US20090018112A1 - Compounds and Uses Thereof - Google Patents
Compounds and Uses Thereof Download PDFInfo
- Publication number
- US20090018112A1 US20090018112A1 US12/199,034 US19903408A US2009018112A1 US 20090018112 A1 US20090018112 A1 US 20090018112A1 US 19903408 A US19903408 A US 19903408A US 2009018112 A1 US2009018112 A1 US 2009018112A1
- Authority
- US
- United States
- Prior art keywords
- alkyl
- arylalkyl
- amino
- carboxamide
- disorder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 389
- 238000000034 method Methods 0.000 claims abstract description 224
- 150000003839 salts Chemical class 0.000 claims abstract description 62
- 208000019901 Anxiety disease Diseases 0.000 claims abstract description 19
- 208000019022 Mood disease Diseases 0.000 claims abstract description 19
- 208000010877 cognitive disease Diseases 0.000 claims abstract description 17
- 241000124008 Mammalia Species 0.000 claims description 30
- 241000282414 Homo sapiens Species 0.000 claims description 20
- 208000020925 Bipolar disease Diseases 0.000 claims description 14
- 206010026749 Mania Diseases 0.000 claims description 14
- 206010012289 Dementia Diseases 0.000 claims description 13
- 208000024827 Alzheimer disease Diseases 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 208000011688 Generalised anxiety disease Diseases 0.000 claims description 7
- 208000029364 generalized anxiety disease Diseases 0.000 claims description 7
- 208000019906 panic disease Diseases 0.000 claims description 7
- 206010041250 Social phobia Diseases 0.000 claims description 6
- KYDURMHFWXCKMW-UHFFFAOYSA-N 4-amino-8-(2-fluoro-6-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=C(F)C=CC=C1OC KYDURMHFWXCKMW-UHFFFAOYSA-N 0.000 claims description 5
- 208000020401 Depressive disease Diseases 0.000 claims description 5
- 208000021384 Obsessive-Compulsive disease Diseases 0.000 claims description 5
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 claims description 5
- 229960001231 choline Drugs 0.000 claims description 5
- 208000028173 post-traumatic stress disease Diseases 0.000 claims description 5
- 229940122601 Esterase inhibitor Drugs 0.000 claims description 4
- 206010027944 Mood disorder due to a general medical condition Diseases 0.000 claims description 4
- 208000028683 bipolar I disease Diseases 0.000 claims description 4
- 208000025307 bipolar depression Diseases 0.000 claims description 4
- 230000037411 cognitive enhancing Effects 0.000 claims description 4
- 208000026725 cyclothymic disease Diseases 0.000 claims description 4
- 230000003001 depressive effect Effects 0.000 claims description 4
- 208000024732 dysthymic disease Diseases 0.000 claims description 4
- 239000002329 esterase inhibitor Substances 0.000 claims description 4
- 208000024714 major depressive disease Diseases 0.000 claims description 4
- 230000006883 memory enhancing effect Effects 0.000 claims description 4
- 208000008811 Agoraphobia Diseases 0.000 claims description 3
- 206010052794 Panic disorder with agoraphobia Diseases 0.000 claims description 3
- 206010033668 Panic disorder without agoraphobia Diseases 0.000 claims description 3
- 206010034912 Phobia Diseases 0.000 claims description 3
- 208000031674 Traumatic Acute Stress disease Diseases 0.000 claims description 3
- 208000026345 acute stress disease Diseases 0.000 claims description 3
- 201000001716 specific phobia Diseases 0.000 claims description 3
- 239000000203 mixture Substances 0.000 abstract description 57
- 239000002243 precursor Substances 0.000 abstract description 41
- 238000011282 treatment Methods 0.000 abstract description 12
- 238000011321 prophylaxis Methods 0.000 abstract description 6
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 253
- 239000007787 solid Substances 0.000 description 185
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 174
- 238000005160 1H NMR spectroscopy Methods 0.000 description 164
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 163
- 125000003710 aryl alkyl group Chemical group 0.000 description 162
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 153
- 125000003118 aryl group Chemical group 0.000 description 149
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 142
- 125000001072 heteroaryl group Chemical group 0.000 description 142
- 125000000753 cycloalkyl group Chemical group 0.000 description 135
- 238000004128 high performance liquid chromatography Methods 0.000 description 128
- 125000000171 (C1-C6) haloalkyl group Chemical group 0.000 description 123
- 125000004446 heteroarylalkyl group Chemical group 0.000 description 117
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 description 105
- 125000005885 heterocycloalkylalkyl group Chemical group 0.000 description 105
- -1 pyrazol-4-yl Chemical group 0.000 description 92
- 125000005843 halogen group Chemical group 0.000 description 90
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 description 77
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 description 77
- 229910052739 hydrogen Inorganic materials 0.000 description 77
- 229910052799 carbon Inorganic materials 0.000 description 75
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 69
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 68
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 66
- GPJGJCJYUOVPPW-UHFFFAOYSA-N 4-amino-8-bromo-n-propylcinnoline-3-carboxamide Chemical compound BrC1=CC=CC2=C(N)C(C(=O)NCCC)=NN=C21 GPJGJCJYUOVPPW-UHFFFAOYSA-N 0.000 description 65
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 63
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 63
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 62
- 238000006243 chemical reaction Methods 0.000 description 60
- 235000019439 ethyl acetate Nutrition 0.000 description 59
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 59
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 57
- 125000004767 (C1-C4) haloalkoxy group Chemical group 0.000 description 51
- 125000003282 alkyl amino group Chemical group 0.000 description 51
- 125000004663 dialkyl amino group Chemical group 0.000 description 51
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 50
- 125000001424 substituent group Chemical group 0.000 description 45
- 239000000243 solution Substances 0.000 description 43
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 42
- 108091008681 GABAA receptors Proteins 0.000 description 39
- 102000027484 GABAA receptors Human genes 0.000 description 37
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 34
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 34
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 32
- 238000000746 purification Methods 0.000 description 32
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 31
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 30
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 30
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 29
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 28
- 125000004765 (C1-C4) haloalkyl group Chemical group 0.000 description 27
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 27
- 125000004433 nitrogen atom Chemical group N* 0.000 description 27
- 125000004076 pyridyl group Chemical group 0.000 description 26
- 229910052701 rubidium Inorganic materials 0.000 description 26
- 125000003373 pyrazinyl group Chemical group 0.000 description 25
- 125000003226 pyrazolyl group Chemical group 0.000 description 25
- 125000000714 pyrimidinyl group Chemical group 0.000 description 25
- 238000003556 assay Methods 0.000 description 24
- 125000001041 indolyl group Chemical group 0.000 description 24
- 125000001624 naphthyl group Chemical group 0.000 description 24
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 24
- 125000005493 quinolyl group Chemical group 0.000 description 23
- 102000005962 receptors Human genes 0.000 description 23
- 108020003175 receptors Proteins 0.000 description 23
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 22
- 239000011541 reaction mixture Substances 0.000 description 22
- 125000000217 alkyl group Chemical group 0.000 description 18
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 18
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 18
- 239000000741 silica gel Substances 0.000 description 18
- 229910002027 silica gel Inorganic materials 0.000 description 18
- 125000000623 heterocyclic group Chemical group 0.000 description 17
- 229910052757 nitrogen Inorganic materials 0.000 description 17
- IOCLBSGWUXPQED-UHFFFAOYSA-N 4-amino-8-bromo-n-cyclopropylcinnoline-3-carboxamide Chemical compound N1=NC2=C(Br)C=CC=C2C(N)=C1C(=O)NC1CC1 IOCLBSGWUXPQED-UHFFFAOYSA-N 0.000 description 16
- 239000003814 drug Substances 0.000 description 16
- 150000002148 esters Chemical class 0.000 description 16
- 239000012528 membrane Substances 0.000 description 16
- 239000012044 organic layer Substances 0.000 description 16
- 238000010992 reflux Methods 0.000 description 16
- 239000002904 solvent Substances 0.000 description 16
- 238000003756 stirring Methods 0.000 description 16
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 15
- 125000004429 atom Chemical group 0.000 description 15
- 239000003054 catalyst Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 238000003818 flash chromatography Methods 0.000 description 15
- 239000002207 metabolite Substances 0.000 description 15
- 239000003960 organic solvent Substances 0.000 description 15
- CPINNOOMSXYFKX-UHFFFAOYSA-N 4-amino-7-fluoro-8-iodo-n-propylcinnoline-3-carboxamide Chemical compound IC1=C(F)C=CC2=C(N)C(C(=O)NCCC)=NN=C21 CPINNOOMSXYFKX-UHFFFAOYSA-N 0.000 description 14
- DBNJXMNCNDXEFU-UHFFFAOYSA-N 4-amino-8-iodo-n-propylcinnoline-3-carboxamide Chemical compound IC1=CC=CC2=C(N)C(C(=O)NCCC)=NN=C21 DBNJXMNCNDXEFU-UHFFFAOYSA-N 0.000 description 14
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 14
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 14
- 238000005859 coupling reaction Methods 0.000 description 14
- 239000010410 layer Substances 0.000 description 14
- 230000002829 reductive effect Effects 0.000 description 14
- 239000000725 suspension Substances 0.000 description 14
- FGDBPXOUBUPYFY-UHFFFAOYSA-N 4-amino-n-cyclopropyl-7-fluoro-8-iodocinnoline-3-carboxamide Chemical compound N1=NC2=C(I)C(F)=CC=C2C(N)=C1C(=O)NC1CC1 FGDBPXOUBUPYFY-UHFFFAOYSA-N 0.000 description 13
- 229940049706 benzodiazepine Drugs 0.000 description 13
- 239000001257 hydrogen Substances 0.000 description 13
- 239000008194 pharmaceutical composition Substances 0.000 description 13
- 239000002244 precipitate Substances 0.000 description 13
- 229910052717 sulfur Inorganic materials 0.000 description 13
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 150000001557 benzodiazepines Chemical class 0.000 description 12
- 125000004432 carbon atom Chemical group C* 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 210000000287 oocyte Anatomy 0.000 description 12
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 description 12
- 238000003786 synthesis reaction Methods 0.000 description 12
- 238000002560 therapeutic procedure Methods 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 11
- 239000012131 assay buffer Substances 0.000 description 11
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 235000011006 sodium potassium tartrate Nutrition 0.000 description 11
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 11
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 10
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 10
- 230000002378 acidificating effect Effects 0.000 description 10
- 239000002585 base Substances 0.000 description 10
- 239000012267 brine Substances 0.000 description 10
- 125000000259 cinnolinyl group Chemical class N1=NC(=CC2=CC=CC=C12)* 0.000 description 10
- 238000010790 dilution Methods 0.000 description 10
- 239000012895 dilution Substances 0.000 description 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 10
- 239000000706 filtrate Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 10
- QOZLFNQLIKOGDR-UHFFFAOYSA-N (2,5-dimethoxyphenyl)boronic acid Chemical compound COC1=CC=C(OC)C(B(O)O)=C1 QOZLFNQLIKOGDR-UHFFFAOYSA-N 0.000 description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 239000000543 intermediate Substances 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 229910052938 sodium sulfate Inorganic materials 0.000 description 9
- 235000011152 sodium sulphate Nutrition 0.000 description 9
- YNHIGQDRGKUECZ-UHFFFAOYSA-L PdCl2(PPh3)2 Substances [Cl-].[Cl-].[Pd+2].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-L 0.000 description 8
- 230000000949 anxiolytic effect Effects 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 238000001914 filtration Methods 0.000 description 8
- 231100000252 nontoxic Toxicity 0.000 description 8
- 230000003000 nontoxic effect Effects 0.000 description 8
- 229940002612 prodrug Drugs 0.000 description 8
- 239000000651 prodrug Substances 0.000 description 8
- 238000001953 recrystallisation Methods 0.000 description 8
- LKGKUACPLXCVOF-UHFFFAOYSA-N (2,4-dimethoxypyrimidin-5-yl)boronic acid Chemical compound COC1=NC=C(B(O)O)C(OC)=N1 LKGKUACPLXCVOF-UHFFFAOYSA-N 0.000 description 7
- XOVMDVZAWWQSDC-UHFFFAOYSA-N (2-fluoro-6-methoxyphenyl)boronic acid Chemical compound COC1=CC=CC(F)=C1B(O)O XOVMDVZAWWQSDC-UHFFFAOYSA-N 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 150000001204 N-oxides Chemical class 0.000 description 7
- 125000003342 alkenyl group Chemical group 0.000 description 7
- 229940125717 barbiturate Drugs 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 150000001639 boron compounds Chemical class 0.000 description 7
- YNHIGQDRGKUECZ-UHFFFAOYSA-N dichloropalladium;triphenylphosphanium Chemical compound Cl[Pd]Cl.C1=CC=CC=C1[PH+](C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1[PH+](C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-N 0.000 description 7
- 239000002552 dosage form Substances 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 239000000284 extract Substances 0.000 description 7
- OFBIFZUFASYYRE-UHFFFAOYSA-N flumazenil Chemical compound C1N(C)C(=O)C2=CC(F)=CC=C2N2C=NC(C(=O)OCC)=C21 OFBIFZUFASYYRE-UHFFFAOYSA-N 0.000 description 7
- 235000019341 magnesium sulphate Nutrition 0.000 description 7
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 7
- 229910000029 sodium carbonate Inorganic materials 0.000 description 7
- SQTUYFKNCCBFRR-UHFFFAOYSA-N (2,4-dimethoxyphenyl)boronic acid Chemical compound COC1=CC=C(B(O)O)C(OC)=C1 SQTUYFKNCCBFRR-UHFFFAOYSA-N 0.000 description 6
- RKHZHTLJEUBARP-UHFFFAOYSA-N 2,4-dimethoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrimidine Chemical compound COC1=NC(OC)=NC=C1B1OC(C)(C)C(C)(C)O1 RKHZHTLJEUBARP-UHFFFAOYSA-N 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 206010010904 Convulsion Diseases 0.000 description 6
- UGJMXCAKCUNAIE-UHFFFAOYSA-N Gabapentin Chemical compound OC(=O)CC1(CN)CCCCC1 UGJMXCAKCUNAIE-UHFFFAOYSA-N 0.000 description 6
- PPTYJKAXVCCBDU-UHFFFAOYSA-N Rohypnol Chemical compound N=1CC(=O)N(C)C2=CC=C([N+]([O-])=O)C=C2C=1C1=CC=CC=C1F PPTYJKAXVCCBDU-UHFFFAOYSA-N 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- 239000002249 anxiolytic agent Substances 0.000 description 6
- 229960004381 flumazenil Drugs 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 150000007522 mineralic acids Chemical class 0.000 description 6
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 6
- KVWDHTXUZHCGIO-UHFFFAOYSA-N olanzapine Chemical compound C1CN(C)CCN1C1=NC2=CC=CC=C2NC2=C1C=C(C)S2 KVWDHTXUZHCGIO-UHFFFAOYSA-N 0.000 description 6
- 239000001301 oxygen Chemical group 0.000 description 6
- 229910052705 radium Inorganic materials 0.000 description 6
- 125000006413 ring segment Chemical group 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 239000011593 sulfur Chemical group 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- MSRILKIQRXUYCT-UHFFFAOYSA-M valproate semisodium Chemical compound [Na+].CCCC(C(O)=O)CCC.CCCC(C([O-])=O)CCC MSRILKIQRXUYCT-UHFFFAOYSA-M 0.000 description 6
- 229960000604 valproic acid Drugs 0.000 description 6
- AWXYVFRQOMPTOW-VCHYOVAHSA-N (1e)-n-(3-fluoro-2-iodoanilino)-2-oxo-2-(propylamino)ethanimidoyl cyanide Chemical compound CCCNC(=O)C(\C#N)=N\NC1=CC=CC(F)=C1I AWXYVFRQOMPTOW-VCHYOVAHSA-N 0.000 description 5
- CSVKZOZMPSRLTC-UHFFFAOYSA-N (2-methoxy-5-methylphenyl)boronic acid Chemical compound COC1=CC=C(C)C=C1B(O)O CSVKZOZMPSRLTC-UHFFFAOYSA-N 0.000 description 5
- YUTPAZKVEOJQCY-UHFFFAOYSA-N (4-methoxypyridin-3-yl)boronic acid Chemical compound COC1=CC=NC=C1B(O)O YUTPAZKVEOJQCY-UHFFFAOYSA-N 0.000 description 5
- UBPDKIDWEADHPP-UHFFFAOYSA-N 2-iodoaniline Chemical compound NC1=CC=CC=C1I UBPDKIDWEADHPP-UHFFFAOYSA-N 0.000 description 5
- MMBJQNHQQHDAKU-UHFFFAOYSA-N 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CN=C(OC)N=C1OC MMBJQNHQQHDAKU-UHFFFAOYSA-N 0.000 description 5
- IVVODHMVRGRGDD-UHFFFAOYSA-N 4-amino-8-(2,5-dimethylpyrazol-3-yl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(C)=NN1C IVVODHMVRGRGDD-UHFFFAOYSA-N 0.000 description 5
- YESIKRYHTIPTEZ-UHFFFAOYSA-N 4-amino-8-bromo-n-cyclobutyl-7-fluorocinnoline-3-carboxamide Chemical compound N1=NC2=C(Br)C(F)=CC=C2C(N)=C1C(=O)NC1CCC1 YESIKRYHTIPTEZ-UHFFFAOYSA-N 0.000 description 5
- APGMUVBJNDTSKT-UHFFFAOYSA-N 4-amino-8-bromo-n-cyclobutylcinnoline-3-carboxamide Chemical compound N1=NC2=C(Br)C=CC=C2C(N)=C1C(=O)NC1CCC1 APGMUVBJNDTSKT-UHFFFAOYSA-N 0.000 description 5
- GTGGGOXSBZTGEC-UHFFFAOYSA-N 4-amino-8-bromo-n-ethylcinnoline-3-carboxamide Chemical compound BrC1=CC=CC2=C(N)C(C(=O)NCC)=NN=C21 GTGGGOXSBZTGEC-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 5
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- 229940005530 anxiolytics Drugs 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 150000001543 aryl boronic acids Chemical class 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000037396 body weight Effects 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 5
- 125000001246 bromo group Chemical group Br* 0.000 description 5
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 5
- 229910000024 caesium carbonate Inorganic materials 0.000 description 5
- 239000002775 capsule Substances 0.000 description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000007819 coupling partner Substances 0.000 description 5
- 239000012043 crude product Substances 0.000 description 5
- 229960003529 diazepam Drugs 0.000 description 5
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000035475 disorder Diseases 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 229940093915 gynecological organic acid Drugs 0.000 description 5
- 125000005842 heteroatom Chemical group 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 125000002346 iodo group Chemical group I* 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 230000001537 neural effect Effects 0.000 description 5
- 208000004296 neuralgia Diseases 0.000 description 5
- 210000002569 neuron Anatomy 0.000 description 5
- 229960005017 olanzapine Drugs 0.000 description 5
- 150000007524 organic acids Chemical class 0.000 description 5
- 235000005985 organic acids Nutrition 0.000 description 5
- 229910052763 palladium Inorganic materials 0.000 description 5
- 125000006239 protecting group Chemical group 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000004809 thin layer chromatography Methods 0.000 description 5
- 229940086542 triethylamine Drugs 0.000 description 5
- JCKZNMSBFBPDPM-UHFFFAOYSA-N (2-fluoro-3-methoxyphenyl)boronic acid Chemical compound COC1=CC=CC(B(O)O)=C1F JCKZNMSBFBPDPM-UHFFFAOYSA-N 0.000 description 4
- HRLBFLFGNKLHQT-UHFFFAOYSA-N 3-fluoro-2-iodoaniline;hydrochloride Chemical compound Cl.NC1=CC=CC(F)=C1I HRLBFLFGNKLHQT-UHFFFAOYSA-N 0.000 description 4
- NFWZONJYGXYPRQ-UHFFFAOYSA-N 4-amino-7-chloro-8-iodo-n-propylcinnoline-3-carboxamide Chemical compound IC1=C(Cl)C=CC2=C(N)C(C(=O)NCCC)=NN=C21 NFWZONJYGXYPRQ-UHFFFAOYSA-N 0.000 description 4
- NVWCZRPXYVDQEE-UHFFFAOYSA-N 4-amino-8-(2,5-dimethoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(OC)=CC=C1OC NVWCZRPXYVDQEE-UHFFFAOYSA-N 0.000 description 4
- GTGGDPMSPFTXEJ-UHFFFAOYSA-N 4-amino-8-(2-methoxy-5-methylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(C)=CC=C1OC GTGGDPMSPFTXEJ-UHFFFAOYSA-N 0.000 description 4
- BBWBRMSUDDRWFH-UHFFFAOYSA-N 4-amino-8-(3,5-difluoro-2-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(F)=CC(F)=C1OC BBWBRMSUDDRWFH-UHFFFAOYSA-N 0.000 description 4
- VHGIDFXNMYWNMX-UHFFFAOYSA-N 4-amino-8-(4-methoxypyridin-3-yl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CN=CC=C1OC VHGIDFXNMYWNMX-UHFFFAOYSA-N 0.000 description 4
- CEUORZQYGODEFX-UHFFFAOYSA-N Aripirazole Chemical compound ClC1=CC=CC(N2CCN(CCCCOC=3C=C4NC(=O)CCC4=CC=3)CC2)=C1Cl CEUORZQYGODEFX-UHFFFAOYSA-N 0.000 description 4
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 241000269370 Xenopus <genus> Species 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- ABBZJHFBQXYTLU-UHFFFAOYSA-N but-3-enamide Chemical compound NC(=O)CC=C ABBZJHFBQXYTLU-UHFFFAOYSA-N 0.000 description 4
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 4
- 229960000623 carbamazepine Drugs 0.000 description 4
- FFGPTBGBLSHEPO-UHFFFAOYSA-N carbamazepine Chemical compound C1=CC2=CC=CC=C2N(C(=O)N)C2=CC=CC=C21 FFGPTBGBLSHEPO-UHFFFAOYSA-N 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- QZUDBNBUXVUHMW-UHFFFAOYSA-N clozapine Chemical compound C1CN(C)CCN1C1=NC2=CC(Cl)=CC=C2NC2=CC=CC=C12 QZUDBNBUXVUHMW-UHFFFAOYSA-N 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 125000002950 monocyclic group Chemical group 0.000 description 4
- 125000004430 oxygen atom Chemical group O* 0.000 description 4
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 4
- 229960004431 quetiapine Drugs 0.000 description 4
- URKOMYMAXPYINW-UHFFFAOYSA-N quetiapine Chemical compound C1CN(CCOCCO)CCN1C1=NC2=CC=CC=C2SC2=CC=CC=C12 URKOMYMAXPYINW-UHFFFAOYSA-N 0.000 description 4
- RAPZEAPATHNIPO-UHFFFAOYSA-N risperidone Chemical compound FC1=CC=C2C(C3CCN(CC3)CCC=3C(=O)N4CCCCC4=NC=3C)=NOC2=C1 RAPZEAPATHNIPO-UHFFFAOYSA-N 0.000 description 4
- 238000013207 serial dilution Methods 0.000 description 4
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 4
- AEQFSUDEHCCHBT-UHFFFAOYSA-M sodium valproate Chemical compound [Na+].CCCC(C([O-])=O)CCC AEQFSUDEHCCHBT-UHFFFAOYSA-M 0.000 description 4
- 239000012453 solvate Substances 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- 229940102566 valproate Drugs 0.000 description 4
- MVWVFYHBGMAFLY-UHFFFAOYSA-N ziprasidone Chemical compound C1=CC=C2C(N3CCN(CC3)CCC3=CC=4CC(=O)NC=4C=C3Cl)=NSC2=C1 MVWVFYHBGMAFLY-UHFFFAOYSA-N 0.000 description 4
- RXWRMSBYWKMFMQ-VCHYOVAHSA-N (1e)-n-(3-chloro-2-iodoanilino)-2-oxo-2-(propylamino)ethanimidoyl cyanide Chemical compound CCCNC(=O)C(\C#N)=N\NC1=CC=CC(Cl)=C1I RXWRMSBYWKMFMQ-VCHYOVAHSA-N 0.000 description 3
- ADGHSWFUZUADDH-UHFFFAOYSA-N (2,6-dimethoxypyridin-3-yl)boronic acid Chemical compound COC1=CC=C(B(O)O)C(OC)=N1 ADGHSWFUZUADDH-UHFFFAOYSA-N 0.000 description 3
- ASXFMIDIRZPCGK-UHFFFAOYSA-N (4-methylpyridin-3-yl)boronic acid Chemical compound CC1=CC=NC=C1B(O)O ASXFMIDIRZPCGK-UHFFFAOYSA-N 0.000 description 3
- CCQKIRUMTHHPSX-UHFFFAOYSA-N (5-fluoro-2-methoxyphenyl)boronic acid Chemical compound COC1=CC=C(F)C=C1B(O)O CCQKIRUMTHHPSX-UHFFFAOYSA-N 0.000 description 3
- OCWTXKZPAZAQQW-UHFFFAOYSA-N (5-fluoro-6-methoxypyridin-3-yl)boronic acid Chemical compound COC1=NC=C(B(O)O)C=C1F OCWTXKZPAZAQQW-UHFFFAOYSA-N 0.000 description 3
- ZEUITGRIYCTCEM-KRWDZBQOSA-N (S)-duloxetine Chemical compound C1([C@@H](OC=2C3=CC=CC=C3C=CC=2)CCNC)=CC=CS1 ZEUITGRIYCTCEM-KRWDZBQOSA-N 0.000 description 3
- RDHCFMIWCSJGJM-UHFFFAOYSA-N 2-cyano-n-cyclopropylacetamide Chemical compound N#CCC(=O)NC1CC1 RDHCFMIWCSJGJM-UHFFFAOYSA-N 0.000 description 3
- QXWFLDZVDBAJAG-UHFFFAOYSA-N 2-cyano-n-propylacetamide Chemical compound CCCNC(=O)CC#N QXWFLDZVDBAJAG-UHFFFAOYSA-N 0.000 description 3
- ZAPCLWCCAKMTLQ-UHFFFAOYSA-N 3-[4-amino-3-(propylcarbamoyl)cinnolin-8-yl]benzoic acid Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC(C(O)=O)=C1 ZAPCLWCCAKMTLQ-UHFFFAOYSA-N 0.000 description 3
- NNVUXUJYVIVRKU-UHFFFAOYSA-N 3-chloro-2-iodoaniline Chemical group NC1=CC=CC(Cl)=C1I NNVUXUJYVIVRKU-UHFFFAOYSA-N 0.000 description 3
- NURVRRVXBZFKHJ-UHFFFAOYSA-N 4-amino-7-chloro-8-(2,5-dimethylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound ClC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(C)=CC=C1C NURVRRVXBZFKHJ-UHFFFAOYSA-N 0.000 description 3
- CKXAAXAUGQVKMV-UHFFFAOYSA-N 4-amino-7-chloro-8-phenyl-n-propylcinnoline-3-carboxamide Chemical compound ClC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC=C1 CKXAAXAUGQVKMV-UHFFFAOYSA-N 0.000 description 3
- UTLPDTOXOFRETH-UHFFFAOYSA-N 4-amino-7-fluoro-8-phenyl-n-propylcinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC=C1 UTLPDTOXOFRETH-UHFFFAOYSA-N 0.000 description 3
- RJUQWFAOLNQUTM-UHFFFAOYSA-N 4-amino-7-methoxy-8-phenyl-n-propylcinnoline-3-carboxamide Chemical compound COC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC=C1 RJUQWFAOLNQUTM-UHFFFAOYSA-N 0.000 description 3
- UJGYNTKWBYEZEI-UHFFFAOYSA-N 4-amino-8-(1-methylpyrazol-4-yl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C=1C=NN(C)C=1 UJGYNTKWBYEZEI-UHFFFAOYSA-N 0.000 description 3
- ANDSRHCEJZAOQC-UHFFFAOYSA-N 4-amino-8-(1h-indol-5-yl)-n-propylcinnoline-3-carboxamide Chemical compound C1=C2NC=CC2=CC(C=2C3=NN=C(C(=C3C=CC=2)N)C(=O)NCCC)=C1 ANDSRHCEJZAOQC-UHFFFAOYSA-N 0.000 description 3
- SULDIERSSHILHR-UHFFFAOYSA-N 4-amino-8-(2,3-dichlorophenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC(Cl)=C1Cl SULDIERSSHILHR-UHFFFAOYSA-N 0.000 description 3
- VSHXOPWIANIYJK-UHFFFAOYSA-N 4-amino-8-(2,3-difluorophenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC(F)=C1F VSHXOPWIANIYJK-UHFFFAOYSA-N 0.000 description 3
- IFQYHSKTVYMWGG-UHFFFAOYSA-N 4-amino-8-(2,3-dimethoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC(OC)=C1OC IFQYHSKTVYMWGG-UHFFFAOYSA-N 0.000 description 3
- QMHPXSLLDJXMCH-UHFFFAOYSA-N 4-amino-8-(2,4-difluorophenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(F)C=C1F QMHPXSLLDJXMCH-UHFFFAOYSA-N 0.000 description 3
- UMBHXQNJEMMKIG-UHFFFAOYSA-N 4-amino-8-(2,4-dimethoxyphenyl)-7-fluoro-n-propylcinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(OC)C=C1OC UMBHXQNJEMMKIG-UHFFFAOYSA-N 0.000 description 3
- CBNYNHQJHZNTHK-UHFFFAOYSA-N 4-amino-8-(2,4-dimethoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(OC)C=C1OC CBNYNHQJHZNTHK-UHFFFAOYSA-N 0.000 description 3
- IOKYXDQPVWMVCR-UHFFFAOYSA-N 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-7-fluoro-n-propylcinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CN=C(OC)N=C1OC IOKYXDQPVWMVCR-UHFFFAOYSA-N 0.000 description 3
- GMJNGKSFTHKTFJ-UHFFFAOYSA-N 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-n-ethylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CN=C(OC)N=C1OC GMJNGKSFTHKTFJ-UHFFFAOYSA-N 0.000 description 3
- URWAOABXZDWESI-UHFFFAOYSA-N 4-amino-8-(2,5-dichlorophenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(Cl)=CC=C1Cl URWAOABXZDWESI-UHFFFAOYSA-N 0.000 description 3
- ZDFKPTFDMSEEJC-UHFFFAOYSA-N 4-amino-8-(2,5-difluoro-4-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(F)=C(OC)C=C1F ZDFKPTFDMSEEJC-UHFFFAOYSA-N 0.000 description 3
- TVXFLMRBGGGVGJ-UHFFFAOYSA-N 4-amino-8-(2,5-difluorophenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(F)=CC=C1F TVXFLMRBGGGVGJ-UHFFFAOYSA-N 0.000 description 3
- PFZUQESQYBPRGB-UHFFFAOYSA-N 4-amino-8-(2,5-dimethoxyphenyl)-7-fluoro-n-propylcinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(OC)=CC=C1OC PFZUQESQYBPRGB-UHFFFAOYSA-N 0.000 description 3
- WFCALMPXVKUYLO-UHFFFAOYSA-N 4-amino-8-(2,5-dimethoxyphenyl)-n-ethylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CC(OC)=CC=C1OC WFCALMPXVKUYLO-UHFFFAOYSA-N 0.000 description 3
- FKATWOUWYYENKU-UHFFFAOYSA-N 4-amino-8-(2,5-dimethoxyphenyl)-n-methylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NC)=NN=C2C=1C1=CC(OC)=CC=C1OC FKATWOUWYYENKU-UHFFFAOYSA-N 0.000 description 3
- NTSIBLRVVRGOLO-UHFFFAOYSA-N 4-amino-8-(2,5-dimethylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(C)=CC=C1C NTSIBLRVVRGOLO-UHFFFAOYSA-N 0.000 description 3
- SJXZYPIUGXPYNZ-UHFFFAOYSA-N 4-amino-8-(2,6-dimethoxypyridin-3-yl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(OC)N=C1OC SJXZYPIUGXPYNZ-UHFFFAOYSA-N 0.000 description 3
- ZBTRXQMOEXJWEU-UHFFFAOYSA-N 4-amino-8-(2-fluoro-3-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC(OC)=C1F ZBTRXQMOEXJWEU-UHFFFAOYSA-N 0.000 description 3
- YJGFELIVBWEJLR-UHFFFAOYSA-N 4-amino-8-(2-fluoro-4-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(OC)C=C1F YJGFELIVBWEJLR-UHFFFAOYSA-N 0.000 description 3
- VXRYAIDFMDSNOD-UHFFFAOYSA-N 4-amino-8-(2-fluoro-4-methylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(C)C=C1F VXRYAIDFMDSNOD-UHFFFAOYSA-N 0.000 description 3
- PVVPNFHTAFOMLD-UHFFFAOYSA-N 4-amino-8-(2-fluoro-5-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(OC)=CC=C1F PVVPNFHTAFOMLD-UHFFFAOYSA-N 0.000 description 3
- VJCCUKHKFFYRTC-UHFFFAOYSA-N 4-amino-8-(2-fluoro-5-methylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(C)=CC=C1F VJCCUKHKFFYRTC-UHFFFAOYSA-N 0.000 description 3
- MKPZUOHXAIRIAF-UHFFFAOYSA-N 4-amino-8-(2-fluoropyridin-3-yl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CN=C1F MKPZUOHXAIRIAF-UHFFFAOYSA-N 0.000 description 3
- MRUOPNGPXPMKRC-UHFFFAOYSA-N 4-amino-8-(2-methoxypyridin-3-yl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CN=C1OC MRUOPNGPXPMKRC-UHFFFAOYSA-N 0.000 description 3
- NIOITEBKGPDZLC-UHFFFAOYSA-N 4-amino-8-(2-methoxypyrimidin-5-yl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CN=C(OC)N=C1 NIOITEBKGPDZLC-UHFFFAOYSA-N 0.000 description 3
- ZTDWGOGAYMPMGY-UHFFFAOYSA-N 4-amino-8-(3,4-difluorophenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(F)C(F)=C1 ZTDWGOGAYMPMGY-UHFFFAOYSA-N 0.000 description 3
- DPQQSMAXDWKBPS-UHFFFAOYSA-N 4-amino-8-(3,4-dimethoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(OC)C(OC)=C1 DPQQSMAXDWKBPS-UHFFFAOYSA-N 0.000 description 3
- XEGFESJWGGJFRD-UHFFFAOYSA-N 4-amino-8-(3,5-dichlorophenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(Cl)=CC(Cl)=C1 XEGFESJWGGJFRD-UHFFFAOYSA-N 0.000 description 3
- QQIUBQGUHFEXIG-UHFFFAOYSA-N 4-amino-8-(3,5-difluorophenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(F)=CC(F)=C1 QQIUBQGUHFEXIG-UHFFFAOYSA-N 0.000 description 3
- XDCYTRVYQOYYHP-UHFFFAOYSA-N 4-amino-8-(3,5-dimethoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(OC)=CC(OC)=C1 XDCYTRVYQOYYHP-UHFFFAOYSA-N 0.000 description 3
- CYIACUSKYQIBPS-UHFFFAOYSA-N 4-amino-8-(3-cyanophenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC(C#N)=C1 CYIACUSKYQIBPS-UHFFFAOYSA-N 0.000 description 3
- GKLOECGCAXRMDC-UHFFFAOYSA-N 4-amino-8-(3-fluoro-4-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(OC)C(F)=C1 GKLOECGCAXRMDC-UHFFFAOYSA-N 0.000 description 3
- FLGUXGCCCIUPKD-UHFFFAOYSA-N 4-amino-8-(3-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC(OC)=C1 FLGUXGCCCIUPKD-UHFFFAOYSA-N 0.000 description 3
- LCNUELABLMGVTP-UHFFFAOYSA-N 4-amino-8-(3-methylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC(C)=C1 LCNUELABLMGVTP-UHFFFAOYSA-N 0.000 description 3
- XLPIYDAKOUQWHP-UHFFFAOYSA-N 4-amino-8-(3-methylsulfonylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC(S(C)(=O)=O)=C1 XLPIYDAKOUQWHP-UHFFFAOYSA-N 0.000 description 3
- BUYFDFSKHAUJLU-UHFFFAOYSA-N 4-amino-8-(4-fluoro-2-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(F)C=C1OC BUYFDFSKHAUJLU-UHFFFAOYSA-N 0.000 description 3
- OFTOSZGOUAYABG-UHFFFAOYSA-N 4-amino-8-(4-fluorophenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(F)C=C1 OFTOSZGOUAYABG-UHFFFAOYSA-N 0.000 description 3
- GVPINAUAOMQJBS-UHFFFAOYSA-N 4-amino-8-(4-methoxy-3,5-dimethylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(C)=C(OC)C(C)=C1 GVPINAUAOMQJBS-UHFFFAOYSA-N 0.000 description 3
- IFOVTZBDAYSEGM-UHFFFAOYSA-N 4-amino-8-(4-methoxy-3-methylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(OC)C(C)=C1 IFOVTZBDAYSEGM-UHFFFAOYSA-N 0.000 description 3
- BBRGCPWGNDJVGL-UHFFFAOYSA-N 4-amino-8-(4-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(OC)C=C1 BBRGCPWGNDJVGL-UHFFFAOYSA-N 0.000 description 3
- JJZPGZLHCWHBCZ-UHFFFAOYSA-N 4-amino-8-(4-methylpyridin-3-yl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CN=CC=C1C JJZPGZLHCWHBCZ-UHFFFAOYSA-N 0.000 description 3
- BRCQJGSFYQTQHT-UHFFFAOYSA-N 4-amino-8-(5-chloro-2-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(Cl)=CC=C1OC BRCQJGSFYQTQHT-UHFFFAOYSA-N 0.000 description 3
- AERKPQVNNIUWON-UHFFFAOYSA-N 4-amino-8-(5-chloro-6-methoxypyridin-3-yl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CN=C(OC)C(Cl)=C1 AERKPQVNNIUWON-UHFFFAOYSA-N 0.000 description 3
- FWOUFCGOUBZEIZ-UHFFFAOYSA-N 4-amino-8-(5-fluoro-2-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(F)=CC=C1OC FWOUFCGOUBZEIZ-UHFFFAOYSA-N 0.000 description 3
- OIGDKTMOOHPODK-UHFFFAOYSA-N 4-amino-8-(5-fluoro-2-methylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(F)=CC=C1C OIGDKTMOOHPODK-UHFFFAOYSA-N 0.000 description 3
- OZMRJGZGCDFQFD-UHFFFAOYSA-N 4-amino-8-(5-fluoro-6-methoxypyridin-3-yl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CN=C(OC)C(F)=C1 OZMRJGZGCDFQFD-UHFFFAOYSA-N 0.000 description 3
- ZVKCJAXKENGMDP-UHFFFAOYSA-N 4-amino-8-(5-methoxy-2-methylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(OC)=CC=C1C ZVKCJAXKENGMDP-UHFFFAOYSA-N 0.000 description 3
- QBJKYLZHJZZIMO-UHFFFAOYSA-N 4-amino-8-(5-methoxypyridin-3-yl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CN=CC(OC)=C1 QBJKYLZHJZZIMO-UHFFFAOYSA-N 0.000 description 3
- XLIKWXFQSCRWDJ-UHFFFAOYSA-N 4-amino-8-(6-methoxypyridin-3-yl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(OC)N=C1 XLIKWXFQSCRWDJ-UHFFFAOYSA-N 0.000 description 3
- MABWJYHNHRWBSC-UHFFFAOYSA-N 4-amino-8-(6-methylpyridin-3-yl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(C)N=C1 MABWJYHNHRWBSC-UHFFFAOYSA-N 0.000 description 3
- QRBJSKJZLSFENH-UHFFFAOYSA-N 4-amino-8-[2-chloro-5-(trifluoromethyl)phenyl]-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(C(F)(F)F)=CC=C1Cl QRBJSKJZLSFENH-UHFFFAOYSA-N 0.000 description 3
- WYOHNNCMWCUFQD-UHFFFAOYSA-N 4-amino-8-[2-fluoro-5-(trifluoromethyl)phenyl]-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(C(F)(F)F)=CC=C1F WYOHNNCMWCUFQD-UHFFFAOYSA-N 0.000 description 3
- IGGRMKCLFNXGCZ-UHFFFAOYSA-N 4-amino-8-[3,5-bis(trifluoromethyl)phenyl]-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(C(F)(F)F)=CC(C(F)(F)F)=C1 IGGRMKCLFNXGCZ-UHFFFAOYSA-N 0.000 description 3
- GBYWXUWYLRYFKH-UHFFFAOYSA-N 4-amino-8-[3-(azetidine-1-carbonyl)phenyl]-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C(C=1)=CC=CC=1C(=O)N1CCC1 GBYWXUWYLRYFKH-UHFFFAOYSA-N 0.000 description 3
- DBBOPGCIRSZYFW-UHFFFAOYSA-N 4-amino-8-[3-(dimethylamino)phenyl]-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC(N(C)C)=C1 DBBOPGCIRSZYFW-UHFFFAOYSA-N 0.000 description 3
- BSESBIKVHMACIL-UHFFFAOYSA-N 4-amino-8-[4-(dimethylamino)phenyl]-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(N(C)C)C=C1 BSESBIKVHMACIL-UHFFFAOYSA-N 0.000 description 3
- HKLKTYGKDWPHDG-UHFFFAOYSA-N 4-amino-8-[4-methoxy-2-(trifluoromethyl)phenyl]-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(OC)C=C1C(F)(F)F HKLKTYGKDWPHDG-UHFFFAOYSA-N 0.000 description 3
- ZRHJFOQMTHUEKL-UHFFFAOYSA-N 4-amino-8-[5-(azetidine-1-carbonyl)pyridin-3-yl]-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C(C=1)=CN=CC=1C(=O)N1CCC1 ZRHJFOQMTHUEKL-UHFFFAOYSA-N 0.000 description 3
- BJITWOWSNBRABJ-UHFFFAOYSA-N 4-amino-8-bromo-n-butylcinnoline-3-carboxamide Chemical compound BrC1=CC=CC2=C(N)C(C(=O)NCCCC)=NN=C21 BJITWOWSNBRABJ-UHFFFAOYSA-N 0.000 description 3
- WPTFBAURAYCWHY-UHFFFAOYSA-N 4-amino-8-bromocinnoline-3-carboxylic acid Chemical compound C1=CC=C2C(N)=C(C(O)=O)N=NC2=C1Br WPTFBAURAYCWHY-UHFFFAOYSA-N 0.000 description 3
- QZVKETIPEADKQP-UHFFFAOYSA-N 4-amino-8-naphthalen-2-yl-n-propylcinnoline-3-carboxamide Chemical compound C1=CC=CC2=CC(C=3C4=NN=C(C(=C4C=CC=3)N)C(=O)NCCC)=CC=C21 QZVKETIPEADKQP-UHFFFAOYSA-N 0.000 description 3
- JOEWKKBZJFTFDE-UHFFFAOYSA-N 4-amino-n-(cyclopropylmethyl)-8-phenylcinnoline-3-carboxamide Chemical compound C1=CC=C2C(N)=C(C(=O)NCC3CC3)N=NC2=C1C1=CC=CC=C1 JOEWKKBZJFTFDE-UHFFFAOYSA-N 0.000 description 3
- BRGAPYGSMFLISV-UHFFFAOYSA-N 4-amino-n-butyl-8-(2,4-dimethoxypyrimidin-5-yl)cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCCC)=NN=C2C=1C1=CN=C(OC)N=C1OC BRGAPYGSMFLISV-UHFFFAOYSA-N 0.000 description 3
- RINRTVBSMKHYQY-UHFFFAOYSA-N 4-amino-n-butyl-8-(2,5-dimethoxyphenyl)cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCCC)=NN=C2C=1C1=CC(OC)=CC=C1OC RINRTVBSMKHYQY-UHFFFAOYSA-N 0.000 description 3
- CTDABRUPUXABAF-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(2-methoxy-5-methylphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=C(C)C=C1C1=CC=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 CTDABRUPUXABAF-UHFFFAOYSA-N 0.000 description 3
- NZHQRVWDMSJDRJ-UHFFFAOYSA-N 4-amino-n-ethyl-8-(4-methoxypyridin-3-yl)cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CN=CC=C1OC NZHQRVWDMSJDRJ-UHFFFAOYSA-N 0.000 description 3
- IKRSLHDZHQIINP-UHFFFAOYSA-N 4-amino-n-propyl-8-(1h-pyrazol-4-yl)cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C=1C=NNC=1 IKRSLHDZHQIINP-UHFFFAOYSA-N 0.000 description 3
- JFDFMBNFQREYGP-UHFFFAOYSA-N 4-amino-n-propyl-8-(2,3,4-trimethoxyphenyl)cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(OC)C(OC)=C1OC JFDFMBNFQREYGP-UHFFFAOYSA-N 0.000 description 3
- SVLORJLICYYEEW-UHFFFAOYSA-N 4-amino-n-propyl-8-(3,4,5-trimethoxyphenyl)cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(OC)=C(OC)C(OC)=C1 SVLORJLICYYEEW-UHFFFAOYSA-N 0.000 description 3
- HBOCIEQHPNRRKU-UHFFFAOYSA-N 4-amino-n-propyl-8-[2-(trifluoromethyl)phenyl]cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC=C1C(F)(F)F HBOCIEQHPNRRKU-UHFFFAOYSA-N 0.000 description 3
- WIUQJLSDOXXQIV-UHFFFAOYSA-N 4-amino-n-propyl-8-[3-(trifluoromethoxy)phenyl]cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC(OC(F)(F)F)=C1 WIUQJLSDOXXQIV-UHFFFAOYSA-N 0.000 description 3
- CWTYIYSAZBYXNX-UHFFFAOYSA-N 4-amino-n-propyl-8-[4-(trifluoromethoxy)phenyl]cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(OC(F)(F)F)C=C1 CWTYIYSAZBYXNX-UHFFFAOYSA-N 0.000 description 3
- NUBHLJUKCPPYOW-UHFFFAOYSA-N 4-amino-n-propyl-8-pyrazin-2-ylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CN=CC=N1 NUBHLJUKCPPYOW-UHFFFAOYSA-N 0.000 description 3
- LSMMAMOXRXZTIP-UHFFFAOYSA-N 4-amino-n-propyl-8-pyridin-2-ylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC=N1 LSMMAMOXRXZTIP-UHFFFAOYSA-N 0.000 description 3
- IWNUSPFKFRARKW-UHFFFAOYSA-N 4-amino-n-propyl-8-pyridin-3-ylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CN=C1 IWNUSPFKFRARKW-UHFFFAOYSA-N 0.000 description 3
- WQLCFVZOYKHCQS-UHFFFAOYSA-N 4-amino-n-propyl-8-pyridin-4-ylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=NC=C1 WQLCFVZOYKHCQS-UHFFFAOYSA-N 0.000 description 3
- YMSVDRXGODMHAS-UHFFFAOYSA-N 4-amino-n-propyl-8-quinolin-3-ylcinnoline-3-carboxamide Chemical compound C1=CC=CC2=CC(C=3C4=NN=C(C(=C4C=CC=3)N)C(=O)NCCC)=CN=C21 YMSVDRXGODMHAS-UHFFFAOYSA-N 0.000 description 3
- PKWJRCVJHNOJPY-UHFFFAOYSA-N 4-amino-n-propyl-8-quinolin-6-ylcinnoline-3-carboxamide Chemical compound N1=CC=CC2=CC(C=3C4=NN=C(C(=C4C=CC=3)N)C(=O)NCCC)=CC=C21 PKWJRCVJHNOJPY-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- 241000282472 Canis lupus familiaris Species 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 102000005915 GABA Receptors Human genes 0.000 description 3
- 108010005551 GABA Receptors Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 208000019695 Migraine disease Diseases 0.000 description 3
- 208000016285 Movement disease Diseases 0.000 description 3
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 3
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 3
- 208000006011 Stroke Diseases 0.000 description 3
- 229960000583 acetic acid Drugs 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 125000000304 alkynyl group Chemical group 0.000 description 3
- 230000036506 anxiety Effects 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 229960004372 aripiprazole Drugs 0.000 description 3
- 239000003693 atypical antipsychotic agent Substances 0.000 description 3
- SQKLESHVRHQGNI-UHFFFAOYSA-N azetidin-1-yl-(5-trimethylstannylpyridin-3-yl)methanone Chemical compound C[Sn](C)(C)C1=CN=CC(C(=O)N2CCC2)=C1 SQKLESHVRHQGNI-UHFFFAOYSA-N 0.000 description 3
- HONIICLYMWZJFZ-UHFFFAOYSA-N azetidine Chemical compound C1CNC1 HONIICLYMWZJFZ-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 229960004782 chlordiazepoxide Drugs 0.000 description 3
- ANTSCNMPPGJYLG-UHFFFAOYSA-N chlordiazepoxide Chemical compound O=N=1CC(NC)=NC2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 ANTSCNMPPGJYLG-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229960004170 clozapine Drugs 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- NIJJYAXOARWZEE-UHFFFAOYSA-N di-n-propyl-acetic acid Natural products CCCC(C(O)=O)CCC NIJJYAXOARWZEE-UHFFFAOYSA-N 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229960002866 duloxetine Drugs 0.000 description 3
- 239000003480 eluent Substances 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 206010015037 epilepsy Diseases 0.000 description 3
- CXFCZOHIEXNOCL-UHFFFAOYSA-N ethyl 2-[(2-bromophenyl)hydrazinylidene]-2-cyanoacetate Chemical compound CCOC(=O)C(C#N)=NNC1=CC=CC=C1Br CXFCZOHIEXNOCL-UHFFFAOYSA-N 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 125000002541 furyl group Chemical group 0.000 description 3
- 230000003371 gabaergic effect Effects 0.000 description 3
- 229960002870 gabapentin Drugs 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 150000004677 hydrates Chemical class 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 150000002576 ketones Chemical group 0.000 description 3
- 229960001848 lamotrigine Drugs 0.000 description 3
- PYZRQGJRPPTADH-UHFFFAOYSA-N lamotrigine Chemical compound NC1=NC(N)=NN=C1C1=CC=CC(Cl)=C1Cl PYZRQGJRPPTADH-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 206010027599 migraine Diseases 0.000 description 3
- 230000000897 modulatory effect Effects 0.000 description 3
- 239000002808 molecular sieve Substances 0.000 description 3
- 208000021722 neuropathic pain Diseases 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 239000003495 polar organic solvent Substances 0.000 description 3
- 229940074439 potassium sodium tartrate Drugs 0.000 description 3
- 208000020016 psychiatric disease Diseases 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 229960001534 risperidone Drugs 0.000 description 3
- UHSKFQJFRQCDBE-UHFFFAOYSA-N ropinirole Chemical compound CCCN(CCC)CCC1=CC=CC2=C1CC(=O)N2 UHSKFQJFRQCDBE-UHFFFAOYSA-N 0.000 description 3
- 239000001632 sodium acetate Substances 0.000 description 3
- 235000017281 sodium acetate Nutrition 0.000 description 3
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 3
- 229910001415 sodium ion Inorganic materials 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 125000003107 substituted aryl group Chemical group 0.000 description 3
- 239000000829 suppository Substances 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 125000001544 thienyl group Chemical group 0.000 description 3
- 239000011534 wash buffer Substances 0.000 description 3
- 229960000607 ziprasidone Drugs 0.000 description 3
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 2
- KTOJGSDLJNUAEP-UHFFFAOYSA-N (2,5-difluorophenyl)boronic acid Chemical compound OB(O)C1=CC(F)=CC=C1F KTOJGSDLJNUAEP-UHFFFAOYSA-N 0.000 description 2
- OOMZKLJLVGQZGV-UHFFFAOYSA-N (2,5-dimethylphenyl)boronic acid Chemical compound CC1=CC=C(C)C(B(O)O)=C1 OOMZKLJLVGQZGV-UHFFFAOYSA-N 0.000 description 2
- XNWCIDBPLDKKAG-UHFFFAOYSA-N (2-chloro-6-methoxyphenyl)boronic acid Chemical compound COC1=CC=CC(Cl)=C1B(O)O XNWCIDBPLDKKAG-UHFFFAOYSA-N 0.000 description 2
- ULUIXJDBPYBAHS-UHFFFAOYSA-N (2-fluoro-4-methoxyphenyl)boronic acid Chemical compound COC1=CC=C(B(O)O)C(F)=C1 ULUIXJDBPYBAHS-UHFFFAOYSA-N 0.000 description 2
- IPTZOWYBCLEBOE-UHFFFAOYSA-N (2-fluoro-5-methoxyphenyl)boronic acid Chemical compound COC1=CC=C(F)C(B(O)O)=C1 IPTZOWYBCLEBOE-UHFFFAOYSA-N 0.000 description 2
- NVOLYUXUHWBCRJ-UHFFFAOYSA-N (2-methoxypyridin-3-yl)boronic acid Chemical compound COC1=NC=CC=C1B(O)O NVOLYUXUHWBCRJ-UHFFFAOYSA-N 0.000 description 2
- ADJBXDCXYMCCAD-UHFFFAOYSA-N (4-fluoro-2-methoxyphenyl)boronic acid Chemical compound COC1=CC(F)=CC=C1B(O)O ADJBXDCXYMCCAD-UHFFFAOYSA-N 0.000 description 2
- QKOJLMKWBRBZNQ-UHFFFAOYSA-N (5-fluoro-2-methylphenyl)boronic acid Chemical compound CC1=CC=C(F)C=C1B(O)O QKOJLMKWBRBZNQ-UHFFFAOYSA-N 0.000 description 2
- GBBSUAFBMRNDJC-MRXNPFEDSA-N (5R)-zopiclone Chemical compound C1CN(C)CCN1C(=O)O[C@@H]1C2=NC=CN=C2C(=O)N1C1=CC=C(Cl)C=N1 GBBSUAFBMRNDJC-MRXNPFEDSA-N 0.000 description 2
- MZUSCPDSQJSBSY-UHFFFAOYSA-N (6-methylpyridin-3-yl)boronic acid Chemical compound CC1=CC=C(B(O)O)C=N1 MZUSCPDSQJSBSY-UHFFFAOYSA-N 0.000 description 2
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 2
- 125000006583 (C1-C3) haloalkyl group Chemical group 0.000 description 2
- 125000006701 (C1-C7) alkyl group Chemical group 0.000 description 2
- RTHCYVBBDHJXIQ-MRXNPFEDSA-N (R)-fluoxetine Chemical compound O([C@H](CCNC)C=1C=CC=CC=1)C1=CC=C(C(F)(F)F)C=C1 RTHCYVBBDHJXIQ-MRXNPFEDSA-N 0.000 description 2
- VSWBSWWIRNCQIJ-GJZGRUSLSA-N (R,R)-asenapine Chemical compound O1C2=CC=CC=C2[C@@H]2CN(C)C[C@H]2C2=CC(Cl)=CC=C21 VSWBSWWIRNCQIJ-GJZGRUSLSA-N 0.000 description 2
- BGRJTUBHPOOWDU-NSHDSACASA-N (S)-(-)-sulpiride Chemical compound CCN1CCC[C@H]1CNC(=O)C1=CC(S(N)(=O)=O)=CC=C1OC BGRJTUBHPOOWDU-NSHDSACASA-N 0.000 description 2
- LBUJPTNKIBCYBY-UHFFFAOYSA-N 1,2,3,4-tetrahydroquinoline Chemical compound C1=CC=C2CCCNC2=C1 LBUJPTNKIBCYBY-UHFFFAOYSA-N 0.000 description 2
- 125000004502 1,2,3-oxadiazolyl group Chemical group 0.000 description 2
- 125000004511 1,2,3-thiadiazolyl group Chemical group 0.000 description 2
- 125000001399 1,2,3-triazolyl group Chemical group N1N=NC(=C1)* 0.000 description 2
- 125000004504 1,2,4-oxadiazolyl group Chemical group 0.000 description 2
- 125000004514 1,2,4-thiadiazolyl group Chemical group 0.000 description 2
- 125000001376 1,2,4-triazolyl group Chemical group N1N=C(N=C1)* 0.000 description 2
- 125000001781 1,3,4-oxadiazolyl group Chemical group 0.000 description 2
- 125000004520 1,3,4-thiadiazolyl group Chemical group 0.000 description 2
- WZHOBXRNVCZJGB-UHFFFAOYSA-N 1,3-dimethyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrazole Chemical compound CN1N=C(C)C=C1B1OC(C)(C)C(C)(C)O1 WZHOBXRNVCZJGB-UHFFFAOYSA-N 0.000 description 2
- XADPCRFTWLAXEV-UHFFFAOYSA-N 1-fluoro-2-iodo-3-nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC(F)=C1I XADPCRFTWLAXEV-UHFFFAOYSA-N 0.000 description 2
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 2
- ARGCQEVBJHPOGB-UHFFFAOYSA-N 2,5-dihydrofuran Chemical compound C1OCC=C1 ARGCQEVBJHPOGB-UHFFFAOYSA-N 0.000 description 2
- IDXIXPYWEHLUFD-UHFFFAOYSA-N 2-(cyclopropylmethylamino)-2-oxo-n-(2-phenylanilino)ethanimidoyl cyanide Chemical compound C=1C=CC=C(C=2C=CC=CC=2)C=1NN=C(C#N)C(=O)NCC1CC1 IDXIXPYWEHLUFD-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- ICCYFVWQNFMENX-UHFFFAOYSA-N 2-chloro-6-nitrophenol Chemical group OC1=C(Cl)C=CC=C1[N+]([O-])=O ICCYFVWQNFMENX-UHFFFAOYSA-N 0.000 description 2
- IFRKLXQWQFINOQ-UHFFFAOYSA-N 2-cyano-n-(cyclopropylmethyl)acetamide Chemical compound N#CCC(=O)NCC1CC1 IFRKLXQWQFINOQ-UHFFFAOYSA-N 0.000 description 2
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 2
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 2
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 description 2
- PMXMIIMHBWHSKN-UHFFFAOYSA-N 3-{2-[4-(6-fluoro-1,2-benzoxazol-3-yl)piperidin-1-yl]ethyl}-9-hydroxy-2-methyl-6,7,8,9-tetrahydropyrido[1,2-a]pyrimidin-4-one Chemical compound FC1=CC=C2C(C3CCN(CC3)CCC=3C(=O)N4CCCC(O)C4=NC=3C)=NOC2=C1 PMXMIIMHBWHSKN-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- PCTRYMLLRKWXGF-UHFFFAOYSA-N 4-(butylamino)-1-ethyl-6-methyl-5-pyrazolo[3,4-b]pyridinecarboxylic acid ethyl ester Chemical compound CCCCNC1=C(C(=O)OCC)C(C)=NC2=C1C=NN2CC PCTRYMLLRKWXGF-UHFFFAOYSA-N 0.000 description 2
- NPFSUSOBJUKTDE-UHFFFAOYSA-N 4-amino-7-chloro-8-(2,4-dimethoxypyrimidin-5-yl)-n-propylcinnoline-3-carboxamide Chemical compound ClC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CN=C(OC)N=C1OC NPFSUSOBJUKTDE-UHFFFAOYSA-N 0.000 description 2
- LKZIQUXLNRWIHK-UHFFFAOYSA-N 4-amino-7-chloro-8-(2,5-dimethoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound ClC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(OC)=CC=C1OC LKZIQUXLNRWIHK-UHFFFAOYSA-N 0.000 description 2
- NDRCTVXAHQAWNT-UHFFFAOYSA-N 4-amino-7-chloro-8-(2-methoxy-5-methylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound ClC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(C)=CC=C1OC NDRCTVXAHQAWNT-UHFFFAOYSA-N 0.000 description 2
- OYQYXZCKDDXTPF-UHFFFAOYSA-N 4-amino-7-chloro-8-(4-methoxypyridin-3-yl)-n-propylcinnoline-3-carboxamide Chemical compound ClC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CN=CC=C1OC OYQYXZCKDDXTPF-UHFFFAOYSA-N 0.000 description 2
- AOIADMYQYQNQQA-UHFFFAOYSA-N 4-amino-7-cyano-8-(2,4-dimethoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound N#CC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(OC)C=C1OC AOIADMYQYQNQQA-UHFFFAOYSA-N 0.000 description 2
- JIPOSXPSJNNHFK-UHFFFAOYSA-N 4-amino-7-fluoro-8-(2-fluoro-3-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC(OC)=C1F JIPOSXPSJNNHFK-UHFFFAOYSA-N 0.000 description 2
- WANPRCYMAZZPRB-UHFFFAOYSA-N 4-amino-7-fluoro-8-(2-fluoro-4-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(OC)C=C1F WANPRCYMAZZPRB-UHFFFAOYSA-N 0.000 description 2
- PBPWIXYEJKGPPC-UHFFFAOYSA-N 4-amino-7-fluoro-8-(2-fluoro-6-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=C(F)C=CC=C1OC PBPWIXYEJKGPPC-UHFFFAOYSA-N 0.000 description 2
- XDPMVZBFKCIPKQ-UHFFFAOYSA-N 4-amino-7-fluoro-8-(2-methoxy-5-methylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(C)=CC=C1OC XDPMVZBFKCIPKQ-UHFFFAOYSA-N 0.000 description 2
- DSWQZNCLAOIYSJ-UHFFFAOYSA-N 4-amino-7-fluoro-8-(4-fluoro-2-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(F)C=C1OC DSWQZNCLAOIYSJ-UHFFFAOYSA-N 0.000 description 2
- RGVSDPWAUKWCJM-UHFFFAOYSA-N 4-amino-7-fluoro-8-(4-methoxypyridin-3-yl)-n-propylcinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CN=CC=C1OC RGVSDPWAUKWCJM-UHFFFAOYSA-N 0.000 description 2
- XDRKDCWONVJGSD-UHFFFAOYSA-N 4-amino-7-fluoro-8-(5-fluoro-2-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(F)=CC=C1OC XDRKDCWONVJGSD-UHFFFAOYSA-N 0.000 description 2
- OYUSRTOGCZDUFX-UHFFFAOYSA-N 4-amino-7-fluoro-8-(5-fluoro-2-methylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(F)=CC=C1C OYUSRTOGCZDUFX-UHFFFAOYSA-N 0.000 description 2
- XEKGYNOGHFVELS-UHFFFAOYSA-N 4-amino-8-(1,3-benzodioxol-4-yl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC2=C1OCO2 XEKGYNOGHFVELS-UHFFFAOYSA-N 0.000 description 2
- TYHHLMAYHSLSGN-UHFFFAOYSA-N 4-amino-8-(2,3-dihydro-1,4-benzodioxin-6-yl)-n-propylcinnoline-3-carboxamide Chemical compound O1CCOC2=CC(C=3C4=NN=C(C(=C4C=CC=3)N)C(=O)NCCC)=CC=C21 TYHHLMAYHSLSGN-UHFFFAOYSA-N 0.000 description 2
- MFHPKPPNZZGFKR-UHFFFAOYSA-N 4-amino-8-(2,3-dimethylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC(C)=C1C MFHPKPPNZZGFKR-UHFFFAOYSA-N 0.000 description 2
- SDSQWUZHOYASDR-UHFFFAOYSA-N 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-n-(2-hydroxypropyl)cinnoline-3-carboxamide Chemical compound COC1=NC(OC)=NC=C1C1=CC=CC2=C(N)C(C(=O)NCC(C)O)=NN=C12 SDSQWUZHOYASDR-UHFFFAOYSA-N 0.000 description 2
- BYTFPQHOTXJIIA-UHFFFAOYSA-N 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-n-(2-methylpropyl)cinnoline-3-carboxamide Chemical compound COC1=NC(OC)=NC=C1C1=CC=CC2=C(N)C(C(=O)NCC(C)C)=NN=C12 BYTFPQHOTXJIIA-UHFFFAOYSA-N 0.000 description 2
- AOEQMJKWEXMPSS-UHFFFAOYSA-N 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-n-(oxolan-2-ylmethyl)cinnoline-3-carboxamide Chemical compound COC1=NC(OC)=NC=C1C1=CC=CC2=C(N)C(C(=O)NCC3OCCC3)=NN=C12 AOEQMJKWEXMPSS-UHFFFAOYSA-N 0.000 description 2
- JSCLMFPUMDRWER-UHFFFAOYSA-N 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-n-methylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NC)=NN=C2C=1C1=CN=C(OC)N=C1OC JSCLMFPUMDRWER-UHFFFAOYSA-N 0.000 description 2
- JRCQRBJGHBZPRG-UHFFFAOYSA-N 4-amino-8-(2,4-dimethylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(C)C=C1C JRCQRBJGHBZPRG-UHFFFAOYSA-N 0.000 description 2
- HHHLFJCNWMQOSS-UHFFFAOYSA-N 4-amino-8-(2,5-difluorophenyl)-7-fluoro-n-propylcinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(F)=CC=C1F HHHLFJCNWMQOSS-UHFFFAOYSA-N 0.000 description 2
- APUNYVRQQYUBJR-UHFFFAOYSA-N 4-amino-8-(2,5-dimethoxyphenyl)-n-(2-hydroxypropyl)cinnoline-3-carboxamide Chemical compound COC1=CC=C(OC)C(C=2C3=NN=C(C(N)=C3C=CC=2)C(=O)NCC(C)O)=C1 APUNYVRQQYUBJR-UHFFFAOYSA-N 0.000 description 2
- MGUKATBPDDNUIF-UHFFFAOYSA-N 4-amino-8-(2,5-dimethoxyphenyl)-n-(2-methylpropyl)cinnoline-3-carboxamide Chemical compound COC1=CC=C(OC)C(C=2C3=NN=C(C(N)=C3C=CC=2)C(=O)NCC(C)C)=C1 MGUKATBPDDNUIF-UHFFFAOYSA-N 0.000 description 2
- LYMKITHSOPJALL-UHFFFAOYSA-N 4-amino-8-(2,5-dimethoxyphenyl)-n-(oxolan-2-ylmethyl)cinnoline-3-carboxamide Chemical compound COC1=CC=C(OC)C(C=2C3=NN=C(C(N)=C3C=CC=2)C(=O)NCC2OCCC2)=C1 LYMKITHSOPJALL-UHFFFAOYSA-N 0.000 description 2
- GSOLDGRRHZQLOS-UHFFFAOYSA-N 4-amino-8-(2,5-dimethoxyphenyl)cinnoline-3-carboxylic acid Chemical compound COC1=CC=C(OC)C(C=2C3=NN=C(C(N)=C3C=CC=2)C(O)=O)=C1 GSOLDGRRHZQLOS-UHFFFAOYSA-N 0.000 description 2
- VOVGYBOEGUOGJQ-UHFFFAOYSA-N 4-amino-8-(2,6-dimethylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=C(C)C=CC=C1C VOVGYBOEGUOGJQ-UHFFFAOYSA-N 0.000 description 2
- PKJQXUNWQWVUMY-UHFFFAOYSA-N 4-amino-8-(2-chloro-5-methoxyphenyl)-7-fluoro-n-propylcinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(OC)=CC=C1Cl PKJQXUNWQWVUMY-UHFFFAOYSA-N 0.000 description 2
- DIVPUAQGKLPBRZ-UHFFFAOYSA-N 4-amino-8-(2-chloro-6-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=C(Cl)C=CC=C1OC DIVPUAQGKLPBRZ-UHFFFAOYSA-N 0.000 description 2
- SFBCNFHSPXZYIU-UHFFFAOYSA-N 4-amino-8-(2-fluoro-4,6-dimethoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=C(F)C=C(OC)C=C1OC SFBCNFHSPXZYIU-UHFFFAOYSA-N 0.000 description 2
- RJXUYHMPJGHZBF-UHFFFAOYSA-N 4-amino-8-(2-fluoro-5-methylpyridin-3-yl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(C)=CN=C1F RJXUYHMPJGHZBF-UHFFFAOYSA-N 0.000 description 2
- QQTKETYFMWYFGS-UHFFFAOYSA-N 4-amino-8-(2-fluoro-6-methylpyridin-3-yl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(C)N=C1F QQTKETYFMWYFGS-UHFFFAOYSA-N 0.000 description 2
- WTPKKJMJVMDVLK-UHFFFAOYSA-N 4-amino-8-(2-methoxy-5-methylphenyl)-n-(2-methylpropyl)cinnoline-3-carboxamide Chemical compound COC1=CC=C(C)C=C1C1=CC=CC2=C(N)C(C(=O)NCC(C)C)=NN=C12 WTPKKJMJVMDVLK-UHFFFAOYSA-N 0.000 description 2
- WCDSEXZBVAPWFR-UHFFFAOYSA-N 4-amino-8-(2-methoxy-5-methylphenyl)-n-(oxolan-2-ylmethyl)cinnoline-3-carboxamide Chemical compound COC1=CC=C(C)C=C1C1=CC=CC2=C(N)C(C(=O)NCC3OCCC3)=NN=C12 WCDSEXZBVAPWFR-UHFFFAOYSA-N 0.000 description 2
- YVGMIRYHNHFUEO-UHFFFAOYSA-N 4-amino-8-(2-methoxy-5-methylphenyl)-n-methylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NC)=NN=C2C=1C1=CC(C)=CC=C1OC YVGMIRYHNHFUEO-UHFFFAOYSA-N 0.000 description 2
- JMRHVJPVNLBGRZ-UHFFFAOYSA-N 4-amino-8-(2-methylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC=C1C JMRHVJPVNLBGRZ-UHFFFAOYSA-N 0.000 description 2
- AYUWBRCLPWDVRE-UHFFFAOYSA-N 4-amino-8-(3,4-dimethylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(C)C(C)=C1 AYUWBRCLPWDVRE-UHFFFAOYSA-N 0.000 description 2
- TWMIXDWRCUPFIR-UHFFFAOYSA-N 4-amino-8-(3,5-dimethyl-1h-pyrazol-4-yl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C=1C(C)=NNC=1C TWMIXDWRCUPFIR-UHFFFAOYSA-N 0.000 description 2
- IACRYXFWKJOMEI-UHFFFAOYSA-N 4-amino-8-(3,5-dimethylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(C)=CC(C)=C1 IACRYXFWKJOMEI-UHFFFAOYSA-N 0.000 description 2
- BARDEYCLOVDZCK-UHFFFAOYSA-N 4-amino-8-(3-chlorophenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC(Cl)=C1 BARDEYCLOVDZCK-UHFFFAOYSA-N 0.000 description 2
- GJCFQBAZNNBFFI-UHFFFAOYSA-N 4-amino-8-(3-fluoro-2-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC(F)=C1OC GJCFQBAZNNBFFI-UHFFFAOYSA-N 0.000 description 2
- RQNJMMXNQLTSIR-UHFFFAOYSA-N 4-amino-8-(4,5-difluoro-2-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(F)=C(F)C=C1OC RQNJMMXNQLTSIR-UHFFFAOYSA-N 0.000 description 2
- UOYXROPJIZZCOK-UHFFFAOYSA-N 4-amino-8-(4-chlorophenyl)-n-cyclobutylcinnoline-3-carboxamide Chemical compound C1=CC=C2C(N)=C(C(=O)NC3CCC3)N=NC2=C1C1=CC=C(Cl)C=C1 UOYXROPJIZZCOK-UHFFFAOYSA-N 0.000 description 2
- VPLCPOOBSXMKCG-UHFFFAOYSA-N 4-amino-8-(4-chlorophenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(Cl)C=C1 VPLCPOOBSXMKCG-UHFFFAOYSA-N 0.000 description 2
- ACTMIDNPHOXYRX-UHFFFAOYSA-N 4-amino-8-(4-methoxypyridin-3-yl)-n-(2-methylpropyl)cinnoline-3-carboxamide Chemical compound COC1=CC=NC=C1C1=CC=CC2=C(N)C(C(=O)NCC(C)C)=NN=C12 ACTMIDNPHOXYRX-UHFFFAOYSA-N 0.000 description 2
- OAMDUTFLWXGQOY-UHFFFAOYSA-N 4-amino-8-(4-methoxypyridin-3-yl)-n-(oxolan-2-ylmethyl)cinnoline-3-carboxamide Chemical compound COC1=CC=NC=C1C1=CC=CC2=C(N)C(C(=O)NCC3OCCC3)=NN=C12 OAMDUTFLWXGQOY-UHFFFAOYSA-N 0.000 description 2
- ZWBGUBYKLJZNEM-UHFFFAOYSA-N 4-amino-8-(4-methoxypyridin-3-yl)-n-methylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NC)=NN=C2C=1C1=CN=CC=C1OC ZWBGUBYKLJZNEM-UHFFFAOYSA-N 0.000 description 2
- AKIBTOCVMBMKRW-UHFFFAOYSA-N 4-amino-8-(4-methylphenyl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(C)C=C1 AKIBTOCVMBMKRW-UHFFFAOYSA-N 0.000 description 2
- IWCZUMXCBGOERP-UHFFFAOYSA-N 4-amino-8-(6-methoxy-2-methylpyridin-3-yl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(OC)N=C1C IWCZUMXCBGOERP-UHFFFAOYSA-N 0.000 description 2
- CPIIQKSCWBCNRB-UHFFFAOYSA-N 4-amino-8-(6-methoxy-4-methylpyridin-3-yl)-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CN=C(OC)C=C1C CPIIQKSCWBCNRB-UHFFFAOYSA-N 0.000 description 2
- VOXPEFBXXDMWGO-UHFFFAOYSA-N 4-amino-8-[5-(azetidine-1-carbonyl)-2-methoxyphenyl]-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C(C(=CC=1)OC)=CC=1C(=O)N1CCC1 VOXPEFBXXDMWGO-UHFFFAOYSA-N 0.000 description 2
- RYVLKFFXUKUJJH-UHFFFAOYSA-N 4-amino-8-[5-(azetidine-1-carbonyl)-2-methylphenyl]-n-propylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C(C(=CC=1)C)=CC=1C(=O)N1CCC1 RYVLKFFXUKUJJH-UHFFFAOYSA-N 0.000 description 2
- KBVPVXNDPJZODA-UHFFFAOYSA-N 4-amino-n-(2-hydroxypropyl)-8-(2-methoxy-5-methylphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=C(C)C=C1C1=CC=CC2=C(N)C(C(=O)NCC(C)O)=NN=C12 KBVPVXNDPJZODA-UHFFFAOYSA-N 0.000 description 2
- FOASNHUIEWZTOT-UHFFFAOYSA-N 4-amino-n-(2-hydroxypropyl)-8-(4-methoxypyridin-3-yl)cinnoline-3-carboxamide Chemical compound COC1=CC=NC=C1C1=CC=CC2=C(N)C(C(=O)NCC(C)O)=NN=C12 FOASNHUIEWZTOT-UHFFFAOYSA-N 0.000 description 2
- RAVRSJTYRYJFNY-UHFFFAOYSA-N 4-amino-n-butyl-8-(2-methoxy-5-methylphenyl)cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCCC)=NN=C2C=1C1=CC(C)=CC=C1OC RAVRSJTYRYJFNY-UHFFFAOYSA-N 0.000 description 2
- IONGEDVRUKNHDI-UHFFFAOYSA-N 4-amino-n-butyl-8-(4-methoxypyridin-3-yl)cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCCC)=NN=C2C=1C1=CN=CC=C1OC IONGEDVRUKNHDI-UHFFFAOYSA-N 0.000 description 2
- QGFJRDRILUEZKI-UHFFFAOYSA-N 4-amino-n-cyclobutyl-7-fluoro-8-(2-methoxy-5-methylphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=C(C)C=C1C1=C(F)C=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 QGFJRDRILUEZKI-UHFFFAOYSA-N 0.000 description 2
- XLRWTNVSSSIHBP-UHFFFAOYSA-N 4-amino-n-cyclobutyl-7-fluoro-8-(5-fluoro-2-methoxyphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=C(F)C=C1C1=C(F)C=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 XLRWTNVSSSIHBP-UHFFFAOYSA-N 0.000 description 2
- XTVSISHQAALVBN-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(2,4-dimethoxyphenyl)-7-fluorocinnoline-3-carboxamide Chemical compound COC1=CC(OC)=CC=C1C1=C(F)C=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 XTVSISHQAALVBN-UHFFFAOYSA-N 0.000 description 2
- SGRIYJAGCGDCSC-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(2,4-dimethoxypyrimidin-5-yl)-7-fluorocinnoline-3-carboxamide Chemical compound COC1=NC(OC)=NC=C1C1=C(F)C=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 SGRIYJAGCGDCSC-UHFFFAOYSA-N 0.000 description 2
- PJJIBDKSCTVKGK-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(2,6-dimethoxypyridin-3-yl)-7-fluorocinnoline-3-carboxamide Chemical compound COC1=NC(OC)=CC=C1C1=C(F)C=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 PJJIBDKSCTVKGK-UHFFFAOYSA-N 0.000 description 2
- QYGSVGPJSGKJJV-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(2-fluoro-6-methoxyphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=CC(F)=C1C1=CC=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 QYGSVGPJSGKJJV-UHFFFAOYSA-N 0.000 description 2
- UNHRKJBAFIWKLP-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(3,5-dimethylphenyl)cinnoline-3-carboxamide Chemical compound CC1=CC(C)=CC(C=2C3=NN=C(C(N)=C3C=CC=2)C(=O)NC2CCC2)=C1 UNHRKJBAFIWKLP-UHFFFAOYSA-N 0.000 description 2
- RIEYDCWCIWECAI-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(4-methoxypyridin-3-yl)cinnoline-3-carboxamide Chemical compound COC1=CC=NC=C1C1=CC=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 RIEYDCWCIWECAI-UHFFFAOYSA-N 0.000 description 2
- UCLIFJVUEPZJQH-UHFFFAOYSA-N 4-amino-n-cyclopropyl-7-fluoro-8-(2-fluoro-3-methoxyphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=CC(C=2C3=NN=C(C(N)=C3C=CC=2F)C(=O)NC2CC2)=C1F UCLIFJVUEPZJQH-UHFFFAOYSA-N 0.000 description 2
- MLZNIGPXKJBBJZ-UHFFFAOYSA-N 4-amino-n-cyclopropyl-7-fluoro-8-(2-fluoro-6-methoxyphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=CC(F)=C1C1=C(F)C=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 MLZNIGPXKJBBJZ-UHFFFAOYSA-N 0.000 description 2
- WOSQQAJQSXKKTC-UHFFFAOYSA-N 4-amino-n-cyclopropyl-7-fluoro-8-(2-methoxy-5-methylphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=C(C)C=C1C1=C(F)C=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 WOSQQAJQSXKKTC-UHFFFAOYSA-N 0.000 description 2
- STNQDCWYBBVJIB-UHFFFAOYSA-N 4-amino-n-cyclopropyl-7-fluoro-8-(2-methoxypyridin-3-yl)cinnoline-3-carboxamide Chemical compound COC1=NC=CC=C1C1=C(F)C=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 STNQDCWYBBVJIB-UHFFFAOYSA-N 0.000 description 2
- IAVOXRLPQMFVLO-UHFFFAOYSA-N 4-amino-n-cyclopropyl-7-fluoro-8-(4-methylpyridin-3-yl)cinnoline-3-carboxamide Chemical compound CC1=CC=NC=C1C1=C(F)C=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 IAVOXRLPQMFVLO-UHFFFAOYSA-N 0.000 description 2
- LLGAUBCDEKOCHX-UHFFFAOYSA-N 4-amino-n-cyclopropyl-7-fluoro-8-(5-fluoro-2-methoxyphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=C(F)C=C1C1=C(F)C=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 LLGAUBCDEKOCHX-UHFFFAOYSA-N 0.000 description 2
- UWJWJNBBVUUIKJ-UHFFFAOYSA-N 4-amino-n-cyclopropyl-7-fluoro-8-(5-fluoro-6-methoxypyridin-3-yl)cinnoline-3-carboxamide Chemical compound C1=C(F)C(OC)=NC=C1C1=C(F)C=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 UWJWJNBBVUUIKJ-UHFFFAOYSA-N 0.000 description 2
- LUCWNDKYPPIVMS-UHFFFAOYSA-N 4-amino-n-cyclopropyl-8-(2,4-dimethoxyphenyl)-7-fluorocinnoline-3-carboxamide Chemical compound COC1=CC(OC)=CC=C1C1=C(F)C=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 LUCWNDKYPPIVMS-UHFFFAOYSA-N 0.000 description 2
- ROLRBHDSPMDBJZ-UHFFFAOYSA-N 4-amino-n-cyclopropyl-8-(2,4-dimethoxyphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC(OC)=CC=C1C1=CC=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 ROLRBHDSPMDBJZ-UHFFFAOYSA-N 0.000 description 2
- DZSUGXJQOPHPEX-UHFFFAOYSA-N 4-amino-n-cyclopropyl-8-(2,4-dimethoxypyrimidin-5-yl)-7-fluorocinnoline-3-carboxamide Chemical compound COC1=NC(OC)=NC=C1C1=C(F)C=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 DZSUGXJQOPHPEX-UHFFFAOYSA-N 0.000 description 2
- CRNXVCLAFOOUQS-UHFFFAOYSA-N 4-amino-n-cyclopropyl-8-(2,4-dimethoxypyrimidin-5-yl)cinnoline-3-carboxamide Chemical compound COC1=NC(OC)=NC=C1C1=CC=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 CRNXVCLAFOOUQS-UHFFFAOYSA-N 0.000 description 2
- WEFRNUXPTYTOEU-UHFFFAOYSA-N 4-amino-n-cyclopropyl-8-(2,5-dimethoxyphenyl)-7-fluorocinnoline-3-carboxamide Chemical compound COC1=CC=C(OC)C(C=2C3=NN=C(C(N)=C3C=CC=2F)C(=O)NC2CC2)=C1 WEFRNUXPTYTOEU-UHFFFAOYSA-N 0.000 description 2
- YVAHCWLEKOONFT-UHFFFAOYSA-N 4-amino-n-cyclopropyl-8-(2,5-dimethoxyphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=C(OC)C(C=2C3=NN=C(C(N)=C3C=CC=2)C(=O)NC2CC2)=C1 YVAHCWLEKOONFT-UHFFFAOYSA-N 0.000 description 2
- FGOCJZANGVRDDB-UHFFFAOYSA-N 4-amino-n-cyclopropyl-8-(2,6-dimethoxypyridin-3-yl)-7-fluorocinnoline-3-carboxamide Chemical compound COC1=NC(OC)=CC=C1C1=C(F)C=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 FGOCJZANGVRDDB-UHFFFAOYSA-N 0.000 description 2
- BNOJSLBCCWZOBI-UHFFFAOYSA-N 4-amino-n-cyclopropyl-8-(2,6-dimethoxypyridin-3-yl)cinnoline-3-carboxamide Chemical compound COC1=NC(OC)=CC=C1C1=CC=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 BNOJSLBCCWZOBI-UHFFFAOYSA-N 0.000 description 2
- GFMKUIBHRRGQNG-UHFFFAOYSA-N 4-amino-n-cyclopropyl-8-(2-fluoro-3-methoxyphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=CC(C=2C3=NN=C(C(N)=C3C=CC=2)C(=O)NC2CC2)=C1F GFMKUIBHRRGQNG-UHFFFAOYSA-N 0.000 description 2
- ZFSKQCHMJJVGHB-UHFFFAOYSA-N 4-amino-n-cyclopropyl-8-(2-fluoro-6-methoxyphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=CC(F)=C1C1=CC=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 ZFSKQCHMJJVGHB-UHFFFAOYSA-N 0.000 description 2
- CVPIFYLDDVUHDA-UHFFFAOYSA-N 4-amino-n-cyclopropyl-8-(2-fluoro-6-methylpyridin-3-yl)cinnoline-3-carboxamide Chemical compound FC1=NC(C)=CC=C1C1=CC=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 CVPIFYLDDVUHDA-UHFFFAOYSA-N 0.000 description 2
- YYBUYGWOPKUUFL-UHFFFAOYSA-N 4-amino-n-cyclopropyl-8-(2-methoxy-5-methylphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=C(C)C=C1C1=CC=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 YYBUYGWOPKUUFL-UHFFFAOYSA-N 0.000 description 2
- NUZGPJJEGHOCLE-UHFFFAOYSA-N 4-amino-n-cyclopropyl-8-(2-methoxypyridin-3-yl)cinnoline-3-carboxamide Chemical compound COC1=NC=CC=C1C1=CC=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 NUZGPJJEGHOCLE-UHFFFAOYSA-N 0.000 description 2
- GAWPEDODWCGCAO-UHFFFAOYSA-N 4-amino-n-cyclopropyl-8-(4-methoxypyridin-3-yl)cinnoline-3-carboxamide Chemical compound COC1=CC=NC=C1C1=CC=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 GAWPEDODWCGCAO-UHFFFAOYSA-N 0.000 description 2
- DPIZFMKKNOGPQL-UHFFFAOYSA-N 4-amino-n-cyclopropyl-8-(4-methylpyridin-3-yl)cinnoline-3-carboxamide Chemical compound CC1=CC=NC=C1C1=CC=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 DPIZFMKKNOGPQL-UHFFFAOYSA-N 0.000 description 2
- DAPRLGHZVPTCIU-UHFFFAOYSA-N 4-amino-n-cyclopropyl-8-(5-fluoro-2-methoxyphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=C(F)C=C1C1=CC=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 DAPRLGHZVPTCIU-UHFFFAOYSA-N 0.000 description 2
- JTBTYSVYDVPYHN-UHFFFAOYSA-N 4-amino-n-cyclopropyl-8-(5-fluoro-6-methoxypyridin-3-yl)cinnoline-3-carboxamide Chemical compound C1=C(F)C(OC)=NC=C1C1=CC=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 JTBTYSVYDVPYHN-UHFFFAOYSA-N 0.000 description 2
- PZNRWXRSHFLGKB-UHFFFAOYSA-N 4-amino-n-cyclopropyl-8-(6-methylpyridin-3-yl)cinnoline-3-carboxamide Chemical compound C1=NC(C)=CC=C1C1=CC=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 PZNRWXRSHFLGKB-UHFFFAOYSA-N 0.000 description 2
- KXWBDLUCSKYTNI-UHFFFAOYSA-N 4-amino-n-ethyl-8-(2-fluoro-6-methoxyphenyl)cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=C(F)C=CC=C1OC KXWBDLUCSKYTNI-UHFFFAOYSA-N 0.000 description 2
- XGNNJLIVQDFNDC-UHFFFAOYSA-N 4-amino-n-ethyl-8-(2-methoxy-5-methylphenyl)cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CC(C)=CC=C1OC XGNNJLIVQDFNDC-UHFFFAOYSA-N 0.000 description 2
- BQLSAFCZAMVJRS-UHFFFAOYSA-N 4-amino-n-propyl-8-(1,3,5-trimethylpyrazol-4-yl)cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C=1C(C)=NN(C)C=1C BQLSAFCZAMVJRS-UHFFFAOYSA-N 0.000 description 2
- QGTLLJJHPUCWCR-UHFFFAOYSA-N 4-amino-n-propyl-8-(2,4,6-trifluoro-3-methoxyphenyl)cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=C(F)C=C(F)C(OC)=C1F QGTLLJJHPUCWCR-UHFFFAOYSA-N 0.000 description 2
- ZVHNAJTUCRXRNS-UHFFFAOYSA-N 4-amino-n-propyl-8-thiophen-3-ylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C=1C=CSC=1 ZVHNAJTUCRXRNS-UHFFFAOYSA-N 0.000 description 2
- FYNPIPMUJCTETE-UHFFFAOYSA-N 4-amino-n-propyl-8-trimethylstannylcinnoline-3-carboxamide Chemical compound C[Sn](C)(C)C1=CC=CC2=C(N)C(C(=O)NCCC)=NN=C21 FYNPIPMUJCTETE-UHFFFAOYSA-N 0.000 description 2
- XWVOEFLBOSSYGM-UHFFFAOYSA-N 4-morpholinyl-(3,4,5-trimethoxyphenyl)methanone Chemical compound COC1=C(OC)C(OC)=CC(C(=O)N2CCOCC2)=C1 XWVOEFLBOSSYGM-UHFFFAOYSA-N 0.000 description 2
- 125000005986 4-piperidonyl group Chemical group 0.000 description 2
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 2
- 125000002471 4H-quinolizinyl group Chemical group C=1(C=CCN2C=CC=CC12)* 0.000 description 2
- PQSWWAOGYQHXAJ-UHFFFAOYSA-N 6-bromo-2-pyridin-4-ylquinoline-4-carboxylic acid Chemical compound N=1C2=CC=C(Br)C=C2C(C(=O)O)=CC=1C1=CC=NC=C1 PQSWWAOGYQHXAJ-UHFFFAOYSA-N 0.000 description 2
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 2
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- 206010003591 Ataxia Diseases 0.000 description 2
- CYGODHVAJQTCBG-UHFFFAOYSA-N Bifeprunox Chemical compound C=12OC(=O)NC2=CC=CC=1N(CC1)CCN1CC(C=1)=CC=CC=1C1=CC=CC=C1 CYGODHVAJQTCBG-UHFFFAOYSA-N 0.000 description 2
- 201000006474 Brain Ischemia Diseases 0.000 description 2
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 2
- 206010008111 Cerebral haemorrhage Diseases 0.000 description 2
- 206010008120 Cerebral ischaemia Diseases 0.000 description 2
- 108091006146 Channels Proteins 0.000 description 2
- 208000012661 Dyskinesia Diseases 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 206010019196 Head injury Diseases 0.000 description 2
- 208000023105 Huntington disease Diseases 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 206010020772 Hypertension Diseases 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 238000005684 Liebig rearrangement reaction Methods 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 102000001419 Melatonin receptor Human genes 0.000 description 2
- 108050009605 Melatonin receptor Proteins 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 208000008238 Muscle Spasticity Diseases 0.000 description 2
- 208000002033 Myoclonus Diseases 0.000 description 2
- 206010061533 Myotonia Diseases 0.000 description 2
- 208000012902 Nervous system disease Diseases 0.000 description 2
- 208000025966 Neurological disease Diseases 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- PWRPUAKXMQAFCJ-UHFFFAOYSA-N Perlapine Chemical compound C1CN(C)CCN1C1=NC2=CC=CC=C2CC2=CC=CC=C12 PWRPUAKXMQAFCJ-UHFFFAOYSA-N 0.000 description 2
- RGCVKNLCSQQDEP-UHFFFAOYSA-N Perphenazine Chemical compound C1CN(CCO)CCN1CCCN1C2=CC(Cl)=CC=C2SC2=CC=CC=C21 RGCVKNLCSQQDEP-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 208000013738 Sleep Initiation and Maintenance disease Diseases 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- KLBQZWRITKRQQV-UHFFFAOYSA-N Thioridazine Chemical compound C12=CC(SC)=CC=C2SC2=CC=CC=C2N1CCC1CCCCN1C KLBQZWRITKRQQV-UHFFFAOYSA-N 0.000 description 2
- 208000009205 Tinnitus Diseases 0.000 description 2
- 235000011054 acetic acid Nutrition 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 125000004423 acyloxy group Chemical group 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001299 aldehydes Chemical group 0.000 description 2
- 229960003036 amisulpride Drugs 0.000 description 2
- NTJOBXMMWNYJFB-UHFFFAOYSA-N amisulpride Chemical compound CCN1CCCC1CNC(=O)C1=CC(S(=O)(=O)CC)=C(N)C=C1OC NTJOBXMMWNYJFB-UHFFFAOYSA-N 0.000 description 2
- VIROVYVQCGLCII-UHFFFAOYSA-N amobarbital Chemical compound CC(C)CCC1(CC)C(=O)NC(=O)NC1=O VIROVYVQCGLCII-UHFFFAOYSA-N 0.000 description 2
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 206010003119 arrhythmia Diseases 0.000 description 2
- 229960005245 asenapine Drugs 0.000 description 2
- 210000003050 axon Anatomy 0.000 description 2
- GOTLMBNOANDTNT-UHFFFAOYSA-N azetidin-1-yl-(5-bromopyridin-3-yl)methanone Chemical compound BrC1=CN=CC(C(=O)N2CCC2)=C1 GOTLMBNOANDTNT-UHFFFAOYSA-N 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 125000002619 bicyclic group Chemical group 0.000 description 2
- 229950009087 bifeprunox Drugs 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- ZRIHAIZYIMGOAB-UHFFFAOYSA-N butabarbital Chemical compound CCC(C)C1(CC)C(=O)NC(=O)NC1=O ZRIHAIZYIMGOAB-UHFFFAOYSA-N 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 125000002843 carboxylic acid group Chemical group 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000001913 cellulose Chemical class 0.000 description 2
- 229920002678 cellulose Chemical class 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 239000003874 central nervous system depressant Substances 0.000 description 2
- 206010008118 cerebral infarction Diseases 0.000 description 2
- 229960001076 chlorpromazine Drugs 0.000 description 2
- ZPEIMTDSQAKGNT-UHFFFAOYSA-N chlorpromazine Chemical compound C1=C(Cl)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 ZPEIMTDSQAKGNT-UHFFFAOYSA-N 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- WCZVZNOTHYJIEI-UHFFFAOYSA-N cinnoline Chemical compound N1=NC=CC2=CC=CC=C21 WCZVZNOTHYJIEI-UHFFFAOYSA-N 0.000 description 2
- 229940110456 cocoa butter Drugs 0.000 description 2
- 235000019868 cocoa butter Nutrition 0.000 description 2
- 230000036461 convulsion Effects 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 125000000392 cycloalkenyl group Chemical group 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- ADEBPBSSDYVVLD-UHFFFAOYSA-N donepezil Chemical compound O=C1C=2C=C(OC)C(OC)=CC=2CC1CC(CC1)CCN1CC1=CC=CC=C1 ADEBPBSSDYVVLD-UHFFFAOYSA-N 0.000 description 2
- 201000006517 essential tremor Diseases 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- GBBSUAFBMRNDJC-INIZCTEOSA-N eszopiclone Chemical compound C1CN(C)CCN1C(=O)O[C@H]1C2=NC=CN=C2C(=O)N1C1=CC=C(Cl)C=N1 GBBSUAFBMRNDJC-INIZCTEOSA-N 0.000 description 2
- 229960001578 eszopiclone Drugs 0.000 description 2
- ZIUSEGSNTOUIPT-UHFFFAOYSA-N ethyl 2-cyanoacetate Chemical compound CCOC(=O)CC#N ZIUSEGSNTOUIPT-UHFFFAOYSA-N 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 229960002200 flunitrazepam Drugs 0.000 description 2
- 229960002464 fluoxetine Drugs 0.000 description 2
- 235000013355 food flavoring agent Nutrition 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 238000010914 gene-directed enzyme pro-drug therapy Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229960003878 haloperidol Drugs 0.000 description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 description 2
- XMXHEBAFVSFQEX-UHFFFAOYSA-N iloperidone Chemical compound COC1=CC(C(C)=O)=CC=C1OCCCN1CCC(C=2C3=CC=C(F)C=C3ON=2)CC1 XMXHEBAFVSFQEX-UHFFFAOYSA-N 0.000 description 2
- 229960003162 iloperidone Drugs 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 125000004531 indol-5-yl group Chemical group [H]N1C([H])=C([H])C2=C([H])C(*)=C([H])C([H])=C12 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 206010022437 insomnia Diseases 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 125000001786 isothiazolyl group Chemical group 0.000 description 2
- 125000000842 isoxazolyl group Chemical group 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229960001078 lithium Drugs 0.000 description 2
- 229960000423 loxapine Drugs 0.000 description 2
- YQZBAXDVDZTKEQ-UHFFFAOYSA-N loxapine succinate Chemical compound [H+].[H+].[O-]C(=O)CCC([O-])=O.C1CN(C)CCN1C1=NC2=CC=CC=C2OC2=CC=C(Cl)C=C12 YQZBAXDVDZTKEQ-UHFFFAOYSA-N 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 235000014380 magnesium carbonate Nutrition 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- SLVMESMUVMCQIY-UHFFFAOYSA-N mesoridazine Chemical compound CN1CCCCC1CCN1C2=CC(S(C)=O)=CC=C2SC2=CC=CC=C21 SLVMESMUVMCQIY-UHFFFAOYSA-N 0.000 description 2
- 229960000300 mesoridazine Drugs 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 229960003793 midazolam Drugs 0.000 description 2
- DDLIGBOFAVUZHB-UHFFFAOYSA-N midazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NC=C2CN=C1C1=CC=CC=C1F DDLIGBOFAVUZHB-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- XYMFSNIAOXHTAM-UHFFFAOYSA-N n-(2-bromoanilino)-2-(butylamino)-2-oxoethanimidoyl cyanide Chemical compound CCCCNC(=O)C(C#N)=NNC1=CC=CC=C1Br XYMFSNIAOXHTAM-UHFFFAOYSA-N 0.000 description 2
- BMGUTMSLPDITCE-UHFFFAOYSA-N n-(2-bromoanilino)-2-(cyclopropylamino)-2-oxoethanimidoyl cyanide Chemical compound BrC1=CC=CC=C1NN=C(C#N)C(=O)NC1CC1 BMGUTMSLPDITCE-UHFFFAOYSA-N 0.000 description 2
- JDYWUQQDRJFBCI-UHFFFAOYSA-N n-(2-bromoanilino)-2-(ethylamino)-2-oxoethanimidoyl cyanide Chemical compound CCNC(=O)C(C#N)=NNC1=CC=CC=C1Br JDYWUQQDRJFBCI-UHFFFAOYSA-N 0.000 description 2
- IRYVBCMHNSDYHP-UHFFFAOYSA-N n-(2-bromoanilino)-2-(methylamino)-2-oxoethanimidoyl cyanide Chemical compound CNC(=O)C(C#N)=NNC1=CC=CC=C1Br IRYVBCMHNSDYHP-UHFFFAOYSA-N 0.000 description 2
- XCRCEOVIKRPCQV-UHFFFAOYSA-N n-(2-fluoroanilino)-2-oxo-2-(propylamino)ethanimidoyl cyanide Chemical compound CCCNC(=O)C(C#N)=NNC1=CC=CC=C1F XCRCEOVIKRPCQV-UHFFFAOYSA-N 0.000 description 2
- 210000000653 nervous system Anatomy 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 230000000926 neurological effect Effects 0.000 description 2
- 239000002858 neurotransmitter agent Substances 0.000 description 2
- 125000002971 oxazolyl group Chemical group 0.000 description 2
- 229960001057 paliperidone Drugs 0.000 description 2
- 229960001412 pentobarbital Drugs 0.000 description 2
- 238000003359 percent control normalization Methods 0.000 description 2
- 229950009253 perlapine Drugs 0.000 description 2
- 229960000762 perphenazine Drugs 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229950000688 phenothiazine Drugs 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- YVUQSNJEYSNKRX-UHFFFAOYSA-N pimozide Chemical compound C1=CC(F)=CC=C1C(C=1C=CC(F)=CC=1)CCCN1CCC(N2C(NC3=CC=CC=C32)=O)CC1 YVUQSNJEYSNKRX-UHFFFAOYSA-N 0.000 description 2
- 229960003634 pimozide Drugs 0.000 description 2
- IVDFJHOHABJVEH-UHFFFAOYSA-N pinacol Chemical compound CC(C)(O)C(C)(C)O IVDFJHOHABJVEH-UHFFFAOYSA-N 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 229910000160 potassium phosphate Inorganic materials 0.000 description 2
- 235000011009 potassium phosphates Nutrition 0.000 description 2
- FASDKYOPVNHBLU-ZETCQYMHSA-N pramipexole Chemical compound C1[C@@H](NCCC)CCC2=C1SC(N)=N2 FASDKYOPVNHBLU-ZETCQYMHSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- WIKYUJGCLQQFNW-UHFFFAOYSA-N prochlorperazine Chemical compound C1CN(C)CCN1CCCN1C2=CC(Cl)=CC=C2SC2=CC=CC=C21 WIKYUJGCLQQFNW-UHFFFAOYSA-N 0.000 description 2
- 229960003111 prochlorperazine Drugs 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 2
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 description 2
- 125000004307 pyrazin-2-yl group Chemical group [H]C1=C([H])N=C(*)C([H])=N1 0.000 description 2
- 125000004289 pyrazol-3-yl group Chemical group [H]N1N=C(*)C([H])=C1[H] 0.000 description 2
- 125000002098 pyridazinyl group Chemical group 0.000 description 2
- 125000004528 pyrimidin-5-yl group Chemical group N1=CN=CC(=C1)* 0.000 description 2
- 125000000168 pyrrolyl group Chemical group 0.000 description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 2
- MQTUXRKNJYPMCG-CYBMUJFWSA-N robalzotan Chemical compound C1CCC1N([C@H]1COC=2C(F)=CC=C(C=2C1)C(=O)N)C1CCC1 MQTUXRKNJYPMCG-CYBMUJFWSA-N 0.000 description 2
- 229950003023 robalzotan Drugs 0.000 description 2
- 201000000980 schizophrenia Diseases 0.000 description 2
- KQPKPCNLIDLUMF-UHFFFAOYSA-N secobarbital Chemical compound CCCC(C)C1(CC=C)C(=O)NC(=O)NC1=O KQPKPCNLIDLUMF-UHFFFAOYSA-N 0.000 description 2
- 229960002060 secobarbital Drugs 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- GZKLJWGUPQBVJQ-UHFFFAOYSA-N sertindole Chemical compound C1=CC(F)=CC=C1N1C2=CC=C(Cl)C=C2C(C2CCN(CCN3C(NCC3)=O)CC2)=C1 GZKLJWGUPQBVJQ-UHFFFAOYSA-N 0.000 description 2
- 229960000652 sertindole Drugs 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 235000010288 sodium nitrite Nutrition 0.000 description 2
- 229940035044 sorbitan monolaurate Drugs 0.000 description 2
- 208000018198 spasticity Diseases 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000012258 stirred mixture Substances 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 201000009032 substance abuse Diseases 0.000 description 2
- 231100000736 substance abuse Toxicity 0.000 description 2
- 208000011117 substance-related disease Diseases 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 229960004940 sulpiride Drugs 0.000 description 2
- IBAUKGNDWVSETP-UHFFFAOYSA-N suproclone Chemical compound C1CN(C(=O)CC)CCN1C(=O)OC1C(SCCS2)=C2C(=O)N1C1=CC=C(C=CC(Cl)=N2)C2=N1 IBAUKGNDWVSETP-UHFFFAOYSA-N 0.000 description 2
- 229950003877 suproclone Drugs 0.000 description 2
- RMXOUBDDDQUBKD-UHFFFAOYSA-N suriclone Chemical compound C1CN(C)CCN1C(=O)OC1C(SCCS2)=C2C(=O)N1C1=CC=C(C=CC(Cl)=N2)C2=N1 RMXOUBDDDQUBKD-UHFFFAOYSA-N 0.000 description 2
- 229950006866 suriclone Drugs 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 125000000335 thiazolyl group Chemical group 0.000 description 2
- 229960002784 thioridazine Drugs 0.000 description 2
- 231100000886 tinnitus Toxicity 0.000 description 2
- 229950002859 tracazolate Drugs 0.000 description 2
- 125000004306 triazinyl group Chemical group 0.000 description 2
- ZEWQUBUPAILYHI-UHFFFAOYSA-N trifluoperazine Chemical compound C1CN(C)CCN1CCCN1C2=CC(C(F)(F)F)=CC=C2SC2=CC=CC=C21 ZEWQUBUPAILYHI-UHFFFAOYSA-N 0.000 description 2
- 229960002324 trifluoperazine Drugs 0.000 description 2
- GAHYSKZPCQQLSW-UHFFFAOYSA-N trimethyl-(6-methylpyridin-3-yl)stannane Chemical compound CC1=CC=C([Sn](C)(C)C)C=N1 GAHYSKZPCQQLSW-UHFFFAOYSA-N 0.000 description 2
- CCRMAATUKBYMPA-UHFFFAOYSA-N trimethyltin Chemical compound C[Sn](C)C.C[Sn](C)C CCRMAATUKBYMPA-UHFFFAOYSA-N 0.000 description 2
- 229950001577 trimetozine Drugs 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 238000001665 trituration Methods 0.000 description 2
- 238000000825 ultraviolet detection Methods 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 229960000820 zopiclone Drugs 0.000 description 2
- HDOZVRUNCMBHFH-UHFFFAOYSA-N zotepine Chemical compound CN(C)CCOC1=CC2=CC=CC=C2SC2=CC=C(Cl)C=C12 HDOZVRUNCMBHFH-UHFFFAOYSA-N 0.000 description 2
- 229960004496 zotepine Drugs 0.000 description 2
- AHOUBRCZNHFOSL-YOEHRIQHSA-N (+)-Casbol Chemical compound C1=CC(F)=CC=C1[C@H]1[C@H](COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-YOEHRIQHSA-N 0.000 description 1
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 1
- XTDQIZXLSJWLRH-VCHYOVAHSA-N (1e)-2-(cyclopropylamino)-n-(3-fluoro-2-iodoanilino)-2-oxoethanimidoyl cyanide Chemical compound FC1=CC=CC(N\N=C(/C#N)C(=O)NC2CC2)=C1I XTDQIZXLSJWLRH-VCHYOVAHSA-N 0.000 description 1
- LDQLSQRFSNMANA-UHFFFAOYSA-N (2,3,4-trimethoxyphenyl)boronic acid Chemical compound COC1=CC=C(B(O)O)C(OC)=C1OC LDQLSQRFSNMANA-UHFFFAOYSA-N 0.000 description 1
- TYIKXPOMOYDGCS-UHFFFAOYSA-N (2,3-dichlorophenyl)boronic acid Chemical compound OB(O)C1=CC=CC(Cl)=C1Cl TYIKXPOMOYDGCS-UHFFFAOYSA-N 0.000 description 1
- SZYXKFKWFYUOGZ-UHFFFAOYSA-N (2,3-difluorophenyl)boronic acid Chemical compound OB(O)C1=CC=CC(F)=C1F SZYXKFKWFYUOGZ-UHFFFAOYSA-N 0.000 description 1
- VREWSCMOGIXMDQ-UHFFFAOYSA-N (2,3-dimethoxyphenyl)boronic acid Chemical compound COC1=CC=CC(B(O)O)=C1OC VREWSCMOGIXMDQ-UHFFFAOYSA-N 0.000 description 1
- QQLRSCZSKQTFGY-UHFFFAOYSA-N (2,4-difluorophenyl)boronic acid Chemical compound OB(O)C1=CC=C(F)C=C1F QQLRSCZSKQTFGY-UHFFFAOYSA-N 0.000 description 1
- NNTFPBXQPOQRBT-UHFFFAOYSA-N (2,5-dichlorophenyl)boronic acid Chemical compound OB(O)C1=CC(Cl)=CC=C1Cl NNTFPBXQPOQRBT-UHFFFAOYSA-N 0.000 description 1
- BRMUXDWCSVTVPQ-UHFFFAOYSA-N (2,5-difluoro-4-methoxyphenyl)boronic acid Chemical compound COC1=CC(F)=C(B(O)O)C=C1F BRMUXDWCSVTVPQ-UHFFFAOYSA-N 0.000 description 1
- REFXAANPQCJZRY-UHFFFAOYSA-N (2-chloro-5-methoxyphenyl)boronic acid Chemical compound COC1=CC=C(Cl)C(B(O)O)=C1 REFXAANPQCJZRY-UHFFFAOYSA-N 0.000 description 1
- LIXXGOMAGHXIMP-UHFFFAOYSA-N (2-fluoro-4-methylphenyl)boronic acid Chemical compound CC1=CC=C(B(O)O)C(F)=C1 LIXXGOMAGHXIMP-UHFFFAOYSA-N 0.000 description 1
- ZLODKAZZRDLUKX-UHFFFAOYSA-N (2-fluoro-5-methylphenyl)boronic acid Chemical compound CC1=CC=C(F)C(B(O)O)=C1 ZLODKAZZRDLUKX-UHFFFAOYSA-N 0.000 description 1
- YPWAJLGHACDYQS-UHFFFAOYSA-N (2-methoxypyrimidin-5-yl)boronic acid Chemical compound COC1=NC=C(B(O)O)C=N1 YPWAJLGHACDYQS-UHFFFAOYSA-N 0.000 description 1
- LHYMPSWMHXUWSK-STZFKDTASA-N (2z)-4-(3,4-dichlorophenyl)-2-[[2-(4-methylpiperazin-1-yl)phenyl]methylidene]thiomorpholin-3-one Chemical compound C1CN(C)CCN1C1=CC=CC=C1\C=C/1C(=O)N(C=2C=C(Cl)C(Cl)=CC=2)CCS\1 LHYMPSWMHXUWSK-STZFKDTASA-N 0.000 description 1
- RULQUTYJXDLRFL-UHFFFAOYSA-N (3,4,5-trimethoxyphenyl)boronic acid Chemical compound COC1=CC(B(O)O)=CC(OC)=C1OC RULQUTYJXDLRFL-UHFFFAOYSA-N 0.000 description 1
- RMGYQBHKEWWTOY-UHFFFAOYSA-N (3,4-difluorophenyl)boronic acid Chemical compound OB(O)C1=CC=C(F)C(F)=C1 RMGYQBHKEWWTOY-UHFFFAOYSA-N 0.000 description 1
- RCVDPBFUMYUKPB-UHFFFAOYSA-N (3,4-dimethoxyphenyl)boronic acid Chemical compound COC1=CC=C(B(O)O)C=C1OC RCVDPBFUMYUKPB-UHFFFAOYSA-N 0.000 description 1
- DKYRKAIKWFHQHM-UHFFFAOYSA-N (3,5-dichlorophenyl)boronic acid Chemical compound OB(O)C1=CC(Cl)=CC(Cl)=C1 DKYRKAIKWFHQHM-UHFFFAOYSA-N 0.000 description 1
- QWQBQRYFWNIDOC-UHFFFAOYSA-N (3,5-difluorophenyl)boronic acid Chemical compound OB(O)C1=CC(F)=CC(F)=C1 QWQBQRYFWNIDOC-UHFFFAOYSA-N 0.000 description 1
- DJGHSJBYKIQHIK-UHFFFAOYSA-N (3,5-dimethylphenyl)boronic acid Chemical compound CC1=CC(C)=CC(B(O)O)=C1 DJGHSJBYKIQHIK-UHFFFAOYSA-N 0.000 description 1
- XDBHWPLGGBLUHH-UHFFFAOYSA-N (3-cyanophenyl)boronic acid Chemical compound OB(O)C1=CC=CC(C#N)=C1 XDBHWPLGGBLUHH-UHFFFAOYSA-N 0.000 description 1
- ABTBKKHOMBEJGL-UHFFFAOYSA-N (3-fluoro-2-methoxyphenyl)boronic acid Chemical compound COC1=C(F)C=CC=C1B(O)O ABTBKKHOMBEJGL-UHFFFAOYSA-N 0.000 description 1
- IILGLPAJXQMKGQ-UHFFFAOYSA-N (3-fluoro-4-methoxyphenyl)boronic acid Chemical compound COC1=CC=C(B(O)O)C=C1F IILGLPAJXQMKGQ-UHFFFAOYSA-N 0.000 description 1
- NLLGFYPSWCMUIV-UHFFFAOYSA-N (3-methoxyphenyl)boronic acid Chemical compound COC1=CC=CC(B(O)O)=C1 NLLGFYPSWCMUIV-UHFFFAOYSA-N 0.000 description 1
- BJQCPCFFYBKRLM-UHFFFAOYSA-N (3-methylphenyl)boronic acid Chemical compound CC1=CC=CC(B(O)O)=C1 BJQCPCFFYBKRLM-UHFFFAOYSA-N 0.000 description 1
- HZFFUMBZBGETES-UHFFFAOYSA-N (3-methylsulfonylphenyl)boronic acid Chemical compound CS(=O)(=O)C1=CC=CC(B(O)O)=C1 HZFFUMBZBGETES-UHFFFAOYSA-N 0.000 description 1
- DIWRORZWFLOCLC-HNNXBMFYSA-N (3s)-7-chloro-5-(2-chlorophenyl)-3-hydroxy-1,3-dihydro-1,4-benzodiazepin-2-one Chemical compound N([C@H](C(NC1=CC=C(Cl)C=C11)=O)O)=C1C1=CC=CC=C1Cl DIWRORZWFLOCLC-HNNXBMFYSA-N 0.000 description 1
- FJIKWRGCXUCUIG-HNNXBMFYSA-N (3s)-7-chloro-5-(2-chlorophenyl)-3-hydroxy-1-methyl-3h-1,4-benzodiazepin-2-one Chemical compound O=C([C@H](O)N=1)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1Cl FJIKWRGCXUCUIG-HNNXBMFYSA-N 0.000 description 1
- CAYQIZIAYYNFCS-UHFFFAOYSA-N (4-chlorophenyl)boronic acid Chemical compound OB(O)C1=CC=C(Cl)C=C1 CAYQIZIAYYNFCS-UHFFFAOYSA-N 0.000 description 1
- WZUCSPWZHRVOSD-UHFFFAOYSA-N (4-methoxy-3,5-dimethylphenyl)boronic acid Chemical compound COC1=C(C)C=C(B(O)O)C=C1C WZUCSPWZHRVOSD-UHFFFAOYSA-N 0.000 description 1
- PXVDQGVAZBTFIB-UHFFFAOYSA-N (4-methoxy-3-methylphenyl)boronic acid Chemical compound COC1=CC=C(B(O)O)C=C1C PXVDQGVAZBTFIB-UHFFFAOYSA-N 0.000 description 1
- VOAAEKKFGLPLLU-UHFFFAOYSA-N (4-methoxyphenyl)boronic acid Chemical compound COC1=CC=C(B(O)O)C=C1 VOAAEKKFGLPLLU-UHFFFAOYSA-N 0.000 description 1
- FMBVAOHFMSQDGT-UHFFFAOYSA-N (5-chloro-2-methoxyphenyl)boronic acid Chemical compound COC1=CC=C(Cl)C=C1B(O)O FMBVAOHFMSQDGT-UHFFFAOYSA-N 0.000 description 1
- LOLPLMDQLOJSDH-UHFFFAOYSA-N (5-chloro-6-methoxypyridin-3-yl)boronic acid Chemical compound COC1=NC=C(B(O)O)C=C1Cl LOLPLMDQLOJSDH-UHFFFAOYSA-N 0.000 description 1
- QUQJFILPCCJEGB-UHFFFAOYSA-N (5-methoxy-2-methylphenyl)boronic acid Chemical compound COC1=CC=C(C)C(B(O)O)=C1 QUQJFILPCCJEGB-UHFFFAOYSA-N 0.000 description 1
- ICPHJSKVAZMKIV-QGZVFWFLSA-N (5r)-7,8-dimethoxy-3-methyl-5-phenyl-1,2,4,5-tetrahydro-3-benzazepine Chemical compound C1([C@H]2CN(C)CCC=3C=C(C(=CC=32)OC)OC)=CC=CC=C1 ICPHJSKVAZMKIV-QGZVFWFLSA-N 0.000 description 1
- DHADXDMPEUWEAS-UHFFFAOYSA-N (6-methoxypyridin-3-yl)boronic acid Chemical compound COC1=CC=C(B(O)O)C=N1 DHADXDMPEUWEAS-UHFFFAOYSA-N 0.000 description 1
- 125000006272 (C3-C7) cycloalkyl group Chemical group 0.000 description 1
- WSEQXVZVJXJVFP-HXUWFJFHSA-N (R)-citalopram Chemical compound C1([C@@]2(C3=CC=C(C=C3CO2)C#N)CCCN(C)C)=CC=C(F)C=C1 WSEQXVZVJXJVFP-HXUWFJFHSA-N 0.000 description 1
- ZEHYJZXQEQOSON-AATRIKPKSA-N (e)-1-chloro-3-ethylpent-1-en-4-yn-3-ol Chemical compound CCC(O)(C#C)\C=C\Cl ZEHYJZXQEQOSON-AATRIKPKSA-N 0.000 description 1
- QECAKYKTTYQVKX-RMKNXTFCSA-N (e)-3-(2,5-dihydropyrrol-1-yl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one Chemical compound COC1=C(OC)C(OC)=CC(C(=O)\C=C\N2CC=CC2)=C1 QECAKYKTTYQVKX-RMKNXTFCSA-N 0.000 description 1
- ZGYIXVSQHOKQRZ-COIATFDQSA-N (e)-n-[4-[3-chloro-4-(pyridin-2-ylmethoxy)anilino]-3-cyano-7-[(3s)-oxolan-3-yl]oxyquinolin-6-yl]-4-(dimethylamino)but-2-enamide Chemical compound N#CC1=CN=C2C=C(O[C@@H]3COCC3)C(NC(=O)/C=C/CN(C)C)=CC2=C1NC(C=C1Cl)=CC=C1OCC1=CC=CC=N1 ZGYIXVSQHOKQRZ-COIATFDQSA-N 0.000 description 1
- ICLYJLBTOGPLMC-KVVVOXFISA-N (z)-octadec-9-enoate;tris(2-hydroxyethyl)azanium Chemical compound OCCN(CCO)CCO.CCCCCCCC\C=C/CCCCCCCC(O)=O ICLYJLBTOGPLMC-KVVVOXFISA-N 0.000 description 1
- TZJUVVIWVWFLCD-UHFFFAOYSA-N 1,1-dioxo-2-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-1,2-benzothiazol-3-one Chemical compound O=S1(=O)C2=CC=CC=C2C(=O)N1CCCCN(CC1)CCN1C1=NC=CC=N1 TZJUVVIWVWFLCD-UHFFFAOYSA-N 0.000 description 1
- 125000004506 1,2,5-oxadiazolyl group Chemical group 0.000 description 1
- 125000004517 1,2,5-thiadiazolyl group Chemical group 0.000 description 1
- FTNJQNQLEGKTGD-UHFFFAOYSA-N 1,3-benzodioxole Chemical compound C1=CC=C2OCOC2=C1 FTNJQNQLEGKTGD-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- APWRZPQBPCAXFP-UHFFFAOYSA-N 1-(1-oxo-2H-isoquinolin-5-yl)-5-(trifluoromethyl)-N-[2-(trifluoromethyl)pyridin-4-yl]pyrazole-4-carboxamide Chemical compound O=C1NC=CC2=C(C=CC=C12)N1N=CC(=C1C(F)(F)F)C(=O)NC1=CC(=NC=C1)C(F)(F)F APWRZPQBPCAXFP-UHFFFAOYSA-N 0.000 description 1
- UNFQKKSADLVQJE-UHFFFAOYSA-N 1-(3-chlorophenyl)-3-(3-methyl-5-oxo-4h-imidazol-2-yl)urea;hydrate Chemical compound O.CN1CC(=O)N=C1NC(=O)NC1=CC=CC(Cl)=C1 UNFQKKSADLVQJE-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- QEMSVZNTSXPFJA-HNAYVOBHSA-N 1-[(1s,2s)-1-hydroxy-1-(4-hydroxyphenyl)propan-2-yl]-4-phenylpiperidin-4-ol Chemical compound C1([C@H](O)[C@H](C)N2CCC(O)(CC2)C=2C=CC=CC=2)=CC=C(O)C=C1 QEMSVZNTSXPFJA-HNAYVOBHSA-N 0.000 description 1
- UCNGGGYMLHAMJG-UHFFFAOYSA-N 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrazole Chemical compound C1=NN(C)C=C1B1OC(C)(C)C(C)(C)O1 UCNGGGYMLHAMJG-UHFFFAOYSA-N 0.000 description 1
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical compound C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 description 1
- 125000005955 1H-indazolyl group Chemical group 0.000 description 1
- SVUOLADPCWQTTE-UHFFFAOYSA-N 1h-1,2-benzodiazepine Chemical compound N1N=CC=CC2=CC=CC=C12 SVUOLADPCWQTTE-UHFFFAOYSA-N 0.000 description 1
- UFMBERDMCRCVSM-UHFFFAOYSA-N 1h-cinnolin-4-one Chemical class C1=CC=C2C(O)=CN=NC2=C1 UFMBERDMCRCVSM-UHFFFAOYSA-N 0.000 description 1
- VHADYSUJZAPXOW-UHFFFAOYSA-N 1h-indol-5-ylboronic acid Chemical compound OB(O)C1=CC=C2NC=CC2=C1 VHADYSUJZAPXOW-UHFFFAOYSA-N 0.000 description 1
- KYWMWUUMCDZISK-UHFFFAOYSA-N 2,2,5,5-tetrakis(trifluoromethyl)-1h-imidazol-4-amine Chemical compound NC1=NC(C(F)(F)F)(C(F)(F)F)NC1(C(F)(F)F)C(F)(F)F KYWMWUUMCDZISK-UHFFFAOYSA-N 0.000 description 1
- JKTCBAGSMQIFNL-UHFFFAOYSA-N 2,3-dihydrofuran Chemical compound C1CC=CO1 JKTCBAGSMQIFNL-UHFFFAOYSA-N 0.000 description 1
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 1
- CZYHRTIJLUONKY-UHFFFAOYSA-N 2-(3,5-dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane Chemical compound COC1=CC(OC)=CC(B2OC(C)(C)C(C)(C)O2)=C1 CZYHRTIJLUONKY-UHFFFAOYSA-N 0.000 description 1
- XTDQIZXLSJWLRH-UHFFFAOYSA-N 2-(cyclopropylamino)-N-(3-fluoro-2-iodoanilino)-2-oxoethanimidoyl cyanide Chemical group FC1=CC=CC(NN=C(C#N)C(=O)NC2CC2)=C1I XTDQIZXLSJWLRH-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- SPCKHVPPRJWQRZ-UHFFFAOYSA-N 2-benzhydryloxy-n,n-dimethylethanamine;2-hydroxypropane-1,2,3-tricarboxylic acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 SPCKHVPPRJWQRZ-UHFFFAOYSA-N 0.000 description 1
- HTFXWAOSQODIBI-UHFFFAOYSA-N 2-benzyl-1,3-dihydropyrrolo[3,4-c]pyridine Chemical compound C1C2=CC=NC=C2CN1CC1=CC=CC=C1 HTFXWAOSQODIBI-UHFFFAOYSA-N 0.000 description 1
- AOPBDRUWRLBSDB-UHFFFAOYSA-N 2-bromoaniline Chemical group NC1=CC=CC=C1Br AOPBDRUWRLBSDB-UHFFFAOYSA-N 0.000 description 1
- HIGRXCJEFUYRNW-UHFFFAOYSA-N 2-fluoro-6-nitrophenol Chemical compound OC1=C(F)C=CC=C1[N+]([O-])=O HIGRXCJEFUYRNW-UHFFFAOYSA-N 0.000 description 1
- FTZQXOJYPFINKJ-UHFFFAOYSA-N 2-fluoroaniline Chemical compound NC1=CC=CC=C1F FTZQXOJYPFINKJ-UHFFFAOYSA-N 0.000 description 1
- 125000004918 2-methyl-2-pentyl group Chemical group CC(C)(CCC)* 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- TWBPWBPGNQWFSJ-UHFFFAOYSA-N 2-phenylaniline Chemical group NC1=CC=CC=C1C1=CC=CC=C1 TWBPWBPGNQWFSJ-UHFFFAOYSA-N 0.000 description 1
- RSEBUVRVKCANEP-UHFFFAOYSA-N 2-pyrroline Chemical compound C1CC=CN1 RSEBUVRVKCANEP-UHFFFAOYSA-N 0.000 description 1
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 1
- WNEODWDFDXWOLU-QHCPKHFHSA-N 3-[3-(hydroxymethyl)-4-[1-methyl-5-[[5-[(2s)-2-methyl-4-(oxetan-3-yl)piperazin-1-yl]pyridin-2-yl]amino]-6-oxopyridin-3-yl]pyridin-2-yl]-7,7-dimethyl-1,2,6,8-tetrahydrocyclopenta[3,4]pyrrolo[3,5-b]pyrazin-4-one Chemical compound C([C@@H](N(CC1)C=2C=NC(NC=3C(N(C)C=C(C=3)C=3C(=C(N4C(C5=CC=6CC(C)(C)CC=6N5CC4)=O)N=CC=3)CO)=O)=CC=2)C)N1C1COC1 WNEODWDFDXWOLU-QHCPKHFHSA-N 0.000 description 1
- SRVXSISGYBMIHR-UHFFFAOYSA-N 3-[3-[3-(2-amino-2-oxoethyl)phenyl]-5-chlorophenyl]-3-(5-methyl-1,3-thiazol-2-yl)propanoic acid Chemical compound S1C(C)=CN=C1C(CC(O)=O)C1=CC(Cl)=CC(C=2C=C(CC(N)=O)C=CC=2)=C1 SRVXSISGYBMIHR-UHFFFAOYSA-N 0.000 description 1
- FXZJKVODWNYPKK-UHFFFAOYSA-N 3-[3-[4-(3-chlorophenyl)piperazin-1-yl]propyl]-1h-quinazoline-2,4-dione Chemical compound ClC1=CC=CC(N2CCN(CCCN3C(C4=CC=CC=C4NC3=O)=O)CC2)=C1 FXZJKVODWNYPKK-UHFFFAOYSA-N 0.000 description 1
- HHCQPBYECKIKCQ-UHFFFAOYSA-N 3-[4-amino-3-(propylcarbamoyl)cinnolin-8-yl]benzoic acid;hydrochloride Chemical compound Cl.C=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC(C(O)=O)=C1 HHCQPBYECKIKCQ-UHFFFAOYSA-N 0.000 description 1
- DBVFWZMQJQMJCB-UHFFFAOYSA-N 3-boronobenzoic acid Chemical compound OB(O)C1=CC=CC(C(O)=O)=C1 DBVFWZMQJQMJCB-UHFFFAOYSA-N 0.000 description 1
- WFIMPUNNSNCOAZ-UHFFFAOYSA-N 3-fluoro-2-iodoaniline Chemical group NC1=CC=CC(F)=C1I WFIMPUNNSNCOAZ-UHFFFAOYSA-N 0.000 description 1
- HENXUFOAGXNWKH-UHFFFAOYSA-N 3-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine Chemical compound COC1=CN=CC(B2OC(C)(C)C(C)(C)O2)=C1 HENXUFOAGXNWKH-UHFFFAOYSA-N 0.000 description 1
- 125000004919 3-methyl-2-pentyl group Chemical group CC(C(C)*)CC 0.000 description 1
- TVOJIBGZFYMWDT-UHFFFAOYSA-N 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1h-pyrazole Chemical compound O1C(C)(C)C(C)(C)OB1C1=CNN=C1 TVOJIBGZFYMWDT-UHFFFAOYSA-N 0.000 description 1
- RPMYMZPMVLZBTF-UHFFFAOYSA-N 4-amino-7-fluoro-8-(3-fluoro-4-methoxyphenyl)-n-propylcinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(OC)C(F)=C1 RPMYMZPMVLZBTF-UHFFFAOYSA-N 0.000 description 1
- UZQFTJKZYNXOGO-UHFFFAOYSA-N 4-amino-8-(2,3-dimethylphenyl)-7-fluoro-n-propylcinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=CC(C)=C1C UZQFTJKZYNXOGO-UHFFFAOYSA-N 0.000 description 1
- WVAOSKBHRVNNJE-UHFFFAOYSA-N 4-amino-8-(2,4-dimethoxyphenyl)-n-ethyl-7-fluorocinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CC=C(OC)C=C1OC WVAOSKBHRVNNJE-UHFFFAOYSA-N 0.000 description 1
- DUZPHCBBXXBYQE-UHFFFAOYSA-N 4-amino-8-(2,4-dimethoxyphenyl)-n-ethylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CC=C(OC)C=C1OC DUZPHCBBXXBYQE-UHFFFAOYSA-N 0.000 description 1
- PQMRYOBAPCXOPQ-UHFFFAOYSA-N 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-n-ethyl-7-fluorocinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CN=C(OC)N=C1OC PQMRYOBAPCXOPQ-UHFFFAOYSA-N 0.000 description 1
- XLIRBKWLVJGYBI-UHFFFAOYSA-N 4-amino-8-(2,5-dimethoxyphenyl)-n-(3,3,3-trifluoropropyl)cinnoline-3-carboxamide Chemical compound COC1=CC=C(OC)C(C=2C3=NN=C(C(N)=C3C=CC=2)C(=O)NCCC(F)(F)F)=C1 XLIRBKWLVJGYBI-UHFFFAOYSA-N 0.000 description 1
- BGGCZORPGAXQJX-UHFFFAOYSA-N 4-amino-8-(2,5-dimethoxyphenyl)-n-ethyl-7-fluorocinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CC(OC)=CC=C1OC BGGCZORPGAXQJX-UHFFFAOYSA-N 0.000 description 1
- LRJSBPDYSYHSRW-UHFFFAOYSA-N 4-amino-8-(2,6-dimethoxypyridin-3-yl)-n-ethyl-7-fluorocinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CC=C(OC)N=C1OC LRJSBPDYSYHSRW-UHFFFAOYSA-N 0.000 description 1
- MFWJMJVSVOUNRW-UHFFFAOYSA-N 4-amino-8-(2,6-dimethoxypyridin-3-yl)-n-ethylcinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CC=C(OC)N=C1OC MFWJMJVSVOUNRW-UHFFFAOYSA-N 0.000 description 1
- UKDKRBAYEQUTDC-UHFFFAOYSA-N 4-amino-8-(3,5-difluoro-2-methoxyphenyl)-7-fluoro-n-propylcinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC(F)=CC(F)=C1OC UKDKRBAYEQUTDC-UHFFFAOYSA-N 0.000 description 1
- XIFWIILTOULPRA-UHFFFAOYSA-N 4-amino-8-(4-chlorophenyl)-7-fluoro-n-propylcinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCCC)=NN=C2C=1C1=CC=C(Cl)C=C1 XIFWIILTOULPRA-UHFFFAOYSA-N 0.000 description 1
- OHKKRAHMRJWFBK-UHFFFAOYSA-N 4-amino-8-bromo-7-cyano-n-propylcinnoline-3-carboxamide Chemical compound BrC1=C(C#N)C=CC2=C(N)C(C(=O)NCCC)=NN=C21 OHKKRAHMRJWFBK-UHFFFAOYSA-N 0.000 description 1
- PSFRIJZTZOUXGO-UHFFFAOYSA-N 4-amino-8-bromo-7-fluoro-n-propylcinnoline-3-carboxamide Chemical compound BrC1=C(F)C=CC2=C(N)C(C(=O)NCCC)=NN=C21 PSFRIJZTZOUXGO-UHFFFAOYSA-N 0.000 description 1
- KPHNVPLZXJUDTE-UHFFFAOYSA-N 4-amino-8-bromo-n-methylcinnoline-3-carboxamide Chemical compound BrC1=CC=CC2=C(N)C(C(=O)NC)=NN=C21 KPHNVPLZXJUDTE-UHFFFAOYSA-N 0.000 description 1
- HWULCSHHOZRUTN-UHFFFAOYSA-N 4-amino-8-bromo-n-methylcinnoline-3-carboxamide;hydrochloride Chemical compound Cl.BrC1=CC=CC2=C(N)C(C(=O)NC)=NN=C21 HWULCSHHOZRUTN-UHFFFAOYSA-N 0.000 description 1
- GBTAELQQPURLEJ-UHFFFAOYSA-N 4-amino-8-fluoro-n-propylcinnoline-3-carboxamide Chemical compound FC1=CC=CC2=C(N)C(C(=O)NCCC)=NN=C21 GBTAELQQPURLEJ-UHFFFAOYSA-N 0.000 description 1
- DDZMARHFXYOSPY-UHFFFAOYSA-N 4-amino-8-iodo-7-methoxy-n-propylcinnoline-3-carboxamide Chemical compound IC1=C(OC)C=CC2=C(N)C(C(=O)NCCC)=NN=C21 DDZMARHFXYOSPY-UHFFFAOYSA-N 0.000 description 1
- BIAZMECQFVVFOU-UHFFFAOYSA-N 4-amino-n-cyclobutyl-7-fluoro-8-(2-fluoro-3-methoxyphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=CC(C=2C3=NN=C(C(N)=C3C=CC=2F)C(=O)NC2CCC2)=C1F BIAZMECQFVVFOU-UHFFFAOYSA-N 0.000 description 1
- FAHWMYUTCGOCFL-UHFFFAOYSA-N 4-amino-n-cyclobutyl-7-fluoro-8-(2-fluoro-6-methoxyphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=CC(F)=C1C1=C(F)C=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 FAHWMYUTCGOCFL-UHFFFAOYSA-N 0.000 description 1
- UIVADFQRYLPCMI-UHFFFAOYSA-N 4-amino-n-cyclobutyl-7-fluoro-8-(2-methoxyphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=CC=C1C1=C(F)C=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 UIVADFQRYLPCMI-UHFFFAOYSA-N 0.000 description 1
- ADKDKRNMADBBFK-UHFFFAOYSA-N 4-amino-n-cyclobutyl-7-fluoro-8-(2-methoxypyridin-3-yl)cinnoline-3-carboxamide Chemical compound COC1=NC=CC=C1C1=C(F)C=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 ADKDKRNMADBBFK-UHFFFAOYSA-N 0.000 description 1
- DHPYOKIZJGRDPI-UHFFFAOYSA-N 4-amino-n-cyclobutyl-7-fluoro-8-(3-methylphenyl)cinnoline-3-carboxamide Chemical compound CC1=CC=CC(C=2C3=NN=C(C(N)=C3C=CC=2F)C(=O)NC2CCC2)=C1 DHPYOKIZJGRDPI-UHFFFAOYSA-N 0.000 description 1
- KZAUIWOBCGZRTG-UHFFFAOYSA-N 4-amino-n-cyclobutyl-7-fluoro-8-(4-methoxypyridin-3-yl)cinnoline-3-carboxamide Chemical compound COC1=CC=NC=C1C1=C(F)C=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 KZAUIWOBCGZRTG-UHFFFAOYSA-N 0.000 description 1
- BTWMQLDQSBGKNB-UHFFFAOYSA-N 4-amino-n-cyclobutyl-7-fluoro-8-(6-methylpyridin-3-yl)cinnoline-3-carboxamide Chemical compound C1=NC(C)=CC=C1C1=C(F)C=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 BTWMQLDQSBGKNB-UHFFFAOYSA-N 0.000 description 1
- GPCDJZRFYYEABZ-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(2,3,4-trimethoxyphenyl)cinnoline-3-carboxamide Chemical compound COC1=C(OC)C(OC)=CC=C1C1=CC=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 GPCDJZRFYYEABZ-UHFFFAOYSA-N 0.000 description 1
- UQWVZWRKNGBQJU-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(2,3-dimethoxyphenyl)-7-fluorocinnoline-3-carboxamide Chemical compound COC1=CC=CC(C=2C3=NN=C(C(N)=C3C=CC=2F)C(=O)NC2CCC2)=C1OC UQWVZWRKNGBQJU-UHFFFAOYSA-N 0.000 description 1
- DTMAJJSDICLMNO-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(2,3-dimethoxyphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=CC(C=2C3=NN=C(C(N)=C3C=CC=2)C(=O)NC2CCC2)=C1OC DTMAJJSDICLMNO-UHFFFAOYSA-N 0.000 description 1
- SEYYVTORSSKEPB-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(2,4-dimethoxyphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC(OC)=CC=C1C1=CC=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 SEYYVTORSSKEPB-UHFFFAOYSA-N 0.000 description 1
- KGMWMMKYZGKDFE-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(2,4-dimethoxypyrimidin-5-yl)cinnoline-3-carboxamide Chemical compound COC1=NC(OC)=NC=C1C1=CC=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 KGMWMMKYZGKDFE-UHFFFAOYSA-N 0.000 description 1
- ACABQRKRRPEJRX-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(2,5-difluorophenyl)-7-fluorocinnoline-3-carboxamide Chemical compound FC1=CC=C2C(N)=C(C(=O)NC3CCC3)N=NC2=C1C1=CC(F)=CC=C1F ACABQRKRRPEJRX-UHFFFAOYSA-N 0.000 description 1
- MCYIPNCHRDOKHB-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(2,5-difluorophenyl)cinnoline-3-carboxamide Chemical compound C1=CC=C2C(N)=C(C(=O)NC3CCC3)N=NC2=C1C1=CC(F)=CC=C1F MCYIPNCHRDOKHB-UHFFFAOYSA-N 0.000 description 1
- PUPXSIRNGIWXNH-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(2,6-dimethoxypyridin-3-yl)cinnoline-3-carboxamide Chemical compound COC1=NC(OC)=CC=C1C1=CC=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 PUPXSIRNGIWXNH-UHFFFAOYSA-N 0.000 description 1
- ZCYYFPZVSUGYHP-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(2-fluoro-3-methoxyphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=CC(C=2C3=NN=C(C(N)=C3C=CC=2)C(=O)NC2CCC2)=C1F ZCYYFPZVSUGYHP-UHFFFAOYSA-N 0.000 description 1
- TXNJVFMIQWCYRZ-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(2-methoxyphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=CC=C1C1=CC=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 TXNJVFMIQWCYRZ-UHFFFAOYSA-N 0.000 description 1
- NWKXWXCIRSNSGR-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(2-methoxypyridin-3-yl)cinnoline-3-carboxamide Chemical compound COC1=NC=CC=C1C1=CC=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 NWKXWXCIRSNSGR-UHFFFAOYSA-N 0.000 description 1
- JRSSJWZRJMWYDL-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(3,4-dimethoxyphenyl)cinnoline-3-carboxamide Chemical compound C1=C(OC)C(OC)=CC=C1C1=CC=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 JRSSJWZRJMWYDL-UHFFFAOYSA-N 0.000 description 1
- SWRYMHMIXCFDMQ-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(3,5-dimethylphenyl)-7-fluorocinnoline-3-carboxamide Chemical compound CC1=CC(C)=CC(C=2C3=NN=C(C(N)=C3C=CC=2F)C(=O)NC2CCC2)=C1 SWRYMHMIXCFDMQ-UHFFFAOYSA-N 0.000 description 1
- WILUSWBLQIDCTI-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(3-methylphenyl)cinnoline-3-carboxamide Chemical compound CC1=CC=CC(C=2C3=NN=C(C(N)=C3C=CC=2)C(=O)NC2CCC2)=C1 WILUSWBLQIDCTI-UHFFFAOYSA-N 0.000 description 1
- ZAFVWRNNFXIZMI-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(4-methylpyridin-3-yl)cinnoline-3-carboxamide Chemical compound CC1=CC=NC=C1C1=CC=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 ZAFVWRNNFXIZMI-UHFFFAOYSA-N 0.000 description 1
- SRWWIPVVSFCFIV-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(5-fluoro-2-methoxyphenyl)cinnoline-3-carboxamide Chemical compound COC1=CC=C(F)C=C1C1=CC=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 SRWWIPVVSFCFIV-UHFFFAOYSA-N 0.000 description 1
- YWPNYUWPMCNWSX-UHFFFAOYSA-N 4-amino-n-cyclobutyl-8-(6-methylpyridin-3-yl)cinnoline-3-carboxamide Chemical compound C1=NC(C)=CC=C1C1=CC=CC2=C(N)C(C(=O)NC3CCC3)=NN=C12 YWPNYUWPMCNWSX-UHFFFAOYSA-N 0.000 description 1
- UXVAXRFPTMHDRR-UHFFFAOYSA-N 4-amino-n-cyclopropyl-7-fluoro-8-(6-methylpyridin-3-yl)cinnoline-3-carboxamide Chemical compound C1=NC(C)=CC=C1C1=C(F)C=CC2=C(N)C(C(=O)NC3CC3)=NN=C12 UXVAXRFPTMHDRR-UHFFFAOYSA-N 0.000 description 1
- HPSWSAPWFONNFP-UHFFFAOYSA-N 4-amino-n-ethyl-7-fluoro-8-(2-fluoro-3-methoxyphenyl)cinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CC=CC(OC)=C1F HPSWSAPWFONNFP-UHFFFAOYSA-N 0.000 description 1
- LFBWAWBJLZQWSN-UHFFFAOYSA-N 4-amino-n-ethyl-7-fluoro-8-(2-fluoro-6-methoxyphenyl)cinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=C(F)C=CC=C1OC LFBWAWBJLZQWSN-UHFFFAOYSA-N 0.000 description 1
- FFEVOXROQXTZSC-UHFFFAOYSA-N 4-amino-n-ethyl-7-fluoro-8-(2-methoxypyridin-3-yl)cinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CC=CN=C1OC FFEVOXROQXTZSC-UHFFFAOYSA-N 0.000 description 1
- AIMPHZZAKBQPAB-UHFFFAOYSA-N 4-amino-n-ethyl-7-fluoro-8-(5-fluoro-2-methoxyphenyl)cinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CC(F)=CC=C1OC AIMPHZZAKBQPAB-UHFFFAOYSA-N 0.000 description 1
- AXFXDUVWGOGLLU-UHFFFAOYSA-N 4-amino-n-ethyl-7-fluoro-8-(5-fluoro-6-methoxypyridin-3-yl)cinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CN=C(OC)C(F)=C1 AXFXDUVWGOGLLU-UHFFFAOYSA-N 0.000 description 1
- RLJDANWMQQIHDY-UHFFFAOYSA-N 4-amino-n-ethyl-7-fluoro-8-(6-methylpyridin-3-yl)cinnoline-3-carboxamide Chemical compound FC=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CC=C(C)N=C1 RLJDANWMQQIHDY-UHFFFAOYSA-N 0.000 description 1
- GWOVPHYYCCOOTG-UHFFFAOYSA-N 4-amino-n-ethyl-8-(2-fluoro-3-methoxyphenyl)cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CC=CC(OC)=C1F GWOVPHYYCCOOTG-UHFFFAOYSA-N 0.000 description 1
- VBAGIIMHEZBFTI-UHFFFAOYSA-N 4-amino-n-ethyl-8-(2-methoxypyridin-3-yl)cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CC=CN=C1OC VBAGIIMHEZBFTI-UHFFFAOYSA-N 0.000 description 1
- JOVOPQZPKNUMBP-UHFFFAOYSA-N 4-amino-n-ethyl-8-(4-methylpyridin-3-yl)cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CN=CC=C1C JOVOPQZPKNUMBP-UHFFFAOYSA-N 0.000 description 1
- MCEPYVILYRNQIE-UHFFFAOYSA-N 4-amino-n-ethyl-8-(5-fluoro-2-methoxyphenyl)cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CC(F)=CC=C1OC MCEPYVILYRNQIE-UHFFFAOYSA-N 0.000 description 1
- GEMMVZQVFZYLPD-UHFFFAOYSA-N 4-amino-n-ethyl-8-(5-fluoro-6-methoxypyridin-3-yl)cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CN=C(OC)C(F)=C1 GEMMVZQVFZYLPD-UHFFFAOYSA-N 0.000 description 1
- MHWHGBMRVXCKBP-UHFFFAOYSA-N 4-amino-n-ethyl-8-(6-methylpyridin-3-yl)cinnoline-3-carboxamide Chemical compound C=1C=CC2=C(N)C(C(=O)NCC)=NN=C2C=1C1=CC=C(C)N=C1 MHWHGBMRVXCKBP-UHFFFAOYSA-N 0.000 description 1
- GAMYYCRTACQSBR-UHFFFAOYSA-N 4-azabenzimidazole Chemical compound C1=CC=C2NC=NC2=N1 GAMYYCRTACQSBR-UHFFFAOYSA-N 0.000 description 1
- LBUNNMJLXWQQBY-UHFFFAOYSA-N 4-fluorophenylboronic acid Chemical compound OB(O)C1=CC=C(F)C=C1 LBUNNMJLXWQQBY-UHFFFAOYSA-N 0.000 description 1
- 125000004920 4-methyl-2-pentyl group Chemical group CC(CC(C)*)C 0.000 description 1
- NOQPNKGAYWBKIV-UHFFFAOYSA-N 4-oxo-3h-cinnoline-3-carboxamide Chemical class C1=CC=C2C(=O)C(C(=O)N)N=NC2=C1 NOQPNKGAYWBKIV-UHFFFAOYSA-N 0.000 description 1
- CYBHWCLUGRHMCK-UHFFFAOYSA-N 4aH-carbazole Chemical compound C1=CC=C2C3C=CC=CC3=NC2=C1 CYBHWCLUGRHMCK-UHFFFAOYSA-N 0.000 description 1
- FQIUCPGDKPXSLL-UHFFFAOYSA-N 5-bromopyridine-3-carboxylic acid Chemical compound OC(=O)C1=CN=CC(Br)=C1 FQIUCPGDKPXSLL-UHFFFAOYSA-N 0.000 description 1
- VMFALDWCEQUFSX-UHFFFAOYSA-N 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinoline Chemical compound O1C(C)(C)C(C)(C)OB1C1=CC=C(N=CC=C2)C2=C1 VMFALDWCEQUFSX-UHFFFAOYSA-N 0.000 description 1
- CYJRNFFLTBEQSQ-UHFFFAOYSA-N 8-(3-methyl-1-benzothiophen-5-yl)-N-(4-methylsulfonylpyridin-3-yl)quinoxalin-6-amine Chemical compound CS(=O)(=O)C1=C(C=NC=C1)NC=1C=C2N=CC=NC2=C(C=1)C=1C=CC2=C(C(=CS2)C)C=1 CYJRNFFLTBEQSQ-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- QYFHCFNBYQZGKW-BDQAORGHSA-N 8-[4-[[(3s)-5-methoxy-3,4-dihydro-2h-chromen-3-yl]-propylamino]butyl]-8-azaspiro[4.5]decane-7,9-dione;hydrochloride Chemical compound Cl.CCCN([C@H]1CC2=C(OC)C=CC=C2OC1)CCCCN(C(C1)=O)C(=O)CC21CCCC2 QYFHCFNBYQZGKW-BDQAORGHSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- FDQGNLOWMMVRQL-UHFFFAOYSA-N Allobarbital Chemical compound C=CCC1(CC=C)C(=O)NC(=O)NC1=O FDQGNLOWMMVRQL-UHFFFAOYSA-N 0.000 description 1
- WKEMJKQOLOHJLZ-UHFFFAOYSA-N Almogran Chemical compound C1=C2C(CCN(C)C)=CNC2=CC=C1CS(=O)(=O)N1CCCC1 WKEMJKQOLOHJLZ-UHFFFAOYSA-N 0.000 description 1
- 102100028116 Amine oxidase [flavin-containing] B Human genes 0.000 description 1
- 108091006515 Anion channels Proteins 0.000 description 1
- 102000037829 Anion channels Human genes 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- VCCBCXVFGHTDQN-UODBTFMRSA-N BIII-890CL Chemical compound O([C@H](CN1[C@@H]2CC3=C(O)C=CC=C3[C@](C2(C)C)(C)CC1)C)CC1=CC=CC=C1 VCCBCXVFGHTDQN-UODBTFMRSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VMIYHDSEFNYJSL-UHFFFAOYSA-N Bromazepam Chemical compound C12=CC(Br)=CC=C2NC(=O)CN=C1C1=CC=CC=N1 VMIYHDSEFNYJSL-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- UMSGKTJDUHERQW-UHFFFAOYSA-N Brotizolam Chemical compound C1=2C=C(Br)SC=2N2C(C)=NN=C2CN=C1C1=CC=CC=C1Cl UMSGKTJDUHERQW-UHFFFAOYSA-N 0.000 description 1
- JGLMVXWAHNTPRF-CMDGGOBGSA-N CCN1N=C(C)C=C1C(=O)NC1=NC2=CC(=CC(OC)=C2N1C\C=C\CN1C(NC(=O)C2=CC(C)=NN2CC)=NC2=CC(=CC(OCCCN3CCOCC3)=C12)C(N)=O)C(N)=O Chemical compound CCN1N=C(C)C=C1C(=O)NC1=NC2=CC(=CC(OC)=C2N1C\C=C\CN1C(NC(=O)C2=CC(C)=NN2CC)=NC2=CC(=CC(OCCCN3CCOCC3)=C12)C(N)=O)C(N)=O JGLMVXWAHNTPRF-CMDGGOBGSA-N 0.000 description 1
- RZZPDXZPRHQOCG-OJAKKHQRSA-O CDP-choline(1+) Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OCC[N+](C)(C)C)O[C@H]1N1C(=O)N=C(N)C=C1 RZZPDXZPRHQOCG-OJAKKHQRSA-O 0.000 description 1
- KORNTPPJEAJQIU-KJXAQDMKSA-N Cabaser Chemical compound C1=CC([C@H]2C[C@H](CN(CC=C)[C@@H]2C2)C(=O)N(CCCN(C)C)C(=O)NCC)=C3C2=CNC3=C1 KORNTPPJEAJQIU-KJXAQDMKSA-N 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- GDLIGKIOYRNHDA-UHFFFAOYSA-N Clomipramine Chemical compound C1CC2=CC=C(Cl)C=C2N(CCCN(C)C)C2=CC=CC=C21 GDLIGKIOYRNHDA-UHFFFAOYSA-N 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 241000694440 Colpidium aqueous Species 0.000 description 1
- 206010010305 Confusional state Diseases 0.000 description 1
- 206010010947 Coordination abnormal Diseases 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- HTJDQJBWANPRPF-UHFFFAOYSA-N Cyclopropylamine Chemical compound NC1CC1 HTJDQJBWANPRPF-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical class OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- HCYAFALTSJYZDH-UHFFFAOYSA-N Desimpramine Chemical compound C1CC2=CC=CC=C2N(CCCNC)C2=CC=CC=C21 HCYAFALTSJYZDH-UHFFFAOYSA-N 0.000 description 1
- 108010057987 Desmodus rotundus salivary plasminogen activator alpha 1 Proteins 0.000 description 1
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- 208000003164 Diplopia Diseases 0.000 description 1
- 206010013496 Disturbance in attention Diseases 0.000 description 1
- XIQVNETUBQGFHX-UHFFFAOYSA-N Ditropan Chemical compound C=1C=CC=CC=1C(O)(C(=O)OCC#CCN(CC)CC)C1CCCCC1 XIQVNETUBQGFHX-UHFFFAOYSA-N 0.000 description 1
- 206010013887 Dysarthria Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- JMBQKKAJIKAWKF-UHFFFAOYSA-N Glutethimide Chemical compound C=1C=CC=CC=1C1(CC)CCC(=O)NC1=O JMBQKKAJIKAWKF-UHFFFAOYSA-N 0.000 description 1
- WYCLKVQLVUQKNZ-UHFFFAOYSA-N Halazepam Chemical compound N=1CC(=O)N(CC(F)(F)F)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 WYCLKVQLVUQKNZ-UHFFFAOYSA-N 0.000 description 1
- 101000768078 Homo sapiens Amine oxidase [flavin-containing] B Proteins 0.000 description 1
- 206010020853 Hypertonic bladder Diseases 0.000 description 1
- WRYCSMQKUKOKBP-UHFFFAOYSA-N Imidazolidine Chemical compound C1CNCN1 WRYCSMQKUKOKBP-UHFFFAOYSA-N 0.000 description 1
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 1
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- 108090000543 Ligand-Gated Ion Channels Proteins 0.000 description 1
- 102000004086 Ligand-Gated Ion Channels Human genes 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- YJPIGAIKUZMOQA-UHFFFAOYSA-N Melatonin Natural products COC1=CC=C2N(C(C)=O)C=C(CCN)C2=C1 YJPIGAIKUZMOQA-UHFFFAOYSA-N 0.000 description 1
- NPPQSCRMBWNHMW-UHFFFAOYSA-N Meprobamate Chemical compound NC(=O)OCC(C)(CCC)COC(N)=O NPPQSCRMBWNHMW-UHFFFAOYSA-N 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- JEYCTXHKTXCGPB-UHFFFAOYSA-N Methaqualone Chemical compound CC1=CC=CC=C1N1C(=O)C2=CC=CC=C2N=C1C JEYCTXHKTXCGPB-UHFFFAOYSA-N 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 208000007101 Muscle Cramp Diseases 0.000 description 1
- 208000010428 Muscle Weakness Diseases 0.000 description 1
- 206010028372 Muscular weakness Diseases 0.000 description 1
- HOKKHZGPKSLGJE-GSVOUGTGSA-N N-Methyl-D-aspartic acid Chemical compound CN[C@@H](C(O)=O)CC(O)=O HOKKHZGPKSLGJE-GSVOUGTGSA-N 0.000 description 1
- RTHCYVBBDHJXIQ-UHFFFAOYSA-N N-methyl-3-phenyl-3-[4-(trifluoromethyl)phenoxy]propan-1-amine Chemical compound C=1C=CC=CC=1C(CCNC)OC1=CC=C(C(F)(F)F)C=C1 RTHCYVBBDHJXIQ-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 102000019315 Nicotinic acetylcholine receptors Human genes 0.000 description 1
- 108050006807 Nicotinic acetylcholine receptors Proteins 0.000 description 1
- 102000006538 Nitric Oxide Synthase Type I Human genes 0.000 description 1
- 108010008858 Nitric Oxide Synthase Type I Proteins 0.000 description 1
- 208000001294 Nociceptive Pain Diseases 0.000 description 1
- PHVGLTMQBUFIQQ-UHFFFAOYSA-N Nortryptiline Chemical compound C1CC2=CC=CC=C2C(=CCCNC)C2=CC=CC=C21 PHVGLTMQBUFIQQ-UHFFFAOYSA-N 0.000 description 1
- 208000009722 Overactive Urinary Bladder Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- AHOUBRCZNHFOSL-UHFFFAOYSA-N Paroxetine hydrochloride Natural products C1=CC(F)=CC=C1C1C(COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-UHFFFAOYSA-N 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- SCKXCAADGDQQCS-UHFFFAOYSA-N Performic acid Chemical compound OOC=O SCKXCAADGDQQCS-UHFFFAOYSA-N 0.000 description 1
- RMUCZJUITONUFY-UHFFFAOYSA-N Phenelzine Chemical compound NNCCC1=CC=CC=C1 RMUCZJUITONUFY-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- MWQCHHACWWAQLJ-UHFFFAOYSA-N Prazepam Chemical compound O=C1CN=C(C=2C=CC=CC=2)C2=CC(Cl)=CC=C2N1CC1CC1 MWQCHHACWWAQLJ-UHFFFAOYSA-N 0.000 description 1
- QPCVHQBVMYCJOM-UHFFFAOYSA-N Propiverine Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(OCCC)C(=O)OC1CCN(C)CC1 QPCVHQBVMYCJOM-UHFFFAOYSA-N 0.000 description 1
- 208000028017 Psychotic disease Diseases 0.000 description 1
- IKMPWMZBZSAONZ-UHFFFAOYSA-N Quazepam Chemical compound FC1=CC=CC=C1C1=NCC(=S)N(CC(F)(F)F)C2=CC=C(Cl)C=C12 IKMPWMZBZSAONZ-UHFFFAOYSA-N 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- BKRGVLQUQGGVSM-KBXCAEBGSA-N Revanil Chemical compound C1=CC(C=2[C@H](N(C)C[C@H](C=2)NC(=O)N(CC)CC)C2)=C3C2=CNC3=C1 BKRGVLQUQGGVSM-KBXCAEBGSA-N 0.000 description 1
- 206010039897 Sedation Diseases 0.000 description 1
- 206010041349 Somnolence Diseases 0.000 description 1
- 208000005392 Spasm Diseases 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- SEQDDYPDSLOBDC-UHFFFAOYSA-N Temazepam Chemical compound N=1C(O)C(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 SEQDDYPDSLOBDC-UHFFFAOYSA-N 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- YYQRGCZGSFRBAM-UHFFFAOYSA-N Triclofos Chemical compound OP(O)(=O)OCC(Cl)(Cl)Cl YYQRGCZGSFRBAM-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- ACIAHEMYLLBZOI-ZZXKWVIFSA-N Unsaturated alcohol Chemical compound CC\C(CO)=C/C ACIAHEMYLLBZOI-ZZXKWVIFSA-N 0.000 description 1
- 206010046543 Urinary incontinence Diseases 0.000 description 1
- 208000012886 Vertigo Diseases 0.000 description 1
- 241000269368 Xenopus laevis Species 0.000 description 1
- GDSCFOSHSOWNDL-UHFFFAOYSA-N Zolasepam Chemical compound N=1CC(=O)N(C)C(N(N=C2C)C)=C2C=1C1=CC=CC=C1F GDSCFOSHSOWNDL-UHFFFAOYSA-N 0.000 description 1
- BBAWTPDTGRXPDG-UHFFFAOYSA-N [1,3]thiazolo[4,5-b]pyridine Chemical compound C1=CC=C2SC=NC2=N1 BBAWTPDTGRXPDG-UHFFFAOYSA-N 0.000 description 1
- YVMXEHZEYONARR-UHFFFAOYSA-N [2-chloro-5-(trifluoromethyl)phenyl]boronic acid Chemical compound OB(O)C1=CC(C(F)(F)F)=CC=C1Cl YVMXEHZEYONARR-UHFFFAOYSA-N 0.000 description 1
- KUHVVLFCTMTYGR-UHFFFAOYSA-N [2-fluoro-5-(trifluoromethyl)phenyl]boronic acid Chemical compound OB(O)C1=CC(C(F)(F)F)=CC=C1F KUHVVLFCTMTYGR-UHFFFAOYSA-N 0.000 description 1
- BPTABBGLHGBJQR-UHFFFAOYSA-N [3,5-bis(trifluoromethyl)phenyl]boronic acid Chemical compound OB(O)C1=CC(C(F)(F)F)=CC(C(F)(F)F)=C1 BPTABBGLHGBJQR-UHFFFAOYSA-N 0.000 description 1
- YZQQHZXHCXAJAV-UHFFFAOYSA-N [3-(dimethylamino)phenyl]boronic acid Chemical compound CN(C)C1=CC=CC(B(O)O)=C1 YZQQHZXHCXAJAV-UHFFFAOYSA-N 0.000 description 1
- WOAORAPRPVIATR-UHFFFAOYSA-N [3-(trifluoromethyl)phenyl]boronic acid Chemical compound OB(O)C1=CC=CC(C(F)(F)F)=C1 WOAORAPRPVIATR-UHFFFAOYSA-N 0.000 description 1
- RIIPFHVHLXPMHQ-UHFFFAOYSA-N [4-(dimethylamino)phenyl]boronic acid Chemical compound CN(C)C1=CC=C(B(O)O)C=C1 RIIPFHVHLXPMHQ-UHFFFAOYSA-N 0.000 description 1
- ZBCRZEJNAADYKG-UHFFFAOYSA-N [4-methoxy-2-(trifluoromethyl)phenyl]boronic acid Chemical compound COC1=CC=C(B(O)O)C(C(F)(F)F)=C1 ZBCRZEJNAADYKG-UHFFFAOYSA-N 0.000 description 1
- 229960000446 abciximab Drugs 0.000 description 1
- 229940056213 abilify Drugs 0.000 description 1
- 230000009102 absorption Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 229940099983 activase Drugs 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 125000005042 acyloxymethyl group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229960003148 adinazolam Drugs 0.000 description 1
- GJSLOMWRLALDCT-UHFFFAOYSA-N adinazolam Chemical compound C12=CC(Cl)=CC=C2N2C(CN(C)C)=NN=C2CN=C1C1=CC=CC=C1 GJSLOMWRLALDCT-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000004849 alkoxymethyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 229960000880 allobarbital Drugs 0.000 description 1
- 230000003281 allosteric effect Effects 0.000 description 1
- 125000005336 allyloxy group Chemical group 0.000 description 1
- 229960002133 almotriptan Drugs 0.000 description 1
- 229950000420 alnespirone Drugs 0.000 description 1
- 229950003674 alonimid Drugs 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229960004538 alprazolam Drugs 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 1
- 229960003805 amantadine Drugs 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229960000836 amitriptyline Drugs 0.000 description 1
- KRMDCWKBEZIMAB-UHFFFAOYSA-N amitriptyline Chemical compound C1CC2=CC=CC=C2C(=CCCN(C)C)C2=CC=CC=C21 KRMDCWKBEZIMAB-UHFFFAOYSA-N 0.000 description 1
- 229960001301 amobarbital Drugs 0.000 description 1
- 229960002519 amoxapine Drugs 0.000 description 1
- QWGDMFLQWFTERH-UHFFFAOYSA-N amoxapine Chemical compound C12=CC(Cl)=CC=C2OC2=CC=CC=C2N=C1N1CCNCC1 QWGDMFLQWFTERH-UHFFFAOYSA-N 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 230000002205 anti-dementic effect Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940125681 anticonvulsant agent Drugs 0.000 description 1
- 239000001961 anticonvulsive agent Substances 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 238000010913 antigen-directed enzyme pro-drug therapy Methods 0.000 description 1
- 239000000164 antipsychotic agent Substances 0.000 description 1
- 229940005529 antipsychotics Drugs 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229940127236 atypical antipsychotics Drugs 0.000 description 1
- ZSIQJIWKELUFRJ-UHFFFAOYSA-N azepane Chemical compound C1CCCNCC1 ZSIQJIWKELUFRJ-UHFFFAOYSA-N 0.000 description 1
- 125000004931 azocinyl group Chemical group N1=C(C=CC=CC=C1)* 0.000 description 1
- AIZFEOPQVZBNGH-UHFFFAOYSA-N bentazepam Chemical compound C1=2C=3CCCCC=3SC=2NC(=O)CN=C1C1=CC=CC=C1 AIZFEOPQVZBNGH-UHFFFAOYSA-N 0.000 description 1
- 229950001957 bentazepam Drugs 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000004604 benzisothiazolyl group Chemical group S1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000004603 benzisoxazolyl group Chemical group O1N=C(C2=C1C=CC=C2)* 0.000 description 1
- GNRXCIONJWKSEA-UHFFFAOYSA-N benzoctamine Chemical compound C12=CC=CC=C2C2(CNC)C3=CC=CC=C3C1CC2 GNRXCIONJWKSEA-UHFFFAOYSA-N 0.000 description 1
- 229960001303 benzoctamine Drugs 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- IEPBPSSCIZTJIF-UHFFFAOYSA-N bis(2,2,2-trichloroethyl) carbonate Chemical compound ClC(Cl)(Cl)COC(=O)OCC(Cl)(Cl)Cl IEPBPSSCIZTJIF-UHFFFAOYSA-N 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 230000003925 brain function Effects 0.000 description 1
- 229960002729 bromazepam Drugs 0.000 description 1
- 229960002802 bromocriptine Drugs 0.000 description 1
- OZVBMTJYIDMWIL-AYFBDAFISA-N bromocriptine Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@]2(C(=O)N3[C@H](C(N4CCC[C@H]4[C@]3(O)O2)=O)CC(C)C)C(C)C)C2)=C3C2=C(Br)NC3=C1 OZVBMTJYIDMWIL-AYFBDAFISA-N 0.000 description 1
- 229960003051 brotizolam Drugs 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 229960001058 bupropion Drugs 0.000 description 1
- SNPPWIUOZRMYNY-UHFFFAOYSA-N bupropion Chemical compound CC(C)(C)NC(C)C(=O)C1=CC=CC(Cl)=C1 SNPPWIUOZRMYNY-UHFFFAOYSA-N 0.000 description 1
- QWCRAEMEVRGPNT-UHFFFAOYSA-N buspirone Chemical compound C1C(=O)N(CCCCN2CCN(CC2)C=2N=CC=CN=2)C(=O)CC21CCCC2 QWCRAEMEVRGPNT-UHFFFAOYSA-N 0.000 description 1
- 229960002495 buspirone Drugs 0.000 description 1
- 229940015694 butabarbital Drugs 0.000 description 1
- 229960002546 butalbital Drugs 0.000 description 1
- UZVHFVZFNXBMQJ-UHFFFAOYSA-N butalbital Chemical compound CC(C)CC1(CC=C)C(=O)NC(=O)NC1=O UZVHFVZFNXBMQJ-UHFFFAOYSA-N 0.000 description 1
- OVBXTKIWZAHFAC-UHFFFAOYSA-N butane;pyrazine;tin Chemical compound CCCC[Sn](CCCC)(CCCC)C1=CN=CC=N1 OVBXTKIWZAHFAC-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960004596 cabergoline Drugs 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- LLSDKQJKOVVTOJ-UHFFFAOYSA-L calcium chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Ca+2] LLSDKQJKOVVTOJ-UHFFFAOYSA-L 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- HLSLSXBFTXUKCY-UHFFFAOYSA-N capuride Chemical compound CCC(C)C(CC)C(=O)NC(N)=O HLSLSXBFTXUKCY-UHFFFAOYSA-N 0.000 description 1
- 229950003152 capuride Drugs 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 125000004623 carbolinyl group Chemical group 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- IQNQAOGGWGCROX-UHFFFAOYSA-N cartazolate Chemical compound CCCCNC1=C(C(=O)OCC)C=NC2=C1C=NN2CC IQNQAOGGWGCROX-UHFFFAOYSA-N 0.000 description 1
- 229950007168 cartazolate Drugs 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- UKFDTMNJMKWWNK-UHFFFAOYSA-N chembl2104165 Chemical compound C12=CC(Cl)=CC=C2N\C(=N\CC2CC2)C[N+]([O-])=C1C1=CC=CC=C1 UKFDTMNJMKWWNK-UHFFFAOYSA-N 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 125000003016 chromanyl group Chemical group O1C(CCC2=CC=CC=C12)* 0.000 description 1
- 125000004230 chromenyl group Chemical group O1C(C=CC2=CC=CC=C12)* 0.000 description 1
- MSOCOAIQDCLPOL-UHFFFAOYSA-N cinnolin-8-yl(trimethyl)stannane Chemical class C1=NN=C2C([Sn](C)(C)C)=CC=CC2=C1 MSOCOAIQDCLPOL-UHFFFAOYSA-N 0.000 description 1
- LBGQERGEZNQMAT-UHFFFAOYSA-N cinnoline-3-carboxamide Chemical compound C1=CC=C2N=NC(C(=O)N)=CC2=C1 LBGQERGEZNQMAT-UHFFFAOYSA-N 0.000 description 1
- 229960001653 citalopram Drugs 0.000 description 1
- 229960001284 citicoline Drugs 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 229960004606 clomipramine Drugs 0.000 description 1
- 229960003120 clonazepam Drugs 0.000 description 1
- DGBIGWXXNGSACT-UHFFFAOYSA-N clonazepam Chemical compound C12=CC([N+](=O)[O-])=CC=C2NC(=O)CN=C1C1=CC=CC=C1Cl DGBIGWXXNGSACT-UHFFFAOYSA-N 0.000 description 1
- 229950000551 cloperidone Drugs 0.000 description 1
- 229960004362 clorazepate Drugs 0.000 description 1
- XDDJGVMJFWAHJX-UHFFFAOYSA-N clorazepic acid Chemical compound C12=CC(Cl)=CC=C2NC(=O)C(C(=O)O)N=C1C1=CC=CC=C1 XDDJGVMJFWAHJX-UHFFFAOYSA-N 0.000 description 1
- 229940068796 clozaril Drugs 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011254 conventional chemotherapy Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229950005056 crobenetine Drugs 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- SNRCKKQHDUIRIY-UHFFFAOYSA-L cyclopenta-1,4-dien-1-yl(diphenyl)phosphane;dichloromethane;dichloropalladium;iron(2+) Chemical compound [Fe+2].ClCCl.Cl[Pd]Cl.C1=C[CH-]C(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1.C1=C[CH-]C(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 SNRCKKQHDUIRIY-UHFFFAOYSA-L 0.000 description 1
- NXQGGXCHGDYOHB-UHFFFAOYSA-L cyclopenta-1,4-dien-1-yl(diphenyl)phosphane;dichloropalladium;iron(2+) Chemical compound [Fe+2].Cl[Pd]Cl.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 NXQGGXCHGDYOHB-UHFFFAOYSA-L 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- IGSKHXTUVXSOMB-UHFFFAOYSA-N cyclopropylmethanamine Chemical compound NCC1CC1 IGSKHXTUVXSOMB-UHFFFAOYSA-N 0.000 description 1
- 229950010040 cyprazepam Drugs 0.000 description 1
- 125000004856 decahydroquinolinyl group Chemical group N1(CCCC2CCCCC12)* 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 229960003914 desipramine Drugs 0.000 description 1
- 229950001282 desmoteplase Drugs 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- UPMOVJBGNREKJV-CQOQZXRMSA-N dexclamol Chemical compound C12=CC=CC=C2CCC2=CC=CC3=C2[C@@H]1CN1CC[C@@](C(C)C)(O)C[C@@H]13 UPMOVJBGNREKJV-CQOQZXRMSA-N 0.000 description 1
- 229950005215 dexclamol Drugs 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- QPMLSUSACCOBDK-UHFFFAOYSA-N diazepane Chemical compound C1CCNNCC1 QPMLSUSACCOBDK-UHFFFAOYSA-N 0.000 description 1
- ATKXDQOHNICLQW-UHFFFAOYSA-N dichloralphenazone Chemical compound OC(O)C(Cl)(Cl)Cl.OC(O)C(Cl)(Cl)Cl.CN1C(C)=CC(=O)N1C1=CC=CC=C1 ATKXDQOHNICLQW-UHFFFAOYSA-N 0.000 description 1
- 229960005422 dichloralphenazone Drugs 0.000 description 1
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- 229960000520 diphenhydramine Drugs 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- XLZOVRYBVCMCGL-BPNVQINPSA-L disodium;4-[(z)-[tert-butyl(oxido)azaniumylidene]methyl]benzene-1,3-disulfonate Chemical compound [Na+].[Na+].CC(C)(C)[N+](\[O-])=C\C1=CC=C(S([O-])(=O)=O)C=C1S([O-])(=O)=O XLZOVRYBVCMCGL-BPNVQINPSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229960003530 donepezil Drugs 0.000 description 1
- 229940052760 dopamine agonists Drugs 0.000 description 1
- 239000003136 dopamine receptor stimulating agent Substances 0.000 description 1
- 239000000221 dopamine uptake inhibitor Substances 0.000 description 1
- 229960005426 doxepin Drugs 0.000 description 1
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 229960002472 eletriptan Drugs 0.000 description 1
- OTLDLQZJRFYOJR-LJQANCHMSA-N eletriptan Chemical compound CN1CCC[C@@H]1CC1=CN=C2[C]1C=C(CCS(=O)(=O)C=1C=CC=CC=1)C=C2 OTLDLQZJRFYOJR-LJQANCHMSA-N 0.000 description 1
- 229950007566 elzasonan Drugs 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- WSEQXVZVJXJVFP-FQEVSTJZSA-N escitalopram Chemical compound C1([C@]2(C3=CC=C(C=C3CO2)C#N)CCCN(C)C)=CC=C(F)C=C1 WSEQXVZVJXJVFP-FQEVSTJZSA-N 0.000 description 1
- 229960004341 escitalopram Drugs 0.000 description 1
- CDCHDCWJMGXXRH-UHFFFAOYSA-N estazolam Chemical compound C=1C(Cl)=CC=C(N2C=NN=C2CN=2)C=1C=2C1=CC=CC=C1 CDCHDCWJMGXXRH-UHFFFAOYSA-N 0.000 description 1
- 229960002336 estazolam Drugs 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 229960004447 ethchlorvynol Drugs 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 229960001690 etomidate Drugs 0.000 description 1
- NPUKDXXFDDZOKR-LLVKDONJSA-N etomidate Chemical compound CCOC(=O)C1=CN=CN1[C@H](C)C1=CC=CC=C1 NPUKDXXFDDZOKR-LLVKDONJSA-N 0.000 description 1
- MNJVRJDLRVPLFE-UHFFFAOYSA-N etoricoxib Chemical compound C1=NC(C)=CC=C1C1=NC=C(Cl)C=C1C1=CC=C(S(C)(=O)=O)C=C1 MNJVRJDLRVPLFE-UHFFFAOYSA-N 0.000 description 1
- 229960004945 etoricoxib Drugs 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 229950002489 fenobam Drugs 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229960003528 flurazepam Drugs 0.000 description 1
- SAADBVWGJQAEFS-UHFFFAOYSA-N flurazepam Chemical compound N=1CC(=O)N(CCN(CC)CC)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1F SAADBVWGJQAEFS-UHFFFAOYSA-N 0.000 description 1
- CJOFXWAVKWHTFT-XSFVSMFZSA-N fluvoxamine Chemical compound COCCCC\C(=N/OCCN)C1=CC=C(C(F)(F)F)C=C1 CJOFXWAVKWHTFT-XSFVSMFZSA-N 0.000 description 1
- 229960004038 fluvoxamine Drugs 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- JMYCGCXYZZHWMO-UHFFFAOYSA-N fosazepam Chemical compound N=1CC(=O)N(CP(C)(=O)C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 JMYCGCXYZZHWMO-UHFFFAOYSA-N 0.000 description 1
- 229950006306 fosazepam Drugs 0.000 description 1
- 229960002284 frovatriptan Drugs 0.000 description 1
- SIBNYOSJIXCDRI-SECBINFHSA-N frovatriptan Chemical compound C1=C(C(N)=O)[CH]C2=C(C[C@H](NC)CC3)C3=NC2=C1 SIBNYOSJIXCDRI-SECBINFHSA-N 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 125000003838 furazanyl group Chemical group 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229940003380 geodon Drugs 0.000 description 1
- QOIGKGMMAGJZNZ-UHFFFAOYSA-N gepirone Chemical compound O=C1CC(C)(C)CC(=O)N1CCCCN1CCN(C=2N=CC=CN=2)CC1 QOIGKGMMAGJZNZ-UHFFFAOYSA-N 0.000 description 1
- 229960000647 gepirone Drugs 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 229960002972 glutethimide Drugs 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000036433 growing body Effects 0.000 description 1
- 229960002158 halazepam Drugs 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004475 heteroaralkyl group Chemical group 0.000 description 1
- 125000005549 heteroarylene group Chemical group 0.000 description 1
- 125000006588 heterocycloalkylene group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 125000005638 hydrazono group Chemical group 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 1
- ZQDWXGKKHFNSQK-UHFFFAOYSA-N hydroxyzine Chemical compound C1CN(CCOCCO)CCN1C(C=1C=CC(Cl)=CC=1)C1=CC=CC=C1 ZQDWXGKKHFNSQK-UHFFFAOYSA-N 0.000 description 1
- 229960000930 hydroxyzine Drugs 0.000 description 1
- 229940053999 hypnotics and sedatives melatonin receptor agonists Drugs 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 125000002632 imidazolidinyl group Chemical group 0.000 description 1
- 125000002636 imidazolinyl group Chemical group 0.000 description 1
- 229960004801 imipramine Drugs 0.000 description 1
- BCGWQEUPMDMJNV-UHFFFAOYSA-N imipramine Chemical compound C1CC2=CC=CC=C2N(CCCN(C)C)C2=CC=CC=C21 BCGWQEUPMDMJNV-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 208000016290 incoordination Diseases 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 125000004926 indolenyl group Chemical group 0.000 description 1
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000003406 indolizinyl group Chemical group C=1(C=CN2C=CC=CC12)* 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229910001411 inorganic cation Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 230000001057 ionotropic effect Effects 0.000 description 1
- 229950003599 ipsapirone Drugs 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 125000001977 isobenzofuranyl group Chemical group C=1(OC=C2C=CC=CC12)* 0.000 description 1
- 125000003384 isochromanyl group Chemical group C1(OCCC2=CC=CC=C12)* 0.000 description 1
- 125000005438 isoindazolyl group Chemical group 0.000 description 1
- 125000004594 isoindolinyl group Chemical group C1(NCC2=CC=CC=C12)* 0.000 description 1
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 229940060977 lidoderm Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 229960003587 lisuride Drugs 0.000 description 1
- 229960004391 lorazepam Drugs 0.000 description 1
- 229960004033 lormetazepam Drugs 0.000 description 1
- 229960002373 loxoprofen Drugs 0.000 description 1
- BAZQYVYVKYOAGO-UHFFFAOYSA-M loxoprofen sodium hydrate Chemical compound O.O.[Na+].C1=CC(C(C([O-])=O)C)=CC=C1CC1C(=O)CCC1 BAZQYVYVKYOAGO-UHFFFAOYSA-M 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229960000994 lumiracoxib Drugs 0.000 description 1
- KHPKQFYUPIUARC-UHFFFAOYSA-N lumiracoxib Chemical compound OC(=O)CC1=CC(C)=CC=C1NC1=C(F)C=CC=C1Cl KHPKQFYUPIUARC-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- DHRRIBDTHFBPNG-UHFFFAOYSA-L magnesium dichloride hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Cl-].[Cl-] DHRRIBDTHFBPNG-UHFFFAOYSA-L 0.000 description 1
- 210000005171 mammalian brain Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 229960004090 maprotiline Drugs 0.000 description 1
- QSLMDECMDJKHMQ-GSXCWMCISA-N maprotiline Chemical compound C12=CC=CC=C2[C@@]2(CCCNC)C3=CC=CC=C3[C@@H]1CC2 QSLMDECMDJKHMQ-GSXCWMCISA-N 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- SFITWQDBYUMAPS-UHFFFAOYSA-N mecloqualone Chemical compound CC1=NC2=CC=CC=C2C(=O)N1C1=CC=CC=C1Cl SFITWQDBYUMAPS-UHFFFAOYSA-N 0.000 description 1
- 229950007403 mecloqualone Drugs 0.000 description 1
- 229960003194 meglumine Drugs 0.000 description 1
- DRLFMBDRBRZALE-UHFFFAOYSA-N melatonin Chemical compound COC1=CC=C2NC=C(CCNC(C)=O)C2=C1 DRLFMBDRBRZALE-UHFFFAOYSA-N 0.000 description 1
- 229960003987 melatonin Drugs 0.000 description 1
- BUGYDGFZZOZRHP-UHFFFAOYSA-N memantine Chemical compound C1C(C2)CC3(C)CC1(C)CC2(N)C3 BUGYDGFZZOZRHP-UHFFFAOYSA-N 0.000 description 1
- 229960004640 memantine Drugs 0.000 description 1
- 230000028161 membrane depolarization Effects 0.000 description 1
- ALARQZQTBTVLJV-UHFFFAOYSA-N mephobarbital Chemical compound C=1C=CC=CC=1C1(CC)C(=O)NC(=O)N(C)C1=O ALARQZQTBTVLJV-UHFFFAOYSA-N 0.000 description 1
- 229960004815 meprobamate Drugs 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229960002803 methaqualone Drugs 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- 229960001703 methylphenobarbital Drugs 0.000 description 1
- 229950010642 midaflur Drugs 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229940101972 mirapex Drugs 0.000 description 1
- 239000004050 mood stabilizer Substances 0.000 description 1
- 229940127237 mood stabilizer Drugs 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- JLBPWNFUYUYTEH-UHFFFAOYSA-N n-(2-bromoanilino)-2-oxo-2-(propylamino)ethanimidoyl cyanide Chemical compound CCCNC(=O)C(C#N)=NNC1=CC=CC=C1Br JLBPWNFUYUYTEH-UHFFFAOYSA-N 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- GTWJETSWSUWSEJ-UHFFFAOYSA-N n-benzylaniline Chemical compound C=1C=CC=CC=1CNC1=CC=CC=C1 GTWJETSWSUWSEJ-UHFFFAOYSA-N 0.000 description 1
- NDVZIUGCCMZHLG-UHFFFAOYSA-N n-methyl-3-(2-methylsulfanylphenoxy)-3-phenylpropan-1-amine Chemical compound C=1C=CC=CC=1C(CCNC)OC1=CC=CC=C1SC NDVZIUGCCMZHLG-UHFFFAOYSA-N 0.000 description 1
- KPTRDYONBVUWPD-UHFFFAOYSA-N naphthalen-2-ylboronic acid Chemical compound C1=CC=CC2=CC(B(O)O)=CC=C21 KPTRDYONBVUWPD-UHFFFAOYSA-N 0.000 description 1
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- 229960005254 naratriptan Drugs 0.000 description 1
- UNHGSHHVDNGCFN-UHFFFAOYSA-N naratriptan Chemical compound C=12[CH]C(CCS(=O)(=O)NC)=CC=C2N=CC=1C1CCN(C)CC1 UNHGSHHVDNGCFN-UHFFFAOYSA-N 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 229960001800 nefazodone Drugs 0.000 description 1
- VRBKIVRKKCLPHA-UHFFFAOYSA-N nefazodone Chemical compound O=C1N(CCOC=2C=CC=CC=2)C(CC)=NN1CCCN(CC1)CCN1C1=CC=CC(Cl)=C1 VRBKIVRKKCLPHA-UHFFFAOYSA-N 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000008587 neuronal excitability Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229960002715 nicotine Drugs 0.000 description 1
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 1
- CBDPCXYQNVDTMW-UHFFFAOYSA-N nisobamate Chemical compound NC(=O)OCC(C)(C(C)CC)COC(=O)NC(C)C CBDPCXYQNVDTMW-UHFFFAOYSA-N 0.000 description 1
- 229950008643 nisobamate Drugs 0.000 description 1
- 229960001454 nitrazepam Drugs 0.000 description 1
- KJONHKAYOJNZEC-UHFFFAOYSA-N nitrazepam Chemical compound C12=CC([N+](=O)[O-])=CC=C2NC(=O)CN=C1C1=CC=CC=C1 KJONHKAYOJNZEC-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 229960001158 nortriptyline Drugs 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 1
- 125000004930 octahydroisoquinolinyl group Chemical group C1(NCCC2CCCC=C12)* 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 150000002892 organic cations Chemical class 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 208000020629 overactive bladder Diseases 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 229960004535 oxazepam Drugs 0.000 description 1
- ADIMAYPTOBDMTL-UHFFFAOYSA-N oxazepam Chemical compound C12=CC(Cl)=CC=C2NC(=O)C(O)N=C1C1=CC=CC=C1 ADIMAYPTOBDMTL-UHFFFAOYSA-N 0.000 description 1
- 125000000160 oxazolidinyl group Chemical group 0.000 description 1
- QNNHQVPFZIFNFK-UHFFFAOYSA-N oxazolo[4,5-b]pyridine Chemical compound C1=CC=C2OC=NC2=N1 QNNHQVPFZIFNFK-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229960005434 oxybutynin Drugs 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000006201 parenteral dosage form Substances 0.000 description 1
- 229960002296 paroxetine Drugs 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 229960004851 pergolide Drugs 0.000 description 1
- YEHCICAEULNIGD-MZMPZRCHSA-N pergolide Chemical compound C1=CC([C@H]2C[C@@H](CSC)CN([C@@H]2C2)CCC)=C3C2=CNC3=C1 YEHCICAEULNIGD-MZMPZRCHSA-N 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 125000004934 phenanthridinyl group Chemical group C1(=CC=CC2=NC=C3C=CC=CC3=C12)* 0.000 description 1
- 125000004625 phenanthrolinyl group Chemical group N1=C(C=CC2=CC=C3C=CC=NC3=C12)* 0.000 description 1
- 125000004624 phenarsazinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3[As]=C12)* 0.000 description 1
- 125000001791 phenazinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3N=C12)* 0.000 description 1
- 229960000964 phenelzine Drugs 0.000 description 1
- DDBREPKUVSBGFI-UHFFFAOYSA-N phenobarbital Chemical compound C=1C=CC=CC=1C1(CC)C(=O)NC(=O)NC1=O DDBREPKUVSBGFI-UHFFFAOYSA-N 0.000 description 1
- 229960002695 phenobarbital Drugs 0.000 description 1
- 125000001484 phenothiazinyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 1
- 125000005954 phenoxathiinyl group Chemical group 0.000 description 1
- 125000001644 phenoxazinyl group Chemical group C1(=CC=CC=2OC3=CC=CC=C3NC12)* 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 125000004928 piperidonyl group Chemical group 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229960003089 pramipexole Drugs 0.000 description 1
- 229960004856 prazepam Drugs 0.000 description 1
- 238000011533 pre-incubation Methods 0.000 description 1
- AYXYPKUFHZROOJ-ZETCQYMHSA-N pregabalin Chemical compound CC(C)C[C@H](CN)CC(O)=O AYXYPKUFHZROOJ-ZETCQYMHSA-N 0.000 description 1
- 238000004237 preparative chromatography Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- ALDITMKAAPLVJK-UHFFFAOYSA-N prop-1-ene;hydrate Chemical group O.CC=C ALDITMKAAPLVJK-UHFFFAOYSA-N 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical compound CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- 229960003510 propiverine Drugs 0.000 description 1
- 229960004134 propofol Drugs 0.000 description 1
- OLBCVFGFOZPWHH-UHFFFAOYSA-N propofol Chemical compound CC(C)C1=CC=CC(C(C)C)=C1O OLBCVFGFOZPWHH-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N propylene glycol Substances CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 229960002601 protriptyline Drugs 0.000 description 1
- BWPIARFWQZKAIA-UHFFFAOYSA-N protriptyline Chemical compound C1=CC2=CC=CC=C2C(CCCNC)C2=CC=CC=C21 BWPIARFWQZKAIA-UHFFFAOYSA-N 0.000 description 1
- 125000001042 pteridinyl group Chemical group N1=C(N=CC2=NC=CN=C12)* 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000003072 pyrazolidinyl group Chemical group 0.000 description 1
- 125000002755 pyrazolinyl group Chemical group 0.000 description 1
- ABMYEXAYWZJVOV-UHFFFAOYSA-N pyridin-3-ylboronic acid Chemical compound OB(O)C1=CC=CN=C1 ABMYEXAYWZJVOV-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- ZVJHJDDKYZXRJI-UHFFFAOYSA-N pyrroline Natural products C1CC=NC1 ZVJHJDDKYZXRJI-UHFFFAOYSA-N 0.000 description 1
- 125000001422 pyrrolinyl group Chemical group 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 229960001964 quazepam Drugs 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- ZTHJULTYCAQOIJ-WXXKFALUSA-N quetiapine fumarate Chemical compound [H+].[H+].[O-]C(=O)\C=C\C([O-])=O.C1CN(CCOCCO)CCN1C1=NC2=CC=CC=C2SC2=CC=CC=C12.C1CN(CCOCCO)CCN1C1=NC2=CC=CC=C2SC2=CC=CC=C12 ZTHJULTYCAQOIJ-WXXKFALUSA-N 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- YGDICLRMNDWZAK-UHFFFAOYSA-N quinolin-3-ylboronic acid Chemical compound C1=CC=CC2=CC(B(O)O)=CN=C21 YGDICLRMNDWZAK-UHFFFAOYSA-N 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 125000004621 quinuclidinyl group Chemical group N12C(CC(CC1)CC2)* 0.000 description 1
- RUOKEQAAGRXIBM-GFCCVEGCSA-N rasagiline Chemical compound C1=CC=C2[C@H](NCC#C)CCC2=C1 RUOKEQAAGRXIBM-GFCCVEGCSA-N 0.000 description 1
- 229960000245 rasagiline Drugs 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229960003770 reboxetine Drugs 0.000 description 1
- CBQGYUDMJHNJBX-RTBURBONSA-N reboxetine Chemical compound CCOC1=CC=CC=C1O[C@H](C=1C=CC=CC=1)[C@@H]1OCCNC1 CBQGYUDMJHNJBX-RTBURBONSA-N 0.000 description 1
- 239000000018 receptor agonist Substances 0.000 description 1
- 229940044601 receptor agonist Drugs 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- MQGIGGJUPITZSE-UHFFFAOYSA-N reclazepam Chemical compound C12=CC(Cl)=CC=C2N(C=2OCC(=O)N=2)CCN=C1C1=CC=CC=C1Cl MQGIGGJUPITZSE-UHFFFAOYSA-N 0.000 description 1
- 229950004797 reclazepam Drugs 0.000 description 1
- YGYBFMRFXNDIPO-QGZVFWFLSA-N repinotan Chemical compound O=S1(=O)C2=CC=CC=C2C(=O)N1CCCCNC[C@@H]1OC2=CC=CC=C2CC1 YGYBFMRFXNDIPO-QGZVFWFLSA-N 0.000 description 1
- 229950009693 repinotan Drugs 0.000 description 1
- 229940113775 requip Drugs 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229940106887 risperdal Drugs 0.000 description 1
- 229960000425 rizatriptan Drugs 0.000 description 1
- TXHZXHICDBAVJW-UHFFFAOYSA-N rizatriptan Chemical compound C=1[C]2C(CCN(C)C)=CN=C2C=CC=1CN1C=NC=N1 TXHZXHICDBAVJW-UHFFFAOYSA-N 0.000 description 1
- 229960000371 rofecoxib Drugs 0.000 description 1
- RZJQGNCSTQAWON-UHFFFAOYSA-N rofecoxib Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=C(C=2C=CC=CC=2)C(=O)OC1 RZJQGNCSTQAWON-UHFFFAOYSA-N 0.000 description 1
- 229950004692 roletamide Drugs 0.000 description 1
- 229960001879 ropinirole Drugs 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 230000036280 sedation Effects 0.000 description 1
- 230000001624 sedative effect Effects 0.000 description 1
- MEZLKOACVSPNER-GFCCVEGCSA-N selegiline Chemical compound C#CCN(C)[C@H](C)CC1=CC=CC=C1 MEZLKOACVSPNER-GFCCVEGCSA-N 0.000 description 1
- XIIOFHFUYBLOLW-UHFFFAOYSA-N selpercatinib Chemical compound OC(COC=1C=C(C=2N(C=1)N=CC=2C#N)C=1C=NC(=CC=1)N1CC2N(C(C1)C2)CC=1C=NC(=CC=1)OC)(C)C XIIOFHFUYBLOLW-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229940035004 seroquel Drugs 0.000 description 1
- VGKDLMBJGBXTGI-SJCJKPOMSA-N sertraline Chemical compound C1([C@@H]2CC[C@@H](C3=CC=CC=C32)NC)=CC=C(Cl)C(Cl)=C1 VGKDLMBJGBXTGI-SJCJKPOMSA-N 0.000 description 1
- 229960002073 sertraline Drugs 0.000 description 1
- 229960004425 sibutramine Drugs 0.000 description 1
- UNAANXDKBXWMLN-UHFFFAOYSA-N sibutramine Chemical compound C=1C=C(Cl)C=CC=1C1(C(N(C)C)CC(C)C)CCC1 UNAANXDKBXWMLN-UHFFFAOYSA-N 0.000 description 1
- XGVXKJKTISMIOW-ZDUSSCGKSA-N simurosertib Chemical compound N1N=CC(C=2SC=3C(=O)NC(=NC=3C=2)[C@H]2N3CCC(CC3)C2)=C1C XGVXKJKTISMIOW-ZDUSSCGKSA-N 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229960004249 sodium acetate Drugs 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- ILJOYZVVZZFIKA-UHFFFAOYSA-M sodium;1,1-dioxo-1,2-benzothiazol-3-olate;hydrate Chemical compound O.[Na+].C1=CC=C2C(=O)[N-]S(=O)(=O)C2=C1 ILJOYZVVZZFIKA-UHFFFAOYSA-M 0.000 description 1
- DCQXTYAFFMSNNH-UHFFFAOYSA-M sodium;2-[bis(2-hydroxyethyl)amino]ethanol;acetate Chemical compound [Na+].CC([O-])=O.OCCN(CCO)CCO DCQXTYAFFMSNNH-UHFFFAOYSA-M 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- FBOUYBDGKBSUES-VXKWHMMOSA-N solifenacin Chemical compound C1([C@H]2C3=CC=CC=C3CCN2C(O[C@@H]2C3CCN(CC3)C2)=O)=CC=CC=C1 FBOUYBDGKBSUES-VXKWHMMOSA-N 0.000 description 1
- 229960003855 solifenacin Drugs 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- VNFWTIYUKDMAOP-UHFFFAOYSA-N sphos Chemical compound COC1=CC=CC(OC)=C1C1=CC=CC=C1P(C1CCCCC1)C1CCCCC1 VNFWTIYUKDMAOP-UHFFFAOYSA-N 0.000 description 1
- WZAIVXXKOAWTGQ-UHFFFAOYSA-N spiro[2,3-dihydronaphthalene-4,3'-piperidine]-1,2',6'-trione Chemical compound O=C1NC(=O)CCC11C2=CC=CC=C2C(=O)CC1 WZAIVXXKOAWTGQ-UHFFFAOYSA-N 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229960003708 sumatriptan Drugs 0.000 description 1
- KQKPFRSPSRPDEB-UHFFFAOYSA-N sumatriptan Chemical compound CNS(=O)(=O)CC1=CC=C2NC=C(CCN(C)C)C2=C1 KQKPFRSPSRPDEB-UHFFFAOYSA-N 0.000 description 1
- 238000004808 supercritical fluid chromatography Methods 0.000 description 1
- 229940034173 symbyax Drugs 0.000 description 1
- 210000000225 synapse Anatomy 0.000 description 1
- 230000005062 synaptic transmission Effects 0.000 description 1
- 229960001685 tacrine Drugs 0.000 description 1
- YLJREFDVOIBQDA-UHFFFAOYSA-O tacrine(1+) Chemical compound C1=CC=C2C([NH3+])=C(CCCC3)C3=NC2=C1 YLJREFDVOIBQDA-UHFFFAOYSA-O 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229940000238 tasmar Drugs 0.000 description 1
- 238000003419 tautomerization reaction Methods 0.000 description 1
- 229960003188 temazepam Drugs 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000003039 tetrahydroisoquinolinyl group Chemical group C1(NCCC2=CC=CC=C12)* 0.000 description 1
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 125000004627 thianthrenyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3SC12)* 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- VOVUARRWDCVURC-UHFFFAOYSA-N thiirane Chemical compound C1CS1 VOVUARRWDCVURC-UHFFFAOYSA-N 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 125000005309 thioalkoxy group Chemical group 0.000 description 1
- 125000005505 thiomorpholino group Chemical group 0.000 description 1
- QERYCTSHXKAMIS-UHFFFAOYSA-N thiophene-2-carboxylic acid Chemical compound OC(=O)C1=CC=CS1 QERYCTSHXKAMIS-UHFFFAOYSA-N 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- MIQPIUSUKVNLNT-UHFFFAOYSA-N tolcapone Chemical compound C1=CC(C)=CC=C1C(=O)C1=CC(O)=C(O)C([N+]([O-])=O)=C1 MIQPIUSUKVNLNT-UHFFFAOYSA-N 0.000 description 1
- OOGJQPCLVADCPB-HXUWFJFHSA-N tolterodine Chemical compound C1([C@@H](CCN(C(C)C)C(C)C)C=2C(=CC=C(C)C=2)O)=CC=CC=C1 OOGJQPCLVADCPB-HXUWFJFHSA-N 0.000 description 1
- 229960004045 tolterodine Drugs 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 239000003204 tranquilizing agent Substances 0.000 description 1
- 230000002936 tranquilizing effect Effects 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 229950005135 traxoprodil Drugs 0.000 description 1
- 229960003991 trazodone Drugs 0.000 description 1
- PHLBKPHSAVXXEF-UHFFFAOYSA-N trazodone Chemical compound ClC1=CC=CC(N2CCN(CCCN3C(N4C=CC=CC4=N3)=O)CC2)=C1 PHLBKPHSAVXXEF-UHFFFAOYSA-N 0.000 description 1
- 229950002464 trepipam Drugs 0.000 description 1
- JOFWLTCLBGQGBO-UHFFFAOYSA-N triazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1Cl JOFWLTCLBGQGBO-UHFFFAOYSA-N 0.000 description 1
- 229960003386 triazolam Drugs 0.000 description 1
- GYUURHMITDQTRU-UHFFFAOYSA-N tributyl(pyridin-2-yl)stannane Chemical compound CCCC[Sn](CCCC)(CCCC)C1=CC=CC=N1 GYUURHMITDQTRU-UHFFFAOYSA-N 0.000 description 1
- UNEPXPMBVGDXGH-UHFFFAOYSA-N tributyl(pyridin-4-yl)stannane Chemical compound CCCC[Sn](CCCC)(CCCC)C1=CC=NC=C1 UNEPXPMBVGDXGH-UHFFFAOYSA-N 0.000 description 1
- 229940072040 tricaine Drugs 0.000 description 1
- FQZJYWMRQDKBQN-UHFFFAOYSA-N tricaine methanesulfonate Chemical compound CS([O-])(=O)=O.CCOC(=O)C1=CC=CC([NH3+])=C1 FQZJYWMRQDKBQN-UHFFFAOYSA-N 0.000 description 1
- HFFLGKNGCAIQMO-UHFFFAOYSA-N trichloroacetaldehyde Chemical compound ClC(Cl)(Cl)C=O HFFLGKNGCAIQMO-UHFFFAOYSA-N 0.000 description 1
- 229960001147 triclofos Drugs 0.000 description 1
- 229940117013 triethanolamine oleate Drugs 0.000 description 1
- 229960002431 trimipramine Drugs 0.000 description 1
- ZSCDBOWYZJWBIY-UHFFFAOYSA-N trimipramine Chemical compound C1CC2=CC=CC=C2N(CC(CN(C)C)C)C2=CC=CC=C21 ZSCDBOWYZJWBIY-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
- 229960000281 trometamol Drugs 0.000 description 1
- DTMPGSXFUXZBDK-UHFFFAOYSA-N uldazepam Chemical compound C12=CC(Cl)=CC=C2N=C(NOCC=C)CN=C1C1=CC=CC=C1Cl DTMPGSXFUXZBDK-UHFFFAOYSA-N 0.000 description 1
- 229950004526 uldazepam Drugs 0.000 description 1
- LNPDTQAFDNKSHK-UHFFFAOYSA-N valdecoxib Chemical compound CC=1ON=C(C=2C=CC=CC=2)C=1C1=CC=C(S(N)(=O)=O)C=C1 LNPDTQAFDNKSHK-UHFFFAOYSA-N 0.000 description 1
- 229960002004 valdecoxib Drugs 0.000 description 1
- BDIAUFOIMFAIPU-UHFFFAOYSA-N valepotriate Natural products CC(C)CC(=O)OC1C=C(C(=COC2OC(=O)CC(C)C)COC(C)=O)C2C11CO1 BDIAUFOIMFAIPU-UHFFFAOYSA-N 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 229960004688 venlafaxine Drugs 0.000 description 1
- PNVNVHUZROJLTJ-UHFFFAOYSA-N venlafaxine Chemical compound C1=CC(OC)=CC=C1C(CN(C)C)C1(O)CCCCC1 PNVNVHUZROJLTJ-UHFFFAOYSA-N 0.000 description 1
- 229960001722 verapamil Drugs 0.000 description 1
- 231100000889 vertigo Toxicity 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 125000001834 xanthenyl group Chemical group C1=CC=CC=2OC3=CC=CC=C3C(C12)* 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- HUNXMJYCHXQEGX-UHFFFAOYSA-N zaleplon Chemical compound CCN(C(C)=O)C1=CC=CC(C=2N3N=CC(=C3N=CC=2)C#N)=C1 HUNXMJYCHXQEGX-UHFFFAOYSA-N 0.000 description 1
- 229960004010 zaleplon Drugs 0.000 description 1
- 229960001366 zolazepam Drugs 0.000 description 1
- 229960001360 zolmitriptan Drugs 0.000 description 1
- ULSDMUVEXKOYBU-ZDUSSCGKSA-N zolmitriptan Chemical compound C1=C2C(CCN(C)C)=CNC2=CC=C1C[C@H]1COC(=O)N1 ULSDMUVEXKOYBU-ZDUSSCGKSA-N 0.000 description 1
- ZAFYATHCZYHLPB-UHFFFAOYSA-N zolpidem Chemical compound N1=C2C=CC(C)=CN2C(CC(=O)N(C)C)=C1C1=CC=C(C)C=C1 ZAFYATHCZYHLPB-UHFFFAOYSA-N 0.000 description 1
- 229960001475 zolpidem Drugs 0.000 description 1
- 229940039925 zyprexa Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D237/00—Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
- C07D237/26—Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings condensed with carbocyclic rings or ring systems
- C07D237/28—Cinnolines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/22—Anxiolytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/10—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/04—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
Definitions
- the present invention relates to novel cinnoline compounds, their pharmaceutical compositions, methods of use and processes to make such compounds.
- the present invention relates to therapeutic methods for the treatment and/or prevention of anxiety disorders, cognitive disorders, and/or mood disorders.
- the present invention comprises, inter alia, cinnoline compounds, their use as central nervous system (CNS) depressants (especially anxiolytics), and pharmacological tools, methods for their preparation, pharmaceutical compositions containing the same, and intermediates used in their preparation.
- CNS central nervous system
- Some cinnoline compounds including selected 4-amino- and 4-oxo-cinnoline-3-carboxamides are disclosed in East German Patent 123525 (Verfahren zur compassion von substitu believing 4-Aminocinnolinen); U.S. Pat. No. 4,379,929 to Conrad et al; U.S. Pat. Nos. 4,886,800 and 4,925,844 to Resch; Daunis et al., “Preparation et proprietes de cinnolones-3 et cinnolones-4,” Bull. de la Societe Chimique de France, 8:3198-3202 (1972); Lunt et al. “A New Cinnoline Synthesis,” J. Chem.
- GABA gamma-Aminobutyric acid
- GABAA GABA type A receptors
- GABAB GABA type B receptors
- GABAC GABA type C receptors
- GABAA receptors function as ligand-gated ion channels to mediate fast inhibitory synaptic transmissions that regulate neuronal excitability involved in such responses as seizure threshold, skeletal muscle tone, and emotional status.
- GABAA receptors are targets of many sedating drugs, such as benzodiazepines, barbiturates and neurosteroids.
- GABAA receptors are pentameric, ligand-gated chloride ion (Cl ⁇ ) channels belonging to a superfamily of ligand-gated ionotropic receptors that includes the nicotinic acetylcholine receptor. GABAA receptors are very heterogeneous, with at least 16 different subunits producing potentially thousands of different receptor types.
- GABAA receptor subunits aggregate into complexes that form chloride ion selective channels and contain sites that bind GABA along with a variety of pharmacologically active substances.
- the anion channel is activated, causing it to open and allowing chloride ions (Cl ⁇ ) to enter the neuron.
- This influx of Cl ⁇ ions hyperpolarizes the neuron, making it less excitable.
- the resultant decrease in neuronal activity following activation of the GABAA receptor complex can rapidly alter brain function, to such an extent that consciousness and motor control may be impaired.
- GABAA receptor subunits and the widespread distribution of these receptors in the nervous system likely contributes to the diverse and variable physiological functions of GABAA receptors, which have been implicated in many neurological and psychiatric disorders, and related conditions, including: stroke, head trauma, epilepsy, pain, migraine, mood disorders, anxiety, post traumatic stress disorder, obsessive compulsive disorders, schizophrenia, seizures, convulsions, tinnitus, neurodegenerative disorders including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's Chorea, Parkinson's disease, depression, bipolar disorders, mania, trigeminal and other neuralgia, neuropathic pain, hypertension, cerebral ischemia, cardiac arrhythmia, myotonia, substance abuse, myoclonus, essential tremor, dyskinesia and other movement disorders, neonatal cerebral hemorrhage, and spasticity. GABAA receptors are also believed to play a role in cognition, consciousness, and sleep.
- Benzodiazepines such as diazepam, chlordiazepoxide and midazolam.
- Barbiturates can directly activate GABAA receptors, significantly increasing Cl ⁇ currents in the absence of further intervention by GABA itself and can also indirectly augment GABAergic neural transmission.
- benzodiazepines act as indirect allosteric modulators, and are largely incapable of increasing Cl ⁇ Currents in the absence of GABA, but enhance GABA-activated increases in Cl ⁇ conductance.
- This latter property is thought to be responsible for the usefulness of benzodiazepines for treating a number of disorders, including generalized anxiety disorder, panic disorder, seizures, movement disorders, epilepsy, psychosis, mood disorders, and muscle spasms, as well as the relative safety of benzodiazepines compared to barbiturates.
- barbiturates and benzodiazepines are addictive and can cause drowsiness, poor concentration, ataxia, dysarthria, motor incoordination, diplopia, muscle weakness, vertigo and mental confusion. These side effects can interfere with an individual's ability to perform daily routines such as driving, operating heavy machinery or performing other complex motor tasks while under therapy, making barbiturates and benzodiazepines less than optimal for treating chronic disorders involving GABA and GABAA receptors.
- GABAA receptors and GABAergic neural transmissions are implicated as targets for therapeutic intervention in a myriad of neurological and psychiatric disorders.
- the present invention is also, inter alia, directed toward this end.
- R 1 is C 1-6 alkyl, C 1-6 haloalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2, 3, 4 or 5 R 7 ;
- R 2 is H, C( ⁇ O)R b , C( ⁇ O)NR c R d , C( ⁇ O)OR a , S( ⁇ O) 2 R b , C 1-6 alkyl, C 1-6 haloalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C 1-6 alkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2, 3, 4 or 5 R 8 ;
- R 3 , R 4 and R 5 are each, independently, H, halo, Si(C 1-10 alkyl) 3 , CN, NO 2 , OR a , SR a , OC( ⁇ O)R a , OC( ⁇ O)OR b , OC( ⁇ O)NR c R d , C( ⁇ O)R a , C( ⁇ O)OR b , C( ⁇ O)NR c R d , NR c NR d , NR c C( ⁇ O)R a , NR c C( ⁇ O)OR b , NR c S( ⁇ O) 2 R b , S( ⁇ O)R a , S( ⁇ O)NR c R d , S( ⁇ O 2 R a , S( ⁇ O) 2 NR c R d , C( ⁇ O 2 R a , S( ⁇ O) 2 NR c R d , C 1-6 alkyl, C
- R 6 is aryl, cycloalkyl, heteroaryl or heterocycloalkyl, each optionally substituted by 1, 2, 3, 4 or 5 A 1 ;
- R 7 , R 8 and R 9 are each, independently, halo, C 1-4 alkyl, C 1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO 2 , OR a′ , SR a′ , C( ⁇ O)R b′ , C( ⁇ O)NR c′ R d′ , C( ⁇ O)OR a′ , OC( ⁇ O)R b′ , OC( ⁇ O)NR c′ R d′ , NR c′ R d′ , NR c′C( ⁇ O)R b′ , NR c′ C( ⁇ O)OR a′ , NR c′ S( ⁇ O) 2 R b′ , S( ⁇ O)R b′ , S( ⁇ O)NR c′ R d′ , S( ⁇ O) 2 R b′ , or S( ⁇ O) 2 NR c′ R
- a 1 is halo, CN, NO 2 , OR a , SR a , C( ⁇ O)R b , C( ⁇ O)NR c R d C( ⁇ O)OR a , OC( ⁇ O) b , OC( ⁇ O)NR c R d , NR c R d , NR c C( ⁇ O)R d , NR c C( ⁇ O)OR a , NR c S( ⁇ O)R b , NR c S( ⁇ O) 2 R b , S( ⁇ O)R b , S( ⁇ O)NR c R d , S( ⁇ O) 2 R b , S( ⁇ O) 2 NR c R d , C( ⁇ O) 2 R b , S( ⁇ O) 2 NR c R d , C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialky
- R a and R a′ are each, independently, H, C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein the C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C 1-6 alkyl, C 1-6 haloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cyclo
- R b and R b′ are each, independently, H, C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein the C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 haloalkyl, aryl, arylalkyl, heteroaryl,
- R c and R d are each, independently, H, C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein the C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 haloalkyl, aryl, arylalkyl, heteroaryl, hetero
- R c′ and R d′ are each, independently, H, C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein the C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 haloalkyl, aryl, arylalkyl, heteroaryl
- R c′ and R d′ together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- R 6 is other than unsubstituted phenyl or unsubstituted cycloalkyl.
- R 1 is C 1-6 alkyl, C 1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2, 3, 4 or 5 R 7 .
- R 1 is C 1-6 alkyl, C 1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2, 3, 4 or 5 substituents independently selected from halo, C 1-4 alkyl, C 1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO 2 , OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, SR a′ , C( ⁇ O)R b′ , C( ⁇ O)NR c′ R d′ , C( ⁇ O)OR a′ , OC( ⁇ O)R b′ , OC( ⁇ O)NR c′ R d′ , NR c′ C( ⁇ O)R b′ ,
- R 1 is C 1-6 alkyl, C 1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2, 3, 4 or 5 substituents independently selected from halo, C 1-4 alkyl, C 1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO 2 , OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, SH, —S—(C 1-4 alkyl), C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 ,
- R 1 is C 1-6 alkyl, C 1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2 or 3 substituents independently selected from halo, C 1-4 alkyl, C 1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO 2 , OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, SH, —S—(C 1-4 alkyl), C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C(C(C
- R 1 is C 1-6 alkyl, C 1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2 or 3 substituents independently selected from halo, C 1-4 alkyl, C 1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO 2 , OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)OH, C( ⁇ O)O—(C
- R 1 is C 1-6 alkyl, C 1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl.
- R 1 is C 1-6 alkyl or C 1-6 haloalkyl.
- R 1 is C 1-6 alkyl.
- R 1 is n-propyl
- R 2 is H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C 1-6 alkyl, C 1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C 1-6 alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C 1-6 alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2, 3, 4 or
- R 2 is H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C 1-6 alkyl, C 1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C 1-6 alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C 1-6 alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2 or 3 substitu
- R 2 is H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C 1-6 alkyl, C 1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl.
- R 2 is H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , or C 1-6 alkyl.
- R 2 is H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , or C 1-3 alkyl.
- R 2 is H.
- R 3 , R 4 and R 5 are each, independently, H, halo, CN, NO 2 , OR a , SR a , OC( ⁇ O)R a , OC( ⁇ O)OR b , OC( ⁇ O)NR c R d , C( ⁇ O)R a , C( ⁇ O)OR b , C( ⁇ O)NR c R d , NR c R d , NR c C( ⁇ O)R a , NR c C( ⁇ O)O, NR c S( ⁇ O) 2 R b , S( ⁇ O)NR c R d , S( ⁇ O) 2 NR c R d , C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroaryl
- R 3 , R 4 and R 5 are each, independently, H, halo, CN, NO 2 , OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, SH, —S—(C 1-4 alkyl), C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), OC( ⁇ O)H, OC( ⁇ O)—(C 1-4 alkyl), OC( ⁇ O)-(arylalkyl), OC( ⁇ O)NH 2 , OC( ⁇ O)NH(C 1-4 alkyl),
- R 3 , R 4 and R 5 are each, independently, H, halo, CN, NO 2 , OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), OC( ⁇ O)H, OC( ⁇ O)—(C 1-4 alkyl), NHC( ⁇ O)—(C 1-4 alkyl), NHC( ⁇ O)O-(arylalkyl), NHC( ⁇ O)O—(C 1-4 alkyl), NHC( ⁇ O)O—
- R 3 , R 4 and R 5 are each, independently, H, C 1-4 alkoxy, halo, C 1-6 alkyl or C 1-6 haloalkyl.
- R 3 , R 4 and R 5 are each, independently, H, C 1-4 alkoxy, halo or C 1-3 haloalkyl.
- R 3 , R 4 and R 5 are each, independently, H, C 1-4 alkoxy, or halo.
- R 6 is aryl or heteroaryl, each optionally substituted by 1, 2, 3, 4 or 5 A 1 .
- R 6 is aryl optionally substituted by 1, 2, 3, 4 or 5 A 1 .
- R 6 is aryl substituted by 1, 2, 3, 4 or 5 A 1 .
- R 6 is heteroaryl optionally substituted by 1, 2, 3, 4 or 5 A 1 .
- R 6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2, 3, 4 or 5 A 1 .
- R 6 is phenyl, 2-naphthyl, 3-pyridyl, 4-pyridyl, pyrimidin-5-yl, pyrazin-2-yl, pyrazol-3-yl, pyrazol-4-yl, 3-quinolyl, 6-quinolyl, or indol-5-yl, each optionally substituted by 1, 2, 3, 4 or 5 A 1 .
- R 6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2, 3, 4 or 5 halo, CN, NO 2 , OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , SH, —S—(C 1-4 alkyl), C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)( ⁇
- R c and R d together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group
- R c′ and R d′ together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- R 6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2, 3, 4 or 5 halo, CN, OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), OC( ⁇ O)H
- R c and R d together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- R 6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2 or 3 halo, CN, OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), OC( ⁇ O)H,
- R c and R d together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- R 6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2 or 3 halo, CN, OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), S( ⁇ O) 2 —(
- R c and R d together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- R 6 is phenyl substituted by 1, 2 or 3 halo, CN, OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), S( ⁇ O) 2 —(C 1-4 alkyl), S( ⁇ O) 2 -(arylalkyl), S( ⁇ O) 2 NH(C 1-4 alkyl), S( ⁇ O) 2 NH(C 1-4 alky
- R c and R d together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- R 6 is naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2 or 3 halo, CN, OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), S( ⁇ O) 2 —(C 1-4 alky
- R c and R d together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- R 1 is C 1-6 alkyl or C 1-6 haloalkyl
- R 2 is H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 or C 1-6 alkyl;
- R 5 is H, C 1-4 alkoxy, halo, C 1-6 alkyl or C 1-6 haloalkyl;
- R 6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2 or 3 halo, CN, OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), OC( ⁇ O)H, OC( ⁇ O
- R c and R d together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- R 6 is other than unsubstituted phenyl.
- R 1 is C 1-6 alkyl.
- R 1 is n-propyl
- R 2 is H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl) or C 1-6 alkyl.
- R 2 is H.
- R 5 is H, C 1-4 alkoxy or halo.
- R 6 is phenyl substituted by 1, 2 or 3 halo, CN, OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), S( ⁇ O) 2 —(C 1-4 alkyl), S( ⁇ O) 2 -(arylalkyl), S( ⁇ O) 2 NH(C 1-4 alkyl), S( ⁇ O) 2 NH(C 1-4 alky
- R c and R d together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- R 6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each substituted by 1, 2 or 3 C 1-4 alkoxy or C 1-4 alkyl.
- R 6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each substituted by 2 C 1-4 alkoxy or C 1-4 alkyl.
- R 1 is n-propyl and R 2 is H.
- compositions comprising a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer, atropisomer, or in vivo-hydrolysable precursor thereof, and at least one pharmaceutically acceptable carrier, diluent or excipient.
- the present invention further provides methods of treating or preventing an anxiety disorder in a patient, comprising administering to the patient a therapeutically effective amount of a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer, atropisomer, or in vivo-hydrolysable precursor thereof.
- the present invention further provides methods of treating or preventing a cognitive disorder in a patient, comprising administering to the patient a therapeutically effective amount of a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer, atropisomer, or in vivo-hydrolysable precursor thereof.
- the present invention further provides methods of treating or preventing a mood disorder in a patient, comprising administering to the patient a therapeutically effective amount of a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer, atropisomer, or in vivo-hydrolysable precursor thereof.
- the present invention further provides a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer, atropisomer, or in vivo-hydrolysable precursor thereof, described herein for use as a medicament.
- the present invention further provides a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer, atropisomer, or in vivo-hydrolysable precursor thereof, described herein for the manufacture of a medicament.
- the present invention further provides methods of modulating activity of GABAA receptor comprising contacting the GABAA receptor with a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer, atropisomer, or in vivo-hydrolysable precursor thereof.
- the present invention further provides synthetic methods of making a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer, atropisomer, or in vivo-hydrolysable precursor thereof.
- R 1 is C 1-6 alkyl, C 1-6 haloalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2, 3, 4 or 5 R 7 ;
- R 2 is H, C( ⁇ O)R b , C( ⁇ O)NR c R d , C( ⁇ O)OR a , S( ⁇ O) 2 R b , C 1-6 alkyl, C 1-6 haloalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C 1-6 alkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2, 3, 4 or 5 R 8 ;
- R 3 , R 4 and R 5 are each, independently, H, halo, Si(C 1-10 alkyl) 3 , CN, NO 2 , OR a , SR a , OC( ⁇ O)R a , OC( ⁇ O)OR b , OC( ⁇ O)NR c R d , C( ⁇ O)R a , C( ⁇ O)OR b , C( ⁇ O)NR c R d , NR c R d , NR c C( ⁇ O)R a , NR c C( ⁇ O)OR b , NR c S( ⁇ O) 2 R b , S( ⁇ O)R a , S( ⁇ O)NR c R d , S( ⁇ O) 2 NR c R d , C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl,
- R 6 is aryl, cycloalkyl, heteroaryl or heterocycloalkyl, each optionally substituted by 1, 2, 3, 4 or 5 A 1 ;
- R 7 , R 5 and R 9 are each, independently, halo, C 1-4 alkyl, C 1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO 2 , OR a , SR a′ , C( ⁇ O)R b′ , C( ⁇ O)NR c′ R d′ , C( ⁇ O)OR a′ , OC( ⁇ O)R b′ , OC( ⁇ O)NR c′ R d′ , NR c′ R d′ , NR c′ C( ⁇ O)R b′ , NR c′ C( ⁇ O)OR a′ , NR c′ S( ⁇ O) 2 R b′ , S( ⁇ O)R b′ , S( ⁇ O)NR c′ R d′ , S( ⁇ O) 2 R b′ , or S( ⁇ O) 2 NR c′ R d
- a 1 is halo, CN, NO 2 , OR a , SR a , C( ⁇ O)R b , C( ⁇ O)NR c R d , C( ⁇ O)OR a , OC( ⁇ O)R b , OC( ⁇ O)NR c R d , NR c R d , NR c C( ⁇ O)R d , NR c C( ⁇ O)OR a , NR c S( ⁇ O)R b , NR c S( ⁇ O) 2 R b , S( ⁇ O)R b , S( ⁇ O)NR c R d , S( ⁇ O) 2 R b , S( ⁇ O) 2 NR c R d , C( ⁇ O) 2 R b , S( ⁇ O) 2 NR c R d , C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2
- R a and R a′ are each, independently, H, C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein the C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C 1-6 alkyl, C 1-6 haloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cyclo
- R b and R b′ are each, independently, H, C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein the C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 haloalkyl, aryl, arylalkyl, heteroaryl,
- R c and R d are each, independently, H, C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein the C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 haloalkyl, aryl, arylalkyl, heteroaryl, hetero
- R c′ and R d′ are each, independently, H, C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein the C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 haloalkyl, aryl, arylalkyl, heteroaryl
- R c′ and R d′ together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- R 6 is other than unsubstituted phenyl or unsubstituted cycloalkyl.
- R 1 is C 1-6 alkyl, C 1-6 haloalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2, 3, 4 or 5 R 7 , or any subgroup thereof.
- R 1 is C 1-6 alkyl, C 1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2, 3, 4 or 5 R 7 .
- R 1 is C 1-6 alkyl, C 1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2, 3, 4 or 5 substituents independently selected from halo, C 1-4 alkyl, C 1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO 2 , OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, SR a′ , C( ⁇ O)R b′ , C( ⁇ O)NR c′ R d′ , C( ⁇ O)OR a′ , OC( ⁇ O)R b′ , OC( ⁇ O)NR c′ R d′ , NR c′ C( ⁇ O)R b′ ,
- R 1 is C 1-6 alkyl, C 1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2, 3, 4 or 5 substituents independently selected from halo, C 1-4 alkyl, C 1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO 2 , OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, SH, —S—(C 1-4 alkyl), C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 ,
- R 1 is C 1-6 alkyl, C 1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2 or 3 substituents independently selected from halo, C 1-4 alkyl, C 1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO 2 , OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, SH, —S—(C 1-4 alkyl), C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C(C(C
- R 1 is C 1-6 alkyl, C 1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2 or 3 substituents independently selected from halo, C 1-4 alkyl, C 1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO 2 , OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)OH, C( ⁇ O)O—(C
- R 1 is C 1-6 alkyl, C 1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl. In some embodiments, R 1 is C 1-6 alkyl or C 1-6 haloalkyl. In some embodiments, R 1 is C 1-6 alkyl. In some embodiments, R 1 is n-propyl.
- R 2 is H, C( ⁇ O)R b , C( ⁇ O)NR c R d , C( ⁇ O)OR a , S( ⁇ O) 2 R b , C 1-6 alkyl, C 1-6 haloalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, or any subgroup thereof, wherein each of the C 1-6 alkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2, 3, 4 or 5 R 8 , or any subgroup thereof.
- R 2 is H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C 1-6 alkyl, C 1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C 1-6 alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C 1-6 alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2, 3, 4 or
- R 2 is H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C 1-6 alkyl, C 1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C 1-6 alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C 1-6 alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2 or 3 substitu
- R 2 is H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C 1-6 alkyl, C 1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl.
- R 2 is H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 or C 1-6 alkyl.
- R 2 is H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , or C 1-3 alkyl. In some embodiments, R 2 is H.
- R 3 , R 4 and R 5 are each, independently, H, halo, Si(C 1-10 alkyl) 3 , CN, NO 2 , OR a , SR a , OC( ⁇ O)R a , OC( ⁇ O)OR b , OC( ⁇ O)NR c R d , C( ⁇ O)R 3 , C( ⁇ O)OR b , C( ⁇ O)NR c R d , NR c R d , NR c C( ⁇ O)R a , NR c C( ⁇ O)OR b , NR c S( ⁇ O) 2 R b , S( ⁇ O)R a , S( ⁇ O)NR c R d , S( ⁇ O) 2 R a , S( ⁇ O) 2 NR c R d , C( ⁇ O) 2 R a , S( ⁇ O) 2 NR c R d , C 1-6 alkyl, C
- R 3 , R 4 and R 5 are each, independently, H, halo, CN, NO 2 , OR 3 , SR 3 , OC( ⁇ O)R a , OC( ⁇ O)OR b , OC( ⁇ O)NR c R d , C( ⁇ O)R a , C( ⁇ O)OR b , C( ⁇ O)NR c R d , NR c R d , NR c C( ⁇ O)R a , NR c C( ⁇ O)OR b , NR c S( ⁇ O) 2 R b , S( ⁇ O)R a , S( ⁇ O)NR c R d , S( ⁇ O) 2 R a , S( ⁇ O) 2 NR c R d , C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl
- R 3 , R 4 and R 5 are each, independently, H, halo, CN, NO 2 , OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, SH, —S—(C 1-4 alkyl), C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), OC( ⁇ O)H, OC( ⁇ O)—(C 1-4 alkyl), OC( ⁇ O)-(arylalkyl), OC( ⁇ O)NH 2 , OC( ⁇ O)NH(C 1-4 alkyl),
- R 3 , R 4 and R 5 are each, independently, H, halo, CN, NO 2 , OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), OC( ⁇ O)H, OC( ⁇ O)—(C 1-4 alkyl), NHC( ⁇ O)—(C 1-4 alkyl), NHC( ⁇ O)O-(arylalkyl), NHC( ⁇ O)O—(C 1-4 alkyl), NHC( ⁇ O)O—
- R 3 , R 4 and R 5 are each, independently, H, C 1-4 alkoxy, halo, C 1-6 alkyl or C 1-6 haloalkyl. In some embodiments, R 3 , R 4 and R 5 are each, independently, H, C 1-4 alkoxy, halo or C 1-3 haloalkyl. In some embodiments, R 3 , R 4 and R 5 are each, independently, H, C 1-4 alkoxy, or halo.
- R 6 is aryl, cycloalkyl, heteroaryl or heterocycloalkyl, or any subgroup thereof, each optionally substituted by 1, 2, 3, 4 or 5 A 1 , or any subgroup thereof.
- R 6 is aryl or heteroaryl, each optionally substituted by 1, 2, 3, 4 or 5 A 1 .
- R 6 is aryl optionally substituted by 1, 2, 3, 4 or 5 A 1 .
- R 6 is aryl substituted by 1, 2, 3, 4 or 5 A 1 .
- R 6 is heteroaryl optionally substituted by 1, 2, 3, 4 or 5 A 1 .
- R 6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2, 3, 4 or 5 A 1 .
- R 6 is phenyl, 2-naphthyl, 3-pyridyl, 4-pyridyl, pyrimidin-5-yl, pyrazin-2-yl, pyrazol-3-yl, pyrazol-4-yl, 3-quinolyl, 6-quinolyl, or indol-5-yl, each optionally substituted by 1, 2, 3, 4 or 5 A 1 .
- R 6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2, 3, 4 or 5 halo, CN, NO 2 , OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , SH, —S—(C 1-4 alkyl), C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)( ⁇
- R 6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2, 3, 4 or 5 halo, CN, OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), OC( ⁇ O)H
- R 6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2 or 3 halo, CN, OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), S( ⁇ O) 2 —(
- R 6 is phenyl substituted by 1, 2 or 3 halo, CN, OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), S( ⁇ O) 2 —(C 1-4 alkyl), S( ⁇ O) 2 -(arylalkyl), S( ⁇ O) 2 NH(C 1-4 alkyl), S( ⁇ O) 2 NH(C 1-4 alky
- R 6 is naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2 or 3 halo, CN, OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), S( ⁇ O) 2 —(C 1-4 alky
- R 7 , R 8 and R 9 are each, independently, halo, C 1-4 alkyl, C 1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO 2 , OR a′ , SR a′ , C( ⁇ O)R b′ , C( ⁇ O)NR c′ R d′ , C( ⁇ O)OR a′ , OC( ⁇ O)R b′ , OC( ⁇ O)NR c′ R d′ , NR c′ R d′ , NR c′ C( ⁇ O)R b′ , NR c′ C( ⁇ O)OR a′ , NR c′ S( ⁇ O) 2 R b′ , S( ⁇ O)R b′ , S( ⁇ O)NR c′ R d′ , S( ⁇ O) 2 R b′ , or S( ⁇ O) 2 NR
- a 1 is halo, CN, NO 2 , OR a , SR a , C( ⁇ O)R b , C( ⁇ O)NR c R d , C( ⁇ O)OR a , OC( ⁇ O)R b , OC( ⁇ O)NR c R d , NR c R d , NR c C( ⁇ O)R d , NR c C( ⁇ O)OR a , NR c S( ⁇ O)R b , NR c S( ⁇ O) 2 R b , S( ⁇ O)R b , S( ⁇ O)NR c R d , S( ⁇ O) 2 R b , S( ⁇ O) 2 NR c R d , C( ⁇ O) 2 R b , S( ⁇ O) 2 NR c R d , C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2
- R a and R a′ are each, independently, H, C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, or any subgroup thereof, wherein the C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C 1-6 alkyl, C 1-6 haloalkyl, aryl, arylalkyl, heteroaryl,
- R b and R b′ are each, independently, H, C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, or any subgroup thereof, wherein the C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 haloalkyl, aryl,
- R c and R d are each, independently, H, C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, or any subgroup thereof, wherein the C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C 1-6 alkyl, C 1-6 halo alkyl, C 1-6 halo alkyl, aryl, ary
- R c and R d together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group, or any subgroup thereof.
- R c′ and R d′ are each, independently, H, C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, or any subgroup thereof, wherein the C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C 1-6 alkyl, C 1-6 halo alkyl, C 1-6 halo alkyl, aryl,
- R c′ and R d′ together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group, or any subgroup thereof.
- R 6 is other than unsubstituted phenyl or unsubstituted cycloalkyl.
- R 6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2, 3, 4 or 5 halo, CN, NO 2 , OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , SH, —S—(C 1-4 alkyl), C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)( ⁇
- R c′ and R d′ together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- R 6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2, 3, 4 or 5 halo, CN, OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), OC( ⁇ O)H
- R 6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2 or 3 halo, CN, OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), OC( ⁇ O)H,
- R c and R d together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- R 6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2 or 3 halo, CN, OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), S( ⁇ O) 2 —(
- R 6 is phenyl substituted by 1, 2 or 3 halo, CN, OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), S( ⁇ O) 2 —(C 1-4 alkyl), S( ⁇ O) 2 -(arylalkyl), S( ⁇ O) 2 NH(C 1-4 alkyl), S( ⁇ O) 2 NH(C 1-4 alky
- R 6 is naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2 or 3 halo, CN, OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), S( ⁇ O) 2 —(C 1-4 alky
- R 1 is C 1-6 alkyl or C 1-6 haloalkyl
- R 2 is H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 or C 1-6 alkyl;
- R 5 is H, C 1-4 alkoxy, halo, C 1-6 alkyl or C 1-6 haloalkyl;
- R 6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2 or 3 halo, CN, OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), OC( ⁇ O)H, OC( ⁇ O
- R c and R d together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- R 6 is other than unsubstituted phenyl.
- R 1 is C 1-6 alkyl or C 1-6 haloalkyl, or any subgroup thereof.
- R 1 is C 1-6 alkyl. In some embodiments, R 1 is n-propyl.
- R 2 is H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , or C 1-6 alkyl, or any subgroup thereof.
- R 2 is H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl) or C 1-6 alkyl.
- R 2 is H.
- R 5 is H, C 1-4 alkoxy, halo, C 1-6 alkyl or C 1-6 haloalkyl, or any subgroup thereof. In some embodiments, R 5 is H, C 1-4 alkoxy or halo.
- R 6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, or any subgroup thereof, each optionally substituted by 1, 2 or 3 halo, CN, OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), OC(
- R 6 is phenyl substituted by 1, 2 or 3 halo, CN, OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), S( ⁇ O) 2 —(C 1-4 alkyl), S( ⁇ O) 2 -(arylalkyl), S( ⁇ O) 2 NH(C 1-4 alkyl), S( ⁇ O) 2 NH(C 1-4 alky
- R 6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each substituted by 1, 2 or 3 C 1-4 alkoxy or C 1-4 alkyl. In some embodiments, R 6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each substituted by 2 C 1-4 alkoxy or C 1-4 alkyl.
- R c and R d together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group, or any subgroup thereof.
- R 6 is phenyl substituted by 1, 2 or 3 halo, CN, OH, C 1-4 alkoxy, C 1-4 haloalkoxy, amino, C 1-4 alkylamino, C 2-8 dialkylamino, NR c R d , C( ⁇ O)H, C( ⁇ O)—(C 1-4 alkyl), C( ⁇ O)-(arylalkyl), C( ⁇ O)NH 2 , C( ⁇ O)NH(C 1-4 alkyl), C( ⁇ O)N(C 1-4 alkyl) 2 , C( ⁇ O)NR c R d , C( ⁇ O)OH, C( ⁇ O)O—(C 1-4 alkyl), C( ⁇ O)O-(arylalkyl), S( ⁇ O) 2 —(C 1-4 alkyl), S( ⁇ O) 2 -(arylalkyl), S( ⁇ O) 2 NH(C 1-4 alkyl), S( ⁇ O) 2 NH(C 1-4 alky
- R 1 is n-propyl and R 2 is H.
- the present invention provides the following compounds:
- the present invention provides the following compounds: 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-N-propyl-cinnoline-3-carboxamide; 4-amino-8-(2,5-dimethoxyphenyl)-N-propyl-cinnoline-3-carboxamide; 4-amino-8-(4-methoxy-3-pyridyl)-N-propyl-cinnoline-3-carboxamide; and 4-amino-8-(2-methoxy-5-methyl-phenyl)-N-propyl-cinnoline-3-carboxamide; or a pharmaceutically acceptable salt thereof, or any subgroup thereof.
- the present invention provides 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-N-propyl-cinnoline-3-carboxamide, or a pharmaceutically acceptable salt thereof, or any subgroup thereof.
- the present invention provides the following compounds:
- the present invention provides the following compounds:
- Compounds of the present invention also include pharmaceutically acceptable salts, tautomers and in vivo-hydrolysable precursors of the compounds of any of the formulas described herein.
- Compounds of the invention further include hydrates and solvates.
- the present invention provides compounds of any of the formulas described herein, or pharmaceutically acceptable salts, tautomers or in vivo-hydrolysable precursors thereof, for use as medicaments.
- the present invention provides compounds described herein for use as medicaments for treating or preventing an anxiety disorder, cognitive disorder, or mood disorder.
- the present invention provides compounds of any of the formulas described herein, or pharmaceutically acceptable salts, tautomers or in vivo-hydrolysable precursors thereof, in the manufacture of a medicament for the treatment or prophylaxis of an anxiety disorder, cognitive disorder, or mood disorder.
- the present invention provides a method for the treatment or prophylaxis of an anxiety disorder comprising administering to a mammal (including a human) a therapeutically effective amount of a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer or in vivo-hydrolysable precursor thereof.
- anxiety disorder includes, but is not limited to, one or more of the following: panic disorder, panic disorder without agoraphobia, panic disorder with agoraphobia, agoraphobia without history of panic disorder, specific phobia, social phobia, social anxiety disorder, obsessive-compulsive disorder, posttraumatic stress disorder, acute stress disorder, generalized anxiety disorder, generalized anxiety disorder due to a general medical condition, and the like.
- the present invention provides a method for the treatment or prophylaxis of a cognitive disorder comprising administering to a mammal (including a human) a therapeutically effective amount of a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer or in vivo-hydrolysable precursor thereof.
- a mammal including a human
- a therapeutically effective amount of a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer or in vivo-hydrolysable precursor thereof includes, but is not limited to, one or more of the following: Alzheimer's disease, dementia, dementia due to Alzheimer's disease, dementia due to Parkinson's disease, and the like.
- the present invention provides a method for the treatment or prophylaxis of a mood disorder comprising administering to a mammal (including a human) a therapeutically effective amount of a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer or in vivo-hydrolysable precursor thereof.
- the phrase “mood disorder” is a depressive disorder including, but is not limited to, one or more of the following: major depressive disorder, dysthymic disorder, bipolar depression and/or bipolar mania, bipolar I with or without manic, depressive or mixed episodes, bipolar II, cyclothymic disorder, mood disorder due to a general medical condition, manic episodes associated with bipolar disorder, mixed episodes associated with bipolar disorder, and the like.
- Anxiety disorders, cognitive disorders, and mood disorders are defined, for example, in the American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision, Washington, D.C., American Psychiatric Association, 2000.
- the present invention provides a method of treating or preventing an anxiety disorder, cognitive disorder, or mood disorder (such as any of those described herein), by administering to a mammal (including a human) a compound of any of the formulas described herein or a pharmaceutically acceptable salt, tautomer or in vivo-hydrolysable precursors and a cognitive and/or memory enhancing agent.
- the present invention provides a method of treating or preventing an anxiety disorder, cognitive disorder, or mood disorder (such as any of those described herein), by administering to a mammal (including a human) a compound of any of the formulas described herein or a pharmaceutically acceptable salt, tautomer or in vivo-hydrolysable precursors thereof wherein constituent members are provided herein, and a choline esterase inhibitor or anti-inflammatory agent.
- the present invention provides a method of treating or preventing an anxiety disorder, cognitive disorder, or mood disorder (such as any of those described herein), by administering to a mammal (including human) a compound of the present invention, and an atypical antipsychotic agent.
- Atypical antipsychotic agents include, but not limited to, Olanzapine (marketed as Zyprexa), Aripiprazole (marketed as Abilify), Risperidone (marketed as Risperdal), Quetiapine (marketed as Seroquel), Clozapine (marketed as Clozaril), Ziprasidone (marketed as Geodon) and Olanzapine/Fluoxetine (marketed as Symbyax).
- the mammal or human being treated with a compound of the present invention has been diagnosed with a particular disease or disorder, such as those described herein. In these cases, the mammal or human being treated is in need of such treatment. Diagnosis, however, need not be previously performed.
- the present invention also includes pharmaceutical compositions which contain, as the active ingredient, one or more of the compounds of the invention herein together with at least one pharmaceutically acceptable carrier, diluent or excipient.
- compounds of the present invention When used for pharmaceutical compositions, medicaments, manufacture of a medicament, or treating or preventing an anxiety disorder, cognitive disorder, or mood disorder (such as any of those described herein), compounds of the present invention include the compounds of any of the formulas described herein, and pharmaceutically acceptable salts, tautomers and in vivo-hydrolysable precursors thereof. Compounds of the present invention further include hydrates and solvates.
- substitution means that substitution is optional and therefore it is possible for the designated atom or moiety to be unsubstituted. In the event a substitution is desired then such substitution means that any number of hydrogens on the designated atom or moiety is replaced with a selection from the indicated group, provided that the normal valency of the designated atom or moiety is not exceeded, and that the substitution results in a stable compound. For example, if a methyl group (i.e., CH 3 ) is optionally substituted, then 3 hydrogens on the carbon atom can be replaced.
- a methyl group i.e., CH 3
- substituents include, but are not limited to: halogen, CN, NH 2 , OH, SO, SO 2 , COOH, OC 1-6 alkyl, CH 2 OH, SO 2 H, C 1-6 alkyl, OC 1-6 alkyl, C( ⁇ O)C 1-6 alkyl, C( ⁇ O)OC 1-6 alkyl, C( ⁇ O)NH 2 , C( ⁇ O)NHC 1-6 alkyl, C( ⁇ O)N(C 1-6 alkyl) 2 , SO 2 C 1-6 alkyl, SO 2 NHC 1-6 alkyl, SO 2 N(C 1-6 alkyl) 2 , NH(C 1-6 alkyl), N(C 1-6 alkyl) 2 , NHC( ⁇ O)C 1-6 alkyl, NC( ⁇ O)(C 1-6 alkyl) 2 , C 5-6 aryl, OC 5-6 aryl, C( ⁇ O)C 5-6 aryl, C( ⁇ O)OC 5-6 aryl
- a variety of compounds in the present invention may exist in particular stereoisomeric forms.
- the present invention takes into account all such compounds, including cis- and trans isomers, R- and S-enantiomers, diastereomers, (D)-isomers, (L)-isomers, the racemic mixtures thereof, and other mixtures thereof, as being covered within the scope of this invention.
- Additional asymmetric carbon atoms may be present in a substituent such as an alkyl group. All such isomers, as well as mixtures thereof, are intended to be included in this invention.
- the compounds herein described may have asymmetric centers. Compounds of the present invention containing an asymmetrically substituted atom may be isolated in optically active or racemic forms.
- optically active forms such as by resolution of racemic forms or by synthesis from optically active starting materials.
- separation of the racemic material can be achieved by methods known in the art.
- Many stereoisomers of olefins, C ⁇ N double bonds, and the like can also be present in the compounds described herein, and all such stable isomers are contemplated in the present invention.
- Cis and trans isomers of the compounds of the present invention are described and may be isolated as a mixture of isomers or as separated isomeric forms. All chiral, diastereomeric, racemic forms and all stereoisomeric forms of a structure are intended, unless the specific stereochemistry or isomeric form is specifically indicated.
- the compounds of the invention may form isolable atropisomers in certain solvents (e.g. supercritical CO 2 containing 25-35% methanol) at room temperature.
- the atropisomers of the compounds may be isolated using chiral LC. All atropisomers of a structure are intended, unless the specific atropisomer is specifically indicated.
- C m-n or “C m-n group” used alone or as a prefix, refers to any group having m to n carbon atoms.
- alkyl used alone or as a suffix or prefix, refers to a saturated monovalent straight or branched chain hydrocarbon radical comprising 1 to about 12 carbon atoms.
- alkyls include, but are not limited to, C 1-6 alkyl groups, such as methyl, ethyl, propyl, isopropyl, 2-methyl-1-propyl, 2-methyl-2-propyl, 2-methyl-1-butyl, 3-methyl-1-butyl, 2-methyl-3-butyl, 2,2-dimethyl-1-propyl, 2-methyl-1-pentyl, 3-methyl-1-pentyl, 4-methyl-1-pentyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2,2-dimethyl-1-butyl, 3,3-dimethyl-1-butyl, 2-ethyl-1-butyl, butyl, isobutyl, t-butyl, pentyl,
- alkylene used alone or as suffix or prefix, refers to divalent straight or branched chain hydrocarbon radicals comprising 1 to about 12 carbon atoms, which serves to links two structures together.
- alkenyl refers to an alkyl group having one or more double carbon-carbon bonds.
- Example alkenyl groups include ethenyl, propenyl, cyclohexenyl, and the like.
- alkenylenyl refers to a divalent linking alkenyl group.
- alkynyl refers to an alkyl group having one or more triple carbon-carbon bonds.
- Example alkynyl groups include ethynyl, propynyl, and the like.
- alkynylenyl refers to a divalent linking alkynyl group.
- aromatic refers to hydrocarbyl groups having one or more polyunsaturated carbon rings having aromatic characters, (e.g., 4n+2 delocalized electrons) and comprising up to about 14 carbon atoms.
- aryl refers to an aromatic ring structure made up of from 5 to 14 carbon atoms. Ring structures containing 5, 6, 7 and 8 carbon atoms would be single-ring aromatic groups, for example, phenyl. Ring structures containing 8, 9, 10, 11, 12, 13, or 14 would be a polycyclic moiety in which at least one carbon is common to any two adjoining rings therein (for example, the rings are “fused rings”), for example naphthyl.
- the aromatic ring can be substituted at one or more ring positions with such substituents as described above.
- aryl also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings (the rings are “fused rings”) wherein at least one of the rings is aromatic, for example, the other cyclic rings can be cycloalkyls, cycloalkenyls or cycloalkynyls.
- ortho, meta and para apply to 1,2-, 1,3- and 1,4-disubstituted benzenes, respectively.
- the names 1,2-dimethylbenzene and ortho-dimethylbenzene are synonymous.
- cycloalkyl refers to a saturated monovalent ring-containing hydrocarbon radical comprising at least 3 up to about 12 carbon atoms.
- cycloalkyls include, but are not limited to, C 3-7 cycloalkyl groups, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl, and saturated cyclic and bicyclic terpenes.
- a cycloalkyl can be unsubstituted or substituted by one or two suitable substituents.
- the cycloalkyl is a monocyclic ring or bicyclic ring.
- cycloalkenyl refers to ring-containing hydrocarbyl groups having at least one carbon-carbon double bond in the ring, and having from 3 to 12 carbons atoms.
- halo or “halogen” refers to fluoro, chloro, bromo, and iodo.
- Counterion is used to represent a small, negatively or positively charged species such as chloride (Cl ⁇ ), bromide (Br ⁇ ), hydroxide (OH ⁇ ), acetate (CH 3 COO ⁇ ), sulfate (SO 4 2 ⁇ ), tosylate (CH 3 -phenyl-SO 3 ⁇ ), benezensulfonate (phenyl-SO 3 —), sodium ion (Na + ), potassium (R + ), ammonium (NH 4 + ), and the like.
- heterocycle used alone or as a suffix or prefix, refers to a ring-containing structure or molecule having one or more multivalent heteroatoms, independently selected from N, O, P and S, as a part of the ring structure and including at least 3 and up to about 20 atoms in the ring(s).
- Heterocycle may be saturated or unsaturated, containing one or more double bonds, and heterocycle may contain more than one ring.
- the rings may be fused or unfused.
- Fused rings generally refer to at least two rings share two atoms therebetween.
- Heterocycle may have aromatic character or may not have aromatic character.
- heteromatic used alone or as a suffix or prefix, refers to a ring-containing structure or molecule having one or more multivalent heteroatoms, independently selected from N, O, P and S, as a part of the ring structure and including at least 3 and up to about 20 atoms in the ring(s), wherein the ring-containing structure or molecule has an aromatic character (e.g., 4n+2 delocalized electrons).
- heterocyclic group refers to a radical derived from a heterocycle by removing one or more hydrogens therefrom.
- heterocyclyl used alone or as a suffix or prefix, refers a monovalent radical derived from a heterocycle by removing one hydrogen therefrom.
- heterocyclylene used alone or as a suffix or prefix, refers to a divalent radical derived from a heterocycle by removing two hydrogens therefrom, which serves to links two structures together.
- heteroaryl used alone or as a suffix or prefix, refers to a heterocyclyl having aromatic character.
- heterocycloalkyl used alone or as a suffix or prefix, refers to a monocyclic or polycyclic ring comprising carbon and hydrogen atoms and at least one heteroatom, preferably, 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulfur, and having no unsaturation.
- heterocycloalkyl groups include pyrrolidinyl, pyrrolidino, piperidinyl, piperidino, piperazinyl, piperazino, morpholinyl, morpholino, thiomorpholinyl, thiomorpholino, and pyranyl.
- a heterocycloalkyl group can be unsubstituted or substituted with one or two suitable substituents.
- the heterocycloalkyl group is a monocyclic or bicyclic ring, more preferably, a monocyclic ring, wherein the ring comprises from 3 to 6 carbon atoms and form 1 to 3 heteroatoms, referred to herein as C 3-6 heterocycloalkyl.
- heteroarylene used alone or as a suffix or prefix, refers to a heterocyclylene having aromatic character.
- heterocycloalkylene used alone or as a suffix or prefix, refers to a heterocyclylene that does not have aromatic character.
- five-membered used as prefix refers to a group having a ring that contains five ring atoms.
- a five-membered ring heteroaryl is a heteroaryl with a ring having five ring atoms wherein 1, 2 or 3 ring atoms are independently selected from N, O and S.
- Exemplary five-membered ring heteroaryls are thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, pyrazolyl, isothiazolyl, isoxazolyl, 1,2,3-triazolyl, tetrazolyl, 1,2,3-thiadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-triazolyl, 1,2,4-thiadiazolyl, 1,2,4-oxadiazolyl, 1,3,4-triazolyl, 1,3,4-thiadiazolyl, and 1,3,4-oxadiazolyl.
- a six-membered ring heteroaryl is a heteroaryl with a ring having six ring atoms wherein 1, 2 or 3 ring atoms are independently selected from N, O and S.
- Exemplary six-membered ring heteroaryls are pyridyl, pyrazinyl, pyrimidinyl, triazinyl and pyridazinyl.
- heterocyclyls include, but are not limited to, 1H-indazole, 2-pyrrolidonyl, 2H, 6H-1,5,2-dithiazinyl, 2H-pyrrolyl, 3H-indolyl, 4-piperidonyl, 4aH-carbazole, 4H-quinolizinyl, 6H-1,2,5-thiadiazinyl, acridinyl, azabicyclo, azetidine, azepane, aziridine, azocinyl, benzimidazolyl, benzodioxol, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benzotriazolyl, benzotetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazalonyl, carbazolyl, 4aH-carbazolyl, b-carcino
- alkoxy or “alkyloxy” represents an alkyl group as defined above with the indicated number of carbon atoms attached through an oxygen bridge.
- alkoxy include, but are not limited to, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, t-butoxy, n-pentoxy, isopentoxy, cyclopropylmethoxy, allyloxy and propargyloxy.
- alkylthio or “thioalkoxy” represent an alkyl group as defined above with the indicated number of carbon atoms attached through a sulphur bridge.
- Halogenated used as a prefix of a group, means one or more hydrogens on the group is replaced with one or more halogens.
- carbonyl is art recognized and includes the —C( ⁇ O) groups of such moieties as can be represented by the general formula:
- X is a bond or represents an oxygen or sulfur
- R represents a hydrogen, an alkyl, an alkenyl, —(CH 2 ) m —R′′ or a pharmaceutically acceptable salt
- R′ represents a hydrogen, an alkyl, an alkenyl or —(CH 2 ) m —R′′, where m is an integer less than or equal to ten
- R′′ is alkyl, cycloalkyl, alkenyl, aryl, or heteroaryl.
- X is an oxygen, and R is as defined above, the moiety is referred to herein as a carboxyl group, and particularly when R′ is a hydrogen, the formula represents a “carboxylic acid.” Where X is oxygen, and R′ is a hydrogen, the formula represents a “formate.” In general, where the oxygen atom of the above formula is replaced by sulfur, the formula represents a “thiolcarbonyl” group.
- sulfonyl refers to the —S( ⁇ O) 2 — of a moiety that can be represented by the general formula:
- R is represented by but not limited to hydrogen, alkyl, cycloalkyl, alkenyl, aryl, heteroaryl, aralkyl, or heteroaralkyl.
- p is 1, 2, 3, 4, 5, 6 or 7 (i.e., C 3-9 cycloalkyl); the C 3-9 cycloalkyl is substituted by R d ; and the point of attachment of the “C( ⁇ O)C 3-9 cycloalkylR d ” is through the carbon atom of the carbonyl group, which is on the left of the expression.
- protecting group means temporary substituents which protect a potentially reactive functional group from undesired chemical transformations.
- protecting groups include esters of carboxylic acids, silyl ethers of alcohols, and acetals and ketals of aldehydes and ketones respectively.
- the field of protecting group chemistry has been reviewed (Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3 rd ed.; Wiley: New York, 1999).
- “pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- pharmaceutically acceptable salts refer to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof (i.e., also include counterions).
- pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.
- the pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids.
- such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, phosphoric, and the like; and the salts prepared from organic acids such as lactic, maleic, citric, benzoic, methanesulfonic, and the like.
- the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound that contains a basic or acidic moiety by conventional chemical methods.
- such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile can be used.
- in vivo hydrolysable precursors means an in vivo hydrolysable (or cleavable) ester of a compound of any of the formulas described herein that contains a carboxy or a hydroxy group.
- amino acid esters C 1-6 alkoxymethyl esters like methoxymethyl; C 1-6 alkanoyloxymethyl esters like pivaloyloxymethyl; C 3-8 cycloalkoxycarbonyloxy C 1-6 alkyl esters like 1-cyclohexylcarbonyloxyethyl, acetoxymethoxy, or phosphoramidic cyclic esters.
- tautomer means other structural isomers that exist in equilibrium resulting from the migration of a hydrogen atom. For example, keto-enol tautomerism where the resulting compound has the properties of both a ketone and an unsaturated alcohol.
- stable compound and “stable structure” are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.
- the present invention further includes isotopically-labeled compounds of the invention.
- An “isotopically” or “radio-labeled” compound is a compound of the invention where one or more atoms are replaced or substituted by an atom having an atomic mass or mass number different from the atomic mass or mass number typically found in nature (i.e., naturally occurring).
- Suitable radionuclides that may be incorporated in compounds of the present invention include but are not limited to 2H (also written as D for deuterium), 3 H (also written as T for tritium), 11 C, 13 C, 14 C, 13 N, 15 N, 15 O, 17 O, 18 O, 18 F, 35 S, 36 Cl, 82 Br, 75 Br, 76 Br, 77 Br, 123 I, 124 , 125 I and 131 I.
- the radionuclide that is incorporated in the instant radio-labeled compounds will depend on the specific application of that radio-labeled compound. For example, for in vitro receptor labeling and competition assays, compounds that incorporate 3 H, 14 C, 82 Br, 125 I, 131 I, 35 S or will generally be most useful. For radio-imaging applications 11 C, 18 F, 125 I, 123 I, 124 I, 131 I, 75 Br, 76 Br or 77 Br will generally be most useful.
- a “radio-labeled compound” is a compound that has incorporated at least one radionuclide.
- the radionuclide is selected from the group consisting of 3 H, 14 C, 125 I, 35 S and 82 Br.
- the antidementia treatment defined herein may be applied as a sole therapy or may involve, in addition to the compound of the invention, conventional chemotherapy.
- Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate dosing of the individual components of the treatment.
- Such combination products employ the compounds of this invention.
- Compounds of the present invention may be administered orally, parenteral, buccal, vaginal, rectal, inhalation, insufflation, sublingually, intramuscularly, subcutaneously, topically, intranasally, intraperitoneally, intrathoracially, intravenously, epidurally, intrathecally, intracerebroventricularly and by injection into the joints.
- the dosage will depend on the route of administration, the severity of the disease, age and weight of the patient and other factors normally considered by the attending physician, when determining the individual regimen and dosage level as the most appropriate for a particular patient.
- An effective amount of a compound of the present invention for use in therapy of dementia is an amount sufficient to symptomatically relieve in a warm-blooded animal, particularly a human the symptoms of dementia, to slow the progression of dementia, or to reduce in patients with symptoms of dementia the risk of getting worse.
- inert, pharmaceutically acceptable carriers can be either solid or liquid.
- Solid form preparations include powders, tablets, dispersible granules, capsules, cachets, and suppositories.
- a solid carrier can be one or more substances, which may also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, or tablet disintegrating agents; it can also be an encapsulating material.
- the carrier is a finely divided solid, which is in a mixture with the finely divided active component.
- the active component is mixed with the carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired.
- a low-melting wax such as a mixture of fatty acid glycerides and cocoa butter is first melted and the active ingredient is dispersed therein by, for example, stirring. The molten homogeneous mixture is then poured into convenient sized molds and allowed to cool and solidify.
- Suitable carriers include magnesium carbonate, magnesium stearate, talc, lactose, sugar, pectin, dextrin, starch, tragacanth, methyl cellulose, sodium carboxymethyl cellulose, a low-melting wax, cocoa butter, and the like.
- Some of the compounds of the present invention are capable of forming salts with various inorganic and organic acids and bases and such salts are also within the scope of this invention.
- such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, phosphoric, and the like; and the salts prepared from organic acids such as lactic, maleic, citric, benzoic, methanesulfonic, trifluoroacetate and the like.
- the present invention provides a compound of any of the formulas described herein or a pharmaceutically acceptable salt thereof for the therapeutic treatment (including prophylactic treatment) of mammals including humans, it is normally formulated in accordance with standard pharmaceutical practice as a pharmaceutical composition.
- the pharmaceutical composition of this invention may also contain, or be co-administered (simultaneously or sequentially) with, one or more pharmacological agents of value in treating one or more disease conditions referred to herein.
- composition is intended to include the formulation of the active component or a pharmaceutically acceptable salt with a pharmaceutically acceptable carrier.
- this invention may be formulated by means known in the art into the form of, for example, tablets, capsules, aqueous or oily solutions, suspensions, emulsions, creams, ointments, gels, nasal sprays, suppositories, finely divided powders or aerosols or nebulisers for inhalation, and for parenteral use (including intravenous, intramuscular or infusion) sterile aqueous or oily solutions or suspensions or sterile emulsions.
- Liquid form compositions include solutions, suspensions, and emulsions.
- Sterile water or water-propylene glycol solutions of the active compounds may be mentioned as an example of liquid preparations suitable for parenteral administration.
- Liquid compositions can also be formulated in solution in aqueous polyethylene glycol solution.
- Aqueous solutions for oral administration can be prepared by dissolving the active component in water and adding suitable colorants, flavoring agents, stabilizers, and thickening agents as desired.
- Aqueous suspensions for oral use can be made by dispersing the finely divided active component in water together with a viscous material such as natural synthetic gums, resins, methyl cellulose, sodium carboxymethyl cellulose, and other suspending agents known to the pharmaceutical formulation art.
- the pharmaceutical compositions can be in unit dosage form.
- the composition is divided into unit doses containing appropriate quantities of the active component.
- the unit dosage form can be a packaged preparation, the package containing discrete quantities of the preparations, for example, packeted tablets, capsules, and powders in vials or ampoules.
- the unit dosage form can also be a capsule, cachet, or tablet itself, or it can be the appropriate number of any of these packaged forms.
- compositions may be formulated for any suitable route and means of administration.
- Pharmaceutically acceptable carriers or diluents include those used in formulations suitable for oral, rectal, nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intrathecal and epidural) administration.
- the formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy.
- conventional non-toxic solid carriers include, for example, pharmaceutical grades of mannitol, lactose, cellulose, cellulose derivatives, starch, magnesium stearate, sodium saccharin, talcum, glucose, sucrose, magnesium carbonate, and the like may be used.
- Liquid pharmaceutically administrable compositions can, for example, be prepared by dissolving, dispersing, etc, an active compound as defined above and optional pharmaceutical adjuvants in a carrier, such as, for example, water, saline aqueous dextrose, glycerol, ethanol, and the like, to thereby form a solution or suspension.
- the pharmaceutical composition to be administered may also contain minor amounts of non-toxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents and the like, for example, sodium acetate, sorbitan monolaurate, triethanolamine sodium acetate, sorbitan monolaurate, triethanolamine oleate, etc.
- auxiliary substances such as wetting or emulsifying agents, pH buffering agents and the like, for example, sodium acetate, sorbitan monolaurate, triethanolamine sodium acetate, sorbitan monolaurate, triethanolamine oleate, etc.
- the compounds of the invention may be derivatised in various ways.
- “derivatives” of the compounds includes salts (e.g. pharmaceutically acceptable salts), any complexes (e.g. inclusion complexes or clathrates with compounds such as cyclodextrins, or coordination complexes with metal ions such as Mn 2+ and Zn 2+ ), esters such as in vivo hydrolysable esters, free acids or bases, polymorphic forms of the compounds, solvates (e.g. hydrates), prodrugs or lipids, coupling partners and protecting groups.
- prodrugs is meant for example any compound that is converted in vivo into a biologically active compound.
- Salts of the compounds of the invention are preferably physiologically well tolerated and non toxic. Many examples of salts are known to those skilled in the art. All such salts are within the scope of this invention, and references to compounds include the salt forms of the compounds.
- Compounds having acidic groups can form salts with alkaline or alkaline earth metals such as Na, K, Mg and Ca, and with organic amines such as triethylamine and Tris (2-hydroxyethyl)amine. Salts can be formed between compounds with basic groups, e.g. amines, with inorganic acids such as hydrochloric acid, phosphoric acid or sulfuric acid, or organic acids such as acetic acid, citric acid, benzoic acid, fumaric acid, or tartaric acid. Compounds having both acidic and basic groups can form internal salts.
- Acid addition salts may be formed with a wide variety of acids, both inorganic and organic.
- acid addition salts include salts formed with hydrochloric, hydriodic, phosphoric, nitric, sulphuric, citric, lactic, succinic, maleic, malic, isethionic, fumaric, benzenesulphonic, toluenesulphonic, methanesulphonic, ethanesulphonic, naphthalenesulphonic, valeric, acetic, propanoic, butanoic, malonic, glucuronic and lactobionic acids.
- a salt may be formed with a suitable cation.
- suitable inorganic cations include, but are not limited to, alkali metal ions such as Na + and K + , alkaline earth cations such as Ca 2+ and Mg 2+ , and other cations such as Al 3+ .
- suitable organic cations include, but are not limited to, ammonium ion (i.e., NH 4 + ) and substituted ammonium ions (e.g., NH 3 R + , NH 2 R 2 + , NHR 3 + , NR 4 + ).
- Examples of some suitable substituted ammonium ions are those derived from: ethylamine, diethylamine, dicyclohexylamine, triethylamine, butylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine, benzylamine, phenylbenzylamine, choline, meglumine, and tromethamine, as well as amino acids, such as lysine and arginine.
- An example of a common quaternary ammonium ion is N(CH 3 ) 4 + .
- the compounds may contain an amine function, these may form quaternary ammonium salts, for example by reaction with an alkylating agent according to methods well known to the skilled person. Such quaternary ammonium compounds are within the scope of the invention.
- Compounds containing an amine function may also form N-oxides.
- a reference herein to a compound that contains an amine function also includes the N-oxide.
- N-oxides are the N-oxides of a tertiary amine or a nitrogen atom of a nitrogen-containing heterocycle.
- N-Oxides can be formed by treatment of the corresponding amine with an oxidizing agent such as hydrogen peroxide or a per-acid (e.g. a peroxycarboxylic acid), see for example Advanced Organic Chemistry , by Jerry March, 4 th Edition, Wiley Interscience, pages. More particularly, N-oxides can be made by the procedure of L. W. Deady ( Syn. Comm. 1977, 7, 509-514) in which the amine compound is reacted with m-chloroperoxybenzoic acid (MCPBA), for example, in an inert solvent such as dichloromethane.
- MCPBA m-chloroperoxybenzoic acid
- Esters can be formed between hydroxyl or carboxylic acid groups present in the compound and an appropriate carboxylic acid or alcohol reaction partner, using techniques well known in the art.
- esters are compounds containing the group C( ⁇ O)OR, wherein R is an ester substituent, for example, a C 1-7 alkyl group, a C 3-20 heterocyclyl group, or a C 5-20 aryl group, preferably a C 1-7 alkyl group.
- Particular examples of ester groups include, but are not limited to, C( ⁇ O)OCH 3 , C( ⁇ O)OCH 2 CH 3 , C( ⁇ O)OC(CH 3 ) 3 , and —C( ⁇ O)OPh.
- acyloxy (reverse ester) groups are represented by OC( ⁇ O)R, wherein R is an acyloxy substituent, for example, a C 17 alkyl group, a C 320 heterocyclyl group, or a C 520 aryl group, preferably a C 17 alkyl group.
- R is an acyloxy substituent, for example, a C 17 alkyl group, a C 320 heterocyclyl group, or a C 520 aryl group, preferably a C 17 alkyl group.
- Particular examples of acyloxy groups include, but are not limited to, OC( ⁇ O)CH 3 (acetoxy), OC( ⁇ O)CH 2 CH 3 , OC( ⁇ O)C(CH 3 ) 3 , OC( ⁇ O)Ph, and OC( ⁇ O)CH 2 Ph.
- prodrugs which are prodrugs of the compounds are convertible in vivo or in vitro into one of the parent compounds. Typically, at least one of the biological activities of compound will be reduced in the prodrug form of the compound, and can be activated by conversion of the prodrug to release the compound or a metabolite of it.
- Some prodrugs are esters of the active compound (e.g., a physiologically acceptable metabolically labile ester). During metabolism, the ester group (—C( ⁇ O)OR) is cleaved to yield the active drug.
- esters may be formed by esterification, for example, of any of the carboxylic acid groups (—C( ⁇ O)OH) in the parent compound, with, where appropriate, prior protection of any other reactive groups present in the parent compound, followed by deprotection if required.
- Examples of such metabolically labile esters include those of the formula —C( ⁇ O)OR wherein R is: C 17 alkyl (e.g., Me, Et, -nPr, -iPr, -nBu, -sBu, -iBu, tBu); C 17 aminoalkyl (e.g., aminoethyl; 2-(N,N-diethylamino)ethyl; 2(4morpholino)ethyl); and acyloxy-C 17 alkyl (e.g., acyloxymethyl; acyloxyethyl; pivaloyloxymethyl; acetoxymethyl; 1acetoxyethyl; 1-(1-methoxy-1-methyl)ethyl-carbonyloxyethyl; 1-(benzoyloxy)ethyl; isopropoxy-carbonyloxymethyl; 1isopropoxy-carbonyloxyethyl; cyclohexyl-carbonyloxymethyl
- prodrugs are activated enzymatically to yield the active compound, or a compound which, upon further chemical reaction, yields the active compound (for example, as in ADEPT, GDEPT, LIDEPT, etc.).
- the prodrug may be a sugar derivative or other glycoside conjugate, or may be an amino acid ester derivative.
- Coupled derivatives include coupling partners of the compounds in which the compounds is linked to a coupling partner, e.g. by being chemically coupled to the compound or physically associated with it.
- Examples of coupling partners include a label or reporter molecule, a supporting substrate, a carrier or transport molecule, an effector, a drug, an antibody or an inhibitor.
- Coupling partners can be covalently linked to compounds of the invention via an appropriate functional group on the compound such as a hydroxyl group, a carboxyl group or an amino group.
- Other derivatives include formulating the compounds with liposomes.
- the quantity of the compound to be administered will vary for the patient being treated and will vary from about 100 ng/kg of body weight to 100 mg/kg of body weight per day and preferably will be from 10 pg/kg to 10 mg/kg per day.
- dosages can be readily ascertained by those skilled in the art from this disclosure and the knowledge in the art.
- the skilled artisan can readily determine the amount of compound and optional additives, vehicles, and/or carrier in compositions and to be administered in methods of the invention.
- the compounds described herein are central nervous system depressants and may be used as tranquilizers or ataractic agents for the relief of anxiety and tension states, for example, in mice, cats, rats, dogs and other mammalian species such as humans, in the same manner as chlordiazepoxide.
- a compound or mixture of compounds of any of the formulas described herein, or non-toxic physiologically acceptable salts, such as acid addition salts thereof may be administered orally or parenterally in a conventional dosage form such as tablet, pill, capsule, injectable or the like.
- the dosage in mg/kg of body weight of compounds of the present invention in mammals will vary according to the size of the animal and particularly with respect to the brain/body weight ratio.
- a minimum effective dosage for a compound of formula (I) will be at least about 0.1 mg/kg of body weight per day for mammals with a maximum dosage for a small mammal such as a dog, of about 100 mg/kg per day.
- a dosage of about 0.1 to 12 mg/kg per day will be effective, for example, about 5 to 600 mg/day for an average man.
- the dosage can be given once daily or in divided doses, for example, 2 to 4 doses daily, and such dosage will depend on the duration and maximum level of activity of a particular compound.
- the dose may be conventionally formulated in an oral or parenteral dosage form by compounding about 5 to 250 mg per unit of dosage of conventional vehicle, excipient, binder, preservative, stabilizer, flavor or the like as called for by accepted pharmaceutical practice, for example, as described in U.S. Pat. No. 3,755,340.
- the compounds of this invention may be used in pharmaceutical compositions comprising a compound of any of the formulas described herein or can be contained in the same formulation with or co-administered with one or more known drugs.
- Some example tests that can be conducted to demonstrate the anxiolytic activity of the present compounds include binding tests of GABAA receptors.
- the binding test was directed to a subtype of GABAA receptors, such as GABAA1 receptors (i.e., those containing the ⁇ 1 subunit), GABAA2 receptors (i.e., those containing the ⁇ 2 subunit), GABAA3 receptors (i.e., those containing the ⁇ 3 subunit) and GABAA5 receptors (i.e., those containing the ⁇ 5 subunit).
- GABAA modulator anxiolytics work via interactions at the classical benzodiazepine binding site. To a large degree these anxiolytics lack GABAA receptor subtype-selectivity.
- the subtype-selective GABAA receptor modulators may offer more advantages. For example, a growing body of work suggests that desirable anxiolytic activity is driven primarily by interactions with GABAA receptors containing the ⁇ 2 subunit. Sedation, a side-effect common to all marketed benzodiazepines, is believed to be mediated by interactions at GABAARs containing the ⁇ 1 subunit. To develop anxiolytics with minimal liabilities due to interactions with other subunits, an electrophysiological assay was developed to screen modulatory effects of various compounds on different GABA subunit combinations heterologously expressed in Xenopus oocytes.
- GABAA receptors were heterologously expressed in Xenopus oocytes by injecting cRNA corresponding to human ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 5 , ⁇ 2 , ⁇ 3 and ⁇ 2 subunits of the GABAA receptor genes.
- the specific subunit combinations (subtypes) were as follows: ⁇ 1 ⁇ 2 ⁇ 2 , ⁇ 2 ⁇ 3 ⁇ 2 , ⁇ 3 ⁇ 3 ⁇ 2 , and ⁇ 5 ⁇ 3 ⁇ 2 .
- the EC10 of GABA was approximated for each cell. Stability of GABA-mediated (EC10) current was established. Modulatory effect of test compound was determined and compared across subtypes.
- the assay developed has reproducibility which allows discrimination of modulatory activity down to minimal effect of about 25% potentiation (prior to normalization to standard) for all four subtypes.
- the assay can characterize modulatory effects and determine subtype selectivity of test compounds on major subtypes of GABAA receptors.
- a compound can selectively bind to one subtype of GABAA receptor (by showing about 25% or more of binding comparing to another subtype of GABAA receptor).
- Anxiolytic activity is indicated in the GABAA binding test by a displacement of the flunitrazepam such as is exhibited by benzodiazepines or by enhancement of the binding such as is shown by cartazolate and tracazolate.
- the compounds of the invention can bind to GABAA receptors. In some embodiments, the compounds of the invention can bind to GABAA receptors by displacement of benzodiazepines. Accordingly, the compounds of the invention can be used to modulate activities of GABAA receptors. In some embodiments, the compounds of the invention can selectively bind to a subtype of GABAA receptors, such as such as GABAA1 receptors (i.e., those containing the ⁇ 1 subunit), GABAA2 receptors (i.e., those containing the ⁇ 2 subunit), GABAA3 receptors (i.e., those containing the ⁇ 3 subunit) or GABAA5 receptors (i.e., those containing the ⁇ 5 subunit).
- GABAA1 receptors i.e., those containing the ⁇ 1 subunit
- GABAA2 receptors i.e., those containing the ⁇ 2 subunit
- GABAA3 receptors i.e., those containing the ⁇ 3 sub
- the compounds of the invention can selectively bind to a subtype of GABAA receptors by displacement of benzodiazepines. Accordingly, the compounds of the invention can be used to selectively modulate activities of a subtype of GABAA receptors, such as GABAA1 receptors, GABAA2 receptors, GABAA3 receptors or GABAA5 receptors.
- a subtype of GABAA receptors such as GABAA1 receptors, GABAA2 receptors, GABAA3 receptors or GABAA5 receptors.
- certain compounds of the invention are GABAA1 receptor antagonists and GABAA2 receptor agonists.
- the compounds of the invention can be used to modulate activities of GABAA receptors, or to selectively modulate activities of a subtype of GABAA receptors, the compounds of the invention are envisioned to be useful for treating or preventing diseases mediated by GABAA receptors or a subtype of GABAA receptors.
- Such disease include, but is not limited to, stroke, head trauma, epilepsy, pain, migraine, mood disorders, anxiety, post traumatic stress disorder, obsessive compulsive disorders, schizophrenia, seizures, convulsions, tinnitus, neurodegenerative disorders including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's Chorea, Parkinson's disease, depression, bipolar disorders, mania, trigeminal and other neuralgia, neuropathic pain, hypertension, cerebral ischemia, cardiac arrhythmia, myotonia, substance abuse, myoclonus, essential tremor, dyskinesia and other movement disorders, neonatal cerebral hemorrhage, spasticity, cognitive disorder, and sleeping disorder.
- melatonin receptor agonists are effective in treating depression.
- the compounds of the invention can selectively modulate activities of a subtype of melatonin receptors, melatonin receptor 1 (MT-1).
- certain compounds of the invention are MT1 agonists.
- the compounds of the invention may be effective in treating depression disorders such as major depressive disorder, dysthymic disorder, bipolar depression and/or bipolar mania, bipolar I with or without manic, depressive or mixed episodes, bipolar II, cyclothymic disorder, mood disorder due to a general medical condition, manic episodes associated with bipolar disorder, or mixed episodes associated with bipolar disorder.
- an effective amount of one or more compounds of the invention is administered to a patient with such a need.
- certain compounds of the present invention may be effective in treating insomnia.
- a compound of formula I or a pharmaceutically acceptable salt, solvate or in vivo hydrolysable ester thereof, or a pharmaceutical composition or formulation comprising a compound of formula I may be administered concurrently, simultaneously, sequentially or separately with one or more pharmaceutically active compound(s) selected from the following:
- antidepressants such as amitriptyline, amoxapine, bupropion, citalopram, clomipramine, desipramine, doxepin duloxetine, elzasonan, escitalopram, fluvoxamine, fluoxetine, gepirone, imipramine, ipsapirone, maprotiline, nortriptyline, nefazodone, paroxetine, phenelzine, protriptyline, reboxetine, robalzotan, sertraline, sibutramine, thionisoxetine, tranylcypromaine, trazodone, trimipramine, venlafaxine and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof;
- atypical antipsychotics including for example quetiapine and pharmaceutically active isomer(s) and metabolite(s) thereof, amisulpride, aripiprazole, asenapine, benzisoxidil, bifeprunox, carbamazepine, clozapine, chlorpromazine, debenzapine, divalproex, duloxetine, eszopiclone, haloperidol, iloperidone, lamotrigine, lithium, loxapine, mesoridazine, olanzapine, paliperidone, perlapine, perphenazine, phenothiazine, phenylbutlypiperidine, pimozide, prochlorperazine, risperidone, quetiapine, sertindole, sulpiride, suproclone, suriclone, thioridazine, trifluoperazine,
- antipsychotics including for example amisulpride, aripiprazole, asenapine, benzisoxidil, bifeprunox, carbamazepine, clozapine, chlorpromazine, debenzapine, divalproex, duloxetine, eszopiclone, haloperidol, iloperidone, lamotrigine, loxapine, mesoridazine, olanzapine, paliperidone, perlapine, perphenazine, phenothiazine, phenylbutlypiperidine, pimozide, prochlorperazine, risperidone, sertindole, sulpiride, suproclone, suriclone, thioridazine, trifluoperazine, trimetozine, valproate, valproic acid, zopiclone, zotepine, ziprasidone and
- anxiolytics including for example alnespirone, azapirones, benzodiazepines, barbiturates such as adinazolam, alprazolam, balezepam, bentazepam, bromazepam, brotizolam, buspirone, clonazepam, clorazepate, chlordiazepoxide, cyprazepam, diazepam, diphenhydramine, estazolam, fenobam, flunitrazepam, flurazepam, fosazepam, lorazepam, lormetazepam, meprobamate, midazolam, nitrazepam, oxazepam, prazepam, quazepam, reclazepam, tracazolate, trepipam, temazepam, triazolam, uldazepam, zolazepam and equivalents and pharmaceutically
- anticonvulsants including, for example, carbamazepine, valproate, lamotrogine, gabapentin and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof;
- Alzheimer's therapies including, for example, donepezil, memantine, tacrine and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof;
- Parkinson's therapies including, for example, deprenyl, L-dopa, Requip, Mirapex, MAOB inhibitors such as selegine and rasagiline, comP inhibitors such as Tasmar, A-2 inhibitors, dopamine reuptake inhibitors, NMDA antagonists, Nicotine agonists, Dopamine agonists and inhibitors of neuronal nitric oxide synthase and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof;
- migraine therapies including, for example, almotriptan, amantadine, bromocriptine, butalbital, cabergoline, dichloralphenazone, eletriptan, frovatriptan, lisuride, naratriptan, pergolide, pramipexole, rizatriptan, ropinirole, sumatriptan, zolmitriptan, zomitriptan, and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof;
- (ix) stroke therapies including, for example, abciximab, activase, NXY-059, citicoline, crobenetine, desmoteplase, repinotan, traxoprodil and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof;
- neuropathic pain therapies including, for example, gabapentin, lidoderm, pregablin and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof;
- nociceptive pain therapies such as celecoxib, etoricoxib, lumiracoxib, rofecoxib, valdecoxib, diclofenac, loxoprofen, naproxen, paracetamol and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof;
- insomnia therapies including, for example, allobarbital, alonimid, amobarbital, benzoctamine, butabarbital, capuride, chloral, cloperidone, clorethate, dexclamol, ethchlorvynol, etomidate, glutethimide, halazepam, hydroxyzine, mecloqualone, melatonin, mephobarbital, methaqualone, midaflur, nisobamate, pentobarbital, phenobarbital, propofol, roletamide, triclofos, secobarbital, zaleplon, zolpidem and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof, and
- mood stabilizers including, for example, carbamazepine, divalproex, gabapentin, lamotrigine, lithium, olanzapine, quetiapine, valproate, valproic acid, verapamil, and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof.
- Such combinations employ the compounds of this invention within the dosage range described herein and the other pharmaceutically active compound or compounds within approved dosage ranges and/or the dosage described in the publication reference.
- the compounds of the present invention can be prepared in a number of ways well known to one skilled in the art of organic synthesis.
- the compounds of the present invention can be synthesized using the methods described below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art.
- the starting materials and precursors used in the processes described herein were either commercially available or readily prepared by established organic synthesis methods. It is understood by one skilled in the art of organic synthesis that the functionality present on various portions of the molecule must be compatible with the reagents and reactions proposed. Such restrictions to the substituents which are compatible with the reaction conditions will be readily apparent to one skilled in the art and alternate methods should then be used.
- DMSO dimethylsulfoxide
- THF tetrahydrofuran
- DMF denotes N,N-dimethylformamide.
- reaction progress was monitored by HPLC, LC-MS or TLC. Oven-dried standard laboratory glassware was used and routine manipulations were done at ambient temperature under a blanket of nitrogen unless otherwise indicated.
- Commercially available reagents and anhydrous solvents were typically used as received. Evaporations were typically performed under reduced pressure using a rotary evaporator. Preparative chromatography was performed using ICN silica gel 60, 32-63 ⁇ or a suitable equivalent. Products were dried under reduced pressure at 40° C. or a suitable temperature.
- a compound 1-3 can be made by coupling of a halogenated cinnoline derivative 1-1 (wherein X 1 is halo such as bromo or iodo) to a boron compound 1-2 wherein R 6 can be an optionally substituted aryl or heteroaryl (suitable substituents can be alkyl, CN etc.), R 101 and R 102 are each, independently, hydrogen or C 1-6 alkyl; or R 101 and R 102 , together with the two oxygen atoms to which they are attached and the boron atom to which the two oxygen atoms are attached, form a 4-7 membered heterocyclic ring whose ring-forming atoms comprises B, O and C atoms and which is optionally substituted by 1, 2, 3, or 4 C 1-6 alkyl (i.e., a moiety shown as 1-2B-R wherein t1 is 0, 1, 2 or 3; t2 is 0, 1, 2, 3 or 4; and R 400 is each, independently
- the coupling reaction can be carried out in the presence of a suitable catalyst, such as a metal catalyst.
- a suitable catalyst such as a metal catalyst.
- metal catalysts include palladium catalyst, such as bis(triphenylphosphine)palladium(II) dichloride and tetrakis(triphenylphosphine)palladium(0).
- the coupling reaction can be carried out in the presence of a suitable base such as an inorganic base.
- a suitable inorganic base include cesium carbonate, sodium carbonate, and potassium phosphate.
- the coupling reaction can be carried out in a suitable solvent such as an organic solvent.
- suitable organic solvent include polar organic solvents, such as an ether and an alcohol.
- Suitable ethers include 1,2-dimethoxyethane and tetrahydrofuran.
- Suitable alcohols include ethanol, propanol and isopropanol.
- a suitable solvent also includes a mixture of two or more individual solvents. Suitable solvents can further contain water.
- the coupling reaction can be carried out at a suitable temperature to afford the compound 1-3. In some embodiments, the reaction mixture is heated to an elevated temperature (i.e., above the room temperature).
- the reaction mixture is heated to a temperature of about 40° C., about 50° C., about 60° C., about 70° C., about 80° C., about 90° C., about 100° C., about 110° C., about 120° C., about 130° C., about 140° C., about 150° C., about 160° C.
- the reaction progress can be monitored by conventional methods such as TLC or NMR.
- a compound 2-3 can be made by coupling of a halogenated cinnoline derivative 2-1 (wherein X 2 is halo such as bromo or iodo) to a tin compound 2-2 wherein R 6 can be an optionally substituted aryl or heteroaryl (suitable substituents can be alkyl, CN etc.), R 201 , R 202 and R 203 are each, independently, C 1-6 alkyl.
- the coupling reaction can be carried out in the presence of a suitable catalyst, such as a metal catalyst.
- Some exemplary metal catalysts include palladium catalysts, such as bis(triphenylphosphine)palladium(II) dichloride and tetrakis(triphenylphosphine)palladium(0).
- the coupling reaction can be carried out in a suitable organic solvent.
- Some suitable organic solvent include polar organic solvent.
- Some suitable organic solvent include aprotic solvent.
- Some suitable organic solvent include polar aprotic organic solvent such as N,N-dimethylformamide.
- the coupling reaction can be carried out at a suitable temperature for a time sufficient to afford the compound 2-3. In some embodiments, the reaction mixture is heated to an elevated temperature (i.e., above the room temperature).
- the reaction mixture is heated to a temperature of about 40° C., about 50° C., about 60° C., about 70° C., about 80° C., about 90° C., about 100° C., about 110° C., about 120° C., about 130° C., about 140° C., about 150° C., about 160° C.
- the reaction progress can be monitored by conventional methods such as TLC or NMR.
- a compound 3-3 can be made by coupling of a trialkylstannyl-cinnoline derivative 3-1 (wherein R 301 , R 302 and R 303 are each, independently, C 1-6 alkyl) to a halogenated compound R 6 X 3 3-2 wherein X 3 is halo such as bromo or iodo, and wherein R 6 can be an optionally substituted aryl or heteroaryl (suitable substituents can be alkyl, CN etc.).
- the coupling reaction can be carried out in the presence of a suitable catalyst, such as a metal catalyst.
- Some exemplary metal catalysts include palladium catalysts, such as bis(triphenylphosphine)palladium(II) dichloride and tetrakis(triphenylphosphine)palladium(0).
- the coupling reaction can be carried out in a suitable organic solvent.
- Some suitable organic solvent include polar organic solvent.
- Some suitable organic solvents include aprotic organic solvent.
- Some suitable organic solvents include polar aprotic organic solvents such as N,N-dimethylformamide.
- the coupling reaction can be carried out at a suitable temperature for a time sufficient to afford the compound 2-3. In some embodiments, the reaction mixture is heated to an elevated temperature (i.e., above the room temperature).
- the reaction mixture is heated to a temperature of about 40° C., about 50° C., about 60° C., about 70° C., about 80° C., about 90° C., about 100° C., about 110° C., about 120° C., about 130° C., about 140° C., about 150° C., about 160° C.
- the reaction progress can be monitored by conventional methods such as TLC or NMR.
- the trialkylstannyl-cinnoline derivative 3-1 can be made by coupling of a halogenated cinnoline derivative 3-0-1 (wherein X 4 is halo such as bromo or iodo) to a di-tin compound 3-0-2 (wherein R 301 , R 302 and R 303 are each, independently, C 1-6 alkyl) in the presence of a suitable catalyst, such as a palladium catalyst.
- a suitable catalyst such as a palladium catalyst.
- palladium catalysts include bis(triphenylphosphine)palladium(II) dichloride and tetrakis(triphenylphosphine)palladium(0).
- a CN group can be hydrolyzed to afford an amide group; a carboxylic acid can be converted to an amide; a carboxylic acid can be converted to a ester, which in turn can be reduced to an alcohol, which in turn can be further modified.
- an OH group can be converted into a better leaving group such as mesylate, which in turn is suitable for nucleophilic substitution, such as by CN.
- reacting refers to the bringing together of designated chemical reactants such that a chemical transformation takes place generating a compound different from any initially introduced into the system. Reacting can take place in the presence or absence of solvent.
- the mixture was stirred for 30 minutes and then filtered through a pad of celite.
- the celite was washed with ethyl acetate (3 ⁇ 150 mL).
- the filtrates were placed in a separatory funnel and the water layer was removed.
- the organic layer was concentrated under reduced pressure to a volume of 200 mL, placed in a separatory funnel, diluted with ethyl acetate (400 mL), washed with brine, dried over sodium sulfate, filtered and concentrated to dryness.
- the crude product was taken up in ether (300 mL) and made acidic to pH 1 with 2M hydrochloric acid/ether (Aldrich). After 1 hour, the tan solid was isolated by filtration (39.2 g, 80%).
- the crude solid (188 g) was then dissolved in hot methanol (6 L), treated with activated charcoal (19 g), stirred 15 minutes at reflux, filtered through celite while hot, concentrated to approximately 3 L, and allowed to crystallize overnight.
- the solids were collected, washed with diethyl ether (400 mL) and dried in a vacuum oven at 50° C. to give a white crystalline solid.
- the filtrate was concentrated to approximately 1 L and a second crop obtained.
- the mother liquors were stripped and a third and fourth crop were obtained from additional recrystallizations to afford a total of 164.6 g of the desired compound as a white crystalline solid (84%).
- the mixture was diluted with chloroform (2 L) until all of the precipitate was dissolved, washed twice with water, dried through magnesium sulfate, and concentrated to a volume of approximately 200 mL to leave a suspension of the product.
- the title compound as a light beige solid (11.06 g) was collected by filtration and washed with methylene chloride (50 mL ⁇ 2), methanol (50 mL) and hexane (100 mL ⁇ 2).
- the mother liquor was concentrated, and purified by flash chromatography using a gradient of ethyl acetate in hexane to give an additional 400 mg of the title compound as a beige solid.
- Solution A To a mechanically stirred solution of 2-fluoroaniline (11.51 g, 100.34 mmol) in acetic acid (50 mL) was added water (30 mL) at ambient temperature. The mixture was cooled to 0° C., and then concentrated aqueous HCl (25 mL) added. A precipitate was formed as soon as the concentrated HCl was added, and the suspension was stirred at 0° C. for 20 minutes. To this suspension was added dropwise a solution of sodium nitrite (7.72 g, 111.88 mmol) in water (30 mL), maintaining the internal temperature below 5° C. The resulting clear orange solution was stirred at 0° C. for another 30 minutes.
- Solution B To a mechanically stirred solution of N-propyl-2-cyanoacetamide (15.69 g, 124.37 mmol) in ethanol (220 mL) was added a solution of sodium acetate (136.00 g, 1.66 moles) in water (600 mL), and chilled to between 0° C. and ⁇ 5° C.
- Solution A was poured into solution B, maintaining the internal temperature below 0° C. An orange precipitate was formed gradually after 10 minutes. The mixture was stirred below 0° ° C. for another hour, and was then diluted with water (500 mL). After 30 minutes, the orange precipitate was collected by filtration, washed with water (100 mL ⁇ 3), and dried at 50° C. under high vacuum to remove water. An orange solid (9.50 g) was obtained, which was the “E” isomer, and used for the next step without further purification.
- the aqueous layer contained a thick white precipitate and was quickly removed.
- the organic layer was washed with Rochelle's salt and brine, dried over magnesium sulfate, filtered and concentrated to give 2.6 g slightly crude product which was purified on silica gel using a gradient of 20 to 60% ethyl acetate in hexane. Recrystallization from ethyl acetate/hexanes (10 mL each, 0° C. overnight) afforded the title compound as a white solid (650 mg, 26%).
- Method A The cinnoline-halide, an optionally substituted arylboronic acid, heteroaryl boronic acid, or a boron compound 1-2B of Scheme 2 (typically 2-3 molar equivalents), cesium carbonate (2 molar equivalents) and bis(triphenylphosphine)palladium(II) dichloride (0.025 molar equivalents) were placed in a microwave reaction vessel and dissolved in 7:3:2 (v/v/v) 1,2-dimethoxyethane:water:ethanol (5 mL/mmol cinnoline-halide) at ambient temperature.
- reaction vessel was capped, the head-space purged with dry nitrogen and the stirred mixture was heated on a Biotage Optimizer (300 W) microwave system maintaining a reaction temperature of 150° C. for 30-90 minutes, reaction pressures of 7 bar were typically observed.
- the reaction was then cooled to ambient temperature and extracted with ethyl acetate.
- the residue from the organic extracts was purified by flash chromatography on silica gel eluting with increasingly polar gradient of ethyl acetate in hexanes to afford the desired compound.
- Method B To a solution of the cinnoline-halide in 1,2-dimethoxyethane (10 mL/mmol cinnoline-halide) under nitrogen at ambient temperature was added tetrakis(triphenylphosphine)palladium (0) (0.05-0.15 molar equivalents). After stirring 10-20 min an arylboronic acid, heteroaryl boronic acid, or a boron compound 1-2B of Scheme 2 (1-4 molar equivalents) was added followed by a solution of sodium carbonate (2.5 molar equivalents) in water (3 mL/mmol halide). The resulting mixture was heated at reflux for 2-24 h.
- reaction was then cooled to ambient temperature and extracted with ethyl acetate.
- residue from the organic extracts was purified by flash chromatography on silica gel eluting with increasingly polar gradient of ethyl acetate in hexanes to afford the desired compound.
- Method C To a stirred solution of the cinnoline-halide in anhydrous N,N-dimethylformamide (2 mL/mmol cinnoline-halide) at ambient temperature was added an optionally substituted aryl- or heteroaryl-tin reagent (1.2 molar equivalents) and tetrakis(triphenylphosphine)palladium(0) (0.05 molar equivalents). The mixture was heated at 100° C. for 8-48 h. The reaction was then cooled to ambient temperature and extracted with ethyl acetate. The residue from the organic extracts was purified by flash chromatography on silica gel eluting with an increasingly polar gradient of ethyl acetate in hexanes to afford the desired compound.
- Method D The cinnoline-halide, an optionally substituted aryl- or heteroaryl-tin reagent (1.2-3 molar equivalents) and tetrakis(triphenylphosphine) palladium(0) (0.05-0.10 molar equivalents) were placed in a microwave reaction vessel and dissolved in 2-4 mL of anhydrous N,N-dimethylformamide at ambient temperature. The reaction vessel was purged with nitrogen, capped, and the stirred mixture was heated on a Biotage Optimizer (300 W) microwave system maintaining a reaction temperature of 150° C. for 30 minutes.
- a Biotage Optimizer 300 W
- the reaction was cooled to ambient temperature, diluted with methylene chloride, washed with water, dried over magnesium sulfate and the solvent was evaporated. The residue was purified by flash chromatography on silica gel eluting with increasingly polar gradient of ethyl acetate in hexanes to afford the desired compound.
- Method E To a stirred solution of 8-trimethylstannyl-cinnoline derivative and tetrakis(triphenylphosphine) palladium(0) (0.05-0.10 molar equivalents) in anhydrous N,N-dimethylformamide at ambient temperature under nitrogen was added an optionally substituted aryl- or heteroaryl bromide (1.2-3 molar equivalents). The reaction was heated to 150° C. for 4-16 hours. The reaction mixture was evaporated under reduced pressure. The residue was dissolved in methylene chloride, washed with water twice, dried through MgSO 4 , and then the solvent was evaporated. The residue was purified by flash chromatography on silica gel eluting with an increasingly polar gradient of ethyl acetate in hexane to afford the desired compound.
- Method F To a solution of the cinnoline-halide in anhydrous tetrahydrofuran (10 mL/mmol cinnoline-halide) under nitrogen at ambient temperature was added (triphenylphosphine)palladium(II) dichloride (0.10 molar equivalents) followed by an optionally substituted arylboronic acid, heteroaryl boronic acid, or a boron compound 1-2B of Scheme 2 (2-4 molar equivalents) followed by freshly ground potassium phosphate (2.0 molar equivalents). The resulting mixture was heated at reflux for 2-40 h. The reaction was then cooled to ambient temperature and diluted with saturated sodium bicarbonate and extracted with ethyl acetate. The residue from the organic extracts was purified by flash chromatography on silica gel eluting with 5% ether in chloroform to afford the desired compound.
- Method G The cinnoline-halide, an optionally substituted arylboronic acid, heteroaryl boronic acid, or a boron compound 1-2B of Scheme 2 (4-5 molar equivalents), cesium carbonate (4-5 molar equivalents), 2-dicyclohexylphosphino-2′,4′,6′-trisopropylbiphenyl (0.24 molar equivalents) and tris(dibenzylidene-acetone)dipalladium(0) (0.06 molar equivalents) were placed in a 3-neck flask under N 2 and dissolved in 7:3:2 (v/v/v) THF:water:2-propanol (5 mL/mmol cinnoline-halide) at ambient temperature.
- reaction vessel was fitted with a reflux condenser, capped, vacuum degassed (3 ⁇ ) backfilling with N 2 and placed in a preheated oil bath (70° C.) and heated for 20 hours. (* if reaction not complete more boronic acid and cesium carbonate in equal proportions were added with additional heating time). The reaction was then cooled to ambient temperature, decanted organic layer and concentrated under reduced pressure. Residue partitioned between ethyl acetate and 5% sodium bicarbonate (aq).
- Method H The cinnoline-halide, an optionally substituted arylboronic acid, heteroaryl boronic acid, or a boron compound 1-2B of Scheme 2 (3-5 molar equivalents), sodium carbonate (4-5 molar equivalents), [1,1′-bis(diphenylphospino)-ferrocene] dichloropalladium(II) complex with dichloromethane (1:1) (0.075 molar equivalents) were placed in a 3-neck flask under N 2 and dissolved in 7:3:2 (v/v/v) THF:water:2-propanol (5 mL/mmol cinnoline-halide) at ambient temperature.
- reaction vessel was fitted with a reflux condenser, under N 2 and placed in a preheated oil bath (85° C.) and refluxed 2-20 hours (* if reaction not complete added more boronic acid with additional heating time).
- the reaction was then cooled to ambient temperature, reduced volume under reduced pressure, partitioned between ethyl acetate and water.
- the residue from the organic extracts was purified by flash chromatography on silica gel eluting with increasingly polar gradient of ethyl acetate in hexanes to afford the desired compound.
- the reaction mixture was diluted with methylene chloride, quenched with water, washed with 10% potassium carbonate aqueous solution twice, dried through magnesium sulfate, and the solvent was evaporated to dry.
- the residue was purified by flash chromatography using a gradient of methanol in methylene chloride to give a yellow liquid as 3-bromo-5-(azetidin-1-ylcarbonyl)-pyridine (846 mg, 70.9% yield).
- This precursor was prepared according to the method of A. V. Ivanchatchenko as described in the Journal of Heterocyclic Chemistry (2004) vol. 41 p. 931
- Tetrahydrofuran (515 mL, anhydrous) and isopropanol (147 mL, anhydrous) were added and the resulting red suspension was stirred at room temperature for 15 minutes.
- a solution of sodium carbonate (57.0 g, 537.7 mmol) in water (220 mL) was added rapidly through the addition funnel and the resulting mixture immediately placed into a pre-heated 80° C. oil bath. After 90 minutes at reflux (observed internal temperature 65° C.), the reaction mixture was cooled to room temperature and filtered though a bed of Celite supported on a sintered glass funnel topped with Norite decolorizing carbon (30 g).
- the titled compound can be separated into two atropisomers using Supercritical Fluid Chromatography.
- supercritical CO 2 modified with methanol these atropisomers are stable and hence are separable on a chiral support.
- the atropisomers inter-conversion is greatly facilitated.
- the mixture was stirred for 30 minutes and then filtered through a pad of Celite.
- the Celite was washed with EtOAc (3 ⁇ 150 mL).
- the filtrates were placed in a separatory funnel and the water layer was removed.
- the organic layer was concentrated under reduced pressure to reduce volume to ⁇ 200 mL, placed in a separatory funnel, diluted with EtOAc (400 mL), washed organic with brine, dried over sodium sulfate, filtered and concentrated to dryness.
- the crude product was taken up in ether (300 mL) and made acidic to pH 1 with 2M HCl/ether (Aldrich). After 1 hour, the tan solid was isolated by filtration (39.2 g, 80%).
- the title compound may form isolable atropisomers in certain organic solvents (e.g. 25-35% methanol) at room temperature.
- the two atropisomers of the title compound may be isolated using chiral LC. However, these isomers will racimize rapidly under neutral or acidic aqueous solutions.
- the title compound was prepared from 4-amino-7-fluoro-8-iodo-N-propylcinnoline-3-carboxamide (200 mg, 0.535 mmol) and 2,5-dimethoxyphenyl boronic acid (194 mg, 1.07 mmol) according to Method A.
- the off-white solid from chromatography was slurried in ether, filtered and dried under vacuum at room temperature to afford the desired product (147 mg, 71%).
- the title compound was prepared from 4-amino-7-fluoro-8-iodo-N-propylcinnoline-3-carboxamide (220 mg, 58.8 mmol) and 2,4-dimethoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyrimidine (312 mg, 1.62 mmol) according to Method B to afford a white solid (123 mg, 54%).
- the title compound was prepared from 4-amino-8-bromo-N-ethyl-cinnoline-3-carboxamide (70.0 mg, 0.237 mmol) and 4-methoxy-3-pyridine boronic acid (153.0 mg, 0.3439 mmol) according to Method A except that the extraction was carried out with methylene chloride rather than ethyl acetate and the flash column was eluted with a gradient of 10 to 60% methanol in dichloromethane. The concentrated product was then recrystallized from chloroform (with a few drops of methanol) and hexanes to afford the title compound as a yellow solid (19.6 mg, 26% yield).
- the title compound was prepared from 4-amino-8-bromo-N-butyl-cinnoline-3-carboxamide (100 mg, 0.31 mmol) and 2,5-dimethoxyphenyl boronic acid (112.6 mg, 0.62 mmol) according to Method A to afford a white solid (96.3 mg, 82%).
- the title compound was prepared from 4-amino-8-bromo-N-ethyl-cinnoline-3-carboxamide (100.0 mg, 0.339 mmol) and 2,5-dimethoxyphenyl boronic acid (123.3 mg, 0.678 mmol) according to Method A.
- the solid obtained after chromatography was washed with diethyl ether and dried overnight at 40° C. to afford the title compound as a fluffy white solid (64.4 mg, 54% yield).
- the title compound was prepared from 4-amino-8-bromo-N-methyl-cinnoline-3-carboxamide (20.0 g, 63.1 mmol) and 2,5-dimethoxyphenyl boronic acid (22.3 g, 122.4 mmol) according to Method B except that potassium carbonate was used as the base and tetrahydrofuran:ethanol:water (1:1:1) was used as the solvent system.
- the reaction mixture was filtered and the yellow solids were slurried in 10% methanol in chloroform and filtered. The combined filtrates were concentrated to a solid, slurried in hot ethyl acetate, and filtered.
- the title compound was prepared from 4-amino-8-bromo-N-butyl-cinnoline-3-carboxamide (200.0 mg, 0.62 mmol) and 2,4-dimethoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyrimidine (987.9 mg, 3.72 mmol) according to Method B to afford a white solid (162.1 mg, 69%).
- the title compound was prepared from 4-amino-8-bromo-N-ethyl-cinnoline-3-carboxamide (200.0 mg, 0.678 mmol) and 2,4-dimethoxyprimidine-5-boronic acid pinacol ester (363.1 mg, 1.362 mmol) according to Method B except that the reaction was heated at 90° C. to fully dissolve the starting materials. After 4 hours, additional 2,4-dimethoxyprimidine-5-boronic acid pinacol ester (363.1 mg, 1.362 mmol) was added and the reaction was refluxed overnight.
- the title compound was prepared from 4-amino-8-bromo-cinnoline-3-carboxylic acid allylamide (273 mg, 0.89 mmol) and 2,5-dimethoxyphenyl boronic acid (201.1 mg, 1.11 mmol) according to Method A to afford an off-white solid (105 mg, 32%).
- the title compound was prepared from 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (450 mg, 1.46 mmol) and 3-methylphenyl boronic acid (408 mg, 3.00 mmol) according to Method A to afford an off-white solid (321 mg, 69%).
- the title compound was prepared from 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (300.0 mg, 0.97 mmol) and 2-fluoro-6-methylpyridine-3-boronic acid (426.7 mg, 2.75 mmol) according to Method A to afford a white solid (124.2 mg, 38%).
- the title compound was prepared from 4-amino-7-fluoro-8-iodo-N-propylcinnoline-3-carboxamide (200.0 mg, 0.53 mmol) and 2-fluoro-5-methoxyphenyl boronic acid (181.7 mg, 1.07 mmol) according to Method A to afford a yellow crystalline solid (111.0 mg, 56%).
- the title compound was prepared from 4-amino-7-fluoro-8-iodo-N-propylcinnoline-3-carboxamide (250 mg, 0.67 mmol) and 2-chloro-5-methoxyphenyl boronic acid (279 mg, 1.50 mmol) according to Method A to afford a solid (181 mg, 72%).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
This invention relates to novel compounds having the structural formula I below:
and their pharmaceutically acceptable salts, tautomers or in vivo-hydrolysable precursors, compositions and methods of use thereof. These novel compounds provide a treatment or prophylaxis of anxiety disorders, cognitive disorders, and/or mood disorders.
Description
- This application is a divisional of U.S. application Ser. No. 11/611,943, filed on Dec. 18, 2006, which claims the benefit of United State Provisional Applications 60/752,137, filed Dec. 20, 2005 and 60/823,693, filed Aug. 28, 2006 under 35 U.S.C. § 119(e), the entireties of which are incorporated herein by reference.
- The present invention relates to novel cinnoline compounds, their pharmaceutical compositions, methods of use and processes to make such compounds. In addition, the present invention relates to therapeutic methods for the treatment and/or prevention of anxiety disorders, cognitive disorders, and/or mood disorders.
- The present invention comprises, inter alia, cinnoline compounds, their use as central nervous system (CNS) depressants (especially anxiolytics), and pharmacological tools, methods for their preparation, pharmaceutical compositions containing the same, and intermediates used in their preparation.
- Some cinnoline compounds including selected 4-amino- and 4-oxo-cinnoline-3-carboxamides are disclosed in East German Patent 123525 (Verfahren zur Herstellung von substituierten 4-Aminocinnolinen); U.S. Pat. No. 4,379,929 to Conrad et al; U.S. Pat. Nos. 4,886,800 and 4,925,844 to Resch; Daunis et al., “Preparation et proprietes de cinnolones-3 et cinnolones-4,” Bull. de la Societe Chimique de France, 8:3198-3202 (1972); Lunt et al. “A New Cinnoline Synthesis,” J. Chem. Soc. (C), 687-695 (1968); Gewald, et al., “Synthese von 4-Aminocinnolinen aus (Arylhydrazono) (cyan)-essigsaurederivaten,” Liebigs Ann. Chem., 1390-1394 (1984); and U.S. Pat. No. 3,657,241 to Kurihara. Additionally, selected cinnoline compounds, including 3-acyl-4-substituted cinnoline derivatives are disclosed in Liebigs Ann. Chem. 1390-1394 (1984) supra and Sandison, et al., “A New Heterocyclisation Reaction Leading to Cinnolin-4(1H)-one Derivatives,” J. Chem. Soc. Chem. Comm., 752-753 (1974). Additionally, cinnoline compounds are also disclosed in EP205272 and EP 328282. However, none of the foregoing discloses or suggests the novel compounds of the present invention or suggests their use as CNS depressants.
- gamma-Aminobutyric acid (GABA) is a common inhibitory neurotransmitter in the mammalian brain and is estimated to be present at about one third of all synapses. When GABA binds to a GABA receptor, it affects the ability of neurons expressing the receptors to conduct neural impulses. In the adult mammalian nervous system, GABA typically inhibits neuron firing (depolarization). Neurons in the brain express three main types of GABA receptors: GABA type A receptors (GABAA), GABA type B receptors (GABAB), and GABA type C receptors (GABAC). GABAA receptors function as ligand-gated ion channels to mediate fast inhibitory synaptic transmissions that regulate neuronal excitability involved in such responses as seizure threshold, skeletal muscle tone, and emotional status. GABAA receptors are targets of many sedating drugs, such as benzodiazepines, barbiturates and neurosteroids.
- The intrinsic inhibitory signal of GABA is transduced principally by GABAA receptors. GABAA receptors are pentameric, ligand-gated chloride ion (Cl−) channels belonging to a superfamily of ligand-gated ionotropic receptors that includes the nicotinic acetylcholine receptor. GABAA receptors are very heterogeneous, with at least 16 different subunits producing potentially thousands of different receptor types.
- GABAA receptor subunits aggregate into complexes that form chloride ion selective channels and contain sites that bind GABA along with a variety of pharmacologically active substances. When GABA binds to this receptor, the anion channel is activated, causing it to open and allowing chloride ions (Cl−) to enter the neuron. This influx of Cl− ions hyperpolarizes the neuron, making it less excitable. The resultant decrease in neuronal activity following activation of the GABAA receptor complex can rapidly alter brain function, to such an extent that consciousness and motor control may be impaired.
- The numerous possible combinations of GABAA receptor subunits and the widespread distribution of these receptors in the nervous system likely contributes to the diverse and variable physiological functions of GABAA receptors, which have been implicated in many neurological and psychiatric disorders, and related conditions, including: stroke, head trauma, epilepsy, pain, migraine, mood disorders, anxiety, post traumatic stress disorder, obsessive compulsive disorders, schizophrenia, seizures, convulsions, tinnitus, neurodegenerative disorders including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's Chorea, Parkinson's disease, depression, bipolar disorders, mania, trigeminal and other neuralgia, neuropathic pain, hypertension, cerebral ischemia, cardiac arrhythmia, myotonia, substance abuse, myoclonus, essential tremor, dyskinesia and other movement disorders, neonatal cerebral hemorrhage, and spasticity. GABAA receptors are also believed to play a role in cognition, consciousness, and sleep.
- Currently available drugs for modulating GABAA receptor activity include barbiturates, such as pentobarbital and secobarbital, and benzodiazepines such as diazepam, chlordiazepoxide and midazolam. Barbiturates can directly activate GABAA receptors, significantly increasing Cl− currents in the absence of further intervention by GABA itself and can also indirectly augment GABAergic neural transmission. In contrast, benzodiazepines act as indirect allosteric modulators, and are largely incapable of increasing Cl− Currents in the absence of GABA, but enhance GABA-activated increases in Cl− conductance. This latter property is thought to be responsible for the usefulness of benzodiazepines for treating a number of disorders, including generalized anxiety disorder, panic disorder, seizures, movement disorders, epilepsy, psychosis, mood disorders, and muscle spasms, as well as the relative safety of benzodiazepines compared to barbiturates.
- Both barbiturates and benzodiazepines are addictive and can cause drowsiness, poor concentration, ataxia, dysarthria, motor incoordination, diplopia, muscle weakness, vertigo and mental confusion. These side effects can interfere with an individual's ability to perform daily routines such as driving, operating heavy machinery or performing other complex motor tasks while under therapy, making barbiturates and benzodiazepines less than optimal for treating chronic disorders involving GABA and GABAA receptors.
- GABAA receptors and GABAergic neural transmissions are implicated as targets for therapeutic intervention in a myriad of neurological and psychiatric disorders. Adverse side effects, including addictive properties exhibited by currently available GABA and GABAA receptor modulating drugs, make these drugs unsuitable in many therapeutic contexts. Accordingly, there remains an important, unmet need in the art for alternative compositions, methods and tools that will be useful in broad clinical applications to modulate the function and activity of GABA and GABA receptors in mammalian subjects, including humans, and/or to target GABAergic neural transmission. The present invention is also, inter alia, directed toward this end.
- Provided herein are novel compounds of structural formula J:
- or a pharmaceutically acceptable salt, tautomer, atropisomer, or in vivo-hydrolysable precursor thereof, wherein:
- R1 is C1-6 alkyl, C1-6haloalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2, 3, 4 or 5 R7;
- R2 is H, C(═O)Rb, C(═O)NRcRd, C(═O)ORa, S(═O)2Rb, C1-6 alkyl, C1-6 haloalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C1-6 alkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2, 3, 4 or 5 R8;
- R3, R4 and R5 are each, independently, H, halo, Si(C1-10 alkyl)3, CN, NO2, ORa, SRa, OC(═O)Ra, OC(═O)ORb, OC(═O)NRcRd, C(═O)Ra, C(═O)ORb, C(═O)NRcRd, NRcNRd, NRcC(═O)Ra, NRcC(═O)ORb, NRcS(═O)2Rb, S(═O)Ra, S(═O)NRcRd, S(═O2Ra, S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein the C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2 or 3 R9;
- R6 is aryl, cycloalkyl, heteroaryl or heterocycloalkyl, each optionally substituted by 1, 2, 3, 4 or 5 A1;
- R7, R8 and R9 are each, independently, halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, ORa′, SRa′, C(═O)Rb′, C(═O)NRc′Rd′, C(═O)ORa′, OC(═O)Rb′, OC(═O)NRc′Rd′, NRc′Rd′, NRc′C(═O)Rb′, NRc′C(═O)ORa′, NRc′S(═O)2Rb′, S(═O)Rb′, S(═O)NRc′Rd′, S(═O)2Rb′, or S(═O)2NRc′ Rd′;
- A1 is halo, CN, NO2, ORa, SRa, C(═O)Rb, C(═O)NRcRdC(═O)ORa, OC(═O)b, OC(═O)NRcRd, NRcRd, NRcC(═O)Rd, NRcC(═O)ORa, NRcS(═O)Rb, NRcS(═O)2Rb, S(═O)Rb, S(═O)NRcRd, S(═O)2Rb, S(═O)2NRcRd, C1-4 alkoxy, C1-4haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, arylalkyl, cycloalkylalkyl, heteroarylalkyl, heterocycloalkylalkyl, aryl, cycloalkyl, heteroaryl or heterocycloalkyl, wherein each of the C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, arylalkyl, cycloalkylalkyl, heteroarylalkyl, heterocycloalkylalkyl, aryl, cycloalkyl, heteroaryl or heterocycloalkyl is optionally substituted by 1, 2, 3, 4 or 5 substituents independently selected from halo, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, ORa′, SRa′, C(═O)Rb′, C(═O)NRc′Rd′, C(═O)ORa′, OC(═O)Rb′, OC(═O)NRc′Rd′, NRc′Rd′, NRc′C(═O)Rb′, NRc′C(═O)ORa′, NRc′S(═O)Rb′, NRc′S(═O)2Rb′, S(═O)Rc′Rd′, S(═O)NRc′R d′, S(═O)2Rb′, or S(═O)2NRc′Rd′;
- Ra and Ra′ are each, independently, H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein the C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C1-6 alkyl, C1-6haloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl or heterocycloalkyl;
- Rb and Rb′ are each, independently, H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein the C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C1-6alkyl, C1-6haloalkyl, C1-6haloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl or heterocycloalkyl;
- Rc and Rd are each, independently, H, C1-10 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein the C1-10 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C1-6alkyl, C1-6haloalkyl, C1-6haloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl or heterocycloalkyl;
- or Rc and Rd together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group; and
- Rc′ and Rd′ are each, independently, H, C1-10 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein the C1-10 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C1-6alkyl, C1-6haloalkyl, C1-6haloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl or heterocycloalkyl;
- or Rc′ and Rd′ together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- In some embodiments, when R2, R3, R4 and R5 are each H, then R6 is other than unsubstituted phenyl or unsubstituted cycloalkyl.
- In some embodiments, R1 is C1-6 alkyl, C1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2, 3, 4 or 5 R7.
- In some embodiments, R1 is C1-6 alkyl, C1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2, 3, 4 or 5 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, SRa′, C(═O)Rb′, C(═O)NRc′Rd′, C(═O)ORa′, OC(═O)Rb′, OC(═O)NRc′Rd′, NRc′C(═O)Rb′, NRc′C(═O)ORa′, NRc′S(═O)2Rb′, S(═O)Rb′, S(═O)NRc′Rd′, S(═O)2Rb′, or S(═O)2NRc′Rd′.
- In some embodiments, R1 is C1-6 alkyl, C1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2, 3, 4 or 5 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, SH, —S—(C1-4 alkyl), C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl) and S(═O)2NH(arylalkyl).
- In some embodiments, R1 is C1-6 alkyl, C1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2 or 3 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, SH, —S—(C1-4 alkyl), C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl) and S(═O)2NH(arylalkyl).
- In some embodiments, R1 is C1-6 alkyl, C1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2 or 3 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)—(C1-4 alkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl) and S(═O)2NH(arylalkyl).
- In some embodiments, R1 is C1-6 alkyl, C1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl.
- In some embodiments, R1 is C1-6 alkyl or C1-6 haloalkyl.
- In some embodiments, R1 is C1-6 alkyl.
- In some embodiments, R1 is n-propyl.
- In some embodiments, R2 is H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C1-6 alkyl, C1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C1-6 alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2, 3, 4 or 5 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, SH, —S—(C1-4 alkyl), C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl) and S(═O)2NH(arylalkyl).
- In some embodiments, R2 is H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C1-6 alkyl, C1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C1-6 alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2 or 3 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, SH, —S—(C1-4 alkyl), C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl) and S(═O)2NH(arylalkyl).
- In some embodiments, R2 is H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C1-6 alkyl, C1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl.
- In some embodiments, R2 is H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, or C1-6 alkyl.
- In some embodiments, R2 is H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, or C1-3 alkyl.
- In some embodiments, R2 is H.
- In some embodiments, R3, R4 and R5 are each, independently, H, halo, CN, NO2, ORa, SRa, OC(═O)Ra, OC(═O)ORb, OC(═O)NRcRd, C(═O)Ra, C(═O)ORb, C(═O)NRcRd, NRcRd, NRcC(═O)Ra, NRcC(═O)O, NRcS(═O)2Rb, S(═O)NRcRd, S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2 or 3 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, SH, —S—(C1-4 alkyl), C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl) and S(═O)2NH(arylalkyl).
- In some embodiments, R3, R4 and R5 are each, independently, H, halo, CN, NO2, OH, C1-4 alkoxy, C1-4haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, SH, —S—(C1-4 alkyl), C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2 or 3 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, SH, —S—(C1-4 alkyl), C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl) and S(═O)2NH(arylalkyl).
- In some embodiments, R3, R4 and R5 are each, independently, H, halo, CN, NO2, OH, C1-4 alkoxy, C1-4haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2 or 3 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl) and S(═O)2NH(arylalkyl).
- In some embodiments, R3, R4 and R5 are each, independently, H, C1-4 alkoxy, halo, C1-6 alkyl or C1-6 haloalkyl.
- In some embodiments, R3, R4 and R5 are each, independently, H, C1-4 alkoxy, halo or C1-3 haloalkyl.
- In some embodiments, R3, R4 and R5 are each, independently, H, C1-4 alkoxy, or halo.
- In some embodiments, R6 is aryl or heteroaryl, each optionally substituted by 1, 2, 3, 4 or 5 A1.
- In some embodiments, R6 is aryl optionally substituted by 1, 2, 3, 4 or 5 A1.
- In some embodiments, R6 is aryl substituted by 1, 2, 3, 4 or 5 A1.
- In some embodiments, R6 is heteroaryl optionally substituted by 1, 2, 3, 4 or 5 A1.
- In some embodiments, R6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2, 3, 4 or 5 A1.
- In some embodiments, R6 is phenyl, 2-naphthyl, 3-pyridyl, 4-pyridyl, pyrimidin-5-yl, pyrazin-2-yl, pyrazol-3-yl, pyrazol-4-yl, 3-quinolyl, 6-quinolyl, or indol-5-yl, each optionally substituted by 1, 2, 3, 4 or 5 A1.
- In some embodiments, R6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2, 3, 4 or 5 halo, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, SH, —S—(C1-4 alkyl), C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2 or 3 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, Rc′Rd′, SH, —S—(C1-4 alkyl), C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)Rc′Rd′, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl) and S(═O)2NRc′Rd′;
- Rc and Rd together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group; and
- Rc′ and Rd′ together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- In some embodiments, R6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2, 3, 4 or 5 halo, CN, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl; and
- Rc and Rd together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- In some embodiments, R6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2 or 3 halo, CN, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl; and
- Rc and Rd together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- In some embodiments, R6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2 or 3 halo, CN, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl; and
- Rc and Rd together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- In some embodiments, R6 is phenyl substituted by 1, 2 or 3 halo, CN, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl; and
- Rc and Rd together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- In some embodiments, R6 is naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2 or 3 halo, CN, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl; and
- Rc and Rd together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- Also provided herein are novel compounds of structural formula II:
- or a pharmaceutically acceptable salt, tautomer, atropisomer, or in vivo-hydrolysable precursor thereof, wherein:
- R1 is C1-6 alkyl or C1-6haloalkyl;
- R2 is H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2 or C1-6 alkyl;
- R5 is H, C1-4alkoxy, halo, C1-6alkyl or C1-6haloalkyl;
- R6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2 or 3 halo, CN, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl; and
- Rc and Rd together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- In some embodiments, when R2 and R5 are each H, then R6 is other than unsubstituted phenyl.
- In some embodiments, R1 is C1-6 alkyl.
- In some embodiments, R1 is n-propyl.
- In some embodiments, R2 is H, C(═O)—(C1-4 alkyl), C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl) or C1-6 alkyl.
- In some embodiments, R2 is H.
- In some embodiments, R5 is H, C1-4 alkoxy or halo.
- In some embodiments, R6 is phenyl substituted by 1, 2 or 3 halo, CN, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl; and
- Rc and Rd together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- In some embodiments, R6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each substituted by 1, 2 or 3 C1-4 alkoxy or C1-4 alkyl.
- In some embodiments, R6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each substituted by 2 C1-4 alkoxy or C1-4 alkyl.
- In some embodiments, R1 is n-propyl and R2 is H.
- The present invention further provides compositions comprising a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer, atropisomer, or in vivo-hydrolysable precursor thereof, and at least one pharmaceutically acceptable carrier, diluent or excipient.
- The present invention further provides methods of treating or preventing an anxiety disorder in a patient, comprising administering to the patient a therapeutically effective amount of a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer, atropisomer, or in vivo-hydrolysable precursor thereof.
- The present invention further provides methods of treating or preventing a cognitive disorder in a patient, comprising administering to the patient a therapeutically effective amount of a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer, atropisomer, or in vivo-hydrolysable precursor thereof.
- The present invention further provides methods of treating or preventing a mood disorder in a patient, comprising administering to the patient a therapeutically effective amount of a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer, atropisomer, or in vivo-hydrolysable precursor thereof.
- The present invention further provides a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer, atropisomer, or in vivo-hydrolysable precursor thereof, described herein for use as a medicament.
- The present invention further provides a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer, atropisomer, or in vivo-hydrolysable precursor thereof, described herein for the manufacture of a medicament.
- The present invention further provides methods of modulating activity of GABAA receptor comprising contacting the GABAA receptor with a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer, atropisomer, or in vivo-hydrolysable precursor thereof.
- The present invention further provides synthetic methods of making a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer, atropisomer, or in vivo-hydrolysable precursor thereof.
- Provided herein are novel compounds of structural formula J:
- or a pharmaceutically acceptable salt, tautomer, atropisomer, or in vivo-hydrolysable precursor thereof, wherein:
- R1 is C1-6 alkyl, C1-6haloalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2, 3, 4 or 5 R7;
- R2 is H, C(═O)Rb, C(═O)NRcRd, C(═O)ORa, S(═O)2Rb, C1-6 alkyl, C1-6 haloalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C1-6 alkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2, 3, 4 or 5 R8;
- R3, R4 and R5 are each, independently, H, halo, Si(C1-10 alkyl)3, CN, NO2, ORa, SRa, OC(═O)Ra, OC(═O)ORb, OC(═O)NRcRd, C(═O)Ra, C(═O)ORb, C(═O)NRcRd, NRcRd, NRcC(═O)Ra, NRcC(═O)ORb, NRcS(═O)2Rb, S(═O)Ra, S(═O)NRcRd, S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein the C1-6 alkyl, C1-6haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2 or 3 R9;
- R6 is aryl, cycloalkyl, heteroaryl or heterocycloalkyl, each optionally substituted by 1, 2, 3, 4 or 5 A1;
- R7, R5 and R9 are each, independently, halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, ORa, SRa′, C(═O)Rb′, C(═O)NRc′Rd′, C(═O)ORa′, OC(═O)Rb′, OC(═O)NRc′Rd′, NRc′Rd′, NRc′C(═O)Rb′, NRc′C(═O)ORa′, NRc′S(═O)2Rb′, S(═O)Rb′, S(═O)NRc′Rd′, S(═O)2Rb′, or S(═O)2NRc′Rd′;
- A1 is halo, CN, NO2, ORa, SRa, C(═O)Rb, C(═O)NRcRd, C(═O)ORa, OC(═O)Rb, OC(═O)NRcRd, NRcRd, NRcC(═O)Rd, NRcC(═O)ORa, NRcS(═O)Rb, NRcS(═O)2Rb, S(═O)Rb, S(═O)NRcRd, S(═O)2Rb, S(═O)2NRcRd, C1-4 alkoxy, C1-4haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, arylalkyl, cycloalkylalkyl, heteroarylalkyl, heterocycloalkylalkyl, aryl, cycloalkyl, heteroaryl or heterocycloalkyl, wherein each of the C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, arylalkyl, cycloalkylalkyl, heteroarylalkyl, heterocycloalkylalkyl, aryl, cycloalkyl, heteroaryl or heterocycloalkyl is optionally substituted by 1, 2, 3, 4 or 5 substituents independently selected from halo, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, ORa′, SRa′, C(═O)Rb′, C(═O)NRc′Rd′, C(═O)ORa′, OC(═O)Rb′, OC(═O)NRc′Rd′, NRc′Rd′, NRc′C(═O)Rb′, NRc′C(═O)ORa′, NRc′S(═O)Rb′, NRc′S(═O)2Rb′, S(═O)Rb′, S(═O)NRc′Rd′, S(═O)2Rb′, or S(═O)2NRc′Rd′;
- Ra and Ra′ are each, independently, H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein the C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C1-6 alkyl, C1-6haloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl or heterocycloalkyl;
- Rb and Rb′ are each, independently, H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein the C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C1-6alkyl, C1-6haloalkyl, C1-6haloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl or heterocycloalkyl;
- Rc and Rd are each, independently, H, C1-10 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein the C1-10 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C1-6alkyl, C1-6haloalkyl, C1-6haloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl or heterocycloalkyl;
- or Rc and Rd together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group; and
- Rc′ and Rd′ are each, independently, H, C1-10 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein the C1-10 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C1-6alkyl, C1-6haloalkyl, C1-6haloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl or heterocycloalkyl;
- or Rc′ and Rd′ together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- In some embodiments, when R2, R3, R4 and R5 are each H, then R6 is other than unsubstituted phenyl or unsubstituted cycloalkyl.
- In some embodiments, R1 is C1-6 alkyl, C1-6 haloalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2, 3, 4 or 5 R7, or any subgroup thereof. In some embodiments, R1 is C1-6 alkyl, C1-6haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2, 3, 4 or 5 R7. In some embodiments, R1 is C1-6 alkyl, C1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2, 3, 4 or 5 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, SRa′, C(═O)Rb′, C(═O)NRc′Rd′, C(═O)ORa′, OC(═O)Rb′, OC(═O)NRc′Rd′, NRc′C(═O)Rb′, NRc′C(═O)ORa′, NRc′S(═O)2Rb′, S(═O)Rb′, S(═O)NRc′Rd′, S(═O)2Rb′, or S(═O)2NRc′Rd′. In some embodiments, R1 is C1-6 alkyl, C1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2, 3, 4 or 5 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, SH, —S—(C1-4 alkyl), C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl) and S(═O)2NH(arylalkyl). In some embodiments, R1 is C1-6 alkyl, C1-6haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2 or 3 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, SH, —S—(C1-4 alkyl), C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl) and S(═O)2NH(arylalkyl). In some embodiments, R1 is C1-6 alkyl, C1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, each optionally substituted by 1, 2 or 3 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)—(C1-4 alkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl) and S(═O)2NH(arylalkyl). In some embodiments, R1 is C1-6 alkyl, C1-6haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl. In some embodiments, R1 is C1-6 alkyl or C1-6 haloalkyl. In some embodiments, R1 is C1-6 alkyl. In some embodiments, R1 is n-propyl.
- In some embodiments, R2 is H, C(═O)Rb, C(═O)NRcRd, C(═O)ORa, S(═O)2Rb, C1-6 alkyl, C1-6 haloalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, or any subgroup thereof, wherein each of the C1-6 alkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2, 3, 4 or 5 R8, or any subgroup thereof. In some embodiments, R2 is H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C1-6 alkyl, C1-6haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C1-6 alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2, 3, 4 or 5 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, SH, —S—(C1-4 alkyl), C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl) and S(═O)2NH(arylalkyl). In some embodiments, R2 is H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C1-6 alkyl, C1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C1-6 alkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2 or 3 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, SH, —S—(C1-4 alkyl), C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl) and S(═O)2NH(arylalkyl). In some embodiments, R2 is H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C1-6 alkyl, C1-6 haloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl. In some embodiments, R2 is H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2 or C1-6 alkyl. In some embodiments, R2 is H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, or C1-3 alkyl. In some embodiments, R2 is H.
- In some embodiments, R3, R4 and R5 are each, independently, H, halo, Si(C1-10 alkyl)3, CN, NO2, ORa, SRa, OC(═O)Ra, OC(═O)ORb, OC(═O)NRcRd, C(═O)R3, C(═O)ORb, C(═O)NRcRd, NRcRd, NRcC(═O)Ra, NRcC(═O)ORb, NRcS(═O)2Rb, S(═O)Ra, S(═O)NRcRd, S(═O)2Ra, S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, or any subgroup thereof, wherein the C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2 or 3 R9, or any subgroup thereof. In some embodiments, R3, R4 and R5 are each, independently, H, halo, CN, NO2, OR3, SR3, OC(═O)Ra, OC(═O)ORb, OC(═O)NRcRd, C(═O)Ra, C(═O)ORb, C(═O)NRcRd, NRcRd, NRcC(═O)Ra, NRcC(═O)ORb, NRcS(═O)2Rb, S(═O)Ra, S(═O)NRcRd, S(═O)2Ra, S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2 or 3 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, SH, —S—(C1-4 alkyl), C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl) and S(═O)2NH(arylalkyl). In some embodiments, R3, R4 and R5 are each, independently, H, halo, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, SH, —S—(C1-4 alkyl), C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-14 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), C1-6 alkyl, C1-6haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2 or 3 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, SH, —S—(C1-4 alkyl), C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl) and S(═O)2NH(arylalkyl). In some embodiments, R3, R4 and R5 are each, independently, H, halo, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2 or 3 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl) and S(═O)2NH(arylalkyl). In some embodiments, R3, R4 and R5 are each, independently, H, C1-4 alkoxy, halo, C1-6 alkyl or C1-6 haloalkyl. In some embodiments, R3, R4 and R5 are each, independently, H, C1-4 alkoxy, halo or C1-3 haloalkyl. In some embodiments, R3, R4 and R5 are each, independently, H, C1-4 alkoxy, or halo.
- In some embodiments, R6 is aryl, cycloalkyl, heteroaryl or heterocycloalkyl, or any subgroup thereof, each optionally substituted by 1, 2, 3, 4 or 5 A1, or any subgroup thereof. In some embodiments, R6 is aryl or heteroaryl, each optionally substituted by 1, 2, 3, 4 or 5 A1. In some embodiments, R6 is aryl optionally substituted by 1, 2, 3, 4 or 5 A1. In some embodiments, R6 is aryl substituted by 1, 2, 3, 4 or 5 A1. In some embodiments, R6 is heteroaryl optionally substituted by 1, 2, 3, 4 or 5 A1. In some embodiments, R6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2, 3, 4 or 5 A1. In some embodiments, R6 is phenyl, 2-naphthyl, 3-pyridyl, 4-pyridyl, pyrimidin-5-yl, pyrazin-2-yl, pyrazol-3-yl, pyrazol-4-yl, 3-quinolyl, 6-quinolyl, or indol-5-yl, each optionally substituted by 1, 2, 3, 4 or 5 A1. In some embodiments, R6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2, 3, 4 or 5 halo, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, SH, —S—(C1-4 alkyl), C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2 or 3 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, Rc′Rd′, SH, —S—(C1-4 alkyl), C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)Rc′Rd′, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl) and S(═O)2NRc′Rd′. In some embodiments, R6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2, 3, 4 or 5 halo, CN, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl. In some embodiments, R6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2 or 3 halo, CN, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl. In some embodiments, R6 is phenyl substituted by 1, 2 or 3 halo, CN, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl. In some embodiments, R6 is naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2 or 3 halo, CN, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl.
- In some embodiments, R7, R8 and R9 are each, independently, halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, ORa′, SRa′, C(═O)Rb′, C(═O)NRc′Rd′, C(═O)ORa′, OC(═O)Rb′, OC(═O)NRc′Rd′, NRc′Rd′, NRc′C(═O)Rb′, NRc′C(═O)ORa′, NRc′S(═O)2Rb′, S(═O)Rb′, S(═O)NRc′Rd′, S(═O)2Rb′, or S(═O)2NRc′Rd′, or any subgroup thereof.
- In some embodiments, A1 is halo, CN, NO2, ORa, SRa, C(═O)Rb, C(═O)NRcRd, C(═O)ORa, OC(═O)Rb, OC(═O)NRcRd, NRcRd, NRcC(═O)Rd, NRcC(═O)ORa, NRcS(═O)Rb, NRcS(═O)2Rb, S(═O)Rb, S(═O)NRcRd, S(═O)2Rb, S(═O)2NRcRd, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, arylalkyl, cycloalkylalkyl, heteroarylalkyl, heterocycloalkylalkyl, aryl, cycloalkyl, heteroaryl or heterocycloalkyl, or any subgroup thereof, wherein each of the C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, arylalkyl, cycloalkylalkyl, heteroarylalkyl, heterocycloalkylalkyl, aryl, cycloalkyl, heteroaryl or heterocycloalkyl is optionally substituted by 1, 2, 3, 4 or 5 substituents independently selected from halo, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, ORa′, SRa′, C(═O)Rb′, C(═O)NRc′Rd′, C(═O)ORa′, OC(═O)Rb′, OC(═O)NRc′Rd′, NRc′Rd′, NRc′C(═O)Rb′, NRc′C(═O)ORa′, NRc′S(═O)Rb′, NRc′S(═O)2Rb′, S(═O)Rb′, S(═O)NRc′Rd′, S(═O)2Rb′, or S(═O)2NRc′Rd′, or any subgroup thereof.
- In some embodiments, Ra and Ra′ are each, independently, H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, or any subgroup thereof, wherein the C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C1-6 alkyl, C1-6 haloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl or heterocycloalkyl, or any subgroup thereof.
- In some embodiments, Rb and Rb′ are each, independently, H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, or any subgroup thereof, wherein the C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C1-6 alkyl, C1-6 haloalkyl, C1-6 haloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl or heterocycloalkyl, or any subgroup thereof.
- In some embodiments, Rc and Rd are each, independently, H, C1-10 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, or any subgroup thereof, wherein the C1-10 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C1-6 alkyl, C1-6 halo alkyl, C1-6 halo alkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl or heterocycloalkyl, or any subgroup thereof.
- In some embodiments, Rc and Rd together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group, or any subgroup thereof.
- In some embodiments, Rc′ and Rd′ are each, independently, H, C1-10 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, or any subgroup thereof, wherein the C1-10 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with OH, amino, halo, C1-6 alkyl, C1-6 halo alkyl, C1-6 halo alkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl or heterocycloalkyl, or any subgroup thereof.
- In some embodiments, Rc′ and Rd′ together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group, or any subgroup thereof.
- In some embodiments, when R2, R3, R4 and R5 are each H, then R6 is other than unsubstituted phenyl or unsubstituted cycloalkyl.
- In some embodiments, R6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2, 3, 4 or 5 halo, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, SH, —S—(C1-4 alkyl), C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein each of the C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted by 1, 2 or 3 substituents independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO2, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, Rc′Rd′, SH, —S—(C1-4 alkyl), C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)Rc′Rd′, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl) and S(═O)2NRc′Rd′; Rc and Rd together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group; and
- Rc′ and Rd′ together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- In some embodiments, R6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2, 3, 4 or 5 halo, CN, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl; and Rc and Rd together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- In some embodiments, R6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2 or 3 halo, CN, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl; and
- Rc and Rd together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- In some embodiments, R6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2 or 3 halo, CN, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl; and Rc and Rd together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- In some embodiments, R6 is phenyl substituted by 1, 2 or 3 halo, CN, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl; and Rc and Rd together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- In some embodiments, R6 is naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2 or 3 halo, CN, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl; and Rc and Rd together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- Also provided herein are novel compounds of structural formula II:
- or a pharmaceutically acceptable salt, tautomer, or in vivo-hydrolysable precursor thereof, wherein:
- R1 is C1-6 alkyl or C1-6haloalkyl;
- R2 is H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2 or C1-6 alkyl;
- R5 is H, C1-4 alkoxy, halo, C1-6 alkyl or C1-6 haloalkyl;
- R6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each optionally substituted by 1, 2 or 3 halo, CN, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl; and
- Rc and Rd together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- In some embodiments, when R2 and R5 are each H, then R6 is other than unsubstituted phenyl.
- In some embodiments, R1 is C1-6 alkyl or C1-6haloalkyl, or any subgroup thereof.
- In some embodiments, R1 is C1-6 alkyl. In some embodiments, R1 is n-propyl.
- In some embodiments, R2 is H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, or C1-6 alkyl, or any subgroup thereof. In some embodiments, R2 is H, C(═O)—(C1-4 alkyl), C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl) or C1-6 alkyl. In some embodiments, R2 is H.
- In some embodiments, R5 is H, C1-4 alkoxy, halo, C1-6 alkyl or C1-6 haloalkyl, or any subgroup thereof. In some embodiments, R5 is H, C1-4 alkoxy or halo.
- In some embodiments, R6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, or any subgroup thereof, each optionally substituted by 1, 2 or 3 halo, CN, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), OC(═O)H, OC(═O)—(C1-4 alkyl), OC(═O)-(arylalkyl), OC(═O)NH2, OC(═O)NH(C1-4 alkyl), OC(═O)NH-(arylalkyl), OC(═O)N(C1-4 alkyl)2, NHC(═O)—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHC(═O)O—(C1-4 alkyl), NHC(═O)O-(arylalkyl), NHS(═O)2—(C1-4 alkyl), NHS(═O)2-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, or any subgroup thereof. In some embodiments, R6 is phenyl substituted by 1, 2 or 3 halo, CN, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl. In some embodiments, R6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each substituted by 1, 2 or 3 C1-4 alkoxy or C1-4 alkyl. In some embodiments, R6 is phenyl, naphthyl, pyridyl, pyrimidinyl, pyrazinyl, pyrazolyl, quinolyl or indolyl, each substituted by 2 C1-4 alkoxy or C1-4 alkyl.
- In some embodiments, Rc and Rd together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group, or any subgroup thereof.
- In some embodiments, R6 is phenyl substituted by 1, 2 or 3 halo, CN, OH, C1-4 alkoxy, C1-4 haloalkoxy, amino, C1-4 alkylamino, C2-8 dialkylamino, NRcRd, C(═O)H, C(═O)—(C1-4 alkyl), C(═O)-(arylalkyl), C(═O)NH2, C(═O)NH(C1-4 alkyl), C(═O)N(C1-4 alkyl)2, C(═O)NRcRd, C(═O)OH, C(═O)O—(C1-4 alkyl), C(═O)O-(arylalkyl), S(═O)2—(C1-4 alkyl), S(═O)2-(arylalkyl), S(═O)2NH(C1-4 alkyl), S(═O)2NH(arylalkyl), S(═O)2NRcRd, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl; and RcC and Rd together with the N atom to which they are attached form a 4-, 5-, 6- or 7-membered heterocycloalkyl group.
- In some embodiments, R1 is n-propyl and R2 is H.
- In some embodiments, the present invention provides the following compounds:
- 4-amino-7-fluoro-8-phenyl-N-propyl-cinnoline-3-carboxamide;
- 4-amino-7-chloro-8-phenyl-N-propyl-cinnoline-3-carboxamide;
- 4-amino-7-methoxy-8-phenyl-N-propyl-cinnoline-3-carboxamide;
- 4-amino-7-chloro-8-(2,5-dimethylphenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(5-methoxy-3-pyridyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2-methoxypyrimidin-5-yl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(3-fluoro-2-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-[4-methoxy-2-(trifluoromethyl)phenyl]-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2,5-difluoro-4-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(5-fluoro-6-methoxy-3-pyridyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(5-chloro-6-methoxy-3-pyridyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(3,5-dichlorophenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(3,5-difluorophenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(5-azetidin-1-ylcarbonyl-3-pyridyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2,3-dimethoxyphenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(4-dimethylaminophenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(3-methoxyphenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(3,4-dimethoxyphenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2,5-dimethoxyphenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(3,5-dimethoxyphenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2,4-dimethoxyphenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2-fluoro-3-pyridyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2,3-difluorophenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2,3-dichlorophenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-N-propyl-8-(6-quinolyl)cinnoline-3-carboxamide;
- 4-amino-N-propyl-8-(3-quinolyl)cinnoline-3-carboxamide;
- 4-amino-8-(2-naphthyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(1H-indol-5-yl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(4-methoxy-3-pyridyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(3-dimethylaminophenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-N-propyl-8-(3,4,5-trimethoxyphenyl)-cinnoline-3-carboxamide;
- 4-amino-8-(2,4-difluorophenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(3,4-difluorophenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-N-propyl-8-(2,3,4-trimethoxyphenyl)-cinnoline-3-carboxamide;
- 4-amino-8-(2-methoxy-3-pyridyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2,6-dimethoxy-3-pyridyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2,5-dimethylphenyl)-N-propyl-cinnoline-3-carboxamide;
- 3-[4-amino-3-(propylcarbamoyl)cinnolin-8-yl]benzoic acid;
- 4-amino-8-(3-azetidin-1-ylcarbonylphenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-N-propyl-8-pyrazin-2-yl-cinnoline-3-carboxamide;
- 4-amino-N-propyl-8-(3-pyridyl)cinnoline-3-carboxamide;
- 4-amino-8-(3-methylsulfonylphenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(3-cyanophenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-N-propyl-8-(2-pyridyl)cinnoline-3-carboxamide;
- 4-amino-8-[3,5-bis(trifluoromethyl)phenyl]-N-propyl-cinnoline-3-carboxamide;
- 4-amino-N-propyl-8-(1H-pyrazol-4-yl)cinnoline-3-carboxamide;
- 4-amino-8-[2-chloro-5-(trifluoromethyl)phenyl]-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2-methoxy-5-methyl-phenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-N-propyl-8-[2-(trifluoromethyl)phenyl]-cinnoline-3-carboxamide;
- 4-amino-8-(5-chloro-2-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-N-propyl-8-(4-pyridyl)cinnoline-3-carboxamide;
- 4-amino-8-(2,5-dichlorophenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2,5-difluorophenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(1-methyl-1H-pyrazol-4-yl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2-fluoro-3-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2,5-dimethyl-2H-pyrazol-3-yl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-[2-fluoro-5-(trifluoromethyl)phenyl]-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2-fluoro-5-methyl-phenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2-fluoro-4-methyl-phenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(5-fluoro-2-methyl-phenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(4-fluoro-2-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(3-fluoro-4-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2-fluoro-6-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2-fluoro-5-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(5-fluoro-2-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(4-methoxyphenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(4-fluorophenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-N-propyl-8-[4-(trifluoromethoxy)phenyl]-cinnoline-3-carboxamide;
- 4-amino-N-propyl-8-[3-(trifluoromethoxy)phenyl]-cinnoline-3-carboxamide;
- 4-amino-8-(6-methoxy-3-pyridyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(4-methoxy-3,5-dimethyl-phenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(4-methoxy-3-methyl-phenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2-fluoro-4-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(6-methylpyridin-3-yl)-N-propylcinnoline-3-carboxamide;
- 4-amino-8-(4-methylpyridin-3-yl)-N-propylcinnoline-3-carboxamide;
- 4-amino-8-(5-methoxy-2-methylphenyl)-N-propylcinnoline-3-carboxamide; and
- 4-Amino-8-(2,4-dimethoxyphenyl)-7-fluoro-N-propylcinnoline-3-carboxamide;
or a pharmaceutically acceptable salt thereof, or any subgroup thereof. - In some embodiments, the present invention provides the following compounds: 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-N-propyl-cinnoline-3-carboxamide; 4-amino-8-(2,5-dimethoxyphenyl)-N-propyl-cinnoline-3-carboxamide; 4-amino-8-(4-methoxy-3-pyridyl)-N-propyl-cinnoline-3-carboxamide; and 4-amino-8-(2-methoxy-5-methyl-phenyl)-N-propyl-cinnoline-3-carboxamide; or a pharmaceutically acceptable salt thereof, or any subgroup thereof.
- In some embodiments, the present invention provides 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-N-propyl-cinnoline-3-carboxamide, or a pharmaceutically acceptable salt thereof, or any subgroup thereof.
- In some embodiments, the present invention provides the following compounds:
- 4-amino-8-(3,5-dimethyl-1H-pyrazol-4-yl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(3,5-difluoro-2-methoxyphenyl)-N-propylcinnoline-3-carboxamide;
- 4-amino-8-[5-(azetidin-1-ylcarbonyl)-2-methoxyphenyl]-N-propylcinnoline-3-carboxamide;
- 4-amino-8-(6-methoxy-2-methylpyridin-3-yl)-N-propylcinnoline-3-carboxamide;
- 4-amino-N-propyl-8-(1,3,5-trimethyl-1H-pyrazol-4-yl)cinnoline-3-carboxamide;
- 4-amino-N-propyl-8-(2,4,6-trifluoro-3-methoxyphenyl)cinnoline-3-carboxamide;
- 4-amino-8-(2-fluoro-5-methylpyridin-3-yl)-N-propylcinnoline-3-carboxamide;
- 4-amino-8-(1,3-dimethyl-1H-pyrazol-5-yl)-N-propylcinnoline-3-carboxamide;
- 4-amino-8-(2-fluoro-4,6-dimethoxyphenyl)-N-propylcinnoline-3-carboxamide;
- 4-amino-8-(3,5-difluoro-2-methoxyphenyl)-N-propylcinnoline-3-carboxamide;
- 4-amino-8-(2,3-dihydro-1,4-benzodioxin-6-yl)-N-propylcinnoline-3-carboxamide;
- 4-amino-8-(4,5-difluoro-2-methoxyphenyl)-N-propylcinnoline-3-carboxamide;
- 4-amino-8-(1,3-benzodioxol-4-yl)-N-propylcinnoline-3-carboxamide;
- 4-amino-8-[5-(azetidin-1-ylcarbonyl)-2-methylphenyl]-N-propylcinnoline-3-carboxamide;
- 4-amino-8-(6-methoxy-4-methylpyridin-3-yl)-N-propylcinnoline-3-carboxamide;
- 4-amino-7-chloro-8-(4-methoxypyridin-3-yl)-N-propylcinnoline-3-carboxamide;
- 4-amino-7-fluoro-8-(4-methoxypyridin-3-yl)-N-propylcinnoline-3-carboxamide;
- 4-amino-7-chloro-8-(2-methoxy-5-methylphenyl)-N-propylcinnoline-3-carboxamide;
- 4-amino-7-fluoro-8-(2-methoxy-5-methylphenyl)-N-propylcinnoline-3-carboxamide;
- 4-amino-8-(2,5-dimethoxyphenyl)-7-chloro-N-propylcinnoline-3-carboxamide;
- 4-amino-8-(2,5-dimethoxyphenyl)-7-fluoro-N-propylcinnoline-3-carboxamide;
- 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-7-chloro-N-propylcinnoline-3-carboxamide;
- 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-7-fluoro-N-propylcinnoline-3-carboxamide;
- 4-amino-N-butyl-8-(4-methoxypyridin-3-yl)cinnoline-3-carboxamide;
- 4-amino-N-ethyl-8-(4-methoxypyridin-3-yl)cinnoline-3-carboxamide;
- 4-amino-8-(4-methoxypyridin-3-yl)-N-methylcinnoline-3-carboxamide;
- 4-amino-N-butyl-8-(2-methoxy-5-methylphenyl)cinnoline-3-carboxamide;
- 4-amino-N-ethyl-8-(2-methoxy-5-methylphenyl)cinnoline-3-carboxamide;
- 4-amino-8-(2-methoxy-5-methylphenyl)-N-methylcinnoline-3-carboxamide;
- 4-amino-N-butyl-8-(2,5-dimethoxyphenyl)cinnoline-3-carboxamide;
- 4-amino-8-(2,5-dimethoxyphenyl)-N-ethylcinnoline-3-carboxamide;
- 4-amino-8-(2,5-dimethoxyphenyl)-N-methylcinnoline-3-carboxamide;
- 4-amino-N-butyl-8-(2,4-dimethoxypyrimidin-5-yl)cinnoline-3-carboxamide;
- 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-N-ethylcinnoline-3-carboxamide;
- 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-N-methylcinnoline-3-carboxamide;
- 4-amino-8-(4-methoxypyridin-3-yl)-N-(tetrahydrofuran-2-ylmethyl)cinnoline-3-carboxamide;
- 4-amino-N-isobutyl-8-(4-methoxypyridin-3-yl)cinnoline-3-carboxamide;
- 4-amino-N-(2-hydroxypropyl)-8-(4-methoxypyridin-3-yl)cinnoline-3-carboxamide;
- 4-amino-8-(2-methoxy-5-methylphenyl)-N-(tetrahydrofuran-2-ylmethyl)cinnoline-3-carboxamide;
- 4-amino-N-isobutyl-8-(2-methoxy-5-methylphenyl)cinnoline-3-carboxamide;
- 4-amino-N-(2-hydroxypropyl)-8-(2-methoxy-5-methylphenyl)cinnoline-3-carboxamide;
- 4-amino-8-(2,5-dimethoxyphenyl)-N-(tetrahydrofuran-2-ylmethyl)cinnoline-3-carboxamide;
- 4-amino-8-(2,5-dimethoxyphenyl)-N-isobutylcinnoline-3-carboxamide;
- 4-amino-8-(2,5-dimethoxyphenyl)-N-(2-hydroxypropyl)cinnoline-3-carboxamide;
- 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-N-(tetrahydrofuran-2-ylmethyl)cinnoline-3-carboxamide;
- 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-N-isobutylcinnoline-3-carboxamide; and
- 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-N-(2-hydroxypropyl)cinnoline-3-carboxamide;
or a pharmaceutically acceptable salt thereof, or any subgroup thereof. - In some embodiments, the present invention provides the following compounds:
- 4-amino-8-(2,3-dimethylphenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(3,5-dimethylphenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(2,4-dimethylphenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(3,4-dimethylphenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-N-(cyclopropylmethyl)-8-phenyl-cinnoline-3-carboxamide;
- 4-amino-N-propyl-8-(p-tolyl)cinnoline-3-carboxamide;
- 4-amino-8-(3-chlorophenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(4-chlorophenyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(o-tolyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-8-(m-tolyl)-N-propyl-cinnoline-3-carboxamide;
- 4-amino-N-propyl-8-(3-thienyl)cinnoline-3-carboxamide; and
- 4-amino-8-(2,6-dimethylphenyl)-N-propyl-cinnoline-3-carboxamide;
or a pharmaceutically acceptable salt thereof, or any subgroup thereof. - Compounds of the present invention also include pharmaceutically acceptable salts, tautomers and in vivo-hydrolysable precursors of the compounds of any of the formulas described herein. Compounds of the invention further include hydrates and solvates.
- Compounds of the invention can be used as medicaments. In some embodiments, the present invention provides compounds of any of the formulas described herein, or pharmaceutically acceptable salts, tautomers or in vivo-hydrolysable precursors thereof, for use as medicaments. In some embodiments, the present invention provides compounds described herein for use as medicaments for treating or preventing an anxiety disorder, cognitive disorder, or mood disorder.
- In some embodiments, the present invention provides compounds of any of the formulas described herein, or pharmaceutically acceptable salts, tautomers or in vivo-hydrolysable precursors thereof, in the manufacture of a medicament for the treatment or prophylaxis of an anxiety disorder, cognitive disorder, or mood disorder.
- In some embodiments, the present invention provides a method for the treatment or prophylaxis of an anxiety disorder comprising administering to a mammal (including a human) a therapeutically effective amount of a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer or in vivo-hydrolysable precursor thereof. As used herein, the phrase “anxiety disorder” includes, but is not limited to, one or more of the following: panic disorder, panic disorder without agoraphobia, panic disorder with agoraphobia, agoraphobia without history of panic disorder, specific phobia, social phobia, social anxiety disorder, obsessive-compulsive disorder, posttraumatic stress disorder, acute stress disorder, generalized anxiety disorder, generalized anxiety disorder due to a general medical condition, and the like.
- In some embodiments, the present invention provides a method for the treatment or prophylaxis of a cognitive disorder comprising administering to a mammal (including a human) a therapeutically effective amount of a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer or in vivo-hydrolysable precursor thereof. As used herein, the phrase “cognitive disorder” includes, but is not limited to, one or more of the following: Alzheimer's disease, dementia, dementia due to Alzheimer's disease, dementia due to Parkinson's disease, and the like.
- In some embodiments, the present invention provides a method for the treatment or prophylaxis of a mood disorder comprising administering to a mammal (including a human) a therapeutically effective amount of a compound of any of the formulas described herein, or a pharmaceutically acceptable salt, tautomer or in vivo-hydrolysable precursor thereof. As used herein, the phrase “mood disorder” is a depressive disorder including, but is not limited to, one or more of the following: major depressive disorder, dysthymic disorder, bipolar depression and/or bipolar mania, bipolar I with or without manic, depressive or mixed episodes, bipolar II, cyclothymic disorder, mood disorder due to a general medical condition, manic episodes associated with bipolar disorder, mixed episodes associated with bipolar disorder, and the like.
- Anxiety disorders, cognitive disorders, and mood disorders are defined, for example, in the American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision, Washington, D.C., American Psychiatric Association, 2000.
- In some embodiments, the present invention provides a method of treating or preventing an anxiety disorder, cognitive disorder, or mood disorder (such as any of those described herein), by administering to a mammal (including a human) a compound of any of the formulas described herein or a pharmaceutically acceptable salt, tautomer or in vivo-hydrolysable precursors and a cognitive and/or memory enhancing agent.
- In some embodiments, the present invention provides a method of treating or preventing an anxiety disorder, cognitive disorder, or mood disorder (such as any of those described herein), by administering to a mammal (including a human) a compound of any of the formulas described herein or a pharmaceutically acceptable salt, tautomer or in vivo-hydrolysable precursors thereof wherein constituent members are provided herein, and a choline esterase inhibitor or anti-inflammatory agent.
- In some embodiments, the present invention provides a method of treating or preventing an anxiety disorder, cognitive disorder, or mood disorder (such as any of those described herein), by administering to a mammal (including human) a compound of the present invention, and an atypical antipsychotic agent. Atypical antipsychotic agents include, but not limited to, Olanzapine (marketed as Zyprexa), Aripiprazole (marketed as Abilify), Risperidone (marketed as Risperdal), Quetiapine (marketed as Seroquel), Clozapine (marketed as Clozaril), Ziprasidone (marketed as Geodon) and Olanzapine/Fluoxetine (marketed as Symbyax).
- In some embodiments, the mammal or human being treated with a compound of the present invention, has been diagnosed with a particular disease or disorder, such as those described herein. In these cases, the mammal or human being treated is in need of such treatment. Diagnosis, however, need not be previously performed.
- The present invention also includes pharmaceutical compositions which contain, as the active ingredient, one or more of the compounds of the invention herein together with at least one pharmaceutically acceptable carrier, diluent or excipient.
- When used for pharmaceutical compositions, medicaments, manufacture of a medicament, or treating or preventing an anxiety disorder, cognitive disorder, or mood disorder (such as any of those described herein), compounds of the present invention include the compounds of any of the formulas described herein, and pharmaceutically acceptable salts, tautomers and in vivo-hydrolysable precursors thereof. Compounds of the present invention further include hydrates and solvates.
- The definitions set forth in this application are intended to clarify terms used throughout this application. The term “herein” means the entire application.
- As used in this application, the term “optionally substituted,” as used herein, means that substitution is optional and therefore it is possible for the designated atom or moiety to be unsubstituted. In the event a substitution is desired then such substitution means that any number of hydrogens on the designated atom or moiety is replaced with a selection from the indicated group, provided that the normal valency of the designated atom or moiety is not exceeded, and that the substitution results in a stable compound. For example, if a methyl group (i.e., CH3) is optionally substituted, then 3 hydrogens on the carbon atom can be replaced. Examples of suitable substituents include, but are not limited to: halogen, CN, NH2, OH, SO, SO2, COOH, OC1-6alkyl, CH2OH, SO2H, C1-6alkyl, OC1-6alkyl, C(═O)C1-6alkyl, C(═O)OC1-6alkyl, C(═O)NH2, C(═O)NHC1-6alkyl, C(═O)N(C1-6alkyl)2, SO2C1-6alkyl, SO2NHC1-6alkyl, SO2N(C1-6alkyl)2, NH(C1-6alkyl), N(C1-6alkyl)2, NHC(═O)C1-6alkyl, NC(═O)(C1-6alkyl)2, C5-6aryl, OC5-6aryl, C(═O)C5-6aryl, C(═O)OC5-6aryl, C(═O)NHC5-6aryl, C(═O)N(C5-6aryl)2, SO2C5-6aryl, SO2NHC5-6aryl, SO2N(C5-6aryl)2, NH(C5-6aryl), N(C5-6aryl)2, NC(═O)C5-6aryl, NC(═O)(C5-6aryl)2, C5-6heterocyclyl, OC5-6heterocyclyl, C(═O)C5-6heterocyclyl, C(═O)OC5-6heterocyclyl, C(═O)NHC5-6heterocyclyl, C(═O)N(C5-6heterocyclyl)2, SO2C5-6heterocyclyl, SO2NHC5-6heterocyclyl, SO2N(C5-6heterocyclyl)2, NH(C5-6heterocyclyl), N(C5-6heterocyclyl)2, NC(═O)C5-6heterocyclyl, NC(═O)(C5-6heterocyclyl)2.
- A variety of compounds in the present invention may exist in particular stereoisomeric forms. The present invention takes into account all such compounds, including cis- and trans isomers, R- and S-enantiomers, diastereomers, (D)-isomers, (L)-isomers, the racemic mixtures thereof, and other mixtures thereof, as being covered within the scope of this invention. Additional asymmetric carbon atoms may be present in a substituent such as an alkyl group. All such isomers, as well as mixtures thereof, are intended to be included in this invention. The compounds herein described may have asymmetric centers. Compounds of the present invention containing an asymmetrically substituted atom may be isolated in optically active or racemic forms. It is well known in the art how to prepare optically active forms, such as by resolution of racemic forms or by synthesis from optically active starting materials. When required, separation of the racemic material can be achieved by methods known in the art. Many stereoisomers of olefins, C═N double bonds, and the like can also be present in the compounds described herein, and all such stable isomers are contemplated in the present invention. Cis and trans isomers of the compounds of the present invention are described and may be isolated as a mixture of isomers or as separated isomeric forms. All chiral, diastereomeric, racemic forms and all stereoisomeric forms of a structure are intended, unless the specific stereochemistry or isomeric form is specifically indicated.
- The compounds of the invention may form isolable atropisomers in certain solvents (e.g. supercritical CO2 containing 25-35% methanol) at room temperature. The atropisomers of the compounds may be isolated using chiral LC. All atropisomers of a structure are intended, unless the specific atropisomer is specifically indicated.
- When a bond to a substituent is shown to cross a bond connecting two atoms in a ring, then such substituent may be bonded to any atom on the ring. When a substituent is listed without indicating the atom via which such substituent is bonded to the rest of the compound of a given formula, then such substituent may be bonded via any atom in such substituent. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.
- The term “Cm-n” or “Cm-n group” used alone or as a prefix, refers to any group having m to n carbon atoms.
- The term “alkyl” used alone or as a suffix or prefix, refers to a saturated monovalent straight or branched chain hydrocarbon radical comprising 1 to about 12 carbon atoms. Illustrative examples of alkyls include, but are not limited to, C1-6alkyl groups, such as methyl, ethyl, propyl, isopropyl, 2-methyl-1-propyl, 2-methyl-2-propyl, 2-methyl-1-butyl, 3-methyl-1-butyl, 2-methyl-3-butyl, 2,2-dimethyl-1-propyl, 2-methyl-1-pentyl, 3-methyl-1-pentyl, 4-methyl-1-pentyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2,2-dimethyl-1-butyl, 3,3-dimethyl-1-butyl, 2-ethyl-1-butyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, and hexyl, and longer alkyl groups, such as heptyl, and octyl.
- The term “alkylene” used alone or as suffix or prefix, refers to divalent straight or branched chain hydrocarbon radicals comprising 1 to about 12 carbon atoms, which serves to links two structures together.
- As used herein, “alkenyl” refers to an alkyl group having one or more double carbon-carbon bonds. Example alkenyl groups include ethenyl, propenyl, cyclohexenyl, and the like. The term “alkenylenyl” refers to a divalent linking alkenyl group.
- As used herein, “alkynyl” refers to an alkyl group having one or more triple carbon-carbon bonds. Example alkynyl groups include ethynyl, propynyl, and the like. The term “alkynylenyl” refers to a divalent linking alkynyl group.
- As used herein, “aromatic” refers to hydrocarbyl groups having one or more polyunsaturated carbon rings having aromatic characters, (e.g., 4n+2 delocalized electrons) and comprising up to about 14 carbon atoms.
- As used herein, the term “aryl” refers to an aromatic ring structure made up of from 5 to 14 carbon atoms. Ring structures containing 5, 6, 7 and 8 carbon atoms would be single-ring aromatic groups, for example, phenyl. Ring structures containing 8, 9, 10, 11, 12, 13, or 14 would be a polycyclic moiety in which at least one carbon is common to any two adjoining rings therein (for example, the rings are “fused rings”), for example naphthyl. The aromatic ring can be substituted at one or more ring positions with such substituents as described above. The term “aryl” also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings (the rings are “fused rings”) wherein at least one of the rings is aromatic, for example, the other cyclic rings can be cycloalkyls, cycloalkenyls or cycloalkynyls. The terms ortho, meta and para apply to 1,2-, 1,3- and 1,4-disubstituted benzenes, respectively. For example, the names 1,2-dimethylbenzene and ortho-dimethylbenzene are synonymous.
- The term “cycloalkyl,” used alone or as suffix or prefix, refers to a saturated monovalent ring-containing hydrocarbon radical comprising at least 3 up to about 12 carbon atoms. Examples of cycloalkyls include, but are not limited to, C3-7cycloalkyl groups, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl, and saturated cyclic and bicyclic terpenes. A cycloalkyl can be unsubstituted or substituted by one or two suitable substituents. Preferably, the cycloalkyl is a monocyclic ring or bicyclic ring.
- As used herein, “cycloalkenyl” refers to ring-containing hydrocarbyl groups having at least one carbon-carbon double bond in the ring, and having from 3 to 12 carbons atoms.
- As used herein, “halo” or “halogen” refers to fluoro, chloro, bromo, and iodo.
- “Counterion” is used to represent a small, negatively or positively charged species such as chloride (Cl−), bromide (Br−), hydroxide (OH−), acetate (CH3COO−), sulfate (SO4 2−), tosylate (CH3-phenyl-SO3 −), benezensulfonate (phenyl-SO3—), sodium ion (Na+), potassium (R+), ammonium (NH4 +), and the like.
- The term “heterocycle” used alone or as a suffix or prefix, refers to a ring-containing structure or molecule having one or more multivalent heteroatoms, independently selected from N, O, P and S, as a part of the ring structure and including at least 3 and up to about 20 atoms in the ring(s). Heterocycle may be saturated or unsaturated, containing one or more double bonds, and heterocycle may contain more than one ring. When a heterocycle contains more than one ring, the rings may be fused or unfused. Fused rings generally refer to at least two rings share two atoms therebetween. Heterocycle may have aromatic character or may not have aromatic character.
- The term “heteroaromatic” used alone or as a suffix or prefix, refers to a ring-containing structure or molecule having one or more multivalent heteroatoms, independently selected from N, O, P and S, as a part of the ring structure and including at least 3 and up to about 20 atoms in the ring(s), wherein the ring-containing structure or molecule has an aromatic character (e.g., 4n+2 delocalized electrons).
- The term “heterocyclic group,” “heterocyclic moiety,” “heterocyclic,” or “heterocyclo” used alone or as a suffix or prefix, refers to a radical derived from a heterocycle by removing one or more hydrogens therefrom.
- The term “heterocyclyl” used alone or as a suffix or prefix, refers a monovalent radical derived from a heterocycle by removing one hydrogen therefrom.
- The term “heterocyclylene” used alone or as a suffix or prefix, refers to a divalent radical derived from a heterocycle by removing two hydrogens therefrom, which serves to links two structures together.
- The term “heteroaryl” used alone or as a suffix or prefix, refers to a heterocyclyl having aromatic character.
- The term “heterocylcoalkyl” used alone or as a suffix or prefix, refers to a monocyclic or polycyclic ring comprising carbon and hydrogen atoms and at least one heteroatom, preferably, 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulfur, and having no unsaturation. Examples of heterocycloalkyl groups include pyrrolidinyl, pyrrolidino, piperidinyl, piperidino, piperazinyl, piperazino, morpholinyl, morpholino, thiomorpholinyl, thiomorpholino, and pyranyl. A heterocycloalkyl group can be unsubstituted or substituted with one or two suitable substituents. Preferably, the heterocycloalkyl group is a monocyclic or bicyclic ring, more preferably, a monocyclic ring, wherein the ring comprises from 3 to 6 carbon atoms and form 1 to 3 heteroatoms, referred to herein as C3-6heterocycloalkyl.
- The term “heteroarylene” used alone or as a suffix or prefix, refers to a heterocyclylene having aromatic character.
- The term “heterocycloalkylene” used alone or as a suffix or prefix, refers to a heterocyclylene that does not have aromatic character.
- The term “six-membered” used as prefix refers to a group having a ring that contains six ring atoms.
- The term “five-membered” used as prefix refers to a group having a ring that contains five ring atoms.
- A five-membered ring heteroaryl is a heteroaryl with a ring having five ring atoms wherein 1, 2 or 3 ring atoms are independently selected from N, O and S.
- Exemplary five-membered ring heteroaryls are thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, pyrazolyl, isothiazolyl, isoxazolyl, 1,2,3-triazolyl, tetrazolyl, 1,2,3-thiadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-triazolyl, 1,2,4-thiadiazolyl, 1,2,4-oxadiazolyl, 1,3,4-triazolyl, 1,3,4-thiadiazolyl, and 1,3,4-oxadiazolyl.
- A six-membered ring heteroaryl is a heteroaryl with a ring having six ring atoms wherein 1, 2 or 3 ring atoms are independently selected from N, O and S.
- Exemplary six-membered ring heteroaryls are pyridyl, pyrazinyl, pyrimidinyl, triazinyl and pyridazinyl.
- Examples of heterocyclyls include, but are not limited to, 1H-indazole, 2-pyrrolidonyl, 2H, 6H-1,5,2-dithiazinyl, 2H-pyrrolyl, 3H-indolyl, 4-piperidonyl, 4aH-carbazole, 4H-quinolizinyl, 6H-1,2,5-thiadiazinyl, acridinyl, azabicyclo, azetidine, azepane, aziridine, azocinyl, benzimidazolyl, benzodioxol, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benzotriazolyl, benzotetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazalonyl, carbazolyl, 4aH-carbazolyl, b-carbolinyl, chromanyl, chromenyl, cinnolinyl, diazepane, decahydroquinolinyl, 2H,6H-1,5,2-dithiazinyl, dioxolane, furyl, 2,3-dihydrofuran, 2,5-dihydrofuran, dihydrofuro[2,3-b]tetrahydrofuran, furanyl, furazanyl, homopiperidinyl, imidazolidine, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxirane, oxazolidinylperimidinyl, phenanthridinyl, phenanthrolinyl, phenarsazinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, piperidonyl, 4-piperidonyl, purinyl, pyranyl, pyrrolidinyl, pyrroline, pyrrolidine, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, N-oxide-pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolidinyl dione, pyrrolinyl, pyrrolyl, pyridine, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, carbolinyl, tetrahydrofuranyl, tetramethylpiperidinyl, tetrahydroquinoline, tetrahydroisoquinolinyl, thiophane, thiotetrahydroquinolinyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, thiirane, triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl, xanthenyl.
- As used herein, “alkoxy” or “alkyloxy” represents an alkyl group as defined above with the indicated number of carbon atoms attached through an oxygen bridge. Examples of alkoxy include, but are not limited to, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, t-butoxy, n-pentoxy, isopentoxy, cyclopropylmethoxy, allyloxy and propargyloxy. Similarly, “alkylthio” or “thioalkoxy” represent an alkyl group as defined above with the indicated number of carbon atoms attached through a sulphur bridge.
- “Halogenated,” used as a prefix of a group, means one or more hydrogens on the group is replaced with one or more halogens.
- As used herein, the term “carbonyl” is art recognized and includes the —C(═O) groups of such moieties as can be represented by the general formula:
- wherein X is a bond or represents an oxygen or sulfur, and R represents a hydrogen, an alkyl, an alkenyl, —(CH2)m—R″ or a pharmaceutically acceptable salt, R′ represents a hydrogen, an alkyl, an alkenyl or —(CH2)m—R″, where m is an integer less than or equal to ten, and R″ is alkyl, cycloalkyl, alkenyl, aryl, or heteroaryl. Where X is an oxygen and R and R′ is not hydrogen, the formula represents an “ester”. Where X is an oxygen, and R is as defined above, the moiety is referred to herein as a carboxyl group, and particularly when R′ is a hydrogen, the formula represents a “carboxylic acid.” Where X is oxygen, and R′ is a hydrogen, the formula represents a “formate.” In general, where the oxygen atom of the above formula is replaced by sulfur, the formula represents a “thiolcarbonyl” group. Where X is a sulfur and R and R′ is not hydrogen, the formula represents a “thiolester.” Where X is sulfur and R is hydrogen, the formula represents a “thiolcarboxylic acid.” Where X is sulfur and R′ is hydrogen, the formula represents a “thiolformate.” On the other hand, where X is a bond, and R is not a hydrogen, the above formula represents a “ketone” group. Where X is a bond, and R is hydrogen, the above formula is represents an “aldehyde” group.
- As used herein, the term “sulfonyl” refers to the —S(═O)2— of a moiety that can be represented by the general formula:
- wherein R is represented by but not limited to hydrogen, alkyl, cycloalkyl, alkenyl, aryl, heteroaryl, aralkyl, or heteroaralkyl.
- As used herein, some substituents are described in a combination of two or more groups. For example, the expression of “C(═O)C3-9cycloalkylRd” is meant to refer to a structure:
- wherein p is 1, 2, 3, 4, 5, 6 or 7 (i.e., C3-9cycloalkyl); the C3-9cycloalkyl is substituted by Rd; and the point of attachment of the “C(═O)C3-9cycloalkylRd” is through the carbon atom of the carbonyl group, which is on the left of the expression.
- As used herein, the phrase “protecting group” means temporary substituents which protect a potentially reactive functional group from undesired chemical transformations. Examples of such protecting groups include esters of carboxylic acids, silyl ethers of alcohols, and acetals and ketals of aldehydes and ketones respectively. The field of protecting group chemistry has been reviewed (Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.; Wiley: New York, 1999).
- As used herein, “pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- As used herein, “pharmaceutically acceptable salts” refer to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof (i.e., also include counterions). Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. The pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. For example, such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, phosphoric, and the like; and the salts prepared from organic acids such as lactic, maleic, citric, benzoic, methanesulfonic, and the like.
- The pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound that contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile can be used.
- As used herein, “in vivo hydrolysable precursors” means an in vivo hydrolysable (or cleavable) ester of a compound of any of the formulas described herein that contains a carboxy or a hydroxy group. For example amino acid esters, C1-6 alkoxymethyl esters like methoxymethyl; C1-6alkanoyloxymethyl esters like pivaloyloxymethyl; C3-8cycloalkoxycarbonyloxy C1-6alkyl esters like 1-cyclohexylcarbonyloxyethyl, acetoxymethoxy, or phosphoramidic cyclic esters.
- As used herein, “tautomer” means other structural isomers that exist in equilibrium resulting from the migration of a hydrogen atom. For example, keto-enol tautomerism where the resulting compound has the properties of both a ketone and an unsaturated alcohol.
- As used herein “stable compound” and “stable structure” are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.
- The present invention further includes isotopically-labeled compounds of the invention. An “isotopically” or “radio-labeled” compound is a compound of the invention where one or more atoms are replaced or substituted by an atom having an atomic mass or mass number different from the atomic mass or mass number typically found in nature (i.e., naturally occurring). Suitable radionuclides that may be incorporated in compounds of the present invention include but are not limited to 2H (also written as D for deuterium), 3H (also written as T for tritium), 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 18F, 35S, 36Cl, 82Br, 75Br, 76Br, 77Br, 123I, 124, 125I and 131I. The radionuclide that is incorporated in the instant radio-labeled compounds will depend on the specific application of that radio-labeled compound. For example, for in vitro receptor labeling and competition assays, compounds that incorporate 3H, 14C, 82Br, 125I, 131I, 35S or will generally be most useful. For radio-imaging applications 11C, 18F, 125I, 123I, 124I, 131I, 75Br, 76Br or 77Br will generally be most useful.
- It is understood that a “radio-labeled compound” is a compound that has incorporated at least one radionuclide. In some embodiments the radionuclide is selected from the group consisting of 3H, 14C, 125I, 35S and 82Br.
- The antidementia treatment defined herein may be applied as a sole therapy or may involve, in addition to the compound of the invention, conventional chemotherapy.
- Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate dosing of the individual components of the treatment. Such combination products employ the compounds of this invention.
- Compounds of the present invention may be administered orally, parenteral, buccal, vaginal, rectal, inhalation, insufflation, sublingually, intramuscularly, subcutaneously, topically, intranasally, intraperitoneally, intrathoracially, intravenously, epidurally, intrathecally, intracerebroventricularly and by injection into the joints.
- The dosage will depend on the route of administration, the severity of the disease, age and weight of the patient and other factors normally considered by the attending physician, when determining the individual regimen and dosage level as the most appropriate for a particular patient.
- An effective amount of a compound of the present invention for use in therapy of dementia is an amount sufficient to symptomatically relieve in a warm-blooded animal, particularly a human the symptoms of dementia, to slow the progression of dementia, or to reduce in patients with symptoms of dementia the risk of getting worse.
- For preparing pharmaceutical compositions from the compounds of this invention, inert, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, dispersible granules, capsules, cachets, and suppositories.
- A solid carrier can be one or more substances, which may also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, or tablet disintegrating agents; it can also be an encapsulating material.
- In powders, the carrier is a finely divided solid, which is in a mixture with the finely divided active component. In tablets, the active component is mixed with the carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired.
- For preparing suppository compositions, a low-melting wax such as a mixture of fatty acid glycerides and cocoa butter is first melted and the active ingredient is dispersed therein by, for example, stirring. The molten homogeneous mixture is then poured into convenient sized molds and allowed to cool and solidify.
- Suitable carriers include magnesium carbonate, magnesium stearate, talc, lactose, sugar, pectin, dextrin, starch, tragacanth, methyl cellulose, sodium carboxymethyl cellulose, a low-melting wax, cocoa butter, and the like.
- Some of the compounds of the present invention are capable of forming salts with various inorganic and organic acids and bases and such salts are also within the scope of this invention. For example, such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, phosphoric, and the like; and the salts prepared from organic acids such as lactic, maleic, citric, benzoic, methanesulfonic, trifluoroacetate and the like.
- In some embodiments, the present invention provides a compound of any of the formulas described herein or a pharmaceutically acceptable salt thereof for the therapeutic treatment (including prophylactic treatment) of mammals including humans, it is normally formulated in accordance with standard pharmaceutical practice as a pharmaceutical composition.
- In addition to the compounds of the present invention, the pharmaceutical composition of this invention may also contain, or be co-administered (simultaneously or sequentially) with, one or more pharmacological agents of value in treating one or more disease conditions referred to herein.
- The term composition is intended to include the formulation of the active component or a pharmaceutically acceptable salt with a pharmaceutically acceptable carrier. For example this invention may be formulated by means known in the art into the form of, for example, tablets, capsules, aqueous or oily solutions, suspensions, emulsions, creams, ointments, gels, nasal sprays, suppositories, finely divided powders or aerosols or nebulisers for inhalation, and for parenteral use (including intravenous, intramuscular or infusion) sterile aqueous or oily solutions or suspensions or sterile emulsions.
- Liquid form compositions include solutions, suspensions, and emulsions. Sterile water or water-propylene glycol solutions of the active compounds may be mentioned as an example of liquid preparations suitable for parenteral administration. Liquid compositions can also be formulated in solution in aqueous polyethylene glycol solution. Aqueous solutions for oral administration can be prepared by dissolving the active component in water and adding suitable colorants, flavoring agents, stabilizers, and thickening agents as desired. Aqueous suspensions for oral use can be made by dispersing the finely divided active component in water together with a viscous material such as natural synthetic gums, resins, methyl cellulose, sodium carboxymethyl cellulose, and other suspending agents known to the pharmaceutical formulation art.
- The pharmaceutical compositions can be in unit dosage form. In such form, the composition is divided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of the preparations, for example, packeted tablets, capsules, and powders in vials or ampoules. The unit dosage form can also be a capsule, cachet, or tablet itself, or it can be the appropriate number of any of these packaged forms.
- Compositions may be formulated for any suitable route and means of administration. Pharmaceutically acceptable carriers or diluents include those used in formulations suitable for oral, rectal, nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intrathecal and epidural) administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy.
- For solid compositions, conventional non-toxic solid carriers include, for example, pharmaceutical grades of mannitol, lactose, cellulose, cellulose derivatives, starch, magnesium stearate, sodium saccharin, talcum, glucose, sucrose, magnesium carbonate, and the like may be used. Liquid pharmaceutically administrable compositions can, for example, be prepared by dissolving, dispersing, etc, an active compound as defined above and optional pharmaceutical adjuvants in a carrier, such as, for example, water, saline aqueous dextrose, glycerol, ethanol, and the like, to thereby form a solution or suspension. If desired, the pharmaceutical composition to be administered may also contain minor amounts of non-toxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents and the like, for example, sodium acetate, sorbitan monolaurate, triethanolamine sodium acetate, sorbitan monolaurate, triethanolamine oleate, etc. Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., 15th Edition, 1975.
- The compounds of the invention may be derivatised in various ways. As used herein “derivatives” of the compounds includes salts (e.g. pharmaceutically acceptable salts), any complexes (e.g. inclusion complexes or clathrates with compounds such as cyclodextrins, or coordination complexes with metal ions such as Mn2+ and Zn2+), esters such as in vivo hydrolysable esters, free acids or bases, polymorphic forms of the compounds, solvates (e.g. hydrates), prodrugs or lipids, coupling partners and protecting groups. By “prodrugs” is meant for example any compound that is converted in vivo into a biologically active compound.
- Salts of the compounds of the invention are preferably physiologically well tolerated and non toxic. Many examples of salts are known to those skilled in the art. All such salts are within the scope of this invention, and references to compounds include the salt forms of the compounds.
- Compounds having acidic groups, such as carboxylate, phosphates or sulfates, can form salts with alkaline or alkaline earth metals such as Na, K, Mg and Ca, and with organic amines such as triethylamine and Tris (2-hydroxyethyl)amine. Salts can be formed between compounds with basic groups, e.g. amines, with inorganic acids such as hydrochloric acid, phosphoric acid or sulfuric acid, or organic acids such as acetic acid, citric acid, benzoic acid, fumaric acid, or tartaric acid. Compounds having both acidic and basic groups can form internal salts.
- Acid addition salts may be formed with a wide variety of acids, both inorganic and organic. Examples of acid addition salts include salts formed with hydrochloric, hydriodic, phosphoric, nitric, sulphuric, citric, lactic, succinic, maleic, malic, isethionic, fumaric, benzenesulphonic, toluenesulphonic, methanesulphonic, ethanesulphonic, naphthalenesulphonic, valeric, acetic, propanoic, butanoic, malonic, glucuronic and lactobionic acids.
- If the compound is anionic, or has a functional group which may be anionic (e.g., COOH may be COO), then a salt may be formed with a suitable cation. Examples of suitable inorganic cations include, but are not limited to, alkali metal ions such as Na+ and K+, alkaline earth cations such as Ca2+ and Mg2+, and other cations such as Al3+. Examples of suitable organic cations include, but are not limited to, ammonium ion (i.e., NH4 +) and substituted ammonium ions (e.g., NH3R+, NH2R2 +, NHR3 +, NR4 +). Examples of some suitable substituted ammonium ions are those derived from: ethylamine, diethylamine, dicyclohexylamine, triethylamine, butylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine, benzylamine, phenylbenzylamine, choline, meglumine, and tromethamine, as well as amino acids, such as lysine and arginine. An example of a common quaternary ammonium ion is N(CH3)4 +.
- Where the compounds contain an amine function, these may form quaternary ammonium salts, for example by reaction with an alkylating agent according to methods well known to the skilled person. Such quaternary ammonium compounds are within the scope of the invention.
- Compounds containing an amine function may also form N-oxides. A reference herein to a compound that contains an amine function also includes the N-oxide.
- Where a compound contains several amine functions, one or more than one nitrogen atom may be oxidised to form an N-oxide. Particular examples of N-oxides are the N-oxides of a tertiary amine or a nitrogen atom of a nitrogen-containing heterocycle.
- N-Oxides can be formed by treatment of the corresponding amine with an oxidizing agent such as hydrogen peroxide or a per-acid (e.g. a peroxycarboxylic acid), see for example Advanced Organic Chemistry, by Jerry March, 4th Edition, Wiley Interscience, pages. More particularly, N-oxides can be made by the procedure of L. W. Deady (Syn. Comm. 1977, 7, 509-514) in which the amine compound is reacted with m-chloroperoxybenzoic acid (MCPBA), for example, in an inert solvent such as dichloromethane.
- Esters can be formed between hydroxyl or carboxylic acid groups present in the compound and an appropriate carboxylic acid or alcohol reaction partner, using techniques well known in the art. Examples of esters are compounds containing the group C(═O)OR, wherein R is an ester substituent, for example, a C1-7 alkyl group, a C3-20 heterocyclyl group, or a C5-20 aryl group, preferably a C1-7 alkyl group. Particular examples of ester groups include, but are not limited to, C(═O)OCH3, C(═O)OCH2CH3, C(═O)OC(CH3)3, and —C(═O)OPh. Examples of acyloxy (reverse ester) groups are represented by OC(═O)R, wherein R is an acyloxy substituent, for example, a C17 alkyl group, a C320 heterocyclyl group, or a C520 aryl group, preferably a C17 alkyl group. Particular examples of acyloxy groups include, but are not limited to, OC(═O)CH3 (acetoxy), OC(═O)CH2CH3, OC(═O)C(CH3)3, OC(═O)Ph, and OC(═O)CH2Ph.
- Derivatives which are prodrugs of the compounds are convertible in vivo or in vitro into one of the parent compounds. Typically, at least one of the biological activities of compound will be reduced in the prodrug form of the compound, and can be activated by conversion of the prodrug to release the compound or a metabolite of it. Some prodrugs are esters of the active compound (e.g., a physiologically acceptable metabolically labile ester). During metabolism, the ester group (—C(═O)OR) is cleaved to yield the active drug. Such esters may be formed by esterification, for example, of any of the carboxylic acid groups (—C(═O)OH) in the parent compound, with, where appropriate, prior protection of any other reactive groups present in the parent compound, followed by deprotection if required.
- Examples of such metabolically labile esters include those of the formula —C(═O)OR wherein R is: C17alkyl (e.g., Me, Et, -nPr, -iPr, -nBu, -sBu, -iBu, tBu); C17aminoalkyl (e.g., aminoethyl; 2-(N,N-diethylamino)ethyl; 2(4morpholino)ethyl); and acyloxy-C17alkyl (e.g., acyloxymethyl; acyloxyethyl; pivaloyloxymethyl; acetoxymethyl; 1acetoxyethyl; 1-(1-methoxy-1-methyl)ethyl-carbonyloxyethyl; 1-(benzoyloxy)ethyl; isopropoxy-carbonyloxymethyl; 1isopropoxy-carbonyloxyethyl; cyclohexyl-carbonyloxymethyl; 1cyclohexyl-carbonyloxyethyl; cyclohexyloxy-carbonyloxymethyl; 1-cyclohexyloxy-carbonyloxyethyl; (4-tetrahydropyranyloxy) carbonyloxymethyl; 1-(4-tetrahydropyranyloxy)carbonyloxyethyl; (4-tetrahydropyranyl)carbonyloxymethyl; and 1(4-tetrahydropyranyl)carbonyloxyethyl).
- Also, some prodrugs are activated enzymatically to yield the active compound, or a compound which, upon further chemical reaction, yields the active compound (for example, as in ADEPT, GDEPT, LIDEPT, etc.). For example, the prodrug may be a sugar derivative or other glycoside conjugate, or may be an amino acid ester derivative.
- Other derivatives include coupling partners of the compounds in which the compounds is linked to a coupling partner, e.g. by being chemically coupled to the compound or physically associated with it. Examples of coupling partners include a label or reporter molecule, a supporting substrate, a carrier or transport molecule, an effector, a drug, an antibody or an inhibitor. Coupling partners can be covalently linked to compounds of the invention via an appropriate functional group on the compound such as a hydroxyl group, a carboxyl group or an amino group. Other derivatives include formulating the compounds with liposomes.
- Where the compounds contain chiral centres, all individual optical forms such as enantiomers, epimers, atropisomers and diastereoisomers, as well as racemic mixtures of the compounds are within the scope of the invention.
- Compounds may exist in a number of tautomeric forms and references to compounds include all such forms. For the avoidance of doubt, where a compound can exist in one of several tautomeric forms and only one is specifically described or shown, all others are nevertheless embraced by the scope of this invention.
- The quantity of the compound to be administered will vary for the patient being treated and will vary from about 100 ng/kg of body weight to 100 mg/kg of body weight per day and preferably will be from 10 pg/kg to 10 mg/kg per day. For instance, dosages can be readily ascertained by those skilled in the art from this disclosure and the knowledge in the art. Thus, the skilled artisan can readily determine the amount of compound and optional additives, vehicles, and/or carrier in compositions and to be administered in methods of the invention.
- In some embodiments, the compounds described herein are central nervous system depressants and may be used as tranquilizers or ataractic agents for the relief of anxiety and tension states, for example, in mice, cats, rats, dogs and other mammalian species such as humans, in the same manner as chlordiazepoxide. For this purpose a compound or mixture of compounds of any of the formulas described herein, or non-toxic physiologically acceptable salts, such as acid addition salts thereof, may be administered orally or parenterally in a conventional dosage form such as tablet, pill, capsule, injectable or the like. The dosage in mg/kg of body weight of compounds of the present invention in mammals will vary according to the size of the animal and particularly with respect to the brain/body weight ratio. In general, a higher mg/kg dosage for a small animal such as a dog will have the same effect as a lower mg/kg dosage in an adult human. A minimum effective dosage for a compound of formula (I) will be at least about 0.1 mg/kg of body weight per day for mammals with a maximum dosage for a small mammal such as a dog, of about 100 mg/kg per day. For humans, a dosage of about 0.1 to 12 mg/kg per day will be effective, for example, about 5 to 600 mg/day for an average man. The dosage can be given once daily or in divided doses, for example, 2 to 4 doses daily, and such dosage will depend on the duration and maximum level of activity of a particular compound. The dose may be conventionally formulated in an oral or parenteral dosage form by compounding about 5 to 250 mg per unit of dosage of conventional vehicle, excipient, binder, preservative, stabilizer, flavor or the like as called for by accepted pharmaceutical practice, for example, as described in U.S. Pat. No. 3,755,340. The compounds of this invention may be used in pharmaceutical compositions comprising a compound of any of the formulas described herein or can be contained in the same formulation with or co-administered with one or more known drugs.
- Some example tests that can be conducted to demonstrate the anxiolytic activity of the present compounds include binding tests of GABAA receptors. In some embodiments, the binding test was directed to a subtype of GABAA receptors, such as GABAA1 receptors (i.e., those containing the α1 subunit), GABAA2 receptors (i.e., those containing the α2 subunit), GABAA3 receptors (i.e., those containing the α3 subunit) and GABAA5 receptors (i.e., those containing the α5 subunit).
- Presently available GABAA modulator anxiolytics work via interactions at the classical benzodiazepine binding site. To a large degree these anxiolytics lack GABAA receptor subtype-selectivity. The subtype-selective GABAA receptor modulators may offer more advantages. For example, a growing body of work suggests that desirable anxiolytic activity is driven primarily by interactions with GABAA receptors containing the α2 subunit. Sedation, a side-effect common to all marketed benzodiazepines, is believed to be mediated by interactions at GABAARs containing the α1 subunit. To develop anxiolytics with minimal liabilities due to interactions with other subunits, an electrophysiological assay was developed to screen modulatory effects of various compounds on different GABA subunit combinations heterologously expressed in Xenopus oocytes.
- GABAA receptors were heterologously expressed in Xenopus oocytes by injecting cRNA corresponding to human α1, α2, α3, α5, β2, β3 and γ2 subunits of the GABAA receptor genes. The specific subunit combinations (subtypes) were as follows: α1β2γ2, α2β3γ2, α3β3γ2, and α5β3γ2. The EC10 of GABA was approximated for each cell. Stability of GABA-mediated (EC10) current was established. Modulatory effect of test compound was determined and compared across subtypes. The assay developed has reproducibility which allows discrimination of modulatory activity down to minimal effect of about 25% potentiation (prior to normalization to standard) for all four subtypes. Thus, the assay can characterize modulatory effects and determine subtype selectivity of test compounds on major subtypes of GABAA receptors. In some embodiments, a compound can selectively bind to one subtype of GABAA receptor (by showing about 25% or more of binding comparing to another subtype of GABAA receptor).
- Anxiolytic activity is indicated in the GABAA binding test by a displacement of the flunitrazepam such as is exhibited by benzodiazepines or by enhancement of the binding such as is shown by cartazolate and tracazolate.
- In some embodiments, the compounds of the invention can bind to GABAA receptors. In some embodiments, the compounds of the invention can bind to GABAA receptors by displacement of benzodiazepines. Accordingly, the compounds of the invention can be used to modulate activities of GABAA receptors. In some embodiments, the compounds of the invention can selectively bind to a subtype of GABAA receptors, such as such as GABAA1 receptors (i.e., those containing the α1 subunit), GABAA2 receptors (i.e., those containing the γ2 subunit), GABAA3 receptors (i.e., those containing the γ3 subunit) or GABAA5 receptors (i.e., those containing the γ5 subunit). In some embodiments, the compounds of the invention can selectively bind to a subtype of GABAA receptors by displacement of benzodiazepines. Accordingly, the compounds of the invention can be used to selectively modulate activities of a subtype of GABAA receptors, such as GABAA1 receptors, GABAA2 receptors, GABAA3 receptors or GABAA5 receptors.
- In some embodiments, certain compounds of the invention are GABAA1 receptor antagonists and GABAA2 receptor agonists.
- Because the compounds of the invention can be used to modulate activities of GABAA receptors, or to selectively modulate activities of a subtype of GABAA receptors, the compounds of the invention are envisioned to be useful for treating or preventing diseases mediated by GABAA receptors or a subtype of GABAA receptors. Such disease, include, but is not limited to, stroke, head trauma, epilepsy, pain, migraine, mood disorders, anxiety, post traumatic stress disorder, obsessive compulsive disorders, schizophrenia, seizures, convulsions, tinnitus, neurodegenerative disorders including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's Chorea, Parkinson's disease, depression, bipolar disorders, mania, trigeminal and other neuralgia, neuropathic pain, hypertension, cerebral ischemia, cardiac arrhythmia, myotonia, substance abuse, myoclonus, essential tremor, dyskinesia and other movement disorders, neonatal cerebral hemorrhage, spasticity, cognitive disorder, and sleeping disorder.
- It is known that melatonin receptor agonists are effective in treating depression. We find that the compounds of the invention can selectively modulate activities of a subtype of melatonin receptors, melatonin receptor 1 (MT-1). In certain embodiments, certain compounds of the invention are MT1 agonists. As a results, the compounds of the invention may be effective in treating depression disorders such as major depressive disorder, dysthymic disorder, bipolar depression and/or bipolar mania, bipolar I with or without manic, depressive or mixed episodes, bipolar II, cyclothymic disorder, mood disorder due to a general medical condition, manic episodes associated with bipolar disorder, or mixed episodes associated with bipolar disorder. To treat depression disorders, an effective amount of one or more compounds of the invention is administered to a patient with such a need.
- In another embodiment, certain compounds of the present invention may be effective in treating insomnia.
- In a further embodiment, a compound of formula I or a pharmaceutically acceptable salt, solvate or in vivo hydrolysable ester thereof, or a pharmaceutical composition or formulation comprising a compound of formula I may be administered concurrently, simultaneously, sequentially or separately with one or more pharmaceutically active compound(s) selected from the following:
- (i) antidepressants such as amitriptyline, amoxapine, bupropion, citalopram, clomipramine, desipramine, doxepin duloxetine, elzasonan, escitalopram, fluvoxamine, fluoxetine, gepirone, imipramine, ipsapirone, maprotiline, nortriptyline, nefazodone, paroxetine, phenelzine, protriptyline, reboxetine, robalzotan, sertraline, sibutramine, thionisoxetine, tranylcypromaine, trazodone, trimipramine, venlafaxine and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof;
- (ii) atypical antipsychotics including for example quetiapine and pharmaceutically active isomer(s) and metabolite(s) thereof, amisulpride, aripiprazole, asenapine, benzisoxidil, bifeprunox, carbamazepine, clozapine, chlorpromazine, debenzapine, divalproex, duloxetine, eszopiclone, haloperidol, iloperidone, lamotrigine, lithium, loxapine, mesoridazine, olanzapine, paliperidone, perlapine, perphenazine, phenothiazine, phenylbutlypiperidine, pimozide, prochlorperazine, risperidone, quetiapine, sertindole, sulpiride, suproclone, suriclone, thioridazine, trifluoperazine, trimetozine, valproate, valproic acid, zopiclone, zotepine, ziprasidone and equivalents thereof;
- (iii) antipsychotics including for example amisulpride, aripiprazole, asenapine, benzisoxidil, bifeprunox, carbamazepine, clozapine, chlorpromazine, debenzapine, divalproex, duloxetine, eszopiclone, haloperidol, iloperidone, lamotrigine, loxapine, mesoridazine, olanzapine, paliperidone, perlapine, perphenazine, phenothiazine, phenylbutlypiperidine, pimozide, prochlorperazine, risperidone, sertindole, sulpiride, suproclone, suriclone, thioridazine, trifluoperazine, trimetozine, valproate, valproic acid, zopiclone, zotepine, ziprasidone and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof;
- (iv) anxiolytics including for example alnespirone, azapirones, benzodiazepines, barbiturates such as adinazolam, alprazolam, balezepam, bentazepam, bromazepam, brotizolam, buspirone, clonazepam, clorazepate, chlordiazepoxide, cyprazepam, diazepam, diphenhydramine, estazolam, fenobam, flunitrazepam, flurazepam, fosazepam, lorazepam, lormetazepam, meprobamate, midazolam, nitrazepam, oxazepam, prazepam, quazepam, reclazepam, tracazolate, trepipam, temazepam, triazolam, uldazepam, zolazepam and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof;
- (v) anticonvulsants including, for example, carbamazepine, valproate, lamotrogine, gabapentin and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof;
- (vi) Alzheimer's therapies including, for example, donepezil, memantine, tacrine and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof;
- (vii) Parkinson's therapies including, for example, deprenyl, L-dopa, Requip, Mirapex, MAOB inhibitors such as selegine and rasagiline, comP inhibitors such as Tasmar, A-2 inhibitors, dopamine reuptake inhibitors, NMDA antagonists, Nicotine agonists, Dopamine agonists and inhibitors of neuronal nitric oxide synthase and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof;
- (viii) migraine therapies including, for example, almotriptan, amantadine, bromocriptine, butalbital, cabergoline, dichloralphenazone, eletriptan, frovatriptan, lisuride, naratriptan, pergolide, pramipexole, rizatriptan, ropinirole, sumatriptan, zolmitriptan, zomitriptan, and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof;
- (ix) stroke therapies including, for example, abciximab, activase, NXY-059, citicoline, crobenetine, desmoteplase, repinotan, traxoprodil and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof;
- (x) over active bladder urinary incontinence therapies including, for example, darafenacin, falvoxate, oxybutynin, propiverine, robalzotan, solifenacin, tolterodine and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof;
- (xi) neuropathic pain therapies including, for example, gabapentin, lidoderm, pregablin and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof;
- (xii) nociceptive pain therapies such as celecoxib, etoricoxib, lumiracoxib, rofecoxib, valdecoxib, diclofenac, loxoprofen, naproxen, paracetamol and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof;
- (xiii) insomnia therapies including, for example, allobarbital, alonimid, amobarbital, benzoctamine, butabarbital, capuride, chloral, cloperidone, clorethate, dexclamol, ethchlorvynol, etomidate, glutethimide, halazepam, hydroxyzine, mecloqualone, melatonin, mephobarbital, methaqualone, midaflur, nisobamate, pentobarbital, phenobarbital, propofol, roletamide, triclofos, secobarbital, zaleplon, zolpidem and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof, and
- (xiv) mood stabilizers including, for example, carbamazepine, divalproex, gabapentin, lamotrigine, lithium, olanzapine, quetiapine, valproate, valproic acid, verapamil, and equivalents and pharmaceutically active isomer(s) and metabolite(s) thereof.
- Such combinations employ the compounds of this invention within the dosage range described herein and the other pharmaceutically active compound or compounds within approved dosage ranges and/or the dosage described in the publication reference.
- The invention will now be illustrated by the following non-limiting examples, in which, unless stated otherwise:
- In order that the invention disclosed herein may be more efficiently understood, examples are provided below. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting the invention in any manner.
- Some example compounds of the invention in table 1 were made according to the methods described herein below.
-
TABLE 1 Example Synthesis Number Method Compound Name Structure 1 F 4-amino-7-fluoro-8-phenyl-N-propyl-cinnoline-3-carboxamide 2 F 4-amino-7-chloro-8-phenyl-N-propyl-cinnoline-3-carboxamide 3 F 4-amino-7-methoxy-8-phenyl-N-propyl-cinnoline-3-carboxamide 4 A 4-amino-7-chloro-8-(2,5-dimethylphenyl)-N-propyl-cinnoline-3-carboxamide 5 A 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-N-propyl-cinnoline-3-carboxamide 6 A 4-amino-8-(5-methoxy-3-pyridyl)-N-propyl-cinnoline-3-carboxamide 7 A 4-amino-8-(2-methoxypyrimidin-5-yl)-N-propyl-cinnoline-3-carboxamide 8 A 4-amino-8-(3-fluoro-2-methoxy-phenyl)-N-propyl-N-cinnoline-3 -carboxamide 9 A 4-amino-8-[4-methoxy-2-(trifluoromethyl)phenyl]-N-propyl-cinnoline-3-carboxamide 10 A 4-amino-8-(2,5-difluoro-4-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide 11 A 4-amino-8-(5-fluoro-6-methoxy-3-pyridyl)-N-propyl-cinnoline-3-carboxamide 12 A 4-amino-8-(5-chloro-6-methoxy-3-pyridyl)-N-propyl-cinnoline-3-carboxamide 13 B 4-amino-8-(3,5-dichlorophenyl)-N-propyl-cinnoline-3-carboxamide 14 B 4-amino-8-(3,5-difluorophenyl)-N-propyl-cinnoline-3-carboxamide 15 D 4-amino-8-(5-azetidin-1-ylcarbonyl-3-pyridyl)-N-propyl-cinnoline-3-carboxamide 16 A 4-amino-8-(2,3-dimethoxyphenyl)-N-propyl-cinnoline-3-carboxamide 17 A 4-amino-8-(4-dimethylaminophenyl)-N-propyl-cinnoline-3-carboxamide 18 A 4-amino-8-(3-methoxyphenyl)-N-propyl-cinnoline-3-carboxamide 19 A 4-amino-8-(3,4-dimethoxyphenyl)-N-propyl-cinnoline-3-carboxamide 20 B 4-amino-8-(2,5-dimethoxyphenyl)-N-propyl-cinnoline-3-carboxamide 21 A 4-amino-8-(3,5-dimethoxyphenyl)-N-propyl-cinnoline-3-carboxamide 22 A 4-amino-8-(2,4-dimethoxyphenyl)-N-propyl-cinnoline-3-carboxamide 23 E 4-amino-8-(2-fluoro-3-pyridyl)-N-propyl-cinnoline-3-carboxamide 24 A 4-amino-8-(2,3-difluorophenyl)-N-propyl-cinnoline-3-carboxamide 25 A 4-amino-8-(2,3-dichlorophenyl)-N-propyl-cinnoline-3-carboxamide 26 A 4-amino-N-propyl-8-(6-quinolyl)cinnoline-3-carboxamide 27 A 4-amino-N-propyl-8-(3-quinolyl)cinnoline-3-carboxamide 28 A 4-amino-8-(2-naphthyl)-N-propyl-cinnoline-3-carboxamide 29 A 4-amino-8-(1H-indol-5-yl)-N-propyl-cinnoline-3-carboxamide 30 B 4-amino-8-(4-methoxy-3-pyridyl)-N-propyl-cinnoline-3-carboxamide 31 A 4-amino-8-(3-dimethylaminophenyl)-N-propyl-cinnoline-3-carboxamide 32 A 4-amino-N-propyl-8-(3,4,5-trimethoxyphenyl)-cinnoline-3-carboxamide 33 A 4-amino-8-(2,4-difluorophenyl)-N-propyl-cinnoline-3-carboxamide 34 A 4-amino-8-(3,4-difluorophenyl)-N-propyl-cinnoline-3-carboxamide 35 A 4-amino-N-propyl-8-(2,3,4-trimethoxyphenyl)-cinnoline-3-carboxamide 36 A 4-amino-8-(2-methoxy-3-pyridyl)-N-propyl-cinnoline-3-carboxamide 37 A 4-amino-8-(2,6-dimethoxy-3-pyridyl)-N-propyl-cinnoline-3-carboxamide 38 B 4-amino-8-(2,5-dimethylphenyl)-N-propyl-cinnoline-3-carboxamide 39 B 3-[4-amino-3-(propylcarbamoyl)cinnolin-8-yl]benzoic acid 40 4-amino-8-(3-azetidin-1-ylcarbonylphenyl)-N-propyl-cinnoline-3-carboxamide 41 C 4-amino-N-propyl-8-pyrazin-2-yl-cinnoline-3-carboxamide 42 A 4-amino-N-propyl-8-(3-pyridyl)cinnoline-3-carboxamide 43 A 4-amino-8-(3-methylsulfonylphenyl)-N-propyl-cinnoline-3-carboxamide 44 A 4-amino-8-(3-cyanophenyl)-N-propyl-cinnoline-3-carboxamide 45 C 4-amino-N-propyl-8-(2-pyridyl)cinnoline-3-carboxamide 46 A 4-amino-8-[3,5-bis(trifluoromethyl)phenyl]-N-propyl-cinnoline-3-carboxamide 47 A 4-amino-N-propyl-8-(1H-pyrazol-4-yl)cinnoline-3-carboxamide 48 A 4-amino-8-[2-chloro-5-(trifluoromethyl)phenyl]-N-propyl-cinnoline-3-carboxamide 49 A 4-amino-8-(2-methoxy-5-methyl-phenyl)-N-propyl-cinnoline-3-carboxamide 50 A 4-amino-N-propyl-8-[2-(trifluoromethyl)phenyl]-cinnoline-3-carboxamide 51 A 4-amino-8-(5-chloro-2-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide 52 C 4-amino-N-propyl-8-(4-pyridyl)cinnoline-3-carboxamide 53 A 4-amino-8-(2,5-dichlorophenyl)-N-propyl-cinnoline-3-carboxamide 54 A 4-amino-8-(2,5-difluorophenyl)-N-propyl-cinnoline-3-carboxamide 55 A 4-amino-8-(1-methyl-1H-pyrazol-4-yl)-N-propyl-cinnoline-3-carboxamide 56 A 4-amino-8-(2-fluoro-3-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide 57 A 4-amino-8-(2,5-dimethyl-2H-pyrazol-3-yl)-N-propyl-cinnoline-3-carboxamide 58 A 4-amino-8-[2-fluoro-5-(trifluoromethyl)phenyl]-N-propyl-cinnoline-3-carboxamide 59 A 4-amino-8-(2-fluoro-5-methyl-phenyl)-N-propyl-cinnoline-3-carboxamide 60 A 4-amino-8-(2-fluoro-4-methyl-phenyl)-N-propyl-cinnoline-3-carboxamide 61 A 4-amino-8-(5-fluoro-2-methyl-phenyl)-N-propyl-cinnoline-3-carboxamide 62 A 4-amino-8-(4-fluoro-2-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide 63 A 4-amino-8-(3-fluoro-4-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide 64 A 4-amino-8-(2-fluoro-6-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide 65 A 4-amino-8-(2-fluoro-5-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide 66 A 4-amino-8-(5-fluoro-2-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide 67 F 4-amino-8-(4-methoxyphenyl)-N-propyl-cinnoline-3-carboxamide 68 F 4-amino-8-(4-fluorophenyl)-N-propyl-cinnoline-3-carboxamide 69 F 4-amino-N-propyl-8-[4-(trifluoromethoxy)phenyl]-cinnoline-3-carboxamide 70 F 4-amino-N-propyl-8-[3-(trifluoromethoxy)phenyl]-cinnoline-3-carboxamide 71 A 4-amino-8-(6-methoxy-3-pyridyl)-N-propyl-cinnoline-3-carboxamide 72 A 4-amino-8-(4-methoxy-3,5-dimethyl-phenyl)-N-propyl-cinnoline-3-carboxamide 73 A 4-amino-8-(4-methoxy-3-methyl-phenyl)-N-propyl-cinnoline-3-carboxamide 74 A 4-amino-8-(2-fluoro-4-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide 75 C 4-amino-8-(6-methylpyridin-3-yl)-N-propylcinnoline-3-carboxamide 76 A 4-amino-8-(4-methylpyridin-3-yl)-N-propylcinnoline-3-carboxamide 77 A 4-amino-8-(5-methoxy-2-methylphenyl)-N-propylcinnoline-3-carboxamide 78 A 4-Amino-8-(2,4-dimethoxyphenyl)-7-fluoro-N-propylcinnoline-3-carboxamide 79 A 4-amino-8-(2,5-dimethoxyphenyl)-7-fluoro-N-propylcinnoline-3-carboxamide 80 A 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-7-fluoro-N-propylcinnoline-3-carboxamide 81 A 4-amino-N-ethyl-8-(4-methoxypyridin-3-yl)cinnoline-3-carboxamide 82 A 4-amino-N-butyl-8-(2,5-dimethoxyphenyl)cinnoline-3-carboxamide 83 A 4-amino-8-(2,5-dimethoxyphenyl)-N-ethylcinnoline-3-carboxamide 84 B 4-amino-8-(2,5-dimethoxyphenyl)-N-methylcinnoline-3-carboxamide 85 B 4-amino-N-butyl-8-(2,4-dimethoxypyrimidin-5-yl)cinnoline-3-carboxamide 86 B 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-N-ethylcinnoline-3-carboxamide 87 A 4-Amino-8-(2,5-dimethoxy-phenyl)-cinnoline-3-carboxylic acid allylamide 88 4-amino-N-(cyclopropylmethyl)-8-phenyl-cinnoline-3-carboxamide 89 A 4-amino-8-(m-tolyl)-N-propyl-cinnoline-3-carboxamide 90 A 4-Amino-8-(2-fluoro-6-methylpyridin-3-yl)-cinnoline-3-carboxylic acidpropylamide 91 A 4-Amino-7-fluoro-8-(5-fluoro-2-methoxyphenyl)-cinnoline-3-carboxylic acidpropylamide 92 A 4-Amino-8-(2-chloro-5-methoxyphenyl)-7-fluoro-cinnoline-3-carboxylic acidpropylamide 93 A 4-amino-N-cyclopropyl-8-(2,6-dimethoxypyridin-3-yl)cinnoline-3-carboxamide 94 A 4-amino-N-cyclopropyl-8-(2-methoxy-5-methyl-phenyl)cinnoline-3-carboxamide 95 A 4-amino-N-cyclopropyl-8-(2,4-dimethoxyphenyl)cinnoline-3-carboxamide 96 A 4-amino-N-cyclopropyl-8-(2,4-dimethoxypyrimidin-5-yl)cinnoline-3-carboxamide 97 A 4-amino-N-cyclopropyl-8-(2,5-dimethoxyphenyl)cinnoline-3-carboxamide 98 A 4-amino-N-ethyl-8-(2-fluoro-6-methoxy-phenyl)cinnoline-3-carboxamide 99 G 4-amino-7-fluoro-8-(2-fluoro-6-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide 100 G 4-amino-7-cyano-8-(2,4-dimethoxyphenyl)-N-propyl-cinnoline-3-carboxamide 101 H 4-amino-N-cyclobutyl-8-(2-fluoro-6-methoxy-phenyl)cinnoline-3-carboxamide 102 H 4-amino-N-cyclopropyl-8-(2-fluoro-6-methoxy-phenyl)cinnoline-3-carboxamide 103 H 4-amino-8-(2-chloro-6-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide 104 A 4-amino-7-fluoro-8-(2-fluoro-3-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide 105 A 4-amino-7-fluoro-8-(3-fluoro-4-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide 106 A 4-amino-8-(3,5-difluoro-2-methoxy-phenyl)-7-fluoro-N-propyl-cinnoline-3-carboxamide 107 A 4-amino-7-fluoro-8-(4-fluoro-2-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide 108 A 4-amino-7-fluoro-8-(2-fluoro-4-methoxy-phenyl)-N-propyl-cinnoline-3-carboxamide 109 A 4-amino-8-(4-chlorophenyl)-7-fluoro-N-propyl-cinnoline-3-carboxamide 110 A 4-amino-7-fluoro-8-(5-fluoro-2-methyl-phenyl)-N-propyl-cinnoline-3-carboxamide 111 A 4-amino-8-(2,3-dimethylphenyl)-7-fluoro-N-propyl-cinnoline-3-carboxamide 112 A 4-amino-8-(2,5-dimethoxyphenyl)-N-(3,3,3-trifluoropropyl)cinnoline-3-carboxamide 113 A 4-amino-8-(2,5-difluorophenyl)-7-fluoro-N--propyl-cinnoline-3-carboxamide - The compounds in Table 2 can also be made according to the methods described herein below.
-
TABLE 2 Synthesis Method Compound Name Structure E 4-amino-8-(3,5-dimethyl-1H-pyrazol-4-yl)-N-propyl-cinnoline-3-carboxamide E 4-amino-8-(3,5-difluoro-2-methoxyphenyl)-N-propylcinnoline-3-carboxamide E 4-amino-8-[5-(azetidin-1-ylcarbonyl)-2-methoxyphenyl]-N-propylcinnoline-3-carboxamide E 4-amino-8-(6-methoxy-2-methylpyridin-3-yl)-N-propylcinnoline-3-carboxamide E 4-amino-N-propyl-8-(1,3,5-trimethyl-1H-pyrazol-4-yl)cinnoline-3-carboxamide A 4-amino-N-propyl-8-(2,4,6-trifluoro-3-methoxyphenyl)cinnoline-3-carboxamide E 4-amino-8-(2-fluoro-5-methylpyridin-3-yl)-N-propylcinnoline-3-carboxamide E 4-amino-8-(1,3-dimethyl-1H-pyrazol-5-yl)-N-propylcinnoline-3-carboxamide E 4-amino-8-(2-fluoro-4,6-dimethoxyphenyl)-N-propylcinnoline-3-carboxamide A 4-amino-8-(3,5-difluoro-2-methoxyphenyl)-N-propylcinnoline-3-carboxamide A 4-amino-8-(2,3-dihydro-1,4-benzodioxin-6-yl)-N-propylcinnoline-3-carboxamide E 4-amino-8-(4,5-difluoro-2-methoxyphenyl)-N-propylcinnoline-3-carboxamide E 4-amino-8-(1,3-benzodioxol-4-yl)-N-propylcinnoline-3-carboxamide E 4-amino-8-[5-(azetidin-1-ylcarbonyl)-2-methylphenyl]-N-propylcinnoline-3-carboxamide E 4-amino-8-(6-methoxy-4-methylpyridin-3-yl)-N-propylcinnoline-3-carboxamide A 4-amino-7-chloro-8-(4-methoxypyridin-3-yl)-N-propylcinnoline-3-carboxamide A 4-amino-7-fluoro-8-(4-methoxypyridin-3-yl)-N-propylcinnoline-3-carboxamide A 4-amino-7-chloro-8-(2-methoxy-5-methylphenyl)-N-propylcinnoline-3-carboxamide A 4-amino-7-fluoro-8-(2-methoxy-5-methylphenyl)-N-propylcinnoline-3-carboxamide A 4-amino-8-(2,5-dimethoxyphenyl)-7-chloro-N-propylcinnoline-3-carboxamide A 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-7-chloro-N-propylcinnoline-3-carboxamide A 4-amino-N-butyl-8-(4-methoxypyridin-3-yl)cinnoline-3-carboxamide A 4-amino-8-(4-methoxypyridin-3-yl)-N-methylcinnoline-3-carboxamide A 4-amino-N-butyl-8-(2-methoxy-5-methylphenyl)cinnoline-3-carboxamide A 4-amino-N-ethyl-8-(2-methoxy-5-methylphenyl)cinnoline-3-carboxamide A 4-amino-8-(2-methoxy-5-methylphenyl)-N-methylcinnoline-3-carboxamide A 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-N-methylcinnoline-3-carboxamide A 4-amino-8-(4-methoxypyridin-3-yl)-N-(tetrahydrofuran-2-ylmethyl)cinnoline-3-carboxamide A 4-amino-N-isobutyl-8-(4-methoxypyridin-3-yl)cinnoline-3-carboxamide A 4-amino-N-(2-hydroxypropyl)-8-(4-methoxypyridin-3-yl)cinnoline-3-carboxamide A 4-amino-8-(2-methoxy-5-methylphenyl)-N-(tetrahydrofuran-2-ylmethyl)cinnoline-3-carboxamide A 4-amino-N-isobutyl-8-(2-methoxy-5-methylphenyl)cinnoline-3-carboxamide A 4-amino-N-(2-hydroxypropyl)-8-(2-methoxy-5-methylphenyl)cinnoline-3-carboxamide A 4-amino-8-(2,5-dimethoxyphenyl)-N-(tetrahydrofuran-2-ylmethyl)cinnoline-3-carboxamide A 4-amino-8-(2,5-dimethoxyphenyl)-N-isobutylcinnoline-3-carboxamide A 4-amino-8-(2,5-dimethoxyphenyl)-N-(2-hydroxypropyl)cinnoline-3-carboxamide A 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-N-(tetrahydrofuran-2-ylmethyl)cinnoline-3-carboxamide A 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-N-isobutylcinnoline-3-carboxamide A 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-N-(2-hydroxypropyl)cinnoline-3-carboxamide - The compounds in Table 3 were also made according to the methods described herein below.
-
TABLE 3 Example Number Compound Name Structure 114 4-amino-8-(2,3-dimethylphenyl)-N-propyl-cinnoline-3-carboxamide 115 4-amino-8-(3,5-dimethylphenyl)-N-propyl-cinnoline-3-carboxamide 116 4-amino-8-(2,4-dimethylphenyl)-N-propyl-cinnoline-3-carboxamide 117 4-amino-8-(3,4-dimethylphenyl)-N-propyl-cinnoline-3-carboxamide 118 4-amino-N-propyl-8-(p-tolyl)cinnoline-3-carboxamide 119 4-amino-8-(3-chlorophenyl)-N-propyl-cinnoline-3-carboxamide 120 4-amino-8-(4-chlorophenyl)-N-propyl-cinnoline-3-carboxamide 121 4-amino-8-(o-tolyl)-N-propyl-cinnoline-3-carboxamide 122 4-amino-N-propyl-8-(3-thienyl)cinnoline-3-carboxamide 123 4-amino-8-(2,6-dimethylphenyl)-N-propyl-cinnoline-3-carboxamide - Additional example compounds of the invention in table 4 were made according to the methods described herein below.
-
TABLE 4 Mass Synthesis Spectrum Example No. Structure Compound Name Method m/z 124 4-amino-N-cyclobutyl-7-fluoro-8-(2-methoxy-5-methyl-phenyl)cinnoline-3-carboxamide A 381 125 4-amino-N-cyclobutyl-7-fluoro-8-(5-fluoro-2-methoxy-phenyl)cinnoline-3-carboxamide A 385 126 4-amino-N-cyclobutyl-7-fluoro-8-(2-fluoro-6-methoxy-phenyl)cinnoline-3-carboxamide G 385 127 4-amino-N-cyclobutyl-7-fluoro-8-(2-fluoro-3-methoxy-phenyl)cinnoline-3-carboxamide A 385 128 4-amino-N-cyclobutyl-8-(2,4-dimethoxyphenyl)-7-fluoro-cinnoline-3-carboxamide A 397 129 4-amino-N-cyclobutyl-7-fluoro-8-(4-methoxypyridin-3-yl)cinnoline-3-carboxamide A 368 130 4-amino-N-cyclobutyl-8-(2,4-dimethoxypyrimidin-5-yl)-7-fluoro-cinnoline-3-carboxamide A 399 131 4-amino-N-cyclobutyl-8-(2,6-dimethoxypyridin-3-yl)-7-fluoro-cinnoline-3-carboxamide A 398 132 4-amino-N-cyclobutyl-7-fluoro-8-(6-methylpyridin-3-yl)cinnoline-3-carboxamide A 352 133 4-amino-N-cyclobutyl-7-fluoro-8-(2-methoxypyridin-3-yl)cinnoline-3-carboxamide A 368 134 4-amino-N-cyclobutyl-8-(3,5-dimethylphenyl)-7-fluoro-cinnoline-3-carboxamide A 365 135 4-amino-N-cyclobutyl-8-(2,5-difluorophenyl)-7-fluoro-cinnoline-3-carboxamide A 373 136 4-amino-N-cyclobutyl-7-fluoro-8-(3-methylphenyl)cinnoline-3-carboxamide A 351 137 4-amino-N-cyclobutyl-8-(2,3-dimethoxyphenyl)-7-fluoro-cinnoline-3-carboxamide A 397 138 4-amino-N-cyclobutyl-7-fluoro-8-(2-methoxyphenyl)cinnoline-3-carboxamide A 367 139 4-amino-N-cyclobutyl-8-(2-methoxy-5-methyl-phenyl)cinnoline-3-carboxamide A 363 140 4-amino-N-cyclobutyl-8-(5-fluoro-2-methoxy-phenyl)cinnoline-3-carboxamide A 367 141 4-amino-N-cyclobutyl-8-(2-fluoro-3-methoxy-phenyl)cinnoline-3-carboxamide A 367 142 4-amino-N-cyclobutyl-8-(4-methoxypyridin-3-yl)cinnoline-3-carboxamide A 350 143 4-amino-N-cyclobutyl-8-(2,4-dimethoxypyrimidin-5-yl)cinnoline-3-carboxamide A 381 144 4-amino-N-cyclobutyl-8-(2,6-dimethoxypyridin-3-yl)cinnoline-3-carboxamide A 380 145 4-amino-N-cyclobutyl-8-(6-methylpyridin-3-yl)cinnoline-3-carboxamide A 334 145 4-amino-N-cyclobutyl-8-(2-methoxypyridin-3-yl)cinnoline-3-carboxamide A 350 147 4-amino-N-cyclobutyl-8-(3,5-dimethylphenyl)cinnoline-3-carboxamide A 347 148 4-amino-N-cyclobutyl-8-(2,5-difluorophenyl)cinnoline-3-carboxamide A 355 149 4-amino-N-cyclobutyl-8-(3-methylphenyl)cinnoline-3-carboxamide A 333 150 4-amino-N-cyclobutyl-8-(2,3-dimethoxyphenyl)cinnoline-3-carboxamide A 379 151 4-amino-N-cyclobutyl-8-(2-methoxyphenyl)cinnoline-3-carboxamide A 349 152 4-amino-N-cyclobutyl-8-(4-methylpyridin-3-yl)cinnoline-3-carboxamide A 334 153 4-amino-N-cyclobutyl-8-(2,3,4-trimethoxyphenyl)cinnoline-3-carboxamide A 409 154 4-amino-8-(4-chlorophenyl)-N-cyclobutyl-cinnoline-3-carboxamide A 353 155 4-amino-N-cyclobutyl-8-(3,4-dimethoxyphenyl)cinnoline-3-carboxamide A 379 156 4-amino-N-cyclopropyl-8-(2-fluoro-6-methyl-pyridin-3-yl)cinnoline-3-carboxamide A 338 157 4-amino-N-cyclopropyl-7-fluoro-8-(5-fluoro-6-methoxy-pyridin-3-yl)cinnoline-3-carboxamide A 372 158 4-amino-N-cyclopropyl-7-fluoro-8-(2-methoxypyridin-3-yl)cinnoline-3-carboxamide A 354 159 4-amino-N-cyclopropyl-8-(4-methylpyridin-3-yl)cinnoline-3-carboxamide A 320 160 4-amino-N-cyclopropyl-7-fluoro-8-(4-methylpyridin-3-yl)cinnoline-3-carboxamide A 338 161 4-amino-N-cyclopropyl-8-(2,6-dimethoxypyridin-3-yl)-7-fluoro-cinnoline-3-carboxamide A 384 162 4-amino-N-cyclopropyl-7-fluoro-8-(6-methylpyridin-3-yl)cinnoline-3-carboxamide A 338 163 4-amino-N-cyclopropyl-8-(2,4-dimethoxypyrimidin-5-yl)-7-fluoro-cinnoline-3-carboxamide A 385 164 4-amino-N-cyclopropyl-8-(2,5-dimethoxyphenyl)-7-fluoro-cinnoline-3-carboxamide A 383 165 4-amino-N-cyclopropyl-7-fluoro-8-(5-fluoro-2-methoxy-phenyl)cinnoline-3-carboxamide A 371 166 4-amino-N-cyclopropyl-7-fluoro-8-(2-fluoro-6-methoxy-phenyl)cinnoline-3-carboxamide G 371 167 4-amino-N-cyclopropyl-7-fluoro-8-(2-methoxy-5-methyl-phenyl)cinnoline-3-carboxamide A 367 168 4-amino-N-cyclopropyl-8-(2,4-dimethoxyphenyl)-7-fluoro-cinnoline-3-carboxamide A 383 169 4-amino-8-(2,4-dimethoxyphenyl)-N-ethyl-7-fluoro-cinnoline-3-carboxamide A 371 170 4-amino-N-ethyl-8-(2-fluoro-3-methoxy-phenyl)cinnoline-3-carboxamide A 341 171 4-amino-N-ethyl-8-(2-methoxypyridin-3-yl)cinnoline-3-carboxamide A 324 172 4-amino-N-ethyl-8-(6-methylpyridin-3-yl)cinnoline-3-carboxamide A 308 173 4-amino-N-ethyl-8-(5-fluoro-6-methoxy-pyridin-3-yl)cinnoline-3-carboxamide A 342 174 4-amino-N-cyclopropyl-8-(5-fluoro-2-methoxy-phenyl)cinnoline-3-carboxamide A 353 175 4-amino-N-cyclopropyl-8-(4-methoxypyridin-3-yl)cinnoline-3-carboxamide A 336 176 4-amino-N-cyclopropyl-8-(2-methoxypyridin-3-yl)cinnoline-3-carboxamide A 336 177 4-amino-N-cyclobutyl-8-(2-methoxy-5-methyl-phenyl)cinnoline-3-carboxamide A 363 178 4-amino-N-cyclobutyl-8-(2,4-dimethoxyphenyl)cinnoline-3-carboxamide A 379 179 4-amino-8-(2,6-dimethoxypyridin-3-yl)-N-ethyl-cinnoline-3-carboxamide A 354 180 4-amino-N-cyclopropyl-8-(5-fluoro-6-methoxy-pyridin-3-yl)cinnoline-3-carboxamide A 354 181 4-amino-N-cyclopropyl-8-(2-fluoro-3-methoxy-phenyl)cinnoline-3-carboxamide A 353 182 4-amino-N-cyclopropyl-8-(6-methylpyridin-3-yl)cinnoline-3-carboxamide A 320 183 4-amino-N-ethyl-8-(5-fluoro-2-methoxy-phenyl)cinnoline-3-carboxamide A 341 184 4-amino-8-(2,4-dimethoxyphenyl)-N-ethyl-cinnoline-3-carboxamide A 353 185 4-amino-N-cyclopropyl-7-fluoro-8-(2-fluoro-3-methoxyphenyl)cinnoline-3-carboxamide A 371 186 4-amino-8-(2,4-dimethoxypyrimidin-5-yl)-N-ethyl-7-fluoro-cinnoline-3-carboxamide A 373 187 4-amino-N-ethyl-8-(4-methylpyridin-3-yl)cinnoline-3-carboxamide A 308 188 4-amino-N-ethyl-7-fluoro-8-(2-fluoro-6-methoxy-phenyl)cinnoline-3-carboxamide A 359 189 4-amino-8-(2,6-dimethoxypyridin-3-yl)-N-ethyl-7-fluoro-cinnoline-3-carboxamide A 372 190 4-amino-N-ethyl-7-fluoro-8-(5-fluoro-2-methoxy-phenyl)cinnoline-3-carboxamide A 359 191 4-amino-N-ethyl-7-fluoro-8-(5-fluoro-6-methoxy-pyridin-3-yl)cinnoline-3-carboxamide A 360 192 4-amino-N-ethyl-7-fluoro-8-(6-methylpyridin-3-yl)cinnoline-3-carboxamide A 326 193 4-amino-N-ethyl-7-fluoro-8-(2-methoxypyridin-3-yl)cinnoline-3-carboxamide A 342 194 4-amino-N-ethyl-7-fluoro-8-(2-fluoro-3-methoxy-phenyl)cinnoline-3-carboxamide A 359 195 4-amino-8-(2,5-dimethoxyphenyl)-N-ethyl-7-fluoro-cinnoline-3-carboxamide A 371 - The compounds of the present invention can be prepared in a number of ways well known to one skilled in the art of organic synthesis. The compounds of the present invention can be synthesized using the methods described below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. The starting materials and precursors used in the processes described herein were either commercially available or readily prepared by established organic synthesis methods. It is understood by one skilled in the art of organic synthesis that the functionality present on various portions of the molecule must be compatible with the reagents and reactions proposed. Such restrictions to the substituents which are compatible with the reaction conditions will be readily apparent to one skilled in the art and alternate methods should then be used.
- Chemical abbreviations used in the Examples are defined as follows: “DMSO” denotes dimethylsulfoxide, “THF” denotes tetrahydrofuran, “DMF” denotes N,N-dimethylformamide. Unless otherwise stated reaction progress was monitored by HPLC, LC-MS or TLC. Oven-dried standard laboratory glassware was used and routine manipulations were done at ambient temperature under a blanket of nitrogen unless otherwise indicated. Commercially available reagents and anhydrous solvents were typically used as received. Evaporations were typically performed under reduced pressure using a rotary evaporator. Preparative chromatography was performed using ICN silica gel 60, 32-63μ or a suitable equivalent. Products were dried under reduced pressure at 40° C. or a suitable temperature.
- HPLC-Mass Spectroscopy data were collected utilizing an Agilent Zorbax 5μ SB-C8 column 2.1 mm×5 cm. with a column temperature of 30° C. Solvents: A=98:2 Water:Acetonitrile with 0.1% formic acid added, B=98:2 Acetonitrile:Water with 0.05% formic acid added. Flow rate 1.4 mL/min, injection volume 2.0 μL, initial conditions 5% B, eluting with a linear gradient from 5 to 90% B from time zero to 3 minutes holding at 90% B until 4 minutes. Photodiode array UV detection was used averaging signal from 210 through 400 nm. Mass Spectral data were collected using Full Scan APCI (+), base peak index, 150.0 to 900.0 amu., 30 cone volts with a probe temperature of 450° C.
- 1H NMR data (δ, ppm) were obtained on a Bruker 300 MHz instrument at 30° C. with tetramethylsilane as an internal standard set at 0.00 ppm. The multiplicities of the NMR spectra absorptions may be abbreviated by: s, singlet; br, broad peak; bs, broad singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublets; dt, doublet of triplets; m, multiplet. In many cases proton resonances associated with the cinnoline 4-amino group protons were not readily observable in the proton NMR spectra recorded at 30° C. in chloroform-d due to severe broadening into the baseline. These protons can be clearly observed by recording the spectrum at −20° C.
- As shown in Scheme 1, a compound 1-3 can be made by coupling of a halogenated cinnoline derivative 1-1 (wherein X1 is halo such as bromo or iodo) to a boron compound 1-2 wherein R6 can be an optionally substituted aryl or heteroaryl (suitable substituents can be alkyl, CN etc.), R101 and R102 are each, independently, hydrogen or C1-6 alkyl; or R101 and R102, together with the two oxygen atoms to which they are attached and the boron atom to which the two oxygen atoms are attached, form a 4-7 membered heterocyclic ring whose ring-forming atoms comprises B, O and C atoms and which is optionally substituted by 1, 2, 3, or 4 C1-6 alkyl (i.e., a moiety shown as 1-2B-R wherein t1 is 0, 1, 2 or 3; t2 is 0, 1, 2, 3 or 4; and R400 is each, independently, C1-6 alkyl). Two examples of the boron compound 1-2 are 1-2A (a boronic acid derivative) and 1-2B (a 4,4,5,5-tetramethyl-1,3,2-dioxoborolane derivative). The coupling reaction can be carried out in the presence of a suitable catalyst, such as a metal catalyst. Some exemplary metal catalysts include palladium catalyst, such as bis(triphenylphosphine)palladium(II) dichloride and tetrakis(triphenylphosphine)palladium(0). The coupling reaction can be carried out in the presence of a suitable base such as an inorganic base. Some exemplar suitable inorganic base include cesium carbonate, sodium carbonate, and potassium phosphate. The coupling reaction can be carried out in a suitable solvent such as an organic solvent. Some suitable organic solvent include polar organic solvents, such as an ether and an alcohol. Suitable ethers include 1,2-dimethoxyethane and tetrahydrofuran. Suitable alcohols include ethanol, propanol and isopropanol. A suitable solvent also includes a mixture of two or more individual solvents. Suitable solvents can further contain water. The coupling reaction can be carried out at a suitable temperature to afford the compound 1-3. In some embodiments, the reaction mixture is heated to an elevated temperature (i.e., above the room temperature). In some embodiments, the reaction mixture is heated to a temperature of about 40° C., about 50° C., about 60° C., about 70° C., about 80° C., about 90° C., about 100° C., about 110° C., about 120° C., about 130° C., about 140° C., about 150° C., about 160° C. The reaction progress can be monitored by conventional methods such as TLC or NMR.
- As shown in Scheme 2, a compound 2-3 can be made by coupling of a halogenated cinnoline derivative 2-1 (wherein X2 is halo such as bromo or iodo) to a tin compound 2-2 wherein R6 can be an optionally substituted aryl or heteroaryl (suitable substituents can be alkyl, CN etc.), R201, R202 and R203 are each, independently, C1-6 alkyl. The coupling reaction can be carried out in the presence of a suitable catalyst, such as a metal catalyst. Some exemplary metal catalysts include palladium catalysts, such as bis(triphenylphosphine)palladium(II) dichloride and tetrakis(triphenylphosphine)palladium(0). The coupling reaction can be carried out in a suitable organic solvent. Some suitable organic solvent include polar organic solvent. Some suitable organic solvent include aprotic solvent. Some suitable organic solvent include polar aprotic organic solvent such as N,N-dimethylformamide. The coupling reaction can be carried out at a suitable temperature for a time sufficient to afford the compound 2-3. In some embodiments, the reaction mixture is heated to an elevated temperature (i.e., above the room temperature). In some embodiments, the reaction mixture is heated to a temperature of about 40° C., about 50° C., about 60° C., about 70° C., about 80° C., about 90° C., about 100° C., about 110° C., about 120° C., about 130° C., about 140° C., about 150° C., about 160° C. The reaction progress can be monitored by conventional methods such as TLC or NMR.
- As shown in Scheme 3, a compound 3-3 can be made by coupling of a trialkylstannyl-cinnoline derivative 3-1 (wherein R301, R302 and R303 are each, independently, C1-6 alkyl) to a halogenated compound R6X3 3-2 wherein X3 is halo such as bromo or iodo, and wherein R6 can be an optionally substituted aryl or heteroaryl (suitable substituents can be alkyl, CN etc.). The coupling reaction can be carried out in the presence of a suitable catalyst, such as a metal catalyst. Some exemplary metal catalysts include palladium catalysts, such as bis(triphenylphosphine)palladium(II) dichloride and tetrakis(triphenylphosphine)palladium(0). The coupling reaction can be carried out in a suitable organic solvent. Some suitable organic solvent include polar organic solvent. Some suitable organic solvents include aprotic organic solvent. Some suitable organic solvents include polar aprotic organic solvents such as N,N-dimethylformamide. The coupling reaction can be carried out at a suitable temperature for a time sufficient to afford the compound 2-3. In some embodiments, the reaction mixture is heated to an elevated temperature (i.e., above the room temperature). In some embodiments, the reaction mixture is heated to a temperature of about 40° C., about 50° C., about 60° C., about 70° C., about 80° C., about 90° C., about 100° C., about 110° C., about 120° C., about 130° C., about 140° C., about 150° C., about 160° C. The reaction progress can be monitored by conventional methods such as TLC or NMR.
- Also as shown in Scheme 3, the trialkylstannyl-cinnoline derivative 3-1 can be made by coupling of a halogenated cinnoline derivative 3-0-1 (wherein X4 is halo such as bromo or iodo) to a di-tin compound 3-0-2 (wherein R301, R302 and R303 are each, independently, C1-6 alkyl) in the presence of a suitable catalyst, such as a palladium catalyst. Some exemplar palladium catalysts include bis(triphenylphosphine)palladium(II) dichloride and tetrakis(triphenylphosphine)palladium(0).
- It should noted that in all of the schemes described herein, if there are functional (reactive) groups present on a substituent group such as R1, R2, R3, R4, R5, R6, etc., further modification can be made if appropriate and/or desired. For example, a CN group can be hydrolyzed to afford an amide group; a carboxylic acid can be converted to an amide; a carboxylic acid can be converted to a ester, which in turn can be reduced to an alcohol, which in turn can be further modified. In another example, an OH group can be converted into a better leaving group such as mesylate, which in turn is suitable for nucleophilic substitution, such as by CN. One skilled in the art will recognize further such modifications. Thus, a compound of formula I (such as compound 1-3 of Scheme 1, compound 2-3 in Scheme 2 and compound 3-3 of Scheme 3) having a substituent which contains a function group can be converted to another compound of formula I having a different substituent group.
- As used herein, the term “reacting” refers to the bringing together of designated chemical reactants such that a chemical transformation takes place generating a compound different from any initially introduced into the system. Reacting can take place in the presence or absence of solvent.
- Some more detailed methods, procedures and precursors as outlined in Schemes 1-3 and additional detailed procedures and characterization data for certain above exemplified compounds are further described herein below.
- To a 1 L, 3-necked flask equipped with a mechanical stirrer charged with (2E)-2-cyano-2-[(3-fluoro-2-iodophenyl)hydrazono]-N-propylacetamide (43.9 g, 117 mmol) in anhydrous toluene (Aldrich, 600 mL) under N2 was added portion-wise aluminum chloride (Aldrich, 46.8 g, 352 mmol) over 20 minutes. The mixture was heated to 60° C. with vigorous stirring for 2 hours and then cooled to −15° C. Ethyl acetate (30 mL) was carefully added while maintaining the internal temperature between 20-25° C. Additional ethyl acetate (900 mL) was then added, followed by careful addition of Rochelle's salt (saturated aqueous potassium sodium tartrate, 500 mL). Upon addition of the first 50 mL, the temperature rose from 20 to 36° C. The reaction was heated with stirring at 60° C. for 30 minutes. The aqueous layer contained a thick white precipitate and the organic layer slowly solubilized the brownish yellow solid. Note: If a non-white (brown/yellow) solid still existed at the aqueous/organic interface, the hot extraction was repeated. The mixture was placed in a separatory funnel and the aqueous layer was removed. The organic layer was washed with Rochelle's salt (500 mL) and brine, dried over magnesium sulfate, filtered and concentrated to give 38 g of product (86.5%). Further purification by trituration with ethyl acetate/hexanes was carried out when appropriate. An analytically pure sample was obtained by recrystallization from ethyl acetate. 1H NMR (300 MHz, CDCl3) δ 8.54 (br, 1H), 7.84 (dd, J=5.3, 9.2 Hz, 1H), 7.39 (dd, J=7.0, 9.2 Hz, 1H), 3.47 (apparent q, J=7.0 Hz, 2H), 1.68 (apparent sextet, J=7.0 Hz, 2H), 1.03 (t, J=7.4 Hz, 3H). MS APCI, m/z=375 (M+H). HPLC 2.13 min.
- The intermediate compounds were prepared as follows:
- To a 1 L, 3 necked round bottom flask fitted with a mechanical stirrer was added 3-fluoro-2-iodonitrobenzene (3B Medical, 47.7 g, 179 mmol) and 500 mL absolute ethanol. To this stirred solution was added iron powder (325 mesh, Aldrich, 30 g, 537 mmol) followed by dropwise addition of concentrated HCl (30 mL, 360 mmol). The internal temperature rose from 23 to −60° C. over the addition. The flask was fitted with a heating mantle and heated with vigorous stirring for 90 minutes. After cooling to room temperature, 1 N sodium carbonate (300 mL) was added followed by ethyl acetate (200 mL). The mixture was stirred for 30 minutes and then filtered through a pad of celite. The celite was washed with ethyl acetate (3×150 mL). The filtrates were placed in a separatory funnel and the water layer was removed. The organic layer was concentrated under reduced pressure to a volume of 200 mL, placed in a separatory funnel, diluted with ethyl acetate (400 mL), washed with brine, dried over sodium sulfate, filtered and concentrated to dryness. The crude product was taken up in ether (300 mL) and made acidic to pH 1 with 2M hydrochloric acid/ether (Aldrich). After 1 hour, the tan solid was isolated by filtration (39.2 g, 80%). The above aqueous layers were extracted with diethyl ether (300 mL), dried over sodium sulfate, combined with the filtrate of the 1st crop, made acidic to pH 1, and isolated as above to give additional tan solid (9.0 g, 18%) for an overall yield of 98%. 1H NMR (300 MHz, CDCl3) δ 7.06 (m, 1H), 6.58 (m, 1H), 6.39 (m, 1H), 5.73 (bm, 1H). MS APCI, m/z=238 (M+H). HPLC 2.19 min.
- Using the procedure outlined in the U.S. Pat. No. 4,886,800 example 89b substituting 3-fluoro-2-iodoaniline hydrochloride (8.8 g, 32.5 mmol) for 2-iodoaniline, the title compound (2E)-2-cyano-2-[(3-fluoro-2-iodophenyl)hydrazono]-N-propylacetamide (8.5 g, 70% yield) was obtained as a light brown solid. An analytically pure sample was obtained by recrystallization from ethyl acetate as a yellow crystalline solid.
- 1H NMR (300 MHz, CDCl3) δ 14.39, (s, 1H), 8.67 (bm, 1H), 7.45 (m, 1H), 7.32 (m, 1H), 7.03 (m, 1H), 3.1 (apparent q, J=6.6 Hz, 2H), 1.53 (apparent sextet, J=7.4 Hz, 2H), 0.88 (t, J=7.4 Hz, 3H).
- Using a procedure similar to that used in the synthesis of 4-amino-7-fluoro-8-iodo-N-propyl-cinnoline-3-carboxamide, the title compound 4-amino-7-chloro-8-iodo-N-propyl-cinnoline-3-carboxamide (2.75 g, 67% yield) was obtained from (2E)-2-cyano-2-[(3-chloro-2-iodophenyl)hydrazono]-N-propylacetamide (4.1 g, 10.5 mmol) as a white solid.
- 1H NMR (300 MHz, CDCl3) δ 8.54 (bs, 1H), 7.76 (d, J=9.0 Hz, 1H), 7.66 (d, J=9.0 Hz, 1H), 3.47 (apparent q, J=7.0 Hz, 2H), 1.68 (apparent sextet, J=7.0 Hz, 2H), 1.03 (t, 7.4 Hz, 3H). MS APCI, m/z=391 (M+H) HPLC 2.38 min. The intermediate compounds were prepared as follows:
- Prepared according to the method described in U.S. Pat. No. 4,886,800 example 89b substituting 3-chloro-2-iodoaniline (7.1 g, 28.1 mmol) for 2-iodoaniline, the title compound (2E)-2-cyano-2-[(3-chloro-2-iodophenyl)hydrazono]-N-propylacetamide (4.2 g, 38% yield) was obtained as a yellow solid. 1H NMR (300 MHz, CDCl3) δ 14.30, (s, 1H), 7.48 (m, 1H), 7.24-7.33 (m, 3H), 6.28 (bm, 1H), 3.37 (apparent q, J=7.0 Hz, 2H), 1.64 (apparent sextet, J=7.4 Hz, 2H), 1.00 (t, J=7.4 Hz, 3H) MS APCI, m/z=391 (M+H) HPLC 3.00 min.
- Prepared according to the method described in U.S. Pat. No. 4,822,781, process 1, substituting 2-chloro-6-nitrophenol for 2-fluoro-6-nitrophenol, the title compound, 3-chloro-2-iodoaniline (7.1 g, 3 step overall yield 55% yield) was obtained from 2-chloro-6-nitrophenol as a yellow solid. 1H NMR (300 MHz, CDCl3) δ 7.04 (t, J=8.0 Hz, 1H), 6.84 (dd, J=8.0, 1.3 Hz, 1H), 6.60 (dd, J=8.0, 1.3 Hz, 1H), 4.31 (bs, 2H). MS APCI, m/z=254 (M+H) HPLC 2.38 min
- A 22 L, 3-necked flask equipped with a mechanical stirrer, thermometer, nitrogen inlet, reflux condenser, and addition funnel was charged with N-propyl-2-cyano-2-[(2-bromophenyl)hydrazono]acetamide (195.4 g, 0.632 mol) in toluene (4 L). Aluminum chloride (295 g, 2.21 mol) was added in three portions. The mixture was heated with a mantle to 90° C. in approximately 30 minutes. After 2.5 hours, the heat was removed and the reaction mixture was allowed to cool to room temperature overnight. The reaction mixture was cooled in an ice bath to ≦10° C. and celite was added. Water (680 mL) was added dropwise over 1 hr at ≦10° C. After stirring for 30 minutes, methylene chloride was added (8 L). The reaction mixture was cooled to ≦10° C. and 10% sodium hydroxide (5.8 L) was added dropwise over 45 minutes at ≦10° C. After stirring for 30 minutes, tetrahydrofuran (2 L) was added and the phases were allowed to separate. The aqueous layer was removed, filtered through celite, and the filter cake washed with 2:1 methylene chloride:tetrahydrofuran (4 L). Note: Addition of fresh portions of methylene chloride helped expediate the rather tedious filtration. The phases of the filtrate were separated and the organic phase was transferred to a separatory funnel. Separation of the organic phase from the aqueous base as quickly as possible helped avoid undue hydrolysis of the propyl amide in the product. The solids remaining in the reaction flask were dissolved with 2:1 tetrahydrofuran:methanol (4 L) and then 10% methanol in chloroform (4 L). The layers were separated and the organic layer was washed with brine (500 mL), dried over magnesium sulfate, filtered, and concentrated under reduced pressure to a dark brown solid. The solid was slurried in diethyl ether, collected by filtration and dried. The crude solid (188 g) was then dissolved in hot methanol (6 L), treated with activated charcoal (19 g), stirred 15 minutes at reflux, filtered through celite while hot, concentrated to approximately 3 L, and allowed to crystallize overnight. The solids were collected, washed with diethyl ether (400 mL) and dried in a vacuum oven at 50° C. to give a white crystalline solid. The filtrate was concentrated to approximately 1 L and a second crop obtained. The mother liquors were stripped and a third and fourth crop were obtained from additional recrystallizations to afford a total of 164.6 g of the desired compound as a white crystalline solid (84%). 1H NMR (300.132 MHz, CDCl3) δ 8.57 (bs, 1H), 8.12 (dd, J=7.6, 1.1 Hz, 1H), 7.83 (dd, J=8.4, 1.0 Hz, 1H), 7.50 (dd, J=8.4, 7.5 Hz, 1H), 3.48 (q, J=6.7 Hz, 2H), 1.69 (sextet, J=7.3 Hz, 2H), 1.03 (t, J=7.4 Hz, 3H). MS APCI, m/z=309/311 (M+H). HPLC 1.66 min.
- Prepared according to the method described in the U.S. Pat. No. 4,886,800 example 36a.
- To a suspension of N-propyl-2-cyano-2-[(2-fluorophenyl)hydrazono]acetamide (11.1 g, 44.71 mmol) in toluene (275 mL) was added aluminum chloride (20.90 g, 156.74 mmol). The mixture was stirred at 90° C. for 2.5 hours. The reaction mixture was cooled to 0° C., and then diluted with chloroform (1 L). A small amount of water was added to quench the reaction at 0° C. Aqueous sodium hydroxide (750 mL, 20% w/v solution) was poured into the mixture slowly at 0° C., and the mixture stirred at ambient temperature for one hour. A precipitate was formed gradually. The mixture was diluted with chloroform (2 L) until all of the precipitate was dissolved, washed twice with water, dried through magnesium sulfate, and concentrated to a volume of approximately 200 mL to leave a suspension of the product. The title compound as a light beige solid (11.06 g) was collected by filtration and washed with methylene chloride (50 mL×2), methanol (50 mL) and hexane (100 mL×2). The mother liquor was concentrated, and purified by flash chromatography using a gradient of ethyl acetate in hexane to give an additional 400 mg of the title compound as a beige solid. 1H NMR (300 MHz, CDCl3) δ 8.55 (br, 1H), 7.55-7.70 (m, 2H), 3.49 (m, 2H), 1.71 (m, 2H), 1.03 (t, J=7.4 Hz, 3H) MS APCI, m/z=249 (M+H) HPLC 1.30 min.
- The intermediate compounds were prepared as follows:
- Solution A: To a mechanically stirred solution of 2-fluoroaniline (11.51 g, 100.34 mmol) in acetic acid (50 mL) was added water (30 mL) at ambient temperature. The mixture was cooled to 0° C., and then concentrated aqueous HCl (25 mL) added. A precipitate was formed as soon as the concentrated HCl was added, and the suspension was stirred at 0° C. for 20 minutes. To this suspension was added dropwise a solution of sodium nitrite (7.72 g, 111.88 mmol) in water (30 mL), maintaining the internal temperature below 5° C. The resulting clear orange solution was stirred at 0° C. for another 30 minutes.
- Solution B: To a mechanically stirred solution of N-propyl-2-cyanoacetamide (15.69 g, 124.37 mmol) in ethanol (220 mL) was added a solution of sodium acetate (136.00 g, 1.66 moles) in water (600 mL), and chilled to between 0° C. and −5° C.
- Solution A was poured into solution B, maintaining the internal temperature below 0° C. An orange precipitate was formed gradually after 10 minutes. The mixture was stirred below 0° ° C. for another hour, and was then diluted with water (500 mL). After 30 minutes, the orange precipitate was collected by filtration, washed with water (100 mL×3), and dried at 50° C. under high vacuum to remove water. An orange solid (9.50 g) was obtained, which was the “E” isomer, and used for the next step without further purification. 1H NMR (300 MHz, CDCl3) δ 14.18 (br, 1H), 7.68 (td, 1H, J=7.94 Hz, J′=1.47 Hz), 7.00-7.20 (m, 3H), 6.28 (s, 1H), 3.34 (m, 2H), 1.64 (m, 2H), 0.99 (t, 3H, J=7.40 Hz)
- To a stirred solution of 4-amino-8-iodo-N-propyl-cinnoline-3-carboxamide (3.4 g, 9.4 mmol) and tetrakis(triphenylphosphine) palladium(0) (800 mg, 0.69 mmol) in anhydrous N,N-dimethylformamide at ambient temperature under nitrogen was added hexamethylditin (5.0 g, 15.2 mmol). The reaction was heated to 150° C. for 1-1.5 hours. The reaction mixture was filtered through Celite, and the solution evaporated. The residue was dissolved in methylene chloride, washed with water twice, dried through MgSO4, and then the solvent was evaporated. The residue was purified by flash chromatography using an increasingly polar gradient of ethyl acetate in hexane to give a yellow solid as the title compound (2.4 g, 68.4% yield).
- 1H NMR (300 MHz, CDCl3) δ 8.56 (br, 1H), 7.99 (dd, J=6.6 Hz, J′=1.0 Hz, 1H), 7.83 (dd, J=8.4 Hz, J′=1.1 Hz, 1H), 7.61 (dd, J=8.3 Hz, J′=6.6 Hz, 1H), 3.47 (q, J=6.8 Hz, 2H), 1.70 (m, J=7.3 Hz, 2H), 1.02 (t, 3H, J=7.40 Hz), 0.44 (s, 9H). MS APCI, m/z=391/392/395 (M+H). HPLC 2.75 min.
- To a stirred solution of 2-[(2-bromophenyl)-hydrazono]-N-ethyl-2-cyanoacetamide (260 mg, 0.88 mmol) in anhydrous toluene (10 mL) was added aluminum chloride (370 mg, 2.78 mmol). The reaction was heated with vigorous stirring at 90° C. for 1.5 hours, cooled, diluted with ethyl acetate (40 mL), and treated with Rochelle's salt (saturated aqueous solution). After stirring for 30 minutes, the organic layer was decanted into a separatory funnel. (The white precipitate was rinsed with ethyl acetate three times.) The organic layer was washed with 1:1 brine:Rochelle's salt solution, dried over sodium sulfate, and concentrated to a light brown solid. The solid was slurried in ether and filtered to afford the title compound as a brown solid (180 mg, 69%). 1H NMR (300.132 MHz, CDCl3) δ 8.52 (s, 1H), 8.13 (dd, J=7.4, 1.1 Hz, 1H), 7.82 (dd, J=8.4, 1.1 Hz, 1H), 7.51 (dd, J=8.4, 7.5 Hz, 1H), 3.56 (dq, J=5.8, 7.3 Hz, 2H), 1.31 (t, J=7.3 Hz, 3H). MS APCI, m/z=395/397 (M+H). HPLC 1.90 min.
- The intermediate compounds were prepared as follows:
- To a solution of [(2-bromophenyl)-hydrazono]-cyanoacetic acid ethyl ester (1.0 g, 3.4 mmol) in methanol (14 mL) was added 70% ethyl amine in water (16 mL, 20.2 mmol) followed by triethyl amine (468 uL, 3.6 mmol). The reaction was stirred at room temperature overnight, concentrated and dried under high vacuum. The material was routinely used crude. Purification on silica gel using a gradient of 10 to 50% ethyl acetate in hexanes afforded the title compound as a yellow solid. 1H NMR (300.132 MHz, CDCl3) δ 14.33 (s, 1H), 7.67 (dd, J=8.3, 1.4 Hz, 1H), 7.53 (dd, J=8.1, 1.3 Hz, 1H), 7.34 (tq, J=7.8, 0.6 Hz, 1H), 7.01 (td, J=7.7, 1.6 Hz, 1H), 3.45 (dq, J=5.9, 7.2 Hz, 2H), 1.26 (t, J=7.3 Hz, 3H). HPLC 4.66 min.
- To a stirred solution of 2-aminobiphenyl (2.95 g, 17.4 mmol) in glacial acetic acid (16 mL) and water (14 mL) with cooling was added dropwise concentrated hydrochloric acid (10 mL). Additional water (10 mL) was added to maintain stirring. The mixture was cooled to 0° C. and a solution of sodium nitrite (1.44 g, 20.7 mmol) in water (10 mL) was added dropwise maintaining an internal temperature of ≦5° C. Upon complete addition, the reaction was stirred at 0° C. for 30 minutes, poured portionwise into a mechanically stirred 3-necked round bottomed flask charged with a predissolved solution of 2-cyano-N-cyclopropylmethylacetamide (2.8 g, 20.3 mmol), sodium acetate (12.0 g, 146 mmol), and sodium carbonate (12.8 g, 121 mmol) in 2:1 water:ethanol (180 mL). Vigorous CO2 (g) evolution was observed. After 1 hour at 0° C., the reaction was diluted with water (200 mL) and extracted with ethyl acetate (400 mL). The organic layer was washed with water (200 mL) and brine (200 mL) and dried over sodium sulfate. The mixture was filtered, concentrated, and purified by recrystallization from ethyl acetate/hexanes to afford the title compound as a yellow solid (2.0 g, 36%). 1H NMR (500.133 MHz, CDCl3) δ 9.23 (t, J=5.3 Hz, 1H), 9.13 (bs, 1H), 8.43 (d, J=8.3 Hz, 1H), 8.17 (bs, 1H), 7.86 (d, J=7.2 Hz, 1H), 7.81 (t, J=7.6 Hz, 1H), 7.71 (d, J=7.5 Hz, 2H), 7.49 (t, J=7.2 Hz, 2H), 7.43 (t, J=7.2 Hz, 1H), 3.30 (s, OH), 3.23 (t, J=6.1 Hz, 2H), 1.12 (septet, J=6.4 Hz, 1H), 0.45 (d, J=8.0 Hz, 2H), 0.29 (d, J=4.1 Hz, 2H). MS APCI, m/z=319 (M+H). HPLC 1.84 min.
- The intermediate compounds were prepared as follows:
- To an ice-cooled flask charged with cyclopropyl methyl amine (4.25 g, 59.8 mmol) was added ethyl cyano acetate (3.17 mL, 29.7 mmol). The reaction was stirred at 0° C. for 1.75 hour at which point a precipitate had formed and 1:1 ether:hexanes (40 mL) was added. The mixture was stirred for 15 minutes, filtered, and the solids washed with hexanes to give the title compound as a white solid (3.44 g, 84%). 1H NMR (300.132 MHz, CDCl3) δ 6.17 (s, 1H), 3.37 (s, 2H), 3.17 (dd, J=7.1, 5.4 Hz, 2H), 1.06-0.92 (m, 1H), 0.62-0.51 (m, 2H), 0.24 (q, J=5.1 Hz, 2H).
- To a solution of 2-[(2-bromophenyl)-hydrazono]-N-butyl-2-cyanoacetamide (2.5 g, 7.7 mmol) in anhydrous toluene (Aldrich, 50 mL) under N2 was added portion-wise aluminum chloride (Aldrich, 3.1 g, 23.2 mmol) over 5 minutes. The mixture was heated to 90° C. with vigorous stirring for 1.5 hours then cooled to −0° C. Water (3 mL) was added dropwise followed by careful addition of Rochelle's salt (saturated aqueous potassium sodium tartrate, 50 mL). The reaction was stirred for 25 minutes and then poured into a separatory funnel. The aqueous layer contained a thick white precipitate and was quickly removed. The organic layer was washed with Rochelle's salt and brine, dried over magnesium sulfate, filtered and concentrated to give 2.6 g slightly crude product which was purified on silica gel using a gradient of 20 to 60% ethyl acetate in hexane. Recrystallization from ethyl acetate/hexanes (10 mL each, 0° C. overnight) afforded the title compound as a white solid (650 mg, 26%). 1H NMR (300.132 MHz, CDCl3) δ 8.55 (bs, 1H), 8.13 (dd, J=7.4, 1.0 Hz, 1H), 7.82 (dd, J=8.5, 1.0 Hz, 1H), 7.50 (dd, J=8.5, 7.6 Hz, 1H), 3.52 (q, J=6.6 Hz, 2H), 1.65 (quintet, J=7.2 Hz, 2H), 1.47 (sextet, J=7.3 Hz, 2H), 0.97 (t, J=7.3 Hz, 3H). MS APCI, m/z=323/325 (M+H). HPLC 1.93 min.
- The intermediate compounds were prepared as follows:
- To a microwave vial charged with [(2-bromophenyl)-hydrazono]-cyanoacetic acid ethyl ester (387 mg, 1.31 mmol) was added methanol (3 mL) and n-butylamine (520 uL, 5.24 mmol). The reaction temperature rose approximately 30° C. and everything went into solution. After 25 minutes, additional n-butylamine (260 uL, mg, 2.6 mmol) and triethyl amine (182 uL, 1.3 mmol) were added. The reaction was stirred at room temperature overnight and then concentrated to afford the title compound which was used without further purification (420 mg, 99%). 1H NMR (300.132 MHz, CDCl3) δ 14.33 (s, 1H), 7.67 (dd, J=8.3, 1.5 Hz, 1H), 7.53 (dd, J=8.1, 1.3 Hz, 1H), 7.34 (td, J=7.8, 1.2 Hz, 1H), 7.01 (dt?ddd, J=6.1 Hz, J=8.0 Hz, J=1.5 Hz, 1H), 6.22 (bs, 1H), 3.40 (dt, J=5.9, 7.2 Hz, 2H), 1.65-1.35 (m, 4H), 0.96 (td, J=7.3, 1.9 Hz, 3H). MS APCI, m/z=323/325 (M+H). HPLC 2.94 min
- A 250 mL round-bottomed flask was charged with 2-[(2-bromophenyl)-hydrazono]-N-methyl-2-cyanoacetamide (2.00 g, 7.12 mmol), aluminum chloride (3.46 g, 25.97 mmol), and anhydrous toluene (68 mL). The reaction was gently refluxed for 45 minutes, cooled to room temperature, and slowly treated with 2N HCl (68 mL). A precipitate formed. The mixture was heated to 90° C. for 10 minutes, cooled to room temperature, and filtered. The solids were dried under high vacuum at 50° C. to afford the title compound (2.02 g, 90%). 1H NMR (300.132 MHz, DMSO) δ 9.08 (d, J=4.7 Hz, 1H), 8.56 (dd, J=8.4, 0.8 Hz, 1H), 8.28 (dd, J=7.6, 0.7 Hz, 1H), 7.65 (t, J=8.0 Hz, 1H), 2.89 (d, J=4.7 Hz, 3H). MS APCI, m/z=281/283 (M+H). HPLC 1.61 min.
- The intermediate compounds were prepared as follows:
- [(2-Bromophenyl)-hydrazono]-cyanoacetic acid ethyl ester (15.28 g, 51.60 mmol) was dissolved in 40% methylamine in water (67.5 mL) and stirred at room temperature overnight. The reaction mixture was concentrated to dryness, slurried in diethyl ether, and filtered. After drying under high vacuum at 40° C., the title compound was obtained as a yellow solid (11.16 g, 77%). 1H NMR (300.132 MHz, CDCl3) δ 7.68 (dd, J=8.2, 1.4 Hz, 1H), 7.54 (dd, J=8.1, 1.3 Hz, 1H), 7.35 (t, J=7.9 Hz, 1H), 7.01 (td, J=7.7, 1.5 Hz, 1H), 6.29 (s, 1H), 2.98 (d, J=4.9 Hz, 3H). MS APCI, m/z=281/283 (M+H). HPLC 4.08 min.
- To an ice-cooled suspension of 4-amino-8-bromo-cinnoline-3-carboxylic acid (360 mg, 1.34 mmol) in dimethylformamide (5 mL) was added CDI (370 mg, 2.3 mmol) and the mixture was stirred at room temperature for 1 hour. Additional DMF (14 mL) was added to enable stirring. After an additional 1 hour at room temperature, the mixture was treated with allyl amine (120 uL, 91 mg, 1.60 mmol) in one portion. The reaction was stirred at room temperature for 1 hour and then concentrated. Purification on silica gel using a gradient of 20 to 80% ethyl acetate in hexanes afforded the title compound (300 mg, 73%). 1H NMR (300.132 MHz, CDCl3) δ 8.14 (dd, J=7.4, 1.0 Hz, 1H), 7.83 (dd, J=8.4, 1.0 Hz, 1H), 7.51 (dd, J=8.4, 7.5 Hz, 1H), 6.04-5.91 (m, 1H), 5.33 (dq, J=17.1, 1.6 Hz, 1H), 5.21 (dq, J=10.4, 1.4 Hz, 1H), 4.15 (ddt, J=6.2, 5.8, 1.6 Hz, 2H). MS APCI, m/z=307/309 (M+H). HPLC 1.59 min.
- To a 100 mL round-bottomed flask charged with 4 Å molecular sieves (approximately 1 g) was added the 2,4-dimethoxypyrimidine-5-boronic acid (5.34 g, 29.0 mmol) and anhydrous tetrahydrofuran (25 mL). The pinocol (2.98 g, 25.3 mmol) was added and the reaction stirred at room temperature for 1.5 hours. Additional 2,4-dimethoxypyrimidine-5-boronic acid (662.2 mg, 3.6 mmol) was added and the reaction stirred overnight. Molecular sieves and 2,4-dimethoxypyrimidine-5-boronic acid (1.53 g, 8.3 mmol) were added and the reaction stirred for 0.5 hours. Pinacol (0.613 g, 5.2 mmol) was then added. After 2 hours, the molecular sieves were removed by filtration and the filtrate was concentrated. After drying under high vacuum, the title compound was obtained as a fine yellow solid (8.61 g, 79%). 1H NMR (300.132 MHz, CDCl3) δ 8.56 (s, 1H), 4.01 (d, J=1.5 Hz, 6H), 1.34 (s, 12H).
- A 500 mL, 3-necked flask equipped with a mechanical stirrer, thermometer, nitrogen inlet, reflux condenser, and addition funnel was charged with N-cyclopropyl-2-cyano-2-[(2-bromophenyl)hydrazono]acetamide (1.7 g, 5.6 mmol) in anhydrous toluene (0.2 L). The reaction mixture was cooled with stirring in an ice bath. Aluminum chloride (1.6 g, 12.0 mmol) was added in three portions. Removed ice bath and heated at 70-75° C. for 60 hours. The reaction mixture was allowed to cool to room temperature, diluted with ethyl acetate (200 mL), added saturated Rochelle's salt (100 mL), stirred vigorously for 1 hour (until purple color dissipated to orange/yellow). Decanted organic layer from thick white aqueous layer, washed with additional Rochelle's salt, brine, dried and concentrated to an orange residue. The residue was slurried in ether (20 mL) to give title compound (930 mg, 52% yield). MS APCI, m/z=307/309 (M+H).
- Using the procedure outlined in the U.S. Pat. No. 4,886,800 example 89b substituting 2-bromoaniline for 2-iodoaniline and 2-cyano-N-cyclopropylacetamide for 2-cyano-N-propylacetamide, to give 11.1 g (85% yield) of the title compound as a yellow solid. MS APCI, m/z=307/309 (M+H). 1H NMR (300 MHz, CDCl3) δ 14.39, (s, 1H), 8.67 (bm, 1H), 7.45 (m, 1H), 7.32 (m, 1H), 7.03 (m, 1H), 3.1 (apparent q, J=6.6 Hz, 2H), 1.53 (apparent sextet, J=7.4 Hz, 2H), 0.88 (t, J=7.4 Hz, 3H). The intermediate compounds were prepared as follows:
- To a flask charged with cyclopropylamine (12.3 g, 215.3 mmol) was added ethyl cyanoacetate (9.8 g, 86.1 mmol). The reaction was stirred at 45° C. for 1.5 hour, cooled and concentrated under reduced pressure to give 10.7 g title compound (˜100%) as a light yellow solid. 1H NMR (300.132 MHz, CDCl3) δ 6.20 (bs, 1H), 3.34 (s, 2H), 2.75 (m, 2H), 0.83 (m, 2H), 0.59 (m, 2H).
- Using the procedure outline for 4-Amino-8-bromo-N-cyclopropyl-cinnoline-3-carboxamide (precursor 13) substituting N-cyclopropyl-2-cyano-2-[(3-fluoro-2-iodophenyl)hydrazono]acetamide (5.8 g, 15.6 mmol) for N-cyclopropyl-2-cyano-2-[(2-bromophenyl)hydrazono]acetamide to give title compound (3.3 g, 57% yield). MS APCI, m/z=373 (M+H).
- Using the procedure outlined in the U.S. Pat. No. 4,886,800 example 89b substituting 3-fluoro-2-iodoaniline for 2-iodoaniline and 2-cyano-N-cyclopropylacetamide for 2-cyano-N-propylacetamide, to give 8.9 g (94% yield) of the title compound as a yellow solid. MS APCI, m/z=373 (M+H)
- Method A: The cinnoline-halide, an optionally substituted arylboronic acid, heteroaryl boronic acid, or a boron compound 1-2B of Scheme 2 (typically 2-3 molar equivalents), cesium carbonate (2 molar equivalents) and bis(triphenylphosphine)palladium(II) dichloride (0.025 molar equivalents) were placed in a microwave reaction vessel and dissolved in 7:3:2 (v/v/v) 1,2-dimethoxyethane:water:ethanol (5 mL/mmol cinnoline-halide) at ambient temperature. The reaction vessel was capped, the head-space purged with dry nitrogen and the stirred mixture was heated on a Biotage Optimizer (300 W) microwave system maintaining a reaction temperature of 150° C. for 30-90 minutes, reaction pressures of 7 bar were typically observed. The reaction was then cooled to ambient temperature and extracted with ethyl acetate. The residue from the organic extracts was purified by flash chromatography on silica gel eluting with increasingly polar gradient of ethyl acetate in hexanes to afford the desired compound.
- Method B: To a solution of the cinnoline-halide in 1,2-dimethoxyethane (10 mL/mmol cinnoline-halide) under nitrogen at ambient temperature was added tetrakis(triphenylphosphine)palladium (0) (0.05-0.15 molar equivalents). After stirring 10-20 min an arylboronic acid, heteroaryl boronic acid, or a boron compound 1-2B of Scheme 2 (1-4 molar equivalents) was added followed by a solution of sodium carbonate (2.5 molar equivalents) in water (3 mL/mmol halide). The resulting mixture was heated at reflux for 2-24 h. The reaction was then cooled to ambient temperature and extracted with ethyl acetate. The residue from the organic extracts was purified by flash chromatography on silica gel eluting with increasingly polar gradient of ethyl acetate in hexanes to afford the desired compound.
- Method C: To a stirred solution of the cinnoline-halide in anhydrous N,N-dimethylformamide (2 mL/mmol cinnoline-halide) at ambient temperature was added an optionally substituted aryl- or heteroaryl-tin reagent (1.2 molar equivalents) and tetrakis(triphenylphosphine)palladium(0) (0.05 molar equivalents). The mixture was heated at 100° C. for 8-48 h. The reaction was then cooled to ambient temperature and extracted with ethyl acetate. The residue from the organic extracts was purified by flash chromatography on silica gel eluting with an increasingly polar gradient of ethyl acetate in hexanes to afford the desired compound.
- Method D: The cinnoline-halide, an optionally substituted aryl- or heteroaryl-tin reagent (1.2-3 molar equivalents) and tetrakis(triphenylphosphine) palladium(0) (0.05-0.10 molar equivalents) were placed in a microwave reaction vessel and dissolved in 2-4 mL of anhydrous N,N-dimethylformamide at ambient temperature. The reaction vessel was purged with nitrogen, capped, and the stirred mixture was heated on a Biotage Optimizer (300 W) microwave system maintaining a reaction temperature of 150° C. for 30 minutes. The reaction was cooled to ambient temperature, diluted with methylene chloride, washed with water, dried over magnesium sulfate and the solvent was evaporated. The residue was purified by flash chromatography on silica gel eluting with increasingly polar gradient of ethyl acetate in hexanes to afford the desired compound.
- Method E: To a stirred solution of 8-trimethylstannyl-cinnoline derivative and tetrakis(triphenylphosphine) palladium(0) (0.05-0.10 molar equivalents) in anhydrous N,N-dimethylformamide at ambient temperature under nitrogen was added an optionally substituted aryl- or heteroaryl bromide (1.2-3 molar equivalents). The reaction was heated to 150° C. for 4-16 hours. The reaction mixture was evaporated under reduced pressure. The residue was dissolved in methylene chloride, washed with water twice, dried through MgSO4, and then the solvent was evaporated. The residue was purified by flash chromatography on silica gel eluting with an increasingly polar gradient of ethyl acetate in hexane to afford the desired compound.
- Method F: To a solution of the cinnoline-halide in anhydrous tetrahydrofuran (10 mL/mmol cinnoline-halide) under nitrogen at ambient temperature was added (triphenylphosphine)palladium(II) dichloride (0.10 molar equivalents) followed by an optionally substituted arylboronic acid, heteroaryl boronic acid, or a boron compound 1-2B of Scheme 2 (2-4 molar equivalents) followed by freshly ground potassium phosphate (2.0 molar equivalents). The resulting mixture was heated at reflux for 2-40 h. The reaction was then cooled to ambient temperature and diluted with saturated sodium bicarbonate and extracted with ethyl acetate. The residue from the organic extracts was purified by flash chromatography on silica gel eluting with 5% ether in chloroform to afford the desired compound.
- Method G: The cinnoline-halide, an optionally substituted arylboronic acid, heteroaryl boronic acid, or a boron compound 1-2B of Scheme 2 (4-5 molar equivalents), cesium carbonate (4-5 molar equivalents), 2-dicyclohexylphosphino-2′,4′,6′-trisopropylbiphenyl (0.24 molar equivalents) and tris(dibenzylidene-acetone)dipalladium(0) (0.06 molar equivalents) were placed in a 3-neck flask under N2 and dissolved in 7:3:2 (v/v/v) THF:water:2-propanol (5 mL/mmol cinnoline-halide) at ambient temperature. The reaction vessel was fitted with a reflux condenser, capped, vacuum degassed (3×) backfilling with N2 and placed in a preheated oil bath (70° C.) and heated for 20 hours. (* if reaction not complete more boronic acid and cesium carbonate in equal proportions were added with additional heating time). The reaction was then cooled to ambient temperature, decanted organic layer and concentrated under reduced pressure. Residue partitioned between ethyl acetate and 5% sodium bicarbonate (aq). The residue from the organic extracts was purified by flash chromatography on silica gel eluting with increasingly polar gradient of ethyl acetate in hexanes (alternately 1% methanol/dichloromethane) to afford the desired compound.
- Method H: The cinnoline-halide, an optionally substituted arylboronic acid, heteroaryl boronic acid, or a boron compound 1-2B of Scheme 2 (3-5 molar equivalents), sodium carbonate (4-5 molar equivalents), [1,1′-bis(diphenylphospino)-ferrocene] dichloropalladium(II) complex with dichloromethane (1:1) (0.075 molar equivalents) were placed in a 3-neck flask under N2 and dissolved in 7:3:2 (v/v/v) THF:water:2-propanol (5 mL/mmol cinnoline-halide) at ambient temperature. The reaction vessel was fitted with a reflux condenser, under N2 and placed in a preheated oil bath (85° C.) and refluxed 2-20 hours (* if reaction not complete added more boronic acid with additional heating time). The reaction was then cooled to ambient temperature, reduced volume under reduced pressure, partitioned between ethyl acetate and water. The residue from the organic extracts was purified by flash chromatography on silica gel eluting with increasingly polar gradient of ethyl acetate in hexanes to afford the desired compound.
- Using method F 4-amino-7-fluoro-8-iodo-N-propyl-cinnoline-3-carboxamide (291 mg, 0.78 mmol) and phenylboronic acid (379 mg, 3.11 mmol) were reacted (reflux 4 hours) to afford the title compound (65 mg, 26% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.52 (bs, 1H), 7.89 (dd, J=9.2, 4.6 Hz, 1H), 7.42-7.60 (m, 6H), 3.45 (apparent q, J=6.6 Hz, 2H), 1.65 (apparent sextet, J=7.2 Hz, 2H), 1.00 (t, J=7.4 Hz, 3H). MS APCI, m/z=325 (M+H) HPLC 1.92 min.
- Using Method F, 4-amino-7-chloro-8-iodo-N-propyl-cinnoline-3-carboxamide (184 mg, 0.47 mmol) and phenylboronic acid (229 mg, 1.89 mmol) were reacted (refluxed 40 hours) to afford the title compound (90 mg, 56% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.49 (bs, 1H), 7.82 (d, J=9.0 Hz, 1H), 7.75 (d, J=9.0 Hz, 1H), 7.42-7.55 (m, 5H), 3.43 (apparent q, J=6.6 Hz, 2H), 1.63 (apparent sextet, J=7.2 Hz, 2H), 0.98 (t, J=7.4 Hz, 3H). MS APCI, m/z=341 (M+H) HPLC 2.04 min.
- Using Method F, 4-amino-7-methoxy-8-iodo-N-propyl-cinnoline-3-carboxamide (311 mg, 0.81 mmol) and phenylboronic acid (394 mg, 3.24 mmol) were reacted (refluxed overnight) to afford the title compound (140 mg, 52% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.51 (bm, 1H), 7.90 (d, J=9.2 Hz, 1H), 7.52 (d, J=9.2 Hz, 1H), 7.36-7.50 (m, 5H), 3.92 (s, 3H), 3.43 (apparent q, J=6.4 Hz, 2H), 1.63 (apparent sextet, J=7.2 Hz, 2H), 0.98 (t, J=7.4 Hz, 3H). MS APCI, m/z=337 (M+H) HPLC 1.76 min.
- Using method A, 4-amino-7-chloro-8-iodo-N-propyl-cinnoline-3-carboxamide (78 mg, 0.20 mmol) and (2,5-dimethylphenyl)boronic acid (63 mg, 0.417 mmol) were reacted to afford the title compound (33 mg, 45% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.48 (bm, 1H), 7.85 (bm, 1H), 7.75 (m, 1H), 7.15-7.24 (m, 2H), 6.98 (s, 1H), 3.43 (apparent q, J=6.7 Hz, 2H), 2.36 (s, 3H), 1.95 (s, 3H), 1.63 (apparent sextet, J=7.2 Hz, 2H), 0.98 (t, J=7.4 Hz, 3H). MS APCI, m/z=369 (M+H) HPLC 2.15 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.324 mmol) and (2,4-dimethoxypyrimidin-5-yl)boronic acid (125 mg, 0.68 mmol) were reacted to afford the title compound (33 mg, 28% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.52 (bm, 1H), 8.33 (s, 1H), 7.91 (dd, J=7.7, 2.0 Hz, 1H), 7.70-7.77 (m, 2H), 4.06 (s, 3H), 3.93 (s, 3H), 3.46 (apparent q, J=6.5 Hz, 2H), 1.67 (apparent sextet, J=7.2 Hz, 2H), 1.00 (t, J=7.4 Hz, 3H). MS APCI, m/z=369 (M+H) HPLC 1.69 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.324 mmol) and 3-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (160 mg, 0.68 mmol) were reacted to afford the title compound (84 mg, 77% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.49-8.60 (m, 2H), 8.39 (m, 1H), 7.93 (dd, J=8.2, 1.6 Hz, 1H), 7.73-7.84 (m, 2H), 7.66 (m, 1H), 3.93 (s, 3H), 3.47 (apparent q, J=6.7 Hz, 2H), 1.68 (apparent sextet, J=7.4 Hz, 2H), 0.98 (t, J=7.4 Hz, 3H). MS APCI, m/z=338 (M+H) HPLC 1.52 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.324 mmol) and (2-methoxypyrimidin-5-yl)boronic acid (104 mg, 0.68 mmol) were reacted to afford the title compound (84 mg, 77% yield) as a white solid. 1H NMR (300 MHz, DMSO-d6) δ 9.1-9.3 (m, 1.5H), 8.96 (s, 2H), 8.47 (dd, J=8.4, 1.0 Hz, 1H), 8.1-8.4 (bm, 0.5H), 7.99 (dd, J=7.2, 1.0 Hz, 1H), 7.83 (dd, J=8.4, 7.2 Hz, 1H), 4.01 (s, 3H), 3.32 (apparent q, J=7.4 Hz, 2H), 1.60 (apparent sextet, J=7.2 Hz, 2H), 0.91 (t, J=7.4 Hz, 3H). MS APCI, m/z=339 (M+H) HPLC 1.75 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (116 mg, 0.375 mmol) and (3-fluoro-2-methoxyphenyl)boronic acid (127 mg, 0.75 mmol) were reacted to afford the title compound (117 mg, 88% yield) as a white solid. 1H NMR (300 MHz, DMSO-d6) δ 9.06 (t, J=6.0 Hz, 1H), 8.45 (dd, J=7.5, 2.2 Hz, 1H), 7.74-7.81 (m, 2H), 7.28-7.37 (m, 1H), 7.12-7.21 (m, 2H), 3.54 (s, 3H), 3.31 (apparent q, J=7.0 Hz, 2H), 1.56 (apparent sextet, J=7.0 Hz, 2H), 0.90 (t, J=7.0 Hz, 3H). MS APCI, m/z=355 (M+H) HPLC 1.86 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (116 mg, 0.375 mmol) and [4-methoxy-2-(trifluoromethyl)phenyl]boronic acid (164 mg, 0.75 mmol) were reacted to afford the title compound (124 mg, 82% yield) as a white solid. 1H NMR (300 MHz, DMSO-d6) δ 9.02 (t, J=6.0 Hz, 1H), 8.45 (d, J=8.3 Hz, 1H), 7.67-7.78 (m, 2H), 7.26-7.38 (m, 3H), 3.91 (s, 3H), 3.29 (apparent q, J=7.0 Hz, 2H), 1.57 (apparent sextet, J=7.0 Hz, 2H), 0.90 (t, J=7.0 Hz, 3H). MS APCI, m/z=405 (M+H) HPLC 2.11 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (116 mg, 0.375 mmol) and (2,5-difluoro-4-methoxyphenyl)boronic acid (140 mg, 0.75 mmol) were reacted to afford the title compound (93 mg, 67% yield) as a white solid. 1H NMR (300 MHz, DMSO-d6) δ 9.15 (t, J=6.0 Hz, 1H), 8.46 (dd, J=8.0, 1.7 Hz, 1H), 7.76-7.86 (m, 2H), 7.44 (dd, J=11.8, 6.8 Hz, 1H), 7.22 (dd, J=11.3, 7.4 Hz, 1H), 3.93 (s, 3H), 3.29 (apparent q, J=7.0 Hz, 2H), 1.59 (apparent sextet, J=7.0 Hz, 2H), 0.91 (t, J=7.0 Hz, 3H). MS APCI, m/z=373 (M+H) HPLC 2.03 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (126 mg, 0.408 mmol) and (5-fluoro-6-methoxypyridin-3-yl)boronic acid (138 mg, 0.81 mmol) were reacted to afford the title compound (70 mg, 48% yield) as a white solid. 1H NMR (300 MHz, DMSO-d6) δ 9.22 (t, J=6.0 Hz, 1H), 8.45 (d, J=7.6 Hz, 1H), 8.29 (d, J=1.9 Hz, 1H), 8.13 (dd, J=11.9, 1.9 Hz, 1H), 7.95 (apparent d, J=7.0 Hz, 1H), 7.80 (apparent t, J=8.0 Hz, 1H), 4.03 (s, 3H), 3.31 (apparent q, J=7.0 Hz, 2H), 1.60 (apparent sextet, J=7.0 Hz, 2H), 0.91 (t, J=7.0 Hz, 3H). MS APCI, m/z=356 (M+H) HPLC 1.99 min
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (119 mg, 0.385 mmol) and (5-chloro-6-methoxypyridin-3-yl)boronic acid (144 mg, 0.77 mmol) were reacted to afford the title compound (59 mg, 42% yield) as a white solid. 1H NMR (300 MHz, DMSO-d6) δ 9.25 (t, J=6.0 Hz, 1H), 8.43-8.46 (m, 2H), 8.34 (d, J=2.0 Hz, 1H), 7.95 (apparent d, J=7.0, Hz, 1H), 7.80 (apparent t, J=7.8 Hz, 1H), 4.03 (s, 3H), 3.31 (apparent q, J=7.0 Hz, 2H), 1.59 (apparent sextet, J=7.0 Hz, 2H), 0.91 (t, J=7.0 Hz, 3H). MS APCI, m/z=372 (M+H) HPLC 2.17 min
- Using method B, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.33 mmol) and 3,5-dichlorophenyl boronic acid (252 mg, 1.32 mmol) were reacted to afford the title compound (65 mg, 52.5% yield) as a pale-yellow solid. 1H NMR (300 MHz, DMSO-d6) δ 9.26 (br, 1H), 8.48 (d, J=8.2 Hz, 1H), 7.95 (d, J=7.2 Hz, 2H), 7.74-7.85 (m, 3H), 7.67 (t, J=2.0 Hz, 1H), 3.31 (m, overlapped with H2O), 1.60 (m, J=7.3 Hz, 2H), 0.91 (t, J=7.4 Hz, 3H). MS APCI, m/z=375/377 (M+H). HPLC 2.52 min.
- Using method B, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (200 mg, 0.65 mmol), 3,5-difluorophenyl boronic acid (300 mg, 1.90 mmol) and bis(triphenylphosphine) palladium(II) dichloride (24 mg, 0.034 mmol) were reacted to afford the title compound (200 mg, 89.7% yield) as an off-white solid. 1H NMR (300 MHz, CDCl3) δ 8.55 (br, 1H), 7.92 (dd, J=8.1, Hz, J′=1.4 Hz, 1H), 7.67-7.82 (m, 2H), 7.22 (m, 2H), 6.88 (m, 1H), 3.47 (q, J=6.7 Hz, 2H), 1.68 (m, J=7.2 Hz, 2H), 1.01 (t, J=7.4 Hz, 3H). MS APCI, m/z=343 (M+H). HPLC 2.14 min.
- Using method D, 4-amino-8-iodo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.28 mmol) and 3-trimethylstannyl-5-(azetidin-1-ylcarbonyl)-pyridine (182 mg, of 80%, 0.45 mmol) were reacted to afford the title compound (48 mg, 44.0% yield) as an off-white solid. 1H NMR (300 MHz, CDCl3) δ 9.00 (s, 1H), 8.89 (s, 1H), 8.51 (br, 1H), 8.40 (s, 1H), 7.96 (d, J=7.0 Hz, 1H), 7.72-7.88 (m, 2H), 4.46 (br, 2H), 4.28 (br, 2H), 3.48 (q, J=6.7 Hz, 2H), 2.40 (m, J=7.8 Hz, 2H), 1.69 (m, J=7.3 Hz, 2H), 1.02 (t, J=7.4 Hz, 3H). MS APCI, m/z=391 (M+H). HPLC 1.74 min.
- The reagent, 3-trimethylstannyl-5-(azetidin-1-ylcarbonyl)-pyridine, was synthesized by the following method:
- To a stirred suspension of 5-bromonicotinic acid (1.0 g, 4.95 mmol) in 15 mL of anhydrous methylene chloride at 0° C. under nitrogen was added oxaylic chloride (817 mg, 6.44 mmol). The reaction mixture was stirred at 0° C. for 30 minutes. Then triethylamine (1.25 g, 12.38 mmol) was added slowly, and followed by the addition of azetidine (565 mg, 9.90 mmol) at 0° C. The reaction was warmed to ambient temperature, and stirred for another hour. The reaction mixture was diluted with methylene chloride, quenched with water, washed with 10% potassium carbonate aqueous solution twice, dried through magnesium sulfate, and the solvent was evaporated to dry. The residue was purified by flash chromatography using a gradient of methanol in methylene chloride to give a yellow liquid as 3-bromo-5-(azetidin-1-ylcarbonyl)-pyridine (846 mg, 70.9% yield). Following, to a stirred solution of 3-bromo-5-(azetidin-1-ylcarbonyl)-pyridine (600 mg, 2.50 mmol) and tetrakis(triphenylphosphine) palladium(0) (240 mg, 0.21 mmol) in 40 mL of xylene at ambient temperature under nitrogen was added hexamethylditin (1.58 g, 4.50 mmol). The reaction was heated to 150° C. overnight. The reaction mixture was filtrated through Celite, and the filtrate was vacuumed to dry. The residual was dissolved in methylene chloride, washed with water twice, dried through MgSO4, and then the solvent was evaporated. The precipitate was purified by flash chromatography using a gradient of ethyl acetate in hexane to give a yellow solid as 3-trimethylstannyl-5-(azetidin-1-ylcarbonyl)-pyridine (846 mg, 83.0% yield). 1H NMR (300 MHz, CDCl3) δ 8.65-8.70 (m, 2H), 8.04 (t, J=1.9 Hz, 1H), 4.31 (t, J=7.63 Hz, 2H), 4.00-4.10 (m, overlapped with H2O), 2.27 (m, J=6.2 Hz, 2H MS APCI, m/z=323/325/327 (M+H) HPLC 1.61 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.33 mmol) and 2,3-dimethoxyphenyl boronic acid (148 mg, 0.97 mmol) were reacted to afford the title compound (106 mg, 89.5% yield) as a pale-yellow solid. 1H NMR (300 MHz, CDCl3) δ 8.55 (br, 1H), 7.89 (d, J=8.1, Hz, 1H), 7.78 (dd, J=7.1 Hz, J′=1.5 Hz, 1H), 7.71 (t, J=7.6 Hz, 1H), 7.15 (t, J=7.9 Hz, 1H), 6.99 (m, 2H), 3.92 (s, 3H), 3.53 (s, 3H), 3.45 (q, J=6.7 Hz, 2H), 1.65 (m, J=7.2 Hz, 2H), 0.99 (t, J=7.4 Hz, 3H) MS APCI, m/z=367 (M+H) HPLC 1.86 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.33 mmol) and 4-dimethylaminophenyl boronic acid (160 mg, 0.97 mmol) were reacted to afford the title compound (105 mg, 93.0% yield) as a pale-yellow solid. 1H NMR (300 MHz, CDCl3) δ 8.61 (br, 1H), 7.58-7.85 (m, 5H), 6.88 (d, J=8.8 Hz, 2H), 3.47 (q, J=6.7 Hz, 2H), 3.02 (s, 6H), 1.67 (m, J=7.3 Hz, 2H), 1.01 (t, J=7.4 Hz, 3H) MS APCI, m/z=350 (M+H) HPLC 2.67 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.33 mmol) and 3-methoxyphenyl boronic acid (147 mg, 0.97 mmol) were reacted to afford the title compound (69 mg, 64.2% yield) as an off-white crystal. 1H NMR (300 MHz, CDCl3) δ 8.58 (br, 1H), 7.87 (dd, J=8.3 Hz, J′=1.4 Hz, 1H), 7.81 (dd, J=7.1 Hz, J′=1.4 Hz, 1H), 7.72 (t, J=8.1 Hz, 1H), 7.41 (t, J=8.0 Hz, 1H), 7.15-7.35 (m, overlapped with CHCl3), 6.98 (dd, J=8.1 Hz, J′=1.8 Hz, 1H), 3.86 (s, 3H), 3.46 (q, J=6.7 Hz, 2H), 1.67 (m, J=7.3 Hz, 2H), 1.01 (t, J=7.4 Hz, 3H) MS APCI, m/z=337 (M+H) HPLC 1.89 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.33 mmol) and 3,4-dimethoxyphenyl boronic acid (148 mg, 0.97 mmol) were reacted to afford the title compound (91 mg, 77.7% yield) as a pale-yellow solid. 1H NMR (300 MHz, CDCl3) δ 8.58 (br, 1H), 7.76-7.88 (m, 2H), 7.71 (t, J=7.7 Hz, 1H), 7.29 (m, overlapped with CHCl3), 7.23 (d, J=1.9 Hz, 1H), 7.02 (d, J−8.3 Hz, 1H), 3.95 (s, 3H), 3.93 (s, 3H), 3.47 (q, J=6.7 Hz, 2H), 1.68 (m, J=7.2 Hz, 2H), 1.01 (t, J=7.4 Hz, 3H) MS APCI, m/z=367 (M+H) HPLC 1.78 min.
- Using method B, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (13.0 g, 42.1 mmol), 2,5-dimethoxyphenyl boronic acid (15.4 g, 84.6 mmol) and bis(triphenylphosphine) palladium(II) dichloride (886 mg, 1.3 mmol) were reacted to afford the title compound (13.51 g, 87.7% yield) as an off-white needle. 1H NMR (300 MHz, CDCl3) δ 8.59 (br, 1H), 7.89 (dd, J=7.8 Hz, J′=1.9 Hz, 1H), 7.65-7.77 (m, 2H), 6.85-7.20 (m, 3H), 3.79 (s, 3H), 3.64 (s, 3H), 3.35-3.55 (m, overlapped with H2O), 1.64 (m, J=7.3 Hz, 2H), 0.99 (t, J=7.4 Hz, 3H) MS APCI, m/z=367 (M+H) HPLC 1.72 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.33 mmol) and 2-(3,5-dimethoxyphenyl)-4,4,5,5-tetramethyl-(1,3,2)-dioxaborolane (256 mg, 0.97 mmol) were reacted to afford the title compound (110 mg, 93.9% yield) as an off-white solid.
- 1H NMR (300 MHz, CDCl3) δ 8.57 (br, 1H), 7.87 (d, J=8.2 Hz, 1H), 7.79 (dd, J=7.2 Hz, J′=1.3 Hz, 1H), 7.71 (t, J=7.7 Hz, 1H), 6.79 (d, 3H), 3.83 (s, 6H), 3.47 (q, J=6.7 Hz, 2H), 1.67 (m, J=7.3 Hz, 2H), 1.01 (t, J=7.4 Hz, 3H) MS APCI, m/z=367 (M+H) HPLC 1.98 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.33 mmol) and 2,4-dimethoxyphenyl boronic acid (148 mg, 0.97 mmol) were reacted to afford the title compound (88 mg, 75.1% yield) as an off-white solid. 1H NMR (300 MHz, CDCl3) δ 8.57 (br, 1H), 7.84 (dd, J=8.2 Hz, J′=1.4 Hz, 1H), 7.75 (dd, J=7.1 Hz, J′=1.4 Hz, 1H), 7.68 (t, J=7.6 Hz, 1H), 7.29 (m, overlapped with CHCl3), 6.58-6.60 (m, 2H), 3.87 (s, 3H), 3.69 (s, 3H), 3.45 (q, 6.7 Hz, 2H), 1.65 (m, J=7.3 Hz, 2H), 0.99 (t, J=7.4 Hz, 3H) MS APCI, m/z=367 (M+H) HPLC 1.94 min.
- Using method E, 4-amino-8-trimethylstannyl-N-propyl-cinnoline-3-carboxamide (170 mg of 90% purity, 0.37 mmol) and 3-bromo-2-fluoro-3-pyridine (195 mg, 1.11 mmol) were reacted to afford the title compound (45 mg, 37.7% yield) as an off-white solid. 1H NMR (300 MHz, DMSO-d6) δ 9.16 (br, 1H), 8.52 (dd, J=8.4 Hz, J′=1.2 Hz, 1H), 8.33 (m, 1H), 8.11 (m, 1H), 7.92 (d, J=6.1 Hz, 1H), 7.83 (t, J=7.7 Hz, 1H), 7.50 (m, 1H), 3.20-3.35 (m, overlapped with H2O), 1.58 (m, J=7.2 Hz, 2H), 0.90 (t, J=7.4 Hz, 3H) MS APCI, m/z=326 (M+H) HPLC 1.74 min
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.33 mmol) and 2,3-difluorophenyl boronic acid (153 mg, 0.97 mmol) were reacted to afford the title compound (63 mg, 57.6% yield) as a pale-yellow solid. 1H NMR (300 MHz, CDCl3) δ 8.55 (br, 1H), 7.95 (dd, J=8.0 Hz, J′=1.7 Hz, 1H), 7.70-7.85 (m, 2H), 7.15-7.30 (m, overlapped with CHCl3), 3.46 (q, J=6.7 Hz, 2H), 1.66 (m, J=7.3 Hz, 2H), 1.00 (t, J=7.4 Hz, 3H) MS APCI, m/z=343 (M+H) HPLC 2.08 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.33 mmol) and 2,3-dichlorophenyl boronic acid (185 mg, 0.97 mmol) were reacted to afford the title compound (99.8 mg, 83.1% yield) as a pale-yellow solid. 1H NMR (300 MHz, CDCl3) δ 8.52 (br, 1H), 7.96 (dd, J=7.6 Hz, J′=2.1 Hz, 1H), 7.66-7.78 (m, 2H), 7.53 (dd, J=6.3 Hz, J′=3.3 Hz, 1H), 7.28-7.35 (m, 2H), 3.45 (q, J=6.7 Hz, 2H), 1.64 (m, J=7.3 Hz, 2H), 0.99 (t, J=7.4 Hz, 3H) MS APCI, m/z=375/377 (M+H) HPLC 2.19 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.33 mmol) and 6-(4,4,5,5-tetramethyl-1,3,2-dioxa-borolane-2-yl)quinoline (247 mg, 0.97 mmol) were reacted to afford the title compound (105 mg, 91.9% yield) as a pale-yellow solid. 1H NMR (300 MHz, CDCl3) δ 8.96 (dd, J=4.2 Hz, J′=1.7 Hz, 1H), 8.56 (br, 1H), 8.23 (d, J=8.4 Hz, 2H), 8.05-8.15 (m, 2H), 7.88-7.96 (m, 2H), 7.78 (t, J=7.7 Hz, 1H), 7.44 (dd, J=8.2 Hz, J′=4.2 Hz, 1H), 3.47 (q, J=6.7 Hz, 2H), 1.67 (m, J=7.2 Hz, 2H), 1.00 (t, J=7.4 Hz, 3H)
- MS APCI, m/z=358 (M+H) HPLC 1.47 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.33 mmol) and 3-quinoline boronic acid (168 mg, 0.97 mmol) were reacted to afford the title compound (93 mg, 80.5% yield) as a pale-yellow solid. 1H NMR (300 MHz, CDCl3) δ 9.24 (d, J=2.2 Hz, 1H), 8.50-8.60 (m, 2H), 8.18 (d, J=8.6 Hz, 1H), 7.88-7.98 (m, 3H), 7.82 (d, J=8.2 Hz, 1H), 7.76 (m, 1H), 7.59 (m, 1H), 3.47 (q, J=6.7 Hz, 2H), 1.68 (m, J=7.2 Hz, 2H), 1.01 (t, J=7.4 Hz, 3H) MS APCI, m/z=358 (M+H) HPLC 1.88 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.33 mmol) and 2-naphthalene boronic acid (167 mg, 0.97 mmol) were reacted to afford the title compound (99 mg, 86.9% yield) as a pale-yellow solid. 1H NMR (300 MHz, CDCl3) δ 8.58 (br, 1H), 8.11 (s, 1H), 7.83-7.99 (m, 6H), 7.76 (dd, J=8.0 Hz, J′=7.1 Hz, 1H), 7.46-7.55 (m, 2H), 3.46 (q, J=6.7 Hz, 2H), 1.66 (m, J=7.2 Hz, 2H), 1.00 (t, J=7.4 Hz, 3H) MS APCI, m/z=357 (M+H) HPLC 2.11 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.33 mmol) and 5-indolyl boronic acid (156 mg, 0.97 mmol) were reacted to afford the title compound (105 mg, 95.1% yield) as a pale-yellow solid. 1H NMR (300 MHz, CDCl3) δ 8.60 (br, 1H), 8.34 (s, 1H), 7.94 (s, 1H), 7.86 (d, J=7.1 Hz, 1H), 7.81 (d, J=8.4 Hz, 1H), 7.69 (t, J=7.7 Hz, 1H), 7.57 (d, J=8.5 Hz, 1H), 7.47 (d, J=8.5 Hz, 1H), 7.22 (s, 1H), 6.61 (s, 1H), 3.46 (q, J=6.7 Hz, 2H), 1.66 (m, J=7.2 Hz, 2H), 0.99 (t, J=7.4 Hz, 3H) MS APCI, m/z=346 (M+H) HPLC 1.88 min.
- To a stirred solution of 4-amino-8-iodo-N-propyl-cinnoline-3-carboxamide (1.00 g, 2.81 mmol), sodium bicarbonate (473 mg, 5.62 mmol) and tetrakis(triphenylphosphine) palladium(0) (974 mg, 0.84 mmol) in 1,2-dimethoxyethane (180 mL)/water (30 mL) at 85° C. under nitrogen was added the aqueous solution of 4-methoxy-pyridine-3-boronic acid (25 mg/mL) dropwise, maintaining the internal temperature between 80° C. and 85° C. The reaction was monitored by HPLC until completed. Upon the completion, 2.42 equivalents of 4-methoxy-pyridine-3-boronic acid (1.16 g, 6.80 mmol) were applied. The reaction mixture was diluted with methylene chloride (300 mL), washed with water twice, dried through MgSO4, and then the solvent was evaporated. The residual was purified by flash chromatography using a gradient of methanol in methylene chloride to give a yellow solid. The yellow solid was crystallized from methylene chloride/methanol (2/1) to give an off-white needle crystal as the title compound (570 mg, 60.2% yield). 1H NMR (300 MHz, CDCl3) δ 8.58 (d, J=5.8 Hz, 1H), 8.53 (br, 1H), 5.11 (m, 6H), 8.46 (s, 1H), 7.94 (t, J=4.9 Hz, 1H), 7.74 (d, J=4.8 Hz, 2H), 6.96 (d, J=5.8 Hz, 1H), 3.78 (s, 3H), 3.45 (q, J=6.7 Hz, 2H), 1.66 (m, overlapped with H2O), 1.00 (t, J=7.4 Hz, 3H) MS APCI, m/z=338 (M+H) HPLC 1.28 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.33 mmol) and 3-dimethylaminophenyl boronic acid (160 mg, 0.97 mmol) were reacted to afford the title compound (99 mg, 88.6% yield) as a pale-yellow solid. 1H NMR (300 MHz, CDCl3) δ 8.60 (br, 1H), 7.83 (m, 2H), 7.70 (t, J=7.7 Hz, 1H), 7.35 (t, J=7.9 Hz, 1H), 7.03 (d, J=7.9 Hz, 1H), 6.98 (m, 1H), 6.82 (dd, J=8.3 Hz, J′=2.3 Hz, 1H), 3.46 (q, J=6.7 Hz, 2H), 2.99 (s, 6H), 1.67 (m, J=7.2 Hz, 2H), 1.00 (t, J=7.4 Hz, 3H) MS APCI, m/z=350 (M+H) HPLC 1.60 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.33 mmol) and 3,4,5-trimethoxyphenyl boronic acid (206 mg, 0.97 mmol) were reacted to afford the title compound (116 mg, 91.5% yield) as a pale-yellow solid. 1H NMR (300 MHz, CDCl3) δ 8.56 (br, 1H), 7.88 (d, J=8.2 Hz, 1H), 7.80 (dd, J=7.2 Hz, J′=1.4 Hz, 1H), 7.72 (t, J=7.7 Hz, 1H), 6.87 (s, 2H), 3.92 (s, 3H), 3.90 (s, 6H), 3.47 (q, J=6.5 Hz, 2H), 1.68 (m, J=7.2 Hz, 2H), 1.01 (t, J=7.4 Hz, 3H) MS APCI, m/z=397 (M+H) HPLC 1.83 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.33 mmol) and 2,4-difluorophenyl boronic acid (202 mg, 1.28 mmol) were reacted to afford the title compound (101 mg, 92.3% yield) as a pale-yellow solid. 1H NMR (300 MHz, CDCl3) δ 8.55 (br, 1H), 7.92 (dd, J=8.0 Hz, J′=1.7 Hz, 1H), 7.70-7.80 (m, 2H), 7.49 (m, 1H), 6.90-7.05 (m, 2H), 3.46 (q, J=6.7 Hz, 2H), 1.66 (m, J=7.3 Hz, 2H), 1.00 (t, J=7.4 Hz, 3H) MS APCI, m/z=343 (M+H) HPLC 1.84 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.33 mmol) and 3,4-difluorophenyl boronic acid (202 mg, 1.28 mmol) were reacted to afford the title compound (108 mg, 98.7% yield) as a pale-yellow solid. 1H NMR (300 MHz, CDCl3) δ 8.55 (br, 1H), 7.89 (dd, J=7.9 Hz, J′=1.9 Hz, 1H), 7.68-7.80 (m, 2H), 7.48-7.59 (m, 1H), 7.37-7.45 (m, 1H), 7.23-7.33 (m, overlapped with CHCl3), 3.47 (q, J=6.7 Hz, 2H), 1.68 (m, J=7.2 Hz, 2H), 1.01 (t, J=7.4 Hz, 3H) MS APCI, m/z=343 (M+H) HPLC 2.01 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (106 mg, 0.34 mmol) and 2,3,4-trimethoxyphenyl boronic acid (206 mg, 0.97 mmol) were reacted to afford the title compound (124 mg, 92.1% yield) as a pale-yellow solid. 1H NMR (300 MHz, CDCl3) δ 8.56 (br, 1H), 7.88 (dd, J=8.2 Hz, J′=1.5 Hz, 1H), 7.76 d, J=6.3 Hz, 1H), 7.69 (t, J=7.6 Hz, 1H), 7.09 (d, J=8.6 Hz, 1H), 6.80 (d, J=8.6 Hz, 1H), 3.94 (s, 3H), 3.92 (s, 3H), 3.62 (s, 3H), 3.45 (q, J=6.7 Hz, 2H), 1.65 (m, J=7.2 Hz, 2H), 0.99 (t, J=7.4 Hz, 3H) MS APCI, m/z=397 (M+H) HPLC 1.70 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.33 mmol) and 2-methoxy-pyridyl-3-boronic acid (148 mg, 0.97 mmol) were reacted to afford the title compound (92 mg, 85.3% yield) as an off-white solid. 1H NMR (300 MHz, CDCl3) δ 8.53 (br, 1H), 8.26 (dd, J=5.0 Hz, J′=1.9 Hz, 1H), 7.90 (dd, J=8.1 Hz, J′=1.5 Hz, 1H), 7.79 (dd, J=7.1 Hz, J′=1.6 Hz, 1H), 7.74 (d, J=8.0 Hz, 1H), 7.70 (dd, J=7.3 Hz, J′=2.0 Hz, 1H), 7.04 (dd, J=6.8 Hz, J′=5.0 Hz, 1H), 3.88 (s, 3H), 3.45 (q, J=6.7 Hz, 2H), 1.66 (m, J=7.3 Hz, 2H), 1.00 (t, J=7.4 Hz, 3H) MS APCI, m/z=338 (M+H) HPLC 1.49 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (100 mg, 0.33 mmol) and 2,6-dimethoxy-pyridyl-3-boronic acid (120 mg, 0.64 mmol) were reacted to afford the title compound (110 mg, 92.6% yield) as a pale-yellow solid. 1H NMR (300 MHz, CDCl3) δ 8.55 (br, 1H), 7.85 (dd, J=8.3 Hz, J′=1.4 Hz, 1H), 7.79 (d, J=7.2 Hz, 1H), 7.60-7.73 (m, 2H), 6.46 (d, J=8.0 Hz, 1H), 3.98 (s, 3H), 3.88 (s, 3H), 3.45 (q, J=6.7 Hz, 2H), 1.66 (m, J=7.3 Hz, 2H), 1.00 (t, J=7.4 Hz, 3H) MS APCI, m/z=368 (M+H) HPLC 1.77 min.
- Using method B, 4-amino-8-iodo-N-propyl-cinnoline-3-carboxamide (250 mg, 0.702 mmol) and 2,5-dimethylphenylboronic acid (150 mg, 1.00 mmol) were reacted to afford the title compound (195 mg, 83% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.55 (br, 1H), 7.87 (m, 1H), 7.75-7.64 (m, 2H), 7.23-7.07 (m, 3H), 3.44 (apparent quartet, J=7.0 Hz, 2H), 2.35 (s, 3H), 2.01 (s, 3H), 1.64 (apparent sextet, J=7.0 Hz, 2H), 0.99 (t, J=7.4 Hz, 3H) MS APCI, m/z=335 HPLC 1.98 min.
- Using method B, 4-amino-8-iodo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.421 mmol) and 3-(dihydroxyboryl)benzoic acid (77 mg, 0.464 mmol) were reacted to afford the title compound (117 mg, 79% yield) as a white solid. 1H NMR (300 MHz, Methanol-d4) δ 8.58-8.52 (m, 1H), 8.30-8.22 (m, 2H), 8.07-7.92 (m, 2H), 7.86-7.73 (m, 2H), 3.41 (t, J=7.0 Hz, 2H), 1.67 (apparent sextet, J=7.0 Hz, 2H), 0.99 (t, J=7.0 Hz, 3H). MS APCI, m/z=351 (M+H)
- HPLC 1.65 min.
- To a stirred solution of 3-[4-amino-3-(propylcarbamoyl)cinnolin-8-yl]benzoic acid (67 mg, 0.191 mmol) dissolved in anhydrous DMF (2 mL) at ambient temperature under argon was added azetidine (16.4 mg, 0.287 mmol), N-methylmorpholine (29 mg, 0.287 mmol), 1-hydroxybenzotriazole (44 mg, 0.287 mmol) and N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (55 mg, 0.287 mmol). The mixture was stirred at ambient temperature for 19 hours then diluted with water and extracted with ethyl acetate. The residue from the organic extracts was purified by flash chromatography on silica gel eluting with increasingly polar gradient of ethyl acetate in hexanes to afford the title compound (61 mg, 82% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.54 (br, 1H), 8.03-7.64 (m, 6H), 7.53 (t, J=7.7 Hz, 1H), 4.38 (br, 2H), 4.25 (br, 2H), 3.47 (apparent quartet, J=7.0 Hz, 2H), 2.34 (apparent pentet, J=7.5 Hz, 2H), 1.67 (apparent sextet, J=7.0 Hz, 2H), 1.01 (t, J=7.4 Hz, 3H)
- MS APCI, m/z=390 (M+H) HPLC 1.70 min.
- Using method C, 4-amino-8-iodo-N-propyl-cinnoline-3-carboxamide (178 mg, 0.500 mmol) and 2-(tributylstannyl)pyrazine (219 mg, 0.600 mmol) were reacted to afford the title compound (70 mg, 45% yield) as an off-white solid. 1H NMR (300 MHz, CDCl3) δ 9.41 (m, 1H), 8.74 (m, 1H), 8.61 (d, J=2.5 Hz, 1H), 8.54 (br, 1H), 8.22 (m, 1H), 7.99 (m, 1H), 7.85-7.78 (m, 1H), 3.48 (apparent quartet, J=7.0 Hz, 2H), 1.69 (apparent sextet, J=7.0 Hz, 2H), 1.20 (t, J=7.0 Hz, 3H). MS APCI, m/z=309 (M+H) HPLC 1.49 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (200 mg, 0.647 mmol) and pyridin-3-ylboronic acid (160 mg, 1.301 mmol) were reacted to afford the title compound (153 mg, 74% yield) as an off-white solid. 1H NMR (300 MHz, CDCl3) δ 8.89 (m, 1H), 8.68 (m, 1H), 8.54 (br, 1H), 8.13 (m, 1H), 7.93 (m, 1H), 7.85-7.73 (m, 2H), 7.44 (m, 1H), 3.47 (apparent quartet, J=7.0 Hz, 2H), 1.68 (apparent sextet, J=7.0 Hz, 2H), 1.01 (t, J=7.0 Hz, 3H). MS APCI, m/z=308 (M+H) HPLC 1.46 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 3-(methylsulfonyl)phenylboronic acid (200 mg, 1.000 mmol) were reacted to afford the title compound (155 mg, 83% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.51 (br, 1H), 8.21 (m, 1H), 8.11-7.67 (m, 6H), 3.45 (apparent quartet, J=7.0 Hz, 2H), 3.12 (s, 3H), 1.67 (apparent sextet, J=7.0 Hz, 2H), 1.01 (t, J=7.0 Hz, 3H). MS APCI, m/z=385 M+H)
- HPLC 1.75 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 3-cyanophenylboronic acid (147 mg, 1.000 mmol) were reacted to afford the title compound (138 mg, 86% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.54 (br, 1H), 8.06-7.89 (m, 3H), 7.85-7.69 (m, 3H), 7.65-7.57 (m, 1H), 3.47 (apparent quartet, J=7.0 Hz, 2H), 1.68 (apparent sextet, J=7.0 Hz, 2H), 1.01 (t, J=7.0 Hz, 3H). MS APCI, m/z=332 M+H)
- HPLC 1.93 min.
- Using method C, 4-amino-8-iodo-N-propyl-cinnoline-3-carboxamide (178 mg, 0.500 mmol) and 2-(tributylstannyl)pyridine (220 mg, 0.600 mmol) were reacted to afford the title compound (60 mg, 39% yield) as a yellow solid. 1H NMR (300 MHz, CDCl3) δ 8.79 (m, 1H), 8.52 (br, 1H), 8.26-8.21 (m, 1H), 8.14-8.09 (m, 1H), 8.05-7.98 (m, 1H), 7.88-7.75 (m, 2H), 7.34 (m, 1H), 3.47 (apparent quartet, J=7.0 Hz, 2H), 1.68 (apparent sextet, J=7.0 Hz, 2H), 1.01 (t, J=7.0 Hz, 3H). MS APCI, m/z=308 (M+H). HPLC 1.53 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 3,5-bis(trifluoromethyl)phenylboronic acid (258 mg, 1.000 mmol) were reacted to afford the title compound 200 mg, 94% yield as an off-white solid. 1H NMR (300 MHz, CDCl3) δ 8.50 (br, 1H), 8.13 (s, 2H), 7.99-7.93 (m, 2H), 7.84-7.73 (m, 2H), 3.47 (apparent quartet, J=7.0 Hz, 2H), 1.68 (apparent sextet, J=7.0 Hz, 2H), 1.01 (t, J=7.0 Hz, 3H). MS APCI, m/z=443 (M+H). HPLC 2.85 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (194 mg, 1.000 mmol) were reacted to afford the title compound (35 mg, 25% yield) as an off-white solid. 1H NMR (300 MHz, DMSO-d6) δ 12.97 (br, 1H), 9.20 (broad triplet, 1H), 8.48 (br, 2H), 8.23 (d, J=8.3 Hz, 1H), 8.14 (d, J=6.6 Hz, 1H), 7.70 (m, 1H), 3.32 (m, 2H), 1.62 (apparent sextet, J=7.0 Hz, 2H), 0.93 (t, J=7.0 Hz, 3H). MS APCI, m/z=297 (M+H). HPLC 1.43 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 2-chloro-5-(trifluoromethyl)phenylboronic acid (224 mg, 1.000 mmol) were reacted to afford the title compound (85 mg, 44% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.51 (br, 1H), 7.98 (m, 1H), 7.81-7.63 (m, 5H), 3.45 (apparent quartet, J=7.0 Hz, 2H), 1.65 (apparent sextet, J=7.0 Hz, 2H), 0.99 (t, J=7.0 Hz, 3H). MS APCI, m/z=409 (M+H). HPLC 2.46 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 2-methoxy-5-methyl-phenylboronic acid (166 mg, 1.000 mmol) were reacted to afford the title compound (141 mg, 83% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.56 (br, 1H), 7.88-7.82 (m, 1H), 7.76-7.65 (m, 2H), 7.22-7.12 (m, 2H), 6.93 (m, 1H), 3.67 (s, 3H), 3.45 (apparent q, J=7.0 Hz, 2H), 2.34 (s, 3H), 1.65 (apparent sextet, J=7.0 Hz, 2H), 0.99 (t, J=7.0 Hz, 3H). MS APCI, m/z=351 (M+H). HPLC 1.96 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 2-trifluororomethyl-phenylboronic acid (190 mg, 1.000 mmol) were reacted to afford the title compound (115 mg, 64% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.50 (br, 1H), 7.93 (m, 1H), 7.82 (m, 1H), 7.71 (m, 1H), 7.66-7.50 (m, 2H), 7.41 (m, 1 h), 3.43 (apparent quartet, J=7.0 Hz, 2H), 1.63 (apparent sextet, J=7.0 Hz, 2H), 0.98 (t, J=7.0 Hz, 3H). MS APCI, m/z=375 (M+H). HPLC 2.05 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 2-methoxy-5-chloro-phenylboronic acid (186 mg, 1.000 mmol) were reacted to afford the title compound (137 mg, 77% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.54 (br, 1H), 7.89 (m, 1H), 7.71 (m, 2H), 7.40-7.29 (m, 2H), 6.95 (m, 1H), 3.45 (apparent quartet, J=7.0 Hz, 2H), 1.65 (apparent sextet, J=7.0 Hz, 3H). MS APCI, m/z=371 (M+H). HPLC 2.00 min.
- Using method C, 4-amino-8-iodo-N-propyl-cinnoline-3-carboxamide (178 mg, 0.500 mmol) 4-(tributylstannyl)pyridine (220 mg, 0.600 mmol) were reacted to afford the title compound (47 mg, 30% yield) as a yellow solid. 1H NMR (300 MHz, CDCl3) δ 8.75 (m, 2H), 8.54 (br, 1H), 7.95 (m, 1H), 7.86-7.72 (m, 2H), 7.66 (m, 2H), 3.47 (apparent quartet, J=7.0 Hz, 2H), 1.68 (m, 2H), 1.01 (t, J=7.0 Hz, 3H). MS APCI, m/z=308 (M+H) HPLC 1.47 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 2,5-dichloro-phenylboronic acid (190 mg, 1.00 mmol) were reacted to afford the title compound (85 mg, 47% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.52 (br, 1H), 7.99-7.91 (m, 1H), 7.78-7.67 (m, 2H), 7.48-7.31 (m, 3H), 3.45 (apparent quartet, J=7.0 Hz, 2H), 1.65 (apparent sextet, J=7.0 Hz, 2H), 1.00 (t, J=7.0 Hz, 3H). MS APCI, m/z=375 (M+H). HPLC 2.24 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 2,5-difluoro-phenylboronic acid (160 mg, 1.00 mmol) were reacted to afford the title compound (116 mg, 70% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.54 (br, 1H), 7.97-7.91 (m, 1H), 7.83-7.69 (m, 2H), 7.27-7.05 (m, 3H), 3.46 (apparent quartet, J=7.0 Hz, 2H), 1.74-1.59 (m, 2H), 1.00 (t, J=7.0 Hz, 3H). MS APCI, m/z=343 (M+H). HPLC 2.01 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (212 mg, 1.020 mmol) were reacted to afford the title compound (123 mg, 82% yield) as a white solid.
- 1H NMR (300 MHz, CDCl3) δ 8.55 (br, 1H), 8.50 (s, 1H), 8.05 (s, 1H), 8.02-7.95 (m, 1H), 7.75-0.60 (m, 2H), 4.01 (s, 3H), 3.49 (apparent quartet, J=7.0 Hz, 2H), 1.71 (apparent sextet, J=7.0 Hz, 2H), 1.03 (t, J=7.0 Hz, 3H). MS APCI, m/z=311 (M+H). HPLC 1.56 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 2-fluoro-3-methoxy-phenylboronic acid (170 mg, 1.000 mmol) were reacted to afford the title compound (99 mg, 57% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.55 (br, 1H), 7.93 (m, 1H), 7.83-7.69 (m, 2H), 7.22-7.14 (m, 1H), 7.10-7.00 (m, 2H), 3.93 (s, 3H), 3.45 (apparent quartet, J=7.0 Hz, 2H), 1.65 (apparent sextet, J=7.0 Hz, 2H), 0.99 (t, J=7.0 Hz, 3H). MS APCI, m/z=355 (M+H). HPLC 1.74 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (200 mg, 0.647 mmol) and 1,3-dimethyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (288 mg, 1.297 mmol) were reacted to afford the title compound (45 mg, 21% yield) as a white solid.
- 1H NMR (300 MHz, CDCl3) δ 8.54 (br, 1H), 7.95 (m, 1H), 7.80-7.68 (m, 2H), 6.25 (s, 1H), 3.68 (s, 3H), 3.47 (apparent quartet, J=7.0 Hz, 2H), 2.35 (s, 3H), 1.67 (apparent sextet, J=7.0 Hz, 2H), 1.01 (t, J=7.0 Hz, 3H). MS APCI, m/z=325 (M+H). HPLC 1.55 min.
- This precursor was prepared according to the method of A. V. Ivanchatchenko as described in the Journal of Heterocyclic Chemistry (2004) vol. 41 p. 931
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 2-fluoro-5-(trifluoromethyl)phenylboronic acid (208 mg, 1.000 mmol) were reacted to afford the title compound (148 mg, 78% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.52 (br, 1H), 7.97 (m, 1H), 7.83-7.67 (m, 4H), 7.32 (m, 1H), 3.46 (apparent quartet, J=7.0 Hz, 2H), 1.66 (apparent sextet, J=7.0 Hz, 2H), 1.00 (t, J=7.0 Hz, 3H). MS APCI, m/z=393 (M+H). HPLC 2.30 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 2-fluoro-5-methyl-phenylboronic acid (154 mg, 1.000 mmol) were reacted to afford the title compound (127 mg, 77% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.56 (br, 1H), 7.91 (m, 1H), 7.81-7.68 (m, 2H), 7.28 (m, 1H), 7.24-7.17 (m, 1H), 7.13-7.05 (m, 1H), 3.45 (apparent quartet, J=7.0 Hz, 2H), 2.39 (s, 3H), 1.65 (apparent sextet, J=7.0 Hz, 2H), 1.00 (t, J=7.0 Hz, 3H). MS APCI, m/z=339 (M+H). HPLC 1.86 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 2-fluoro-4-methyl-phenylboronic acid (154 mg, 1.000 mmol) were reacted to afford the title compound (141 mg, 86% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.56 (br, 1H), 7.91 (m, 1H), 7.81-7.69 (m, 2H), 7.28 (m, 1H), 7.24-7.16 (m, 1H), 7.13-7.04 (m, 1H), 3.45 (apparent quartet, J=7.0 Hz, 2H), 2.39 (s, 3H), 1.65 (apparent sextet, J=7.0 Hz, 2H), 1.00 (t, J=7.0 Hz, 3H). MS APCI, m/z=339 (M+H). HPLC 1.86 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 5-fluoro-2-methyl-phenylboronic acid (154 mg, 1.000 mmol) were reacted to afford the title compound (142 mg, 86% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.53 (br, 1H), 7.91 (m, 1H), 7.77-7.63 (m, 2H), 7.26 (m, 1H), 7.07-6.97 (m, 2H), 3.45 (apparent quartet, J=7.0 Hz, 2H), 2.01 (s, 3H), 1.65 (apparent sextet, J=7.0 Hz, 2H), 0.99 (t, J=7.0 Hz, 3H). MS APCI, m/z=339 (M+H). HPLC 1.77 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 4-fluoro-2-methoxy-phenylboronic acid (170 mg, 1.000 mmol) were reacted to afford the title compound (143 mg, 83% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.55 (br, 1H), 7.87 (m, 1H), 7.74-7.67 (m, 2H), 7.34-7.27 (m, 1H), 6.83-6.72 (m, 2H), 3.69 (s, 3H), 3.45 (apparent quartet, J=7.0 Hz, 2H), 1.65 (apparent sextet, J=7.0 Hz, 2H), 0.99 (t, 3H, J=7.0 Hz). MS APCI, m/z=355 (M+H). HPLC 1.66 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 3-fluoro-4-methoxy-phenylboronic acid (170 mg, 1.000 mmol) were reacted to afford the title compound (135 mg, 78% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.57 (br, 1H), 7.88-7.66 (m, 3H), 7.52-7.41 (m, 2H), 7.10 (m, 1H), 3.96 (s, 3H), 3.47 (apparent quartet, J=7.0 Hz, 2H), 1.67 (apparent sextet, J=7.0 Hz, 2H), 1.01 (t, J=7.0 Hz, 3H).
- MS APCI, m/z=355 (M+H). HPLC 1.76 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 2-fluoro-6-methoxy-phenylboronic acid (170 mg, 1.000 mmol) were reacted to afford the title compound (73 mg, 42% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.54 (br, 1H), 7.93 (m, 1H), 7.78-7.69 (m, 2H), 7.42-7.31 (m, 1H), 6.89-6.80 (m, 2H), 3.70 (s, 3H), 3.44 (apparent quartet, J=7.0 Hz, 2H), 1.64 (apparent sextet, J=7.0 Hz, 2H), 0.99 (t, J=7.0 Hz, 3H). MS APCI, m/z=355 (M+H). HPLC 1.68 min.
-
- A 2 L, 3-necked flask equipped with a reflux condenser, mechanical stirrer, and 250 mL addition funnel was charged with 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (36.80 g, 119.09 mmol), 2-fluoro-6-methoxy-phenylboronic acid (60.70 g, 357.06 mmol), and Pd(dppf)Cl2.CH2Cl2 (7.40 g, 9.06 mmol) under Argon at ambient temperature. A gentle vacuum was applied and the apparatus was back-filled with Argon two times. Tetrahydrofuran (515 mL, anhydrous) and isopropanol (147 mL, anhydrous) were added and the resulting red suspension was stirred at room temperature for 15 minutes. A solution of sodium carbonate (57.0 g, 537.7 mmol) in water (220 mL) was added rapidly through the addition funnel and the resulting mixture immediately placed into a pre-heated 80° C. oil bath. After 90 minutes at reflux (observed internal temperature 65° C.), the reaction mixture was cooled to room temperature and filtered though a bed of Celite supported on a sintered glass funnel topped with Norite decolorizing carbon (30 g). The residual salts and filter-cake were washed with 4:1 (v/v) THF: isopropanol until no additional material could be detected in the eluent by TLC (silica gel, 1:1 (v/v) hexanes:ethyl acetate, UV detection, Rf=0.25). The dark red solution was concentrated to a small volume under reduced pressure and then diluted with ethyl acetate (250 mL). The organic phase was separated and the aqueous phase extracted with ethyl acetate (2×250 mL). The combined organic layers were washed with brine, dried over sodium sulfate, filtered and then concentrated under reduced pressure. The residues were passed through a small pad of silica gel on a sintered glass funnel washing with ethyl acetate until no more material was detected in the eluent. The solution was evaporated to afford the crude product as a foamy red-brown solid. This material was purified by flash chromatography on silica gel using a gradient of 40 to 50% ethyl acetate in hexanes. Product containing fractions were combined and evaporated. The residue was precipitated from dichloromethane by addition of hexanes at room temperature. Recrystallization of this material from hot 1:1 (v/v) ethanol: water afforded the title compound as off-white white crystals (32.78 g, 78% yield). Additional title compound (4.30 g, 10% yield) was isolated by processing the residues form the crystallization liquors through an acid-base extractive workup.
- 1H NMR (500.3 MHz, CDCl3) δ 8.54 (br, 1H), 7.90 (dd, J=8, 1 Hz, 1H), 7.75-7.67 (m, 2H), 7.37-7.31 (m, 1H), 6.86-6.80 (m, 2H), 3.69 (s, 3H), 3.44 (qd, J=7, 1 Hz, 2H), 1.64 (apparent sextet, J=7 Hz, 2H), 0.99 (t, J=7 Hz, 3H). The 4-Amino protons were not observable in the reported proton NMR spectra recorded at 30° C. due to severe broadening into the baseline. These protons can be clearly observed by recording the spectrum at −20° C. HRMS (C19H19FN4O2) Cal'd=355.1570, Observed=355.1531. HPLC 1.68 min.
- It is found that the titled compound can be separated into two atropisomers using Supercritical Fluid Chromatography. Generally, in supercritical CO2 modified with methanol, these atropisomers are stable and hence are separable on a chiral support. However, in aqueous media and acidic aqueous media, in particular, the atropisomers inter-conversion is greatly facilitated.
- Prepared according to the method described in the U.S. Pat. No. 4,886,800 example 35a.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 2-fluoro-5-methoxy-phenylboronic acid (170 mg, 1.000 mmol) were reacted to afford the title compound (142 mg, 83% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.56 (br, 1H), 7.92 (m, 1H), 7.82-7.69 (m, 2H), 7.12 (m, 1H), 7.02-6.89 (m, 2H), 3.81 (s, 3H), 3.45 (apparent quartet, J=7.0 Hz, 2H), 1.66 (apparent sextet, J=7.0 Hz, 2H), 1.00 (t, J=7.0 Hz, 3H). MS APCI, m/z=355 (M+H). HPLC 1.78 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 5-fluoro-2-methoxy-phenylboronic acid (170 mg, 1.000 mmol) were reacted to afford the title compound (140 mg, 81% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.54 (br, 1H), 7.89 (m, 1H), 7.75-7.67 (m, 2H), 7.14-7.04 (m, 2H), 6.99-6.92 (m, 1H), 3.67 (s, 3H), 3.45 (apparent quartet, J=7.0 Hz, 2H), 1.65 (apparent sextet, J=7.0 Hz, 2H), 1.00 (t, J=7.0 Hz, 3H). MS APCI, m/z=355 (M+H). HPLC 1.67 min.
- Using method F, 4-amino-8-iodo-N-propyl-cinnoline-3-carboxamide (178 mg, 0.50 mmol) and 4-methoxyphenylboronic acid (303 mg, 2.00 mmol) were reacted (reflux 14 hours) to afford the title compound (118 mg, 70% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ8.58 (bm, 1H), 7.69-7.83 (m, 3H), 7.62 (d, J=8.9 Hz, 2H), 7.05 (d, J=8.9 Hz, 2H), 3.87 (s, 3H), 3.45 (apparent q, J=6.6 Hz, 2H), 1.65 (apparent sextet, J=7.4 Hz, 2H), 1.00 (t, J=7.4 Hz, 3H).
- MS APCI, m/z=337 (M+H) HPLC 1.71 min.
- Using method F, 4-amino-8-iodo-N-propyl-cinnoline-3-carboxamide (178 mg, 0.50 mmol) and 4-fluorophenylboronic acid (280 mg, 2.00 mmol) were reacted (reflux 24 hours) to afford the title compound (76 mg, 47% yield) as a white solid. 1H NMR (300 MHz, CDCl3)) δ8.56 (bm, 1H), 7.86 (dd, J=7.7 Hz, 1H), 7.65-7.80 (m, 4H), 7.19 (t, J=8.6 Hz, 2H), 3.45 (apparent q, J=6.6 Hz, 2H), 1.67 (apparent sextet, J=7.4 Hz, 2H), 1.01 (t, J=7.4 Hz, 3H).
- MS APCI, m/z=325 (M+H) HPLC 1.74 min.
- Using method F, 4-amino-8-iodo-N-propyl-cinnoline-3-carboxamide (178 mg, 0.42 mmol) and 4-trifluoromethylphenylboronic acid (347 mg, 1.68 mmol) were reacted (reflux 16 hours) to afford the title compound (119 mg, 73% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ8.56 (bs, 1H), 7.90 (dd, J=7.9, 1.5 Hz, 1H), 7.71-7.82 (m, 4H), 7.35 (d, J=8.3 Hz, 2H), 3.45 (apparent q, J=6.8 Hz, 2H), 1.67 (apparent sextet, J=7.3 Hz, 2H), 1.01 (t, J=7.3 Hz, 3H).
- MS APCI, m/z=391 (M+H) HPLC 2.21 min.
- Using method F, 4-amino-8-iodo-N-propyl-cinnoline-3-carboxamide (178 mg, 0.42 mmol) and 3-trifluoromethylphenylboronic acid (347 mg, 1.68 mmol) were reacted (reflux 16 hours) to afford the title compound (94 mg, 57% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ8.56 (bs, 1H), 7.90 (d, J=8.3, 1H), 7.71-7.81 (m, 2H), 7.67 (d, J=7.9, 1H), 7.49-7.57 (m, 2H), 7.28 (m, 1H), 3.47 (apparent q, J=6.7 Hz, 2H), 1.67 (apparent sextet, J=7.3 Hz, 2H), 1.01 (t, J=7.4 Hz, 3H). MS APCI, m/z=391 (M+H) HPLC 2.20 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.49 mmol) and (6-methoxypyridin-3-yl)boronic acid (153 mg, 1.00 mmol) were reacted to afford the title compound (117 mg, 72% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ8.55 (bs, 1H), 8.43 (d, J=1.65 Hz, 1H), 8.05 (dd, J=8.5, 1.9 Hz, 1H), 7.87 (d, J=7.9 Hz, 1H), 7.71-7.81 (m, 2H), 6.89 (d, J=8.5 Hz, 1H), 4.01 (s, 3H), 3.46 (apparent q, J=6.6 Hz, 2H), 1.67 (apparent sextet, J=7.2 Hz, 2H), 1.01 (t, J=7.4 Hz, 3H). MS APCI, m/z=338 (M+H) HPLC 1.73 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (125 mg, 0.40 mmol) and (4-methoxy-3,5-dimethylphenyl)boronic acid (144 mg, 0.80 mmol) were reacted to afford the title compound (121 mg, 82% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ8.57 (bs, 1H), 7.66-7.85 (m, 3H), 7.32 (s, 2H), 3.78 (s, 3H), 3.46 (apparent q, J=6.6 Hz, 2H), 2.36 (s, 6H), 1.67 (apparent sextet, J=7.2 Hz, 2H), 1.01 (t, J=7.4 Hz, 3H). MS APCI, m/z=365 (M+H) HPLC 2.08 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (125 mg, 0.40 mmol) and (4-methoxy-3-methylphenyl)boronic acid (133 mg, 0.80 mmol) were reacted to afford the title compound (105 mg, 75% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ8.59 (bs, 1H), 7.76-7.82 (m, 2H), 7.67-7.72 (m, 1H), 7.53 (dd, J=8.2, 2.2 Hz, 1H), 7.46 (m, 1H), 6.96 (d, J=8.2, 1H), 3.89 (s, 3H), 3.46 (apparent q, J=6.7 Hz, 2H), 2.30 (s, 3H), 1.67 (apparent sextet, J=7.2 Hz, 2H), 1.00 (t, J=7.4 Hz, 3H). MS APCI, m/z=351 (M+H) HPLC 1.88 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (125 mg, 0.40 mmol) and (2-fluoro-4-methoxyphenyl)boronic acid (136 mg, 0.80 mmol) were reacted to afford the title compound (93 mg, 66% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ8.56 (bs, 1H), 7.88 (dd, J=8.2, 1.5 Hz, 1H), 7.69-7.77 (m, 2H), 7.43 (t, J=8.3 Hz, 1H), 6.76-6.86 (m, 2H), 3.86 (s, 3H), 3.45 (apparent q, J=6.6 Hz, 2H), 1.65 (apparent sextet, J=7.2 Hz, 2H), 1.00 (t, J=7.4 Hz, 3H). MS APCI, m/z=355 (M+H) HPLC 1.79 min.
- Using method C, 4-amino-8-iodo-N-propyl-cinnoline-3-carboxamide (178 mg, 0.500 mmol) and 2-methyl-5-(trimethylstannyl)pyridine (270 mg, 1.058 mmol) were reacted to afford the title compound (123 mg, 76% yield). 1H NMR (300 MHz, CDCl3) δ 8.75 (bs, 1H), 8.55 (br, 1H), 8.03 (m, 1H), 7.910 (m, 1H), 7.84-7.70 (m, 2H), 7.30 (m, 1H), 3.47 (apparent quartet, J=7.0 Hz, 2H), 2.64 (s, 3H), 1.67 (apparent sextet, J=7.0 Hz, 2H), 1.01 (t, J=7.0 Hz, 3H).
- MS APCI, m/z=322 (M+H). HPLC 1.41 min.
- Prepared according to the method described by Li et. al., J. Med. Chem., 1996, 39, 1846-1856.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and (4-methylpyridin-3-yl)boronic acid (274 mg, 2.000 mmol) were reacted to afford the title compound (134 mg, 86% yield). 1H NMR (300 MHz, CDCl3) δ 8.59-8.45 (m, 3H), 7.98-7.92 (m, 1H), 7.80-7.66 (m, 2H), 7.27 (m, 1H), 3.44 (m, 2H), 2.11 (s, 3H), 1.65 (m, 2H), 1.00 (t, J=7.0 Hz, 3H). MS APCI, m/z=322 (M+H). HPLC 1.27 min.
- Using method A, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.485 mmol) and 5-methoxy-2-methyl-phenylboronic acid (125 mg, 1.000 mmol) were reacted to afford the title compound (125 mg, 73% yield). 1H NMR (300 MHz, CDCl3) δ 8.55 (br, 1H), 7.88 (m, 1H), 7.76-7.64 (m, 2H), 7.21 (m, 1H), 6.92-6.81 (m, 2H), 3.79 (s, 3H), 3.45 (apparent quartet, J=7.0 Hz, 2H), 1.97 (s, 3H), 1.65 (apparent sextet, J=7.0 Hz, 2H), 0.99 (t, J=7.0 Hz, 3H). MS APCI, m/z=351 (M+H). HPLC 1.77 min.
- Synthetic Scheme for Making Compound 78:
- A 2 L, 3-necked flask equipped with a mechanical stirrer was charged with 4-amino-7-fluoro-8-iodo-N-propylcinnoline-3-carboxamide (40.5 g, 108.2 mmol), DME (700 mL, anhydrous), and ethanol (200 mL, absolute). A nitrogen dispersion tube was fitted into the suspension and the mixture was stirred until a solution was obtained. Water (300 mL) and PdCl2(PPh3)2 (7.6 g, 10 mol %) were added. After 5 minutes, 2,4-dimethoxyphenyl boronic acid (39.4 g, 216.5 mmol) was added followed by cesium carbonate (70.3 g, 216.5 mmol). Nitrogen was bubbled through the suspension for 5 minutes. The mixture was heated to approximately 80° C. Additional 7:3:2 DME:H2O:EtOH (340 mL) was added as the reflux started. The reaction was refluxed 18 hours and then cooled to room temperature, diluted with ethyl acetate (1.5 L), and washed with water (3×500 mL). The aqueous layers were extracted with ethyl acetate (3×150 mL). The combined organic layers were stirred for 1 hour with 40 g of DARCO, dried over sodium sulfate, and filtered through Celite. The solids were washed with 5% methanol in chloroform (3×200 mL) and the filtrates concentrated to a dark semisolid. This was taken up in 200 mL 1% methanol in chloroform and warmed to solubilize the material. The solution was divided into two portions. Each portion was filtered through Whatman fluted filter paper onto a 330 g silica gel column and eluted with 5% ethyl acetate in dichloromethane. (Note: Some solid catalyst appeared to be removed via the filter paper.) The purest fractions from each column were combined in 5-10% ethyl acetate in dichloromethane. The solution was concentrated to approximately 200 mL, diluted with hexane (200 mL), and let stand at room temperature overnight. The resulting solids were isolated by filtration, washed with ether (3 times), and dried under vacuum at room temperature to afford the desired product (26.4 g, 63%). 1H NMR (500.333 MHz, CDCl3) δ 8.51 (bs, 1H), 7.86 (dd, J=9.4, 5.2 Hz, 1H), 7.50 (t, J=8.8 Hz, 1H), 7.27 (d, J=9.2, 1H), 6.66 (dd, J=8.2, 2.3 Hz, 1H), 6.63 (d, J=2.3 Hz, 1H), 3.87 (s, 3H), 3.71 (s, 3H), 3.44 (q, J=6.7 Hz, 2H), 1.64 (sextet, J=7.3 Hz, 2H), 0.99 (t, J=7.4 Hz, 3H). MS APCI, m/z=385 (M+H). HPLC: 2.61 min.
- To a 1 L, 3-necked flask equipped with a mechanical stirrer charged with (2E)-2-cyano-2-[(3-fluoro-2-iodophenyl)hydrazono]-N-propylacetamide (43.9 g, 117 mmol) in anhydrous toluene (Aldrich, 600 mL) under N2 was added portion-wise aluminum chloride (Aldrich, 46.8 g, 352 mmol) over 20 minutes. The mixture was heated to 60° C. with vigorous stirring for 2 hours then cooled to 15° C. Ethyl acetate (30 mL) was carefully added while maintaining the internal temperature between 20-25° C. Additional ethyl acetate (900 mL) was then added, followed by careful addition of Rochelle's salt (saturated aqueous potassium sodium tartrate, 500 mL). Upon addition of the first 50 mL, the temperature rose from 20 to 36° C. The reaction was heated with stirring at 60° C. for 30 minutes. The aqueous layer contained a thick white precipitate and the organic layer slowly solubilized the brownish yellow solid. (Note: If a non-white (brown/yellow) solid still existed at the aqueous/organic interface, the hot extraction was repeated). The mixture was placed in a separatory funnel and the aqueous layer was removed. The organic layer was washed with Rochelle's salt (500 mL), washed with brine, dried over magnesium sulfate, filtered and concentrated to give 38 g slightly crude product (86.5%). Further purification by trituration with ethyl acetate/hexanes was carried out when appropriate. An analytically pure sample was obtained by recrystallization from ethyl acetate. 1H NMR (300 MHz, CDCl3) δ 8.54 (br, 1H), 7.84 (dd, J=5.3, 9.2 Hz, 1H), 7.39 (dd, J=7.0, 9.2 Hz, 1H), 3.47 (apparent q, J=7.0 Hz, 2H), 1.68 (apparent sextet, J=7.0 Hz, 2H), 1.03 (t, J=7.4 Hz, 3H). MS APCI, m/z=375 (M+H). HPLC 2.13 min.
- Using the procedure outlined in the U.S. Pat. No. 4,886,800 example 89b substituting 3-fluoro-2-iodoaniline hydrochloride (8.8 g, 32.5 mmol) for 2-iodoaniline, the title compound (2E)-2-cyano-2-[(3-fluoro-2-iodophenyl)hydrazono]-N-propylacetamide was obtained as a light brown solid (8.5 g, 70% yield). An analytically pure sample was obtained by recrystallization from ethyl acetate as a yellow crystalline solid.
- 1H NMR (300 MHz, CDCl3) δ 14.39, (s, 1H), 8.67 (bm, 1H), 7.45 (m, 1H), 7.32 (m, 1H), 7.03 (m, 1H), 3.1 (apparent q, J=6.6 Hz, 2H), 1.53 (apparent sextet, J=7.4 Hz, 2H), 0.88 (t, J=7.4 Hz, 3H).
- To a 1 L, 3 necked round bottom flask fitted with a mechanical stirrer was added 3-fluoro-2-iodonitrobenzene (3B Medical, 47.7 g, 179 mmol) and 500 mL absolute ethanol. To this stirred solution was added iron powder (325 mesh, Aldrich, 30 g, 537 mmol) followed by dropwise addition of concentrated HCl (30 mL, 360 mmol). The internal temperature rose from 23 to −60° C. over the addition. The flask was fitted with a heating mantle and heated with vigorous stirring for 90 minutes. After cooling to room temperature, 1 N Na2CO3 (300 mL) was added followed by EtOAc (200 mL). The mixture was stirred for 30 minutes and then filtered through a pad of Celite. The Celite was washed with EtOAc (3×150 mL). The filtrates were placed in a separatory funnel and the water layer was removed. The organic layer was concentrated under reduced pressure to reduce volume to ˜200 mL, placed in a separatory funnel, diluted with EtOAc (400 mL), washed organic with brine, dried over sodium sulfate, filtered and concentrated to dryness. The crude product was taken up in ether (300 mL) and made acidic to pH 1 with 2M HCl/ether (Aldrich). After 1 hour, the tan solid was isolated by filtration (39.2 g, 80%). The above aqueous layers were extracted with diethyl ether (300 mL), dried over sodium sulfate, combined with the filtrate of the 1st crop, made acidic to pH 1, and isolated as above to give additional tan solid (9.0 g, 18%) for an overall yield of 98%. 1H NMR (300 MHz, CDCl3) δ 7.06 (m, 1H), 6.58 (m, 1H), 6.39 (m, 1H), 5.73 (bm, 1H). MS APCI, m/z=238 (M+H). HPLC 2.19 min.
- It is found that the title compound may form isolable atropisomers in certain organic solvents (e.g. 25-35% methanol) at room temperature. The two atropisomers of the title compound may be isolated using chiral LC. However, these isomers will racimize rapidly under neutral or acidic aqueous solutions.
- The title compound was prepared from 4-amino-7-fluoro-8-iodo-N-propylcinnoline-3-carboxamide (200 mg, 0.535 mmol) and 2,5-dimethoxyphenyl boronic acid (194 mg, 1.07 mmol) according to Method A. The off-white solid from chromatography was slurried in ether, filtered and dried under vacuum at room temperature to afford the desired product (147 mg, 71%). 1H NMR (300.132 MHz, CDCl3) δ 8.50 (t, J=4.7 Hz, 1H), 7.89 (dd, J=9.3, 5.1 Hz, 1H), 7.52 (t, J=8.8 Hz, 1H), 6.98 (m, 2H), 6.91 (dd, J=2.4, 0.9 Hz, 1H), 3.79 (s, 3H), 3.67 (s, 3H), 3.44 (q, J=6.7 Hz, 2H), 1.64 (sextet, J=7.3 Hz, 2H), 0.99 (t, J=7.4 Hz, 3H). MS APCI, m/z=385 (M+H). HPLC 2.62 min.
- The title compound was prepared from 4-amino-7-fluoro-8-iodo-N-propylcinnoline-3-carboxamide (220 mg, 58.8 mmol) and 2,4-dimethoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyrimidine (312 mg, 1.62 mmol) according to Method B to afford a white solid (123 mg, 54%). 1H NMR (300.132 MHz, CDCl3) δ 8.47 (t, J=5.4 Hz, 1H), 8.32 (s, 1H), 7.93 (dd, J=9.1, 5.2 Hz, 1H), 7.53 (dd, J=9.2, 8.4 Hz, 1H), 4.07 (s, 3H), 3.94 (s, 3H), 3.45 (q, J=6.7 Hz, 2H), 1.66 (sextet, J=7.3 Hz, 2H), 1.00 (t, J=7.4 Hz, 3H). MS APCI, m/z=387 (M+H). HPLC 1.87 min.
- The title compound was prepared from 4-amino-8-bromo-N-ethyl-cinnoline-3-carboxamide (70.0 mg, 0.237 mmol) and 4-methoxy-3-pyridine boronic acid (153.0 mg, 0.3439 mmol) according to Method A except that the extraction was carried out with methylene chloride rather than ethyl acetate and the flash column was eluted with a gradient of 10 to 60% methanol in dichloromethane. The concentrated product was then recrystallized from chloroform (with a few drops of methanol) and hexanes to afford the title compound as a yellow solid (19.6 mg, 26% yield). 1H NMR (300.132 MHz, CDCl3) δ 8.58 (d, J=5.7 Hz, 1H), 8.52-8.43 (bm, 1H), 8.46 (s, 1H), 7.92 (app quintet, J=4.0 Hz, 1H), 7.74 (dd, J=4.9, 0.9 Hz, 2H), 6.96 (d, J=5.8 Hz, 1H), 3.78 (s, 3H), 3.53 (dq, J=5.8, 7.3, Hz, 2H), 1.27 (t, J=7.3 Hz, 3H). MS APCI, m/z=324 (M+H). HPLC 1.42 min.
- The title compound was prepared from 4-amino-8-bromo-N-butyl-cinnoline-3-carboxamide (100 mg, 0.31 mmol) and 2,5-dimethoxyphenyl boronic acid (112.6 mg, 0.62 mmol) according to Method A to afford a white solid (96.3 mg, 82%). 1H NMR 300.132 MHz, CDCl3) δ 8.54 (t, J=4.7 Hz, 1H), 7.86 (dd, J=7.6, 2.2 Hz, 1H), 6.96 (t, J=3.0 Hz, 1H), 6.96 (s, 1H), 6.93 (d, J=1.9 Hz, 1H), 7.76-7.68 (m, 2H), 3.79 (s, 3H), 3.64 (s, 3H), 3.48 (q, J=6.6 Hz, 2H), 1.61 (quintet, J=7.2 Hz, 2H), 1.43 (sextet, J=7.3 Hz, 2H), 0.94 (t, J=7.3 Hz, 3H). MS APCI, m/z=381.2 (M+H). HPLC 2.83 min.
- The title compound was prepared from 4-amino-8-bromo-N-ethyl-cinnoline-3-carboxamide (100.0 mg, 0.339 mmol) and 2,5-dimethoxyphenyl boronic acid (123.3 mg, 0.678 mmol) according to Method A. The solid obtained after chromatography was washed with diethyl ether and dried overnight at 40° C. to afford the title compound as a fluffy white solid (64.4 mg, 54% yield). 1H NMR (300.132 MHz, CDCl3) δ 8.51 (bt, J=5.2 Hz, 1H), 7.86 (dd, J=7.5, 2.1 Hz, 1H), 7.76-7.68 (m, 2H), 6.97-6.91 (m, 3H), 3.79 (s, 3H), 3.64 (s, 3H), 3.52 (dq, J=5.7, 7.3 Hz, 2H), 1.26 (t, J=7.3 Hz, 3H). MS APCI, m/z=353 (M+H). HPLC 2.41 min.
- The title compound was prepared from 4-amino-8-bromo-N-methyl-cinnoline-3-carboxamide (20.0 g, 63.1 mmol) and 2,5-dimethoxyphenyl boronic acid (22.3 g, 122.4 mmol) according to Method B except that potassium carbonate was used as the base and tetrahydrofuran:ethanol:water (1:1:1) was used as the solvent system. The reaction mixture was filtered and the yellow solids were slurried in 10% methanol in chloroform and filtered. The combined filtrates were concentrated to a solid, slurried in hot ethyl acetate, and filtered. The combined solids were further purified on silica gel using 5% methanol in chloroform as the eluent. A final crystallization from refluxing ethyl acetate followed by drying under high vacuum at 45° C. afforded the title compound as a light yellow solid (12.65 g, 59%). 1H NMR (500.333 MHz, DMSO) δ 9.07 (d, J=4.6 Hz, 1H), 8.39 (d, J=8.2 Hz, 1H), 7.76-7.70 (m, 2H), 7.03 (d, J=9.1 Hz, 1H), 6.97 (dd, J=8.9, 3.0 Hz, 1H), 6.87 (d, J=3.2 Hz, 1H), 3.73 (s, 3H), 3.55 (s, 3H), 2.86 (d, J=4.8 Hz, 3H). MS APCI, m/z=xx (M+H). HPLC 2.23 min. MP=279.1-279.8.
- The title compound was prepared from 4-amino-8-bromo-N-butyl-cinnoline-3-carboxamide (200.0 mg, 0.62 mmol) and 2,4-dimethoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyrimidine (987.9 mg, 3.72 mmol) according to Method B to afford a white solid (162.1 mg, 69%). 1H NMR (300.132 MHz, CDCl3) δ 8.49 (t, J=5.5 Hz, 1H), 8.33 (s, 1H), 7.90 (dd, J=7.6, 2.1 Hz, 1H), 7.77-7.69 (m, 3H), 4.07 (s, 3H), 3.93 (s, 3H), 3.50 (q, J=6.6 Hz, 2H), 1.63 (quintet, J=7.2 Hz, 2H), 1.44 (sextet, J=7.4 Hz, 2H), 0.95 (t, J=7.3 Hz, 3H). MS APCI, m/z=383.1 (M+H). HPLC 2.52 min.
- The title compound was prepared from 4-amino-8-bromo-N-ethyl-cinnoline-3-carboxamide (200.0 mg, 0.678 mmol) and 2,4-dimethoxyprimidine-5-boronic acid pinacol ester (363.1 mg, 1.362 mmol) according to Method B except that the reaction was heated at 90° C. to fully dissolve the starting materials. After 4 hours, additional 2,4-dimethoxyprimidine-5-boronic acid pinacol ester (363.1 mg, 1.362 mmol) was added and the reaction was refluxed overnight. A third addition of 2,4-dimethoxyprimidine-5-boronic acid pinacol ester (363.1 mg, 1.362 mmol) and an additional 5 mol % tetrakis(triphenylphospine) palladium (0) were required to force the reaction to completion. The reaction was then worked up as described in Method B using dichloromethane rather than ethyl acetate for the extraction and crystallizing the material obtained from the flash column from chloroform/hexanes to afford the title compound as a white solid (89.5 mg, 37%). 1H NMR (300.132 MHz, CDCl3) δ 8.47 (s, 1H), 8.32 (s, 1H), 7.90 (dd, J=7.6, 2.1 Hz, 1H), 7.78-7.70 (m, 2H), 4.07 (s, 3H), 3.93 (s, 3H), 3.53 (dq, J=5.7, 7.3 Hz, 2H), 1.28 (t, J=7.3 Hz, 3H). MS APCI, m/z=354 (M+H). HPLC 2.07 min.
- The title compound was prepared from 4-amino-8-bromo-cinnoline-3-carboxylic acid allylamide (273 mg, 0.89 mmol) and 2,5-dimethoxyphenyl boronic acid (201.1 mg, 1.11 mmol) according to Method A to afford an off-white solid (105 mg, 32%). 1H NMR (300.132 MHz, CDCl3) δ 8.64 (bs, 1H), 7.87 (d, J=7.3 Hz, 1H), 7.77-7.69 (m, 2H), 6.96 (t, J=2.8 Hz, 1H), 6.96 (s, 1H), 6.93 (d, J=1.8 Hz, 1H), 6.00-5.88 (m, 1H), 5.29 (dq, J=17.2, 1.6 Hz, 1H), 5.17 (dq, J=10.2, 1.4 Hz, 1H), 4.12 (tt, J=5.7, 1.6 Hz, 2H), 3.79 (s, 3H), 3.64 (s, 3H). MS APCI, m/z=365 (M+H). HPLC 1.76 min.
- To a suspension of 2-(biphenyl-2-yl-hydrazono)-2-cyano-N-cyclopropylmethylacetamide (1.9 g, 6.0 mmol) in anhydrous toluene (30 mL) was added aluminum chloride (1.72 g, 13.0 mmol). The mixture was heated at 70° C. for 1 hour, cooled to room temperature, and diluted with ethyl acetate (150 mL). Water was added dropwise until no further precipitate formed. Aqueous 10% sodium hydroxide (150 mL) was added and the layers were separated. The organic layer was washed with 10% sodium hydroxide (100 mL), water (100 mL), and brine (100 mL) and dried over sodium sulfate, filtered, and concentrated to a semisolid. The material was dissolved in chloroform and purified on silica gel to give 500 mg of material which was then recrystallized from ethyl acetate/hexanes and then from hot toluene (two times) to afford the pure product as a solid (117 mg, 6.2%). 1H NMR (500.133 MHz, CDCl3) δ 9.23 (t, J=5.3 Hz, 1H), 9.13 (bs, 1H), 8.43 (d, J=8.4 Hz, 1H), 8.17 (bs, 1H), 7.86 (d, J=7.1 Hz, 1H), 7.81 (td, J=7.7, 1.2 Hz, 1H), 7.71 (d, J=7.5 Hz, 2H), 7.49 (t, J=7.3 Hz, 2H), 7.43 (td, J=7.2, 0.9 Hz, 1H), 3.23 (t, J=6.3 Hz, 2H), 1.12 (t, J=5.6 Hz, 1H), 0.45 (dd, J=6.5, 1.5 Hz, 2H), 0.29 (d, J=4.4 Hz, 2H). MS APCI, m/z=319 (M+H). HPLC 1.83 min.
- The title compound was prepared from 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (450 mg, 1.46 mmol) and 3-methylphenyl boronic acid (408 mg, 3.00 mmol) according to Method A to afford an off-white solid (321 mg, 69%). 1H NMR (300.132 MHz, CDCl3) δ 8.58 (t, J=5.0 Hz, 1H), 7.85 (dd, J=8.3, 1.4 Hz, 1H), 7.79 (dd, J=7.3, 1.4 Hz, 1H), 7.71 (dd, J=8.1, 7.3 Hz, 1H), 7.50 (s, 1H), 7.48 (s, 2H), 7.39 (t, J=7.9 Hz, 1H), 7.23 (s, 1H), 3.46 (q, J=6.7 Hz, 2H), 2.44 (s, 3H), 1.67 (sextet, J=7.3 Hz, 2H), 1.00 (t, J=7.4 Hz, 3H). MS APCI, m/z=321 (M+H). HPLC 1.90 min.
- The title compound was prepared from 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (300.0 mg, 0.97 mmol) and 2-fluoro-6-methylpyridine-3-boronic acid (426.7 mg, 2.75 mmol) according to Method A to afford a white solid (124.2 mg, 38%). 1H NMR (300.132 MHz, CDCl3) δ 8.53 (bs, 1H), 7.94 (t, J=1.4 Hz, 1H), 7.92 (dt, J=8.6, 1.4 Hz, 1H), 7.89 (d, J=7.6 Hz, 1H), 7.83 (dt, J=7.1, 1.2 Hz, 1H), 7.74 (dd, J=8.8, 7.3 Hz, 1H), 7.19 (dd, J=7.4, 1.3 Hz, 1H), 3.46 (q, J=6.7 Hz, 2H), 2.59 (s, 3H), 1.66 (sextet, J=7.3 Hz, 2H), 1.00 (t, J=7.4 Hz, 3H). MS APCI, m/z=340 (M+H). HPLC 2.28 min.
- The title compound was prepared from 4-amino-7-fluoro-8-iodo-N-propylcinnoline-3-carboxamide (200.0 mg, 0.53 mmol) and 2-fluoro-5-methoxyphenyl boronic acid (181.7 mg, 1.07 mmol) according to Method A to afford a yellow crystalline solid (111.0 mg, 56%). 1H NMR (300.132 MHz, CDCl3) δ 8.49 (t, J=5.3 Hz, 1H), 7.91 (dd, J=9.3, 5.2 Hz, 1H), 7.52 (t, J=8.8 Hz, 1H), 7.16-7.07 (m, 2H), 6.98 (dd, J=9.1, 4.5 Hz, 1H), 3.70 (s, 3H), 3.44 (q, J=6.7 Hz, 2H), 1.64 (sextet, J=7.3 Hz, 2H), 0.99 (t, J=7.4 Hz, 3H). MS APCI, m/z=373 (M+H). HPLC 2.66 min.
- The title compound was prepared from 4-amino-7-fluoro-8-iodo-N-propylcinnoline-3-carboxamide (250 mg, 0.67 mmol) and 2-chloro-5-methoxyphenyl boronic acid (279 mg, 1.50 mmol) according to Method A to afford a solid (181 mg, 72%). 1H NMR (500.333 MHz, CDCl3) δ 8.41 (s, 1H), 7.90 (dd, J=9.1, 5.1 Hz, 1H), 7.49 (t, J=8.7 Hz, 1H), 7.41 (dd, J=6.9, 2.7 Hz, 1H), 6.94-6.92 (m, 2H), 3.79 (s, 3H), 3.44 (q, J=6.7 Hz, 2H), 1.65 (sextet, J=7.2 Hz, 2H), 0.99 (t, J=7.3 Hz, 3H). MS APCI, m/z=389/391 (M+H). HPLC 2.13 min.
- Using Method A, 4-amino-8-bromo-N-cyclopropyl-cinnoline-3-carboxamide (143 mg, 0.47 mmol) and 2,6-dimethoxypyridine-3-boronic acid (170 mg, 0.94 mmol) were reacted. After purification the title compound (132 mg, 77% yield) was obtained as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.03 (d, J=4.9 Hz, 1H), 8.38 (d, J=8.0 Hz, 1H), 7.76 (m, 2H), 7.67 (d, J=8.0 Hz, 1H), 6.48 (d, J=8.0 Hz, 1H), 3.93 (s, 3H), 3.77 (s, 3H), 2.96 (m, 1H), 0.70 (m, 4H). MS APCI, m/z=366.
- Using Method A, 4-amino-8-bromo-N-cyclopropyl-cinnoline-3-carboxamide (143 mg, 0.47 mmol) and 2-methoxy-5-methylphenylboronic acid (155 mg, 0.94 mmol) were reacted. After purification the title compound (120 mg, 74% yield) was obtained as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.00 (d, J=4.9 Hz, 1H), 8.38 (d, J=7.1 Hz, 1H), 7.74 (t, J=7.7 Hz, 1H), 7.68 (d, J=7.1 Hz, 1H), 7.19 (d, J=8.5 Hz, 1H), 7.06 (s, 1H), 6.98 (d, J=8.5 Hz, 1H), 3.57 (s, 3H), 2.96 (m, 1H), 2.28 (s, 3H), 0.70 (m, 4H). MS APCI, m/z=349.
- Using Method A, 4-amino-8-bromo-N-cyclopropyl-cinnoline-3-carboxamide (143 mg, 0.47 mmol) and 2,4-dimethoxyphenylboronic acid (171 mg, 0.94 mmol) were reacted. After purification the title compound (136 mg, 80% yield) was obtained as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.00 (d, J=4.8 Hz, 1H), 8.35 (d, J=8.4 Hz, 1H), 7.72 (t, J=7.7 Hz, 1H), 7.68 (ad, J=7.1 Hz, 1H), 7.18 (d, J=8.3 Hz, 1H), 6.66 (s, 1H), 6.59 (ad, J=8.3 Hz, 1H), 3.83 (s, 3H), 3.61 (s, 3H), 2.96 (m, 1H), 0.70 (m, 4H). MS APCI, m/z=365.
- Using Method A, 4-amino-8-bromo-N-cyclopropyl-cinnoline-3-carboxamide (143 mg, 0.47 mmol) and 2,4-dimethoxypyrimidine-5-boronic acid (171 mg, 0.94 mmol) were reacted. After purification the title compound (133 mg, 78% yield) was obtained as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.51 (bm, 1H), 8.31 (s, 1H), 7.89 (a dd, J=2.3, 7.4 Hz, 1H), 7.75 (m, 2H), 4.06 (s, 3H), 3.92 (s, 3H), 2.96 (m, 1H), 0.88 (m, 2H), 0.65 (m, 2H).
- MS APCI, m/z=367, HPLC 2.07 min
- Using Method A, 4-amino-8-bromo-N-cyclopropyl-cinnoline-3-carboxamide (100 mg, 0.33 mmol) and 2,5-dimethoxyphenylboronic acid (118 mg, 0.65 mmol) were reacted. After purification the title compound (101 mg, 85% yield) was obtained as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.56 (bm, 1H), 7.85 (a dd, J=2.2, 7.6 Hz, 1H), 7.73 (m, 2H), 6.95 (m, 2H), 6.91 (m, 1H), 3.77 (s, 3H), 3.63 (s, 3H), 2.96 (m, 1H), 0.88 (m, 2H), 0.65 (m, 2H). MS APCI, m/z=365, HPLC 2.42 min.
- Using Method A, 4-amino-8-bromo-N-ethyl-cinnoline-3-carboxamide and 2-fluoro-6-methoxy-phenyl boronic acid were reacted to afford the title compound as a off-white solid. 1H NMR (500 MHz, CDCl3) δ 8.50 (br, 1H), 7.90 (m, 1H), 7.74 (m, 2H), 7.36 (m, 1H), 6.84 (m, 2H), 3.70 (s, 3H), 3.52 (m, 2H), 1.25 (t, J=7.0 Hz, 3H). MS APCI, m/z=341 (M+H).
- Using Method G, 4-amino-8-bromo-7-fluoro-N-propyl-cinnoline-3-carboxamide and 2-fluoro-6-methoxy-phenyl boronic acid were reacted to afford the title compound as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.16 (br, 1H), 9.06 (m, 1H), 8.58 (m, 1H), 8.32 (br, 1H), 7.76 (m, 1H), 7.50 (m, 1H), 7.02 (m, 1H), 6.94 (m, 1H), 3.68 (s, 3H), 3.31-3.25 (m, 2H), 1.57 (m, 2H), 0.89 (t, J=7.0 Hz, 3H). MS APCI, m/z=373 (M+H).
- Using Method G, 4-amino-8-bromo-7-cyano-N-propyl-cinnoline-3-carboxamide and 2,4-dimethoxyphenyl boronic acid were reacted to afford the title compound as a white solid. 1H NMR (500 MHz, CDCl3) δ 8.51 (br, 1H), 7.87 (m, 2H), 7.27 (m, 1H), 6.66 (m, 2H), 3.88 (s, 3H), 3.74 (s, 3H), 3.45 (m, 2H), 1.64 (apparent sextet, 2H), 0.99 (t, J=7.0 Hz, 3H). MS APCI, m/z=392 (M+H).
- Using Method A, 4-amino-8-bromo-N-cyclobutyl-cinnoline-3-carboxamide (145 mg) and 2-fluoro-6-methoxy-phenyl boronic acid (191 mg) were reacted to afford the title compound (32 mg) as white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.20 (d, 1H), 8.44 (m, 1H), 7.76 (m, 2H), 7.44 (m, 1H), 6.99 (d, 1H), 6.90 (t, 1H), 4.49 (m, 1H), 3.65 (s, 3H), 2.26-2.10 (m, 4H), 1.72-1.62 (m, 2H). MS APCI, m/z=367 (M+H).
- Using Method H, 4-amino-8-bromo-N-cyclopropyl-cinnoline-3-carboxamide (120 mg, 0.39 mmol) and 2-fluoro-6-methoxyphenylboronic acid (250 mg, 1.47 mmol) were reacted (refluxed 2 hours). After purification the title compound (82 mg, 60% yield) was obtained as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.52 (bm, 1H), 7.93 (m, 1H), 7.75 (m, 1H), 7.36 (apparent q, J=7.0 Hz, 1H), 6.84 (m, 2H), 3.69 (s, 3H), 2.96 (m, 1H), 0.85 (m, 2H), 0.63 (m, 2H). MS APCI, m/z=353 (M+H) HPLC 1.74 min.
- Using Method G, 4-amino-8-bromo-N-propyl-cinnoline-3-carboxamide (600 mg) and 2-chloro-6-methoxy-phenylboronic acid (1051 mg) were reacted to afford the title compound (263 mg) as a off-white solid. 1H NMR (300 MHz, CDCl3) δ 8.55 (br, 1H), 7.94-7.88 (m, 1H), 7.79-7.65 (m, 2H), 7.37-7.29 (m, 1H), 7.15 (m, 1H), 6.94 (m, 1H), 3.65 (s, 3H), 3.44 (apparent quartet, J=7.0 Hz, 2H), 1.64 (apparent sextet, J=7.0 Hz, 2H), 0.99 (t, J=7.0 Hz, 3H). MS APCI, m/z=371 (M+H) HPLC 1.86 min.
- Using method A, 4-amino-7-fluoro-8-iodo-N-propyl-cinnoline-3-carboxamide (250 mg, 0.67 mmol) and (2-fluoro-3-methoxyphenyl)boronic acid (193.4 mg, 1.136 mmol) were reacted to afford the title compound (72.0 mg, 29% yield) as an off-white solid. 1H NMR (500 MHz, CDCl3) δ 8.49 (bs, 1H), 7.94 (d×d, J=4.9 Hz, J=9.2 Hz, 1H), 7.55 (t, J=8.5 Hz, 1H), 7.21 (m, 1H), 7.03-7.10 (m, 2H), 3.94 (s, 3H), 3.44 (q, J=6.7 Hz, J=13.4 Hz, 2H), 1.64 (apparent sextet, J=7.3 Hz, 2H), 0.98 (t, J=7.3 Hz, 3H). MS APCI, m/z=373 (M+H) HPLC 2.72 min.
- Using method A, 4-amino-7-fluoro-8-iodo-N-propyl-cinnoline-3-carboxamide (250 mg, 0.67 mmol) and (2-methoxy-4-fluorophenyl)boronic acid (227.1 mg, 1.336 mmol) were reacted to afford the title compound (131.7 mg, 53% yield) as an off-white solid. 1H NMR (500 MHz, CDCl3) δ 8.49 (bs, 1H), 7.89 (d×d, J=5.5 Hz, J=9.2 Hz, 1H), 7.52 (apparent triplet, J=8.9 Hz, 1H), 7.30 (m, 1H), 6.82 (d×d, J=2.4 Hz, J=8.5 Hz, 1H), 6.79 (d×d, J=2.4 Hz, J=12.8 Hz, 1H), 3.72 (s, 3H), 3.44 (q, J=6.7 Hz, J=13.4 Hz, 2H), 1.64 (apparent sextet, J=7.3 Hz, 2H), 0.99 (t, J=7.6 Hz, 3H). MS APCI, m/z=373 (M+H) HPLC 2.70 min.
- Using method A, 4-amino-7-fluoro-8-iodo-N-propyl-cinnoline-3-carboxamide (250.0 mg, 0.67 mmol) and (2-fluoro-4-methoxyphenyl)boronic acid (227.1 mg, 1.336 mmol) were reacted to afford the title compound (165.4 mg, 67% yield) as a white solid. 1H NMR (500 MHz, CDCl3) δ 8.51 (bs, 1H), 7.90 (d×d, J=5.5 Hz, J=9.2 Hz, 1H), 7.53 (apparent triplet, J=8.9 Hz, 1H), 7.41 (t, J=8.5 Hz, 1H), 6.86 (d×d, J=2.4 Hz, J=8.5 Hz, 1H), 6.80 (d×d, J=2.4 Hz, J=11.6 Hz, 1H), 3.87 (s, 3H), 3.44 (q, J=6.7 Hz, J=12.8 Hz, 2H), 1.65 (apparent sextet, J=7.3 Hz, 2H), 1.00 (t, J=7.3 Hz, 3H). MS APCI, m/z=373 (M+H) HPLC 2.78 min.
- Using method A, 4-amino-7-fluoro-8-iodo-N-propyl-cinnoline-3-carboxamide (300 mg, 0.80 mmol) and (2-methyl-5-fluorophenyl)boronic acid (246.8 mg, 1.60 mmol) were reacted to afford the title compound (164.7 mg, 58% yield) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.48 (bs, 1H), 7.93 (d×d, J=5.3 Hz, J=9.4 Hz, 1H), 7.54 (apparent t, J=8.6 Hz, 1H), 7.30 (d×d, J=5.6 Hz, J=8.3 Hz, 1H), 6.99-7.09 (m, 2H), 3.44 (apparent q, J=7.0 Hz, 2H), 2.03 (s, 3H), 1.64 (apparent sextet, J=7.4 Hz, 2H), 0.99 (t, J=7.4 Hz, 3H). MS APCI, m/z=357 (M+H) HPLC 2.78 min.
- Using method B, 4-amino-7-fluoro-8-iodo-N-propyl-cinnoline-3-carboxamide (150 mg, 0.40 mmol) and (2,5-difluorophenyl)boronic acid (519.0 mg, 3.29 mmol) were reacted to afford the title compound (50.5 mg, 35% yield) as an off-white solid. 1H NMR (300 MHz, CDCl3) δ 8.48 (bs, 1H), 7.96 (d×d, J=5.3 Hz, J=9.3 Hz, 1H), 7.55 (t, J=9.1 Hz, 1H), 7.13-7.23 (m, 3H), 3.45 (apparent q, J=6.9 Hz, J=13.1 Hz, 2H), 1.65 (apparent sextet, J=7.3 Hz, 2H), 1.00 (t, J=7.4 Hz, 3H). MS APCI, m/z=361 (M+H) HPLC 2.98 min.
- Using Method A, 4-amino-8-bromo-7-fluoro-N-cyclobutyl-cinnoline-3-carboxamide (175 mg) and 2-methoxy-5-methyl-phenyl boronic acid (187 mg) were reacted to afford the title compound (128 mg) as white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.18 (d, 1H), 8.50 (m, 1H), 7.71 (m, 1H), 7.24 (m, 1H), 7.07 (m, 1H), 7.03 (m, 1H), 4.49 (m, 1H), 3.61 (s, 3H), 2.29 (s, 3H), 2.26-2.10 (m, 4H), 1.72-1.62 (m, 2H). MS APCI, m/z=381 (M+H).
- Using Method A, 4-amino-8-bromo-7-fluoro-N-cyclobutyl-cinnoline-3-carboxamide (175 mg) and 5-fluoro-2-methoxy-phenyl boronic acid (191 mg) were reacted to afford the title compound (141 mg) as white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.21 (d, 1H), 8.53 (m, 1H), 7.74 (m, 1H), 7.28 (m, 1H), 7.17 (m, 2H), 4.49 (m, 1H), 3.64 (s, 3H), 2.26-2.10 (m, 4H), 1.72-1.62 (m, 2H). MS APCI, m/z=385 (M+H).
- Using Method A, 4-amino-8-bromo-7-fluoro-N-cyclobutyl-cinnoline-3-carboxamide (175 mg) and 2,4-dimethoxy-phenyl boronic acid (205 mg) were reacted to afford the title compound (133 mg) as white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.20 (d, 1H), 8.47 (m, 1H), 7.70 (m, 1H), 7.18 (m, 1H), 6.70 (m, 1H), 6.64 (m, 1H), 4.49 (m, 1H), 3.85 (s, 3H), 3.65 (s, 3H), 2.26-2.10 (m, 4H), 1.72-1.62 (m, 2H). MS APCI, m/z=397 (M+H).
- Using Method A, 4-amino-8-bromo-7-fluoro-N-cyclobutyl-cinnoline-3-carboxamide (175 mg) and 2,4-dimethoxypyrimidin-5-yl boronic acid (207 mg) were reacted to afford the title compound (88 mg) as white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.24 (d, 1H), 8.57 (m, 1H), 8.38 (s, 1H), 7.77 (m, 1H), 4.49 (m, 1H), 4.00 (s, 3H), 3.84 (s, 3H), 2.26-2.10 (m, 4H), 1.72-1.62 (m, 2H). MS APCI, m/z=399 (M+H).
- Using Method A, 4-amino-8-bromo-7-fluoro-N-cyclobutyl-cinnoline-3-carboxamide (175 mg) and 2,6-dimethoxypyridin-3-yl boronic acid (206 mg) were reacted to afford the title compound (122 mg) as white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.22 (d, 1H), 8.50 (m, 1H), 7.73 (t, 1H), 7.67 (d, 1H), 6.53 (d, 1H), 4.49 (m, 1H), 3.95 (s, 3H), 3.80 (s, 3H), 2.26-2.10 (m, 4H), 1.72-1.62 (m, 2H). MS APCI, m/z=398 (M+H).
- Using Method A, 4-amino-8-bromo-N-cyclobutyl-cinnoline-3-carboxamide (145 mg) and 2-methoxy-5-methyl-phenyl boronic acid (186 mg) were reacted to afford the title compound (94 mg) as white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.20 (d, 1H), 8.38 (d, 1H), 7.76-7.66 (m, 2H), 7.20 (m, 1H), 7.07 (m, 1H), 7.00 (m, 1H), 4.50 (m, 1H), 3.58 (s, 3H), 2.29 (s, 3H), 2.26-2.10 (m, 4H), 1.72-1.62 (m, 2H). MS APCI, m/z=363 (M+H).
- Using Method A, 4-amino-8-bromo-N-cyclobutyl-cinnoline-3-carboxamide (145 mg) and 4-methoxypyridin-3-yl boronic acid (172 mg) were reacted to afford the title compound (31 mg) as white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.24 (d, 1H), 8.52 (m, 1H), 8.44 (m, 1H), 8.33 (s, 1H), 7.78 (m, 2H), 7.18 (d, 1H), 4.49 (m, 1H), 3.72 (s, 3H), 2.26-2.10 (m, 4H), 1.72-1.62 (m, 2H). MS APCI, m/z=350 (M+H).
- Using Method A, 4-amino-8-bromo-N-cyclobutyl-cinnoline-3-carboxamide (145 mg) and 3,5-dimethylphenyl boronic acid (169 mg) were reacted to afford the title compound (59 mg) as white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.31 (d, 1H), 8.38 (d, 1H), 7.78 (m, 2H), 7.28 (s, 2H), 7.06 (s, 1H), 4.52 (m, 1H), 2.35 (s, 6H), 2.26-2.10 (m, 4H), 1.72-1.62 (m, 2H). MS APCI, m/z=347 (M+H).
- Using Method A, 4-amino-8-bromo-N-cyclobutyl-cinnoline-3-carboxamide (145 mg) and 4-chlorophenyl boronic acid (176 mg) were reacted to afford the title compound (112 mg) as white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.31 (d, 1H), 8.43 (d, 1H), 7.86 (m, 1H), 7.79 (m, 1H), 7.73 (m, 2H), 7.54 (m, 2H), 4.52 (m, 1H), 2.26-2.10 (m, 4H), 1.72-1.62 (m, 2H). MS APCI, m/z=353 (M+H).
- Using Method A, 4-amino-8-bromo-N-cyclopropyl-cinnoline-3-carboxamide (61 mg, 0.20 mmol) and 2-fluoro-6-methylpyridine-3-boronic acid (62 mg, 0.36 mmol) were reacted. After purification the title compound (41 mg, 60% yield) was obtained as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.52 (bm, 1H), 7.92 (a t, J=7.5 Hz, 2H), 7.85 (m, 1H), 7.75 (at, J=7.7 Hz, 1H), 7.18 (a d, J=7.5 Hz, 1H), 2.96 (m, 1H), 2.58 (s, 3H), 0.88 (m, 2H), 0.65 (m, 2H). MS APCI, m/z=338, HPLC 2.17 min.
- Using Method A, 4-amino-7-fluoro-8-iodo-N-cyclopropyl-cinnoline-3-carboxamide (175 mg, 0.48 mmol) and 5-fluoro-6-methoxypyridine-3-boronic acid (162 mg, 0.96 mmol) were reacted. After purification the title compound (106 mg, 61% yield) was obtained as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.48 (bm, 1H), 8.15 (m, 1H), 7.92 (a dd, J=5.2, 9.0 Hz, 1H), 7.65 (a d, J=10.7 Hz, 1H), 7.56 (a t, J=9.0 Hz, 1H), 4.10 (s, 3H), 2.96 (m, 1H), 0.88 (m, 2H), 0.65 (m, 2H). MS APCI, m/z=372, HPLC 2.59 min.
- Using Method A, 4-amino-7-fluoro-8-iodo-N-cyclopropyl-cinnoline-3-carboxamide (188 mg, 0.50 mmol) and 2-methoxypyridine-3-boronic acid (155 mg, 1.01 mmol) were reacted. After purification the title compound (110 mg, 62% yield) was obtained as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.48 (bm, 1H), 8.29 (ad, J=5.0 Hz, 1H), 7.91 (a dd, J=5.2, 9.2 Hz, 1H), 7.67 (a d, J=7.3 Hz, 1H), 7.56 (a t, J=8.9 Hz, 1H), 7.05 (a dd, J=5.0, 7.3 Hz, 1H), 3.88 (s, 3H), 2.96 (m, 1H), 0.88 (m, 2H), 0.65 (m, 2H). MS APCI, m/z=354, HPLC 2.23 min.
- Using Method A, 4-amino-8-bromo-N-cyclopropyl-cinnoline-3-carboxamide (143 mg, 0.47 mmol) and 4-methylpyridine-3-boronic acid (128 mg, 0.94 mmol) were reacted. After purification the title compound (96 mg, 64% yield) was obtained as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.53 (d, J=5.0 Hz, 1H), 8.50 (bm, 1H), 8.47 (s, 1H), 7.95 (a d, J=8.3 Hz, 1H), 7.77 (t, J=7.7 Hz, 1H), 7.69 (apparent d, J=7.0 Hz, 1H), 2.96 (m, 1H), 2.10 (s, 3H), 0.88 (m, 2H), 0.62 (m, 2H). MS APCI, m/z=320, HPLC 1.55 min.
- Using Method A, 4-amino-7-fluoro-8-iodo-N-cyclopropyl-cinnoline-3-carboxamide (178 mg, 0.48 mmol) and 4-methylpyridine-3-boronic acid (150 mg, 0.96 mmol) were reacted. After purification the title compound (100 mg, 62% yield) was obtained as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.56 (d, J=5.1 Hz, 1H), 8.47 (s, 1H), 8.46 (bm, 1H), 7.99 (a dd, J=5.2, 9.2 Hz, 1H), 7.58 (t, J=8.7 Hz, 1H), 7.30 (d, J=5.0 Hz, 1H), 2.96 (m, 1H), 2.11 (s, 3H), 0.88 (m, 2H), 0.65 (m, 2H). MS APCI, m/z=338, HPLC 1.68 min.
- Using Method A, 4-amino-7-fluoro-8-iodo-N-cyclopropyl-cinnoline-3-carboxamide (178 mg, 0.48 mmol) and 2,6-dimethoxypyridine-3-boronic acid (176 mg, 0.96 mmol) were reacted. After purification the title compound (124 mg, 67% yield) was obtained as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.02 (d, J=4.8 Hz, 1H), 8.51 (m, 1H), 7.73 (t, J=9.1 Hz, 1H), 7.66 (d, J=8.0 Hz, 1H), 6.51 (d, J=8.0 Hz, 1H), 3.94 (s, 3H), 3.78 (s, 3H), 2.93 (m, 1H), 0.70 (m, 4H). MS APCI, m/z=384.
- Using Method A, 4-amino-7-fluoro-8-iodo-N-cyclopropyl-cinnoline-3-carboxamide (178 mg, 0.48 mmol) and 6-methylpyridine-3-boronic acid (150 mg, 0.96 mmol) were reacted. After purification the title compound (18 mg, 11% yield) was obtained as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.05 (d, J=4.8 Hz, 1H), 8.58 (s, 1H), 8.56 (dd, J=5.6, 9.3 Hz, 1H), 7.86 (ad, J=8.1 Hz, 1H), 7.80 (t, J=9.3 Hz, 1H), 7.39 (d, J=8.0 Hz, 1H), 2.96 (m, 1H), 2.56 (s, 3H), 0.70 (m, 4H). MS APCI, m/z=338.
- Using Method A, 4-amino-7-fluoro-8-iodo-N-cyclopropyl-cinnoline-3-carboxamide (178 mg, 0.48 mmol) and 2,4-dimethoxypyrimidin-5-boronic acid (176 mg, 0.96 mmol) were reacted. After purification the title compound (73 mg, 39% yield) was obtained as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.04 (d, J=4.9 Hz, 1H), 8.57 (dd, J=5.6, 9.3 Hz, 1H), 8.37 (s, 1H) 7.77 (t, J=9.1 Hz, 1H), 3.99 (s, 3H), 3.84 (s, 3H), 2.93 (m, 1H), 0.70 (m, 4H). MS APCI, m/z=385.
- Using Method A, 4-amino-7-fluoro-8-iodo-N-cyclopropyl-cinnoline-3-carboxamide (178 mg, 0.48 mmol) and 2,5-dimethoxyphenylboronic acid (174 mg, 0.96 mmol) were reacted. After purification the title compound (142 mg, 77% yield) was obtained as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 8.99 (d, J=4.8 Hz, 1H), 8.51 (a dd, J=5.5, 9.3 Hz, 1H), 7.72 (t, J=9.0 Hz, 1H), 7.06 (a d, J=9.0 Hz, 1H), 7.00 (m, 1H), 6.86 (a d, J=3.0 Hz, 1H), 3.72 (s, 3H), 3.58 (s, 3H), 2.93 (m, 1H), 0.68 (m, 4H). MS APCI, m/z=383.
- Using Method A, 4-amino-7-fluoro-8-iodo-N-cyclopropyl-cinnoline-3-carboxamide (178 mg, 0.48 mmol) and 2,5-dimethoxyphenylboronic acid (162 mg, 0.96 mmol) were reacted. After purification the title compound (150 mg, 84% yield) was obtained as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.02 (d, J=4.8 Hz, 1H), 8.54 (a dd, J=5.5, 9.3 Hz, 1H), 7.74 (t, J=9.1 Hz, 1H), 7.27 (at, J=8.7 Hz, 1H), 7.15 (m, 2H), 3.64 (s, 3H), 2.95 (m, 1H), 0.67 (m, 4H). MS APCI, m/z=371.
- Using Method G, 4-amino-7-fluoro-8-iodo-N-cyclopropyl-cinnoline-3-carboxamide (372 mg, 1.00 mmol) and 2-fluoro-6-methoxyphenylboronic acid (1.40 g, 8.24 mmol) were reacted. After purification the title compound (117 mg, 33% yield) was obtained as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.50 (bm, 1H), 7.94 (dd, J=5.2, 9.2 Hz, 1H), 7.53 (a t, J=8.7 Hz, 1H), 7.40 (apparent q, J=7.8 Hz, 1H), 6.86 (m, 2H), 3.72 (s, 3H), 2.96 (m, 1H), 0.88 (m, 2H), 0.62 (m, 2H). MS APCI, m/z=371.
- Using Method A, 4-amino-7-fluoro-8-iodo-N-cyclopropyl-cinnoline-3-carboxamide (178 mg, 0.48 mmol) and 2-methoxy-5-methylphenylboronic acid (160 mg, 0.96 mmol) were reacted. After purification the title compound (134 mg, 76% yield) was obtained as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 8.98 (d, J=4.8 Hz, 1H), 8.50 (a dd, J=5.5, 9.3 Hz, 1H), 7.71 (t, J=9.1 Hz, 1H), 7.23 (m, 1H), 7.106 (s, 1H), 7.02 (d, J=8.4 Hz, 1H), 3.60 (s, 3H), 2.95 (m, 1H), 2.28 (s, 3H), 0.67 (m, 4H). MS APCI, m/z=367.
- Using Method A, 4-amino-7-fluoro-8-iodo-N-cyclopropyl-cinnoline-3-carboxamide (178 mg, 0.48 mmol) and 2,4-dimethoxyphenylboronic acid (175 mg, 0.96 mmol) were reacted. After purification the title compound (110 mg, 60% yield) was obtained as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 8.98 (d, J=4.8 Hz, 1H), 8.47 (a dd, J=5.6, 9.3 Hz, 1H), 7.70 (t, J=9.0 Hz, 1H), 7.17 (d, J=8.0 Hz, 1H), 6.70 (s, 1H), 6.63 (a d, J=8.3 Hz, 1H), 3.84 (s, 3H), 3.64 (s, 3H), 2.95 (m, 1H), 0.67 (m, 4H). MS APCI, m/z=383.
- Using Method A, 4-amino-8-bromo-N-cyclopropyl-cinnoline-3-carboxamide (143 mg, 0.47 mmol) and 5-fluoro-2-methoxyphenylboronic acid (158 mg, 0.94 mmol) were reacted. After purification the title compound (125 mg, 76% yield) was obtained as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.54 (bm, 1H), 7.87 (a dd, J=3.1, 6.6 Hz, 1H), 7.73 (m, 2H), 7.10 (m, 2H), 6.95 (m, 1H), 3.66 (s, 3H), 2.96 (m, 1H), 0.86 (m, 2H), 0.64 (m, 2H). MS APCI, m/z=353.
- Using Method A, 4-amino-8-bromo-N-cyclopropyl-cinnoline-3-carboxamide (143 mg, 0.47 mmol) and 4-methoxypyridine-3-boronic acid (640 mg, 4.20 mmol) were reacted. After purification the title compound (52 mg, 33% yield) was obtained as a white solid. 1H NMR (500 MHz, CDCl3) δ 8.58 (d, J=5.8 Hz, 1H), 8.57 (bm, 1H), 8.44 (s, 1H), 7.91 (m, 1H), 7.74 (m, 2H), 6.94 (d, J=5.8 Hz, 1H), 3.77 (s, 3H), 2.96 (m, 1H), 0.86 (m, 2H), 0.64 (m, 2H). MS APCI, m/z=336.
- Using Method A, 4-amino-8-bromo-N-cyclopropyl-cinnoline-3-carboxamide (143 mg, 0.47 mmol) and 2-methoxypyridine-3-boronic acid (142 mg, 0.94 mmol) were reacted. After purification the title compound (118 mg, 76% yield) was obtained as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.04 (d, J=4.9 Hz, 1H), 8.43 (m, 1H), 8.24 (d, J=5.0 Hz, 1H), 7.77 (m, 2H), 7.71 (a d, J=7.2 Hz, 1H), 7.71 (a dd, J=5.1, 7.2 Hz, 1H), 3.73 (s, 3H), 2.95 (m, 1H), 0.67 (m, 4H). MS APCI, m/z=336.
- Using Method A, 4-amino-8-bromo-N-cyclopropyl-cinnoline-3-carboxamide (143 mg, 0.47 mmol) and 5-fluoro-6-methoxypyridine-3-boronic acid (159 mg, 0.94 mmol) were reacted. After purification the title compound (146 mg, 88% yield) was obtained as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.13 (d, J=4.9 Hz, 1H), 8.45 (d, J=7.4 Hz, 1H), 8.29 (s, 1H), 8.11 (a d, J=13.8 Hz, 1H), 7.95 (a d, J=7.2 Hz, 1H), 7.81 (a t, J=7.8 Hz, 1H), 4.03 (s, 3H), 2.95 (m, 1H), 0.67 (m, 4H). MS APCI, m/z=354.
- Using Method A, 4-amino-8-bromo-N-cyclopropyl-cinnoline-3-carboxamide (143 mg, 0.47 mmol) and 2-fluoro-3-methoxyphenylboronic acid (158 mg, 0.94 mmol) were reacted. After purification the title compound (128 mg, 78% yield) was obtained as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.04 (d, J=4.9 Hz, 1H), 8.48 (dd, J=2.6, 7.2 Hz, 1H), 7.79 (m, 2H), 7.23 (m, 2H), 7.02 (m, 1H), 3.90 (s, 3H), 2.95 (m, 1H), 0.67 (m, 4H). MS APCI, m/z=353.
- Using Method A, 4-amino-8-bromo-N-cyclopropyl-cinnoline-3-carboxamide (143 mg, 0.47 mmol) and 6-methylpyridine-3-boronic acid (128 mg, 0.94 mmol) were reacted. After purification the title compound (119 mg, 80% yield) was obtained as a white solid. MS APCI, m/z=320.
- Using Method A, 4-amino-7-fluoro-8-iodo-N-cyclopropyl-cinnoline-3-carboxamide (178 mg, 0.48 mmol) and 2-fluoro-3-methoxyphenylboronic acid (162 mg, 0.96 mmol) were reacted. After purification the title compound (100 mg, 56% yield) was obtained as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 9.04 (d, J=4.8 Hz, 1H), 8.59 (m, 1H), 7.26 (m, 2H), 7.02 (m, 1H), 3.90 (s, 3H), 2.93 (m, 1H), 0.69 (m, 4H).
- MS APCI, m/z=371.
- Preparation of Xenopus oocytes
- Xenopus laevis frogs (Xenopus I, Kalamazoo, Mich.) were anesthetized using 0.15% tricaine. Surgically removed ovarian lobes were teased out in OR2 solution (82 NaCl, 2.5 KCl, 5 HEPES, 1.5 NaH2PO4, 1 MgCl2, 0.1 EDTA, in mM, pH 7.4). The oocytes were defolliculated by incubation in 25 mL OR2 containing 0.2% collagenase 1A (SIGMA) two times for about 60 minutes on a platform shaker and stored in Leibovitz's L-15 medium. Oocytes were injected the following day in 0.5× Leibovitz's L-15 medium containing 50 mg/ml gentamycin, 10 units/ml penicillin, and 10 mg/ml streptomycin.
- Preparation and Injection of cRNA
- Capped cRNAs from the linearized vectors containing human (α1, β2 and γ2 subunits of the GABAA receptor genes were mixed in ratio of 1:1:30. Oocytes were injected with 25-50 mL of mixed RNA with an appx molar ratio for (α1, β2, and γ2 as 1:1:10. Oocyte recordings were done 2-10 days after injection. The same methods apply to subtypes derived from α2β3γ2, α5β3γ2, and α5β3γ2, except for 1:1:1 ratio was used for α, β, and γ subunits.
- All measurements were done in a medium containing ND-96 (96 NaCl, 2 KCl, 1.8 CaCl2.2H2O, 1 MgCl2.6H2O, 5 HEPES, in mM, pH 7.5). Two-electrode voltage-clamp recording was carried out using OpusXpress amplifier (Axon Instruments, Foster City, Calif.), which allows simultaneous recording from 8 oocytes. Oocytes were impaled with two electrodes of 1-2 MΩ tip resistance when filled with 3M KCl. Recordings were begun when membrane potential became stable at potentials negative to −50-60 mV. Membrane potential was held at −60 mV. Typical leak currents were between 0-40 nA, and rarely if a few cells did have a relatively high leak (>100 nA) they were not used. For the determination of the GABA EC10, a series of 30 s pulses with increasing concentrations of GABA were applied to the cells every 5 minutes. After calculating EC10 for GABA for each oocyte, a series of 30 s GABA pulses were applied at 5 minutes interval, with increasing doses of the modulator. The concentration of GABA corresponded to the EC10 value calculated for each oocyte. The modulator pulses started 30 s before the GABA pulse so as to allow preincubation with the modulator. A set of 3 pulses with just GABA without modulator was given prior to the modulator-containing pulses to define the baseline GABA response. Two oocytes per each experiment were dedicated to observe the effect of diazepam on GABA response to ensure the presence of 72 subunit in the GABAA pentameric complex, which imparts diazepam sensitivity to the complex.
- Current amplitude (i) was measured from baseline to peak using Clampfit (Axon Inst., Foster City, Calif.). Potentiation was calculated as percent change from the baseline GABA current flux 100×(imod/icontrol)−1) where imod=current mediated by modulator+GABA and icontrol=current mediated by GABA alone. A value of 100% potentiation means that modulator has caused the control current to double. Similarly, a value of −50% potentiation means the presence of modulator caused a 50% decrease in the control current. Various other data shown here were fitted and plotted using GraphPad Prism (GraphPad Software, Inc. San Diego, Calif.). The percentage potentiation was converted to relative potentiation by dividing it with percentage potentiation value obtained from the same assay with diazepam as a control.
- Assay and Wash Buffer: 50 mM Tris-Citrate, 200 mM NaCl, pH 7.8
- Compounds at 10 mM in DMSO: Put 75 μl in column 1 of compound plate.
- Flumazenil, 10 mM (for NSB)
- Membranes (α1, β2, γ2 receptor subunits transfected into Sf9 cells and harvested; prepared by Cell Trends, stored at −80° C.) Sonicate thawed membranes for about 5-10 seconds at setting 3 on Brinkman sonicator, then dilute membranes 1:71 in assay buffer (working conc.=100 ug/ml protein). Keep on ice.
- [3H]-Flunitrazepam (Cat #NET567): Prepare 10× stock=30 nM, [F] in assay=˜3 nM
- Assay (See below for Automation Programs.)
- 1. On PlateMate, prepare 1:3 serial dilutions (30 μl+60 μl) in DMSO for final assay concentrations of 10 μM to 170 pM (Automation Programs 1 and 2). Add 5 ul of 30 uM flumazenil to wells 12 D-E for 50% control wells.
- 2. Spot 2 μl of compound dilutions into dry plate (Automation Program 3). Manually spot 2 μl 10 mM flumazenil into wells 12 F-H for nonspecific control.
- 3. Make 1:100 dilution in assay buffer (2 μl into 200 μl) and dispense 25 μl compound into assay plates (Automation Program 4).
- 4. Dispense 2001 membranes into assay plate (Automation Program 5).
- 5. Add 25 μl [3H]-Flunitrazepam (Automation Program 6). Incubate for 1 hr at 4° C.
- 6. Collect membranes on a cell harvester onto GF/B filter plates (pre-wet with dH2O and wash 5×400 μl/well, with cold assay buffer. (First 3 washes are considered hot; last two are cold.)
- 7. Dry plates for 2-3 hours at RT.
- 8. Add 40 μl Microscint 40/well (Automation Program 7); seal plates. Count on a TopCount.
- 1. PlateMate add 60 ul DMSO for dilutions 96w: 96/300 ul head, 5516 tips in columns 2-12, compound plate in left stacker A, DMSO reservoir on stage 2
- 2. PlateMate 11pt-dilut one-third GABAA: 96/300 ul head, 5516 tips in column 1 of serial dilution magazine, compound plate in left stacker A
- 3. PlateMate 2 ul addition of cmpd dry new wash: 96/30 ul head, 5506 tips, compound plate in left stacker A, dilution plate in right stacker A, 100% DMSO in reservoir on stage 2, must change to fresh DMSO every 4-6 plates.
- 4. PlateMate tip chg mix and disp 25 ul to assay plate 96w: 96/300 ul head, 5516 tips, dilution plate in left stacker A, assay plates in right stacker A, auto fill assay buffer reservoir on stage 2, need to change tips after every plate.
- 5. PlateMate add 200 ul membranes 96w: 96/300 ul head, 5516 tips, assay plates in left stacker A, membrane reservoir on stage 2.
- 6. RapidPlate add 25 ul hot (number of plates): 100 μl (yellow box) tips in position 1, hot reservoir in position 2, plates beginning in position 3
- 7. RapidPlate add microscint 40 ul (number of plates): 200 μl (burgundy box) tips in position 1, Microscint 40 reservoir in position 2, plates beginning in position 3.
- Data is analyzed by calculating percent of control, IC50, and Ki in an XLfit template. The following formula is used in the templates:
-
- Assay and Wash Buffer: 50 mM Tris-Citrate, 200 mM NaCl, pH 7.8
- Compounds at 10 mM in DMSO: Put 75 μl in column 1 of compound plate.
- Flumazenil, 10 mM (for NSB)
- Membranes (α2, β3, γ2 receptor subunits transfected into Sf9 cells and harvested; prepared by Paragon at 12.5 mg/ml, stored at −80° C.) Sonicate thawed membranes for about 5-10 seconds at setting 3 on Brinkman sonicator, then dilute membranes 1:50 in assay buffer (working conc.=250 ug/ml protein). Keep on ice.
- [3H]-Flunitrazepam (Cat #NET567): Prepare 10× stock=20 nM, [F} in assay=˜2 nM
- 1. On PlateMate, prepare 1:3 serial dilutions (30 μl+60 μl) in DMSO for final assay concentrations of 10 μM to 170 pM (Automation Programs 1 and 2). Add 5 ul of 30 uM flumazenil to wells 12 D-E for 50% control wells.
- 2. Spot 2 μl of compound dilutions into dry plate (Automation Program 3). Manually spot 2 μl 10 mM flumazenil into wells 12 F-H for nonspecific control.
- 3. Make 1:100 dilution in assay buffer (2 μl into 200 μl) and dispense 25 μl compound into assay plates (Automation Program 4).
- 4. Dispense 2001 membranes into assay plate (Automation Program 5).
- 5. Add 25 μl [3H]-Flunitrazepam (Automation Program 6). Incubate for 1 hr at 4° C.
- 6. Collect membranes on a cell harvester onto GF/B filter plates (pre-wet with dH2O and wash 5×400 μl/well, with cold assay buffer. (First 3 washes are considered hot; last two are cold.)
- 7. Dry plates for 2-3 hours at RT.
- 8. Add 40 μl Microscint 40/well (Automation Program 7); seal plates. Count on a TopCount.
- 1. PlateMate add 60 ul DMSO for dilutions 96w: 96/300 ul head, 5516 tips in columns 2-12, compound plate in left stacker A, DMSO reservoir on stage 2.
- 2. PlateMate 11pt-dilut one-third GABAA: 96/300 ul head, 5516 tips in column 1 of serial dilution magazine, compound plate in left stacker A.
- 3. PlateMate 2 ul addition of cmpd dry new wash: 96/30 ul head, 5506 tips, compound plate in left stacker A, dilution plate in right stacker A, 100% DMSO in reservoir on stage 2, must change to fresh DMSO every 4-6 plates.
- 4. PlateMate tip chg mix and disp 25 ul to assay plate 96w: 96/300 ul head, 5516 tips, dilution plate in left stacker A, assay plates in right stacker A, auto fill assay buffer reservoir on stage 2, need to change tips after every plate.
- 5. PlateMate add 200 ul membranes 96w: 96/300 ul head, 5516 tips, assay plates in left stacker A, membrane reservoir on stage 2.
- 6. RapidPlate add 25 ul hot (number of plates): 100 μl (yellow box) tips in position 1, hot reservoir in position 2, plates beginning in position 3.
- 7. RapidPlate add microscint 40 ul (number of plates): 2001 (burgundy box) tips in position 1, Microscint 40 reservoir in position 2, plates beginning in position 3.
- Data is analyzed by calculating percent of control, IC50, and Ki in an XLfit template. The following formula is used in the templates:
-
- Assay and Wash Buffer: 50 mM Tris-Citrate, 200 mM NaCl, pH 7.8
- Compounds at 10 mM in DMSO: Put 75 ul in column 1 of compound plate.
- Flumazenil, 10 mM (for NSB)
- Membranes (α3, β3, γ2 receptor subunits transfected into Sf9 cells and harvested; prepared by Cell Trends, stored at −80° C.) Sonicate thawed membranes for about 5-10 seconds at setting 3 on Brinkman sonicator, then dilute membranes 1:125 to make a solution of 200 ug/mL in assay buffer. Keep on ice.
- [3H]-Flunitrazepam (Cat #NET567): Prepare 10× stock=30 nM, [F} in assay=˜3 nM
- Assay (See below for Automation Programs.)
- 1. On PlateMate, prepare 1:3 serial dilutions (30 μl+60 μl) in DMSO for final assay concentrations of 10 μM to 170 μM (Automation Programs 1 and 2). Add 5 μl of 30 μM flumazenil to wells 12 D-E for 50% control wells.
- 2. Spot 2 μl of compound dilutions into dry plate (Automation Program 3). Manually spot 2 μl 10 mM flumazenil into wells 12 F-H for nonspecific control.
- 3. Make 1:100 dilution in assay buffer (2 μl into 200 μl) and dispense 25 μl compound into assay plates (Automation Program 4).
- 4. Dispense 200 μl membranes into assay plate (Automation Program 5).
- 5. Add 25 μl [3H]-Flunitrazepam (Automation Program 6). Incubate for 1 hr at 4° C.
- 6. Collect membranes on a cell harvester onto GF/B filter plates (pre-wet with dH2O and wash 5×400 μl/well, with cold assay buffer. (First 3 washes are considered hot; last two are cold.)
- 7. Dry plates for 2-3 hours at RT.
- 8. Add 40 μl Microscint 40/well (Automation Program 7); seal plates. Count on a TopCount.
- 1. PlateMate add 60 μl DMSO for dilutions 96w: 96/300 μl head, 5516 tips in columns 2-12, compound plate in left stacker A, DMSO reservoir on stage 2.
- 2. PlateMate 11pt-dilut one-third GABAA: 96/300 μl head, 5516 tips in column 1 of serial dilution magazine, compound plate in left stacker A.
- 3. PlateMate 2 μl addition of cmpd dry new wash: 96/30 μl head, 5506 tips, compound plate in left stacker A, dilution plate in right stacker A, 100% DMSO in reservoir on stage 2, must change to fresh DMSO every 4-6 plates.
- 4. PlateMate tip chg mix and disp 25 μl to assay plate 96w: 96/300 μl head, 5516 tips, dilution plate in left stacker A, assay plates in right stacker A, auto fill assay buffer reservoir on stage 2, need to change tips after every plate.
- 5. PlateMate add 200 μl membranes 96w: 96/300 μl head, 5516 tips, assay plates in left stacker A, membrane reservoir on stage 2.
- 6. RapidPlate add 25 μl hot (number of plates): 100 μl (yellow box) tips in position 1, hot reservoir in position 2, plates beginning in position 3.
- 7. RapidPlate add microscint 40 μl (number of plates): 200 μl (burgundy box) tips in position 1, Microscint 40 reservoir in position 2, plates beginning in position 3.
- Data is analyzed by calculating percent of control, IC50, and Ki in an XLfit template. The following formula is used in the templates:
-
- Assay and Wash Buffer: 50 mM Tris-Citrate, 200 mM NaCl, pH 7.8
- Compounds at 10 mM in DMSO: Put 75 μl in column 1 of compound plate.
- Flumazenil, 10 mM (for NSB)
- Membranes (α5, β3, γ2 receptor subunits transfected into Sf9 cells and harvested; prepared by Cell Trends, stored at −80° C.) Sonicate thawed membranes for about 5-10 seconds at setting 3 on Brinkman sonicator, then dilute membranes 1:31 in assay buffer (working conc.=500 ug/ml protein). Keep on ice.
- [3H]-Flunitrazepam (Cat #NET567): Prepare 10× stock=20 nM, [F] in assay=˜2 nM
- Assay (See below for Automation Programs.)
- 1. On PlateMate, prepare 1:3 serial dilutions (30 μl+60 μl) in DMSO for final assay concentrations of 10 μM to 170 pM (Automation Programs 1 and 2). Add 5 ul of 30 uM flumazenil to wells 12 D-E for 50% control wells.
- 2. Spot 2 μl of compound dilutions into dry plate (Automation Program 3). Manually spot 2 μl 10 mM flumazenil into wells 12 F-H for nonspecific control.
- 3. Make 1:100 dilution in assay buffer (2 μl into 200 μl) and dispense 25 μl compound into assay plates (Automation Program 4).
- 4. Dispense 2001 membranes into assay plate (Automation Program 5).
- 5. Add 25 μl [3H]-Flunitrazepam (Automation Program 6). Incubate for 1 hr at 4° C.
- 6. Collect membranes on a cell harvester onto GF/B filter plates (pre-wet with dH2O and wash 5×400 μl/well, with cold assay buffer. (First 3 washes are considered hot; last two are cold.)
- 7. Dry plates for 2-3 hours at RT.
- 8. Add 40 μl Microscint 40/well (Automation Program 7); seal plates. Count on a TopCount.
- 1. PlateMate add 60 ul DMSO for dilutions 96w: 96/300 ul head, 5516 tips in columns 2-12, compound plate in left stacker A, DMSO reservoir on stage 2.
- 2. PlateMate 11pt-dilut one-third GABAA: 96/300 ul head, 5516 tips in column 1 of serial dilution magazine, compound plate in left stacker A.
- 3. PlateMate 2 ul addition of cmpd dry new wash: 96/30 ul head, 5506 tips, compound plate in left stacker A, dilution plate in right stacker A, 100% DMSO in reservoir on stage 2, must change to fresh DMSO every 4-6 plates.
- 4. PlateMate tip chg mix and disp 25 ul to assay plate 96w: 96/300 ul head, 5516 tips, dilution plate in left stacker A, assay plates in right stacker A, auto fill assay buffer reservoir on stage 2, need to change tips after every plate.
- 5. PlateMate add 200 ul membranes 96w: 96/300 ul head, 5516 tips, assay plates in left stacker A, membrane reservoir on stage 2.
- 6. RapidPlate add 25 ul hot (number of plates): 100 μl (yellow box) tips in position 1, hot reservoir in position 2, plates beginning in position 3.
- 7. RapidPlate add microscint 40 ul (number of plates): 2001 (burgundy box) tips in position 1, Microscint 40 reservoir in position 2, plates beginning in position 3.
- Data is analyzed by calculating percent of control, IC50, and Ki in an XLfit template. The following formula is used in the templates:
-
GABAA2 Binding Ki Relative Potentiation for Relative Potentiation for Compound (M) GABAA1 GABAA2 1.44E-10 −0.015 0.15 2.66E-10 −0.008 0.18 3.01E-10 3.27E-10 0.25 3.41E-10 3.64E-10 0.12 0.063 3.87E-10 0.0017 0.12 4.03E-10 0.063 0.13 5.05E-10 0.15 0.14 5.52E-10 0.38 5.58E-10 −0.11 0.17 5.60E-10 0.17 0.25 5.65E-10 −0.028 0.18 6.00E-10 0.51 6.13E-10 0.053 0.18 6.15E-10 0.11 0.13 6.24E-10 0.28 6.98E-10 −0.048 0.16 7.10E-10 0.12 0.21 7.35E-10 0.032 0.12 8.52E-10 0.095 0.37 9.18E-10 0.12 0.39 9.37E-10 0.23 0.37 9.41E-10 0.05 0.23 9.80E-10 0.085 0.22 9.96E-10 −0.078 0.29 1.00E-09 −0.093 0.02 1.00E-09 1.03E-09 0.27 1.11E-09 0.38 0.4 1.13E-09 −0.083 0.17 1.18E-09 0.088 0.31 1.25E-09 0.14 0.19 1.31E-09 0.21 0.28 1.34E-09 0.21 1.36E-09 0.47 0.59 1.49E-09 0.016 0.21 1.62E-09 0.014 0.23 1.67E-09 −0.038 0.1 1.67E-09 0.053 0.27 1.68E-09 0.083 0.11 1.72E-09 −0.088 0.12 1.73E-09 0.26 0.32 1.82E-09 0.067 0.053 1.84E-09 0.2 0.52 1.93E-09 0.06 0.033 2.07E-09 2.10E-09 0.2 0.097 2.17E-09 0.41 0.59 2.23E-09 0.18 0.29 2.30E-09 0.004 0.063 2.34E-09 −0.11 −0.033 2.42E-09 0.12 0.16 2.50E-09 0.18 0.15 2.60E-09 −0.11 0.054 2.69E-09 2.73E-09 0.19 0.29 2.88E-09 0.1 0.16 2.89E-09 0.47 2.89E-09 0.16 0.45 3.22E-09 0.28 0.11 3.22E-09 0.0058 0.18 3.41E-09 0.045 0.26 3.44E-09 0.19 −0.0075 3.88E-09 0.33 0.28 4.11E-09 −0.16 0.14 4.17E-09 0 0.12 4.21E-09 0.07 0.34 4.34E-09 0.13 0.22 4.34E-09 0.12 0.38 4.36E-09 −0.02 0.28 5.00E-09 0.28 0.57 5.06E-09 0.17 0.19 5.11E-09 0.09 0.16 5.51E-09 0.28 0.38 5.56E-09 0.02 0.22 5.71E-09 0.87 5.78E-09 0.1 0.14 5.82E-09 0.25 0.16 5.98E-09 6.13E-09 0.13 0.52 6.40E-09 0.1 0.23 6.75E-09 0.47 0.33 7.24E-09 0.23 0.18 7.24E-09 0.17 0.23 7.38E-09 −0.063 0.1 7.41E-09 0.1 0.22 7.45E-09 0.098 0.54 7.49E-09 −0.065 0.013 7.51E-09 0.34 8.14E-09 −0.16 0.16 8.49E-09 −0.26 −0.004 8.60E-09 −0.018 0.26 8.72E-09 0.02 0.19 8.77E-09 −0.08 0.16 8.84E-09 0.4 0.46 8.91E-09 0.0075 0.33 9.58E-09 −0.046 0.08 1.04E-08 0.34 0.26 1.05E-08 0.026 0.4 1.05E-08 0.23 1.09E-08 0.11 0.11 1.12E-08 0.24 0.22 1.23E-08 0.18 0.53 1.23E-08 −0.15 0.11 1.33E-08 0.32 1.39E-08 0.32 1.44E-08 0.005 0.35 1.51E-08 0.14 0.33 1.52E-08 1.54E-08 −0.11 0.06 1.61E-08 0.36 1.68E-08 0.23 0.35 1.76E-08 0.21 0.27 1.84E-08 0.48 1.86E-08 −0.26 0.038 1.86E-08 0.11 0.24 1.94E-08 0.027 −0.032 1.95E-08 −0.066 0.11 1.98E-08 0.087 0.45 2.00E-08 −0.14 0.12 2.02E-08 0.03 0.19 2.04E-08 −0.067 −0.01 2.20E-08 0.28 0.48 2.21E-08 −0.012 0.14 2.54E-08 0.086 0.04 2.66E-08 0.07 0.18 2.90E-08 0.013 0.11 2.98E-08 0.013 0.25 3.50E-08 0.15 0.16 3.58E-08 0.19 0.43 3.58E-08 0.79 0.32 3.72E-08 −0.14 0.12 4.33E-08 0.22 0.09 4.58E-08 0.013 0.098 4.78E-08 0.87 0.48 5.38E-08 −0.038 0.08 5.65E-08 0.4 0.67 9.14E-08 0.12 0.08 9.15E-08 0.13 0.26 1.09E-07 1.15E-07 0.32 0.04 1.29E-07 0.15 0.33 1.50E-07 0.09 0.023 3.56E-07 0.44 0.13 5.14E-07 6.24E-07 5.50E-06 5.50E-06 5.50E-06 5.50E-06 5.50E-06 5.50E-06 5.50E-06 5.50E-06 5.50E-06 5.50E-06 5.50E-06 5.50E-06 5.50E-06 5.50E-06 9.00E-09 −0.010 0.223 3.00E-10 −0.040 0.119 8.22E-09 −0.028 0.357 7.85E-10 0.077 0.337 5.01E-10 −0.054 0.247 9.27E-10 0.091 0.243 4.02E-09 −0.166 0.074 4.54E-09 −0.006 0.104 - 2-Iodomelatonin and 6-Chloromelatonin with known activities were used as validation standard during the assay development. The EC50 of 2-Iodomelatonin and 6-Chloromelatonin were ˜3E-11 M and ˜1.5E-10 M respectively in GTPγS assay of hMT1 recombinant cell membranes.
- Cells and/or Microorganisms
- HEK293F (human embryonic kidney 293 floating cell line) was suspension cultured in Free Style 293 Expression Medium, and expanded in house and stored in liquid nitrogen in cell freezing medium.
-
Buffers, Solutions, Cell Media Make 2 Liters Lazareno GTPγS Assay Buffer: Buffer 20 mM HEPES Sigma H-4034, FW 238.3 9.532 g 100 mM NaCl Sigma S-9625, FW 58.44 11.688 g 10 mM MgCl2.6H2O Sigma M-2670, FW 203.3 4.066 g pH 7.4 Adjust with NaOH Make 2 Liters Membrane Prepration Buffer: Buffer 20 mM HEPES Sigma H-4034, FW 238.3 9.532 g 3 mM MgCl2.6H2O Sigma M-2670, FW 203.3 1.220 g 1 mM EGTA Sigma E-3889, FW 380.4 0.761 g pH 7.4 Adjust with NaOH - Test compounds were synthesized in house. Solid compounds were solubilized at 10 mM in DMSO; then 1:3 further diluted in DMSO in 96-well U-bottom plates using PlateMate on the assay day. 2 μl of diluted compounds were transferred to Opti-assay-plates.
- Reference compound, 2-Iodomelatonin, was prepared the way same as test compound.
- Compounds Used to Normalize Experimental Results
- 2-Iodomelatonin for normalization was diluted in DMSO at concentration 50×3 nM (its EC100 concentration=3 nM). 2 μl of 150 nM 2-Iodomelatonin was then transferred to Opti-assay-plates.
- HEK293F (human embryonic kidney 293 floating cell line) cells transiently expressed human Melatonin receptor 1 (MT 1) were harvested 48 hours post-transfection. The cell pellets were homogenized using Polytron; and the cell membranes were prepared from GTPγS assay.
- The cell pellets were homogenized with Polytron in ice-cold buffer: 20 mM HEPES, 3 mM MgCl2, 1 mM EGTA, pH7.4. (Freshly add protease inhibitor cocktail tables from Roche). The samples were centrifuged at 18,500 rpm for 30 mins at 4° C. in Sorvall SS-34 rotor. The membrane pellets were collected and washed with the ice-cold buffer. The samples were centrifuged at 18,500 rpm for 30 mins at 4° C. again. The membranes were resuspended in the ice-cold buffer with protease inhibitors. The protein concentration of the membrane was determined. The membranes were aliquoted and stored at −80° C.
- Plate format (if plates are used, as shown in the following table)
-
*Numbers denote “Compound #, Dilution #, Replicate #” *Plate direction moves from highest concentration to lowest concentration Number of compounds per plate: 8 Number of replicates per compound: 1 Number of dilutions per compound: 11 Test Plate: DR96_02_C12[LR.1] 1 2 3 4 5 6 7 8 9 10 11 12 A 1, 1, 1 1, 2, 1 1, 3, 1 1, 4, 1 1, 5, 1 1, 6, 1 1, 7, 1 1, 8, 1 1, 9, 1 1, 10, 1 1, 11, 1 MAX B 2, 1, 1 2, 2, 1 2, 3, 1 2, 4, 1 2, 5, 1 2, 6, 1 2, 7, 1 2, 8, 1 2, 9, 1 2, 10, 1 2, 11, 1 MAX C 3, 1, 1 3, 2, 1 3, 3, 1 3, 4, 1 3, 5, 1 3, 6, 1 3, 7, 1 3, 8, 1 3, 9, 1 3, 10, 1 3, 11, 1 MAX D 4, 1, 1 4, 2, 1 4, 3, 1 4, 4, 1 4, 5, 1 4, 6, 1 4, 7, 1 4, 8, 1 4, 9, 1 4, 10, 1 4, 11, 1 MAX E 5, 1, 1 5, 2, 1 5, 3, 1 5, 4, 1 5, 5, 1 5, 6, 1 5, 7, 1 5, 8, 1 5, 9, 1 5, 10, 1 5, 11, 1 MIN F 6, 1, 1 6, 2, 1 6, 3, 1 6, 4, 1 6, 5, 1 6, 6, 1 6, 7, 1 6, 8, 1 6, 9, 1 6, 10, 1 6, 11, 1 MIN G 7, 1, 1 7, 2, 1 7, 3, 1 7, 4, 1 7, 5, 1 7, 6, 1 7, 7, 1 7, 8, 1 7, 9, 1 7, 10, 1 7, 11, 1 MIN H 8, 1, 1 8, 2, 1 8, 3, 1 8, 4, 1 8, 5, 1 8, 6, 1 8, 7, 1 8, 8, 1 8, 9, 1 8, 10, 1 8, 11, 1 MIN MAX response (100% effect) was determined as the effect of 3 nM of 2-Iodomelatonin. MIN response (0% effect) was determined as the effect of vehicle control. - Human MT1/HEK293F membrane (10 μg/well) was mixed with WGA-SPA beads (300 μg/well) and GDP (10 μM) in certain volume of Lazareno assay buffer (20 mM HEPES, 100 mM NaCl, 10 mM MgCl2, pH7.4). The membrane combo was kept on ice for 30-60 mins. Test compounds were 1:3 diluted in DMSO from 10 mM stock, and transferred 2 μl of diluted compounds to Opti assay plates-96 using PlateMate. GTPγ35S was added to the membrane mixture prior to dispensing 100 μl the membrane combo to the assay plates-96. The final concentration of GTPγ35S was 200 pM. The assay plates were shaking on a plate shaker for 1.5 hours at room temperature. The assay plates were spun at 2000 rpm for 5 mins in bench top centrifuge. The assay plates were measured in TopCount to capture the data within 4 hours.
- Summary of the different experimental conditions (the role of various results types)
- Final concentrations of the constituents
-
10 μg/well hMT1/HEK293F membranes 300 μg/well WGA-SPA beads 10 μM GDP 200 pM GTPγ35S 10 μM Start concentration of test compound 2% DMSO 20 mM HEPES 100 mM NaCl 10 mM MgCl2 pH7.4 - The test compounds would be heated to 65° C. if they were not soluble at 10 mM in DMSO. The start concentration in general was 10 μM, but could be adjusted based on its potency. Every single batch of membranes had to be validated for its optimal assay conditions, such as, define the optimal GDP concentration, SPA beads amount and EC100 concentration of normalization compound.
- Compounds were evaluated for their agonist potency (EC50) and efficacy (Emax). Concentration-response curves were analyzed to determine the EC50 by ActivityBase using equation model #205. Compound's % activity was calculated according to the 100% and 0% activities defined on the same plate as the sample data. Wells A12-C12 were used to define 100% activity, and D12-G12 for 0% activity. More details could be found from the Plate Format above.
- Results (Dependent Variables, Dependent Measurements) and their Calculation Method
- The raw values for the replicates in the Minimum Control experimental condition were averaged. The raw values for the replicates in the Maximum Control experimental condition were averaged. The average Minimum Control was subtracted from the average Maximum Control resulting in the Data Window. The average for the Minimum Control was subtracted from each raw value in the Compound Data experimental condition resulting in the Specific Response for each data value in the Compound Data condition. Each Specific Response in the Compound Data condition was divided by the Data Window then multiplied by 100 resulting in the Percent Response. The EC50 and SlopeFactor were determined by fitting the Percent Inhibition and the concentrations of test compound to model 205 in XLfit—y=A+((B−A)/(1+((C/x)̂D))—with parameter A constrained to 0 and parameter B constrained to 100.
- Certain compounds of the invention have been tested using the above-identified assay (Method II). The results are shown in the following table.
- Various modifications of the invention, in addition to those described herein, will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. Each reference (including, but not limited to, journal articles, U.S. and non-U.S. patents, patent application publications, international patent application publications, and the like) cited in the present application is incorporated herein by reference in its entirety.
Claims (22)
1. A compound selected from 4-amino-8-(2-fluoro-6-methoxy-phenyl)-N-propylcinnoline-3-carboxamide and pharmaceutically acceptable salts thereof.
2. A method of treating or preventing an anxiety disorder in a mammal, comprising administering to the mammal a therapeutically effective amount of a compound of claim 1 .
3. The method of claim 2 wherein the anxiety disorder is panic disorder, panic disorder without agoraphobia, panic disorder with agoraphobia, agoraphobia without history of panic disorder, specific phobia, social phobia, social anxiety disorder, obsessive-compulsive disorder, posttraumatic stress disorder, acute stress disorder, generalized anxiety disorder, or generalized anxiety disorder due to a general medical condition.
4. The method of claim 2 wherein the mammal is a human.
5. A method of treating or preventing an anxiety disorder in a mammal, comprising administering to the mammal a therapeutically effective amount of a compound of claim 1 and at least one cognitive enhancing agent, memory enhancing agent, or choline esterase inhibitor.
6. The method of claim 5 wherein the anxiety disorder is panic disorder, panic disorder without agoraphobia, panic disorder with agoraphobia, agoraphobia without history of panic disorder, specific phobia, social phobia, social anxiety disorder, obsessive-compulsive disorder, posttraumatic stress disorder, acute stress disorder, generalized anxiety disorder, or generalized anxiety disorder due to a general medical condition.
7. The method of claim 5 wherein the mammal is a human.
8. A method of treating or preventing a cognitive disorder in a mammal, comprising administering to the mammal a therapeutically effective amount of a compound of claim 1 .
9. The method of claim 8 wherein the cognitive disorder is Alzheimer's disease, dementia, dementia due to Alzheimer's disease, or dementia due to Parkinson's disease.
10. The method of claim 8 wherein the mammal is a human.
11. A method of treating or preventing a cognitive disorder in a mammal, comprising administering to the mammal a therapeutically effective amount of a compound of claim 1 and at least one cognitive enhancing agent, memory enhancing agent, or choline esterase inhibitor.
12. The method of 11 wherein the cognitive disorder is Alzheimer's disease, dementia, dementia due to Alzheimer's disease, or dementia due to Parkinson's disease.
13. The method of claim 11 wherein the mammal is a human.
14. A method of treating or preventing a mood disorder in a mammal, comprising administering to the mammal a therapeutically effective amount of a compound of claim 1 .
15. The method of claim 14 wherein the mood disorder is a depressive disorder.
16. The method of claim 15 wherein the depressive disorder is major depressive disorder, dysthymic disorder, bipolar depression and/or bipolar mania, bipolar I with or without manic, depressive or mixed episodes, bipolar II, cyclothymic disorder, mood disorder due to a general medical condition, manic episodes associated with bipolar disorder, or mixed episodes associated with bipolar disorder.
17. The method of claim 14 wherein the mammal is a human.
18. A method of treating or preventing a mood disorder in a mammal, comprising administering to the mammal a therapeutically effective amount of a compound of claim 1 and at least one cognitive enhancing agent, memory enhancing agent, or choline esterase inhibitor.
19. The method of claim 18 wherein the mood disorder is a depressive disorder.
20. The method of claim 19 wherein the depressive disorder is major depressive disorder, dysthymic disorder, bipolar depression and/or bipolar mania, bipolar I with or without manic, depressive or mixed episodes, bipolar II, cyclothymic disorder, mood disorder due to a general medical condition, manic episodes associated with bipolar disorder, or mixed episodes associated with bipolar disorder.
21. The method of claim 19 wherein the mammal is a human.
22. An atropisomer of a compound according to claim 1 .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/199,034 US20090018112A1 (en) | 2005-12-20 | 2008-08-27 | Compounds and Uses Thereof |
US13/031,763 US20110144331A1 (en) | 2005-12-20 | 2011-02-22 | Cinnoline Compounds for the Treatment of Anxiety, Cognitive and Mood Disorders |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US75213705P | 2005-12-20 | 2005-12-20 | |
US82369306P | 2006-08-28 | 2006-08-28 | |
US11/611,943 US7465795B2 (en) | 2005-12-20 | 2006-12-18 | Compounds and uses thereof |
US12/199,034 US20090018112A1 (en) | 2005-12-20 | 2008-08-27 | Compounds and Uses Thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/611,943 Division US7465795B2 (en) | 2005-12-20 | 2006-12-18 | Compounds and uses thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/031,763 Continuation US20110144331A1 (en) | 2005-12-20 | 2011-02-22 | Cinnoline Compounds for the Treatment of Anxiety, Cognitive and Mood Disorders |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090018112A1 true US20090018112A1 (en) | 2009-01-15 |
Family
ID=38174480
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/611,943 Active US7465795B2 (en) | 2005-12-20 | 2006-12-18 | Compounds and uses thereof |
US12/199,034 Abandoned US20090018112A1 (en) | 2005-12-20 | 2008-08-27 | Compounds and Uses Thereof |
US13/031,763 Abandoned US20110144331A1 (en) | 2005-12-20 | 2011-02-22 | Cinnoline Compounds for the Treatment of Anxiety, Cognitive and Mood Disorders |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/611,943 Active US7465795B2 (en) | 2005-12-20 | 2006-12-18 | Compounds and uses thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/031,763 Abandoned US20110144331A1 (en) | 2005-12-20 | 2011-02-22 | Cinnoline Compounds for the Treatment of Anxiety, Cognitive and Mood Disorders |
Country Status (2)
Country | Link |
---|---|
US (3) | US7465795B2 (en) |
TW (1) | TW200730506A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080318925A1 (en) * | 2007-06-19 | 2008-12-25 | Astrazeneca Ab | Compounds and Uses Thereof - 849 |
US8435988B2 (en) | 2010-10-06 | 2013-05-07 | Glaxosmithkline Llc | Benzimidazole derivatives as P13 kinase inhibitors |
DE212011100209U1 (en) | 2011-09-13 | 2014-04-22 | U.S. Nutraceuticals Llc Dba Valensa International | Plant-derived seed extract rich in essential fatty acids derived from perilla seeds |
US10683293B2 (en) | 2014-08-04 | 2020-06-16 | Nuevolution A/S | Optionally fused heterocyclyl-substituted derivatives of pyrimidine useful for the treatment of inflammatory, metabolic, oncologic and autoimmune diseases |
US11447479B2 (en) | 2019-12-20 | 2022-09-20 | Nuevolution A/S | Compounds active towards nuclear receptors |
US11613532B2 (en) | 2020-03-31 | 2023-03-28 | Nuevolution A/S | Compounds active towards nuclear receptors |
US11780843B2 (en) | 2020-03-31 | 2023-10-10 | Nuevolution A/S | Compounds active towards nuclear receptors |
US12441704B2 (en) | 2023-05-05 | 2025-10-14 | Nuevolution A/S | Compounds active towards nuclear receptors |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR058109A1 (en) * | 2005-12-20 | 2008-01-23 | Glaxo Group Ltd | ACID 3 - (4 - {[4 - (4 - {[3 - (3, 3 - DIMETILE - 1 - PIPERIDINIL) PROPIL] OXI} PHENYL) - 1 - PIPERIDINIL] CARBONIL} - 1 - NAFTALENIL) PROPANOIC AS ANTAGONISTS OF THE RECEIVERS OF HISTAMINE H1 / H3, PHARMACEUTICAL COMPOSITIONS THAT CONTAIN THEM AND THEIR USE IN THE PREPARATION OF MEDICINES FOR THE TREATMENT |
US7465795B2 (en) * | 2005-12-20 | 2008-12-16 | Astrazeneca Ab | Compounds and uses thereof |
CA2634305A1 (en) * | 2005-12-20 | 2007-06-28 | Marc Chapdelaine | Substituted cinnoline derivatives as gabaa-receptor modulators and method for their synthesis |
US20100105614A1 (en) | 2006-10-25 | 2010-04-29 | Somaxon Pharmaceuticals, Inc. | Ultra low dose doxepin and methods of using the same to treat sleep disorders |
WO2008070795A2 (en) * | 2006-12-06 | 2008-06-12 | Somaxon Pharmaceuticals, Inc. | Combination therapy using low-dose doxepin for the improvement of sleep |
WO2010123440A1 (en) * | 2009-04-21 | 2010-10-28 | Astrazeneca Ab | Pharmaceutical composition comprising 4-amino-8-(2-fluoro-6-methoxy-phenyl)-n- propylcinnoline-3-carboxamide hydrogen sulphate and rate-controlling polymer |
WO2010123443A1 (en) * | 2009-04-21 | 2010-10-28 | Astrazeneca Ab | Pharmaceutical composition comprising 4-amino-8-(2-fluoro-6-methoxy-phenyl)-n- propylcinnoline-3-carboxamide hydrogen sulphate. |
US20110040208A1 (en) * | 2009-08-11 | 2011-02-17 | Abbott Diabetes Care Inc. | Integrated lancet and test strip and methods of making and using same |
WO2011021979A1 (en) * | 2009-08-18 | 2011-02-24 | Astrazeneca Ab | Cinnoline compounds, their preparation, and their use |
PE20200608A1 (en) * | 2017-06-30 | 2020-03-10 | Bayer Animal Health Gmbh | NEW DERIVATIVES OF AZAQUINOLINE |
Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4230713A (en) * | 1979-01-19 | 1980-10-28 | Ici Americas Inc. | Heterocyclic tetrahydro-1-alkyl-4-oxo-1H-imidazol-2-ylidene urea and phenyl esters of tetrahydro-1-alkyl-4-oxo-1H-imidazol-2-ylidene carbamic acid compounds |
US4511568A (en) * | 1982-05-12 | 1985-04-16 | Ici Americas Inc. | CNS-Depressant pyrazolopyridines |
US4546104A (en) * | 1983-11-04 | 1985-10-08 | Ici Americas Inc. | Pyrazolopyridine cycloalkanones and process for their preparation |
US4552883A (en) * | 1982-06-15 | 1985-11-12 | Ici Americas Inc. | Pyrazolo[3,4-b]pyridine carboxylic acid esters and their pharmaceutical use |
US4563525A (en) * | 1983-05-31 | 1986-01-07 | Ici Americas Inc. | Process for preparing pyrazolopyridine compounds |
US4705793A (en) * | 1984-08-20 | 1987-11-10 | Ici Americas Inc. | Pyrazolo[3,4-b]pyrrolo[3,4-e]pyridine-5(1H)-one and 1-H-pyrazolo[3,4-b][1,6]naphthyridine-5(6H)-one derivations, useful as anti-anxiety agents |
US4745121A (en) * | 1984-10-04 | 1988-05-17 | Ici Americas Inc. | Pyrazolo[3,4-b]pyridine-5-carboxamides and their use as anxiolytic agents |
US4886800A (en) * | 1985-05-30 | 1989-12-12 | Ici Americas Inc. | Substituted cinnoline derivatives as CNS depressants |
US4925844A (en) * | 1988-02-09 | 1990-05-15 | Ici Americas Inc. | Antagonizing the pharmacological effects of a benzodiazepine receptor agonist |
US4975435A (en) * | 1986-05-06 | 1990-12-04 | Ici Americas Inc. | Certain 1H-pyrrold[3,4-b]quinolin-1-one-9-amino-2,3-dihydro derivatives useful for treating anxiety |
US5190951A (en) * | 1990-10-19 | 1993-03-02 | Ss Pharmaceutical Co., Ltd. | Quinoline derivatives |
US5240934A (en) * | 1990-10-19 | 1993-08-31 | Ss Pharmaceutical Co., Ltd. | Quinoline derivatives |
US5646153A (en) * | 1991-05-10 | 1997-07-08 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Bis mono- and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase |
US5756804A (en) * | 1995-07-25 | 1998-05-26 | Hoechst Aktiengesellschaft | Homogeneous process for carrying out cross-coupling reactions |
US5801263A (en) * | 1996-05-17 | 1998-09-01 | Hoechst Aktiengesellschaft | Process for preparing tertiary phosphines containing phosphinate or phosphonate groups, and novel tertiary phosphines containing phosphinate groups |
US6015904A (en) * | 1993-03-30 | 2000-01-18 | Sworin; Michael | Stable reagents for the preparation of radio pharmaceuticals |
US6362216B1 (en) * | 1998-10-27 | 2002-03-26 | Array Biopharma Inc. | Compounds which inhibit tryptase activity |
US6417357B1 (en) * | 1998-03-18 | 2002-07-09 | Ciba Specialty Chemicals Corporation | Coupling reactions with palladium catalysts |
US6566571B1 (en) * | 1999-04-10 | 2003-05-20 | Degussa Ag | Method of producing biaryls |
US20040097485A1 (en) * | 2002-10-31 | 2004-05-20 | Tularik Inc. | Antiinflammation agents |
US20040102360A1 (en) * | 2002-10-30 | 2004-05-27 | Barnett Stanley F. | Combination therapy |
US20040167165A1 (en) * | 2003-01-16 | 2004-08-26 | Geetha Shankar | Methods of treating conditions associated with an Edg-7 receptor |
US20040186148A1 (en) * | 2003-03-20 | 2004-09-23 | Schering Corporation | Cannabinoid receptor ligands |
US6800784B1 (en) * | 1999-11-26 | 2004-10-05 | Rhodia Chimie | Process for preparing a polyaromatic compound |
US20050113283A1 (en) * | 2002-01-18 | 2005-05-26 | David Solow-Cordero | Methods of treating conditions associated with an EDG-4 receptor |
US6984756B2 (en) * | 2000-05-19 | 2006-01-10 | Eli Lilly And Company | Process for preparing biphenyl compounds |
US20060264439A1 (en) * | 2005-05-17 | 2006-11-23 | Supergen, Inc. | Inhibitors of polo-like kinase-1 |
US7425556B2 (en) * | 2005-12-20 | 2008-09-16 | Astrazeneca Ab | Compounds and uses thereof |
US7465795B2 (en) * | 2005-12-20 | 2008-12-16 | Astrazeneca Ab | Compounds and uses thereof |
US20080318925A1 (en) * | 2007-06-19 | 2008-12-25 | Astrazeneca Ab | Compounds and Uses Thereof - 849 |
US20090012084A1 (en) * | 2007-01-25 | 2009-01-08 | Astrazeneca Ab | 3-cinnolinecarboxamide derivatives and their use for treating cancer |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD249011A5 (en) | 1986-06-20 | 1987-08-26 | Ici Americas Inc,Us | PROCESS FOR THE PRODUCTION OF CINNOLIN COMPOUNDS |
EP0328282B1 (en) | 1988-02-09 | 1992-08-19 | Ici Americas Inc. | Pharmaceutical |
WO1992016497A1 (en) | 1991-03-22 | 1992-10-01 | Japan Tobacco Inc. | Amino acid derivative having renin inhibitory activity |
US5710158A (en) | 1991-05-10 | 1998-01-20 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Aryl and heteroaryl quinazoline compounds which inhibit EGF and/or PDGF receptor tyrosine kinase |
EP0584222B1 (en) | 1991-05-10 | 1997-10-08 | Rhone-Poulenc Rorer International (Holdings) Inc. | Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit egf and/or pdgf receptor tyrosine kinase |
GB9607219D0 (en) | 1996-04-04 | 1996-06-12 | Smithkline Beecham Plc | Novel compounds |
WO1999046268A1 (en) | 1998-03-12 | 1999-09-16 | Novo Nordisk A/S | MODULATORS OF PROTEIN TYROSINE PHOSPHATASES (PTPases) |
GB9919957D0 (en) | 1999-08-23 | 1999-10-27 | Merck Sharp & Dohme | Therapeutic agents |
GB9921150D0 (en) | 1999-09-07 | 1999-11-10 | Merck Sharp & Dohme | Therapeutic agents |
GB9921351D0 (en) | 1999-09-09 | 1999-11-10 | Merck Sharp & Dohme | Therapeutic agents |
GB9927687D0 (en) | 1999-11-23 | 2000-01-19 | Merck Sharp & Dohme | Therapeutic agents |
GB9929685D0 (en) | 1999-12-15 | 2000-02-09 | Merck Sharp & Dohme | Therapeutic agents |
GB9929687D0 (en) | 1999-12-15 | 2000-02-09 | Merck Sharp & Dohme | Therapeutic agents |
CA2399741A1 (en) | 2000-03-21 | 2001-11-01 | Scott D. Larsen | 4-hydroxycinnoline-3-carboxyamides as antiviral agents |
MXPA02011306A (en) | 2000-05-19 | 2003-04-25 | Lilly Co Eli | A process for preparing biphenyl compounds. |
CA2410037C (en) | 2000-05-24 | 2009-11-03 | Merck Sharp & Dohme Limited | 3-phenyl-imidazo-pyrimidine derivatives as ligands for gaba receptors |
AUPQ841300A0 (en) | 2000-06-27 | 2000-07-20 | Fujisawa Pharmaceutical Co., Ltd. | New aminoalcohol derivatives |
GB0018473D0 (en) | 2000-07-27 | 2000-09-13 | Merck Sharp & Dohme | Therapeutic agents |
CA2427779A1 (en) | 2000-11-10 | 2002-05-16 | Merck Sharp & Dohme Limited | Imidazo-triazine derivatives as ligands for gaba receptors |
GB0027561D0 (en) | 2000-11-10 | 2000-12-27 | Merck Sharp & Dohme | Therapeutic agents |
GB0111191D0 (en) | 2001-05-08 | 2001-06-27 | Merck Sharp & Dohme | Therapeutic agents |
WO2003003009A1 (en) | 2001-06-29 | 2003-01-09 | 7Tm Pharma A/S | Use of metal-ion chelates in validating biological molecules as drug targets in test animal models |
GB0117060D0 (en) | 2001-07-12 | 2001-09-05 | Merck Sharp & Dohme | Therapeutic agents |
GB0119828D0 (en) | 2001-08-14 | 2001-10-10 | Merck Sharp & Dohme | Therapeutic agents |
GB0119803D0 (en) | 2001-08-14 | 2001-10-10 | Merck Sharp & Dohme | Therapeutic agents |
GB0120345D0 (en) | 2001-08-21 | 2001-10-17 | Merck Sharp & Dohme | Therapeutic agents |
AUPR738301A0 (en) | 2001-08-30 | 2001-09-20 | Starpharma Limited | Chemotherapeutic agents |
GB0122696D0 (en) | 2001-09-20 | 2001-11-14 | Merck Sharp & Dohme | Therapeutic agents |
EP1513522A2 (en) | 2002-01-18 | 2005-03-16 | Sri International | Methods of treating conditions associated with an edg receptor |
GB0208394D0 (en) | 2002-04-11 | 2002-05-22 | Merck Sharp & Dohme | Therapeutic agents |
PL189894B1 (en) | 2002-04-15 | 2005-10-31 | Univ Medyczny W Lodzi | Method of manufacture of 6,7,8-substituted 4-hydroxycynnoline-3-carboxyl acids |
GB0210124D0 (en) | 2002-05-02 | 2002-06-12 | Merck Sharp & Dohme | Therapeutic agents |
GB0210127D0 (en) | 2002-05-02 | 2002-06-12 | Merck Sharp & Dohme | Therapeutic agents |
GB0212049D0 (en) | 2002-05-24 | 2002-07-03 | Merck Sharp & Dohme | Therapeutic agents |
GB0212048D0 (en) | 2002-05-24 | 2002-07-03 | Merck Sharp & Dohme | Therapeutic agents |
CA2491820A1 (en) | 2002-07-17 | 2004-01-22 | Warner-Lambert Company Llc | Combination of an allosteric alkyne inhibitor of matrix metalloproteinase-13 with a selective inhibitor of cyclooxygenase-2 that is not celecoxib or valdecoxib |
AU2003246979B8 (en) | 2002-08-13 | 2009-08-06 | Merck Sharp & Dohme Limited | Phenylpyridazine derivatives as ligands for GABA receptors |
GB0218876D0 (en) | 2002-08-13 | 2002-09-25 | Merck Sharp & Dohme | Therapeutic agents |
SE0202461D0 (en) | 2002-08-14 | 2002-08-14 | Astrazeneca Ab | Novel compounds |
KR101122782B1 (en) | 2002-10-04 | 2012-04-12 | 프라나 바이오테크놀로지 리미티드 | Neurologically-active compounds |
GB0225501D0 (en) | 2002-11-01 | 2002-12-11 | Merck Sharp & Dohme | Therapeutic agents |
GB0226462D0 (en) | 2002-11-13 | 2002-12-18 | Merck Sharp & Dohme | Therapeutic agents |
GB0301350D0 (en) | 2003-01-21 | 2003-02-19 | Merck Sharp & Dohme | Therapeutic agents |
WO2004076452A1 (en) | 2003-02-26 | 2004-09-10 | Merck Sharp & Dohme Limited | 5,8-DIFLUOROIMIDAZO[1,2-a]PYRIDINES AS GABA-A α2/α3 LIGANDS FOR TREATING ANXIETY AND/OR DEPRESSION |
WO2005024416A1 (en) | 2003-09-05 | 2005-03-17 | Binghe Wang | Water soluble boronic acid fluorescent reporter compounds and methods of use thereof |
US7790734B2 (en) | 2003-09-08 | 2010-09-07 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
CA2545659C (en) | 2003-11-19 | 2013-06-04 | Array Biopharma Inc. | Bicyclic inhibitors of mek |
KR100899245B1 (en) | 2003-12-23 | 2009-05-26 | 노파르티스 아게 | Bicyclic heterocyclic p-38 kinase inhibitors |
-
2006
- 2006-12-18 US US11/611,943 patent/US7465795B2/en active Active
- 2006-12-20 TW TW095148012A patent/TW200730506A/en unknown
-
2008
- 2008-08-27 US US12/199,034 patent/US20090018112A1/en not_active Abandoned
-
2011
- 2011-02-22 US US13/031,763 patent/US20110144331A1/en not_active Abandoned
Patent Citations (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4230713A (en) * | 1979-01-19 | 1980-10-28 | Ici Americas Inc. | Heterocyclic tetrahydro-1-alkyl-4-oxo-1H-imidazol-2-ylidene urea and phenyl esters of tetrahydro-1-alkyl-4-oxo-1H-imidazol-2-ylidene carbamic acid compounds |
US4511568A (en) * | 1982-05-12 | 1985-04-16 | Ici Americas Inc. | CNS-Depressant pyrazolopyridines |
US4645838A (en) * | 1982-05-12 | 1987-02-24 | Ici Americas Inc. | Pyrazolopyridine compounds, and intermediates, useful as anxiolytic agents |
US4552883A (en) * | 1982-06-15 | 1985-11-12 | Ici Americas Inc. | Pyrazolo[3,4-b]pyridine carboxylic acid esters and their pharmaceutical use |
US4563525A (en) * | 1983-05-31 | 1986-01-07 | Ici Americas Inc. | Process for preparing pyrazolopyridine compounds |
US4546104A (en) * | 1983-11-04 | 1985-10-08 | Ici Americas Inc. | Pyrazolopyridine cycloalkanones and process for their preparation |
US4705793A (en) * | 1984-08-20 | 1987-11-10 | Ici Americas Inc. | Pyrazolo[3,4-b]pyrrolo[3,4-e]pyridine-5(1H)-one and 1-H-pyrazolo[3,4-b][1,6]naphthyridine-5(6H)-one derivations, useful as anti-anxiety agents |
US4745121A (en) * | 1984-10-04 | 1988-05-17 | Ici Americas Inc. | Pyrazolo[3,4-b]pyridine-5-carboxamides and their use as anxiolytic agents |
US4886800A (en) * | 1985-05-30 | 1989-12-12 | Ici Americas Inc. | Substituted cinnoline derivatives as CNS depressants |
US4975435A (en) * | 1986-05-06 | 1990-12-04 | Ici Americas Inc. | Certain 1H-pyrrold[3,4-b]quinolin-1-one-9-amino-2,3-dihydro derivatives useful for treating anxiety |
US5118688A (en) * | 1986-05-06 | 1992-06-02 | Ici Americas Inc. | Tetrahydropyridoquinolone derivatives useful as anxiolytic agents |
US4925844A (en) * | 1988-02-09 | 1990-05-15 | Ici Americas Inc. | Antagonizing the pharmacological effects of a benzodiazepine receptor agonist |
US5190951A (en) * | 1990-10-19 | 1993-03-02 | Ss Pharmaceutical Co., Ltd. | Quinoline derivatives |
US5240934A (en) * | 1990-10-19 | 1993-08-31 | Ss Pharmaceutical Co., Ltd. | Quinoline derivatives |
US5300517A (en) * | 1990-10-19 | 1994-04-05 | Ss Pharmaceutical Co., Ltd. | Piperidine compounds having anti-acetylcholinesterase activity |
US5646153A (en) * | 1991-05-10 | 1997-07-08 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Bis mono- and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase |
US6057320A (en) * | 1991-05-10 | 2000-05-02 | Aventis Pharmaceuticals Products Inc. | Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase |
US6015904A (en) * | 1993-03-30 | 2000-01-18 | Sworin; Michael | Stable reagents for the preparation of radio pharmaceuticals |
US5756804A (en) * | 1995-07-25 | 1998-05-26 | Hoechst Aktiengesellschaft | Homogeneous process for carrying out cross-coupling reactions |
US6140265A (en) * | 1995-07-25 | 2000-10-31 | Clariant Gmbh | Catalyst for cross-coupling reactions |
US5801263A (en) * | 1996-05-17 | 1998-09-01 | Hoechst Aktiengesellschaft | Process for preparing tertiary phosphines containing phosphinate or phosphonate groups, and novel tertiary phosphines containing phosphinate groups |
US6417357B1 (en) * | 1998-03-18 | 2002-07-09 | Ciba Specialty Chemicals Corporation | Coupling reactions with palladium catalysts |
US6362216B1 (en) * | 1998-10-27 | 2002-03-26 | Array Biopharma Inc. | Compounds which inhibit tryptase activity |
US6566571B1 (en) * | 1999-04-10 | 2003-05-20 | Degussa Ag | Method of producing biaryls |
US6800784B1 (en) * | 1999-11-26 | 2004-10-05 | Rhodia Chimie | Process for preparing a polyaromatic compound |
US6984756B2 (en) * | 2000-05-19 | 2006-01-10 | Eli Lilly And Company | Process for preparing biphenyl compounds |
US20050113283A1 (en) * | 2002-01-18 | 2005-05-26 | David Solow-Cordero | Methods of treating conditions associated with an EDG-4 receptor |
US20040102360A1 (en) * | 2002-10-30 | 2004-05-27 | Barnett Stanley F. | Combination therapy |
US20040097485A1 (en) * | 2002-10-31 | 2004-05-20 | Tularik Inc. | Antiinflammation agents |
US20040167165A1 (en) * | 2003-01-16 | 2004-08-26 | Geetha Shankar | Methods of treating conditions associated with an Edg-7 receptor |
US20040186148A1 (en) * | 2003-03-20 | 2004-09-23 | Schering Corporation | Cannabinoid receptor ligands |
US20060264439A1 (en) * | 2005-05-17 | 2006-11-23 | Supergen, Inc. | Inhibitors of polo-like kinase-1 |
US7425556B2 (en) * | 2005-12-20 | 2008-09-16 | Astrazeneca Ab | Compounds and uses thereof |
US7465795B2 (en) * | 2005-12-20 | 2008-12-16 | Astrazeneca Ab | Compounds and uses thereof |
US20090036454A1 (en) * | 2005-12-20 | 2009-02-05 | Astrazeneca Ab | Compounds and Uses Thereof |
US20090012084A1 (en) * | 2007-01-25 | 2009-01-08 | Astrazeneca Ab | 3-cinnolinecarboxamide derivatives and their use for treating cancer |
US20080318925A1 (en) * | 2007-06-19 | 2008-12-25 | Astrazeneca Ab | Compounds and Uses Thereof - 849 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080318925A1 (en) * | 2007-06-19 | 2008-12-25 | Astrazeneca Ab | Compounds and Uses Thereof - 849 |
US10660898B2 (en) | 2010-10-06 | 2020-05-26 | Glaxosmithkline Llc | Benzimidazole derivatives as PI3 kinase inhibitors |
US8435988B2 (en) | 2010-10-06 | 2013-05-07 | Glaxosmithkline Llc | Benzimidazole derivatives as P13 kinase inhibitors |
US8541411B2 (en) | 2010-10-06 | 2013-09-24 | Glaxosmithkline Llc | Benzimidazole derivatives as PI3 kinase inhibitors |
US8674090B2 (en) | 2010-10-06 | 2014-03-18 | Glaxosmithkline Llc | Benzimidazole derivatives as PI3 kinase inhibitors |
US8865912B2 (en) | 2010-10-06 | 2014-10-21 | Glaxosmithkline Llc | Benzimidazole derivatives as PI3 kinase inhibitors |
US9062003B2 (en) | 2010-10-06 | 2015-06-23 | Glaxosmithkline Llc | Benzimidazole derivatives as PI3 kinase inhibitors |
US9156797B2 (en) | 2010-10-06 | 2015-10-13 | Glaxosmithkline Llc | Benzimidazole derivatives as PI3 kinase inhibitors |
US9872860B2 (en) | 2010-10-06 | 2018-01-23 | Glaxosmithkline Llc | Benzimidazole derivatives as PI3 kinase inhibitors |
US10314845B2 (en) | 2010-10-06 | 2019-06-11 | Glaxosmithkline Llc | Benzimidazole derivatives as PI3 kinase inhibitors |
DE212011100209U1 (en) | 2011-09-13 | 2014-04-22 | U.S. Nutraceuticals Llc Dba Valensa International | Plant-derived seed extract rich in essential fatty acids derived from perilla seeds |
US10683293B2 (en) | 2014-08-04 | 2020-06-16 | Nuevolution A/S | Optionally fused heterocyclyl-substituted derivatives of pyrimidine useful for the treatment of inflammatory, metabolic, oncologic and autoimmune diseases |
US10689383B2 (en) | 2014-08-04 | 2020-06-23 | Nuevolution A/S | Optionally fused heterocyclyl-substituted derivatives of pyrimidine useful for the treatment of inflammatory, metabolic, oncologic and autoimmune diseases |
US11254681B2 (en) | 2014-08-04 | 2022-02-22 | Nuevolution A/S | Optionally fused heterocyclyl-substituted derivatives of pyrimidine useful for the treatment of inflammatory, metabolic, oncologic and autoimmune diseases |
US11447479B2 (en) | 2019-12-20 | 2022-09-20 | Nuevolution A/S | Compounds active towards nuclear receptors |
US11613532B2 (en) | 2020-03-31 | 2023-03-28 | Nuevolution A/S | Compounds active towards nuclear receptors |
US11780843B2 (en) | 2020-03-31 | 2023-10-10 | Nuevolution A/S | Compounds active towards nuclear receptors |
US12441704B2 (en) | 2023-05-05 | 2025-10-14 | Nuevolution A/S | Compounds active towards nuclear receptors |
Also Published As
Publication number | Publication date |
---|---|
US20070142382A1 (en) | 2007-06-21 |
US20110144331A1 (en) | 2011-06-16 |
US7465795B2 (en) | 2008-12-16 |
TW200730506A (en) | 2007-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7425556B2 (en) | Compounds and uses thereof | |
US7465795B2 (en) | Compounds and uses thereof | |
TWI412525B (en) | Positive ectopic modifier of quinolinium M1 receptor | |
US8895580B2 (en) | Quinolinone-pyrazolone M1 receptor positive allosteric modulators | |
US20080318943A1 (en) | Compounds and Uses Thereof - 848 | |
JP5658255B2 (en) | Pyranylarylmethylbenzoquinazolinone M1 receptor positive allosteric modulator | |
CA2743562A1 (en) | Aryl methyl benzoquinazolinone m1 receptor positive allosteric modulators | |
AU2010216263A1 (en) | Pyrazolo [4,3-c] cinnolin-3-one M1 receptor positive allosteric modulators | |
US20100184738A1 (en) | Uses of cinnoline compounds to treat schizophrenia | |
AU2014282977B2 (en) | 1-sulfonyl piperidine derivatives as modulators of prokineticin receptors | |
HK1127775A (en) | Substituted cinnoline derivatives as gabaa-receptor modulators and method for their synthesis | |
CN101379042A (en) | Substituted cinnoline derivatives as GABAA receptor modulators and methods of synthesis thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |