US20090148334A1 - Nanophase dispersion strengthened low cte alloy - Google Patents
Nanophase dispersion strengthened low cte alloy Download PDFInfo
- Publication number
- US20090148334A1 US20090148334A1 US12/169,358 US16935808A US2009148334A1 US 20090148334 A1 US20090148334 A1 US 20090148334A1 US 16935808 A US16935808 A US 16935808A US 2009148334 A1 US2009148334 A1 US 2009148334A1
- Authority
- US
- United States
- Prior art keywords
- metal matrix
- matrix composite
- nanophase
- alloy
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 35
- 239000000956 alloy Substances 0.000 title claims abstract description 35
- 239000006185 dispersion Substances 0.000 title description 3
- 239000002245 particle Substances 0.000 claims abstract description 67
- 239000011156 metal matrix composite Substances 0.000 claims abstract description 58
- 239000000463 material Substances 0.000 claims abstract description 34
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 150000004767 nitrides Chemical class 0.000 claims abstract description 7
- 229910000531 Co alloy Inorganic materials 0.000 claims abstract description 5
- KGWWEXORQXHJJQ-UHFFFAOYSA-N [Fe].[Co].[Ni] Chemical compound [Fe].[Co].[Ni] KGWWEXORQXHJJQ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 16
- 239000000843 powder Substances 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 238000009826 distribution Methods 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 claims description 5
- 150000001247 metal acetylides Chemical class 0.000 claims description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- 229910052593 corundum Inorganic materials 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 238000005245 sintering Methods 0.000 claims description 4
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 4
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052681 coesite Inorganic materials 0.000 claims description 3
- 229910052906 cristobalite Inorganic materials 0.000 claims description 3
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000005551 mechanical alloying Methods 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 229910052682 stishovite Inorganic materials 0.000 claims description 3
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 claims description 3
- 229910003470 tongbaite Inorganic materials 0.000 claims description 3
- 229910052905 tridymite Inorganic materials 0.000 claims description 3
- 229910052845 zircon Inorganic materials 0.000 claims description 3
- 229910003178 Mo2C Inorganic materials 0.000 claims description 2
- 229910019802 NbC Inorganic materials 0.000 claims description 2
- 238000000280 densification Methods 0.000 claims description 2
- 238000001125 extrusion Methods 0.000 claims description 2
- 238000001513 hot isostatic pressing Methods 0.000 claims description 2
- 229910003468 tantalcarbide Inorganic materials 0.000 claims description 2
- 229910000640 Fe alloy Inorganic materials 0.000 claims 2
- 239000007769 metal material Substances 0.000 claims 1
- 239000011159 matrix material Substances 0.000 description 13
- 229910001374 Invar Inorganic materials 0.000 description 10
- 229910000990 Ni alloy Inorganic materials 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 239000002131 composite material Substances 0.000 description 4
- 230000008595 infiltration Effects 0.000 description 4
- 238000001764 infiltration Methods 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 229910001338 liquidmetal Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011066 ex-situ storage Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910000942 Elinvar Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- -1 chromium carbides Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910000833 kovar Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 238000009497 press forging Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
- C22C38/105—Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1084—Alloys containing non-metals by mechanical alloying (blending, milling)
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0207—Using a mixture of prealloyed powders or a master alloy
- C22C33/0228—Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0278—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
- C22C33/0285—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
Definitions
- Structural materials with low coefficients of thermal expansion find wide application in space structures that require high pointing accuracy and dimensional stability in the presence of dynamic thermal disturbances.
- Invar 36 36 weight percent nickel, 64 weight percent iron
- JWST ISIM James Webb Space Telescope Integrated Science Instrument Module
- a metal matrix composite material comprising a low coefficient of thermal expansion (CTE) alloy strengthened by nanophase dispersed particles.
- a metal matrix composite material comprising a low coefficient of thermal expansion (CTE) alloy selected from the group consisting of iron-nickel and iron-nickel-cobalt alloys strengthened by nanophase dispersed particles.
- CTE coefficient of thermal expansion
- a metal matrix composite material comprising the steps of:
- CTE coefficient of thermal expansion
- the present invention relates to a metal matrix composite material which includes a low CTE alloy strengthened by nanophase particles dispersed within the metal matrix composite material. It is believed that a number of suitable low CTE alloys would benefit from
- low CTE alloys particularly the iron—36 weight percent nickel alloy (Invar 36) can be strengthened with a high volume fraction of small, finely dispersed, inert, non-deformable particles and still maintain a secant coefficient of thermal expansion (also called an average coefficient of thermal expansion) less than or equal to 1.5 ppm/K over the temperature range 4K to 330K.
- a secant coefficient of thermal expansion also called an average coefficient of thermal expansion
- the nanophase particles could comprise about 10 to 45 volume percent of the metal matrix composite material but most preferably is about 30 volume percent.
- the nanophase particles should be inert meaning they do not dissolve into the metal matrix as an atomic scale solute that would degrade thermal expansion properties.
- the nanophase particles should be refractory with a standard molar enthalpy of formation less than ⁇ 300 kJ mol ⁇ 1 so that the atoms within the nanophase particles are bound tightly together and are therefore not easily deformed or cut by a passing dislocation.
- the present invention addresses the shortcomings of the prior art by introducing an inert nanophase dispersion into the low CTE alloy, preferably the iron—36 weight percent nickel alloy (Invar 36), matrix forming an ex situ composite resulting in a lower density, higher strength metal matrix composite material with higher specific stiffness.
- the ex situ composite refers to being added to the metal matrix from outside as compared to an in situ composite formed by adding solutes that then nucleate and grow in a precipitation reaction within the metal matrix.
- the dispersion of inert nanophase particles will reinforce the metal matrix through Orowan strengthening which is a strengthening mechanism resulting from dispersion hardening.
- Orowan strengthening is a strengthening mechanism resulting from dispersion hardening.
- a Hall-Petch effect will contribute to this as well as the Orowan Strengthening. The Hall-Petch effect predicts that as the grain size decreases the yield strength increases.
- the nanophase particles should have a grain size distribution of between 10 nanometers (nm) and 200 nm but generally less than about 100 nm. Any aggregates or agglomerations of nanophase particles should be less than about 200 nm.
- the thrust of the present invention is based on the increase in shear stress required to force a dislocation through a field of non-deformable particles. Based on the theoretical description as described by Orowan, the increase in shear stress is directly proportional to the square root of the volume fraction of particles and inversely proportional to the particle diameter. So it would be desirable to have a high volume fraction of small particles.
- the size of the nanophase particles it should be noted that whatever technology is used to produce the nanophase particles, there will most likely be a size distribution of the nanophase particles. Further, with respect to the nanophase particles in the metal matrix, there will be a point where the nanophase particles can be too small and the dislocations can cut through them resulting in a reduction in strength. What is too small a size of nanophase particle will depend on the chemistry of the nanophase particle. However, it is believed that the size distribution above should be sufficient for the present invention.
- the nanophase particles should be inert.
- the nanophase particles besides being inert, may be made from any material that can be formed to a grainsize of about 100 nm or less and that will contribute to Orowan strengthening of the metal matrix composite.
- the nanophase particles may be refractory oxides, carbides, nitrides or mixtures thereof.
- Suitable oxides could include, for example, Al 2 O 3 , TiO 2 , Y 2 O 3 , HfO 2 , ZrO 2 , SiO 2 , Ta 2 O 5 and ZrSiO 4 while suitable nitrides could include, for example, TaN, TiN, ZrN, AlN, Si 3 N 4 , VN, CrN, NbN, and HfN.
- carbides are to be used as the nanophase particles, it is necessary that they contain no free carbon which could react with the low CTE alloy matrix to adversely affect the low expansion properties of the low CTE alloy.
- Suitable carbides could include, for example, TiC, ZrC, HfC, VC, NbC, TaC, Cr 3 C 2 , Mo 2 C, WC, and SiC.
- the metal matrix composite material will be made by a process in which the nanophase particles will be synthesized separately as a powder or as a ceramic preform by conventional processes that are then combined with (i.e., introduced into the matrix of) the low CTE alloy, preferably the iron-36 weight percent nickel alloy (Invar 36) during a secondary process such as powder metallurgy, mechanical alloying or liquid metal infiltration.
- the low CTE alloy preferably the iron-36 weight percent nickel alloy (Invar 36) during a secondary process such as powder metallurgy, mechanical alloying or liquid metal infiltration.
- the powder metallurgy process includes mixing powders of the nanophase particles with powders of the low CTE alloy to form a compact and then heating to a temperature sufficient to cause sintering of the low CTE alloy.
- a temperature sufficient to cause sintering of the low CTE alloy.
- the mixture could be solid state sintered for about 48 hours at 1350° C. in a vacuum or inert atmosphere to cause densification of the mixture into a metal matrix composite material.
- the mechanical alloying process includes adding a mixture of master alloy powder or pre-proportioned metal powders together with nonmetal nanophase powder for the target composition to a high-energy ball mill for working.
- the nanophase particles endure mixing through severe plastic deformation in an inert atmosphere.
- the resulting mixture is consolidated by hot isostatic pressing or extrusion.
- the billet can then be thermomechanically processed through a descending temperature range by press-forging to final size.
- a billet can also be rolled to plate or bar, or drawn to wire.
- the liquid metal infiltration process includes forming a porous compact of the nanophase particles and then infiltrating the compact with a liquefied low CTE alloy, preferably the iron—36 weight percent nickel alloy (Invar 36).
- a porous compact of Y2O3 could be formed and then the iron—36 weight percent nickel alloy (Invar 36 ) could be melted at 1500° C. and poured into the porous compact to fill the pores.
- vacuum displacement could be applied to pull the liquid alloy into the pores of the compact.
- the resulting metal matrix composite material would be approximately 30 volume percent nanophase particles dispersed in a metal matrix of the iron—36 weight percent nickel alloy (Invar 36).
- nanophase reinforcing powder as well as either the high purity iron and nickel powder or the high purity alloy powder.
- the nanophase reinforcement as a ceramic preform for liquid metal infiltration is also available commercially.
- the metal for infiltration could be produced by melting high purity iron and nickel or, for quicker turn around, obtained commercially under conventional alloy designated by UNS No. K93603.
- the above described method differs from previous attempts to make a low CTE alloy that has high strength, low CTE and microstructural stability in four important ways.
- commercial attempts to form an in situ composite by introducing solutes that later react and precipitate through heat treatment have met with limited success because the iron-nickel matrix always has a finite solubility for ad-elements and because of the extreme sensitivity of the thermal expansion properties on the presence of unreacted elements that remain in solution.
- Examples include (a) the addition of Ti and C into the low-expansion iron-nickel alloy family to produce titanium carbide, (b) the addition of W, Cr, and C as for example with Elinvar to precipitate tungsten and chromium carbides, or (c) the addition of Ti and Nb as in NILO alloy 365 to precipitate gama prime.
- alloying iron and nickel with cobalt, as with Kovar, Super Invar 32-5 and Pernifer 29-18 produce a low CTE over limited temperature ranges but are microstructurally unstable at cryogenic temperatures.
- the proposed process preferably uses high purity iron and nickel starting materials that will ensure optimum thermal expansion properties by minimizing the presence of tramp impurities.
- composition of the dispersed phase will be chosen to minimize thermal expansion mismatch between the low CTE alloy matrix, and the iron—36 weight percent nickel alloy (Invar 36) matrix in particular, and the individual nanophase particle thus minimizing thermal stresses in the matrix over a wide range of temperature change.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
A metal matrix composite material of a low coefficient of thermal expansion (CTE) alloy strengthened by nanophase dispersed particles. The low CTE alloy can be an iron-nickel alloy or an iron-nickel-cobalt alloy. The nanophase particles can be a refractory oxide, carbide or nitride. Also disclosed is a method of making a metal matrix composite material in which the nanophase particles are combined with the low CTE alloy to form a metal matrix composite material having the nanophase particles dispersed therein.
Description
- This application is based upon prior filed provisional patent applications Ser. No. 60/992,403 filed Dec. 5, 2007, and 61/013,340 filed Dec. 13, 2007, the entire subject matter of which are incorporated by reference herein.
- The invention described herein was made by an employee of the United States Government, and may be manufactured and used by or for the Government for governmental purposes without the payment of any royalties thereon or therefor.
- Structural materials with low coefficients of thermal expansion (CTE) find wide application in space structures that require high pointing accuracy and dimensional stability in the presence of dynamic thermal disturbances. Historically, Invar 36 (36 weight percent nickel, 64 weight percent iron) has been the material of choice, notwithstanding its low strength, low specific stiffness and high density. These limitations of low strength, low specific stiffness and high density were highlighted most recently in trade studies concerning its use in the James Webb Space Telescope Integrated Science Instrument Module (JWST ISIM) and mirror back plane.
- The advantages of the invention have been achieved by providing, according to a first aspect of the invention, a metal matrix composite material comprising a low coefficient of thermal expansion (CTE) alloy strengthened by nanophase dispersed particles.
- According to a second aspect of the invention, there is provided a metal matrix composite material comprising a low coefficient of thermal expansion (CTE) alloy selected from the group consisting of iron-nickel and iron-nickel-cobalt alloys strengthened by nanophase dispersed particles.
- According to a third aspect of the invention, there is provided a method of making a metal matrix composite material, the method comprising the steps of:
- forming nanophase particles;
- combining the nanophase particles with a low coefficient of thermal expansion (CTE) alloy to form a metal matrix composite material having the nanophase particles dispersed therein.
- The present invention relates to a metal matrix composite material which includes a low CTE alloy strengthened by nanophase particles dispersed within the metal matrix composite material. It is believed that a number of suitable low CTE alloys would benefit from
- The present inventor believes that low CTE alloys, particularly the iron—36 weight percent nickel alloy (Invar 36) can be strengthened with a high volume fraction of small, finely dispersed, inert, non-deformable particles and still maintain a secant coefficient of thermal expansion (also called an average coefficient of thermal expansion) less than or equal to 1.5 ppm/K over the temperature range 4K to 330K.
- The nanophase particles could comprise about 10 to 45 volume percent of the metal matrix composite material but most preferably is about 30 volume percent. The nanophase particles should be inert meaning they do not dissolve into the metal matrix as an atomic scale solute that would degrade thermal expansion properties. Moreover, the nanophase particles should be refractory with a standard molar enthalpy of formation less than −300 kJ mol−1 so that the atoms within the nanophase particles are bound tightly together and are therefore not easily deformed or cut by a passing dislocation.
- The present invention addresses the shortcomings of the prior art by introducing an inert nanophase dispersion into the low CTE alloy, preferably the iron—36 weight percent nickel alloy (Invar 36), matrix forming an ex situ composite resulting in a lower density, higher strength metal matrix composite material with higher specific stiffness. The ex situ composite refers to being added to the metal matrix from outside as compared to an in situ composite formed by adding solutes that then nucleate and grow in a precipitation reaction within the metal matrix. The dispersion of inert nanophase particles will reinforce the metal matrix through Orowan strengthening which is a strengthening mechanism resulting from dispersion hardening. Importantly, there will also be a substantial increase in the microyield with this metal matrix composite. A Hall-Petch effect will contribute to this as well as the Orowan Strengthening. The Hall-Petch effect predicts that as the grain size decreases the yield strength increases.
- The nanophase particles should have a grain size distribution of between 10 nanometers (nm) and 200 nm but generally less than about 100 nm. Any aggregates or agglomerations of nanophase particles should be less than about 200 nm. The thrust of the present invention is based on the increase in shear stress required to force a dislocation through a field of non-deformable particles. Based on the theoretical description as described by Orowan, the increase in shear stress is directly proportional to the square root of the volume fraction of particles and inversely proportional to the particle diameter. So it would be desirable to have a high volume fraction of small particles. Regarding the size of the nanophase particles, it should be noted that whatever technology is used to produce the nanophase particles, there will most likely be a size distribution of the nanophase particles. Further, with respect to the nanophase particles in the metal matrix, there will be a point where the nanophase particles can be too small and the dislocations can cut through them resulting in a reduction in strength. What is too small a size of nanophase particle will depend on the chemistry of the nanophase particle. However, it is believed that the size distribution above should be sufficient for the present invention.
- As noted above, the nanophase particles should be inert. The nanophase particles, besides being inert, may be made from any material that can be formed to a grainsize of about 100 nm or less and that will contribute to Orowan strengthening of the metal matrix composite. Thus, the nanophase particles may be refractory oxides, carbides, nitrides or mixtures thereof.
- Suitable oxides could include, for example, Al2O3, TiO2, Y2O3, HfO2, ZrO2, SiO2, Ta2O5 and ZrSiO4 while suitable nitrides could include, for example, TaN, TiN, ZrN, AlN, Si3N4, VN, CrN, NbN, and HfN. If carbides are to be used as the nanophase particles, it is necessary that they contain no free carbon which could react with the low CTE alloy matrix to adversely affect the low expansion properties of the low CTE alloy. Suitable carbides could include, for example, TiC, ZrC, HfC, VC, NbC, TaC, Cr3C2, Mo2C, WC, and SiC.
- The metal matrix composite material will be made by a process in which the nanophase particles will be synthesized separately as a powder or as a ceramic preform by conventional processes that are then combined with (i.e., introduced into the matrix of) the low CTE alloy, preferably the iron-36 weight percent nickel alloy (Invar 36) during a secondary process such as powder metallurgy, mechanical alloying or liquid metal infiltration.
- The powder metallurgy process includes mixing powders of the nanophase particles with powders of the low CTE alloy to form a compact and then heating to a temperature sufficient to cause sintering of the low CTE alloy. As an example, if 30 volume percent of Al2O3 were to be added to the iron—36 weight percent nickel alloy (Invar 36), the mixture could be solid state sintered for about 48 hours at 1350° C. in a vacuum or inert atmosphere to cause densification of the mixture into a metal matrix composite material.
- The mechanical alloying process includes adding a mixture of master alloy powder or pre-proportioned metal powders together with nonmetal nanophase powder for the target composition to a high-energy ball mill for working. The nanophase particles endure mixing through severe plastic deformation in an inert atmosphere. The resulting mixture is consolidated by hot isostatic pressing or extrusion. Depending on the desired product, the billet can then be thermomechanically processed through a descending temperature range by press-forging to final size. A billet can also be rolled to plate or bar, or drawn to wire.
- The liquid metal infiltration process includes forming a porous compact of the nanophase particles and then infiltrating the compact with a liquefied low CTE alloy, preferably the iron—36 weight percent nickel alloy (Invar 36). As an example, a porous compact of Y2O3 could be formed and then the iron—36 weight percent nickel alloy (Invar 36) could be melted at 1500° C. and poured into the porous compact to fill the pores. Similarly, vacuum displacement could be applied to pull the liquid alloy into the pores of the compact. The resulting metal matrix composite material would be approximately 30 volume percent nanophase particles dispersed in a metal matrix of the iron—36 weight percent nickel alloy (Invar 36).
- A number of companies can provide the nanophase reinforcing powder as well as either the high purity iron and nickel powder or the high purity alloy powder. The nanophase reinforcement as a ceramic preform for liquid metal infiltration is also available commercially. In this instance, the metal for infiltration could be produced by melting high purity iron and nickel or, for quicker turn around, obtained commercially under conventional alloy designated by UNS No. K93603.
- The above described method differs from previous attempts to make a low CTE alloy that has high strength, low CTE and microstructural stability in four important ways. First, commercial attempts to form an in situ composite by introducing solutes that later react and precipitate through heat treatment have met with limited success because the iron-nickel matrix always has a finite solubility for ad-elements and because of the extreme sensitivity of the thermal expansion properties on the presence of unreacted elements that remain in solution. Examples include (a) the addition of Ti and C into the low-expansion iron-nickel alloy family to produce titanium carbide, (b) the addition of W, Cr, and C as for example with Elinvar to precipitate tungsten and chromium carbides, or (c) the addition of Ti and Nb as in NILO alloy 365 to precipitate gama prime. Secondly, alloying iron and nickel with cobalt, as with Kovar, Super Invar 32-5 and Pernifer 29-18, produce a low CTE over limited temperature ranges but are microstructurally unstable at cryogenic temperatures. Third, the proposed process preferably uses high purity iron and nickel starting materials that will ensure optimum thermal expansion properties by minimizing the presence of tramp impurities. Fourth, the composition of the dispersed phase will be chosen to minimize thermal expansion mismatch between the low CTE alloy matrix, and the iron—36 weight percent nickel alloy (Invar 36) matrix in particular, and the individual nanophase particle thus minimizing thermal stresses in the matrix over a wide range of temperature change.
- It will be apparent to those skilled in the art having regard to this disclosure that other modifications of this invention beyond those embodiments specifically described here may be made without departing from the spirit of the invention. Accordingly, such modifications are considered within the scope of the invention as limited solely by the appended claims.
Claims (37)
1. A metal matrix composite material comprising a low coefficient of thermal expansion (CTE) alloy strengthened by nanophase dispersed particles.
2. The metal matrix composite material according to claim 1 , wherein said allow alloy is selected from the group consisting of iron-nickel and iron-nickel-cobalt alloys strengthened by nanophase dispersed particles.
3. The metal matrix composite material of claim 2 wherein the low CTE iron-nickel alloy comprises 36 weight percent nickel, remainder iron.
4. The metal matrix composite material of claim 2 wherein the low CTE iron-nickel-cobalt alloys are selected from the group consisting of a 32 weight percent nickel, 5 weight percent cobalt, remainder iron alloy and a 26 weight percent nickel, 17 weight percent cobalt, remainder iron alloy.
5. The metal matrix composite of claim 2 wherein the nanophase dispersed particles comprise about 10 to 45 volume percent of the metal matrix composite, wherein the remainder of the metal matrix composite is the low CTE alloy.
6. The metal matrix composite of claim 2 wherein the nanophase dispersed particles comprise about 30 volume percent of the metal matrix composite, wherein the remainder of the metal matrix composite is the low CTE alloy.
7. The metal matrix composite of claim 2 wherein the nanophase dispersed particles have a grain size distribution of about 10 nm to 200 nm with the majority of the nanophase particles having a grain size less than about 100 nm.
8. The metal matrix composite of claim 2 wherein the nanophase dispersed particles are selected from the group consisting of refractory oxides, carbides and nitrides.
9. The metal matrix composite of claim 8 wherein the refractory oxide is selected from the group consisting of Al2O3, TiO2, Y2O3, HfO2, ZrO2, SiO2, Ta2O5, and ZrSiO4.
10. The metal matrix composite of claim 8 wherein the nitride is selected from the group consisting of TaN, TiN, ZrN, AlN, Si3N4, VN, CrN, NbN, and HfN.
11. The metal matrix composite of claim 8 wherein the carbide is devoid of free carbon and is selected from the group consisting of TiC, ZrC, HfC, VC, NbC, TaC, Cr3C2, MO2C, WC, and SiC.
12. A method of making a metal matrix composite material, the method comprising the steps of:
forming nanophase particles;
combining the nanophase particles with a low coefficient of thermal expansion (CTE) alloy to form a metal matrix composite material having the nanophase particles dispersed therein.
13. The method of claim 12 wherein the nanophase particles are selected from the group consisting of refractory oxides, carbides and nitrides and the low CTE alloy is selected from the group consisting of iron-nickel and iron-nickel-cobalt alloys.
14. The method of claim 12 wherein the step of combining comprises mixing powders of the nanophase particles with powders of the low CTE alloy to form a compact and then heating to a temperature sufficient to cause sintering of the low CTE alloy.
15. The method of claim 12 wherein the step of combining comprises mechanical alloying.
16. The method of claim 12 wherein the step of combining includes forming a porous compact of the nanophase particles and then infiltrating the compact with a liquefied low CTE alloy.
17. The method of claim 12 wherein the nanophase particles comprise about 10 to 45 volume percent of the metal matrix composite, wherein the remainder of the metal matrix composite is the low CTE alloy.
18. The method of claim 12 wherein the nanophase particles comprise about 30 volume percent of the metal matrix composite, wherein the remainder of the metal matrix composite is the low CTE alloy.
19. The method of claim 13 wherein the refractory oxide is selected from the group consisting of Al2O3, TiO2, Y2O3, HfO2, ZrO2, SiO2, Ta2O5, and ZrSiO4.
20. The method of claim 13 wherein the nitride is selected from the group consisting of TaN, TiN, ZrN, AlN, Si3N4, VN, CrN, NbN, and HfN.
21. The method of claim 13 wherein the carbide is devoid of free carbon and is selected from the group consisting of TiC, ZrC, HfC, VC, NbC, TaC, Cr3C2, Mo2C, WC, and SiC.
22. The method of claim 12 wherein the nanophase particles have a grain size distribution of about 10 nm to 200 nm with the majority of nanophase particles having a grain size less than about 100 nm.
23. A method of making a metal matrix composite material of low coefficient of thermal expansion comprising the steps of:
a) providing an iron-nickel alloy powder metal material of a low coefficient of thermal expansion;
b) providing refractory nanophase particles having a standard molar enthalpy of formation less than −300 kJ mol−1;
c) mixing said iron nickel allow and said refractory nanophase particles to yield a substantially uniform mixture wherein said refractory nanophase particles amount to 10-45% of said mixture by volume;
d) forming said mixture into a compact; and
e) then heating said mixture to a temperature sufficient to cause sintering of said iron-nickel alloy.
24. The method of making a metal matrix composite material according to claim 23 , wherein said iron-nickel alloy is 36 weight percent nickel and 64 weight percent iron.
25. The method of making a metal matrix composite material according to claim 23 , wherein said step of heating includes sintering said mixture in one of a vacuum and a inert atmosphere and causing densification of the mixture into said metal matrix composite material.
26. The method of making a metal matrix composite material according to claim 23 , wherein said steps further comprising consolidated said mixture by one of hot isostatic pressing or extrusion.
27. The method of making a metal matrix composite material according to claim 23 , wherein said refractory nanophase particles constitute about 30% of said mixture by volume.
28. A metal matrix composite material having of low coefficient of thermal expansion comprising:
an iron nickel alloy having a low coefficient of thermal expansion; and
refractory nanophase particles having a standard molar enthalpy of formation less than −300 kJ mol−1 dispersed substantially uniformly within said iron nickel alloy, wherein said refractory nanophase particles constitute between 10-45% by volume of said metal matrix composite material.
29. The metal matrix composite material according to claim 28 , wherein said iron-nickel alloy is 36 weight percent nickel and 64 weight percent iron.
30. The metal matrix composite material according to claim 29 , wherein said refractory nanophase particles constitute about 30% of said mixture by volume.
31. The metal matrix composite material according to claim 28 , wherein said refractory nanophase particles constitute about 30% of said mixture by volume.
32. The metal matrix composite according to claim 28 wherein said metal matrix composite has
33. The metal matrix composite according to claim 28 , wherein said nanophase particles have a grain size distribution in a range between 10-200 nanometers (nm).
34. The metal matrix composite according to claim 30 , wherein said nanophase particles have a grain size distribution in a range between 10-200 nanometers (nm).
36. The metal matrix composite according to claim 28 , wherein said metal matrix composite has a secant coefficient of thermal expansion less than or equal to 1.5 ppm/K over the temperature range between 4K to 330K.
37. The metal matrix composite according to claim 28 , wherein said metal matrix composite has a secant coefficient of thermal expansion less than or equal to 1.5 ppm/K over the temperature range between 4K to 330K and said nanophase particles have a grain size distribution in a range between 10-100 nanometers (nm).
38. The metal matrix composite according to claim 34 , wherein said metal matrix composite has a secant coefficient of thermal expansion less than or equal to 1.5 ppm/K over the temperature range between 4K to 330K.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/169,358 US20090148334A1 (en) | 2007-12-05 | 2008-07-08 | Nanophase dispersion strengthened low cte alloy |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US99240307P | 2007-12-05 | 2007-12-05 | |
| US12/169,358 US20090148334A1 (en) | 2007-12-05 | 2008-07-08 | Nanophase dispersion strengthened low cte alloy |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20090148334A1 true US20090148334A1 (en) | 2009-06-11 |
Family
ID=40721877
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/169,358 Abandoned US20090148334A1 (en) | 2007-12-05 | 2008-07-08 | Nanophase dispersion strengthened low cte alloy |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US20090148334A1 (en) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2012024791A1 (en) * | 2010-08-25 | 2012-03-01 | Torxx Group Inc. | Composite materials and methods and apparatus for making same |
| US20120107603A1 (en) * | 2010-10-29 | 2012-05-03 | General Electric Company | Article formed using nanostructured ferritic alloy |
| CN104060160A (en) * | 2013-03-22 | 2014-09-24 | 上海和辉光电有限公司 | Metal-based composite material for vapor plating of masking plates, vapor-plated masking plate and preparation method thereof |
| WO2016141154A1 (en) * | 2015-03-03 | 2016-09-09 | Materion Corporation | Light weight high stiffness metal composite |
| CN107699811A (en) * | 2017-09-08 | 2018-02-16 | 中国科学院合肥物质科学研究院 | A kind of silica dispersion-strengthened steel and preparation method thereof |
| US10480054B2 (en) * | 2011-01-25 | 2019-11-19 | Tenaris Coiled Tubes, Llc | Coiled tube with varying mechanical properties for superior performance and methods to produce the same by a continuous heat treatment |
| JP2020070497A (en) * | 2018-10-26 | 2020-05-07 | 山陽特殊製鋼株式会社 | Powder for high rigidity low thermal expansion alloy |
| CN111850372A (en) * | 2020-06-23 | 2020-10-30 | 湘潭大学 | Preparation of a series of FeCoCrNiW(VC)X high-entropy alloys and their precipitation strengthening process |
| US10935704B2 (en) * | 2011-01-21 | 2021-03-02 | Carl Zeiss Smt Gmbh | Substrate for an EUV-lithography mirror |
| US11124852B2 (en) | 2016-08-12 | 2021-09-21 | Tenaris Coiled Tubes, Llc | Method and system for manufacturing coiled tubing |
| WO2022023738A1 (en) * | 2020-07-30 | 2022-02-03 | Brunel University London | Method for carbide dispersion strengthened high performance metallic materials |
| US12129533B2 (en) | 2015-04-14 | 2024-10-29 | Tenaris Connections B.V. | Ultra-fine grained steels having corrosion- fatigue resistance |
| CN119287272A (en) * | 2024-10-19 | 2025-01-10 | 河北励泰金属制品有限公司 | A fire-resistant and earthquake-resistant support steel and its preparation method and application |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3647426A (en) * | 1966-07-12 | 1972-03-07 | Xavier Wache | Processes for the production of iron-nickel alloys having a high-nickel content |
| US4752334A (en) * | 1983-12-13 | 1988-06-21 | Scm Metal Products Inc. | Dispersion strengthened metal composites |
| US5511603A (en) * | 1993-03-26 | 1996-04-30 | Chesapeake Composites Corporation | Machinable metal-matrix composite and liquid metal infiltration process for making same |
| US6180258B1 (en) * | 1997-06-04 | 2001-01-30 | Chesapeake Composites Corporation | Metal-matrix composites and method for making such composites |
| US20020006350A1 (en) * | 2000-03-17 | 2002-01-17 | Junichi Nishida | Fe-Ni alloy having high strength and low thermal expansion, a shadow mask made of the alloy, a braun tube with the shadow mask, a lead frame made of the alloy and a semiconductor element with lead frame |
-
2008
- 2008-07-08 US US12/169,358 patent/US20090148334A1/en not_active Abandoned
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3647426A (en) * | 1966-07-12 | 1972-03-07 | Xavier Wache | Processes for the production of iron-nickel alloys having a high-nickel content |
| US4752334A (en) * | 1983-12-13 | 1988-06-21 | Scm Metal Products Inc. | Dispersion strengthened metal composites |
| US5511603A (en) * | 1993-03-26 | 1996-04-30 | Chesapeake Composites Corporation | Machinable metal-matrix composite and liquid metal infiltration process for making same |
| US6180258B1 (en) * | 1997-06-04 | 2001-01-30 | Chesapeake Composites Corporation | Metal-matrix composites and method for making such composites |
| US20020006350A1 (en) * | 2000-03-17 | 2002-01-17 | Junichi Nishida | Fe-Ni alloy having high strength and low thermal expansion, a shadow mask made of the alloy, a braun tube with the shadow mask, a lead frame made of the alloy and a semiconductor element with lead frame |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2012024791A1 (en) * | 2010-08-25 | 2012-03-01 | Torxx Group Inc. | Composite materials and methods and apparatus for making same |
| US20120107603A1 (en) * | 2010-10-29 | 2012-05-03 | General Electric Company | Article formed using nanostructured ferritic alloy |
| CN102570634A (en) * | 2010-10-29 | 2012-07-11 | 通用电气公司 | Article formed using nanostructured ferritic alloy |
| US10935704B2 (en) * | 2011-01-21 | 2021-03-02 | Carl Zeiss Smt Gmbh | Substrate for an EUV-lithography mirror |
| US11952648B2 (en) | 2011-01-25 | 2024-04-09 | Tenaris Coiled Tubes, Llc | Method of forming and heat treating coiled tubing |
| US10480054B2 (en) * | 2011-01-25 | 2019-11-19 | Tenaris Coiled Tubes, Llc | Coiled tube with varying mechanical properties for superior performance and methods to produce the same by a continuous heat treatment |
| CN104060160A (en) * | 2013-03-22 | 2014-09-24 | 上海和辉光电有限公司 | Metal-based composite material for vapor plating of masking plates, vapor-plated masking plate and preparation method thereof |
| WO2016141154A1 (en) * | 2015-03-03 | 2016-09-09 | Materion Corporation | Light weight high stiffness metal composite |
| US12129533B2 (en) | 2015-04-14 | 2024-10-29 | Tenaris Connections B.V. | Ultra-fine grained steels having corrosion- fatigue resistance |
| US11124852B2 (en) | 2016-08-12 | 2021-09-21 | Tenaris Coiled Tubes, Llc | Method and system for manufacturing coiled tubing |
| CN107699811A (en) * | 2017-09-08 | 2018-02-16 | 中国科学院合肥物质科学研究院 | A kind of silica dispersion-strengthened steel and preparation method thereof |
| CN107699811B (en) * | 2017-09-08 | 2019-07-19 | 中国科学院合肥物质科学研究院 | A kind of silica dispersion strengthened steel and preparation method thereof |
| JP2020070497A (en) * | 2018-10-26 | 2020-05-07 | 山陽特殊製鋼株式会社 | Powder for high rigidity low thermal expansion alloy |
| JP7492697B2 (en) | 2018-10-26 | 2024-05-30 | 山陽特殊製鋼株式会社 | Powder for high stiffness, low thermal expansion alloys |
| CN111850372A (en) * | 2020-06-23 | 2020-10-30 | 湘潭大学 | Preparation of a series of FeCoCrNiW(VC)X high-entropy alloys and their precipitation strengthening process |
| CN116057194A (en) * | 2020-07-30 | 2023-05-02 | 伦敦布鲁内尔大学 | Method for carbide dispersion strengthening high performance metallic materials |
| WO2022023738A1 (en) * | 2020-07-30 | 2022-02-03 | Brunel University London | Method for carbide dispersion strengthened high performance metallic materials |
| CN119287272A (en) * | 2024-10-19 | 2025-01-10 | 河北励泰金属制品有限公司 | A fire-resistant and earthquake-resistant support steel and its preparation method and application |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20090148334A1 (en) | Nanophase dispersion strengthened low cte alloy | |
| US5854966A (en) | Method of producing composite materials including metallic matrix composite reinforcements | |
| KR101927611B1 (en) | High- strength and heat-resisting high entropy alloy matrix composites and method of manufacturing the same | |
| US20170314097A1 (en) | High-strength and ultra heat-resistant high entropy alloy (hea) matrix composites and method of preparing the same | |
| KR101928329B1 (en) | Method for manufacturing nanocrystalline high entropy alloy(hea) and high entropy alloy(hea) manufactured therefrom | |
| US5563107A (en) | Densified micrograin refractory metal or solid solution solution (mixed metal) carbide ceramics | |
| US6312643B1 (en) | Synthesis of nanoscale aluminum alloy powders and devices therefrom | |
| US5640666A (en) | Composite silicide/silicon carbide mechanical alloy | |
| US5451365A (en) | Methods for densifying and strengthening ceramic-ceramic composites by transient plastic phase processing | |
| US7560001B2 (en) | Method of making dense composites of bulk-solidifying amorphous alloys and articles thereof | |
| WO2006020607A2 (en) | Metal matrix composites with intermettalic reinforcements | |
| US20040079191A1 (en) | Hard alloy and W-based composite carbide powder used as starting material | |
| CN104073750A (en) | TiC short fiber reinforced titanium-based composite material and preparation method thereof | |
| US5854434A (en) | High-modulus iron-based alloy with a dispersed boride | |
| US20160303649A1 (en) | Light weight high stiffness metal composite | |
| US20040067837A1 (en) | Ceramic materials in powder form | |
| Nie | Patents of methods to prepare intermetallic matrix composites: A Review | |
| US20180105901A1 (en) | Method of making a molybdenum alloy having a high titanium content | |
| Feest et al. | Comparative viability of processing routes for intermetallic based materials | |
| US8685874B2 (en) | High-toughness zeta-phase carbides | |
| Koch et al. | The mechanical behavior of multiphase nanocrystalline materials | |
| JPH05125473A (en) | Composite solidified material of aluminum-based alloy and production thereof | |
| Luo et al. | In situ synthesis and properties of self-reinforced Si 3 N 4–SiO 2–Al 2 O 3–Y 2 O 3 (La 2 O 3) glass–ceramic composites | |
| Yang et al. | Multicomponent carbides reinforced tungsten matrix composites and their mechanical properties | |
| Balog et al. | Novel in-situ formed Al-AlN ultrafine-grained composites prepared from fine nitrided Al powders. |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STEPHENSON, TIMOTHY A., MR.;REEL/FRAME:021551/0356 Effective date: 20080708 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |