[go: up one dir, main page]

US20100331249A1 - Pharmaceutical composition for inhibiting peritoneal dissemination - Google Patents

Pharmaceutical composition for inhibiting peritoneal dissemination Download PDF

Info

Publication number
US20100331249A1
US20100331249A1 US12/220,332 US22033208A US2010331249A1 US 20100331249 A1 US20100331249 A1 US 20100331249A1 US 22033208 A US22033208 A US 22033208A US 2010331249 A1 US2010331249 A1 US 2010331249A1
Authority
US
United States
Prior art keywords
ctgf
peritoneal
cancer
amount
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/220,332
Inventor
Min-Liang Kuo
Been-Ren Lin
Cheng-Chi Chang
Chiung-Nine Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Taiwan University NTU
Original Assignee
National Taiwan University NTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Taiwan University NTU filed Critical National Taiwan University NTU
Priority to US12/220,332 priority Critical patent/US20100331249A1/en
Assigned to NATIONAL TAIWAN UNIVERSITY reassignment NATIONAL TAIWAN UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANG, CHENG-CHI, CHEN, CHIUNG-NINE, KUO, MIN-LIANG, LIN, BEEN-REN
Publication of US20100331249A1 publication Critical patent/US20100331249A1/en
Priority to US13/409,325 priority patent/US8871721B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57419Specifically defined cancers of colon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57446Specifically defined cancers of stomach or intestine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57449Specifically defined cancers of ovaries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/475Assays involving growth factors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/50Determining the risk of developing a disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/54Determining the risk of relapse

Definitions

  • the present invention relates to a pharmaceutical composition.
  • the present invention relates to a pharmaceutical composition for inhibiting peritoneal dissemination.
  • Peritoneal metastasis mostly originates from the tumors in the neighboring digestive system and organs, such as intestine, stomach, liver, pancreas, etc.
  • Tumor cells accumulate and adhere abundantly on the peritoneum through blood or the lymph node after falling into peritoneal cavity, but do not invade other substantial organs (such as spleen, uterus and ovaries) directly. These tumor cells adhere on the surfaces of these organs, and will proliferate to invade these organs directly for a long time.
  • cancers include gastric cancer, small intestine cancer, colon cancer, rectal cancer, appendiceal cancer and pancreatic cancer.
  • primary peritoneal surface cancer Certainly, there are few cancer cells originated from the peritoneum, and this situation is named primary peritoneal surface cancer.
  • Metastasis in the peritoneal cavity was deemed as an expression manner of the late-stage cancer in the past. Therefore, most of doctors in oncology only administrated an assistant or a remissive treatment, such as radiotherapy, anti-cancer chemotherapy and immunotherapy, etc. However, immunotherapy dose not yet have a concrete result acceptable for everybody. Most of patients appear the phenomena of ascites accumulation and intestinal obstruction, so as to lead to extreme pain and starvation.
  • cancer cells In the progress of the peritoneal cavity cancer patients (including colorectal cancer, gastric cancer and ovary cancer, etc.), in order to absorb more nutrients, cancer cells usually proceed the peritoneal metastasis. At this time, cancer cells must adhere and invade the mesothelial layer, proliferate and begin angiogenesis. Therefore, the behavior that cancer cells adhere on the surface of peritoneum can be deemed as the key point in the beginning of peritoneal metastasis.
  • CTGF connective tissue growth factor
  • CTGF can enhance the adhesion of different normal cells, such as fibroblasts, platelets, endothelia cells and rat hepatic stellate cells (Babic et al., 1999; Gao et al., 2004; Chen et al., 2001; Jedsadayanmata et al., 1999).
  • normal cells such as fibroblasts, platelets, endothelia cells and rat hepatic stellate cells
  • Taiwanese Patent No. I282419 has been disclosed that the amount of CTGF represents the inverse correlation with the possibility of invasion or metastasis in the lung cancer patients.
  • U.S. Patent Application No. 2005/0147986 is further disclosed that the truncation of the constructed CTGF plasmid is performed to identify the active fragment of CTGF, and is further founded that the inhibition effect of the C-terminal (CT) domain-lacked CTGF to the cancer cells will decrease enormously.
  • CTGF can change the activity of peritoneal dissemination of cancer cells
  • the possible regulation mechanism of CTGF to the cancer cell adhesion is further researched in the present invention.
  • the possible relationship between CTGF and peritoneal metastasis recurrence is further researched in the present invention.
  • CTGF can inhibit cancer cells to adhere on the peritoneal tissue and further decreases the occurrence of peritoneal metastasis and peritoneal carcinoma recurrence.
  • a pharmaceutical composition having one of functions of treating peritoneal dissemination and preventing peritoneal dissemination is provided.
  • the pharmaceutical composition includes at least one of CTGF and an active fragment thereof.
  • the at least one of CTGF and the active fragment thereof inhibits at least one matter selected from the group consisting of a cancer cell adhering to a peritoneal cavity, a formation of a peritoneal nodule and an activity of a trigger of an immune response.
  • CTGF is a recombinant CTGF
  • the active fragment of CTGF is one selected from the group consisting of a C-terminal (CT) domain, a mutant of CT domain, an active fragment of the recombinant CTGF and a recombination thereof.
  • peritoneal dissemination is caused by a cancer selected from the group consisting of colon cancer, gastric cancer, ovary cancer and a combination thereof.
  • the at least one of CTGF and the active fragment thereof forms an effective dose.
  • the pharmaceutical composition further includes a pharmaceutically acceptable carrier.
  • a pharmaceutical composition having one of functions of treating peritoneal carcinoma recurrence and preventing peritoneal carcinoma recurrence is provided.
  • the pharmaceutical composition includes at least one of CTGF and an active fragment of CTGF.
  • peritoneal carcinoma recurrence is occurred after surgery, and the pharmaceutical composition further includes a pharmaceutical acceptable carrier.
  • a method for screening a inhibitor of peritoneal dissemination includes steps of: (a) causing a compound to bind with a cell expressing CTGF; (b) measuring a first amount of an expression of the CTGF of the cell; and (c) determining whether the first amount is higher than a reference amount.
  • the inhibitor inhibits a cancer cell adhering to a peritoneal tissue.
  • the cell is selected from a peritoneal tissue, and the reference amount is determined by a second amount of the expression of CTGF of the cell without being bound to the compound.
  • a method for measuring a possibility of peritoneal dissemination being occurring to a patient includes steps of: (a) providing a peritoneal tissue from the patient; (b) measuring a first amount of an expression of CTGF of the peritoneal tissue; and (c) comparing the first amount with a reference amount.
  • the reference amount is determined by a second amount of the expression of CTGF of a normal peritoneal tissue.
  • a method for measuring a possibility of peritoneal carcinoma recurrence occurring to a patient includes steps of: (a) providing a peritoneal tissue from the patient; (b) measuring a first amount of an expression of CTGF; and (c) comparing the first amount with a reference amount. When a first amount is lower than the reference amount of CTGF of the normal peritoneal tissue, the cancer-patient is deemed as in the high risk of peritoneal dissemination.
  • a method for inhibiting peritoneal dissemination of a patient includes a step of providing the patient with at least one of CTGF and an active fragment of CTGF.
  • a method for inhibiting peritoneal carcinoma recurrence of a patient includes a step of administering the patient with at least one of CTGF and an active fragment of CTGF.
  • FIG. 1 is an electrophoresis diagram of CTGF mRNA and CTGF protein expression in HCT116/CTGF-M transfectant and HCT116/Neo cell line of the present invention
  • FIGS. 2-I to 2 -IV are the peritoneal tumor distributions of dissection after injecting HCT116/CTGF-M and HCT116/Neo cell lines respectively into SCID mice for eight weeks;
  • FIG. 3 is a relationship diagram showing the proportion of survival and time (days) after injecting HCT 116/Neo and HCT116/CTGF-M transfectants respectively to the SCID mice;
  • FIGS. 4-I to 4 -IX are the dissection diagrams showing the effect of peritoneal dissemination while injecting rCTGF into the SCID mice in the control, co-treatment and post-treatment groups;
  • FIG. 5(A) is the quantitative result of the abdominal circumference of mice in the control, co-treatment and post-treatment groups
  • FIG. 5(B) is are the quantitative result of the body weight of mice in the control, co-treatment and post-treatment groups
  • FIG. 6 is the quantitative result of peritoneal nodules of mice in the control, co-treatment and post-treatment groups
  • FIG. 7 is the expressions of CTGF mRNA and CTGF protein, and the cellular adhesion ability of CTGF in HCT116, LoVo, HT-29 and Caco-2 cell lines;
  • FIG. 8 is the CTGF expressions and the cellular adhesion abilities of HCT116/Neo, HCT116/CTGF-M, HCT116/CTGF-4 and HCT116/CTGF-18 transfectants;
  • FIG. 9 is the influence of adhesion ability that different doses of the CTGF expression plasmid transiently transfect to HCT116 cells
  • FIG. 10 is the function of different doses of CTGF neutralizing antibody antagonizing the stable CTGF expression in HT29 cell line;
  • FIG. 11 is the CTGF expression and the CTGF adhesion ability of HT29 cell lines transfected with different doses of anti-sense CTGF plasmid;
  • FIGS. 12-I to 12 -IV are the most representative immunohistochemical staining in 136 colorectal cancer patient samples
  • FIG. 13 is the relationship diagram showing time and the recurrence rate from post-operation to recurrence between the high CTGF expression group and the low CTGF expression group;
  • FIG. 14 is the relationship diagram showing time and the survival rate between the high CTGF expression group and the low CTGF expression group.
  • Subserosa (T3)- and perforating visceral peritoneum or peripheral organ (T4)-invasive colorectal cancer tissues from 136 consecutive patients were included at National Taiwan University Hospital during the period from December 1993 to July 1999. All patients underwent complete surgical resection, and their clinical and pathological data were available at the same time. Patients with histological proven peritoneal metastasis of colorectal cancer (CRC) diagnosed at the first presentation were defined as synchronous peritoneal seeding. All patients were followed up and this involved periodic examinations comprising serum blood-chemistry panels, carcinoembryonic antigen (CEA) level, endoscopy and abdominal ultrasonography and radiograms of the thorax.
  • CRC colorectal cancer
  • the pathologist assessing immunostaining intensity was blinded to patients' information and the results of immunohistological staining were classified using extent; these were level 0 (negative staining), level 1 ( ⁇ 5% of tumor cell stained), level 2 ( ⁇ 50% of tumor cells stained) and level 3 (>50% of tumor cells stained).
  • HT29 cells were incubated in the RPMI 1640 medium (Life technologies, Inc.). All media were supplemented with 10% fetal bovine serum and 1% penicillin (10,000 U/ml)-streptomycin (10,000 U/ml) (Life Technologies, Inc.). All incubating conditions of these cell lines were controlled at 37° C. in the air with 5% CO 2 . All cell lines should be refreshed the medium for every 2 to 3 days before fusion.
  • the Suspension FreeStyleTM 293-F cells (Invitrogen, San Diego, Calif.) were adopted to be the expression system.
  • the CTGF expression plasmid was transfected to the FreeStyle 293-F cell line, which then was incubated at 37° C. in the orbital shaker in the air with 8% CO 2 for 48 hours.
  • the expression cells were microfiltrated and the diluted protein sample was concentrated.
  • the recombinant protein was further separated speedy by Amicon Ultra-15 (Millipore Corp., Bedford, Mass.) so as to avoid the decrease of CTGF activity.
  • the abundantly-expressed cells were washed with phosphate buffered saline (PBS) containing 5 mM ethylenediaminetetraacetic acid (EDTA) and 1 mM sodium orthovanadate.
  • PBS phosphate buffered saline
  • EDTA ethylenediaminetetraacetic acid
  • the cell pellet then was suspended in the lysis buffer (containing 20 mM Tris-HCl (pH 8.0), 137 mM NaCl, 10% glycerol, 2 mM EDTA, 1% NP-40, 1 mM phenylmethylsulphonyl fluoride (PMSF), 20 ⁇ M leupeptin and 0.15 U/ml aprotinin) and was preserved on ice for 30 minutes.
  • the tumor portions of CRC patients were also homogenized by the lysis buffer.
  • the lysed cells were centrifuged at 4° C. in 14,500 ⁇ g for 30 minutes, and the supernatant was collected. The protein in the supernatant was quantified by the spectrophotometer. After the electrophoresis was performed with 12% SDS-polyacrylamide gel, protein was transferred to a polyvinylidene difluoride (PVDF) membrane (Immobilon-P membrane, Millpore Corp., Bedford, Mass.). After the blot was blocked in a solution of 3% bovine serum albumin (BSA), 0.1% Tween 20 and PBS, the membrane-bound protein was probed with primary antibodies against ⁇ -actin (Sigma Chemical Co., St.
  • PVDF polyvinylidene difluoride
  • HRP horseradish peroxidase
  • the amino acid fragment (aa243-263) of CTGF was adopted to synthesize the artificial peptide being the antigen for immunizing the rabbit.
  • This amino acid fragment is similar with Fisp12 (mouse's CTGF) but different with Cyr61, Nov, WISP-1/Elm-1, WISP-2/rCop-1/CTGF-3 or WISP-3.
  • the purification of CTGF antibody in the serum was processed in accordance with the literature published by Shimo et al (1999).
  • Extracellular matrix (ECM)- or Matrigel-coated 24-well culture plate was adopted. Each well was coated 200 ⁇ l, and the culture plate was placed at 37° C. for 30 minutes. After 4 ⁇ 10 3 HCT116 cells were seeded in each well, the antibody was administrated so as to adhere on the well coated ECM or Metrigel. After incubating at 37° C. for 30 minutes, the wells were washed with 1 ⁇ PBS twice, the attached cells were fixed with methanol and stained with crystal violet.
  • the excised rabbit peritoneum (about 1.6 centimeter square) was placed in a 6-well culture plate, then 1 ml of 1% BSA/RPMI 1640 medium was added in each well.
  • Cells were labeled with the fluorescent substance, 1.77 mM 5-chloromethylfluorescein diacetate (CMFDA), at 37° C. for 30 minutes and then washed with 1% BSA/RPMI 1640 medium twice.
  • CMFDA 5-chloromethylfluorescein diacetate
  • the previous cellular supernatant (2 ⁇ 10 5 cells per 1% BSA/RPMI 1640 medium, and a total of 0.5 ml) was covered on the peritoneum in the 6-well culture plate and incubated at 37° C. for 40 minutes.
  • RNA isolated from cells was performed in a final reaction volume of 20 ⁇ l containing 5 ⁇ g total RNA in the First Strand Buffer with 10 mM dithiothreitol (DTT), 2.5 mM dNTP, 1 ⁇ g Oligo (dT) 12-18 primer and 200 unit/ ⁇ l Moloney murine leukemia virus (MMLV) reverse transcriptase.
  • DTT dithiothreitol
  • dT Oligo
  • MMLV Moloney murine leukemia virus
  • the PCR amplification was conducted in a reaction buffer containing 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 1.5 mM MgCl 2 , 167 ⁇ M dNTPs, 2.5 units of Taq DNA polymerase and 0.1 ⁇ M primers.
  • the reactions were performed in the Biometra Thermoblock (Biometra Inc., Florida, USA) using the following program: denaturing at 95° C. for 1 minute, annealing at 58° C. for 1 minute, and elongating at 72° C. for 1 minute, for a total of 23 cycles; the final extension took place at 72° C. for 10 minutes. Equal volumes of each PCR sample were subjected to electrophoresis in a 1% agarose gel, which was then stained with ethidium bromide and photographed under UV illumination.
  • CTGF expression plasmid The cloning process of CTGF expression plasmid was described previously. Briefly, total RNA was extracted from the lung adenocarcinoma cell line, CL1-0, and CTGF cDNA was cloned and amplified by RT-PCR with the primers of SEQ ID NO. 9 and SEQ ID NO. 10 (PubMed Accession number: XM-037056), and subcloned into a pcDNA3/V5-His TOPO TA vector (Invitrogen, San Diego, Calif.) in the sense or the antisense direction. The CTGF expression plasmid was transiently or stably transfected into the colorectal cancer cell lines in vitro.
  • plasmid DNA Three microgram of the purified plasmid DNA was transfected into HCT116 cells and 3 ⁇ g AS-CTGF plasmid was transfected into HT29 cells by the TransFastTM transfection reagent (Promega, Madison, Wis.). After 24 hours of transfection, gentamycin (G418; Life Technologies, Inc.) was used to screen the stable transfectants. Thereafter, the selection medium was refleshed for every three days. After a two-week selection in G418, clones of resistant cells were isolated and allowed to proliferate in 100 ⁇ g/ml G418-containing medium. Integration of the transfected plasmid DNA was confirmed by RT-PCR and western blotting analysis.
  • HCT116 cells were harvested in 0.25% of trypsin-PBS-EDTA, washed with PBS and then resuspended in PBS at 1 million cells per 200 ⁇ l. One million HCT116 cells were injected intraperitoneally into 5 week-old female SCID mice, and the mice were divided into three groups.
  • Group I was the control group, and Group II was the co-treatment group. After injecting with HCT116 cells, mice in the Group I and Group II were immediately injected with the equal volumes of dimethyl sulfoxide (DMSO) and the recombinant CTGF (rCTGF, 1.5 mg/kg) respectively. Subsequently, the abovementioned step were continued once per two days for 14 days.
  • DMSO dimethyl sulfoxide
  • rCTGF recombinant CTGF
  • Group III was the post-treatment group. After the mice in the post-treatment group were injected with HCT116 cells for 3 days, rCTGF was injected therein every day for 7 days.
  • mice were euthanized when they experienced a ⁇ 10% loss in body weight or if they appeared ill.
  • Postmortem examinations included sectioning of kidney, lung, and liver that were stained with hematoxylin and eosin (H&E) followed by examination for tissue toxicity/damage by an experienced pathologist who was blinded to therapy.
  • H&E hematoxylin and eosin
  • CTGF a metastasis-suppressor
  • human colorectal cancer may act to cancer cell adhesion which is the key step of peritoneal metastasis in the present invention.
  • HCT116/CTGF-M transfectant and HCT116/Neo cell line (the control group) for intra-abdominal cancer seeding were set up in the present invention.
  • FIG. 1 is an electrophoresis diagram of CTGF mRNA and CTGF protein expression in HCT116/CTGF-M transfectant and HCT116/Neo cell line of the present invention. From the result in FIG. 1 , it was known that the CTGF-transfected HCT116/CTGF-M cell line really could abundantly express CTGF as comparing to HCT116/Neo cell line.
  • FIGS. 2-I to 2 -IV are the peritoneal tumor distributions of dissection after injecting HCT116/CTGF-M and HCT116/Neo cell lines respectively into SCID mice for eight weeks. After injecting HCT116/CTGF-M and HCT116/Neo cell lines for five weeks (before dissection), the phenomenon that peritoneal tumor protrusion leads to the enlarged abdominal circumference was obvious (data not shown).
  • HCT116/Neo transfectant was injected into the SCID mice, and the distributions of hemo-peritoneum and many nodules could be found after dissection.
  • FIGS. 2-III and 2 -IV HCT116/CTGF-M transfectant was injected into the SCID mice, and the phenomenon of hemo-peritoneum and the distribution of nodules were significantly decreased as comparing to the control group.
  • Table 1 is the result of peritoneal seeding of injecting HCT116/Neo and HCT116/CTGF-M transfectants respectively into SCID mice.
  • the sample number of SCID mice was 10, and the diaphragm seeding distribution, the phenomenon of local bowel invasion and nodule number were determined respectively.
  • the result in Table 1 is shown that the abundantly-expressed CTGF could substantially inhibit the diaphragm seeding distribution, bowel invasion and the number of tumor seeding.
  • mice were divided into three groups.
  • the first group was the control group. After one million HCT116 cells were injected into the peritoneal cavity of female SCID mice, DMSO was injected thereinto for every two days for 14 days.
  • the second group was the co-treatment group. After one million HCT116 cells were injected into the peritoneal cavity of female SCID mice, 1.5 mg/kg rCTGF was injected thereinto immediately (once per two days for 14 days), wherein the purpose of co-treatment group was mainly in simulating the direct intraoperative situation with free cancer cells on the peritoneal surface.
  • the third group was the post-treatment group.
  • HCT116 cells were injected into the peritoneal cavity of female SCID mice, rCTGF was injected thereinto everyday from days 3 to 9, wherein the purpose of the post-treatment group was to simulate the clinical situation of the early-stage microscopic-transplanted surgery patients.
  • FIGS. 4-I to 4 -IX are the dissection diagrams showing the effect of peritoneal dissemination while injecting rCTGF into the SCID mice of control, co-treatment and post-treatment groups.
  • FIGS. 4-I to 4 -III all SCID mice were moribund within 40 days, and the increasing abdominal circumference was measured obviously. Bloody ascites were noted during dissecting the abdominal cavity and numerous peritoneal nodules were found.
  • FIGS. 4-IV , 4 -V and 4 -VI the post-treatment
  • FIGS. 5(A) and 5(B) are the quantitative results of the abdominal circumference and body weight of mice in the control, co-treatment and post-treatment groups.
  • the quantitative results in FIGS. 5(A) and 5(B) were corresponding to the results in FIGS. 4-I to 4 -IX.
  • FIG. 6 is the quantitative result of peritoneal nodules of mice in the control, co-treatment and post-treatment groups.
  • the number of the peritoneal nodules in the mice were significantly decreased in the co-treatment and post-treatment groups as comparing to the control group.
  • CTGF vascular endothelial growth factor
  • CTGF colon carcinoma cell line
  • FIG. 7 is the expressions of CTGF mRNA and CTGF protein and the cellular adhesion ability of CTGF in HCT116, LoVo, HT-29 and Caco-2 cell lines.
  • HCT116 cells had the lowest CTGF mRNA and protein expressions and the highest cellular adhesion ability.
  • Caco-2 cells had the highest CTGF mRNA and protein expressions and the lowest cellular adhesion ability.
  • HCT116/Neo and HCT116/CTGF-M transfectants have been proved that the CTGF expression indeed have the effect to influence the peritoneal metastasis.
  • HCT116 transfectants HCT116/CTGF-4 and HCT116/CTGF-18
  • FIG. 8 is the CTGF expressions and the cellular adhesion abilities of HCT116/Neo, HCT116/CTGF-M, HCT116/CTGF-4 and HCT116/CTGF-18 transfectants. Comparing with the control group (HCT116/Neo), the result was proved that CTGF expression represented the inverse correlation with the adhesion ability.
  • FIG. 9 is the influence of adhesion ability that different doses of the CTGF expression plasmid transiently transfects to HCT116 cells.
  • the result was shown that different doses of CTGF would influence the adhesion ability of HCT116 cells. The higher CTGF dose made the worse adhesion ability, and the lower CTGF dose made the better adhesion ability.
  • FIG. 10 is the function of different doses of CTGF neutralizing antibody antagonizing the stable CTGF expression in HT29 cell line. The result was shown that the adhesion of HT29 cells would be significantly increased along with the doses (1 to 3 ⁇ g) of neutralizing antibody.
  • FIG. 11 is the CTGF expression and the CTGF adhesion ability of HT29 cell lines transfected with different doses of anti-sense CTGF plasmid. The result was shown that the cells transfected with higher doses (0.5 to 3 ⁇ g) of anti-sense CTGF plasmid made the higher cellular adhesion.
  • CTGF being a Predicted Marker of the Peritoneal Metastasis in Human's Colorectal Cancer (CRC)
  • FIGS. 12-I to 12 -IV are the most representative immunohistochemical staining in 136 colorectal cancer patient samples.
  • FIG. 12-I was the representative diagram of Level 3, which had a very high CTGF expression in the basal membrane and cytoplasm of the well-differentiated epidermoid carcinoma.
  • FIGS. 12-II and 12 -III were the representative diagrams of Level 0, and it could be found that the weak immune response existed in the poorly-differentiated colorectal cancer cells ( FIG. 12-II ) and their peritoneal dissemination nodules ( FIG. 12-III ).
  • FIG. 124V was an immunohistochemical diagram of negative staining, which used IgG as the control group.
  • Table 2 is the related pathological data of the clinical characteristics and CTGF expression diagrams of the immunohistochemical staining.
  • the low CTGF expression group occupied 55% (75/136) of the total samples and the high CTGF expression group occupied 45% (61/136) of the total samples.
  • CTGF expression Feature Number Low High P-value Patients 136 75 61 Mean age (Year) 62.6 62.1 0.82 Sex 0.618 Male 68 33 35 Female 68 42 26 Tumor site 0.823 Right 45 23 22 Left 44 25 19 Rectum 47 27 20 Tumor 0.007 Differentiation Poor 26 21 5 Moderate 106 52 54 Well 4 2 2 Stage 0.040 II 47 20 27 III 63 36 27 IV 26 19 7 Lymph node 0.017 N0 56 24 32 N1 43 24 19 N2 37 27 10 Intra-tumor 0.301 invasion Present 63 38 25 Absent 73 37 36 CEA level (ng/ml) 0.582 ⁇ 3 44 23 21 >3 92 52 40 Synchronous 0.030 peritoneal seeding Present 35 25 10 Absent 101 50 51 Metachronous 0.001 peritoneal seeding Present 21 17 4 Absent 80 33 47
  • the CTGF expression had no significant relations with the age, sex, tumor location, pre-operative CEA content and intra-tumor invasion of the patients.
  • CTGF not only can be the biomarker in predicting the recurrence of peritoneal metastasis, but also can be the another candidate therapy for the peritoneal cancer dissemination of the colorectal cancer patients.
  • CTGF expressions in different colorectal cancer cell lines represents the inverse correlation with their adhesion ability, and the variances of CTGF expression affect the adhesion abilities of human colorectal cancer cell lines directly. Therefore, whether cancer patients possess the high risk of peritoneal metastasis is identified by determining the CTGF expression of primary colorectal cancer, and the phenomenon of peritoneal carcinomatosis of cancer patients is prevented and treated by administrating CTGF.
  • the abovementioned experimental results can be used in the present invention so as to provide a method for screening the inhibitor of peritoneal dissemination.
  • a compound is bound with the cells expressing CTGF in the peritoneal tissue, and CTGF has inhibition ability of cancer cell adherence in the peritoneal tissue.
  • the CTGF expression in the peritoneal tissue is determined.
  • the compound has potential for positively regulating CTGF.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

A pharmaceutical composition for treating or preventing peritoneal dissemination is provided. The pharmaceutical composition includes an effective dose of connective tissue growth factor (CTGF) and an acceptable receptor thereof.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a pharmaceutical composition. In particular, the present invention relates to a pharmaceutical composition for inhibiting peritoneal dissemination.
  • BACKGROUND OF THE INVENTION
  • Peritoneal metastasis mostly originates from the tumors in the neighboring digestive system and organs, such as intestine, stomach, liver, pancreas, etc. Tumor cells accumulate and adhere abundantly on the peritoneum through blood or the lymph node after falling into peritoneal cavity, but do not invade other substantial organs (such as spleen, uterus and ovaries) directly. These tumor cells adhere on the surfaces of these organs, and will proliferate to invade these organs directly for a long time. This is a common phenomenon for cancers in the digestive tract of the peritoneal cavity. For instance, cancers include gastric cancer, small intestine cancer, colon cancer, rectal cancer, appendiceal cancer and pancreatic cancer. Certainly, there are few cancer cells originated from the peritoneum, and this situation is named primary peritoneal surface cancer.
  • Metastasis in the peritoneal cavity was deemed as an expression manner of the late-stage cancer in the past. Therefore, most of doctors in oncology only administrated an assistant or a remissive treatment, such as radiotherapy, anti-cancer chemotherapy and immunotherapy, etc. However, immunotherapy dose not yet have a concrete result acceptable for everybody. Most of patients appear the phenomena of ascites accumulation and intestinal obstruction, so as to lead to extreme pain and starvation.
  • If active treatment is not administrated, these patients diagnosed the peritoneal metastasis in the peritoneal cavity only have several months to live (average survival rate is 5 to 6 months). Among this, colorectal peritoneal carcinomatosis is deemed as a disease treated with relaxation therapy before death.
  • In the past decade, some new therapies, including active cyto-reductive surgery combining with hyperthermic intraperitoneal chemotherapy, have shown that these therapies can improve the average post-operative survival rate to 32.4 months (Glehen et al., J. Clin. Oncol., 2004). This strategy seems to bring a hope to the late-stage cancer patients with peritoneal metastasis. However, with regard to the researches of the active cyto-reductive surgery supplemented with hyperthermic intraperitoneal chemotherapy, more than 50% researches are still shown that the post-operative mortality of this strategy is 5% high (Glehen et al., Lancet Oncol., 2004; Koppe et al., 2006; Yan et al., 2006), and the incidence is ranged between 25% and 35% (Glehen et al., J. Clin. Oncol., 2004; Glehen et al., Lancet Oncol., 2004; Koppe et al., 2006; Yan et al., 2006; Verwaal et al., 2003; Glehen et al., 2003). This strategy only has effect on the early-stage cancer patients. Therefore, researching the mechanism of peritoneal metastasis and developing new therapies are urgently needed to the late-stage cancer patients with peritoneal metastasis.
  • In the progress of the peritoneal cavity cancer patients (including colorectal cancer, gastric cancer and ovary cancer, etc.), in order to absorb more nutrients, cancer cells usually proceed the peritoneal metastasis. At this time, cancer cells must adhere and invade the mesothelial layer, proliferate and begin angiogenesis. Therefore, the behavior that cancer cells adhere on the surface of peritoneum can be deemed as the key point in the beginning of peritoneal metastasis.
  • The adhesion ability of cancer cells can be regulated by the amount of connective tissue growth factor (CTGF). CTGF is an extracellular matrix-associated molecule (Rocnik et al., 2006; Bornstein et al., 2000; Bornstein et al., 2002), and CTGF has been proved to influence various important cellular functions, such as regulation of mitosis, apoptosis, generation of extracellular matrix, angiogenesis and metastasis (Lau et al., 1999; Bork et al., 1993; Moussad et al., 2000; Brigstock et al., 1999; Perbal 2001; Babic et al., 1999; Planque et al., 2003). Recently, many researches are also shown that CTGF can enhance the adhesion of different normal cells, such as fibroblasts, platelets, endothelia cells and rat hepatic stellate cells (Babic et al., 1999; Gao et al., 2004; Chen et al., 2001; Jedsadayanmata et al., 1999). However, the regulation mechanism of CTGF adhering to cancer cells are not completely clarified.
  • Taiwanese Patent No. I282419 has been disclosed that the amount of CTGF represents the inverse correlation with the possibility of invasion or metastasis in the lung cancer patients. U.S. Patent Application No. 2005/0147986 is further disclosed that the truncation of the constructed CTGF plasmid is performed to identify the active fragment of CTGF, and is further founded that the inhibition effect of the C-terminal (CT) domain-lacked CTGF to the cancer cells will decrease enormously.
  • Therefore, in order to clarify whether CTGF can change the activity of peritoneal dissemination of cancer cells, the possible regulation mechanism of CTGF to the cancer cell adhesion is further researched in the present invention. Furthermore, the possible relationship between CTGF and peritoneal metastasis recurrence is further researched in the present invention.
  • It is therefore attempted by the applicant to deal with the above situation encountered in the prior art.
  • SUMMARY OF THE INVENTION
  • The issue that CTGF can inhibit cancer cells to adhere on the peritoneal tissue and further decreases the occurrence of peritoneal metastasis and peritoneal carcinoma recurrence is firstly provided in the present invention.
  • Therefore, a pharmaceutical composition having one of functions of treating peritoneal dissemination and preventing peritoneal dissemination is provided. The pharmaceutical composition includes at least one of CTGF and an active fragment thereof.
  • Preferably, the at least one of CTGF and the active fragment thereof inhibits at least one matter selected from the group consisting of a cancer cell adhering to a peritoneal cavity, a formation of a peritoneal nodule and an activity of a trigger of an immune response.
  • Preferably, CTGF is a recombinant CTGF, and the active fragment of CTGF is one selected from the group consisting of a C-terminal (CT) domain, a mutant of CT domain, an active fragment of the recombinant CTGF and a recombination thereof.
  • Preferably, peritoneal dissemination is caused by a cancer selected from the group consisting of colon cancer, gastric cancer, ovary cancer and a combination thereof.
  • Preferably, the at least one of CTGF and the active fragment thereof forms an effective dose.
  • Preferably, the pharmaceutical composition further includes a pharmaceutically acceptable carrier.
  • In accordance with another aspect of the present invention, a pharmaceutical composition having one of functions of treating peritoneal carcinoma recurrence and preventing peritoneal carcinoma recurrence is provided. The pharmaceutical composition includes at least one of CTGF and an active fragment of CTGF. Preferably, peritoneal carcinoma recurrence is occurred after surgery, and the pharmaceutical composition further includes a pharmaceutical acceptable carrier.
  • In accordance with another aspect of the present invention, a method for screening a inhibitor of peritoneal dissemination is provided. The method includes steps of: (a) causing a compound to bind with a cell expressing CTGF; (b) measuring a first amount of an expression of the CTGF of the cell; and (c) determining whether the first amount is higher than a reference amount. The inhibitor inhibits a cancer cell adhering to a peritoneal tissue. Preferably, the cell is selected from a peritoneal tissue, and the reference amount is determined by a second amount of the expression of CTGF of the cell without being bound to the compound.
  • In accordance with another aspect of the present invention, a method for measuring a possibility of peritoneal dissemination being occurring to a patient is provided. The method includes steps of: (a) providing a peritoneal tissue from the patient; (b) measuring a first amount of an expression of CTGF of the peritoneal tissue; and (c) comparing the first amount with a reference amount. Preferably, the reference amount is determined by a second amount of the expression of CTGF of a normal peritoneal tissue. When the first amount of the expression of CTGF of the peritoneal tissue is higher than the reference amount, the compound has potential for positively regulating CTGF.
  • In accordance with another aspect of the present invention, a method for measuring a possibility of peritoneal carcinoma recurrence occurring to a patient is provided. The method includes steps of: (a) providing a peritoneal tissue from the patient; (b) measuring a first amount of an expression of CTGF; and (c) comparing the first amount with a reference amount. When a first amount is lower than the reference amount of CTGF of the normal peritoneal tissue, the cancer-patient is deemed as in the high risk of peritoneal dissemination.
  • In accordance with another aspect of the present invention, a method for inhibiting peritoneal dissemination of a patient is provided. The method includes a step of providing the patient with at least one of CTGF and an active fragment of CTGF.
  • In accordance with another aspect of the present invention, a method for inhibiting peritoneal carcinoma recurrence of a patient is provided. The method includes a step of administering the patient with at least one of CTGF and an active fragment of CTGF.
  • The above objectives and advantages of the present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed descriptions and accompanying drawings, in which:
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The patent or application file contains a least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
  • FIG. 1 is an electrophoresis diagram of CTGF mRNA and CTGF protein expression in HCT116/CTGF-M transfectant and HCT116/Neo cell line of the present invention;
  • FIGS. 2-I to 2-IV are the peritoneal tumor distributions of dissection after injecting HCT116/CTGF-M and HCT116/Neo cell lines respectively into SCID mice for eight weeks;
  • FIG. 3 is a relationship diagram showing the proportion of survival and time (days) after injecting HCT 116/Neo and HCT116/CTGF-M transfectants respectively to the SCID mice;
  • FIGS. 4-I to 4-IX are the dissection diagrams showing the effect of peritoneal dissemination while injecting rCTGF into the SCID mice in the control, co-treatment and post-treatment groups;
  • FIG. 5(A) is the quantitative result of the abdominal circumference of mice in the control, co-treatment and post-treatment groups;
  • FIG. 5(B) is are the quantitative result of the body weight of mice in the control, co-treatment and post-treatment groups;
  • FIG. 6 is the quantitative result of peritoneal nodules of mice in the control, co-treatment and post-treatment groups;
  • FIG. 7 is the expressions of CTGF mRNA and CTGF protein, and the cellular adhesion ability of CTGF in HCT116, LoVo, HT-29 and Caco-2 cell lines;
  • FIG. 8 is the CTGF expressions and the cellular adhesion abilities of HCT116/Neo, HCT116/CTGF-M, HCT116/CTGF-4 and HCT116/CTGF-18 transfectants;
  • FIG. 9 is the influence of adhesion ability that different doses of the CTGF expression plasmid transiently transfect to HCT116 cells;
  • FIG. 10 is the function of different doses of CTGF neutralizing antibody antagonizing the stable CTGF expression in HT29 cell line;
  • FIG. 11 is the CTGF expression and the CTGF adhesion ability of HT29 cell lines transfected with different doses of anti-sense CTGF plasmid;
  • FIGS. 12-I to 12-IV are the most representative immunohistochemical staining in 136 colorectal cancer patient samples;
  • FIG. 13 is the relationship diagram showing time and the recurrence rate from post-operation to recurrence between the high CTGF expression group and the low CTGF expression group; and
  • FIG. 14 is the relationship diagram showing time and the survival rate between the high CTGF expression group and the low CTGF expression group.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present invention will now be described more specifically with reference to the following Embodiments. It is to be noted that the following descriptions of preferred Embodiments of this invention are presented herein for purpose of illustration and description only; it is not intended to be exhaustive or to be limited to the precise form disclosed.
  • Pharmacological Experiments
  • 1. Surgical Sampling and Immunohistological Staining
  • Subserosa (T3)- and perforating visceral peritoneum or peripheral organ (T4)-invasive colorectal cancer tissues from 136 consecutive patients were included at National Taiwan University Hospital during the period from December 1993 to July 1999. All patients underwent complete surgical resection, and their clinical and pathological data were available at the same time. Patients with histological proven peritoneal metastasis of colorectal cancer (CRC) diagnosed at the first presentation were defined as synchronous peritoneal seeding. All patients were followed up and this involved periodic examinations comprising serum blood-chemistry panels, carcinoembryonic antigen (CEA) level, endoscopy and abdominal ultrasonography and radiograms of the thorax. Patients with metachronous carcinomatosis were deemed to be clear of peritoneal disease at the initial curative colorectal resection, but subsequently became symptomatic on follow-up and were diagnosed with peritoneal recurrence on computed tomography or laparotomy. Immunohistological staining of CTGF was performed by the biotin-peroxidase complex using a polyclonal goat anti-human CTGF antibody (R&D Systems, MN). The pathologist assessing immunostaining intensity was blinded to patients' information and the results of immunohistological staining were classified using extent; these were level 0 (negative staining), level 1 (<5% of tumor cell stained), level 2 (<50% of tumor cells stained) and level 3 (>50% of tumor cells stained).
  • 2. Incubation of Cells
  • The cell lines, HCT116, Coca-2 and LoVo, were incubated in the DMEM medium (Life Technologies, Inc.) supplemented with 4 mM L-glutamine and 10 mM sodium pyruvate. The medium of Coca-2 was further supplemented with 10 mg/ml of transferrin. HT29 cells were incubated in the RPMI 1640 medium (Life technologies, Inc.). All media were supplemented with 10% fetal bovine serum and 1% penicillin (10,000 U/ml)-streptomycin (10,000 U/ml) (Life Technologies, Inc.). All incubating conditions of these cell lines were controlled at 37° C. in the air with 5% CO2. All cell lines should be refreshed the medium for every 2 to 3 days before fusion.
  • 3. Recombination of CTGF
  • The Suspension FreeStyle™ 293-F cells (Invitrogen, San Diego, Calif.) were adopted to be the expression system. In accordance with the user's manual of FreeStyle 293-F expression system, the CTGF expression plasmid was transfected to the FreeStyle 293-F cell line, which then was incubated at 37° C. in the orbital shaker in the air with 8% CO2 for 48 hours. The expression cells were microfiltrated and the diluted protein sample was concentrated. The recombinant protein was further separated speedy by Amicon Ultra-15 (Millipore Corp., Bedford, Mass.) so as to avoid the decrease of CTGF activity.
  • 4. Western Blot Analysis
  • The abundantly-expressed cells were washed with phosphate buffered saline (PBS) containing 5 mM ethylenediaminetetraacetic acid (EDTA) and 1 mM sodium orthovanadate. The cell pellet then was suspended in the lysis buffer (containing 20 mM Tris-HCl (pH 8.0), 137 mM NaCl, 10% glycerol, 2 mM EDTA, 1% NP-40, 1 mM phenylmethylsulphonyl fluoride (PMSF), 20 μM leupeptin and 0.15 U/ml aprotinin) and was preserved on ice for 30 minutes. The tumor portions of CRC patients were also homogenized by the lysis buffer. The lysed cells were centrifuged at 4° C. in 14,500×g for 30 minutes, and the supernatant was collected. The protein in the supernatant was quantified by the spectrophotometer. After the electrophoresis was performed with 12% SDS-polyacrylamide gel, protein was transferred to a polyvinylidene difluoride (PVDF) membrane (Immobilon-P membrane, Millpore Corp., Bedford, Mass.). After the blot was blocked in a solution of 3% bovine serum albumin (BSA), 0.1% Tween 20 and PBS, the membrane-bound protein was probed with primary antibodies against β-actin (Sigma Chemical Co., St. Louis, Mo.), β-catenin (BD Transduction Laboratories, BD Biosciences, Woburn, Mass.) or CTGF (R&D Systems, MN). The membrane was washed and then incubated with horseradish peroxidase (HRP)-conjugated secondary antibody (Santa Cruz Biotechnology, Santa Cruz, Calif.) for 30 minutes. The antibody-bound protein bands were detected with the enhanced chemical fluorescent reagent (Amersham Bioscience) and photographed with Kodak X-Omat Blue autoradiography film.
  • 5. Preparation of CTGF Antibody
  • After the computed analysis, the amino acid fragment (aa243-263) of CTGF was adopted to synthesize the artificial peptide being the antigen for immunizing the rabbit. This amino acid fragment is similar with Fisp12 (mouse's CTGF) but different with Cyr61, Nov, WISP-1/Elm-1, WISP-2/rCop-1/CTGF-3 or WISP-3. The purification of CTGF antibody in the serum was processed in accordance with the literature published by Shimo et al (1999).
  • 6. Analysis of Cell Attachment
  • Extracellular matrix (ECM)- or Matrigel-coated 24-well culture plate was adopted. Each well was coated 200 μl, and the culture plate was placed at 37° C. for 30 minutes. After 4×103 HCT116 cells were seeded in each well, the antibody was administrated so as to adhere on the well coated ECM or Metrigel. After incubating at 37° C. for 30 minutes, the wells were washed with 1× PBS twice, the attached cells were fixed with methanol and stained with crystal violet.
  • The excised rabbit peritoneum (about 1.6 centimeter square) was placed in a 6-well culture plate, then 1 ml of 1% BSA/RPMI 1640 medium was added in each well. Cells were labeled with the fluorescent substance, 1.77 mM 5-chloromethylfluorescein diacetate (CMFDA), at 37° C. for 30 minutes and then washed with 1% BSA/RPMI 1640 medium twice. The previous cellular supernatant (2×105 cells per 1% BSA/RPMI 1640 medium, and a total of 0.5 ml) was covered on the peritoneum in the 6-well culture plate and incubated at 37° C. for 40 minutes. After washing gently with PBS, the cells adhered on the peritoneum were observed and counted under the fluorescence microscope (Olympus IX70; Olympus, Tokyo, Japan), which was qualified an NIBA filter (Ex=470 to 490 nm, and Em=515 to 550 nm) for observing CMFDA.
  • 7. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
  • Reverse transcription of RNA isolated from cells was performed in a final reaction volume of 20 μl containing 5 μg total RNA in the First Strand Buffer with 10 mM dithiothreitol (DTT), 2.5 mM dNTP, 1 μg Oligo (dT) 12-18 primer and 200 unit/μl Moloney murine leukemia virus (MMLV) reverse transcriptase. The reaction was carried out at 37° C. for 2 hours, and was terminated by heating at 70° C. for 10 minutes. One microliter of the reaction mixture was then amplified by PCR using either of the following pairs of primers: (1) sense SEQ ID NO. 1 and antisense SEQ ID NO. 2, to produce a 500-bp fragment of the CTGF gene; (2) sense SEQ ID NO. 3 and antisense SEQ ID NO. 4, to produce a 450-bp fragment of the Cyr61 gene; (3) sense SEQ ID NO. 5 and antisense SEQ ID NO. 6, to produce a 420-bp fragment of the DAPK gene; and (4) sense SEQ ID NO. 7 and antisense SEQ ID NO. 8, to produce a 320-fragment of the β-actin gene.
  • The PCR amplification was conducted in a reaction buffer containing 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 1.5 mM MgCl2, 167 μM dNTPs, 2.5 units of Taq DNA polymerase and 0.1 μM primers. The reactions were performed in the Biometra Thermoblock (Biometra Inc., Florida, USA) using the following program: denaturing at 95° C. for 1 minute, annealing at 58° C. for 1 minute, and elongating at 72° C. for 1 minute, for a total of 23 cycles; the final extension took place at 72° C. for 10 minutes. Equal volumes of each PCR sample were subjected to electrophoresis in a 1% agarose gel, which was then stained with ethidium bromide and photographed under UV illumination.
  • 8. Construction of CTGF Expression Plasmid
  • The cloning process of CTGF expression plasmid was described previously. Briefly, total RNA was extracted from the lung adenocarcinoma cell line, CL1-0, and CTGF cDNA was cloned and amplified by RT-PCR with the primers of SEQ ID NO. 9 and SEQ ID NO. 10 (PubMed Accession number: XM-037056), and subcloned into a pcDNA3/V5-His TOPO TA vector (Invitrogen, San Diego, Calif.) in the sense or the antisense direction. The CTGF expression plasmid was transiently or stably transfected into the colorectal cancer cell lines in vitro.
  • 9. Stable Transfection Screening
  • Three microgram of the purified plasmid DNA was transfected into HCT116 cells and 3 μg AS-CTGF plasmid was transfected into HT29 cells by the TransFast™ transfection reagent (Promega, Madison, Wis.). After 24 hours of transfection, gentamycin (G418; Life Technologies, Inc.) was used to screen the stable transfectants. Thereafter, the selection medium was refleshed for every three days. After a two-week selection in G418, clones of resistant cells were isolated and allowed to proliferate in 100 μg/ml G418-containing medium. Integration of the transfected plasmid DNA was confirmed by RT-PCR and western blotting analysis.
  • 10. Research of Colon Cancer Metastasis of Severe Combined Immunodeficiency (SCID) Mice
  • HCT116 cells were harvested in 0.25% of trypsin-PBS-EDTA, washed with PBS and then resuspended in PBS at 1 million cells per 200 μl. One million HCT116 cells were injected intraperitoneally into 5 week-old female SCID mice, and the mice were divided into three groups.
  • Group I was the control group, and Group II was the co-treatment group. After injecting with HCT116 cells, mice in the Group I and Group II were immediately injected with the equal volumes of dimethyl sulfoxide (DMSO) and the recombinant CTGF (rCTGF, 1.5 mg/kg) respectively. Subsequently, the abovementioned step were continued once per two days for 14 days.
  • Group III was the post-treatment group. After the mice in the post-treatment group were injected with HCT116 cells for 3 days, rCTGF was injected therein every day for 7 days.
  • Mice were euthanized when they experienced a ˜10% loss in body weight or if they appeared ill. Postmortem examinations included sectioning of kidney, lung, and liver that were stained with hematoxylin and eosin (H&E) followed by examination for tissue toxicity/damage by an experienced pathologist who was blinded to therapy.
  • 11. Statistic Analysis
  • A comparison of the background data was carried out between the low-CTGF expression group and the high-CTGF expression group. The scale variables (expressed as mean±standard deviation) was proceeded by a Mann-Whitney test, and the nominal variables were proceeded by a Fisher's exact test. The analysis of the survival rate and recurrence data was done by the Kaplan-Meier method, and the Kaplan-Meier curves were compared by a log-rank test.
  • Experimental Results
  • 1. Suppression of Peritoneal Metastasis by CTGF in SCID Mice
  • It was hypothesized that CTGF, a metastasis-suppressor, in human colorectal cancer may act to cancer cell adhesion which is the key step of peritoneal metastasis in the present invention. To prove this hypothesis, the abundantly-CTGF-expressed HCT116/CTGF-M transfectant and HCT116/Neo cell line (the control group) for intra-abdominal cancer seeding were set up in the present invention.
  • Please refer to FIG. 1, which is an electrophoresis diagram of CTGF mRNA and CTGF protein expression in HCT116/CTGF-M transfectant and HCT116/Neo cell line of the present invention. From the result in FIG. 1, it was known that the CTGF-transfected HCT116/CTGF-M cell line really could abundantly express CTGF as comparing to HCT116/Neo cell line.
  • Please refer to FIGS. 2-I to 2-IV, which are the peritoneal tumor distributions of dissection after injecting HCT116/CTGF-M and HCT116/Neo cell lines respectively into SCID mice for eight weeks. After injecting HCT116/CTGF-M and HCT116/Neo cell lines for five weeks (before dissection), the phenomenon that peritoneal tumor protrusion leads to the enlarged abdominal circumference was obvious (data not shown). In FIGS. 2-I and 2-II, HCT116/Neo transfectant was injected into the SCID mice, and the distributions of hemo-peritoneum and many nodules could be found after dissection. In FIGS. 2-III and 2-IV, HCT116/CTGF-M transfectant was injected into the SCID mice, and the phenomenon of hemo-peritoneum and the distribution of nodules were significantly decreased as comparing to the control group.
  • Table 1 is the result of peritoneal seeding of injecting HCT116/Neo and HCT116/CTGF-M transfectants respectively into SCID mice. Among this, the sample number of SCID mice was 10, and the diaphragm seeding distribution, the phenomenon of local bowel invasion and nodule number were determined respectively. The result in Table 1 is shown that the abundantly-expressed CTGF could substantially inhibit the diaphragm seeding distribution, bowel invasion and the number of tumor seeding.
  • TABLE 1
    Results of peritoneal seeding of HCT116/Neo and HCT116/CTGF-M
    transfectants respectively in SCID mice
    Peritoneal seeding
    Diaphragm seeding# Local bowel invasion# Nodule count&
    Involved Involved Median No.
    No. P-value No. P-value (range) P-value
    HCT116/Neo 6/10 0.057 7/10 0.070 29(23-38) 0.0001
    HCT116/CTGF-M 1/10 2/10 10(7-13) 
    #Fisher's exact test;
    &Mann-Whitney test
  • Please refer to FIG. 3, which is a relationship diagram showing the proportion of survival and time (days) after injecting HCT 116/Neo and HCT116/CTGF-M transfectants respectively to the SCID mice. From the result in FIG. 3, it could be found that the survival rate of the HCT116/CTGF-M-injected SCID mice was higher than that of the HCT116/Neo-injected SCID mice. The average survival days of the HCT116/CTGF-M-injected SCID mice were 58 days; however, the average survival days of the HCT116/CTGF-M-injected SCID mice were 81.8 days (p=0.001). Therefore, in accordance with the above-mentioned data, it was supposed that the abundantly-expressed CTGF could effectively inhibit the peritoneal dissemination progress of colorectal cancer, and the abundantly-expressed CTGF was beneficial in increasing the survival rate in vivo.
  • Subsequently, in order to research whether the growth of HCT116 colon cancer cells could be inhibited by rCTGF in the present invention, the mice were divided into three groups. The first group was the control group. After one million HCT116 cells were injected into the peritoneal cavity of female SCID mice, DMSO was injected thereinto for every two days for 14 days. The second group was the co-treatment group. After one million HCT116 cells were injected into the peritoneal cavity of female SCID mice, 1.5 mg/kg rCTGF was injected thereinto immediately (once per two days for 14 days), wherein the purpose of co-treatment group was mainly in simulating the direct intraoperative situation with free cancer cells on the peritoneal surface. The third group was the post-treatment group. After one million HCT116 cells were injected into the peritoneal cavity of female SCID mice, rCTGF was injected thereinto everyday from days 3 to 9, wherein the purpose of the post-treatment group was to simulate the clinical situation of the early-stage microscopic-transplanted surgery patients.
  • Please refer to FIGS. 4-I to 4-IX, which are the dissection diagrams showing the effect of peritoneal dissemination while injecting rCTGF into the SCID mice of control, co-treatment and post-treatment groups. In FIGS. 4-I to 4-III, all SCID mice were moribund within 40 days, and the increasing abdominal circumference was measured obviously. Bloody ascites were noted during dissecting the abdominal cavity and numerous peritoneal nodules were found. In the co-treatment (FIGS. 4-IV, 4-V and 4-VI) and the post-treatment (FIGS. 4-VII, 4-VIII and 4-IX) groups, the abdominal circumference of mice did not increase obviously, and the situations of the ascites and the peritoneal nodules in the peritoneal cavity were improved significantly after the mice in co-treatment group and the post-treatment groups were dissected as comparing to the control group, wherein the peritoneal cavities of three mice in the co-treatment group and one mouse in the post-treatment group did not have tumor dissemination (data not shown).
  • Please refer to FIGS. 5(A) and 5(B) respectively, which are the quantitative results of the abdominal circumference and body weight of mice in the control, co-treatment and post-treatment groups. The quantitative results in FIGS. 5(A) and 5(B) were corresponding to the results in FIGS. 4-I to 4-IX.
  • Please refer to FIG. 6, which is the quantitative result of peritoneal nodules of mice in the control, co-treatment and post-treatment groups. The number of the peritoneal nodules in the mice were significantly decreased in the co-treatment and post-treatment groups as comparing to the control group.
  • In summary, the expression of CTGF indeed plays an important regulation role in the mechanism of peritoneal metastasis.
  • 2. Inhibition of CTGF to Adhesion of Colon Cancer Cells
  • In order to clarify the playing role of CTGF in the adhesion of colon cancer cells, firstly, the expressions of CTGF in four different human colon carcinoma cell line (HCT116, LoVo, HT-29 and Caco-2) are determined by RT-PCR and Western blot.
  • Please refer to FIG. 7, which is the expressions of CTGF mRNA and CTGF protein and the cellular adhesion ability of CTGF in HCT116, LoVo, HT-29 and Caco-2 cell lines. The result was shown that HCT116 cells had the lowest CTGF mRNA and protein expressions and the highest cellular adhesion ability. As comparing to Caco-2 cells, Caco-2 cells had the highest CTGF mRNA and protein expressions and the lowest cellular adhesion ability.
  • The aforementioned experimental results using HCT116/Neo and HCT116/CTGF-M transfectants have been proved that the CTGF expression indeed have the effect to influence the peritoneal metastasis. Furthermore, the HCT116 transfectants (HCT116/CTGF-4 and HCT116/CTGF-18) with different CTGF expressions were screened in the present invention. Please refer to FIG. 8, which is the CTGF expressions and the cellular adhesion abilities of HCT116/Neo, HCT116/CTGF-M, HCT116/CTGF-4 and HCT116/CTGF-18 transfectants. Comparing with the control group (HCT116/Neo), the result was proved that CTGF expression represented the inverse correlation with the adhesion ability.
  • Please refer to FIG. 9, which is the influence of adhesion ability that different doses of the CTGF expression plasmid transiently transfects to HCT116 cells. The result was shown that different doses of CTGF would influence the adhesion ability of HCT116 cells. The higher CTGF dose made the worse adhesion ability, and the lower CTGF dose made the better adhesion ability.
  • Please refer to FIG. 10, which is the function of different doses of CTGF neutralizing antibody antagonizing the stable CTGF expression in HT29 cell line. The result was shown that the adhesion of HT29 cells would be significantly increased along with the doses (1 to 3 μg) of neutralizing antibody.
  • Subsequently, the relationship between the CTGF expression and the cellular adhesion was discussed by transfecting with the antisense CTGF plasmid. Please refer to FIG. 11, which is the CTGF expression and the CTGF adhesion ability of HT29 cell lines transfected with different doses of anti-sense CTGF plasmid. The result was shown that the cells transfected with higher doses (0.5 to 3 μg) of anti-sense CTGF plasmid made the higher cellular adhesion.
  • 3. CTGF being a Predicted Marker of the Peritoneal Metastasis in Human's Colorectal Cancer (CRC)
  • The previous research (Lin et al., 2005) has been proved that the CTGF expression represents the inverse correlation with the lymph node metastasis of the colorectal cancer patients and the recurrence level of metastasis. Therefore, the possible relation between the CTGF contents of the primary tumor and the generated peritoneal carcinomatosis was further discussed in the present invention.
  • Please refer to FIGS. 12-I to 12-IV, which are the most representative immunohistochemical staining in 136 colorectal cancer patient samples. FIG. 12-I was the representative diagram of Level 3, which had a very high CTGF expression in the basal membrane and cytoplasm of the well-differentiated epidermoid carcinoma. FIGS. 12-II and 12-III were the representative diagrams of Level 0, and it could be found that the weak immune response existed in the poorly-differentiated colorectal cancer cells (FIG. 12-II) and their peritoneal dissemination nodules (FIG. 12-III). FIG. 124V was an immunohistochemical diagram of negative staining, which used IgG as the control group. Please refer to Table 2, which is the related pathological data of the clinical characteristics and CTGF expression diagrams of the immunohistochemical staining. In the analysis of 136 colorectal cancer patient samples, the low CTGF expression group occupied 55% (75/136) of the total samples and the high CTGF expression group occupied 45% (61/136) of the total samples.
  • TABLE 2
    Clinical and pathological characteristics for high and low
    CTGF expression in T3 and T4 colorectal cancer (CRC)
    CTGF expression
    Feature Number Low High P-value
    Patients 136 75 61
    Mean age (Year) 62.6 62.1 0.82
    Sex 0.618
    Male 68 33 35
    Female 68 42 26
    Tumor site 0.823
    Right 45 23 22
    Left 44 25 19
    Rectum 47 27 20
    Tumor 0.007
    Differentiation
    Poor 26 21 5
    Moderate 106 52 54
    Well 4 2 2
    Stage 0.040
    II 47 20 27
    III 63 36 27
    IV 26 19 7
    Lymph node 0.017
    N0 56 24 32
    N1 43 24 19
    N2 37 27 10
    Intra-tumor 0.301
    invasion
    Present 63 38 25
    Absent 73 37 36
    CEA level (ng/ml) 0.582
    □3 44 23 21
     >3 92 52 40
    Synchronous 0.030
    peritoneal seeding
    Present 35 25 10
    Absent 101 50 51
    Metachronous 0.001
    peritoneal seeding
    Present 21 17 4
    Absent 80 33 47
  • In the low CTGF expression group, the CTGF expression had no significant relations with the age, sex, tumor location, pre-operative CEA content and intra-tumor invasion of the patients. In the high CTGF expression group, 16% (10/61) patients had synchronous peritoneal metastasis; however, 33% (25/75) patients had the phenomenon of synchronous peritoneal metastasis (p=0.030) in the low CTGF expression group.
  • From the result in Table 2, it could be known that the status of tumor differentiation, clinical level and lymph node metastasis significantly related to the CTGF expression. (p-values were 0.007, 0.040 and 0.017 respectively).
  • Furthermore, from the result in Table 2, it could be known that the patient samples without peritoneal metastasis diagnosed in the early surgery were 101, wherein 50 persons had low CTGF expression and 51 had high CTGF expression. The traces of the follow-up recurrence (FIG. 13) and survival rate (FIG. 14) were proceeded in accordance with this feature. From the comparison result in FIG. 13, it could be known that the time from post-operation to recurrence in the high CTGF expression group was significantly higher than that in the low CTGF expression group (p<0.001). From the result in FIG. 14, the significant difference (p<0.001) of the survival rate in the high and low CTGF expression patients could be known. Therefore, the above-mentioned clinical data have been proved that CTGF was the predictable marker of synchronous or non-synchronous peritoneal metastasis in the colorectal cancer patients.
  • In summary, adhesion ability of cancer cells on the peritoneum plays a considerable important key role in the peritoneal metastasis of the colorectal cancer. The present invention is first proved that CTGF not only can be the biomarker in predicting the recurrence of peritoneal metastasis, but also can be the another candidate therapy for the peritoneal cancer dissemination of the colorectal cancer patients.
  • In conclusion, the clinical data of immunohistological staining of the present invention have been proved that the probability of synchronous and non-synchronous peritoneal metastasis of the colorectal cancer which the lower CTGF content patients suffer is higher than that of which the higher CTGF content patients suffer. In addition, CTGF expressions in different colorectal cancer cell lines represents the inverse correlation with their adhesion ability, and the variances of CTGF expression affect the adhesion abilities of human colorectal cancer cell lines directly. Therefore, whether cancer patients possess the high risk of peritoneal metastasis is identified by determining the CTGF expression of primary colorectal cancer, and the phenomenon of peritoneal carcinomatosis of cancer patients is prevented and treated by administrating CTGF.
  • Furthermore, the abovementioned experimental results can be used in the present invention so as to provide a method for screening the inhibitor of peritoneal dissemination. First, a compound is bound with the cells expressing CTGF in the peritoneal tissue, and CTGF has inhibition ability of cancer cell adherence in the peritoneal tissue. Subsequently, the CTGF expression in the peritoneal tissue is determined. When the CTGF expression in the peritoneal tissue is higher than that in the cells without binding with the compound, the compound has potential for positively regulating CTGF.
  • While the invention has been described in terms of what is presently considered to be the most practical and preferred Embodiments, it is to be understood that the invention needs not be limited to the disclosed Embodiments. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims, which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.

Claims (24)

1. A pharmaceutical composition for treating a peritoneal dissemination and/or preventing the peritoneal dissemination, comprising a connective tissue growth factor (CTGF) and/or an active fragment thereof.
2. The pharmaceutical composition according to claim 1, wherein CTGF and/or the active fragment thereof inhibits at least one matter selected from the group consisting of a cancer cell adhering to a peritoneal cavity, a formation of a peritoneal nodule and an activity of a trigger of an immune response.
3. The pharmaceutical composition according to claim 1, wherein CTGF is a recombinant CTGF and/or the active fragment of CTGF is one selected from the group consisting of a C-terminal (CT) domain, a mutant of the CT domain, an active fragment of the recombinant CTGF and a combination thereof.
4. The pharmaceutical composition according to claim 1, wherein the peritoneal dissemination is caused by at least one cancer selected from the group consisting of colon cancer, gastric cancer and ovary cancer.
5. The pharmaceutical composition according to claim 1 further comprising an effective dosage of CTGF and/or the active fragment thereof.
6. The pharmaceutical composition according to claim 1 further comprising a pharmaceutically acceptable carrier.
7. A pharmaceutical composition for treating a peritoneal carcinoma recurrence and/or preventing the peritoneal carcinoma recurrence, comprising a connective tissue growth factor (CTGF) and/or an active fragment thereof.
8. The pharmaceutical composition according to claim 7, wherein the peritoneal carcinoma recurrence is occurred after surgery.
9. The pharmaceutical composition according to claim 7 further comprising a pharmaceutical acceptable carrier.
10. A method for screening a compound for inhibiting a peritoneal dissemination, comprising steps of:
(a) providing a compound to contact with a cell expressing a connective tissue growth factor (CTGF), wherein CTGF can inhibit the cell adhering to a peritoneal tissue;
(b) measuring a first amount of the expression of CTGF of the cell; and
(c) determining whether the first amount is higher than a reference amount, wherein an increase in the first amount relative to the reference amount is indicative of the compound that can inhibit the peritoneal dissemination.
11. The method according to claim 10, wherein the cell is selected from a peritoneal tissue.
12. The method according to claim 10, wherein the reference amount is determined by the second amount of the expression of CTGF of the cell without being contacted with the compound.
13. The method according to claim 10, wherein the peritoneal dissemination is caused by at least one cancer selected from the group consisting of colon cancer, gastric cancer and ovary cancer.
14. The method according to claim 10, wherein the cell is selected from the group consisting of Caco-2 cell line, HT29 cell line, LoVo cell line and HCT116 cell line.
15. A method for measuring a possibility of a peritoneal dissemination being occurring to a patient, comprising steps of
(a) providing a peritoneal tissue from the patient;
(b) measuring the first amount of an expression of a connective tissue growth factor (CTGF) of the peritoneal tissue; and
(c) comparing the first amount with a reference amount, wherein a decrease in the first amount relative to the reference amount is indicative of a possibility of the peritoneal dissemination being occurring to the patient.
16. The method according to claim 15, wherein the reference amount is determined by the second amount of the expression of CTGF of a normal peritoneal tissue.
17. The method according to claim 15, wherein the patient has at least one cancer selected from the group consisting of colon cancer, gastric cancer and ovary cancer.
18. A method for measuring a possibility of a peritoneal carcinoma recurrence occurring to a patient, comprising steps of
(a) providing a peritoneal tissue from the patient;
(b) measuring a first amount of an expression of a connective tissue growth factor (CTGF) of the peritoneal tissue; and
(c) comparing the first amount with a reference amount, wherein a decrease in the first amount relative to the reference amount is indicative of a possibility of a peritoneal carcinoma recurrence occurring to the patient.
19. The method according to claim 18, wherein the reference amount is determined by the second amount of the expression of CTGF of a normal peritoneal tissue.
20. The method according to claim 18, wherein the patient has at least one cancer selected from the group consisting of colon cancer, gastric cancer and ovary cancer.
21. A method for inhibiting a peritoneal dissemination of a patient, comprising a step of providing the patient with a connective tissue growth factor (CTGF) and/or an active fragment thereof.
22. A method for inhibiting a peritoneal carcinoma recurrence of a patient, comprising a step of: administering the patient with a connective tissue growth factor (CTGF) and/or an active fragment thereof.
23. The method according to claim 21, wherein a patient comprises a mammal.
24. The method according to claim 22, wherein the mammal further comprises a rodent and a human.
US12/220,332 2008-07-23 2008-07-23 Pharmaceutical composition for inhibiting peritoneal dissemination Abandoned US20100331249A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/220,332 US20100331249A1 (en) 2008-07-23 2008-07-23 Pharmaceutical composition for inhibiting peritoneal dissemination
US13/409,325 US8871721B2 (en) 2008-07-23 2012-03-01 Methods for inhibiting peritoneal dissemination of cancer cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/220,332 US20100331249A1 (en) 2008-07-23 2008-07-23 Pharmaceutical composition for inhibiting peritoneal dissemination

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/409,325 Continuation US8871721B2 (en) 2008-07-23 2012-03-01 Methods for inhibiting peritoneal dissemination of cancer cells

Publications (1)

Publication Number Publication Date
US20100331249A1 true US20100331249A1 (en) 2010-12-30

Family

ID=43381402

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/220,332 Abandoned US20100331249A1 (en) 2008-07-23 2008-07-23 Pharmaceutical composition for inhibiting peritoneal dissemination
US13/409,325 Expired - Fee Related US8871721B2 (en) 2008-07-23 2012-03-01 Methods for inhibiting peritoneal dissemination of cancer cells

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/409,325 Expired - Fee Related US8871721B2 (en) 2008-07-23 2012-03-01 Methods for inhibiting peritoneal dissemination of cancer cells

Country Status (1)

Country Link
US (2) US20100331249A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140073686A1 (en) * 2012-09-13 2014-03-13 National Taiwan University Compositions for modulating invasion ability of a tumor and methods thereof
WO2025125541A1 (en) * 2023-12-15 2025-06-19 Roskilde Universitet Method for predicting the risk of post-operative recurrence of a cancer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10335573B2 (en) 2015-12-02 2019-07-02 Cook Medical Technologies Llc Intraperitoneal chemotherapy medical devices, kits, and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770209A (en) * 1991-08-30 1998-06-23 University Of South Florida Acceleration of wound healing using connective tissue growth factor
US7115390B1 (en) * 1998-12-14 2006-10-03 Fibrogen, Inc. Connective tissue growth factor fragments and methods and uses thereof
US7214480B2 (en) * 2004-01-06 2007-05-08 National Taiwan University Methods and compositions for diagnosing and suppressing metastasis thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770209A (en) * 1991-08-30 1998-06-23 University Of South Florida Acceleration of wound healing using connective tissue growth factor
US7115390B1 (en) * 1998-12-14 2006-10-03 Fibrogen, Inc. Connective tissue growth factor fragments and methods and uses thereof
US7214480B2 (en) * 2004-01-06 2007-05-08 National Taiwan University Methods and compositions for diagnosing and suppressing metastasis thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140073686A1 (en) * 2012-09-13 2014-03-13 National Taiwan University Compositions for modulating invasion ability of a tumor and methods thereof
WO2025125541A1 (en) * 2023-12-15 2025-06-19 Roskilde Universitet Method for predicting the risk of post-operative recurrence of a cancer

Also Published As

Publication number Publication date
US8871721B2 (en) 2014-10-28
US20120165253A1 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
Cui et al. CD147 receptor is essential for TFF3-mediated signaling regulating colorectal cancer progression
Skrypek et al. The oncogenic receptor ErbB2 modulates gemcitabine and irinotecan/SN-38 chemoresistance of human pancreatic cancer cells via hCNT1 transporter and multidrug-resistance associated protein MRP-2
Lin et al. Elevated expression of Cyr61 enhances peritoneal dissemination of gastric cancer cells through integrin α2β1
Hai et al. L1 cell adhesion molecule promotes tumorigenicity and metastatic potential in non–small cell lung cancer
Nambotin et al. Pharmacological inhibition of Frizzled-7 displays anti-tumor properties in hepatocellular carcinoma
Fan et al. Hypermethylated KCNQ1 acts as a tumor suppressor in hepatocellular carcinoma
US20090311224A1 (en) Therapeutic agent comprising lipocalin 2 against cancer metastasis, and methods of early diagnosis and inhibition of cancer metastasis using lipocalin 2
Zhu et al. Knockout of the Nogo-B gene attenuates tumor growth and metastasis in hepatocellular carcinoma
JP6316498B2 (en) Anti-tumor agent with CCAP4 as target molecule
Wang et al. Long noncoding RNA DIO3OS hinders cell malignant behaviors of hepatocellular carcinoma cells through the microRNA-328/Hhip axis
Li et al. TrkBT1 induces liver metastasis of pancreatic cancer cells by sequestering Rho GDP dissociation inhibitor and promoting RhoA activation
Cui et al. PDGFA‐associated protein 1 is a novel target of c‐Myc and contributes to colorectal cancer initiation and progression
Xiao et al. ELF1 activated long non-coding RNA CASC2 inhibits cisplatin resistance of non-small cell lung cancer via the miR-18a/IRF-2 signaling pathway.
Huang et al. Brusatol suppresses the tumor growth and metastasis of colorectal cancer via upregulating ARRDC4 expression through modulating PI3K/YAP1/TAZ Pathway
Bao et al. Pseudogene PLGLA exerts anti-tumor effects on hepatocellular carcinoma through modulating miR-324–3p/GLYATL1 axis
Refaat et al. Profiling activins and follistatin in colorectal cancer according to clinical stage, tumour sidedness and Smad4 status
US8871721B2 (en) Methods for inhibiting peritoneal dissemination of cancer cells
Ding et al. TGF-β1/SMAD3-driven GLI2 isoform expression contributes to aggressive phenotypes of hepatocellular carcinoma
Chen et al. Human telomerase reverse transcriptase recruits the β-catenin/TCF-4 complex to transactivate chemokine (CC motif) ligand 2 expression in colorectal cancer
Zhan et al. Alpha gene upregulates TFEB expression in renal cell carcinoma with t (6; 11) translocation, which promotes cell canceration
Fang et al. Troponin C-1 activated by E2F1 accelerates gastric cancer progression via regulating TGF-β/Smad signaling
US10139415B2 (en) Method for predicting responsiveness to compound inhibiting MAPK signal transduction pathway
Tsai et al. Krüppel-like factor 10 modulates stem cell phenotypes of pancreatic adenocarcinoma by transcriptionally regulating notch receptors
Caldeira et al. Antiapoptotic and prometastatic roles of cytokine FAM3B in triple-negative breast cancer
Cai et al. MARCH5 promotes hepatocellular carcinoma progression by inducing p53 ubiquitination degradation

Legal Events

Date Code Title Description
AS Assignment

Owner name: NATIONAL TAIWAN UNIVERSITY, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUO, MIN-LIANG;LIN, BEEN-REN;CHANG, CHENG-CHI;AND OTHERS;REEL/FRAME:021334/0833

Effective date: 20080718

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION