US20080311157A1 - Pharmaceutical Compound Capable of Induce Immune Protective Response Against Dengue Virus Having the Capsid Protein of the Dengue Virus - Google Patents
Pharmaceutical Compound Capable of Induce Immune Protective Response Against Dengue Virus Having the Capsid Protein of the Dengue Virus Download PDFInfo
- Publication number
- US20080311157A1 US20080311157A1 US12/067,129 US6712906A US2008311157A1 US 20080311157 A1 US20080311157 A1 US 20080311157A1 US 6712906 A US6712906 A US 6712906A US 2008311157 A1 US2008311157 A1 US 2008311157A1
- Authority
- US
- United States
- Prior art keywords
- protein
- virus
- den
- sequence
- pdc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108090000565 Capsid Proteins Proteins 0.000 title claims abstract description 40
- 102100023321 Ceruloplasmin Human genes 0.000 title claims abstract description 39
- 241000725619 Dengue virus Species 0.000 title claims abstract description 25
- 230000001681 protective effect Effects 0.000 title abstract description 16
- 150000001875 compounds Chemical class 0.000 title abstract 2
- 230000004044 response Effects 0.000 title description 21
- 230000028993 immune response Effects 0.000 claims abstract description 13
- 230000001939 inductive effect Effects 0.000 claims abstract description 7
- 108090000623 proteins and genes Proteins 0.000 claims description 63
- 102000004169 proteins and genes Human genes 0.000 claims description 61
- 229960005486 vaccine Drugs 0.000 claims description 15
- 239000002671 adjuvant Substances 0.000 claims description 13
- 239000000427 antigen Substances 0.000 claims description 12
- 108091007433 antigens Proteins 0.000 claims description 12
- 102000036639 antigens Human genes 0.000 claims description 12
- 241000710815 Dengue virus 2 Species 0.000 claims description 7
- 241000710829 Dengue virus group Species 0.000 claims description 3
- 230000036755 cellular response Effects 0.000 claims description 3
- 230000008348 humoral response Effects 0.000 claims description 3
- 239000000825 pharmaceutical preparation Substances 0.000 claims 8
- 238000012163 sequencing technique Methods 0.000 claims 2
- 241000710827 Dengue virus 1 Species 0.000 claims 1
- 241000710872 Dengue virus 3 Species 0.000 claims 1
- 241000710844 Dengue virus 4 Species 0.000 claims 1
- 239000003814 drug Substances 0.000 claims 1
- 238000007918 intramuscular administration Methods 0.000 claims 1
- 238000001990 intravenous administration Methods 0.000 claims 1
- 230000003449 preventive effect Effects 0.000 claims 1
- 238000007920 subcutaneous administration Methods 0.000 claims 1
- 229940124597 therapeutic agent Drugs 0.000 claims 1
- 230000001419 dependent effect Effects 0.000 abstract description 8
- 230000003612 virological effect Effects 0.000 abstract description 8
- 241000699670 Mus sp. Species 0.000 description 68
- 241000700605 Viruses Species 0.000 description 49
- 206010012310 Dengue fever Diseases 0.000 description 37
- 208000025729 dengue disease Diseases 0.000 description 28
- 208000001490 Dengue Diseases 0.000 description 24
- 238000002360 preparation method Methods 0.000 description 23
- 241001465754 Metazoa Species 0.000 description 22
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 22
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 19
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 19
- 230000000638 stimulation Effects 0.000 description 17
- 239000000203 mixture Substances 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 15
- 210000000234 capsid Anatomy 0.000 description 14
- 230000003053 immunization Effects 0.000 description 14
- 238000002649 immunization Methods 0.000 description 14
- 208000015181 infectious disease Diseases 0.000 description 14
- 241000588724 Escherichia coli Species 0.000 description 13
- 101100028920 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cfp gene Proteins 0.000 description 13
- 231100000518 lethal Toxicity 0.000 description 13
- 230000001665 lethal effect Effects 0.000 description 13
- 239000013612 plasmid Substances 0.000 description 13
- 230000001589 lymphoproliferative effect Effects 0.000 description 12
- 239000013642 negative control Substances 0.000 description 12
- 208000009714 Severe Dengue Diseases 0.000 description 11
- 239000013641 positive control Substances 0.000 description 11
- 101710091045 Envelope protein Proteins 0.000 description 10
- 101710188315 Protein X Proteins 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 102100021696 Syncytin-1 Human genes 0.000 description 10
- 210000004556 brain Anatomy 0.000 description 10
- 201000002950 dengue hemorrhagic fever Diseases 0.000 description 10
- 230000006698 induction Effects 0.000 description 10
- 230000004083 survival effect Effects 0.000 description 10
- 150000001413 amino acids Chemical class 0.000 description 9
- 239000000872 buffer Substances 0.000 description 9
- 230000001900 immune effect Effects 0.000 description 9
- 108091034117 Oligonucleotide Proteins 0.000 description 8
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 230000003472 neutralizing effect Effects 0.000 description 8
- 238000003556 assay Methods 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000002965 ELISA Methods 0.000 description 6
- 231100000111 LD50 Toxicity 0.000 description 6
- 239000007983 Tris buffer Substances 0.000 description 6
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 6
- 210000000952 spleen Anatomy 0.000 description 6
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 6
- 241000710831 Flavivirus Species 0.000 description 5
- 241000282414 Homo sapiens Species 0.000 description 5
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 239000012564 Q sepharose fast flow resin Substances 0.000 description 5
- 230000000840 anti-viral effect Effects 0.000 description 5
- 230000002238 attenuated effect Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000005847 immunogenicity Effects 0.000 description 5
- 210000004698 lymphocyte Anatomy 0.000 description 5
- 230000008774 maternal effect Effects 0.000 description 5
- 239000003226 mitogen Substances 0.000 description 5
- 239000002773 nucleotide Substances 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 230000002269 spontaneous effect Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 239000002028 Biomass Substances 0.000 description 4
- 241000701988 Escherichia virus T5 Species 0.000 description 4
- 241000710842 Japanese encephalitis virus Species 0.000 description 4
- 239000006391 Luria-Bertani Medium Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 230000034994 death Effects 0.000 description 4
- 231100000517 death Toxicity 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000001524 infective effect Effects 0.000 description 4
- 238000011081 inoculation Methods 0.000 description 4
- 238000007912 intraperitoneal administration Methods 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000001012 protector Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 208000003322 Coinfection Diseases 0.000 description 3
- 206010014596 Encephalitis Japanese B Diseases 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 101100005713 Homo sapiens CD4 gene Proteins 0.000 description 3
- 101710128560 Initiator protein NS1 Proteins 0.000 description 3
- 201000005807 Japanese encephalitis Diseases 0.000 description 3
- 108091061960 Naked DNA Proteins 0.000 description 3
- 101710144127 Non-structural protein 1 Proteins 0.000 description 3
- 101710144111 Non-structural protein 3 Proteins 0.000 description 3
- 101710172711 Structural protein Proteins 0.000 description 3
- 230000024932 T cell mediated immunity Effects 0.000 description 3
- 210000001744 T-lymphocyte Anatomy 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 238000007917 intracranial administration Methods 0.000 description 3
- 239000006166 lysate Substances 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 210000004897 n-terminal region Anatomy 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 229940125575 vaccine candidate Drugs 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 2
- 208000004293 Chikungunya Fever Diseases 0.000 description 2
- 206010067256 Chikungunya virus infection Diseases 0.000 description 2
- 229940046168 CpG oligodeoxynucleotide Drugs 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 101710158312 DNA-binding protein HU-beta Proteins 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 206010014612 Encephalitis viral Diseases 0.000 description 2
- 241000710781 Flaviviridae Species 0.000 description 2
- 208000032843 Hemorrhage Diseases 0.000 description 2
- 101000708009 Homo sapiens Sentrin-specific protease 8 Proteins 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 102100031407 Sentrin-specific protease 8 Human genes 0.000 description 2
- 230000005875 antibody response Effects 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 229940031567 attenuated vaccine Drugs 0.000 description 2
- 238000010835 comparative analysis Methods 0.000 description 2
- TXWRERCHRDBNLG-UHFFFAOYSA-N cubane Chemical compound C12C3C4C1C1C4C3C12 TXWRERCHRDBNLG-UHFFFAOYSA-N 0.000 description 2
- 230000007402 cytotoxic response Effects 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 230000002766 immunoenhancing effect Effects 0.000 description 2
- 231100000225 lethality Toxicity 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 201000002498 viral encephalitis Diseases 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- 241000256118 Aedes aegypti Species 0.000 description 1
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 108010041986 DNA Vaccines Proteins 0.000 description 1
- 229940021995 DNA vaccine Drugs 0.000 description 1
- 102100025137 Early activation antigen CD69 Human genes 0.000 description 1
- 241000711549 Hepacivirus C Species 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 108700039791 Hepatitis C virus nucleocapsid Proteins 0.000 description 1
- 101000934374 Homo sapiens Early activation antigen CD69 Proteins 0.000 description 1
- 241000701806 Human papillomavirus Species 0.000 description 1
- 102000009490 IgG Receptors Human genes 0.000 description 1
- 108010073807 IgG Receptors Proteins 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 101150033828 NS1 gene Proteins 0.000 description 1
- 241000588650 Neisseria meningitidis Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 101800000512 Non-structural protein 1 Proteins 0.000 description 1
- 101800000515 Non-structural protein 3 Proteins 0.000 description 1
- 101150038760 Ns3 gene Proteins 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 208000037581 Persistent Infection Diseases 0.000 description 1
- 108010076039 Polyproteins Proteins 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 239000012505 Superdex™ Substances 0.000 description 1
- 108010008038 Synthetic Vaccines Proteins 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 241000710779 Trina Species 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 206010058874 Viraemia Diseases 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 208000003152 Yellow Fever Diseases 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 1
- 230000007416 antiviral immune response Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 210000003567 ascitic fluid Anatomy 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000012677 causal agent Substances 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000005860 defense response to virus Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 201000009892 dengue shock syndrome Diseases 0.000 description 1
- 229940023605 dengue virus vaccine Drugs 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000004528 endothelial cell apoptotic process Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001641 gel filtration chromatography Methods 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 208000021760 high fever Diseases 0.000 description 1
- 239000013628 high molecular weight specie Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000000521 hyperimmunizing effect Effects 0.000 description 1
- 230000008076 immune mechanism Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 231100000636 lethal dose Toxicity 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229940124590 live attenuated vaccine Drugs 0.000 description 1
- 229940023012 live-attenuated vaccine Drugs 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 210000002864 mononuclear phagocyte Anatomy 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 208000003154 papilloma Diseases 0.000 description 1
- 239000004031 partial agonist Substances 0.000 description 1
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000012521 purified sample Substances 0.000 description 1
- 229940124551 recombinant vaccine Drugs 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229940031351 tetravalent vaccine Drugs 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 230000001018 virulence Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/295—Polyvalent viral antigens; Mixtures of viral and bacterial antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
- C07K14/08—RNA viruses
- C07K14/18—Togaviridae; Flaviviridae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55505—Inorganic adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55566—Emulsions, e.g. Freund's adjuvant, MF59
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/24011—Flaviviridae
- C12N2770/24111—Flavivirus, e.g. yellow fever virus, dengue, JEV
- C12N2770/24122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/24011—Flaviviridae
- C12N2770/24111—Flavivirus, e.g. yellow fever virus, dengue, JEV
- C12N2770/24134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention is related to the field of biotechnology and the pharmaceutical industry, in particular to the obtaining of proteins capable of inducing an immune response against the infection with Dengue virus, quoted from now on as DEN, avoiding the antibody-dependent enhancement phenomenon described in persons re-infected with this virus.
- the causal agent of this disease is the Dengue virus of the genus Flavivirus, family Flaviviridae, which is transmitted by the mosquito Aedes aegypti (Leyssen P., De Clerco E., Neyts J. 2000. Perspectives for the treatment of infections with Flaviviridae. Clin. Microbiol. Rev. 13: 67-82).
- Dengue virus is an RNA positive coated virus, whose genome contains only one reading frame. This RNA is translated in a polyprotein that is processed in three structural proteins and seven non-structural proteins. (Russell P. K., Brandt W. E., Dalrymple J. M. 1980. Chemical and antigenic structure of flaviviruses. The togaviruses: biology, structure, replication. Schelesinger R .W. (ed.). 503-529).
- the antibody-virus complexes can be internalized by cells presenting Fc ⁇ receptors in the membranes, like monocytes and macrophages.
- This mechanism known as antibodies-dependent enhancement (ADE) occurs during secondary infections.
- AD antibodies-dependent enhancement
- Halstead et al. (Halstead S. B., Scanlon J. E., Umpaivit P., Udomsakdi S. 1969. Dengue and Chikungunya virus infection in man in Thailand, 1962-1964. IV. Epidemiologic studies in the Bangkok metropolitan area. Am. J. Trop. Med. Hyg. 18: 997-1021.), in a 3-year study in Bangkok, Thailand, reported that the hospitalization indices by DEN infection among children, reached a maximum in those between 7 and 8 months old. These indices were four to eight times greater than the observed between children of 1-3 months and twice than that in children of 3 years. Kliks et al. (Kliks S.
- T-cells epitopes have been reported mainly in nonstructural proteins (Kurane I, Zeng L, Brinton M A, Ennis F A. 1998. Definition of an epitope on NS3 recognized by human CD4+ cytotoxic T lymphocyte clones cross-reactive for dengue virus types 2, 3, and 4. Virology. 1998 Jan. 20; 240(2):169-74), but also are present in the envelope and in the capsid proteins (Bukowski, J. F., I. Kurane, C.-J. Lai, M. Bray, B. Falgout, and F. A. Ennis. 1989. Dengue virus-specific cross-reactive CD8 human cytotoxic T lymphocytes. J. Virol.
- the capsid protein of Dengue virus has a molecular weight of 9 to 12 kDa (112-127 amino acids) and has a marked basic character because the 25% of its amino acids are arginine and lysine. The presence of these amino acids could favor antigenic presentations to the immune system due to the capacity of polycationic peptides to do so.
- Poly-1-arginine synergizes with oligodeoxynucleotides containing CpG-motifs (CpG-ODN) for enhanced and prolonged immune responses and prevents the CpG-ODN-induced systemic release of pro-inflammatory cytokines.
- Vaccine. 20: 3498-3508 The protein is located totally within the virion structure without any exposed region (Kuhn R J, Zhang W, Rossmann M G, Pletnev S V, Corver J, Lenches E, Jones C T, Mukhopadhyay S, Chipman P R, Strauss E G, Baker T S, Strauss J H. 2002. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell. March 8; 108(5):717-25).
- Flavivirus Capsid Is a Dimeric Alpha-Helical Protein. Journal of Virology, p7143-7149, Vol. 77, No. 12) purified the capsid protein of VD2 obtained by the recombinant way in Escherichia coli ( E. coli ) and demonstrated that this protein behaves like a dimmer in solution without nucleic acids. Its secondary structure is mainly in form of alpha-helices and is composed by four of these helices, being one of those of greater length in the C-terminal end. The N-terminal end does not present a defined structure and its deletion does not affect the structural integrity of the protein.
- This invention describes for the first time that the capsid of DEN-2 virus, obtained by a recombinant way in E. coli and with only a 40% of purity, is able to induce a protective immune response against the challenge with lethal DEN-2 virus in mice. It was demonstrated that this highly purified protein, retained its protective capacity, which was surpassed in the immunization of mice with the particulated form of the molecule. Moreover, it was demonstrated that the reached protection was mediated by CD8+ T-cells, a novel element considering that the reported T-cells epitopes for the capsid so far, are recognized by CD4+ T cells (Gagnon S J, Zeng W, Kurane I, Ennis F A. 1996.
- this recombinant molecule was mixed with the PD5 protein, which is formed by the P64k protein of Neisseria meningitidis and the III domain of the envelope protein of the Dengue-2 virus.
- This fusion protein is able to generate a highly serotype specific, protective and neutralizing immune response, with a low probability of generating the phenomenon of antibodies dependent enhancement (Hermida L, Rodriguez R, Lazo L, Silva R, Zulueta A, Chinea G, Lopez C, Guzman M G, Guillen G. 2004.
- a dengue-2 Envelope fragment inserted within the structure of the P64k meningococcal protein carrier enables a functional immune response against the virus in mice. J Virol Methods. 2004 January; 115(1):41-9).
- the objective of this invention is to obtain a recombinant protein corresponding to the capsid protein of Dengue virus, which generates a protective response against the infection with the lethal virus when is inoculated in mice.
- the gene codifying for the capsid protein of Dengue virus was inserted into a plasmid containing the phage T5 promoter.
- This protein was purified approximately till a 40% of purity, and was adjuvated in aluminum hydroxide to be inoculated in Balb/c mice. A month upon the last dose the antiviral antibody response was measured. At the same time the lymphoproliferative response in spleens stimulated in vitro with the dengue virus was determined. As a result no antiviral antibodies were induced while a significant lymphoproliferative response was detected. In parallel, in not bleeding mice, the protection assay was done. A lethal doses corresponding to 100 LD 50 of Dengue virus was inoculated, the disease symptoms and death were observed during 21 days. As a result a 44% of survival-immunized mice were obtained while in the negative control group all mice died. This is the first evidence of a protective response against Dengue virus by the immunization only with the capsid protein.
- the semipurified preparation was detected a fraction with lower retention times, while in the purified sample a retention time corresponding to the dimeric form of the molecule was detected.
- the dimeric and particulated preparations both with more than 95% of purity, were inoculated in mice.
- the dimeric preparation was adjuvated with Freund Adjuvant and aluminum hydroxide, while the particulated variant was adjuvated only with aluminum hydroxide.
- a dengue-2 Envelope fragment inserted within the structure of the P64k meningococcal protein carrier enables a functional immune response against the virus in mice. J Virol Methods. 2004 January; 115(1):41-9).
- a lymphoproliferative response higher than that induced only by the capsid and significantly higher than that induced by the fusion protein was detected.
- a plasmid containing the III domain of the envelope protein of DEN-2 virus fused to the N-terminal of the capsid protein gene was constructed.
- the resulting protein with a 40% of purity, generated in Balb/c mice a lymphoproliferative response higher than that induced by the capsid alone and a serotype specific antibodies response higher than that induced by PD5.
- FIG. 1 Cloning strategy of the capsid protein of DEN-2 virus to generate PDC-2.
- DEN2 C Fragment of the capsid protein of DEN-2.
- FIG. 2 Analysis by SDS-PAGE at 15% of the PDC-2 semipurification process.
- FIG. 3 Analysis by SDS-PAGE at 15% of the PDC-2 purification process.
- FIG. 4 Chromatographic profile in Superdex 200 of the semipurified (A) and pure (B) preparations of PDC-2.
- FIG. 5 Electronic microscopy pictures of the pure PDC-2 preparation before (A) and after (B) the treatment with oligonucleotides.
- FIG. 6 Cloning strategy of the capsid protein of DEN-1 virus to generate PDC-1.
- DEN1 C Fragment of the capsid protein of DEN-1.
- FIG. 7 Analysis by SDS-PAGE at 15% of the PDC-1 semipurification process.
- nucleotide sequence that codes for amino acids 1 to 99 of the capsid protein from DEN-2 virus (Sequence No. 3), was amplified with the oligonucleotides identified in the sequence list as Sequence No. 1 and Sequence No. 2 from the DEN-2 virus strain genotype Jamaica (Deubel V., Kinney R. M., Trent D. W. Nucleotide sequence and deduced amino acid sequence of the nonstructural proteins of Dengue type 2 virus, Jamaica genotype: Comparative analysis of the full-length genome. Virology 1988.165:234-244).
- the vector was created by digestion of the plasmid pQE-30 with BamHI/HindIII, which contains the phage T5 promoter and a 6-histidine tail in the N-terminal region (Sequence No. 6). Upon ligation, the potential recombinants were analyzed by restriction enzyme digestion and positive clones were sequenced to check up the junctions.
- Competent cells XL-1 Blue (Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557-580) were transformed with the selected clone called pDC-2 ( FIG. 1 and Sequence No. 4).
- the transformed E. coli strains were cultivated in Luria Bertani medium (LB) supplemented with Ampicilline 50 ⁇ g/mL for 10 h at 37° C. Isopropyl-B-D-thiogalactopyranoside (IPTG) to a final concentration of 1 mM was used for the induction of the promoter. Upon growing the colony, an SDS-PAGE of the cellular lysate was done. As a result, a 15-kDA band was obtained.
- the protein was recognized by an anti-DEN-2 hyperimmune ascitic fluid (HMAF). This protein was denominated PDC-2 (Sequence No. 5).
- the biomass obtained from the E. coli strain transformed with pDC-2 and grown at 37° C. was disrupted by French press.
- the recombinant protein was obtained equally distributed between the soluble and insoluble fractions.
- the soluble fraction was subjected to an anionic interchange chromatography, using a Q Sepharose FF column and the buffer Tris 10 mM pH 8.
- the protein in the non-absorbed fraction was obtained with 40% purity and was used for the immunological studies ( FIG. 2 ).
- mice Three groups of 30 Balb/c mice were used. Two of them were immunized with 10 ug of the recombinant protein by intraperitoneal route, using Freund's Adjuvant (FA) in one of the groups and aluminum hydroxide in the other. The soluble fraction resulting from the rupture of the pQE-30-transformed cells was used as negative control adjuvanted with FA; 10 animals were bled 15 days after the third dose and the antibody titers against DEN-2 were determined by ELISA. After the immunization with the recombinant protein, formulated in either adjuvant, no antibody titers were obtained.
- FA Freund's Adjuvant
- mice were used from each of the groups immunized with the recombinant protein adsorbed in aluminum hydroxide and with the control preparation. Each animal received a dose of 100 LD 50 Of lethal DEN-2 virus by intracranial inoculation and was observed for 21 days to obtain the percentages of lethality in terms of death by viral encephalitis.
- a positive control a group of 10 mice immunized with infective DEN-2 virus (10 4 pfu) was used. All mice in the positive control group survived, while in the negative control group all mice were sick by day 7-11 after challenge and 100% mortality was obtained by day 21. Finally, the group immunized with the recombinant protein PDC-2 presented 44.4% protection (table 2).
- the biomass obtained from the E. coli strain transformed with pDC-2 and grown at 37° C. was disrupted by French press.
- the recombinant protein was obtained equally distributed between the soluble and insoluble fractions.
- the soluble fraction was subjected to a cationic interchange chromatography, using an SP-Sepharose FF column and the buffer Tris 10 mM, Tween 0.5%, urea 7M, pH 8.
- the column was washed with buffer diethanolamine 30 mM, NaCl 350 mM, pH 10.3.
- the elution of the protein of interest was done with buffer diethanolamine 30 mM, NaCl 750 mM, pH 10.3.
- the buffer was exchanged using G-25 columns.
- the protein was obtained with 96% purity in buffer Tris 10 mM, EDTA 1 mM ( FIG. 3 ).
- the buffer was exchanged to Hepes 25 mM, KAc 100 mM, MgAc2 1.7 mM, pH 7.4. After heating the protein and the mixture of oligonucleotides for 1 min at 37° C., they were incubated in an equal volume for 30 min at 30° C. As a negative control of the experiment, the protein was incubated without the oligonucleotides. When both preparations were observed with an electron microscope, a large quantity of particles of approximately 21 nm diameter, were observed in the sample of protein previously incubated with the mixture of oligonucleotides, while in the control sample no particles were observed ( FIG. 5 ).
- mice Five groups of 20 Balb/c mice were used. Two of them were immunized with 10 ug of the dimeric purified recombinant protein by intraperitoneal route, using aluminum hydroxide and Freund's adjuvant. Another group was immunized with 10 ug of the purified and particulated capsid protein adjuvanted with aluminum hydroxide. The soluble fraction from the rupture of XL-1 blue cells transformed with the plasmid pQE-30 and subjected to the same purification steps than PDC-2 was used as negative control, adjuvanted with Freund's adjuvant. The fifth group was immunized with DEN-2 virus as positive control.
- mice from each group received a dose of 100 LD 50 of lethal DEN-2 by intracranial inoculation and were observed for 21 days to obtain the percentages of survival. All mice in the positive control group survived, while in the negative control group all mice were sick by day 7-11 after challenge and 0% mortality was obtained. Finally, from the groups immunized with the recombinant protein, the group immunized with pure dimeric PDC-2 presented a 20% protection when immunized with aluminum hydroxide and a 40% protection when Freund's adjuvant was used. Additionally, in the group that received the reparticulated pure protein adjuvanted with aluminum hydroxide, 90% of mice were protected (Table 4).
- Twenty animals were inoculated with the mixture of 10 ug of the particulated pure capsid protein and 20 ug of protein PD5 (Sequence No. 23) in three doses spaced fifteen days apart.
- aluminum hydroxide was used as adjuvant.
- the animals were bled and the sera tested for antiviral antibodies by ELISA.
- the group immunized with the mixture developed serotype-specific antibodies with titers higher than those of the group immunized only with protein PD5 and, at the same time, titers in these two groups were higher than those in the group immunized with protein PDC-2, where no Abs against DEN-2 virus were detected.
- 10 additional animals were taken from each group for lymphoproliferation assays. The cells from the spleens of these animals were extracted and stimulated with the infective DEN-2 virus.
- the stimulation indexes were higher than those in the group immunized with the capsid protein only. The lowest stimulation indexes were obtained in the group immunized with protein PD5.
- the reparticulated and the dimeric capsid proteins were inoculated in Balb/c mice to obtain some evidence of induction of cellular immune response.
- the nucleotide sequence that codes for amino acids 1 to 100 of the capsid protein of DEN-1 virus was amplified with the oligonucleotides identified in the sequence list as Sequence No. 8 and Sequence No. 10 from the DEN-1 viral strain.
- the vector was generated by digestion BamHI/HindIII of the plasmid pQE-30, which contains the phage T5 promoter and a 6 histidine tail in the N-terminal region (Sequence No. 6). Upon ligation, the recombinants were analyzed by restriction and the positives clones were sequenced to check the junctions. Competent cells XL-1 Blue (Hanahan D. 1983.
- the biomass obtained from the E. coli strain transformed with pDC-1 and grown at 37° C. was disrupted by French press.
- the recombinant protein was obtained equally distributed between the soluble and insoluble fractions.
- From the soluble fraction an anionic interchange chromatography was done, using a Q Sepharose FF column and the buffer Tris 10 mM pH 8.
- the protein in the non-absorbed fraction was obtained with 45% of purity, and was used to the immunological studies.
- mice Two groups of 30 Balb/c mice were used. One of them was immunized with 10 ug of the recombinant protein by intraperitoneal route, using the aluminum hydroxide as adjuvant. The soluble fraction resulting from the rupture of the pQE-30-transformed cells adjuvanted with aluminum hydroxide was used as negative control. A part of the animals (10 mice) were bled 15 days after the third dose and the antibody titers against DEN-1 were determined by ELISA. After the immunization with the recombinant protein, no antiviral antibody titers were obtained.
- Antibodies titers against DEN-1 virus from sera obtained after the immunization with the semipurified PDC-1 Anti- DEN-1 ELISA titers XL-1 blue Mouse Control ( ⁇ ) PDC-1 1 ⁇ 1:100 ⁇ 1:100 2 ⁇ 1:100 ⁇ 1:100 3 ⁇ 1:100 ⁇ 1:100 4 ⁇ 1:100 ⁇ 1:100 5 ⁇ 1:100 ⁇ 1:100 6 ⁇ 1:100 ⁇ 1:100 7 ⁇ 1:100 ⁇ 1:100 8 ⁇ 1:100 ⁇ 1:100 9 ⁇ 1:100 ⁇ 1:100 10 ⁇ 1:100 ⁇ 1:100 ⁇ 1:100
- mice were used from each of the groups immunized with the recombinant protein adsorbed in aluminum hydroxide and with the control preparation. Each animal received a dose of 100 LD 50 Of lethal DEN-1 by intracranial inoculation and was observed for 21 days to obtain the percentages of lethality in terms of death by viral encephalitis.
- a positive control a group of 10 mice immunized with infective DEN-1 virus (10 4 pfu) was used. All mice in the positive control group survived, while in the negative control group all mice were sick at day 7-11 after challenge and 100% mortality was obtained at day 21. Finally, the group immunized with the recombinant protein PDC-1 presented 50% of protection (Table 11).
- nucleotide sequence that codes for amino acids 286 to 426 of the envelope protein from DEN-2 (Sequence No. 12), corresponding to the region of the domain III of the protein, was amplified with the oligonucleotides identified in the sequence list as Sequence No. 13 and Sequence No. 14 from the DEN-2 virus strain genotype Jamaica (Deubel V., Kinney R. M., Trent D. W. Nucleotide sequence and deduced amino acid sequence of the nonstructural proteins of Dengue type 2 virus, Jamaica genotype: Comparative analysis of the full-length genome. Virology 1988.165:234-244).
- the vector was created by digestion of the plasmid pDC-2 with BamHI/BamHI, which contains the phage T5 promoter, a 6-histidine tail in the N-terminal region and the region corresponding to 100 amino acids of the capsid protein of DEN-2 virus. Upon ligation, the potential recombinants were analyzed by restriction enzyme digestion and positive clones were sequenced to check up the junctions. Finally the clone selected was named pDC-2 Dom III (Sequence No 15).
- Competent cells XL-1 Blue (Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557-580) were transformed with the selected clone called pDC-2 DomIII.
- the E. coli strains transformed were cultivated in LB supplemented with Ampicilline 50 ⁇ g/mL for 10 h at 37° C. Isopropyl-B-D-thiogalactopyranoside (IPTG) to a final concentration of 1 mM was used to the induction of the promoter. Upon growing the colony, an SDS-PAGE of the cellular lysate was done. As a result, a 30-kDA band was obtained.
- the protein was recognized by an anti-DEN-2 HMAF. This protein was denominated PDC-2 Dom III (Sequence No. 16).
- the biomass obtained from the E. coli strain transformed with pDC-2 DomIII and grown at 37° C. was disrupted by French press.
- the recombinant protein was obtained equally distributed between the soluble and insoluble fractions.
- From the soluble fraction an anionic interchange chromatography was done, using a Q Sepharose FF column and the buffer Tris 10 mM pH 8.
- the protein in the non-absorbed fraction was obtained with 40% of purity, and was used to the immunological studies ( FIG. 2 ).
- mice Five groups of 30 Balb/c mice were used. One of the groups was immunized with 10 ug of the recombinant protein by intraperitoneal route, using aluminum hydroxide as adjuvant. The soluble fraction resulting from the rupture of the XL-1 Blue cells transformed with the plasmid pQE-30 was used as negative control, adjuvanted with aluminum hydroxide. Another two groups were included as controls. One of them was immunized with the protein PDC-2 and the other with the protein PD5 (this protein contains the domain III region of the envelope protein of DEN-2 virus). Ten animals from each group were bled 15 days after the third dose and the antibody titers against DEN-2 were determined by ELISA.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Virology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Communicable Diseases (AREA)
- General Chemical & Material Sciences (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
- The present invention is related to the field of biotechnology and the pharmaceutical industry, in particular to the obtaining of proteins capable of inducing an immune response against the infection with Dengue virus, quoted from now on as DEN, avoiding the antibody-dependent enhancement phenomenon described in persons re-infected with this virus.
- Dengue fever (DF) and dengue hemorrhagic fever (DHF) acquire every time more importance as health problems, affecting several countries of the tropical and subtropical zones of the planet. Dengue virus has been recognized in more than 100 countries and 2 500 million people living in risk areas are estimated. Between 50 and 100 million cases from DF and 250 000 to 500 000 of DHF are reported each year. (Guzmán M. G. and Kourí G. 2002. Dengue: an update. Lancet Infect. Dis. 2: 33-42).
- The causal agent of this disease is the Dengue virus of the genus Flavivirus, family Flaviviridae, which is transmitted by the mosquito Aedes aegypti (Leyssen P., De Clerco E., Neyts J. 2000. Perspectives for the treatment of infections with Flaviviridae. Clin. Microbiol. Rev. 13: 67-82).
- Until now four serotypes have been reported that can circulate in a same region. Dengue virus is an RNA positive coated virus, whose genome contains only one reading frame. This RNA is translated in a polyprotein that is processed in three structural proteins and seven non-structural proteins. (Russell P. K., Brandt W. E., Dalrymple J. M. 1980. Chemical and antigenic structure of flaviviruses. The togaviruses: biology, structure, replication. Schelesinger R .W. (ed.). 503-529).
- Multiple epidemiological studies have been made to determine the risk factors that entail to the most severe form of Dengue disease. This is characterized by high fever, extrusion of liquids, hemorrhages and finally the Dengue shock. (Gubler D. J. 1998. Dengue and Dengue Hemorrhagic Fever. Clin. Microbiol. Rev. 11: 480-496). One of the most important risk factors is the secondary infection by a heterologous serotype. Cross-protection among the infections of the different serotypes does not exist. (Kourí G., Guzmán M. G., Bravo J., Trina C. 1989. Dengue hemorrhagic fever/dengue shock syndrome: lessons from the Cuban epidemic. WHO Bulletin OMS. 67: 375-380).
- Several hypotheses exist to explain this phenomenon. One of the most important is the antibody depend enhancement. (Halstead S. B., Scanlon J. E., Umpaivit P., Udomsakdi S. 1969. Dengue and Chikungunya virus infection in man in Thailand, 1962-1964. IV. Epidemiologic studies in the Bangkok metropolitan area. Am. J. Trop. Med. Hyg. 18: 997-1021).
- From the first studies, it was raised that DEN virus replicates in greater measurement in peripheral mononuclear cells from the blood of patients who had undergone a previous infection with the virus (Halstead S. B., O'Rourke E. J., Allison A. C. 1977. Dengue viruses and mononuclear phagocytes. II. Identity of blood and tissue leukocytes supporting in vitro infection. J. Exp. Med. 146: 218-229). Later, it was demonstrated that the residual antibodies were the responsables of this effect (Morens D M, Halstead S B, Marchette N J. 1987. Profiles of antibody-dependent enhancement of
dengue virus type 2 infection. Microb Pathog. October; 3(4):231-7). - In conditions of specificity or concentration of antibodies in which there is not neutralization, the antibody-virus complexes can be internalized by cells presenting Fcγ receptors in the membranes, like monocytes and macrophages. This mechanism, known as antibodies-dependent enhancement (ADE) occurs during secondary infections. (Morens D M, Halstead S B, Marchette N J. 1987. Profiles of antibody-dependent enhancement of
dengue virus type 2 infection. Microb Pathog. October; 3(4):231-7; Kliks S. C., Nimmannitya S., Nisalak A., Burke D. S. 1988. Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am. J. Trop. Med. Hyg. 38: 411-419). - Halstead et al. (Halstead S. B., Scanlon J. E., Umpaivit P., Udomsakdi S. 1969. Dengue and Chikungunya virus infection in man in Thailand, 1962-1964. IV. Epidemiologic studies in the Bangkok metropolitan area. Am. J. Trop. Med. Hyg. 18: 997-1021.), in a 3-year study in Bangkok, Thailand, reported that the hospitalization indices by DEN infection among children, reached a maximum in those between 7 and 8 months old. These indices were four to eight times greater than the observed between children of 1-3 months and twice than that in children of 3 years. Kliks et al. (Kliks S. C., Nimmannitya S., Nisalak A., Burke D. S. 1988. Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am. J. Trop. Med. Hyg. 38: 411-419), determined the relation between the maternal neutralizing antibody titers against DEN-2 and the ages of thirteen children with FHD caused by the infection with the homologous virus. The results showed that the infection serious cases with the virus occurred when the maternal antibody levels diminished to sub-neutralizing levels. These data are consistent with the hypothesis in which the maternal antibodies play the double role of protecting first and stimulate the development of DHF later on.
- Despite this immunological phenomenon, nowadays the most advanced vaccine candidates worldwide are based in attenuated virus of the different four serotypes, containing the envelope protein. These candidates are able to induce potential amplifying antibodies against the exposed proteins (PrM/M and Envelope) and protector neutralizing antibodies against the four viral serotypes in human volunteers. (Kanesa-thasan N., Sun W., Kim-Ahn G., Van Albert S., Putnak J. R., King A., Raengsakulsrach B., Christ-Schmidt H., Gilson K., Zahradnik J. M., Vaughn D. W., Innis B. L., Saluzzo J. F. y Hoke C. H. 2001. Safety and immunogenicity of attenuated dengue virus vaccines (Aventis Pasteur) in human volunteers. Vaccine. 19: 3179-3188).
- High levels of neutralizing antibodies after immunization could prevent the viral replication despite the induction of enhancing antibodies. The problem can take place when the total seroconversion to the four serotypes in the vaccines, in terms of neutralizing Abs, is not obtained or is diminished to low levels in blood and the individuals would become then susceptible to a severe secondary infection with a viral serotype whose protective antibodies are not present. In fact, several tests in monkeys and humans have been made to define the viral amounts in the vaccine formulations. (Guirakhoo F., Arroyo J., Pugachev K. V., Miller C., Zhang Z.-X., Weltzin R., Georgakopoulos K., Catalan J., Ocran S., Soike K., Raterree M., Monath T. P. 2001. Construction, safety, and immunogenicity in nonhuman primates of a chimeric yellow fever-dengue virus tetravalent vaccine. J. Virol. 75: 7290-7304).
- In some cases the balance of seroconversion has not been obtained to the four serotypes (Sabchareon A, Lang J, Chanthavanich P, Yoksan S, Forrat R, Attanath P, Sirivichayakul C, Pengsaa K, Pojjaroen-Anant C, Chokejindachai W, Jagsudee A, Saluzzo J F, Bhamarapravati N. 2002. Safety and immunogenicity of tetravalent live-attenuated dengue vaccines in Thai adult volunteers: role of serotype concentration, ratio, and multiple doses. Am J Trop Med. Hyg. 66(3): 264-72). In addition, it has been necessary to administer up to three doses of attenuated vaccines in children for a total seroconversion, in terms of neutralizing antibodies and still not known whether these will last in the time (Sabchareon A, Lang J, Chanthavanich P, Yoksan S, Forrat R, Attanath P, Sirivichayakul C, Pengsaa K, Pojjaroen-Anant C, Chambonneau L, Saluzzo J F, Bhamarapravati N. 2004. Safety and immunogenicity of a three dose regimen of two tetravalent live-attenuated dengue vaccines in five- to twelve-year-old Thai children. Pediatr Infect Dis J.; 23(2):99-109). This is one of the most questionable concerns in the vaccine formulations that include the envelope protein of Dengue virus, consequently of the vaccines candidates in development.
- Another drawback of the attenuated vaccines, currently in phase I/II, is the safety. Upon the first dose the existence of adverse effects in adults and children like fever, myalgia, petequias and headache, has been demonstrated in several studies (Sabchareon A, Lang J, Chanthavanich P, Yoksan S, Forrat R, Attanath P, Sirivichayakul C, Pengsaa K, Pojjaroen-Anant C, Chambonneau L, Saluzzo J F, Bhamarapravati N. 2004. Safety and immunogenicity of a three dose regimen of two tetravalent live-attenuated dengue vaccines in five- to twelve-year-old Thai children. Pediatr Infect Dis J.; 23(2):99-109). In general the phenomenon of reversion to the virulence potentially associated to live vaccines may be presented.
- In the search of new alternatives, it has been developed different variants of vaccine candidates based on the envelope protein or fragments of this one, obtained through a recombinant way. These recombinant candidates avoid the safety problems related to the inoculation of live virus, and are able to sensitize the individual if a balanced response against the four serotypes is not induced (Velzing J, Groen J, Drouet M T, van Amerongen G, Copra C, Osterhaus A D, Deubel V. 1999. Induction of protective immunity against Dengue virus type 2: comparison of candidate live attenuated and recombinant vaccines. Vaccine. March 17; 17(11-12):1312-20). On the other hand, these candidates require powerful adjuvants—not approved for their use in humans yet—to stimulate a serotype-specific suitable protective immune response (Hermida L, Rodriguez R, Lazo L, Silva R, Zulueta A, Chinea G, Lopez C, Guzman M G, Guillen G. 2004. A dengue-2 Envelope fragment inserted within the structure of the P64k meningococcal protein carrier enables a functional immune response against the virus in mice. J Virol Methods. 2004 January; 115(1):41-9).
- The humoral response of neutralizing antibodies has been extensively studied in animals and its protector effect has been demonstrated. The cytotoxic cellular immune response as a protector mechanism in Dengue has not deeply been explored. On the contrary, there are several reports in which the correlation between the induction of a cellular response and the most severe form of the disease is demonstrated (Rothman A. L. y Ennis F. A. 1999. Immunopathogenesis of Dengue Hemorragic Fever. Virology. 257: 1-6). These studies are based on the presence of high levels of activated T-cells in those individuals that exhibit DHF (Green S, Pichyangkul S, Vaughn D W, Kalayanarooj S, Nimmannitya S, Nisalak A, Kurane I, Rothman A L, Ennis F A. 1999. Early CD69 expression on peripheral blood lymphocytes from children with dengue hemorrhagic fever. J Infect Dis. 180(5):1429-35).
- T-cells epitopes have been reported mainly in nonstructural proteins (Kurane I, Zeng L, Brinton M A, Ennis F A. 1998. Definition of an epitope on NS3 recognized by human CD4+ cytotoxic T lymphocyte clones cross-reactive for
2, 3, and 4. Virology. 1998 Jan. 20; 240(2):169-74), but also are present in the envelope and in the capsid proteins (Bukowski, J. F., I. Kurane, C.-J. Lai, M. Bray, B. Falgout, and F. A. Ennis. 1989. Dengue virus-specific cross-reactive CD8 human cytotoxic T lymphocytes. J. Virol. 63:5086-5091; Gagnon S. J., Zeng W., Kurane I., Ennis F. A. 1996. Identification of two epitopes on thedengue virus types dengue 4 virus capsid protein recognized by a serotype-specific and a panel of serotype-cross-reactive human CD4+ cytotoxic T-lymphocyte clones. J. Virol. 70: 141-147). Nevertheless, the protective character of some of these proteins based only on the induction of a cellular immune response has not been demonstrated. - In the search of vaccine candidates that avoid the immunoenhancement phenomenon, studies using the non-structural proteins NS1 and NS3 have been made. In the case of NS1, some level of protection in mice immunized with the recombinant protein has been reached. Similar results have been obtained using a naked DNA containing the NS1 gene, through the ADCC mechanism (Wu S F, Liao C L, Lin Y L, Yeh C T, Chen L K, Huang Y F, Chou H Y, Huang J L, Shaio M F, Sytwu H K. 2003. Evaluation of protective efficacy and immune mechanisms of using a non-structural protein NS1 in DNA vaccine against
dengue 2 virus in mice. Vaccine. Sep. 8; 21(25-26):3919-29). Nevertheless, reports of their possible roll in phenomena of autoimmunity due to the induction of antibodies that recognize human endothelial cells exist (Chiou-Feng Lin, Huan-Yao Lei, Ai-Li Shiau, Hsiao-Sheng Liu, Trai-Ming Yeh, Shun-Hua Chen, Ching-Chuan Liu, Shu-Chen Chiu, and Yee-Shin Lin. 2002. Endothelial Cell Apoptosis Induced by Antibodies against Dengue Virusnonstructural Protein 1 via Production of Nitric Oxide. J. Immunol. 657-664). Additionally, there is a report of protection using a naked DNA formulation containing the NS3 gene; however, it was demonstrated that this protection was mediated by the raised antibodies since the same protection using passive immunization was obtained (Tan C H, Yap E H, Singh M, Deubel V, Chan Y C. 1990. Passive protection studies in mice with monoclonal antibodies directed against the non-structural protein NS3 ofdengue 1 virus. J Gen Virol. 1990 March; 71 (Pt 3):745-9). In addition, it is worth noting the hypothesis, that the cellular response can be potentially harmful facing an infection with heterologous virus based on studies of NS3 protein epitopes (Zivny J, DeFronzo M, Jarry W, Jameson J, Cruz J, Ennis F A, Rothman A L. 1999. Partial agonist effect influences the CTL response to a heterologous dengue virusserotype. J. Immunol. September 1; 163(5):2754-60). - In the case of the capsid protein of dengue virus, no evidences of protection in the challenge with a lethal dengue virus are reported. Concerning related flaviviruses, a report was published where authors inoculated mice with a naked DNA formulation containing the gene of the Japanese Encephalitis (JE) capsid protein. This formulation did not induce a protective response against the challenge with lethal JE in mice, despite the demonstration of a cytotoxic response (Konishi E, Ajiro N, Nukuzuma C, Mason P W, Kurane I. 2003. Comparison of protective efficacies of plasmid DNAs encoding Japanese encephalitis virus proteins that induce neutralizing antibody or cytotoxic T lymphocytes in mice. Vaccine. September 8; 21(25-26):3675-83).
- Protection using the recombinant protein capsid has been demonstrated only in the case of human papilloma virus. However it has been suggested its protector role with other virus like Hepatitis C virus. Nevertheless, in all cases, they are chronic infections or tumors, in which the cellular cytotoxic response is the only mean of the immune system to clear viral infection (Duenas-Carrera S, Alvarez-Lajonchere L, Alvarez-Obregon J C, Herrera A, Lorenzo L J, Pichardo D, Morales J. 2000. A truncated variant of the hepatitis C virus core induces a slow but potent immune response in mice following DNA immunization. Vaccine. November 22; 19 (7-8):992-7; Suzich J A, Ghin S J, Palmer-Hill F J, et al. 1995. Systemic immunization with papillomavirus LI protein completely prevents the development of viral mucosal papillomas. Proc Natl Acad Sci USA; 92: 11553-57). These diseases do not correspond with the acute profile that is exhibited in the infection by Dengue in humans (Vaughn D. W., Green S., Kalayanarooj S., Innis B. L., Nimmannitya S., Suntayakorn S., Endy T. P., Raengsakulrach B., Rothman A. L., Ennis F. A. y Nisalak A. 2000. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis. 181: 2-9).
- The capsid protein of Dengue virus has a molecular weight of 9 to 12 kDa (112-127 amino acids) and has a marked basic character because the 25% of its amino acids are arginine and lysine. The presence of these amino acids could favor antigenic presentations to the immune system due to the capacity of polycationic peptides to do so. (Lingnau K., Egyed A., Schellack C., Mattner F, Buschle M., Schmidt W. 2002. Poly-1-arginine synergizes with oligodeoxynucleotides containing CpG-motifs (CpG-ODN) for enhanced and prolonged immune responses and prevents the CpG-ODN-induced systemic release of pro-inflammatory cytokines. Vaccine. 20: 3498-3508). The protein is located totally within the virion structure without any exposed region (Kuhn R J, Zhang W, Rossmann M G, Pletnev S V, Corver J, Lenches E, Jones C T, Mukhopadhyay S, Chipman P R, Strauss E G, Baker T S, Strauss J H. 2002. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell. March 8; 108(5):717-25).
- Jones y cols. (Christopher T. Jones, Lixin Ma, John W. Burgner, Teresa D. Groesch, Carol B. Post, and Richard J. Kuhn. 2003. Flavivirus Capsid Is a Dimeric Alpha-Helical Protein. Journal of Virology, p7143-7149, Vol. 77, No. 12) purified the capsid protein of VD2 obtained by the recombinant way in Escherichia coli (E. coli) and demonstrated that this protein behaves like a dimmer in solution without nucleic acids. Its secondary structure is mainly in form of alpha-helices and is composed by four of these helices, being one of those of greater length in the C-terminal end. The N-terminal end does not present a defined structure and its deletion does not affect the structural integrity of the protein.
- This invention describes for the first time that the capsid of DEN-2 virus, obtained by a recombinant way in E. coli and with only a 40% of purity, is able to induce a protective immune response against the challenge with lethal DEN-2 virus in mice. It was demonstrated that this highly purified protein, retained its protective capacity, which was surpassed in the immunization of mice with the particulated form of the molecule. Moreover, it was demonstrated that the reached protection was mediated by CD8+ T-cells, a novel element considering that the reported T-cells epitopes for the capsid so far, are recognized by CD4+ T cells (Gagnon S J, Zeng W, Kurane I, Ennis F A. 1996. Identification of two epitopes on the
dengue 4 virus capsid protein recognized by a serotype-specific and a panel of serotype-cross-reactive human CD4+ cytotoxic T-lymphocyte clones. J. Virol. 70(1): 141-7; Simmons C P, Dong T, Chau N V, Dung N T, Chau T N, Thao le T T, Dung N T, Hien T T, Rowland-Jones S, Farrar J. 2005. Early T-cell responses to dengue virus epitopes in Vietnamese adults with secondary dengue virus infections. J. Virol. 79(9):5665-75). Additionally, this recombinant molecule was mixed with the PD5 protein, which is formed by the P64k protein of Neisseria meningitidis and the III domain of the envelope protein of the Dengue-2 virus. This fusion protein is able to generate a highly serotype specific, protective and neutralizing immune response, with a low probability of generating the phenomenon of antibodies dependent enhancement (Hermida L, Rodriguez R, Lazo L, Silva R, Zulueta A, Chinea G, Lopez C, Guzman M G, Guillen G. 2004. A dengue-2 Envelope fragment inserted within the structure of the P64k meningococcal protein carrier enables a functional immune response against the virus in mice. J Virol Methods. 2004 January; 115(1):41-9). - The obtaining of a genetic construction formed by the fusion of the capsid protein and the III domain of the envelope protein is also described to reach the same objective. As a result, the two formulations where the capsid is combined with the III domain of DEN-2, generated a lymphoproliferative response in mice higher than that generated by the capsid only, and in addition a serotype specific antibodies response higher than the generated by PD5 only. This last result demonstrates the immunoenhancing capacity of the capsid protein of dengue virus in the generation of Abs by a heterologous antigen, phenomenon described for other recombinant capsids from other viruses like the hepatitis B virus (Alvarez J C, Guillén G. Formulations containing virus like particles as immunoenhancers by mucosal route. Cuban office of the Industrial property. CU 1998/183).
- The objective of this invention is to obtain a recombinant protein corresponding to the capsid protein of Dengue virus, which generates a protective response against the infection with the lethal virus when is inoculated in mice.
- The gene codifying for the capsid protein of Dengue virus was inserted into a plasmid containing the phage T5 promoter. The cells XL-1Blue, transformed with the recombinant plasmid, expressed high levels of the resulting protein.
- This protein was purified approximately till a 40% of purity, and was adjuvated in aluminum hydroxide to be inoculated in Balb/c mice. A month upon the last dose the antiviral antibody response was measured. At the same time the lymphoproliferative response in spleens stimulated in vitro with the dengue virus was determined. As a result no antiviral antibodies were induced while a significant lymphoproliferative response was detected. In parallel, in not bleeding mice, the protection assay was done. A lethal doses corresponding to 100 LD50 of Dengue virus was inoculated, the disease symptoms and death were observed during 21 days. As a result a 44% of survival-immunized mice were obtained while in the negative control group all mice died. This is the first evidence of a protective response against Dengue virus by the immunization only with the capsid protein.
- Later, a high-resolution purification process was conducted, obtaining a 95% of purity of the recombinant protein.
- Both preparations, the semi- and purified ones, were analyzed by HPLC to know the aggregation state of the protein in each sample. In the semipurified preparation was detected a fraction with lower retention times, while in the purified sample a retention time corresponding to the dimeric form of the molecule was detected.
- To obtain an aggregation state in the purified variant, an in vitro particulation process employing low quantities of oligonucleotides was done. As a result of the process, particles of 21 nm of diameter were obtained.
- The dimeric and particulated preparations, both with more than 95% of purity, were inoculated in mice. The dimeric preparation was adjuvated with Freund Adjuvant and aluminum hydroxide, while the particulated variant was adjuvated only with aluminum hydroxide.
- Similar to the semipurified preparation, high levels of lymphoproliferation were detected. In the protection assay a 40 and 20% of survival were obtained with the dimeric preparation adjuvated with Freund and aluminum, respectively; however, the particulated protein adjuvated with aluminum induced a higher protection percentage.
- These results together with those obtained with the semipurified protein showed the capacity of the capsid protein of inducing a protective response in Balb/c mice and demonstrated the superiority of the particulated form of the protein, letting it to be used to humans in the future together to the aluminum hydroxide as adjuvant. Additionally, not inducing an antiviral response would eliminate the phenomenon of antibodies dependent enhancement as a risk factor for the occurrence of the most severe form of the disease: the dengue hemorrhagic fever.
- With the aim to determine the possible mechanism of protection, which it is not related to the induction of Abs due to its demonstrated absence, a study of CD8+ cells depletion was made. As a result, the protection reached with pure proteins of each variant was dependent of the presence of the cells that present this marker, since eliminating them the induced protective effect disappear.
- Similarly, a study was made to know if the combination of the particulated recombinant capsid with antigens inducing humoral response does not affect the generation of the lymphoproliferative response and to count with a mixture of immunogens able to contribute to both branches of the immune response. To this end, the purified particulated variant of the capsid and a fusion protein containing the III domain of the envelope protein of the dengue-2 virus was inoculated in mice, which is able to generate a serotype-specific immune response diminishing the phenomenon of ADE (Hermida L, Rodriguez R, Lazo L, Silva R, Zulueta A, Chinea G, Lopez C, Guzman M G, Guillen G. 2004. A dengue-2 Envelope fragment inserted within the structure of the P64k meningococcal protein carrier enables a functional immune response against the virus in mice. J Virol Methods. 2004 January; 115(1):41-9). When administering three doses and analyzing the raised Abs, it was demonstrated a higher induction of antiviral serotype specifics Abs. As well, a lymphoproliferative response higher than that induced only by the capsid and significantly higher than that induced by the fusion protein was detected.
- In parallel, to know whether it is possible to obtain the combination effect using a genetic fusion of both antigens, a plasmid containing the III domain of the envelope protein of DEN-2 virus fused to the N-terminal of the capsid protein gene was constructed. The resulting protein, with a 40% of purity, generated in Balb/c mice a lymphoproliferative response higher than that induced by the capsid alone and a serotype specific antibodies response higher than that induced by PD5.
-
FIG. 1 . Cloning strategy of the capsid protein of DEN-2 virus to generate PDC-2. - DEN2 C: Fragment of the capsid protein of DEN-2.
-
FIG. 2 . Analysis by SDS-PAGE at 15% of the PDC-2 semipurification process. - 1. Rupture supernatant. 2 and 3. Fraction not adsorbed to Q Sepharose FF. 4. Fraction eluted with NaCl 1M.
-
FIG. 3 . Analysis by SDS-PAGE at 15% of the PDC-2 purification process. - 1. Rupture supernatant. 2. Fraction not absorbed to the gel, 3. Washed (350 mM NaCl), 4. Eluted fraction (750 mM NaCl), 5. Fraction in Tris 10 mM,
EDTA 1 mM. -
FIG. 4 . Chromatographic profile in Superdex 200 of the semipurified (A) and pure (B) preparations of PDC-2. -
FIG. 5 . Electronic microscopy pictures of the pure PDC-2 preparation before (A) and after (B) the treatment with oligonucleotides. -
FIG. 6 . Cloning strategy of the capsid protein of DEN-1 virus to generate PDC-1. - DEN1 C: Fragment of the capsid protein of DEN-1.
-
FIG. 7 . Analysis by SDS-PAGE at 15% of the PDC-1 semipurification process. -
- 1. Molecular weight marker. 2. Rupture
supernatant 3. Fraction not adsorbed to Q Sepharose FF.
- 1. Molecular weight marker. 2. Rupture
- The nucleotide sequence that codes for
amino acids 1 to 99 of the capsid protein from DEN-2 virus (Sequence No. 3), was amplified with the oligonucleotides identified in the sequence list as Sequence No. 1 and Sequence No. 2 from the DEN-2 virus strain genotype Jamaica (Deubel V., Kinney R. M., Trent D. W. Nucleotide sequence and deduced amino acid sequence of the nonstructural proteins ofDengue type 2 virus, Jamaica genotype: Comparative analysis of the full-length genome. Virology 1988.165:234-244). - The vector was created by digestion of the plasmid pQE-30 with BamHI/HindIII, which contains the phage T5 promoter and a 6-histidine tail in the N-terminal region (Sequence No. 6). Upon ligation, the potential recombinants were analyzed by restriction enzyme digestion and positive clones were sequenced to check up the junctions.
- Competent cells XL-1 Blue (Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557-580) were transformed with the selected clone called pDC-2 (
FIG. 1 and Sequence No. 4). The transformed E. coli strains were cultivated in Luria Bertani medium (LB) supplemented with Ampicilline 50 μg/mL for 10 h at 37° C. Isopropyl-B-D-thiogalactopyranoside (IPTG) to a final concentration of 1 mM was used for the induction of the promoter. Upon growing the colony, an SDS-PAGE of the cellular lysate was done. As a result, a 15-kDA band was obtained. The protein was recognized by an anti-DEN-2 hyperimmune ascitic fluid (HMAF). This protein was denominated PDC-2 (Sequence No. 5). - The biomass obtained from the E. coli strain transformed with pDC-2 and grown at 37° C. was disrupted by French press. The recombinant protein was obtained equally distributed between the soluble and insoluble fractions. The soluble fraction was subjected to an anionic interchange chromatography, using a Q Sepharose FF column and the buffer Tris 10 mM pH 8. The protein in the non-absorbed fraction was obtained with 40% purity and was used for the immunological studies (
FIG. 2 ). - Three groups of 30 Balb/c mice were used. Two of them were immunized with 10 ug of the recombinant protein by intraperitoneal route, using Freund's Adjuvant (FA) in one of the groups and aluminum hydroxide in the other. The soluble fraction resulting from the rupture of the pQE-30-transformed cells was used as negative control adjuvanted with FA; 10 animals were bled 15 days after the third dose and the antibody titers against DEN-2 were determined by ELISA. After the immunization with the recombinant protein, formulated in either adjuvant, no antibody titers were obtained.
-
TABLE 1 Antibody titers against DEN-2 from the sera obtained upon immunization of mice with semipurified PDC-2. ELISA Titers against DEN-2 PDC-2 PDC-2 XL-1 Blue Mouse Freund A. Aluminum hydroxide Freund (Neg. Control) 1 <1:100 <1:100 <1:100 2 <1:100 <1:100 <1:100 3 <1:100 <1:100 <1:100 4 <1:100 <1:100 <1:100 5 <1:100 <1:100 <1:100 6 <1:100 <1:100 <1:100 7 <1:100 <1:100 <1:100 8 <1:100 <1:100 <1:100 9 <1:100 <1:100 <1:100 10 <1:100 <1:100 <1:100 - For the evaluation of the protection conferred to mice against challenge with lethal homologous DEN virus by the immunization with the described variants, 10 mice were used from each of the groups immunized with the recombinant protein adsorbed in aluminum hydroxide and with the control preparation. Each animal received a dose of 100 LD50 Of lethal DEN-2 virus by intracranial inoculation and was observed for 21 days to obtain the percentages of lethality in terms of death by viral encephalitis. As a positive control, a group of 10 mice immunized with infective DEN-2 virus (104 pfu) was used. All mice in the positive control group survived, while in the negative control group all mice were sick by day 7-11 after challenge and 100% mortality was obtained by
day 21. Finally, the group immunized with the recombinant protein PDC-2 presented 44.4% protection (table 2). -
TABLE 2 Percentage of survival in PDC-2 immunized mice upon challenge with the homologous lethal Dengue virus. Survival Immunogen percentage XL-1 blue 0 DEN-2 100 PDC-2 alum. 44.4 * It was calculated: (# de survivors)/(total # of mice). Data of survivors were taken 21 days after challenge. - The rest of the animals from the group immunized with the capsid protein adjuvanted with aluminum hydroxide were sacrificed 30 days after the last dose. Then, their spleens were extracted and the lymphoproliferative response to DEN-2 was studied. The results in table 3 show the stimulation indexes obtained.
-
TABLE 3 Stimulation indexes against the homologous serotype of the lymphocytes from immunized mice. PDC-2 Aluminum hydroxide DEN-2** 8* Control 1.5 Antigen*** PHA**** 7 *Stimulation index: quotient average of counts/minutes of samples between counts/minutes of the ADN spontaneous synthesis control. **Preparation of DEN-2 infected mice brain. ***Preparation of not infected mice brain. ****Phytohemaglutinina Mitogen (Positive Control). - The biomass obtained from the E. coli strain transformed with pDC-2 and grown at 37° C. was disrupted by French press. The recombinant protein was obtained equally distributed between the soluble and insoluble fractions. The soluble fraction was subjected to a cationic interchange chromatography, using an SP-Sepharose FF column and the buffer Tris 10 mM, Tween 0.5%, urea 7M, pH 8. The column was washed with buffer diethanolamine 30 mM, NaCl 350 mM, pH 10.3. The elution of the protein of interest was done with buffer diethanolamine 30 mM, NaCl 750 mM, pH 10.3. Once eluted the protein, the buffer was exchanged using G-25 columns. Finally, the protein was obtained with 96% purity in buffer Tris 10 mM,
EDTA 1 mM (FIG. 3 ). - With the aim of characterizing the state of aggregation of the semipurified and the purified preparations, gel filtration chromatographies were done using the TSK-5000 column (Tosoh bioscience, Japan). After applying the semipurified sample, a homogeneous and major peak was obtained, with a retention time ranging from 15 to 20 minutes, evidencing the presence of high molecular weight species (
FIG. 4A ). Contrarily, in the sample from the highly purified fraction of the capsid protein, retention times of 30 minutes were detected, corresponding to the dimeric form of the molecule (FIG. 4B ). - In order to reparticulate the pure capsid protein in a dimeric form, the buffer was exchanged to Hepes 25 mM, KAc 100 mM, MgAc2 1.7 mM, pH 7.4. After heating the protein and the mixture of oligonucleotides for 1 min at 37° C., they were incubated in an equal volume for 30 min at 30° C. As a negative control of the experiment, the protein was incubated without the oligonucleotides. When both preparations were observed with an electron microscope, a large quantity of particles of approximately 21 nm diameter, were observed in the sample of protein previously incubated with the mixture of oligonucleotides, while in the control sample no particles were observed (
FIG. 5 ). - Five groups of 20 Balb/c mice were used. Two of them were immunized with 10 ug of the dimeric purified recombinant protein by intraperitoneal route, using aluminum hydroxide and Freund's adjuvant. Another group was immunized with 10 ug of the purified and particulated capsid protein adjuvanted with aluminum hydroxide. The soluble fraction from the rupture of XL-1 blue cells transformed with the plasmid pQE-30 and subjected to the same purification steps than PDC-2 was used as negative control, adjuvanted with Freund's adjuvant. The fifth group was immunized with DEN-2 virus as positive control. One month after the last dose 10 animals from each group received a dose of 100 LD50 of lethal DEN-2 by intracranial inoculation and were observed for 21 days to obtain the percentages of survival. All mice in the positive control group survived, while in the negative control group all mice were sick by day 7-11 after challenge and 0% mortality was obtained. Finally, from the groups immunized with the recombinant protein, the group immunized with pure dimeric PDC-2 presented a 20% protection when immunized with aluminum hydroxide and a 40% protection when Freund's adjuvant was used. Additionally, in the group that received the reparticulated pure protein adjuvanted with aluminum hydroxide, 90% of mice were protected (Table 4).
-
TABLE 4 Percentage of survival in mice immunized with the protein variants assayed upon challenge with the homologous lethal Dengue virus. Immunogen (adjuvant) Survival percentage* Xl-1 Blue (Freund) 0 Pure and dimeric PDC-2 (Aluminum) 20 Pure and dimeric PDC-2 (Freund) 40 Pure and reparticulated 90 PDC-2 (Aluminum) DEN-2 100 *It was calculated: (# de survivors)/(total # of mice). Data of survivors were taken 21 days after challenge. - The rest of the animals from the groups immunized with the capsid protein (10 animals), either dimeric or reparticulated, adjuvanted with aluminum hydroxide, were sacrificed 15 days after the last dose. Then, their spleens were extracted and the lymphoproliferative response to DEN-2 was studied. The results in table 5 show the stimulation indexes obtained.
-
TABLE 5 Stimulation indexes against the homologous serotype of the lymphocytes from immunized mice. Pure and reparticulated Pure PDC-2 PDC-2 DEN-2** 10* 4 Antigen 1.5 1.2 Control*** PHA**** 7 8 *Stimulation index: quotient average of counts/minutes of samples between counts/minutes of the ADN spontaneous synthesis control. **Preparation of DEN-2 infected mice brain. ***Preparation of not infected mice brain. ****Phytohemaglutinina Mitogen (Positive Control). - Twenty animals were inoculated with the mixture of 10 ug of the particulated pure capsid protein and 20 ug of protein PD5 (Sequence No. 23) in three doses spaced fifteen days apart. A group immunized with 10 ug of the pure capsid protein, a group immunized with 20 ug of protein PD5 mixed with the equivalent volume of PDC-2 but obtained from a negative control run, and a group immunized with protein P64k, the carrier protein present in the construction of PD5, were used as controls. In all cases, aluminum hydroxide was used as adjuvant.
- Fifteen days after the last dose, the animals were bled and the sera tested for antiviral antibodies by ELISA. As shown in tables 6 and 7, the group immunized with the mixture developed serotype-specific antibodies with titers higher than those of the group immunized only with protein PD5 and, at the same time, titers in these two groups were higher than those in the group immunized with protein PDC-2, where no Abs against DEN-2 virus were detected. On the other hand, 10 additional animals were taken from each group for lymphoproliferation assays. The cells from the spleens of these animals were extracted and stimulated with the infective DEN-2 virus. As shown in table 8, in the group immunized with the mixture the stimulation indexes were higher than those in the group immunized with the capsid protein only. The lowest stimulation indexes were obtained in the group immunized with protein PD5.
-
TABLE 6 Antibody titers against DEN-2 virus in sera obtained after the immunization. Groups inoculated with: Mouse PDC-2 PDC-2/ PD5 PD5 P64k 1 <1:100 <1:128000 <1:64000 <1:100 2 <1:100 <1:320000 <1:32000 <1:100 3 <1:100 <1:320000 <1:64000 <1:100 4 <1:100 <1:320000 <1:16000 <1:100 5 <1:100 <1:64000 <1:64000 <1:100 6 <1:100 <1:128000 <1:128000 <1:100 7 <1:100 <1:64000 <1:64000 <1:100 8 <1:100 <1:128000 <1:32000 <1:100 9 <1:100 <1:320000 <1:64000 <1:100 10 <1:100 <1:320000 <1:32000 <1:100 -
TABLE 7 Determination of the serotype-specificity of the antibodies contained in the mixtures of the sera obtained from each group. Viral Groups inoculated with: Antigen PDC-2 PDC-2/PD5 PD5 P64k DEN-1 <1:100 <1:200 <1:200 <1:100 DEN-2 <1:100 1:320 000 1:64000 <1:100 DEN-3 <1:100 <1:200 <1:200 <1:100 DEN-4 <1:100 <1:200 <1:200 <1:100 -
TABLE 8 Stimulation indexes against the homologous serotype of the lymphocytes from immunized mice. PDC- PDC-2 2/PD5 PD5 P64k DEN-2** 9* 11 2.1 1.1 Antigen*** 1.3 1.6 1.5 1.2 Control (−) PHA**** 7.5 7.3 7.9 8 *Stimulation index: quotient average of counts/minutes of samples between counts/minutes of the ADN spontaneous synthesis control. **Preparation of DEN-2 infected mice brain. ***Preparation of not infected mice brain. ****Phytohemaglutinina Mitogen (Positive Control). - The reparticulated and the dimeric capsid proteins were inoculated in Balb/c mice to obtain some evidence of induction of cellular immune response. A preparation obtained from cells transformed with the plasmid used to generate pDC-2, and by a purification process similar to the one used for the protein PDC-2, was employed as a negative control.
- Three doses of the protein (20 ug) were administered to groups of 20 animals, using aluminum hydroxide as adjuvant. One month after the last dose, 1 mg of a rat anti-mouse CD8 mAb, able to deplete the cells of the mouse immune system containing this marker was administered to half of the animals of each group. On the next day, all the animals were challenged with 100 LD50 (Median Lethal doses) of DEN-2 virus. They were observed for the onset of signs of disease and deaths were recorded.
- In the case of the immunized non-treated groups, 20 and 80% protection was obtained in the groups immunized with the dimeric and the reparticulated capsid, respectively. Parallely, in the treated groups the percentage of protection was lower than in the non-treated groups: 0% protection for the dimeric PDC-2 and 10% protection for the reparticulated protein. In the case of the negative control group no protection was obtained in either the treated or the non-treated animals.
-
TABLE 9 Challenge assay with DEN-2 lethal virus in the animals immunized with variants of the recombinant capsid *Survival percentages Survival percentages in mice treated in mice non with the treated with the Groups anti-CD8 mAb anti-CD8 mAb PCD12 reparticulated 10 80 PCD12 0 20 non-particulated Control (−) 0 0 *It was calculated: (# de survivors)/(total # of mice). Dataa of survivors were taken 21 days after challenge. - The nucleotide sequence that codes for
amino acids 1 to 100 of the capsid protein of DEN-1 virus (Sequence No. 7), was amplified with the oligonucleotides identified in the sequence list as Sequence No. 8 and Sequence No. 10 from the DEN-1 viral strain. The vector was generated by digestion BamHI/HindIII of the plasmid pQE-30, which contains the phage T5 promoter and a 6 histidine tail in the N-terminal region (Sequence No. 6). Upon ligation, the recombinants were analyzed by restriction and the positives clones were sequenced to check the junctions. Competent cells XL-1 Blue (Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557-580) were transformed with the selected clone called pDC-1 (FIG. 6 y Sequence No. 10). The E. coli strains transformed were cultivated in LB supplemented with Ampicilline 50 μg/mL for 10 h at 37° C. Isopropyl-B-D-thiogalactopyranoside (IPTG) to a final concentration of 1 mM was used for the induction of the promoter. Upon growing the colony, an SDS-PAGE of the cellular lysate was done. As a result a 15-kDA band was obtained. The protein was recognized by an anti-DEN-1 HMAF. This protein was denominated PDC-1 (Sequence No. 11). - The biomass obtained from the E. coli strain transformed with pDC-1 and grown at 37° C. was disrupted by French press. The recombinant protein was obtained equally distributed between the soluble and insoluble fractions. From the soluble fraction an anionic interchange chromatography was done, using a Q Sepharose FF column and the buffer Tris 10 mM pH 8. The protein in the non-absorbed fraction was obtained with 45% of purity, and was used to the immunological studies.
- Two groups of 30 Balb/c mice were used. One of them was immunized with 10 ug of the recombinant protein by intraperitoneal route, using the aluminum hydroxide as adjuvant. The soluble fraction resulting from the rupture of the pQE-30-transformed cells adjuvanted with aluminum hydroxide was used as negative control. A part of the animals (10 mice) were bled 15 days after the third dose and the antibody titers against DEN-1 were determined by ELISA. After the immunization with the recombinant protein, no antiviral antibody titers were obtained.
-
TABLE 10 Antibodies titers against DEN-1 virus from sera obtained after the immunization with the semipurified PDC-1. Anti- DEN-1 ELISA titers XL-1 blue Mouse Control (−) PDC-1 1 <1:100 <1:100 2 <1:100 <1:100 3 <1:100 <1:100 4 <1:100 <1:100 5 <1:100 <1:100 6 <1:100 <1:100 7 <1:100 <1:100 8 <1:100 <1:100 9 <1:100 <1:100 10 <1:100 <1:100 - For the evaluation of the protection conferred to mice against challenge with lethal homologous DEN virus by the immunization with the described variants, 10 mice were used from each of the groups immunized with the recombinant protein adsorbed in aluminum hydroxide and with the control preparation. Each animal received a dose of 100 LD50 Of lethal DEN-1 by intracranial inoculation and was observed for 21 days to obtain the percentages of lethality in terms of death by viral encephalitis. As a positive control, a group of 10 mice immunized with infective DEN-1 virus (104 pfu) was used. All mice in the positive control group survived, while in the negative control group all mice were sick at day 7-11 after challenge and 100% mortality was obtained at
day 21. Finally, the group immunized with the recombinant protein PDC-1 presented 50% of protection (Table 11). -
TABLE 11 Percentage of survival in mice immunized with the protein variants assayed upon challenge with the homologous lethal DEN virus. Survival Immunogen percentages* XL-1 blue 0 (Control −) DEN-1 100 (Control +) PDC-1 50 *It was calculated: (# de survivors)/(total # of mice). Data of survivors were taken 21 days after challenge. - The rest of the animals of the group immunized with the protein PDC-1 were sacrificed 15 days after the last dose. Then, their spleens were extracted and the lymphoproliferative response to DEN-1 was studied. The results in table 12 show the stimulation indexes obtained.
-
TABLE 12 Stimulation indexes against the homologous serotype of the lymphocytes from immunized mice. PDC-1 aluminum hydroxide DEN1** 8* Control 1.5 Antigen*** PHA**** 7 *Stimulation index: quotient average of counts/minutes of samples between counts/minutes of the ADN spontaneous synthesis control. **Preparation of DEN-2 infected mice brain. ***Preparation of not infected mice brain. ****Phytohemaglutinina Mitogen (Positive Control). - The nucleotide sequence that codes for amino acids 286 to 426 of the envelope protein from DEN-2 (Sequence No. 12), corresponding to the region of the domain III of the protein, was amplified with the oligonucleotides identified in the sequence list as Sequence No. 13 and Sequence No. 14 from the DEN-2 virus strain genotype Jamaica (Deubel V., Kinney R. M., Trent D. W. Nucleotide sequence and deduced amino acid sequence of the nonstructural proteins of
Dengue type 2 virus, Jamaica genotype: Comparative analysis of the full-length genome. Virology 1988.165:234-244). - The vector was created by digestion of the plasmid pDC-2 with BamHI/BamHI, which contains the phage T5 promoter, a 6-histidine tail in the N-terminal region and the region corresponding to 100 amino acids of the capsid protein of DEN-2 virus. Upon ligation, the potential recombinants were analyzed by restriction enzyme digestion and positive clones were sequenced to check up the junctions. Finally the clone selected was named pDC-2 Dom III (Sequence No 15).
- Competent cells XL-1 Blue (Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557-580) were transformed with the selected clone called pDC-2 DomIII. The E. coli strains transformed were cultivated in LB supplemented with Ampicilline 50 μg/mL for 10 h at 37° C. Isopropyl-B-D-thiogalactopyranoside (IPTG) to a final concentration of 1 mM was used to the induction of the promoter. Upon growing the colony, an SDS-PAGE of the cellular lysate was done. As a result, a 30-kDA band was obtained. The protein was recognized by an anti-DEN-2 HMAF. This protein was denominated PDC-2 Dom III (Sequence No. 16).
- The biomass obtained from the E. coli strain transformed with pDC-2 DomIII and grown at 37° C. was disrupted by French press. The recombinant protein was obtained equally distributed between the soluble and insoluble fractions. From the soluble fraction an anionic interchange chromatography was done, using a Q Sepharose FF column and the buffer Tris 10 mM pH 8. The protein in the non-absorbed fraction was obtained with 40% of purity, and was used to the immunological studies (
FIG. 2 ). - Five groups of 30 Balb/c mice were used. One of the groups was immunized with 10 ug of the recombinant protein by intraperitoneal route, using aluminum hydroxide as adjuvant. The soluble fraction resulting from the rupture of the XL-1 Blue cells transformed with the plasmid pQE-30 was used as negative control, adjuvanted with aluminum hydroxide. Another two groups were included as controls. One of them was immunized with the protein PDC-2 and the other with the protein PD5 (this protein contains the domain III region of the envelope protein of DEN-2 virus). Ten animals from each group were bled 15 days after the third dose and the antibody titers against DEN-2 were determined by ELISA. As shown in Tables 13 and 14, the group immunized with PDC-2 Dom III developed high titers of serotype-specific antibodies against DEN-2, higher than those induced by the protein PD5. These results demonstrate that the genetic combination with the capsid protein enhances the antiviral immune response elicited by the domain III of the envelope protein.
-
TABLE 13 Antibodies titers against DEN-2 virus from sera obtained after the immunization with the Dom III-capsid protein. Groups immunized with: Mouse PDC-2 PDC-2 Dom III PD5 P64k 1 <1:100 <1:320000 <1:32000 <1:100 2 <1:100 <1:640000 <1:32000 <1:100 3 <1:100 <1:640000 <1:64000 <1:100 4 <1:100 <1:640000 <1:64000 <1:100 5 <1:100 <1:128000 <1:64000 <1:100 6 <1:100 <1:320000 <1:32000 <1:100 7 <1:100 <1:128000 <1:64000 <1:100 8 <1:100 <1:64000 <1:128000 <1:100 9 <1:100 <1:64000 <1:32000 <1:100 10 <1:100 <1:128000 <1:64000 <1:100 -
TABLE 14 Determination of the serotype-specificity of the antibodies contained in the mixtures of the sera obtained from each group. Viral Groups inoculated with: Antigen PDC-2 PDC-2 Dom III PD5 P64k DEN-1 <1:100 <1:200 <1:200 <1:100 DEN-2 <1:100 1:320 000 1:64 000 <1:100 DEN-3 <1:100 <1:200 <1:200 <1:100 DEN-4 <1:100 <1:200 <1:200 <1:100 - On the other hand, 10 additional animals were taken from each group for the lymphoproliferation assays. The cells from the spleens of these animals were extracted and stimulated with the infective DEN-2 virus. Table 15 shows that in the group immunized with the combination, the stimulation indexes were higher than those in the group immunized with the capsid protein only. The stimulation indexes in the group immunized with protein PD5 were the lowest.
-
TABLE 15 Stimulation indexes against the homologous serotype of the lymphocytes from immunized mice. PDC-2 PDC-2 Dom III PD5 P64k DEN-2** 9.5* 11.6 2.2 1.2 Antigen*** 1.2 1.1 1.2 1.6 Control (−) PHA**** 7.6 7.4 7.5 7.9 *Stimulation index: quotient average of counts/minutes of samples between counts/minutes of the ADN spontaneous synthesis control. **Preparation of DEN-2 infected mice brain. ***Preparation of not infected mice brain. ****Phytohemaglutinina Mitogen (Positive Control).
Claims (8)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CUCU2005-0168 | 2005-09-16 | ||
| CU20050168A CU23578A1 (en) | 2005-09-16 | 2005-09-16 | VIRUS CAPSID PROTEIN DENGES INDUCTIVE PROTECTION RESPONSE AND VACCINE COMPOSITION |
| PCT/CU2006/000008 WO2007031034A1 (en) | 2005-09-16 | 2006-09-18 | Dengue virus capsid protein which induces a protective response and pharmaceutical composition |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20080311157A1 true US20080311157A1 (en) | 2008-12-18 |
| US7790173B2 US7790173B2 (en) | 2010-09-07 |
Family
ID=40132555
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/067,129 Expired - Fee Related US7790173B2 (en) | 2005-09-16 | 2006-09-18 | Pharmaceutical compound capable of induce immune protective response against Dengue virus having the capsid protein of the Dengue virus |
Country Status (17)
| Country | Link |
|---|---|
| US (1) | US7790173B2 (en) |
| EP (1) | EP1944038B1 (en) |
| JP (1) | JP5657204B2 (en) |
| KR (2) | KR101350318B1 (en) |
| CN (1) | CN101304760B (en) |
| AR (1) | AR058049A1 (en) |
| AU (1) | AU2006291863B2 (en) |
| BR (1) | BRPI0616224B8 (en) |
| CA (1) | CA2622827C (en) |
| CU (1) | CU23578A1 (en) |
| DK (1) | DK1944038T3 (en) |
| ES (1) | ES2444691T3 (en) |
| MY (2) | MY149395A (en) |
| PT (1) | PT1944038E (en) |
| RU (1) | RU2008114841A (en) |
| WO (1) | WO2007031034A1 (en) |
| ZA (1) | ZA200802740B (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014055746A1 (en) * | 2012-10-04 | 2014-04-10 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and reagents for detection, quantitation, and serotyping of dengue viruses |
| WO2018169550A1 (en) * | 2017-03-17 | 2018-09-20 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Real-time rt-pcr assay for detection of dengue, chikungunya, and zika viruses |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MY157941A (en) | 2005-01-19 | 2016-08-15 | Vaxinnate Corp | Compositions of pathogen-associated molecular patterns and methods of use |
| ES2594102T3 (en) * | 2008-04-18 | 2016-12-15 | Vaxinnate Corporation | Mutants by flagelin deletion and methods for its use |
| EP2294192A4 (en) * | 2008-06-09 | 2011-11-23 | Jolla Inst Allergy Immunolog | COMPOSITIONS AND METHODS FOR TREATMENT AND VACCINATION AGAINST DENGUE VIRUS (VD) |
| CA2770888C (en) * | 2009-08-31 | 2020-04-14 | Gen-Probe Incorporated | Dengue virus assay |
| US10308689B2 (en) | 2010-06-24 | 2019-06-04 | La Jolla Institute For Allergy And Immunology | Dengue virus (DV) polypeptide sequences, T cell epitopes and methods and uses thereof |
| WO2012178196A2 (en) * | 2011-06-24 | 2012-12-27 | La Jolla Institute For Allergy And Immunology | Protection against dengue virus and prevention of severe dengue disease |
| CU24188B1 (en) * | 2012-12-27 | 2016-07-29 | Ct De Ingeniería Genética Y Biotecnología | VACCINE COMPOSITION AGAINST VIRUS DENGUE |
| CN107405392B (en) * | 2015-02-09 | 2021-05-18 | 中央研究院 | Epitope-replaced vaccine for enhanced safety and immunity against dengue virus |
| SG10201607778XA (en) * | 2016-09-16 | 2018-04-27 | Chugai Pharmaceutical Co Ltd | Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040259224A1 (en) * | 2002-05-31 | 2004-12-23 | Farshad Guirakhoo | Tetravalent Dengue vaccines |
| US7279164B2 (en) * | 2001-07-16 | 2007-10-09 | Centro De Ingenieria Genetica Y Biotecnologia | Chimeric proteins that induce effects directed against viruses |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CU22302A1 (en) | 1990-09-07 | 1995-01-31 | Cigb | Codifying nucleotidic sequence for a protein of the external membrane of neisseria meningitidis and the use of that protein in preparing vaccines. |
| DE69233770D1 (en) | 1991-09-19 | 2009-10-29 | Us Health | Chimeric and / or growth-inhibited flaviviruses |
| EP0836482B1 (en) | 1995-05-24 | 2002-11-13 | Hawaii Biotechnology Group, Inc. | Subunit vaccine against flavivirus infection |
| CU22559A1 (en) | 1996-01-17 | 1999-05-03 | Ct Ingenieria Genetica Biotech | EXPRESSION SYSTEM OF HETEROLOGICAL ANTIGENS IN E. COLI AS FUSION PROTEINS |
| AU2933797A (en) | 1996-05-10 | 1997-12-05 | Schering Corporation | Synthetic inhibitors of hepatitis c virus ns3 protease |
| CU22666A1 (en) | 1996-11-25 | 2001-04-27 | Inst De Medicina Tropical Pedro Kouri | PROCEDURE FOR THE EXPRESSION OF GENES OF DENGUE VIRUSES IN PICHIA PASTORIS LEAVE, RECOMBINANT ADNS AND TRANSFORMED MICROORGANISMS |
| CU22683A1 (en) * | 1997-01-15 | 2001-07-20 | Inst De Medicina Tropical Pedro Kouri | EPITHES OF THE PRE-M / M PROTEIN OF THE DENGUE VIRUS, SYNTHETIC PEPTIDES, CHEMICAL PROTEINS AND THEIR USES |
| DK1003775T3 (en) | 1997-08-11 | 2005-05-30 | Boehringer Ingelheim Ca Ltd | Hepatitis C inhibitor peptides |
| EP1021544B1 (en) * | 1997-10-08 | 2005-12-28 | THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES | Chimeric vaccine against tick-borne encephalitis virus |
| EP1185691B1 (en) | 1999-04-30 | 2009-04-29 | Novartis Vaccines and Diagnostics, Inc. | Neisseria genomic sequences and methods of their use |
| EP2290108B1 (en) * | 2001-05-22 | 2014-07-23 | THE GOVERNMENT OF THE UNITED STATES OF AMERICA as represented by the SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES | Development of mutations useful for attenuating dengue viruses and chimeric dengue viruses |
| US20040213808A1 (en) | 2002-12-11 | 2004-10-28 | Michael Lieberman | Recombinant vaccine against flavivirus infection |
| EP1454988A1 (en) * | 2003-03-03 | 2004-09-08 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Infectious flavivirus pseudo-particles containing functional prM-E envelope proteins |
| WO2005002501A2 (en) | 2003-04-22 | 2005-01-13 | Children's Medical Center Corporation | Novel druggable regions in the dengue virus envelope glycoprotein and methods of using the same |
| MY157941A (en) | 2005-01-19 | 2016-08-15 | Vaxinnate Corp | Compositions of pathogen-associated molecular patterns and methods of use |
| CA2508266A1 (en) | 2005-06-20 | 2006-12-20 | Institut Pasteur | Chimeric polypeptides and their therapeutic application against a flaviviridae infection |
| CU23632A1 (en) | 2006-04-28 | 2011-02-24 | Ct Ingenieria Genetica Biotech | METHODS FOR THE IDENTIFICATION OF THERAPEUTIC CANDIDATES AGAINST DISEASES CAUSED BY FLAVIVIRUS AND ANTIVIRAL MOLECULES. |
-
2005
- 2005-09-16 CU CU20050168A patent/CU23578A1/en unknown
-
2006
- 2006-09-15 AR ARP060104044A patent/AR058049A1/en not_active Application Discontinuation
- 2006-09-18 ES ES06791279.0T patent/ES2444691T3/en active Active
- 2006-09-18 CN CN2006800422806A patent/CN101304760B/en active Active
- 2006-09-18 EP EP06791279.0A patent/EP1944038B1/en active Active
- 2006-09-18 BR BRPI0616224A patent/BRPI0616224B8/en not_active IP Right Cessation
- 2006-09-18 DK DK06791279.0T patent/DK1944038T3/en active
- 2006-09-18 RU RU2008114841/15A patent/RU2008114841A/en not_active Application Discontinuation
- 2006-09-18 AU AU2006291863A patent/AU2006291863B2/en not_active Ceased
- 2006-09-18 KR KR1020087008971A patent/KR101350318B1/en not_active Expired - Fee Related
- 2006-09-18 CA CA2622827A patent/CA2622827C/en not_active Expired - Fee Related
- 2006-09-18 PT PT67912790T patent/PT1944038E/en unknown
- 2006-09-18 KR KR1020137022261A patent/KR20130100026A/en not_active Ceased
- 2006-09-18 WO PCT/CU2006/000008 patent/WO2007031034A1/en active Application Filing
- 2006-09-18 JP JP2008530308A patent/JP5657204B2/en not_active Expired - Fee Related
- 2006-09-18 US US12/067,129 patent/US7790173B2/en not_active Expired - Fee Related
- 2006-09-19 MY MYPI20080715A patent/MY149395A/en unknown
- 2006-09-19 MY MYPI2011003797A patent/MY161452A/en unknown
-
2008
- 2008-03-27 ZA ZA200802740A patent/ZA200802740B/en unknown
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7279164B2 (en) * | 2001-07-16 | 2007-10-09 | Centro De Ingenieria Genetica Y Biotecnologia | Chimeric proteins that induce effects directed against viruses |
| US20040259224A1 (en) * | 2002-05-31 | 2004-12-23 | Farshad Guirakhoo | Tetravalent Dengue vaccines |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014055746A1 (en) * | 2012-10-04 | 2014-04-10 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and reagents for detection, quantitation, and serotyping of dengue viruses |
| US9725774B2 (en) | 2012-10-04 | 2017-08-08 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and reagents for detection, quantitation, and serotyping of dengue viruses |
| US10093994B2 (en) | 2012-10-04 | 2018-10-09 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and reagents for detection, quantitation, and serotyping of dengue viruses |
| WO2018169550A1 (en) * | 2017-03-17 | 2018-09-20 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Real-time rt-pcr assay for detection of dengue, chikungunya, and zika viruses |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1944038B1 (en) | 2013-11-27 |
| BRPI0616224B1 (en) | 2019-01-15 |
| CU23578A1 (en) | 2010-09-30 |
| US7790173B2 (en) | 2010-09-07 |
| DK1944038T3 (en) | 2014-03-03 |
| ZA200802740B (en) | 2008-12-31 |
| KR20080048068A (en) | 2008-05-30 |
| RU2008114841A (en) | 2009-10-27 |
| JP5657204B2 (en) | 2015-01-21 |
| CA2622827C (en) | 2015-12-15 |
| AR058049A1 (en) | 2008-01-23 |
| PT1944038E (en) | 2014-02-21 |
| CN101304760B (en) | 2013-03-13 |
| MY161452A (en) | 2017-04-14 |
| JP2009507864A (en) | 2009-02-26 |
| BRPI0616224A2 (en) | 2013-02-19 |
| CA2622827A1 (en) | 2007-03-22 |
| CN101304760A (en) | 2008-11-12 |
| KR101350318B1 (en) | 2014-01-14 |
| BRPI0616224B8 (en) | 2021-05-25 |
| WO2007031034A1 (en) | 2007-03-22 |
| AU2006291863A1 (en) | 2007-03-22 |
| MY149395A (en) | 2013-08-30 |
| AU2006291863B2 (en) | 2012-09-20 |
| ES2444691T3 (en) | 2014-02-26 |
| KR20130100026A (en) | 2013-09-06 |
| EP1944038A1 (en) | 2008-07-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7790173B2 (en) | Pharmaceutical compound capable of induce immune protective response against Dengue virus having the capsid protein of the Dengue virus | |
| Fahimi et al. | Dengue viruses and promising envelope protein domain III-based vaccines | |
| Osorio et al. | Development of DENVax: a chimeric dengue-2 PDK-53-based tetravalent vaccine for protection against dengue fever | |
| US8088391B2 (en) | West nile virus vaccine | |
| Apt et al. | Tetravalent neutralizing antibody response against four dengue serotypes by a single chimeric dengue envelope antigen | |
| Kinney et al. | Development of new vaccines against dengue fever and Japanese encephalitis | |
| Costa et al. | DNA vaccine against the non-structural 1 protein (NS1) of dengue 2 virus | |
| US20180228887A1 (en) | Compositions, methods of administration and uses for trivalent dengue virus formulations | |
| US20190194260A1 (en) | Live attenuated zika virus vaccine | |
| Shang et al. | Dengue virus-like particles: construction and application | |
| TW201402143A (en) | Compositions and methods for administration of vaccines against dengue virus | |
| Chia et al. | Fragment of Japanese encephalitis virus envelope protein produced in Escherichia coli protects mice from virus challenge | |
| ES2389849T3 (en) | Compositions of HSP60 peptides and viral antigens for vaccination and diagnosis | |
| ES2517615T3 (en) | Induction of an immune response against dengue virus using a sensitization-enhancement approach | |
| WO2021127017A1 (en) | Combinations of flavivirus proteins, peptide sequences, epitopes, and methods and uses thereof | |
| WO2025122062A1 (en) | Messenger rna vaccines targeting dengue virus proteins |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CENTRO DE INGENIERIA GENETICA Y BIOTECNOLOGIA, CUB Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAZO VAZQUEZ, LAURA;HERMIDA CRUZ, LISSET;LOPEZ ABARRATEGUI, CARLOS;AND OTHERS;REEL/FRAME:021282/0845;SIGNING DATES FROM 20080523 TO 20080528 Owner name: CENTRO DE INGENIERIA GENETICA Y BIOTECNOLOGIA, CUB Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAZO VAZQUEZ, LAURA;HERMIDA CRUZ, LISSET;LOPEZ ABARRATEGUI, CARLOS;AND OTHERS;SIGNING DATES FROM 20080523 TO 20080528;REEL/FRAME:021282/0845 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.) |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552) Year of fee payment: 8 |
|
| FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20220907 |