US20100247648A1 - Antimicrobial compounds - Google Patents
Antimicrobial compounds Download PDFInfo
- Publication number
- US20100247648A1 US20100247648A1 US12/719,365 US71936510A US2010247648A1 US 20100247648 A1 US20100247648 A1 US 20100247648A1 US 71936510 A US71936510 A US 71936510A US 2010247648 A1 US2010247648 A1 US 2010247648A1
- Authority
- US
- United States
- Prior art keywords
- group
- compound
- leu
- arg
- phe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 65
- 230000000845 anti-microbial effect Effects 0.000 title description 2
- 239000000203 mixture Substances 0.000 claims abstract description 34
- 241000700605 Viruses Species 0.000 claims abstract description 14
- 241000894006 Bacteria Species 0.000 claims abstract description 11
- 241000233866 Fungi Species 0.000 claims abstract description 8
- -1 3-phenylpropionyl Chemical group 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 26
- 239000003814 drug Substances 0.000 claims description 18
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 claims description 10
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 10
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 claims description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 9
- 201000010099 disease Diseases 0.000 claims description 8
- 230000003612 virological effect Effects 0.000 claims description 8
- 239000004599 antimicrobial Substances 0.000 claims description 7
- 208000035143 Bacterial infection Diseases 0.000 claims description 6
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 6
- 241000295644 Staphylococcaceae Species 0.000 claims description 5
- 125000000539 amino acid group Chemical group 0.000 claims description 5
- 241000709687 Coxsackievirus Species 0.000 claims description 4
- 241000709661 Enterovirus Species 0.000 claims description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 4
- 229930182555 Penicillin Natural products 0.000 claims description 4
- 125000002252 acyl group Chemical group 0.000 claims description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 4
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 4
- 239000003120 macrolide antibiotic agent Substances 0.000 claims description 4
- 125000003143 4-hydroxybenzyl group Chemical group [H]C([*])([H])C1=C([H])C([H])=C(O[H])C([H])=C1[H] 0.000 claims description 3
- 241001480043 Arthrodermataceae Species 0.000 claims description 3
- 241000222120 Candida <Saccharomycetales> Species 0.000 claims description 3
- 229930186147 Cephalosporin Natural products 0.000 claims description 3
- 241000186781 Listeria Species 0.000 claims description 3
- 208000036142 Viral infection Diseases 0.000 claims description 3
- 208000022362 bacterial infectious disease Diseases 0.000 claims description 3
- 229940124587 cephalosporin Drugs 0.000 claims description 3
- 150000001780 cephalosporins Chemical class 0.000 claims description 3
- 239000006071 cream Substances 0.000 claims description 3
- 230000037304 dermatophytes Effects 0.000 claims description 3
- 229940124307 fluoroquinolone Drugs 0.000 claims description 3
- 230000002538 fungal effect Effects 0.000 claims description 3
- 229940041033 macrolides Drugs 0.000 claims description 3
- 150000002960 penicillins Chemical class 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 3
- 239000003826 tablet Substances 0.000 claims description 3
- 241000701161 unidentified adenovirus Species 0.000 claims description 3
- VAZJLPXFVQHDFB-UHFFFAOYSA-N 1-(diaminomethylidene)-2-hexylguanidine Polymers CCCCCCN=C(N)N=C(N)N VAZJLPXFVQHDFB-UHFFFAOYSA-N 0.000 claims description 2
- 229940123208 Biguanide Drugs 0.000 claims description 2
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 241001466953 Echovirus Species 0.000 claims description 2
- 241000991587 Enterovirus C Species 0.000 claims description 2
- 108010015899 Glycopeptides Proteins 0.000 claims description 2
- 102000002068 Glycopeptides Human genes 0.000 claims description 2
- 241001473385 H5N1 subtype Species 0.000 claims description 2
- 241000700586 Herpesviridae Species 0.000 claims description 2
- 229920002413 Polyhexanide Polymers 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 239000004098 Tetracycline Substances 0.000 claims description 2
- 239000000443 aerosol Substances 0.000 claims description 2
- 229940126575 aminoglycoside Drugs 0.000 claims description 2
- 239000003708 ampul Substances 0.000 claims description 2
- 150000004283 biguanides Chemical class 0.000 claims description 2
- 239000002775 capsule Substances 0.000 claims description 2
- 229940041011 carbapenems Drugs 0.000 claims description 2
- 229960003260 chlorhexidine Drugs 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 229940108928 copper Drugs 0.000 claims description 2
- 239000006196 drop Substances 0.000 claims description 2
- 239000000839 emulsion Substances 0.000 claims description 2
- 239000000499 gel Substances 0.000 claims description 2
- 239000008187 granular material Substances 0.000 claims description 2
- 229960002163 hydrogen peroxide Drugs 0.000 claims description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 claims description 2
- 229940041009 monobactams Drugs 0.000 claims description 2
- 239000002674 ointment Substances 0.000 claims description 2
- 229940093158 polyhexanide Drugs 0.000 claims description 2
- 150000007660 quinolones Chemical class 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 229940009188 silver Drugs 0.000 claims description 2
- 239000000829 suppository Substances 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims description 2
- 239000006188 syrup Substances 0.000 claims description 2
- 235000020357 syrup Nutrition 0.000 claims description 2
- 235000019364 tetracycline Nutrition 0.000 claims description 2
- 229940040944 tetracyclines Drugs 0.000 claims description 2
- 150000003522 tetracyclines Chemical class 0.000 claims description 2
- 229940124597 therapeutic agent Drugs 0.000 claims description 2
- NOPFSRXAKWQILS-UHFFFAOYSA-N docosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCCO NOPFSRXAKWQILS-UHFFFAOYSA-N 0.000 claims 2
- 241000580858 Simian-Human immunodeficiency virus Species 0.000 claims 1
- 229960000583 acetic acid Drugs 0.000 claims 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims 1
- 229960000735 docosanol Drugs 0.000 claims 1
- 229940102223 injectable solution Drugs 0.000 claims 1
- 244000005700 microbiome Species 0.000 abstract description 12
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 27
- 108010008523 2-(N(alpha)-benzyloxycarbonyl-arginyl-leucylamido)-1-(cinnamoylamido)-3-methylbutane Proteins 0.000 description 25
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 24
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 24
- 239000000243 solution Substances 0.000 description 23
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 14
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 12
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 12
- 229940024606 amino acid Drugs 0.000 description 11
- 235000001014 amino acid Nutrition 0.000 description 11
- 239000003242 anti bacterial agent Substances 0.000 description 11
- 229940088710 antibiotic agent Drugs 0.000 description 11
- 239000000872 buffer Substances 0.000 description 11
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- 150000001413 amino acids Chemical class 0.000 description 10
- 230000001580 bacterial effect Effects 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 229940079593 drug Drugs 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 230000000844 anti-bacterial effect Effects 0.000 description 9
- 230000003115 biocidal effect Effects 0.000 description 9
- 208000015181 infectious disease Diseases 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 8
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 8
- 239000000706 filtrate Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 7
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 7
- 229920001817 Agar Polymers 0.000 description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 241001505901 Streptococcus sp. 'group A' Species 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000008272 agar Substances 0.000 description 6
- 150000004985 diamines Chemical class 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000000546 pharmaceutical excipient Substances 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- UNXNGGMLCSMSLH-UHFFFAOYSA-N dihydrogen phosphate;triethylazanium Chemical compound OP(O)(O)=O.CCN(CC)CC UNXNGGMLCSMSLH-UHFFFAOYSA-N 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 4
- 241000222122 Candida albicans Species 0.000 description 4
- 108010065152 Coagulase Proteins 0.000 description 4
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 4
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 4
- 241000186779 Listeria monocytogenes Species 0.000 description 4
- 208000000474 Poliomyelitis Diseases 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 241000191967 Staphylococcus aureus Species 0.000 description 4
- 241000191963 Staphylococcus epidermidis Species 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 239000006143 cell culture medium Substances 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000001103 potassium chloride Substances 0.000 description 4
- 235000011164 potassium chloride Nutrition 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 3
- 239000005695 Ammonium acetate Substances 0.000 description 3
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 3
- 229930182566 Gentamicin Natural products 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229920002684 Sepharose Polymers 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 229940043376 ammonium acetate Drugs 0.000 description 3
- 235000019257 ammonium acetate Nutrition 0.000 description 3
- 238000000921 elemental analysis Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229960002518 gentamicin Drugs 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000012044 organic layer Substances 0.000 description 3
- 230000001717 pathogenic effect Effects 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 229960005190 phenylalanine Drugs 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000004007 reversed phase HPLC Methods 0.000 description 3
- BHZOKUMUHVTPBX-UHFFFAOYSA-M sodium acetic acid acetate Chemical compound [Na+].CC(O)=O.CC([O-])=O BHZOKUMUHVTPBX-UHFFFAOYSA-M 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 2
- 125000004066 1-hydroxyethyl group Chemical group [H]OC([H])([*])C([H])([H])[H] 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- IZHVBANLECCAGF-UHFFFAOYSA-N 2-hydroxy-3-(octadecanoyloxy)propyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)COC(=O)CCCCCCCCCCCCCCCCC IZHVBANLECCAGF-UHFFFAOYSA-N 0.000 description 2
- 102000044503 Antimicrobial Peptides Human genes 0.000 description 2
- 108700042778 Antimicrobial Peptides Proteins 0.000 description 2
- 241000228245 Aspergillus niger Species 0.000 description 2
- VAGHQPQYMACYDU-UHFFFAOYSA-N CNCC1CCCN1C Chemical compound CNCC1CCCN1C VAGHQPQYMACYDU-UHFFFAOYSA-N 0.000 description 2
- 102000005927 Cysteine Proteases Human genes 0.000 description 2
- 108010005843 Cysteine Proteases Proteins 0.000 description 2
- 241000450599 DNA viruses Species 0.000 description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 241000192125 Firmicutes Species 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 208000009889 Herpes Simplex Diseases 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- 125000003290 L-leucino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])C([H])([H])C(C([H])([H])[H])([H])C([H])([H])[H] 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- MDSUKZSLOATHMH-IUCAKERBSA-N Leu-Val Chemical compound CC(C)C[C@H]([NH3+])C(=O)N[C@@H](C(C)C)C([O-])=O MDSUKZSLOATHMH-IUCAKERBSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- MDSUKZSLOATHMH-UHFFFAOYSA-N N-L-leucyl-L-valine Natural products CC(C)CC(N)C(=O)NC(C(C)C)C(O)=O MDSUKZSLOATHMH-UHFFFAOYSA-N 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- 241000700584 Simplexvirus Species 0.000 description 2
- 241000193998 Streptococcus pneumoniae Species 0.000 description 2
- 231100000650 Toxic shock syndrome Toxicity 0.000 description 2
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 2
- 229960004150 aciclovir Drugs 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 150000001540 azides Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000007478 blood agar base Substances 0.000 description 2
- 229940095731 candida albicans Drugs 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 125000004427 diamine group Chemical group 0.000 description 2
- 241001493065 dsRNA viruses Species 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229960003085 meticillin Drugs 0.000 description 2
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- XTUSEBKMEQERQV-UHFFFAOYSA-N propan-2-ol;hydrate Chemical compound O.CC(C)O XTUSEBKMEQERQV-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 2
- 241001529453 unidentified herpesvirus Species 0.000 description 2
- JDZJPBGMOPJBQP-VIFPVBQESA-N (2s)-2-(3-phenylprop-2-enoylamino)propanoic acid Chemical group OC(=O)[C@H](C)NC(=O)C=CC1=CC=CC=C1 JDZJPBGMOPJBQP-VIFPVBQESA-N 0.000 description 1
- RXUJUJGHJCVRAG-ARVCSUQZSA-N (2s)-2-amino-4-methyl-n-[(2s)-3-methyl-1-[[(e)-3-phenylprop-2-enoyl]amino]butan-2-yl]pentanamide;hydrochloride Chemical compound Cl.CC(C)C[C@H](N)C(=O)N[C@@H](C(C)C)CNC(=O)\C=C\C1=CC=CC=C1 RXUJUJGHJCVRAG-ARVCSUQZSA-N 0.000 description 1
- LKHRXPRTMSOQDY-UQKRIMTDSA-N (2s)-2-amino-5-(diaminomethylideneamino)-2-phenylmethoxycarbonylpentanoic acid;hydrochloride Chemical compound Cl.NC(=N)NCCC[C@](N)(C(O)=O)C(=O)OCC1=CC=CC=C1 LKHRXPRTMSOQDY-UQKRIMTDSA-N 0.000 description 1
- SZXBQTSZISFIAO-ZETCQYMHSA-N (2s)-3-methyl-2-[(2-methylpropan-2-yl)oxycarbonylamino]butanoic acid Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)OC(C)(C)C SZXBQTSZISFIAO-ZETCQYMHSA-N 0.000 description 1
- RRONHWAVOYADJL-HNNXBMFYSA-N (2s)-3-phenyl-2-(phenylmethoxycarbonylamino)propanoic acid Chemical compound C([C@@H](C(=O)O)NC(=O)OCC=1C=CC=CC=1)C1=CC=CC=C1 RRONHWAVOYADJL-HNNXBMFYSA-N 0.000 description 1
- URQQEIOTRWJXBA-QRPNPIFTSA-N (2s)-4-methyl-2-[(2-methylpropan-2-yl)oxycarbonylamino]pentanoic acid;hydrate Chemical compound O.CC(C)C[C@@H](C(O)=O)NC(=O)OC(C)(C)C URQQEIOTRWJXBA-QRPNPIFTSA-N 0.000 description 1
- SJSSFUMSAFMFNM-NSHDSACASA-N (2s)-5-(diaminomethylideneamino)-2-(phenylmethoxycarbonylamino)pentanoic acid Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)OCC1=CC=CC=C1 SJSSFUMSAFMFNM-NSHDSACASA-N 0.000 description 1
- HHCPMSWPCALFQJ-MERQFXBCSA-N (2s)-5-(diaminomethylideneamino)-2-(phenylmethoxycarbonylamino)pentanoic acid;hydrochloride Chemical compound Cl.NC(N)=NCCC[C@@H](C(O)=O)NC(=O)OCC1=CC=CC=C1 HHCPMSWPCALFQJ-MERQFXBCSA-N 0.000 description 1
- YSRSXQLMNVOLCM-UHFFFAOYSA-N 1-(2-ethoxy-5-propan-2-ylphenyl)piperazin-2-one Chemical compound CCOC1=CC=C(C(C)C)C=C1N1C(=O)CNCC1 YSRSXQLMNVOLCM-UHFFFAOYSA-N 0.000 description 1
- HGDQNCIYDUYHDB-UHFFFAOYSA-N 1-(2-ethoxyphenyl)piperazin-2-one Chemical compound CCOC1=CC=CC=C1N1C(=O)CNCC1 HGDQNCIYDUYHDB-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- YEDUAINPPJYDJZ-UHFFFAOYSA-N 2-hydroxybenzothiazole Chemical compound C1=CC=C2SC(O)=NC2=C1 YEDUAINPPJYDJZ-UHFFFAOYSA-N 0.000 description 1
- HJCMDXDYPOUFDY-WHFBIAKZSA-N Ala-Gln Chemical compound C[C@H](N)C(=O)N[C@H](C(O)=O)CCC(N)=O HJCMDXDYPOUFDY-WHFBIAKZSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- RTDZQOFEGPWSJD-AVGNSLFASA-N Arg-Leu-Val Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O RTDZQOFEGPWSJD-AVGNSLFASA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 208000037157 Azotemia Diseases 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- QCCDLTOVEPVEJK-UHFFFAOYSA-N CC(=O)CC1=CC=CC=C1 Chemical compound CC(=O)CC1=CC=CC=C1 QCCDLTOVEPVEJK-UHFFFAOYSA-N 0.000 description 1
- XQWAJWFJOKSEMZ-GVIGAFOUSA-N CC(=O)NC(CC1=CC=CC=C1)C(=O)NCC(NC(=O)C(CC(C)C)NC(=O)C(CCCNC(=N)N)NC(=O)OCC1=CC=CC=C1)C(C)C.CC(C)CC(CNC(=O)/C=C/C1=CC=CC=C1)NC(=O)C(CC(C)C)NC(=O)C(CCCNC(=N)N)NC(=O)OCC1=CC=CC=C1.CC(C)CC(NC(=O)C(CCCNC(=N)N)NC(=O)OCC1=CC=CC=C1)C(=O)NC(CNC(=O)/C=C/C1=CC=CC=C1)C(C)C.CC(C)CC(NC(=O)C(CCCNC(=N)N)NC(=O)OCC1=CC=CC=C1)C(=O)NC(CNC(=O)/C=C/C1=CC=CC=C1)CC1=CC=CC=C1 Chemical compound CC(=O)NC(CC1=CC=CC=C1)C(=O)NCC(NC(=O)C(CC(C)C)NC(=O)C(CCCNC(=N)N)NC(=O)OCC1=CC=CC=C1)C(C)C.CC(C)CC(CNC(=O)/C=C/C1=CC=CC=C1)NC(=O)C(CC(C)C)NC(=O)C(CCCNC(=N)N)NC(=O)OCC1=CC=CC=C1.CC(C)CC(NC(=O)C(CCCNC(=N)N)NC(=O)OCC1=CC=CC=C1)C(=O)NC(CNC(=O)/C=C/C1=CC=CC=C1)C(C)C.CC(C)CC(NC(=O)C(CCCNC(=N)N)NC(=O)OCC1=CC=CC=C1)C(=O)NC(CNC(=O)/C=C/C1=CC=CC=C1)CC1=CC=CC=C1 XQWAJWFJOKSEMZ-GVIGAFOUSA-N 0.000 description 1
- GTUZGQSYRQPXRG-BDYFBWBVSA-N CC(=O)NC(CC1=CC=CC=C1)C(=O)NCC(NC(=O)C(CC(C)C)NC(=O)C(CCCNC(=N)N)NC(=O)OCC1=CC=CC=C1)C(C)C.CC(C)CC(NC(=O)C(CCCNC(=N)N)NC(=O)OCC1=CC=CC=C1)C(=O)NC(CNC(=O)/C=C/C1=CC=CC=C1)C(C)C.CC(C)CC(NC(=O)C(CCCNC(=N)N)NC(=O)OCC1=CC=CC=C1)C(=O)NC(CNC(=O)/C=C/C1=CC=CC=C1)C(C)C.CC(C)CC(NC(=O)C(CCCNC(=N)N)NC(=O)OCC1=CC=CC=C1)C(=O)NC(CNC(=O)/C=C/C1=CC=CC=C1)C(C)C Chemical compound CC(=O)NC(CC1=CC=CC=C1)C(=O)NCC(NC(=O)C(CC(C)C)NC(=O)C(CCCNC(=N)N)NC(=O)OCC1=CC=CC=C1)C(C)C.CC(C)CC(NC(=O)C(CCCNC(=N)N)NC(=O)OCC1=CC=CC=C1)C(=O)NC(CNC(=O)/C=C/C1=CC=CC=C1)C(C)C.CC(C)CC(NC(=O)C(CCCNC(=N)N)NC(=O)OCC1=CC=CC=C1)C(=O)NC(CNC(=O)/C=C/C1=CC=CC=C1)C(C)C.CC(C)CC(NC(=O)C(CCCNC(=N)N)NC(=O)OCC1=CC=CC=C1)C(=O)NC(CNC(=O)/C=C/C1=CC=CC=C1)C(C)C GTUZGQSYRQPXRG-BDYFBWBVSA-N 0.000 description 1
- BSZNESUDEAHJOF-ISLYRVAYSA-N CC(C)CC(CNC(/C=C/c1ccccc1)=O)NC(C(CC(C)C)NC(C(CCCNC(N)=N)NC(OCc1ccccc1)=O)=O)=O Chemical compound CC(C)CC(CNC(/C=C/c1ccccc1)=O)NC(C(CC(C)C)NC(C(CCCNC(N)=N)NC(OCc1ccccc1)=O)=O)=O BSZNESUDEAHJOF-ISLYRVAYSA-N 0.000 description 1
- FOUPPVYLJLGCBP-UHFFFAOYSA-N CC1C2=CC2CCC1 Chemical compound CC1C2=CC2CCC1 FOUPPVYLJLGCBP-UHFFFAOYSA-N 0.000 description 1
- 101100505076 Caenorhabditis elegans gly-2 gene Proteins 0.000 description 1
- 241000867607 Chlorocebus sabaeus Species 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 206010011409 Cross infection Diseases 0.000 description 1
- ODKSFYDXXFIFQN-SCSAIBSYSA-N D-arginine Chemical compound OC(=O)[C@H](N)CCCNC(N)=N ODKSFYDXXFIFQN-SCSAIBSYSA-N 0.000 description 1
- ROHFNLRQFUQHCH-RXMQYKEDSA-N D-leucine Chemical compound CC(C)C[C@@H](N)C(O)=O ROHFNLRQFUQHCH-RXMQYKEDSA-N 0.000 description 1
- COLNVLDHVKWLRT-MRVPVSSYSA-N D-phenylalanine Chemical compound OC(=O)[C@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-MRVPVSSYSA-N 0.000 description 1
- 229930182832 D-phenylalanine Natural products 0.000 description 1
- KZSNJWFQEVHDMF-SCSAIBSYSA-N D-valine Chemical compound CC(C)[C@@H](N)C(O)=O KZSNJWFQEVHDMF-SCSAIBSYSA-N 0.000 description 1
- 102000000541 Defensins Human genes 0.000 description 1
- 108010002069 Defensins Proteins 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 241000194031 Enterococcus faecium Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 206010017533 Fungal infection Diseases 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 241000606768 Haemophilus influenzae Species 0.000 description 1
- 101000912205 Homo sapiens Cystatin-C Proteins 0.000 description 1
- 241000701074 Human alphaherpesvirus 2 Species 0.000 description 1
- 241000709701 Human poliovirus 1 Species 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241000588747 Klebsiella pneumoniae Species 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ZGUNAGUHMKGQNY-ZETCQYMHSA-N L-alpha-phenylglycine zwitterion Chemical compound OC(=O)[C@@H](N)C1=CC=CC=C1 ZGUNAGUHMKGQNY-ZETCQYMHSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000588655 Moraxella catarrhalis Species 0.000 description 1
- 208000031888 Mycoses Diseases 0.000 description 1
- YNVLBMWWBDEFEN-BTQNPOSSSA-N N-[(2S)-2-amino-3-methylbutyl]-3-phenylprop-2-enamide hydrochloride Chemical compound Cl.CC(C)[C@H](N)CNC(=O)C=CC1=CC=CC=C1 YNVLBMWWBDEFEN-BTQNPOSSSA-N 0.000 description 1
- CBQJSKKFNMDLON-SNVBAGLBSA-N N-acetyl-D-phenylalanine Chemical compound CC(=O)N[C@@H](C(O)=O)CC1=CC=CC=C1 CBQJSKKFNMDLON-SNVBAGLBSA-N 0.000 description 1
- CBQJSKKFNMDLON-JTQLQIEISA-N N-acetyl-L-phenylalanine Chemical compound CC(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 CBQJSKKFNMDLON-JTQLQIEISA-N 0.000 description 1
- 208000001388 Opportunistic Infections Diseases 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 201000007100 Pharyngitis Diseases 0.000 description 1
- 241000709664 Picornaviridae Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 208000010362 Protozoan Infections Diseases 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 241000315672 SARS coronavirus Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 208000017757 Streptococcal toxic-shock syndrome Diseases 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000193985 Streptococcus agalactiae Species 0.000 description 1
- 241000264435 Streptococcus dysgalactiae subsp. equisimilis Species 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- 241000193990 Streptococcus sp. 'group B' Species 0.000 description 1
- 241001468181 Streptococcus sp. 'group C' Species 0.000 description 1
- 241000194005 Streptococcus sp. 'group G' Species 0.000 description 1
- 241001312524 Streptococcus viridans Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical class OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 206010044250 Toxic shock syndrome staphylococcal Diseases 0.000 description 1
- 206010044251 Toxic shock syndrome streptococcal Diseases 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940124350 antibacterial drug Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229960003121 arginine Drugs 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000000305 astragalus gummifer gum Substances 0.000 description 1
- ALSPKRWQCLSJLV-UHFFFAOYSA-N azanium;acetic acid;acetate Chemical compound [NH4+].CC(O)=O.CC([O-])=O ALSPKRWQCLSJLV-UHFFFAOYSA-N 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 238000002815 broth microdilution Methods 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000002668 chloroacetyl group Chemical group ClCC(=O)* 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000000120 cytopathologic effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- VFRSADQPWYCXDG-LEUCUCNGSA-N ethyl (2s,5s)-5-methylpyrrolidine-2-carboxylate;2,2,2-trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.CCOC(=O)[C@@H]1CC[C@H](C)N1 VFRSADQPWYCXDG-LEUCUCNGSA-N 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 210000004392 genitalia Anatomy 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229940074045 glyceryl distearate Drugs 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229940047650 haemophilus influenzae Drugs 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 102000049632 human CST3 Human genes 0.000 description 1
- 244000052637 human pathogen Species 0.000 description 1
- 238000007327 hydrogenolysis reaction Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 238000010829 isocratic elution Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 229960003136 leucine Drugs 0.000 description 1
- 238000012917 library technology Methods 0.000 description 1
- TYZROVQLWOKYKF-ZDUSSCGKSA-N linezolid Chemical compound O=C1O[C@@H](CNC(=O)C)CN1C(C=C1F)=CC=C1N1CCOCC1 TYZROVQLWOKYKF-ZDUSSCGKSA-N 0.000 description 1
- 229960003907 linezolid Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000007758 minimum essential medium Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- JEHRUVQTVGDTTB-UHFFFAOYSA-N n-(3-methylbutyl)-3-phenylprop-2-enamide Chemical compound CC(C)CCNC(=O)C=CC1=CC=CC=C1 JEHRUVQTVGDTTB-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000003910 polypeptide antibiotic agent Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- SSOLNOMRVKKSON-UHFFFAOYSA-N proguanil Chemical compound CC(C)\N=C(/N)N=C(N)NC1=CC=C(Cl)C=C1 SSOLNOMRVKKSON-UHFFFAOYSA-N 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical compound C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- UQDJGEHQDNVPGU-UHFFFAOYSA-N serine phosphoethanolamine Chemical compound [NH3+]CCOP([O-])(=O)OCC([NH3+])C([O-])=O UQDJGEHQDNVPGU-UHFFFAOYSA-N 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 206010040872 skin infection Diseases 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 208000017756 staphylococcal toxic-shock syndrome Diseases 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- NNTZSNVMTFFKPV-DDWIOCJRSA-N tert-butyl n-[(2s)-1-amino-3-methylbutan-2-yl]carbamate;hydrochloride Chemical compound Cl.CC(C)[C@@H](CN)NC(=O)OC(C)(C)C NNTZSNVMTFFKPV-DDWIOCJRSA-N 0.000 description 1
- DRDVJQOGFWAVLH-UHFFFAOYSA-N tert-butyl n-hydroxycarbamate Chemical class CC(C)(C)OC(=O)NO DRDVJQOGFWAVLH-UHFFFAOYSA-N 0.000 description 1
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 1
- RWRDLPDLKQPQOW-UHFFFAOYSA-N tetrahydropyrrole Substances C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-N trans-cinnamic acid Chemical compound OC(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-N 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 229960004295 valine Drugs 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/06—Dipeptides
- C07K5/06086—Dipeptides with the first amino acid being basic
- C07K5/06095—Arg-amino acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/16—Antivirals for RNA viruses for influenza or rhinoviruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
- A61P31/22—Antivirals for DNA viruses for herpes viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- compositions comprising a compound based on the general formula (I)
- the composition may be used to eliminate and/or reduce microorganisms such as bacteria, viruses, fungi and protozoa.
- the invention relates to a composition, such as a pharmaceutical and/or cosmetic composition being useful to combat microorganisms, such as bacteria, virus, fungi and protozoa as well as manufacturing of a medicament to be used to treat infections and/or disease caused by such microorganisms. Furthermore, the compound is effective to be used to reduce and/or eliminate combined infections, e.g. caused by both virus and bacteria or a mixture of bacteria.
- a composition such as a pharmaceutical and/or cosmetic composition being useful to combat microorganisms, such as bacteria, virus, fungi and protozoa as well as manufacturing of a medicament to be used to treat infections and/or disease caused by such microorganisms.
- the compound is effective to be used to reduce and/or eliminate combined infections, e.g. caused by both virus and bacteria or a mixture of bacteria.
- the invention relates to a composition
- a composition comprising
- composition being effective against various infectious diseases of viral, fungal, protozoan and bacterial origin.
- the invention relates to the use of said compound for the preparation of a medicament for the treatment of an infection and/or disease caused by a single or more than one microorganism.
- the invention relates to a method of treating infections by administration of an effective amount of the composition.
- composition By the use of solely one composition it is possible to reduce and/or eliminate more than one microorganism by the use of one and the same composition. However, the composition may also be used to combat one single microorganism. Since the compound shows effect against a broad spectrum of microorganisms its mechanism of action may be on a basic level implying low probability for microorganisms to develop resistance. We may also conclude from extensive testing that the action most probably differs from those of present antibiotics in clinical use.
- FIG. 1 illustrates one compound named Cp1 (cystapep 1).
- FIG. 2 illustrates another compound named (AcPhe 5 )Cp1 (cystapep 2).
- FIG. 3 illustrates a further compound named (Phe 4 )Cp1 (cystapep F).
- FIG. 4 illustrates a further compound named (Leu 4 )Cp1 (cystapep L).
- FIG. 5 illustrates a further compound named (Gly 3 )Cp1 (cystapep Gly 2).
- FIG. 6 illustrates a further compound named (Ac- D -Phe 5 )Cp1 (cystapep 2a).
- FIG. 7 illustrates further compounds.
- FIG. 8 illustrates a further compound named D-Val 4 Cp1
- FIG. 9 illustrates a further compound named D-Leu 3 Cp1
- FIG. 10 illustrates a further compound named D-Arg 2 Cp1
- FIG. 11 shows an overview of the synthesis of the compounds.
- resistant is intended to mean resistant against at least one antimicrobial agent.
- multiresistant is intended to mean at least resistant against two or more antimicrobial agents.
- compound /“antimicrobial peptide” is intended to mean a compound/peptide which eliminates or inhibits the growth of bacteria, viruses, protozoans and/or fungi.
- the words “compound” and “peptide” are synonymously used within this particular application.
- amino acid names and atom names are used as defined by the Protein Data Bank (PDB) (www.pdb.org), which is based on the IUPAC nomenclature (IUPAC Nomenclature and Symbolism for Amino Acids and Peptides (residue names, atom names etc.), Eur J. Biochem., 138, 9-37 (1984) together with their corrections in Eur J. Biochem., 152, 1 (1985).
- PDB Protein Data Bank
- the invention relates to a composition
- a composition comprising
- the above, identified compound may be modified in a way such that the Arg group comprises an elongation or shortening of the Arg side chain without influencing the unique properties of the compound as a compound.
- the fragment of the molecule comprising the diamine and R 4 residues may be replaced by the moiety derived from the group consisting of 6-phenetylpiperazin-2-one and 3-isopropyl-6-phenetylpiperazin-2-one.
- the chiral residues, i.e., the amino acid residues within the compound may be in the D or L -form without influencing the activity of the compound. The same applies for diastereomeric as well as enantiomeric forms.
- R 4 may be selected from the group consisting of cinnamoyl and phenylalanine or acyl residues derived from cinnamic acid, acetyl- D -phenylalanine, acetyl- L -phenylalanine and D or L -phenylalanine or derivatives thereof.
- Said composition may be used to combat microorganisms, alone or in combinations.
- bacteria are gram positive bacteria such as Staphylococcus aureus , coagulase negative staphylococci (CNS), ⁇ -haemolytic streptococci groups A, B, C and G (GAS, GBS, GCS and GGS), pneumococci and Listeria spp.
- Pathogenic viruses such as picorna virus in particular enterovirus, comprising poliovirus, coxsackieviruses groups A and B and Echoviruses and also Herpesviridae, in particular simplexvirus, comprising Herpes Simplex type 1 and 2.
- Other examples of viruses are hepatite A, B and C.
- fungus includes Candida ssp., in particular C. albicans , dermatophytes and moulds
- the compound may be a cyclic compound wherein R 1 and R 4 are linked with Arg-Leu-Val or Orn-Leu-Val bridges.
- minor modification of the compound of the invention may be performed as long as the activity of the compound remains, such as modifications of the bonds between the residues derived from amino acids.
- Examples are gram-positive bacteria, which may be combated by the invented compound and includes S. aureus, S. epidermidis and other coagulase negative staphylococci (CNS), pneumococci, groups A, B, C and G streptococci, and Listeria monocytogenes .
- viruses are polio and Herpes simplex, representing RNA and DNA viruses, respectively.
- Other examples are SARS, HIV, H 5 N 1 as well as adeno-, coxsackie- and rhinoviruses.
- Examples of fungus are Candia spp, such as C. grabrata, C. dermatophytes as well as moulds.
- Cp1 cystapep 1
- Cp1 reveals extensively modified amino acid residues, and lack of reactive sites; it is linear, amphipatic, soluble in DMSO to high concentrations but less soluble in water. It appears devoid of any detectable protease inhibitory activity. Since its small molecular size would enable transport through bacterial membrane pores, and it has low or no activity against gram-negative bacteria, its target of action may not be the cytoplasmatic membrane. Importantly, Cp1 shows a strong protective capacity for lethal streptococcal challenge in the mouse.
- GAS group A Streptococci
- S. aureus and S. epidermidis are known to produce cysteine proteases, but such enzymes in groups B, C and G streptococci and pneumococci as well as for Listeria have not been described; whether the defined compounds may still act through protease inhibition cannot be definitely ruled out at this point, in spite of evidence that it does not inhibit any of several cysteine proteases tested as mentioned above.
- the in vitro antibacterial activity of drugs is commonly estimated by testing their minimal inhibitory (MIC) and bactericidal (MBC) concentrations.
- MIC minimal inhibitory
- MBC bactericidal
- the compounds shown in the figures are active against viruses, such as polio and Herpes simplex, representing RNA and DNA viruses, respectively. No cytopathic effects for the cell line used were recorded indicating that the compounds may not be toxic for eukaryotic cells. Additionally, the compounds may be used to combat other viruses such as SARS, HIV, H5N1, hepatite A,B and C and adeno-, coxsackie- or rhinoviruses, and fungi, i.e., Candida spp., such as C. albicans.
- viruses such as SARS, HIV, H5N1, hepatite A,B and C and adeno-, coxsackie- or rhinoviruses
- fungi i.e., Candida spp., such as C. albicans.
- the compounds shown in the figures are novel, short-chain peptidomimetics derivatives, structurally based upon the active site of human cystatin C. All display antibacterial activity against major human pathogens, such as S. aureus , CNS, groups A, B, C and G streptococci, and L. monocytogenes . They have low or no activity against gram-negative bacteria or ⁇ -haemolytic Streptococci. Such a property, from a clinical point of view, would be advantageous since most existing antibiotics exhibit harmful side-effects due to profound disturbances of the normal throat or gut flora. Notably, attempts in vitro to create bacterial mutants resistant to the compounds, have failed so far.
- the compounds may be produced using conventional methods well known for a person skilled in the art. Possible methods can be found in the examples.
- compositions are suitable for medical use, and there are several kinds of human infection with current treatment problems that may potentially be treated/cured.
- the compounds may be used alone or in combination with other antimicrobial agents to combat bacterial, viral, fungal and/or protozoan infection(-s).
- the compounds according to the invention may also be used in the treatment of viral infections or diseases, such as oral, genital or systemic, caused by virus, such as herpes viruses.
- “Pharmaceutically acceptable” means a diluent, buffer, carrier or excipient that at the dosage and concentrations employed does not cause any unwanted effects in patients.
- Such pharmaceutically acceptable buffers, carriers or excipients are well-known in the art (see Remington's Pharmaceutical Sciences, 18th edition, A. R Gennaro, Ed., Mack Publishing Company (1990) and handbook of Pharmaceutical Excipients, 3rd edition, A. Kibbe, Ed., Pharmaceutical Press (2000).
- composition may be admixed with adjuvants such as lactose, sucrose, starch powder, cellulose esters of alkanoic acids, stearic acid, talc, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulphuric acids, gelatin, sodium alginate, polyvinyl-pyrrolidine, and/or polyvinyl alcohol, and tableted or encapsulated for conventional administration.
- adjuvants such as lactose, sucrose, starch powder, cellulose esters of alkanoic acids, stearic acid, talc, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulphuric acids, gelatin, sodium alginate, polyvinyl-pyrrolidine, and/or polyvinyl alcohol, and tableted or encapsulated for conventional administration.
- the compounds may be dissolved in saline, water, polyethylene glycol, propylene glycol, ethanol, oils, tragacanth gum, and/or various buffers.
- Other adjuvants and modes of administration are well known in the pharmaceutical art.
- the carrier or diluent may include time delay material, such as glyceryl monostearate or glyceryl distearate alone or with a wax, or other materials well known in the art.
- compositions may be subjected to conventional pharmaceutical operations such as sterilisation and/or may contain conventional adjuvants such as preservatives, stabilisers, wetting agents, emulsifiers, buffers, fillers, etc., e.g. as disclosed elsewhere herein.
- adjuvants such as preservatives, stabilisers, wetting agents, emulsifiers, buffers, fillers, etc., e.g. as disclosed elsewhere herein.
- composition according to the invention may be administered locally or systemically, such as topically, intravenously, orally, parenterally or as implants, and even rectal use is possible.
- suitable solid or liquid pharmaceutical preparation forms are, for example, granules, powders, tablets, coated tablets, (micro)capsules, suppositories, syrups, emulsions, gels, ointments, suspensions, creams, aerosols, drops or injectable solutions in ampoule form and also preparations with protracted release of active compounds, in which preparations excipients, diluents, adjuvants or carriers are customarily used as described above.
- the composition may also be provided in bandages or plasters or the like.
- composition will be administered to a patient in a pharmaceutically effective dose.
- pharmaceutically effective dose is meant a dose that is sufficient to produce the desired effects in relation to the condition for which it is administered.
- the exact dose is dependent on the activity of the compounds, manner of administration, nature and severity of the disorder, age and body weight of the patient and adjustment of dosage may thus be needed.
- the administration of the dose can be carried out both by single administration in the form of an individual dose unit or else several smaller dose units and also by multiple administrations of subdivided doses at specific intervals.
- composition according to the invention may be administered alone or in combination with other therapeutic agents, such as antibiotics or antiseptic agents.
- antibiotics or antiseptic agents examples are penicillins, cephalosporins, carbacephems, cephamycins, carbapenems, monobactams, aminoglycosides, glycopeptides, quinolones, tetracyclines, macrolides, and fluoroquinolones.
- Antiseptic agents include iodine, silver, copper, chlorhexidine, polyhexanide and other biguanides, acetic acid, and hydrogen peroxide. These agents may be incorporated as part of the same composition or may be administered separately.
- the invention also relates to the use of the above defined compounds for the manufacture of medicaments for the treatment of an infections and/or diseases caused by one microorganism or a mixture of microorganisms as discussed above in connection with the above defined compositions.
- the invention relates to a method of treating a mammal, such as an animal or a human being having such an infection and/or disease.
- the precipitated dicycolhexylurea (DCU) was filtered off and washed with DMF, and the combined filtrates were evaporated to dryness under reduced pressure.
- the solid residue was dissolved in ethyl acetate, and the resulting solution was washed with water (1 ⁇ 100 ml), ice-cold 1N HCl (3 ⁇ 50 ml), water (1 ⁇ 100 ml) saturated NaHCO 3 (3 ⁇ 50 ml) and finally with water (3 ⁇ 70 nil).
- the organic layer was dried over anhydrous MgSO 4 .
- the drying agent was filtered off, pre-washed with ethyl acetate and the combined filtrates were evaporated to dryness under reduced pressure.
- the solid residue was dissolved in hot toluene and precipitated with petroleum ether. Yield approximately 90%.
- the Boc-protected compound (10 mmol) was dissolved in 50 ml 4 N solution of (anhydrous) HCl in dioxane. The solution was stirred during 30 min. at room temperature, and then evaporated under reduced pressure to dryness. The solid residue was triturated with anhydrous diethyl ether. The solid residue was filtered off, washed with anhydrous diethyl ether and dried.
- the amino-component (10 mmol) was dissolved in DMF (70 ml), and 4.59 g (30 mmol monohydrate) HOBT was added. To the solution was diisopropyletylamine (DIPEA) added dropwise, until the pH of the mixture, controlled with wet indicator paper reached 7-8. Next, the N-benzyloxycarbonyl-arginine hydrochloride (5.17 g, 15 mmol) was added and the solution was cooled on ice bath. N,N′-Dicyclohexylcarbodiimide (3.09 g, 15 mmol) was added in small portions during 1 h.
- DIPEA diisopropyletylamine
- Cystapep 1 Small amounts (100-200 mg) of Cystapep 1 may be isolated using SPE technique on RP-C-18 stationary phase, or directly purified on RP-HPLC column (20 ⁇ 250 mm) filled with Kromasil-100-5-C8.
- a procedure was used that comprised isolation of Cystapep1 using SP-Sepharose FF, wherein large excess of the ion exchanger (100 ⁇ molar excess or more) was used.
- the sample containing Cystapep1 was injected into the column and unbounded substances were eluted with 50% MeOH containing 0.005 M acetate buffer.
- the Cystapep1 was eluted with a gradient of KCl (0-0.2 M).
- Cystapep1 Due to weak solubility of Cystapep1 in the presence of salts, the resulting peak was very broad, especially when the injected amount of Cystapep1 was large. A narrower peak was obtained, when ammonium acetate was used in the place of potassium chloride. The fractions containing Cystapep1 were combined and evaporated to dryness. The Cystapep was extracted with anhydrous MeOH and purified by RP-HPLC. When ammonium acetate was used, the salt was removed by lyophilization.
- the additional desalting step is not necessary, because the ammonium acetate may be removed by lyophilization,
- Desired Boc—protected alcohols may be obtained from proper Boc amino acid, in accordance with the literature procedures [1, 2]. Obtained Boc-aminoalcohols were converted into mono-Boc-protected diamines in accordance with literature procedures [3,4]. The best results were obtained when a combination of these two procedures was used.
- the mesyl-derivative of alcohol was obtained in accordance to the procedure of [4].
- the azide was obtained generally in accordance with the same procedure, but in the presence of tetrabutylammonium bromide, like in the procedure of [3].
- the inorganic salts were filtered off, washed with dimethylformamide and the combined filtrates were evaporated under reduced pressure. The oily residue was dissolved in diethyl ether and treated in this same manner as described in [3]. The reduction of azide to amine was carried out as described in [3]
- the mono-Boc-protected diamine is acylated with Z-Phe ( D or L -isomer), next the Z (benzyloxycarbonyl) protective group is removed by hydrogenolysis, and the resulting compound is acetylated with acetic anhydride.
- the precipitated DCU was filtered off, washed with THF (2 ⁇ 15 ml) and the combined filtrates were evaporated under reduced pressure.
- the solid residue was dissolved in 100 ml of ethyl acetate and the solution was washed with ice-cold 1M hydrochloric acid (3 ⁇ 50 ml), water (100 ml), a saturated aqueous solution of sodium bicarbonate (3 ⁇ 50 ml) and saline (100 ml).
- the organic layer was dried over anhydrous magnesium sulphate and evaporated to dryness.
- Streptococcus pyrogenes type M1 Streptococcus agalactiae (NCTC 8181), Streptococcus equisimilis (ATCC 12388), Streptococcus pneumoniae (ATCC49619), Staphylococcus aureus (ATCC 29213), Staphylococcus epidermidis (ATCC 14990) were tested.
- the clinical isolates were isolated by the University Hospital, Lund, Sweden and included a variable numbers of S.
- aureus including MRSA, CNS, groups A, B, C and G streptococci (GAS; GBS; GCS; GGS, respectively), Staphylococcus aureus , coagulase negative staphylococci (CNS), Enterococcus faecium , viridans streptococci, Streptococcus pneumoniae, Listeria monocytogenes, Moraxella catarrhalis, Haemophilis influenaae, E. coli, Klebsiella pneumoniae and Pseudomonas aeruginosa.
- the antibacterial activity of the different compounds was tested by agar well diffusion. Strains were grown aerobically at 37° C. for 18 hours on blood agar base
- MIC/MBC determinations were performed by broth dilution according to established procedures, well known for a person skilled in the art.
- Cystapep 1 (Cp1) 0.4 mM in 1% DMSO
- GMK Green Monkey Kidney
- AH 1 cells were grown in 24 well plates with 1 ml Minimum Essential Medium (MEM) cell culture medium containing glutamax (MEM-glutamax), 10% fetal calf serum and gentamicin (final conc 50 mg/L).
- MEM Minimum Essential Medium
- the cell culture medium was removed and the cells incubated with HSV-1 F (Herpes Simplex Virus) (Ejercito et al., J Gen Virol 1968; 2:357-364) at a concentration of 10 PFU (plaque forming units)/cell or with poliovirus type 1 at a concentration of 1 PFU/cell. After 2 hours of incubation at 37° C.
- HSV-1 F Herpes Simplex Virus
- the virus containing medium was removed and the cells washed 4 times in PBS. Then 0.5 ml MEM-glutamax containing gentamicin (as above, conc 50 mg/L) with or without test substance was added. The cells were incubated for 48 hours at 37° C. in a CO 2 incubator and then frozen at ⁇ 30° C.
- Cell culture medium with the frozen cells obtained from the inhibition test was thawn and diluted in 7 steps from 1 to 10 ⁇ 7 .
- the plaque titration was performed using GMK AH 1 cells in MEM-glutamax with gentamicin. The cells were washed three times with PBS and incubated in petri plates with different dilutions of the virus containing cell culture medium obtained in the inhibition test. The cells were incubated for 1 hour at 37° C. The medium was removed by washing the cells once with PBS. Then an agar (Bacto-Agar) overlay was added and the plates were incubated at 37° C. for 3 days. The plaques were counted (Johansson et al., Intervirology 1988; 29:334-338).
- the minimal inhibitory concentration (MIC) was determined using a method with Sabouraud broth (Becton Dickinson) and an initial inoculum 10 3 -10 4 cfu/ml. Polypropylene 96-well plates (Nunc) were incubated at 25° C. for 48 h (for Candida albicans ATCC 10231) or 7 days (for Aspergillus niger ATCC 16404). The MIC was taken as the lowest drug concentration at which noticeable growth was inhibited. The experiments were performed in duplicate.
- Cp1 was added to a softening cream and 0.2 ml solution (0.1 g/l) was applied to an area of a beginning labial herpes outbreak on the lip of a female. After 3-4 hours the symptoms was gone. The experiment was performed twice.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Virology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Pulmonology (AREA)
- Tropical Medicine & Parasitology (AREA)
- AIDS & HIV (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Peptides Or Proteins (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Plural Heterocyclic Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The invention relates to compositions comprising a compound based on the general formula (I)
R1-Arg-R2—NH—CH(R3)—CH2—NH—R4 (I)
The composition may be used to eliminate and/or reduce microorganisms such as bacteria, viruses, fungi and protozoa.
Description
- This application is a Divisional of U.S. Ser. No. 11/271,109, filed 10 Nov. 2005, which claims benefit of U.S. Ser. No. 60/626,490, filed 10 Nov. 2004 and Serial No. 0702734-8, filed 10 Nov. 2004 in Sweden and which applications are incorporated herein by reference. To the extent appropriate, a claim of priority is made to each of the above disclosed applications.
- The invention relates to compositions comprising a compound based on the general formula (I)
-
R1-Arg-R2—NH—CH(R3)—CH2—NH—R4 (I) - The composition may be used to eliminate and/or reduce microorganisms such as bacteria, viruses, fungi and protozoa.
- In the late 70ies, it was believed that bacterial diseases were satisfactorily controlled by antibiotics and, as well, future vaccines. Meanwhile, the appearance of new bacterial disease manifestations, such as staphylococcal and streptococcal toxic shock syndrome, the haemolytic-uremic syndrome and others, and rapidly increasing drug resistance worldwide have acted to challenge the view that bacterial diseases were large defeated. Antibiotic research at the industrial level was focused on the identification of more refined variants of already existing drugs—and newer penicillins, cephalosporins, macrolides and fluoroquinolones were marketed. However, only one antibiotic based on a novel antimicrobial principle, linezolide, was created during three decades—and resistance to the drug has already emerged during a few years of clinical use. Many antimicrobial peptides with new mechanisms of action have been reported; out of those active against bacteria most target the bacterial cell membrane by forming pores, for example antibiotics which are of microbial origin, and defensins, a large class of substances of mammalian origin. However, so far none of these substances has been developed into clinical use. Also, recent technical progress with combinatorial library technology has enable the rapid design and testing of many substances intended for a defined target; again, in spite of considerable efforts no such compounds for medical use have been approved to date.
- Resistance to old and newer antibiotics among bacterial pathogens is evolving rapidly, as exemplified by extended spectrum beta-lactamase (ESBL) and quinolone resistant gram-negatives, multi-resistant gonococci, methicillin resistant Staphylococcus aureus (MRSA), vancomycin resistant enterococci (VRE), penicillin non-susceptible pneumococci (PNSP) and macrolide resistant pneumococci and streptococci (Panlilo et al., Infect Control Hosp Epidemiol 1992; 13:582.586; Morris et al., Ann Intern Med 1995; 123:250-259). An overuse, or improper use, of antibiotics is probably of great importance for triggering and spread of bacterial resistance.
- Economically, drug resistant pathogens represent a major burden for health-care systems. For example, postoperative and other nosocomial infections will prolong the need for hospital care and increase antibiotic drug expenses. At the community level, the current situation with PNSP has high-lighted, that most existing antibiotics may fail against this pathogen, earlier known to be invariably susceptible to antibiotics.
- In the case of viral diseases, few drugs for treatment are available in spite of intense research. For HIV, the situation has improved by the combined use of some drugs with different targets, delaying progression of the disease. Regarding herpes viruses, there is a need for improved drugs for both systemic and localised manifestations. Also for the SARS virus, effective treatment alternatives are lacking.
- The invention relates to a composition, such as a pharmaceutical and/or cosmetic composition being useful to combat microorganisms, such as bacteria, virus, fungi and protozoa as well as manufacturing of a medicament to be used to treat infections and/or disease caused by such microorganisms. Furthermore, the compound is effective to be used to reduce and/or eliminate combined infections, e.g. caused by both virus and bacteria or a mixture of bacteria.
- According to one aspect, the invention relates to a composition comprising
- a) a compound having the following formula (I)
-
R1-Arg-R2—NH—CH(R3)—CH2—NH—R4 (I) -
- wherein
- R1 is benzyloxycarbonyl or 3-phenylpropionyl,
- and
- R2 is an amino acid residue selected from the group consisting of Leu, Ile, Val, Gly, Phe and Thr,
- and
-
- R3 is selected from the group consisting of hydrogen, isopropyl, isobutyl, sec-butyl,
- 1-hydroxyethyl, benzyl, 4-hydroxybenzyl, phenyl and a 1,3 propylene bridge, additionally bonded to the nitrogen atoms of the diamine moiety as drawn
- and
-
- R4 is an acyl residue comprising a phenyl ring
and
- R4 is an acyl residue comprising a phenyl ring
- b) a carrier, diluent or an excipient.
- The composition being effective against various infectious diseases of viral, fungal, protozoan and bacterial origin.
- According to another aspect, the invention relates to the use of said compound for the preparation of a medicament for the treatment of an infection and/or disease caused by a single or more than one microorganism.
- According to still another aspect, the invention relates to a method of treating infections by administration of an effective amount of the composition.
- By the use of solely one composition it is possible to reduce and/or eliminate more than one microorganism by the use of one and the same composition. However, the composition may also be used to combat one single microorganism. Since the compound shows effect against a broad spectrum of microorganisms its mechanism of action may be on a basic level implying low probability for microorganisms to develop resistance. We may also conclude from extensive testing that the action most probably differs from those of present antibiotics in clinical use.
- Further objects, features and advantages of the invention will appear from the following detailed description of the invention, reference being made to the accompanying drawings, in which:
-
FIG. 1 illustrates one compound named Cp1 (cystapep 1). -
FIG. 2 illustrates another compound named (AcPhe5)Cp1 (cystapep 2). -
FIG. 3 illustrates a further compound named (Phe4)Cp1 (cystapep F). -
FIG. 4 illustrates a further compound named (Leu4)Cp1 (cystapep L). -
FIG. 5 illustrates a further compound named (Gly3)Cp1 (cystapep Gly 2). -
FIG. 6 illustrates a further compound named (Ac-D-Phe5)Cp1 (cystapep 2a). -
FIG. 7 illustrates further compounds. -
FIG. 8 illustrates a further compound named D-Val4Cp1 -
FIG. 9 illustrates a further compound named D-Leu3Cp1 -
FIG. 10 illustrates a further compound named D-Arg2Cp1 -
FIG. 11 shows an overview of the synthesis of the compounds. - In the context of the present application and invention the following definitions apply:
- The term “resistant” is intended to mean resistant against at least one antimicrobial agent.
- The term “multiresistant” is intended to mean at least resistant against two or more antimicrobial agents.
- The term “compound”/“antimicrobial peptide” is intended to mean a compound/peptide which eliminates or inhibits the growth of bacteria, viruses, protozoans and/or fungi. The words “compound” and “peptide” are synonymously used within this particular application.
- In the present context, amino acid names and atom names are used as defined by the Protein Data Bank (PDB) (www.pdb.org), which is based on the IUPAC nomenclature (IUPAC Nomenclature and Symbolism for Amino Acids and Peptides (residue names, atom names etc.), Eur J. Biochem., 138, 9-37 (1984) together with their corrections in Eur J. Biochem., 152, 1 (1985). The term “amino acid” is intended to indicate an amino acid from the group consisting of alanine (Ala or A), cysteine (Cys or C), aspartic acid (Asp or D), glutamic acid (Glu or E), phenylalanine (Phe or F), glycine (Gly or G), histidine (His or H), isoleucine (Ile or I), lysine (Lys or K), leucine (Leu or L), methionine (Met or M), asparagine (Asn or N), proline (Pro or P), phenylglycine (Phg), glutamine (Gln or Q), arginine (Arg or R), serine (Ser or S), threonine (Thr or T), valine (Val or V), tryptophan (Trp or W) and tyrosine (Tyr or Y), or derivatives thereof.
- The invention relates to a composition comprising
- a) a compound having the following formula (I)
-
R1-Arg-R2—NH—CH(R3)—CH2—NH—R4 (I) -
- wherein
- R1 is benzyloxycarbonyl or 3-phenylpropionyl,
- and
- R2 is an amino acid residue selected from the group consisting of Leu, Ile, Val, Gly, Phe and Thr,
- and
-
- R3 is selected from the group consisting of hydrogen, isopropyl, isobutyl, sec-butyl,
- 1-hydroxyethyl, benzyl, 4-hydroxybenzyl and phenyl and a 1,3 propylene bridge, additionally bonded to the nitrogen atoms of the diamine moiety as drawn:
- and
-
- R4 is an acyl residue comprising a phenyl ring
and
- R4 is an acyl residue comprising a phenyl ring
- b) a carrier, diluent or an excipient.
- The above, identified compound, may be modified in a way such that the Arg group comprises an elongation or shortening of the Arg side chain without influencing the unique properties of the compound as a compound.
- Additionally all kind of modifications may be introduced as long as the above defined general structure is maintained.
- Accordingly, the fragment of the molecule comprising the diamine and R4 residues may be replaced by the moiety derived from the group consisting of 6-phenetylpiperazin-2-one and 3-isopropyl-6-phenetylpiperazin-2-one. The chiral residues, i.e., the amino acid residues within the compound may be in the D or L-form without influencing the activity of the compound. The same applies for diastereomeric as well as enantiomeric forms.
- Additionally, R4 may be selected from the group consisting of cinnamoyl and phenylalanine or acyl residues derived from cinnamic acid, acetyl-D-phenylalanine, acetyl-L-phenylalanine and D or L-phenylalanine or derivatives thereof.
- Said composition may be used to combat microorganisms, alone or in combinations. Example of bacteria are gram positive bacteria such as Staphylococcus aureus, coagulase negative staphylococci (CNS), β-haemolytic streptococci groups A, B, C and G (GAS, GBS, GCS and GGS), pneumococci and Listeria spp. Pathogenic viruses such as picorna virus in particular enterovirus, comprising poliovirus, coxsackieviruses groups A and B and Echoviruses and also Herpesviridae, in particular simplexvirus, comprising Herpes Simplex type 1 and 2. Other examples of viruses are hepatite A, B and C. Examples of fungus includes Candida ssp., in particular C. albicans, dermatophytes and moulds
- The compound may be a cyclic compound wherein R1 and R4 are linked with Arg-Leu-Val or Orn-Leu-Val bridges.
- Additionally, minor modification of the compound of the invention may be performed as long as the activity of the compound remains, such as modifications of the bonds between the residues derived from amino acids.
- Specific examples of particularly interesting compounds are listed in the tables below.
-
Activity Anti- Anti- R4 bacterial viral trans-cinnamoyl + + Hydrogen- + L-2-bromo-3-phenylpropionyl + D-2-bromo-3-phenylpropionyl + L-2-hydroxy-3-phenylpropionyl + D-2-hydroxy-3-phenylpropionyl + + + + trans-3-benzylacroyl + (2S,3S)-3-phenylglycidyl + (2S,3R)-3-phenylglycidyl + (2S,3S)-3-benzoylglycidyl + trans-3-benzylsulphonylacroyl + Phenylpropiolyl + (E)-2-bromocinnamoyl + Chloroacetyl + 2-(4-pyridyl)acroyl + Acetyl-L-phenylalanoyl + + Acetyl-D-phenylalanoyl + + 5-phenylpenta-2,4-dienoyl + 4-phenylcinnamoyl + Activity Anti- Anti- R1 = bacterial viral Hydrogen- + Acetyl + Phenylacetyl + 3-phenylpropionyl + 4-phenylbutyryl + Benzyloxtcarbonyl + -
Activity Anti- Anti- Compound bacterial viral Z-Arg-Leu-Val-Phe-NH2 + Z-Arg-Leu-Val-cinnamoylamide + Mpa-Phe-Arg-Leu-Val-Phe-Cys-NH2 + cyclo(Phe-Arg-Leu-Val-Phe-Arg-Leu- + Val) cyclo(Phe-Arg-Leu-Val-Phe-Orn-Leu- + Val) cyclo(Phe-Orn-Leu-Val-Phe-Orn-Leu- + Val) cyclo(Phg-Arg-Leu-Val-Phg-Arg-Leu- + Val) cyclo(D-Phg-Arg-Leu-Val-D-Phg-Arg- + Leu-Val) cyclo(Tyr-Arg-Leu-Val-Tyr-Arg-Leu- + Val) cyclo(D-Tyr-Arg-Leu-Val-D-Tyr-Arg- + Leu-Val) + indicates that the compound show effects. Mpa-Phe indicates 3-phenylpropionyl - Examples are gram-positive bacteria, which may be combated by the invented compound and includes S. aureus, S. epidermidis and other coagulase negative staphylococci (CNS), pneumococci, groups A, B, C and G streptococci, and Listeria monocytogenes. Examples of viruses are polio and Herpes simplex, representing RNA and DNA viruses, respectively. Other examples are SARS, HIV, H5N1 as well as adeno-, coxsackie- and rhinoviruses. Examples of fungus are Candia spp, such as C. grabrata, C. dermatophytes as well as moulds.
- For example one compound, named Cp1 (cystapep 1), is shown in
FIG. 1 . Cp1 reveals extensively modified amino acid residues, and lack of reactive sites; it is linear, amphipatic, soluble in DMSO to high concentrations but less soluble in water. It appears devoid of any detectable protease inhibitory activity. Since its small molecular size would enable transport through bacterial membrane pores, and it has low or no activity against gram-negative bacteria, its target of action may not be the cytoplasmatic membrane. Importantly, Cp1 shows a strong protective capacity for lethal streptococcal challenge in the mouse. - A large number of bacterial clinical isolates have been tested against Cp1 as well as against (AcPhe5)Cp1, (Phe4)Cp1, (Leu4)Cp1, (Gly3)Cp1 and (Ac-D-Phe5)Cp1 (all shown in
FIG. 1-6 ). Typical results are shown in the examples. Approximately 100 strains of MRSA (isolated at the University Hospital, Lund, Sweden), several with additional antibiotic resistance markers, were strongly inhibited in their growth—to a comparable level as antibiotic susceptible S. aureus strains, and no strains resistant to the above mentioned six compounds, or with impaired susceptibility, have been found. The same was true for antibiotic resistant S. epidermidis and group A Streptococci (GAS), as well as other β-haemolytic Streptococci, such as groups B, C and G strains, leading to the conclusion that the mode of action of the different compounds probably differs from that of most, or all, known antibiotics. Both GAS, S. aureus and S. epidermidis are known to produce cysteine proteases, but such enzymes in groups B, C and G streptococci and pneumococci as well as for Listeria have not been described; whether the defined compounds may still act through protease inhibition cannot be definitely ruled out at this point, in spite of evidence that it does not inhibit any of several cysteine proteases tested as mentioned above. - The in vitro antibacterial activity of drugs is commonly estimated by testing their minimal inhibitory (MIC) and bactericidal (MBC) concentrations. The MICs of Cp1 for both S. aureus and GAS were found to be approximately 16 mg/L, thus somewhat higher than for clinically effective drugs; however, these tests were performed in growth media without DMSO, implying solubility problems, and true MIC values might therefore be considerably lower. Furthermore, the finding that MIC and MBC were similar for tested species indicated that the antibacterial action of the defined compounds shown in the figures is bactericidal rather than bacteriostatic.
- Experiments in cell culture have shown that the compounds shown in the figures are active against viruses, such as polio and Herpes simplex, representing RNA and DNA viruses, respectively. No cytopathic effects for the cell line used were recorded indicating that the compounds may not be toxic for eukaryotic cells. Additionally, the compounds may be used to combat other viruses such as SARS, HIV, H5N1, hepatite A,B and C and adeno-, coxsackie- or rhinoviruses, and fungi, i.e., Candida spp., such as C. albicans.
- The compounds shown in the figures, are novel, short-chain peptidomimetics derivatives, structurally based upon the active site of human cystatin C. All display antibacterial activity against major human pathogens, such as S. aureus, CNS, groups A, B, C and G streptococci, and L. monocytogenes. They have low or no activity against gram-negative bacteria or α-haemolytic Streptococci. Such a property, from a clinical point of view, would be advantageous since most existing antibiotics exhibit harmful side-effects due to profound disturbances of the normal throat or gut flora. Notably, attempts in vitro to create bacterial mutants resistant to the compounds, have failed so far.
- The difference between the different compounds shown in
FIG. 1-6 are the following; -
Compound FIG. R1 R2 R3 R4 Cp 1 1 Benzyloxycarbonyl Leu isopropyl trans- cinnamoyl [AcPhe5]Cp1 2 Benzyloxycarbonyl Leu isopropyl N-Acetyl- phenylalanoyl [Phe4]Cp1 3 Benzyloxycarbonyl Leu benzyl trans- cinnamoyl [Leu4]Cp1 4 Benzyloxycarbonyl Leu isobutyl trans- cinnamoyl [Gly3]Cp1 5 Benzyloxycarbonyl Gly isopropyl trans- cinnamoyl [Ac-D- 6 Benzyloxycarbonyl Leu isopropyl N-Acetyl-D- Phe5]Cp1 phenylalanoyl - The compounds may be produced using conventional methods well known for a person skilled in the art. Possible methods can be found in the examples.
- The above, mentioned compositions are suitable for medical use, and there are several kinds of human infection with current treatment problems that may potentially be treated/cured. Depending on the causative microbe(s) the compounds may be used alone or in combination with other antimicrobial agents to combat bacterial, viral, fungal and/or protozoan infection(-s).
- Among bacterial diseases, systemic and local infections with MRSA (methicillin resistant S. aureus), with extensive resistance to antibiotics and increasing prevalence worldwide, may be the most important category. For the same reason, treatment of opportunistic infections caused by coagulase negative streptococci (CNS) often nosocomial and foreign device related, may be suitable for treatment with the above mentioned compounds, such as those shown in the figures. For pathogenic streptococci, antibiotic resistance is of current concern; however, invasive infections caused by streptococci are often life threatening in spite of antibiotic treatment, and successful treatment might require drugs with targets distinct from these of hitherto available antibacterial drugs. Additionally, common throat and skin infections caused by streptococci, often relapsing following antibiotic treatment, may be suitable for future treatment with the above, mentioned compounds.
- The compounds according to the invention may also be used in the treatment of viral infections or diseases, such as oral, genital or systemic, caused by virus, such as herpes viruses.
- “Pharmaceutically acceptable” means a diluent, buffer, carrier or excipient that at the dosage and concentrations employed does not cause any unwanted effects in patients. Such pharmaceutically acceptable buffers, carriers or excipients are well-known in the art (see Remington's Pharmaceutical Sciences, 18th edition, A. R Gennaro, Ed., Mack Publishing Company (1990) and handbook of Pharmaceutical Excipients, 3rd edition, A. Kibbe, Ed., Pharmaceutical Press (2000).
- The composition may be admixed with adjuvants such as lactose, sucrose, starch powder, cellulose esters of alkanoic acids, stearic acid, talc, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulphuric acids, gelatin, sodium alginate, polyvinyl-pyrrolidine, and/or polyvinyl alcohol, and tableted or encapsulated for conventional administration.
- Alternatively, the compounds may be dissolved in saline, water, polyethylene glycol, propylene glycol, ethanol, oils, tragacanth gum, and/or various buffers. Other adjuvants and modes of administration are well known in the pharmaceutical art. The carrier or diluent may include time delay material, such as glyceryl monostearate or glyceryl distearate alone or with a wax, or other materials well known in the art.
- The compositions may be subjected to conventional pharmaceutical operations such as sterilisation and/or may contain conventional adjuvants such as preservatives, stabilisers, wetting agents, emulsifiers, buffers, fillers, etc., e.g. as disclosed elsewhere herein.
- The composition according to the invention may be administered locally or systemically, such as topically, intravenously, orally, parenterally or as implants, and even rectal use is possible. Suitable solid or liquid pharmaceutical preparation forms are, for example, granules, powders, tablets, coated tablets, (micro)capsules, suppositories, syrups, emulsions, gels, ointments, suspensions, creams, aerosols, drops or injectable solutions in ampoule form and also preparations with protracted release of active compounds, in which preparations excipients, diluents, adjuvants or carriers are customarily used as described above. The composition may also be provided in bandages or plasters or the like.
- The composition will be administered to a patient in a pharmaceutically effective dose. By “pharmaceutically effective dose” is meant a dose that is sufficient to produce the desired effects in relation to the condition for which it is administered. The exact dose is dependent on the activity of the compounds, manner of administration, nature and severity of the disorder, age and body weight of the patient and adjustment of dosage may thus be needed. The administration of the dose can be carried out both by single administration in the form of an individual dose unit or else several smaller dose units and also by multiple administrations of subdivided doses at specific intervals.
- The composition according to the invention may be administered alone or in combination with other therapeutic agents, such as antibiotics or antiseptic agents. Examples are penicillins, cephalosporins, carbacephems, cephamycins, carbapenems, monobactams, aminoglycosides, glycopeptides, quinolones, tetracyclines, macrolides, and fluoroquinolones. Antiseptic agents include iodine, silver, copper, chlorhexidine, polyhexanide and other biguanides, acetic acid, and hydrogen peroxide. These agents may be incorporated as part of the same composition or may be administered separately.
- The invention also relates to the use of the above defined compounds for the manufacture of medicaments for the treatment of an infections and/or diseases caused by one microorganism or a mixture of microorganisms as discussed above in connection with the above defined compositions.
- Finally the invention relates to a method of treating a mammal, such as an animal or a human being having such an infection and/or disease.
- Following examples are intended to illustrate, but not to limit, the invention in any manner, shape or form, either explicitly or implicitly.
- Procedure A—Coupling.
- 10 mmol of the amine component (hydrochloride) was dissolved in 50 ml of dimethylformamide (DMF). Next, 1.4 ml (10 mmol) of triethylamine, 12 mmol of carboxy-component and 18 mmol of 1-hydroxybenzotraizole (HOBt) was added. The mixture was cooled on ice bath and 12 mmol of dicyclohexylcarcodiimide (DCC) was added in small portions during 30 min., with vigorous stirring. The reaction mixture was stirred on ice bath 1 hour, and then left at room temperature overnight. The precipitated dicycolhexylurea (DCU) was filtered off and washed with DMF, and the combined filtrates were evaporated to dryness under reduced pressure. The solid residue was dissolved in ethyl acetate, and the resulting solution was washed with water (1×100 ml), ice-cold 1N HCl (3×50 ml), water (1×100 ml) saturated NaHCO3 (3×50 ml) and finally with water (3×70 nil). The organic layer was dried over anhydrous MgSO4. The drying agent was filtered off, pre-washed with ethyl acetate and the combined filtrates were evaporated to dryness under reduced pressure. The solid residue was dissolved in hot toluene and precipitated with petroleum ether. Yield approximately 90%.
- The Boc-protected compound (10 mmol) was dissolved in 50 ml 4 N solution of (anhydrous) HCl in dioxane. The solution was stirred during 30 min. at room temperature, and then evaporated under reduced pressure to dryness. The solid residue was triturated with anhydrous diethyl ether. The solid residue was filtered off, washed with anhydrous diethyl ether and dried.
- Procedure C—Coupling with Z-Arg-OH
- The amino-component (10 mmol) was dissolved in DMF (70 ml), and 4.59 g (30 mmol monohydrate) HOBT was added. To the solution was diisopropyletylamine (DIPEA) added dropwise, until the pH of the mixture, controlled with wet indicator paper reached 7-8. Next, the N-benzyloxycarbonyl-arginine hydrochloride (5.17 g, 15 mmol) was added and the solution was cooled on ice bath. N,N′-Dicyclohexylcarbodiimide (3.09 g, 15 mmol) was added in small portions during 1 h. and after additional 1 h of stirring, the reaction mixture was left in a cold room overnight (approximately 4° C.). The precipitated DCU was filtered off and washed with a small volume of DMF and the combined filtrates were evaporated under reduced pressure. From the resulting mixture cystapep 1 (or its analogues) was isolated using chromatography techniques.
- Small amounts (100-200 mg) of Cystapep 1 may be isolated using SPE technique on RP-C-18 stationary phase, or directly purified on RP-HPLC column (20×250 mm) filled with Kromasil-100-5-C8. The mobile phases contained triethylamine phosphate buffer (TEAP, pH=3, 0.05-0.2 M). Fractions containing Cystapep 1 were combined and the acetonitrile was removed by evaporation under reduced pressure. The resulting solution was pumped through the Kromasil column equilibrated with 5% MeCN-0.1% trifluoroacetic acid (TFA). The column buffer was washed out with 5% MeCN-0.1% TFA, next Cystapep 1 was eluted using a gradient of 5-50% MeCN containing 0.1% TFA during 1 hour. Fractions containing Cystapep 1 were concentrated and lyophilized. The substance obtained by this manner substance contains TFA as a counter ion.
- Alternatively, a procedure was used that comprised isolation of Cystapep1 using SP-Sepharose FF, wherein large excess of the ion exchanger (100× molar excess or more) was used. The Sepharose column was equilibrated with 0.005 M sodium acetate-acetic acid buffer (pH=4.75) in 50% MeOH. The sample containing Cystapep1 was injected into the column and unbounded substances were eluted with 50% MeOH containing 0.005 M acetate buffer. Next, the Cystapep1 was eluted with a gradient of KCl (0-0.2 M). Due to weak solubility of Cystapep1 in the presence of salts, the resulting peak was very broad, especially when the injected amount of Cystapep1 was large. A narrower peak was obtained, when ammonium acetate was used in the place of potassium chloride. The fractions containing Cystapep1 were combined and evaporated to dryness. The Cystapep was extracted with anhydrous MeOH and purified by RP-HPLC. When ammonium acetate was used, the salt was removed by lyophilization.
- The final purification of Cystapep 1 was performed using a Kromasil column, using approximately 29% MeCN-0.1M TEAP, pH=3 as a mobile phase or ca. 29% iPrOH-0.2 M ammonium acetate-acetic acid buffer (pH=5) as a mobile phase. In this last case, the additional desalting step is not necessary, because the ammonium acetate may be removed by lyophilization,
- Desired Boc—protected alcohols may be obtained from proper Boc amino acid, in accordance with the literature procedures [1, 2]. Obtained Boc-aminoalcohols were converted into mono-Boc-protected diamines in accordance with literature procedures [3,4]. The best results were obtained when a combination of these two procedures was used. The mesyl-derivative of alcohol was obtained in accordance to the procedure of [4]. The azide was obtained generally in accordance with the same procedure, but in the presence of tetrabutylammonium bromide, like in the procedure of [3]. The inorganic salts were filtered off, washed with dimethylformamide and the combined filtrates were evaporated under reduced pressure. The oily residue was dissolved in diethyl ether and treated in this same manner as described in [3]. The reduction of azide to amine was carried out as described in [3]
- In specific embodiments the mono-Boc-protected diamine is acylated with Z-Phe (D or L-isomer), next the Z (benzyloxycarbonyl) protective group is removed by hydrogenolysis, and the resulting compound is acetylated with acetic anhydride.
-
- 1. Kokotos G. A convenient one-pot conversion of N-protected amino acids and peptides into alcohols. Synthesis 1990: 299-30.
- 2. Juszczyk P. Lankiewicz L. Kolodziejczyk A. Synthesis of othogonally protected vicinal diamines with amino acid-based skeleton. Lett. Pep. Sci. 2002; 9:187-92
- 3. Mattingly P. G. Mono-protected diamines. N α-tert-butoxycarbonyl-α,ω-alkanediaminehydrochlorides from amino alcohols. Synthesis 1990: 366-8.
- 4. O'Brien P. M. Sliskovic D. R. Blankley J. Roth B. D. Wilsom M. W. Hamelehle K. L. Krause B. R. Stanfield R. L. Inhibitors of acyl-Co-A transferase (ACAT) as hypocholesterolemic agents. Incorporation of amide or amine functionalities into a series of disubstituted ureas and carbamates. Effect of ACAT inhibition in vitro and efficacy in vivo. J. Med. Chem. 1994; 37:1810-22.
- The (2S)-1-amino-2-tert-butyloxycarbonylamino-3-methylbutane hydrochloride was obtained from tert-butyloxycarbonyl-L-valine in accordance with the literature procedures [1, 2]. m.p. 175-176° C.; [α]D 22=+5|(c=1, ethanol).
- Elemental analysis:
- calculated: 50.31% C, 9.71% H, 11.73% N;
- found: 49.65% C, 9.74% H, 11.76% N;
- IR (KBr): 3375 (NH, urethane), 2876 (NH3 +, amine) 1683, (C═O urethane), 1165 (C—O, urethane) [cm−1]
- The solution of (2S)-1-amino-2-tert-bytyloxycarbonylamino-3-methylbutane hydrochloride (2.38 g 10 mmol), triethylamine (1.7 ml, 12 mmol), HOBt (2.70 g. 20 mmol) and trans-cinnamic acid (1.77 g, 12 mmol) in 50 ml of tetrahydrofurane (THF) was cooled in an ice bath, and DCC (1.54 g, 7.5 mmol) was added in small portions, during 30 min. The stirring was continued for 1 hour, and next the reaction mixture was left in room temperature overnight. The precipitate DCU was filtered off and washed with two portions of THF (15 ml of each).
- Combined filtrates were evaporated under reduced pressure and the solid residue was dissolved in 150 ml of ethyl acetate. The solution obtained was washed with ice-cold 1M hydrochloric acid (3×50 ml), water (100 ml), a saturated water solution of sodium bicarbonate (3×50 ml) and saline (2×50 ml). The organic layer was dried, over anhydrous magnesium sulphate and evaporated to dryness. The resulting solid was crystallized from toluene-petroleum ether, yielding 2.95 g (88.7%) of (25)-2-tert-butyloxycarbonylamino-1-trans cinnamoylamino-3-methylbutane, m.p.=149-151° C.; [α]D 20: =−0,9|° C. (c=1, methanol).
- Elemental analysis:
- calculated: 68.65% C, 8.49% H, 8.49% N;
- found: 68.69% C, 8.73% H, 9.01% N.
- IR (KBr) 3359 (NH, urethane), 3326 (N—H, amide), 1688 (C═O, urethane), 1173 (C—O, urethane), 964 (═C—H, cinnamoyl), 764 (CH, phenyl), 723 (CH phenyl) [cm−1].
- (2S)-2-tert-Butyloxycarbonylamino-1-trans-cinnamoylamino-3-methylbutane (2.5 g. 7.5 mmol) was dissolved in 40 ml of 4N hydrochloride in anhydrous dioxane. The reaction mixture was stirred during 30 min. at room temperature and evaporated under reduced pressure. The residue was triturated with 50 ml of anhydrous diethyl ether, filtered under reduced pressure, washed twice with diethyl ether (2×20 ml) and dried in a vacuum desiccator over potassium hydroxide. The resulting (2S)-2-amino-1-cinnamoylamino-3-methylbutane hydrochloride (1.78 g, 7.35 mmol) was dissolved in 50 ml of THF and triethylamine (1 ml, 7.5 mmol), HOBt (2.00 g, 15 mmol) and Boc-L-leucine monohydrate (1.87 g, 7.5 mmol) were added to the solution. The mixture was cooled on ice bath and DCC (1.54 g, 7.5 mmol) was added in small portions, during 30 min., with vigorous stirring. The mixture was stirred in an ice bath for one additional h and left at room temperature overnight. The precipitated DCU was filtered off, washed with THF (2×15 ml) and the combined filtrates were evaporated under reduced pressure. The solid residue was dissolved in 100 ml of ethyl acetate and the solution was washed with ice-cold 1M hydrochloric acid (3×50 ml), water (100 ml), a saturated aqueous solution of sodium bicarbonate (3×50 ml) and saline (100 ml). The organic layer was dried over anhydrous magnesium sulphate and evaporated to dryness. The residue was dissolved in hot toluene and precipitated with petroleum ether, yielding 2.97 g (88.9%) of (2S)-2-[(N-tert-butyloxycarbonyl-leucyl)-amino]-1-trans-cinnamoylamino-3-methylbutane.
- (2S)-2-[(N-tert-Butyloxycarbonyl-leucyl)-amino]-1-trans-cinnamoylamino-3-methylbutane (0.668 g, 1.5 mmol) was dissolved in 25 ml of 4 N solution of anhydrous hydrochloride in dioxane. The reaction mixture was stirred during 30 min. at room temperature and then evaporated to dryness under reduced pressure. The residual oil was triturated with anhydrous diethyl ether (50 ml). The obtained solid was filtered off under reduced pressure, washed with anhydrous diethyl ether (3×20 ml) and dried under vacuum over potassium hydroxide. The resulted (2S)-2-(leucylamino)-1-(trans-cinnamoylamino)-3-methylbutane hydrochloride (0.545 g, 1.43 mmol) was dissolved in 10 ml of DMF. Next, HOBt, (0.405 g, 3 mmol) was added and pH of the mixture was adjusted to 7.5 with triethylamine (controlled with wet indicator paper), and then the Nα-benzyloxycarbonyl-arginine hydrochloride (1.034 g, 3 mmol) was added. The reaction mixture was cooled on ice bath, and then the DCC (0.619 g, 3 mmol) of was added in small portions during 30 min. The mixture was stirred during additional 1 hour on ice bath and overnight at room temperature. The precipitated DCU was filtered off and washed with 20 ml of DMF. Combined filtrates were evaporated and the resulted residue was dissolved in 200 ml of 50% aqueous ethanol acidified with 20 ml of acetic acid. The solution was filtered and pumped through chromatographic column (50×200 mm) filled with S-Sepharose FF, equilibrated with 0.001 M sodium acetate-acetic acid buffer (pH=4.75) in 50% ethanol. The column was washed with an additional 750 ml of 0.001 M sodium acetate-acetic acid buffer in 50% ethanol, and the product was eluted with the linear gradient of potassium chloride (from 0 to 0.2 M of KCl in total amount of 21 of eluent. Flow rate-20 ml/min). Fractions containing Cystapep 1 were collected, evaporated to dryness and extracted with 50 ml of methanol. The insoluble inorganic salts were filtered off, washed with 20 ml of methanol and combined filtrates evaporated to dryness. The residue (1.1 g) was dissolved in 30 ml of 29% (v/v) isopropanol-water solution containing 0.2 M of TEAP buffer (pH=2.8). Half of the solution was injected on the RP-HPLC column (50×250 mm, filled with Kromasil Kr-100-7-C-8), equilibrated with 29% (v/v) isopropanol-water solution containing 0.2 M of TEAP buffer and eluted with this same solvent system (isocratic elution), at flow rate 25 ml/min. The eluate was monitored using UV detector at λ=226 nm. Fractions containing pure Cystapep 1 were collected, evaporated to half of volume and pumped through the same column equilibrated with 0.1% TFA in 5% solution of isopropanol (iPrOH) in water (v/v/v) (5% iPrOH, 0.1% TFA/H2O). The column was washed out with additional 1.5 l of 0.1% TFA in 5% solution of iPrOH in water, and next, the Cystapep 1 was eluted in gradient from 5% iPrOH, 0.1% TFA/H2O to 50% iPrOH, 0.1% TFA/H2O during 90 min. Flow rate 25 ml/min, monitoring of the eluate as described above. Fractions containing Cystapep 1 were collected, concentrated under reduced pressure and lyophilized. The second half of the crude Cystapepl solution was worked up in the same manner. Yield-0.682 g (60.6%) of Cystapep 1 as trifluoroacetate salt.
- =−16.9° (c=1, methanol);
- MS (MALDI-TOF): =636.4 [M+H]+
- Elemental analysis:
- calculated (for C34H49N7O5.TFA.H2O): 56.31% C, 6.83% H, 12.77% N; found: 56.70% C, 6.70% H, 12.45% N.
- IR (KBr) [cm−1]: 3299 (NH), 1655 (C═O, urethane) 1642 (C═O amide), 1181 (C-0 urethane), 766 (CH phenyl), 721 (CH phenyl)
- Different solutions of the different Cystapeps shown in the figures were centrifuged at 300 g for 15 min. Aliquots of the clear supernatants were used for quantitative amino acid analysis after evaporation followed by hydrolysis at 110° C. for 20 h in 6M HCl. An automated system, Beckman High Performance Analyzer, model 6300, was used for the amino acid analysis. The amounts of amino acids released were then used to calculate the concentration of the different compounds from their known structures.
- Clinical isolates and reference strains including Streptococcus pyrogenes type M1, Streptococcus agalactiae (NCTC 8181), Streptococcus equisimilis (ATCC 12388), Streptococcus pneumoniae (ATCC49619), Staphylococcus aureus (ATCC 29213), Staphylococcus epidermidis (ATCC 14990) were tested. The clinical isolates were isolated by the University Hospital, Lund, Sweden and included a variable numbers of S. aureus including MRSA, CNS, groups A, B, C and G streptococci (GAS; GBS; GCS; GGS, respectively), Staphylococcus aureus, coagulase negative staphylococci (CNS), Enterococcus faecium, viridans streptococci, Streptococcus pneumoniae, Listeria monocytogenes, Moraxella catarrhalis, Haemophilis influenaae, E. coli, Klebsiella pneumoniae and Pseudomonas aeruginosa.
- The antibacterial activity of the different compounds was tested by agar well diffusion. Strains were grown aerobically at 37° C. for 18 hours on blood agar base
- (LabM) with 4% defibrinated horse blood. However, Haemophilus influenzae was grown on Blood agar base No 2 (Oxoid) containing 7% haematized horse blood in 5% CO2 atmosphere. From each strain 5-10 colonies were suspended in 10 ml saline to an optical density of approximately 0.5 McFarlands units, vortexed rigorously and inoculated onto IsoSentitest agar (Oxoid), or onto haematin agar as indicated above, using cotton-tipped swab. The thickness of the solid media was 5 mm. Wells of 5 mm diameter were punched in the agar and 40 ul of a solution of each of the tested compounds (1 mg/ml) in DMSO was applied to each hole. After prediffusion at room temperature for 0.5 h the plates were incubated at 37° C. for 14 h aerobically or in 5% CO2 atmosphere as described above.
- MIC/MBC determinations were performed by broth dilution according to established procedures, well known for a person skilled in the art.
- The results are summarised below.
-
[Ac-D- Bacterial strain Cp 1 [AcPhe5]Cp1 [Phe4]Cp1 [Leu4]Cp1 [Gly3]Cp1 Phe5]Cp1 Staphylococci + + + + + + incl. multi- resistant MRSA CNS incl. resistant + + + + + + and multiresistant MRSE Streptococcus: + + + + + + group B Streptococcus: + + + + + + group C Streptococcus: + + + + n.d. + group G Streptococcus: + + + + n.d. + group A L. monocytogenes + + n.d. n.d. n.d. + S. pneumoniae + + + + n.d. n.d. E. coli and other − − − − n.d. n.d. Gram-negatives α-haemolytic − − − − − − Streptococci + indicates antibacterial effect, − indicates no or low antibacterial effect and n.d., indicates not determined - Test Substance;
- Acyclovir 1.0 mM
- Cystapep 1 (Cp1) 0.4 mM in 1% DMSO
- DMSO 1%
- Inhibition Analysis
- GMK (Green Monkey Kidney) AH 1 cells were grown in 24 well plates with 1 ml Minimum Essential Medium (MEM) cell culture medium containing glutamax (MEM-glutamax), 10% fetal calf serum and gentamicin (final conc 50 mg/L). When cells had reached a concentration of 5×105 cells/well, the cell culture medium was removed and the cells incubated with HSV-1 F (Herpes Simplex Virus) (Ejercito et al., J Gen Virol 1968; 2:357-364) at a concentration of 10 PFU (plaque forming units)/cell or with poliovirus type 1 at a concentration of 1 PFU/cell. After 2 hours of incubation at 37° C. the virus containing medium was removed and the cells washed 4 times in PBS. Then 0.5 ml MEM-glutamax containing gentamicin (as above, conc 50 mg/L) with or without test substance was added. The cells were incubated for 48 hours at 37° C. in a CO2 incubator and then frozen at −30° C.
- Plaque Counting Test
- Cell culture medium with the frozen cells obtained from the inhibition test was thawn and diluted in 7 steps from 1 to 10−7. The plaque titration was performed using GMK AH 1 cells in MEM-glutamax with gentamicin. The cells were washed three times with PBS and incubated in petri plates with different dilutions of the virus containing cell culture medium obtained in the inhibition test. The cells were incubated for 1 hour at 37° C. The medium was removed by washing the cells once with PBS. Then an agar (Bacto-Agar) overlay was added and the plates were incubated at 37° C. for 3 days. The plaques were counted (Johansson et al., Intervirology 1988; 29:334-338).
-
Substance HSV-1 plaques Polio plaques Medium 3.8 × 108 3.8 × 107 1% DMSO 3.9 × 108 3.5 × 107 Cystapep 1 (Cp1) 1.0 × 103 2.6 × 105 Acyclovir 2.4 × 103 n.a. n.a.: not applicable - (Leu4)Cp1 0.4 mM in 1% DMSO and (Phe4)Cp1 0.4 mM in 1% DMSO were analysed in the same way as Cystapep 1 and found to have effect against both HSV-1 and polio.
- The minimal inhibitory concentration (MIC) was determined using a method with Sabouraud broth (Becton Dickinson) and an initial inoculum 103-104 cfu/ml. Polypropylene 96-well plates (Nunc) were incubated at 25° C. for 48 h (for Candida albicans ATCC 10231) or 7 days (for Aspergillus niger ATCC 16404). The MIC was taken as the lowest drug concentration at which noticeable growth was inhibited. The experiments were performed in duplicate.
-
MIC (□g/ml) Candida albicans ATCC Compound 10231 Aspergillus niger ATCC 16404 Cp1 32 64 (AcPhe5)Cp1 512 256 - Cp1 was added to a softening cream and 0.2 ml solution (0.1 g/l) was applied to an area of a beginning labial herpes outbreak on the lip of a female. After 3-4 hours the symptoms was gone. The experiment was performed twice.
Claims (8)
1. A method for treating viral, fungal, or a mixture of viral and bacterial infection or disease, the method comprising administering an effective amount of a medicament comprising a compound having the formula (I)
R1-Arg-R2—NH—CH(R3)—CH2—NH—R4
R1-Arg-R2—NH—CH(R3)—CH2—NH—R4
wherein
R1 is benzyloxycarbonyl or 3-phenylpropionyl,
and
R2 is an amino acid residue selected from the group consisting of Val, Ile, Leu and Phe,
and
R3 is selected from the group consisting of isopropyl, isobutyl, sec.butyl, benzyl, 4-hydroxybenzyl and phenyl
and
R4 is an acyl residue comprising a phenyl ring.
3. A method according to claim 1 , wherein the virus is selected from the group consisting of polio viruses, Echoviruses, Herpesviridae, H5N1, SARS, HIV, adenoviruses, coxsackieviruses, hepatite A, B and C and rhinoviruses.
4. A method according to claim 1 , wherein said fungus is selected from the group consisting of candida, dermatophytes, and mould.
5. A method according to claim 1 , wherein said bacteria is selected from the group consisting of Staphylococci, Pneumococci, Streptococci, and Listeria.
6. A method according to claim 1 , wherein the medicament further comprises one or more antimicrobial agents.
7. A method according to claim 1 , wherein the therapeutic agents are selected from the group consisting of penicillins, cephalosporins, carbacephems, cephamycins, carbapenems, monobactams, aminoglycosides, glycopeptides, quinolones, tetracyclines, macrolides, fluoroquinolones, antiseptic agents including iodine, silver, copper, chlorhexidine, polyhexanide and other biguanides, docosanol, acetic acid, and hydrogen peroxide.
8. A method according to claim 1 , wherein the medicament is in the form of granules, powders, tablets, coated tablets, (micro) capsules, suppositories, syrups, emulsions, gels, ointments, suspensions, creams, aerosols, drops or injectable solution in ampule form.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/719,365 US20100247648A1 (en) | 2004-11-10 | 2010-03-08 | Antimicrobial compounds |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US62649004P | 2004-11-10 | 2004-11-10 | |
| SE0402734A SE0402734D0 (en) | 2004-11-10 | 2004-11-10 | Antimiicrobial compounds |
| SE0402734-8 | 2004-11-10 | ||
| US11/271,109 US7691805B2 (en) | 2004-11-10 | 2005-11-10 | Antimicrobial compounds |
| US12/719,365 US20100247648A1 (en) | 2004-11-10 | 2010-03-08 | Antimicrobial compounds |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2004/038992 Continuation WO2006055001A1 (en) | 2004-11-19 | 2004-11-19 | Method and apparatus for control of a network in hvac and other applications |
| US11/271,109 Division US7691805B2 (en) | 2004-11-10 | 2005-11-10 | Antimicrobial compounds |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/433,645 Continuation US8588222B2 (en) | 2004-11-19 | 2012-03-29 | Method and apparatus for connecting a network device to a daisy chain network |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20100247648A1 true US20100247648A1 (en) | 2010-09-30 |
Family
ID=33488201
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/271,109 Expired - Fee Related US7691805B2 (en) | 2004-11-10 | 2005-11-10 | Antimicrobial compounds |
| US12/719,365 Abandoned US20100247648A1 (en) | 2004-11-10 | 2010-03-08 | Antimicrobial compounds |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/271,109 Expired - Fee Related US7691805B2 (en) | 2004-11-10 | 2005-11-10 | Antimicrobial compounds |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US7691805B2 (en) |
| SE (1) | SE0402734D0 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8642339B2 (en) | 2009-02-03 | 2014-02-04 | Koninklijke Nederlandse Akademie Van Wetenschappen | Culture medium for epithelial stem cells and organoids comprising the stem cells |
| US9752124B2 (en) | 2009-02-03 | 2017-09-05 | Koninklijke Nederlandse Akademie Van Wetenschappen | Culture medium for epithelial stem cells and organoids comprising the stem cells |
| US9765301B2 (en) | 2010-07-29 | 2017-09-19 | Koninklijke Nederlandse Akademie Van Wetenschappen | Liver organoid, uses thereof and culture method for obtaining them |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7794490B2 (en) * | 2004-06-22 | 2010-09-14 | Boston Scientific Scimed, Inc. | Implantable medical devices with antimicrobial and biodegradable matrices |
-
2004
- 2004-11-10 SE SE0402734A patent/SE0402734D0/en unknown
-
2005
- 2005-11-10 US US11/271,109 patent/US7691805B2/en not_active Expired - Fee Related
-
2010
- 2010-03-08 US US12/719,365 patent/US20100247648A1/en not_active Abandoned
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8642339B2 (en) | 2009-02-03 | 2014-02-04 | Koninklijke Nederlandse Akademie Van Wetenschappen | Culture medium for epithelial stem cells and organoids comprising the stem cells |
| US9752124B2 (en) | 2009-02-03 | 2017-09-05 | Koninklijke Nederlandse Akademie Van Wetenschappen | Culture medium for epithelial stem cells and organoids comprising the stem cells |
| US10947510B2 (en) | 2009-02-03 | 2021-03-16 | Koninklijke Nederlandse Akademie Van Wetenschappen | Culture medium for epithelial stem cells and organoids comprising the stem cells |
| US9765301B2 (en) | 2010-07-29 | 2017-09-19 | Koninklijke Nederlandse Akademie Van Wetenschappen | Liver organoid, uses thereof and culture method for obtaining them |
| US11034935B2 (en) | 2010-07-29 | 2021-06-15 | Koninklijke Nederlandse Akademie Van Wetenschappen | Liver organoid, uses thereof and culture method for obtaining them |
Also Published As
| Publication number | Publication date |
|---|---|
| US20060116327A1 (en) | 2006-06-01 |
| US7691805B2 (en) | 2010-04-06 |
| SE0402734D0 (en) | 2004-11-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6204279B1 (en) | Peptidomimetic efflux pump inhibitors | |
| US9169315B2 (en) | Heparin cofactor II fragments with anti-inflammatory and anti-coagulant activity | |
| AU2009211287B2 (en) | Short fatty acid tail polymyxin derivatives and uses thereof | |
| US11046730B2 (en) | Antimicrobial compositions | |
| US8575094B2 (en) | Use of type-B lantibiotic-based compounds having antimicrobial activity | |
| US7893020B2 (en) | Bacterial efflux pump inhibitors and methods of treating bacterial infections | |
| US6683055B1 (en) | Low molecular weight inhibitors of complement proteases | |
| US20150057216A1 (en) | Angiotensins for treatment of fibrosis | |
| MX2009001398A (en) | Polymyxin derivatives and uses thereof. | |
| JP6471236B2 (en) | Polymyxin derivatives and uses thereof | |
| US6245746B1 (en) | Efflux pump inhibitors | |
| US7879795B2 (en) | Enhancement of tigecycline potency using efflux pump inhibitors | |
| US20100247648A1 (en) | Antimicrobial compounds | |
| US11202449B2 (en) | Anti-microbial peptides and method for designing novel anti-microbial peptides | |
| US8097582B2 (en) | Peptide derivatives useful as antimicrobial agents and for treating wounds | |
| US6358921B1 (en) | Antimicrobial peptide compositions and method | |
| US20080255055A1 (en) | Use of Derivatives of Dipeptides for the Manufacture of of a Medicament for the Treamtent of Microbial Infections | |
| US20120077732A1 (en) | Cyclic peptides and uses thereof | |
| JP4817335B2 (en) | New antibacterial peptide | |
| CN114989246B (en) | FK3 polypeptide analogue and application thereof | |
| JP3791981B2 (en) | Peptide derivatives and antifungal agents | |
| NO300504B1 (en) | Compound and therapeutic composition comprising this |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |