Merck Frosst Canada Inc | DERIVATIVES OF AZACICLOALCANS AS INHIBITORS OF ESTEAROIL - COENZIMA A DELTA -9 DESATURASA |
TW200906412A (en) * | 2007-06-12 | 2009-02-16 | Astrazeneca Ab | Piperidine compounds and uses thereof |
WO2009019295A2 (en) * | 2007-08-06 | 2009-02-12 | Nv Remynd | Phenyl- and benzylthiazolylpiperazine derivatives for the treatment of neurodegenerative diseases |
TW200922564A (en) * | 2007-09-10 | 2009-06-01 | Curis Inc | CDK inhibitors containing a zinc binding moiety |
US8119616B2 (en) * | 2007-09-10 | 2012-02-21 | Curis, Inc. | Formulation of quinazoline based EGFR inhibitors containing a zinc binding moiety |
AU2008338631A1 (en) * | 2007-12-14 | 2009-06-25 | Georgetown University | Histone deacetylase inhibitors |
AU2009228931B2 (en) * | 2008-03-27 | 2013-05-23 | Janssen Pharmaceutica Nv | Aza-bicyclohexyl substituted indolyl alkyl amino derivatives as novel inhibitors of histone deacetylase |
WO2010075542A1 (en) | 2008-12-23 | 2010-07-01 | Curis, Inc. | Cdk inhibitors |
BRPI1010024A2 (en) | 2009-06-05 | 2019-09-24 | Link Medicine Corp | aminopyrrolidinone derivatives and their use |
CN102712634B (en) | 2009-10-30 | 2016-04-06 | 拜耳知识产权有限责任公司 | Heteroaryl piperidine and heteroaryl bridged piperazine derivatives |
US8394858B2 (en) * | 2009-12-03 | 2013-03-12 | Novartis Ag | Cyclohexane derivatives and uses thereof |
US8546588B2 (en) * | 2010-02-26 | 2013-10-01 | Millennium Pharmaceuticals, Inc. | Substituted hydroxamic acids and uses thereof |
CA2801074A1 (en) | 2010-06-04 | 2011-12-08 | Albany Molecular Research, Inc. | Glycine transporter-1 inhibitors, methods of making them, and uses thereof |
CN102746278B (en) * | 2011-04-19 | 2014-09-17 | 中国科学院化学研究所 | Chiral pseudonucleoside compound and its preparation method and application |
JP2016523830A (en) | 2013-05-07 | 2016-08-12 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Radiation mitigation pharmaceutical formulation |
US10287255B2 (en) | 2014-03-12 | 2019-05-14 | Chong Kun Dang Pharmaceutical Corp. | Compounds as histone deacetylase 6 inhibitors and pharmaceutical compositions comprising the same |
WO2016086060A1 (en) | 2014-11-26 | 2016-06-02 | The J. David Gladstone Institutes | Methods for treating a cytomegalovirus infection |
KR102264012B1 (en) * | 2015-12-31 | 2021-06-10 | 히트젠 주식회사 | Sulfonamide derivatives and their manufacturing method and application |
WO2020186101A1 (en) | 2019-03-12 | 2020-09-17 | The Broad Institute, Inc. | Detection means, compositions and methods for modulating synovial sarcoma cells |
JP2025516682A (en) * | 2022-05-20 | 2025-05-30 | 四川匯宇制葯股▲フン▼有限公司 | Hydroxyamide derivatives and uses thereof |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5700811A (en) * | 1991-10-04 | 1997-12-23 | Sloan-Kettering Institute For Cancer Research | Potent inducers of terminal differentiation and method of use thereof |
US5925672A (en) * | 1996-12-06 | 1999-07-20 | Neurosciences Research Foundation, Inc. | Methods of treating mental diseases, inflammation and pain |
US5993845A (en) * | 1996-09-04 | 1999-11-30 | Vrije Universiteit Brussel | Anti-fibrotic medicament |
US6087367A (en) * | 1991-10-04 | 2000-07-11 | Sloan-Kettering Institute For Cancer Research | Potent inducers of terminal differentiation and methods of use thereof |
US6124495A (en) * | 1997-03-11 | 2000-09-26 | Beacon Laboratories, Inc. | Unsaturated oxyalkylene esters and uses thereof |
US6541661B1 (en) * | 1999-11-23 | 2003-04-01 | Methylgene, Inc. | Inhibitors of histone deacetylase |
US6552065B2 (en) * | 2000-09-01 | 2003-04-22 | Novartis Ag | Deacetylase inhibitors |
US20030082666A1 (en) * | 2000-11-21 | 2003-05-01 | Kammer Gary M. | Method of treating autoimmune diseases |
US20030206946A1 (en) * | 2002-04-26 | 2003-11-06 | Yih-Lin Chung | Methods for therapy of connective tissue disease |
US20030235588A1 (en) * | 2002-02-15 | 2003-12-25 | Richon Victoria M. | Method of treating TRX mediated diseases |
US20040029903A1 (en) * | 2002-05-22 | 2004-02-12 | Beacon Laboratories, Inc. | Histone deacetylase inhibitors based on trihalomethylcarbonyl compounds |
US6706686B2 (en) * | 2001-09-27 | 2004-03-16 | The Regents Of The University Of Colorado | Inhibition of histone deacetylase as a treatment for cardiac hypertrophy |
US20040058868A1 (en) * | 2002-07-09 | 2004-03-25 | Stephen James | Methods for identification of compounds modulating insulin resistance |
US20040077591A1 (en) * | 2002-03-28 | 2004-04-22 | The Brigham And Women's Hospital, Inc. | Histone deacetylase inhibitors for the treatment of multiple sclerosis, amyotrophic lateral sclerosis and Alzheimer's Disease |
US20040087657A1 (en) * | 2001-10-16 | 2004-05-06 | Richon Victoria M. | Treatment of neurodegenerative diseases and cancer of the brain using histone deacetylase inhibitors |
US20040092431A1 (en) * | 2002-11-12 | 2004-05-13 | Hellberg Peggy E. | Histone deacetylase inhibitors for treating degenerative diseases of the eye |
US20040092558A1 (en) * | 2002-11-12 | 2004-05-13 | Alcon, Inc. | Histone deacetylase inhibitors for the treatment of ocular neovascular or edematous disorders and diseases |
US20040167184A1 (en) * | 2001-03-27 | 2004-08-26 | Wiech Norbert L. | Treatment of lung cells with histone deacetylase inhibitors |
US20050137232A1 (en) * | 2003-03-17 | 2005-06-23 | Syrrx, Inc. | Histone deacetylase inhibitors |
US20050197336A1 (en) * | 2004-03-08 | 2005-09-08 | Miikana Therapeutics Corporation | Inhibitors of histone deacetylase |
US20050234033A1 (en) * | 2004-04-01 | 2005-10-20 | Anandan Sampath K | Inhibitors of histone deacetylase |
-
2005
- 2005-04-01 US US11/096,550 patent/US7345043B2/en not_active Expired - Fee Related
-
2008
- 2008-01-24 US US12/019,356 patent/US20080139535A1/en not_active Abandoned
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5700811A (en) * | 1991-10-04 | 1997-12-23 | Sloan-Kettering Institute For Cancer Research | Potent inducers of terminal differentiation and method of use thereof |
US6087367A (en) * | 1991-10-04 | 2000-07-11 | Sloan-Kettering Institute For Cancer Research | Potent inducers of terminal differentiation and methods of use thereof |
US5993845A (en) * | 1996-09-04 | 1999-11-30 | Vrije Universiteit Brussel | Anti-fibrotic medicament |
US5925672A (en) * | 1996-12-06 | 1999-07-20 | Neurosciences Research Foundation, Inc. | Methods of treating mental diseases, inflammation and pain |
US6124495A (en) * | 1997-03-11 | 2000-09-26 | Beacon Laboratories, Inc. | Unsaturated oxyalkylene esters and uses thereof |
US6541661B1 (en) * | 1999-11-23 | 2003-04-01 | Methylgene, Inc. | Inhibitors of histone deacetylase |
US6552065B2 (en) * | 2000-09-01 | 2003-04-22 | Novartis Ag | Deacetylase inhibitors |
US20030082666A1 (en) * | 2000-11-21 | 2003-05-01 | Kammer Gary M. | Method of treating autoimmune diseases |
US20040167184A1 (en) * | 2001-03-27 | 2004-08-26 | Wiech Norbert L. | Treatment of lung cells with histone deacetylase inhibitors |
US6706686B2 (en) * | 2001-09-27 | 2004-03-16 | The Regents Of The University Of Colorado | Inhibition of histone deacetylase as a treatment for cardiac hypertrophy |
US20040087657A1 (en) * | 2001-10-16 | 2004-05-06 | Richon Victoria M. | Treatment of neurodegenerative diseases and cancer of the brain using histone deacetylase inhibitors |
US20030235588A1 (en) * | 2002-02-15 | 2003-12-25 | Richon Victoria M. | Method of treating TRX mediated diseases |
US20040077591A1 (en) * | 2002-03-28 | 2004-04-22 | The Brigham And Women's Hospital, Inc. | Histone deacetylase inhibitors for the treatment of multiple sclerosis, amyotrophic lateral sclerosis and Alzheimer's Disease |
US20030206946A1 (en) * | 2002-04-26 | 2003-11-06 | Yih-Lin Chung | Methods for therapy of connective tissue disease |
US20040029903A1 (en) * | 2002-05-22 | 2004-02-12 | Beacon Laboratories, Inc. | Histone deacetylase inhibitors based on trihalomethylcarbonyl compounds |
US20040058868A1 (en) * | 2002-07-09 | 2004-03-25 | Stephen James | Methods for identification of compounds modulating insulin resistance |
US20040092431A1 (en) * | 2002-11-12 | 2004-05-13 | Hellberg Peggy E. | Histone deacetylase inhibitors for treating degenerative diseases of the eye |
US20040092558A1 (en) * | 2002-11-12 | 2004-05-13 | Alcon, Inc. | Histone deacetylase inhibitors for the treatment of ocular neovascular or edematous disorders and diseases |
US20050137232A1 (en) * | 2003-03-17 | 2005-06-23 | Syrrx, Inc. | Histone deacetylase inhibitors |
US20050197336A1 (en) * | 2004-03-08 | 2005-09-08 | Miikana Therapeutics Corporation | Inhibitors of histone deacetylase |
US20050250784A1 (en) * | 2004-03-08 | 2005-11-10 | Miikana Therapeutics Corporation | Inhibitors of histone deacetylase |
US20050234033A1 (en) * | 2004-04-01 | 2005-10-20 | Anandan Sampath K | Inhibitors of histone deacetylase |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8623853B2 (en) | 2008-07-23 | 2014-01-07 | The Brigham And Women's Hospital, Inc. | Treatment of cancers characterized by chromosomal rearrangement of the NUT gene |
US8551984B2 (en) | 2009-12-17 | 2013-10-08 | Merck Sharp & Dohme Corp. | Aminopyrimidines as SYK inhibitors |
US8735417B2 (en) | 2009-12-17 | 2014-05-27 | Merck Sharp & Dohme Corp. | Aminopyrimidines as Syk inhibitors |
US8759366B2 (en) | 2009-12-17 | 2014-06-24 | Merck Sharp & Dohme Corp. | Aminopyrimidines as SYK inhibitors |
US9120785B2 (en) | 2011-05-10 | 2015-09-01 | Merck Sharp & Dohme Corp. | Pyridyl aminopyridines as Syk inhibitors |
US9145391B2 (en) | 2011-05-10 | 2015-09-29 | Merck Sharp & Dohme Corp. | Bipyridylaminopyridines as Syk inhibitors |
US9290490B2 (en) | 2011-05-10 | 2016-03-22 | Merck Sharp & Dohme Corp. | Aminopyrimidines as Syk inhibitors |
Also Published As
Publication number | Publication date |
---|---|
US20050234033A1 (en) | 2005-10-20 |
US7345043B2 (en) | 2008-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7345043B2 (en) | Inhibitors of histone deacetylase | |
US20050250784A1 (en) | Inhibitors of histone deacetylase | |
JP6916795B2 (en) | LSD1 inhibitor | |
JP6473133B2 (en) | Covalent inhibitor of KRASG12C | |
JP5799479B2 (en) | Rho kinase inhibitor | |
JP4948403B2 (en) | Substituted indolylalkylamino derivatives as new inhibitors of histone deacetylase | |
CN104936951B (en) | Benzimidizole derivatives as kinase inhibitor | |
JP5274842B2 (en) | [1H-piperazo [3,4-d] pyrimidin-4-yl] -piperazine as a serine-threonine kinase modulator (p70S6K, Akt-1 and Akt-2) for the treatment of immune, inflammatory and proliferative disorders Or [1H-piperazo [3,4-d] pyrimidin-4-yl] -piperazine compounds | |
ES2327972T3 (en) | DERIVATIVES OF AMINOFENIL AS NEW INHIBITORS OF HISTONA DEACETILASA. | |
JP7175888B2 (en) | Piperazine Derivatives as Selective HDAC1,2 Inhibitors | |
US11192878B2 (en) | Piperidine-2,6-dione derivative and use thereof | |
US20070208166A1 (en) | Tao Kinase Modulators And Method Of Use | |
HRP20040803A2 (en) | Inhibitors of histone deacetylase | |
AU2007207055A1 (en) | Thiazoles as 11 beta-HSD1 inhibitors | |
PL220783B1 (en) | Sulfonyl-derivatives as novel inhibitors of histone deacetylase | |
EA012451B1 (en) | Novel amido-substituted hydroxy-6-phenylphenanthridines | |
JP2008502595A (en) | Anaplastic lymphoma kinase modulator and method of use thereof | |
JP2025511122A (en) | Inhibitors of the MYST family of lysine acetyltransferases | |
US20090203692A1 (en) | Novel chemical compounds | |
US20170057955A1 (en) | Pyridopyrimidinone Compounds for Modulating the Catalytic Activity of Histone Lysine Demethylases (KDMs) | |
HK1106236A1 (en) | Substituted propenyl piperazine derivatives as novel inhibitors of histone deacetylase | |
HK1106236B (en) | Substituted propenyl piperazine derivatives as novel inhibitors of histone deacetylase | |
HK1078473B (en) | Inhibitors of histone deacetylase | |
HK1128281A1 (en) | Pyridine and pyrimidine derivatives as inhibitors of histone deacetylase | |
HK1128281B (en) | Pyridine and pyrimidine derivatives as inhibitors of histone deacetylase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MIIKANA THERAPEUTICS, INC., MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANANDAN, SAMPATH K.;XIAO, XIAO-YI;PATEL, DINESH V.;AND OTHERS;REEL/FRAME:020932/0964 Effective date: 20050413 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |