US20120089525A1 - Superconducting Power and Transport System - Google Patents
Superconducting Power and Transport System Download PDFInfo
- Publication number
- US20120089525A1 US20120089525A1 US13/125,288 US200913125288A US2012089525A1 US 20120089525 A1 US20120089525 A1 US 20120089525A1 US 200913125288 A US200913125288 A US 200913125288A US 2012089525 A1 US2012089525 A1 US 2012089525A1
- Authority
- US
- United States
- Prior art keywords
- tube
- tunnel
- train
- air
- seal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L13/00—Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
- B60L13/10—Combination of electric propulsion and magnetic suspension or levitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61B—RAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
- B61B13/00—Other railway systems
- B61B13/08—Sliding or levitation systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61B—RAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
- B61B1/00—General arrangement of stations, platforms, or sidings; Railway networks; Rail vehicle marshalling systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61B—RAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
- B61B13/00—Other railway systems
- B61B13/10—Tunnel systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61C—LOCOMOTIVES; MOTOR RAILCARS
- B61C3/00—Electric locomotives or railcars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61K—AUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
- B61K13/00—Other auxiliaries or accessories for railways
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/16—Real estate
- G06Q50/165—Land development
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T30/00—Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance
Definitions
- the present invention relates generally to techniques, devices, processes, and methods for creating a superconducting power distribution system for the transmission of electrical power in which the available power is used to provide a levitating and translation field for the purpose of supporting one or more magnetically levitated and accelerated transport structures or train cars.
- a system in which the air has been removed, thereby aiding cooling systems for superconducting power and eliminating air friction, which is the main source of energy loss in transport systems.
- the tubes can be located underground and/or underwater and/or at the surface and/or above ground. Underground tubes will sometimes be referred to as tunnels, but unless the context dictates otherwise, the terms “tunnel” and “tube” will be used somewhat interchangeably, and are intended to cover any of the above locations.
- the tubes can be level or sloped as dictated by the terrain or other functional requirements.
- a safe transition mechanism is provided in the event of a loss of vacuum or power to a train in motion so that people and animals may safely leave the train and tunnels and reach or be rescued to the surface and ambient air.
- air or other gases are pumped out of the tube by the motion of the train car which has had one or more close fitting sealing elements sealing against passage of air in the direction of its motion.
- the sealing elements can be passive or active in their action to seal against the walls of the tube.
- End sealing elements can be provided on train cars in tube sections set up to load and unload cars wherein the sealing elements create an air lock to the system.
- the kinetic energy of the train is used to store and transfer electrical energy and simultaneously provide a constant store of goods and materials which have minimal access time to localities along the route of the train.
- implementation costs are reduced by sharing the construction of the tubes, and integrating their respective infrastructures.
- a subterranean right of way is established, for example by use of a limited eminent domain in order to provide incentive for formation of large capital pools to provide the deep and ongoing financing needed to construct the system.
- the parties providing capital obtain only the legal title to a particular subterranean volume while leaving the mineral, water, and surface rights unchanged, thus overcoming a major political hurdle of such a capitalization scheme.
- Some surface rights would also be granted to provide necessary infrastructure that by its nature needs to be above ground.
- FIG. 1A is a cross section of the tunnels, train, and power cable in an embodiment of the present invention
- FIG. 1B provides cross-sectional views of a tunnel tube, an above ground tube, a partially submerged tube, and an underwater tube;
- FIGS. 2A , 2 B, and 2 C are side, top, and end views of the train with the breakaway lifting body air remnant sweeps in place.
- FIGS. 3A , 3 B, and 3 C are cross-sectional, front, and side views of the lifting body showing the ablative surfaces of the train in tunnel;
- FIG. 4A is a side view showing a relief tunnel for automatic response to power out
- FIG. 4B is a is a cross section view of the emergency stopping system that uses aircraft grade braking material attached to the underside of the car in rubbing contact with an abrasion rail built into or depending from the tube or tunnel floor or lower wall.
- FIGS. 5A and 5B are side and cross-sectional views of the sealing structures on the train
- FIGS. 6A and 6B are side and front views of active sealing structures on the train
- FIG. 7 is a top schematic view of the energy storage and warehouse trains in the complete system
- FIGS. 8A and 8B are side views of side and front loading train car with another auxiliary car sealing the main tube/tunnel;
- FIG. 9 is a is an overview of the right of way allocated to the capital entities funding the project along with a detail of a station and above-ground 1-square-kilometer reserve associated with the right of way.
- FIG. 1A is a cross-sectional view of a transport and power system having three tunnels 100 , a magnetic levitation and linear motor train 110 (shown in the left tunnel as a heavy dark outline), and a superconducting power cable in an embodiment of the present invention.
- Different embodiments can have fewer or more (preferably parallel) tunnels.
- the center tunnel is shown as being an escape, power distribution, and maintenance tunnel. These tunnels are shown as below ground level 130 , but other locations are possible.
- FIG. 1B provides cross-sectional views of a tunnel tube 100 , an above ground tube 804 , a tube 810 partially submerged in water 820 , and an underwater tube 808 .
- tunnel and “tube” will be used interchangeably regardless of whether the tube is above ground, below ground, at ground, or under water.
- Underground tubes will often be referred to as tunnels.
- the train or train cars follow the general design used in various locations around the world. Goddard's basic vacuum train U.S. Pat. No. 2,488,287, and U.S. Pat. Nos. 1,336,732, 3,738,281, 4,075,948, and 6,374,746 on related technology are incorporated by reference.
- the train cars have airflow surfaces along the long axis of the car such that at high speeds in air the car will be lifted within the tube and kept from direct contact with the tube walls.
- the cars can be provided with one or more sweeps or seals. In operation, introduction of air into the vacuum tube when the car is at high speed causes the sweep(s) or seal(s) to disintegrate in the lifting body areas and cause the car to behave as an airfoil in a tube.
- the superconducting power line and support equipment are well known in the electrical power art.
- U.S. Pat. Nos. 3,947,622, 4,947,007, 6,262,375, and 6,576,843 on related technology are incorporated by reference.
- the tubes are vacuum capable enclosures for the trains/cars/power cables, and preferably are transcontinental east to west and north to south but may be oriented in any direction.
- Underground tunnels are formed by automatic earth boring machines and extend long distances. Since the tubes can be below ground, on or above ground, underwater, or partially above water, the system of FIG. 1A can connect any and all electrical generator sources along its route with all users along the same route. By interconnection between multiple systems most of the continents and peoples of the world may be interconnected for power distribution and transportation.
- FIGS. 2A , 2 B, and 2 C are side, top, and end views of the train showing continuous removable and breakaway debris and/or air sweeps 210 which act to provide lift to the train car bodies 110 under low air pressure. However, they break away and decelerate (brake) the train under the force and thermal impact of near atmospheric pressure at high train speeds in the event of some interruption of the power which levitates the train cars or the rapid loss of vacuum for any reason in which the magnetic regenerative braking (deceleration) is unable to adequately slow the train.
- FIGS. 3A , 3 B, and 3 C are cross-section, front, and side views of the lifting body showing the ablative surfaces of the train in tunnel.
- the replaceable edges of the train car body 320 are designed to contact with the tunnel low-speed track to provide controlled deceleration as the train comes to a complete stop. This will be described in additional detail below with reference to FIG. 4B .
- FIG. 4A is a side view showing a relief tunnel 400 for automatic response to power out.
- Tunnels 400 automatically unseal providing safe foot and wheelchair passage on ramps from the passenger compartments 420 to the surface within a few thousand meters of the train stop location (except in certain mountainous terrain).
- the sweeps and lifting body aerodynamic shape of the train car 320 in conjunction with air and escape tunnels 400 act to provide passengers a safe recovery from emergencies occurring when the train is at speed.
- the train car includes passenger compartments 420 , freight compartments 430 , a power switching, cooling, levitation control and acceleration control system 460 connected by connection system 470 to the magnetic levitation and acceleration in tunnel modules 450 .
- These magnetic levitation modules in the tunnel interact with the magnetic levitation system on each side of the train car itself 440 .
- the train cars may be interconnected, may operate very close to each other but unconnected, or may operate with any amount of headroom or spacing between the cars. Actual operation is dynamic and changes according to load, power, and other issues.
- FIG. 4B is a is a cross section view of the emergency stopping system that uses aircraft grade braking material attached to the underside of the car in rubbing contact with an abrasion rail built into or depending from the tube or tunnel floor or lower wall.
- the pads on the undersurface of the train and act as aircraft brake pads to dissipate the kinetic energy of the train through friction with the low-speed track. Due to the high kinetic energy involved, aircraft style brake pads are preferred to deal with the extreme temperatures generated by friction. The pads can be sized to survive the most severe cases anticipated. After each emergency stop these pads will require inspection and replacement as necessary.
- FIGS. 5A and 5B are side and cross-sectional views of passive sealing structures 500 on the train in an embodiment of the present invention.
- FIGS. 6A and 6B are side and front views of active sealing structures 600 on the train. Sweeps such as these have advantages in their ability to be used to clear gas from the tube and their design in ability to provide a true seal when exposed to normal atmospheric pressure, and generally represent the preferred embodiment. Suitable materials include high-temperature urethane rubber and stiff silicone rubber.
- sealing structures 500 or 600 on the front and rear of each car 110 ; these sealing structures act when there is a gas such as air in the tube to prevent the passage of such a gas around the car and permit the car's motion to sweep the gas in the direction of its motion.
- a gas such as air
- the entire tunnel or any portion thereof may be swept free of this gas or “roughed out.”
- these cars with seal serve as roughing pump elements in an overall vacuum system.
- the sealing elements 502 are passive in their relation with the gap between the car and wall fixed and necessary so as to permit the operation of the car at its maximal design speed without destructively interacting with the tube wall or magnetic levitation structure.
- sealing elements 602 are active and can be made to come very close or even contact the tube and magnetic levitation structure walls.
- a car may have both sealing elements 502 and 602 along its length.
- sealing element 602 is inflatable from the car air supply and air/vacuum pump system 604 so that at less than local ambient air pressure, element 602 a conforms to the dimensions of passive element 502 and does not contact the wall, at ambient air pressure, 602 b is in sealing contact with the tube wall and at pressures up to two atmospheres additional compliance to wall and resistance to displacement or motion is obtained.
- Seals can be used to position the car off the floor of the tube and any direct contact with the linear motor and levitation structures. Furthermore variable seal structure thicknesses and materials across the seal can accommodate special tube requirements or the very small separation between the magnetic levitation and acceleration elements of the car and tunnel/tube.
- FIG. 7 is a top schematic view of the energy storage and warehouse train cars in the complete system that can take advantage of great velocity and mass of the train cars to store electrical energy and to transport it, exchange it or transfer it from one electrical system to another.
- the system consists of one or more tube/tunnel configurations such that cars 704 can be kept in motion at all times.
- Ke 10 9 joules or 10 3 megawatt-seconds, which is the energy that is output by an entire major power plant for one second and of course multiple such cars can be so discharged (so to speak) or charged (accelerated up to speed).
- a half full car (some material about the mass and weight of water like frozen food) has a mass of 20,000 metric tons or 2 ⁇ 10 4 megawatt-seconds (divide by 3600 for megawatt-hours) so 180 such cars represent the full output of a major power plant for one hour.
- the system can provide and deliver via its distribution network an instantaneous supply equal to that of a full 1000-megawatt power plant filling an instantaneous power role presently not available. Without any passengers such storage cars can be accelerated and decelerated very rapidly perhaps at more then 10 g's, thus only short acceleration/deceleration tube/tunnel segments 706 are required and can double as stations.
- each such energy storage car is also a potential warehouse car carrying goods and/or materials whose availability is time critical at localities all along the route for instance emergency supplies in time of war or specific material for a dispersed manufacturing sector all able to save substantial money by not warehousing material but leveraging extremely short delivery to gain manufacturing cost advantages.
- a car full of goods nearby could easily beat the system by many minutes if not hours. So taking off a car for delivery in Los Angeles might mean simultaneously launching another moving warehouse on a nearly straight energy exchange.
- the cars also represent a means for exchanging energy across superconducting power systems. As an example a car can be transferred from an east/west system 702 e to a north/south system 702 n or between any independent system and the power represented by the car in motion on the system to which it was transferred thus adding and subtracting stored power from one grid to another.
- FIGS. 8A and 8B are side views of side and front loading train car with another auxiliary car sealing the main tube/tunnel.
- Groups of cars and in particular cars with active sealing elements may be situated anywhere in the tunnels and be stopped (being either levitated or completely stopped and resting on the tunnel) and their seals deployed to seal off a section of tunnel which may then be filled with a gas such as air. Further this method as in FIGS. 8A and 8B of sealing is well suited to creating a loading zone in which one or more cars are loaded by dropping their end doors 814 to permit ingress and egress of cargo, people and vehicles.
- Such tube stations 802 are very desirable since they can be readily made by the same tunnel boring machines that create the vacuum tunnel or (for above ground 804 , underwater 808 , on water 810 regions shown in FIG. 1B ) the tube forming method for such prefab tube components.
- Special cars 812 can act to use the linear motor and seal system, perform at very large accelerations for power storage, special materials storage and transfer, and act as airlock doors with common components and controls.
- FIG. 9 provides an overview of a mechanism for funding the development of a system as shown and described above. Undertaking the implementation of the technology described herein would likely be the largest capital project ever undertaken. Set forth here is a framework for providing long-term and short-term incentives.
- a block 900 represents schematically a legal mandate (e.g., statute, judicial decision, executive order, or a combination) to implement a form of restricted eminent domain for limited subterranean rights, preferably without impeding any existing mineral, water, or surface rights in the overlying land. It is believed that such a mechanism can provide incentives for investors to fund such a massive undertaking.
- a legal mandate e.g., statute, judicial decision, executive order, or a combination
- Entities willing to spend the many billions of dollars needed to build the tunnels would be granted rights to a subterranean volume 902 adjacent the tunnel.
- the grant would include provision for multiple additional tunnels or tunnel enlargements 904 .
- the grant could also include grants of surface plots (e.g., a square kilometer surface station plot every 100-200 miles) to provide surface access stations 906 . These station areas will benefit from the subsequent growth of transport hubs, manufacturing, and cities around these “stations” 906 .
- This grant provides the long term incentive, akin to that offered to the railroad companies in the 1870's to build the transcontinental railroad, which was extensive ownership of the land around the railroad. In that case, a successful railroad project added tremendous value to the land provided with each mile of road completed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
Abstract
A transport and power system having a plurality of tubes or tunnels, a magnetic levitation and linear motor train, and a superconducting power cable. One of the tubes can be an escape, power distribution, and maintenance tunnel. These tubes can be above ground, below ground, at ground, or under water.
Description
- This application claims the benefit of U.S. Patent Application No. 61/106,970 filed Oct. 20, 2008 for “Terraspan—a Superconducting Power and Transport System including Emergency Safety and Recovery Techniques” (inventor Victor B. Kley), the entire disclosure of which is herein incorporated by reference for all purposes.
- The present invention relates generally to techniques, devices, processes, and methods for creating a superconducting power distribution system for the transmission of electrical power in which the available power is used to provide a levitating and translation field for the purpose of supporting one or more magnetically levitated and accelerated transport structures or train cars.
- Heretofore there have been superconducting power distribution systems and vacuum based magnetically levitated systems for transporting, equipment, goods and people but all have suffered from a number of serious issues including the difficulty and cost of implementation and maintenance and the issue of safety with regard to high speed transit in a vacuum environment.
- In an aspect of the invention, a system includes one or more tubes in which the air has been removed, thereby aiding cooling systems for superconducting power and eliminating air friction, which is the main source of energy loss in transport systems. The tubes can be located underground and/or underwater and/or at the surface and/or above ground. Underground tubes will sometimes be referred to as tunnels, but unless the context dictates otherwise, the terms “tunnel” and “tube” will be used somewhat interchangeably, and are intended to cover any of the above locations. The tubes can be level or sloped as dictated by the terrain or other functional requirements.
- In another aspect of the invention, a safe transition mechanism is provided in the event of a loss of vacuum or power to a train in motion so that people and animals may safely leave the train and tunnels and reach or be rescued to the surface and ambient air.
- In another aspect of the invention, air or other gases are pumped out of the tube by the motion of the train car which has had one or more close fitting sealing elements sealing against passage of air in the direction of its motion. The sealing elements can be passive or active in their action to seal against the walls of the tube. End sealing elements can be provided on train cars in tube sections set up to load and unload cars wherein the sealing elements create an air lock to the system.
- In another aspect of the invention, the kinetic energy of the train is used to store and transfer electrical energy and simultaneously provide a constant store of goods and materials which have minimal access time to localities along the route of the train.
- In another aspect of the invention, implementation costs are reduced by sharing the construction of the tubes, and integrating their respective infrastructures.
- In another aspect of the invention, a subterranean right of way is established, for example by use of a limited eminent domain in order to provide incentive for formation of large capital pools to provide the deep and ongoing financing needed to construct the system. The parties providing capital obtain only the legal title to a particular subterranean volume while leaving the mineral, water, and surface rights unchanged, thus overcoming a major political hurdle of such a capitalization scheme. Some surface rights would also be granted to provide necessary infrastructure that by its nature needs to be above ground.
- A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings.
-
FIG. 1A is a cross section of the tunnels, train, and power cable in an embodiment of the present invention; -
FIG. 1B provides cross-sectional views of a tunnel tube, an above ground tube, a partially submerged tube, and an underwater tube; -
FIGS. 2A , 2B, and 2C are side, top, and end views of the train with the breakaway lifting body air remnant sweeps in place. -
FIGS. 3A , 3B, and 3C are cross-sectional, front, and side views of the lifting body showing the ablative surfaces of the train in tunnel; -
FIG. 4A is a side view showing a relief tunnel for automatic response to power out; -
FIG. 4B is a is a cross section view of the emergency stopping system that uses aircraft grade braking material attached to the underside of the car in rubbing contact with an abrasion rail built into or depending from the tube or tunnel floor or lower wall. -
FIGS. 5A and 5B are side and cross-sectional views of the sealing structures on the train; -
FIGS. 6A and 6B are side and front views of active sealing structures on the train; -
FIG. 7 is a top schematic view of the energy storage and warehouse trains in the complete system; -
FIGS. 8A and 8B are side views of side and front loading train car with another auxiliary car sealing the main tube/tunnel; and -
FIG. 9 is a is an overview of the right of way allocated to the capital entities funding the project along with a detail of a station and above-ground 1-square-kilometer reserve associated with the right of way. -
FIG. 1A is a cross-sectional view of a transport and power system having threetunnels 100, a magnetic levitation and linear motor train 110 (shown in the left tunnel as a heavy dark outline), and a superconducting power cable in an embodiment of the present invention. Different embodiments can have fewer or more (preferably parallel) tunnels. The center tunnel is shown as being an escape, power distribution, and maintenance tunnel. These tunnels are shown as belowground level 130, but other locations are possible. - For example,
FIG. 1B provides cross-sectional views of atunnel tube 100, anabove ground tube 804, atube 810 partially submerged inwater 820, and anunderwater tube 808. Unless the context dictates otherwise, the terms “tunnel” and “tube” will be used interchangeably regardless of whether the tube is above ground, below ground, at ground, or under water. Underground tubes will often be referred to as tunnels. - The train or train cars follow the general design used in various locations around the world. Goddard's basic vacuum train U.S. Pat. No. 2,488,287, and U.S. Pat. Nos. 1,336,732, 3,738,281, 4,075,948, and 6,374,746 on related technology are incorporated by reference. The train cars have airflow surfaces along the long axis of the car such that at high speeds in air the car will be lifted within the tube and kept from direct contact with the tube walls. As will be described below, the cars can be provided with one or more sweeps or seals. In operation, introduction of air into the vacuum tube when the car is at high speed causes the sweep(s) or seal(s) to disintegrate in the lifting body areas and cause the car to behave as an airfoil in a tube.
- The superconducting power line and support equipment are well known in the electrical power art. U.S. Pat. Nos. 3,947,622, 4,947,007, 6,262,375, and 6,576,843 on related technology are incorporated by reference. The tubes are vacuum capable enclosures for the trains/cars/power cables, and preferably are transcontinental east to west and north to south but may be oriented in any direction. Underground tunnels are formed by automatic earth boring machines and extend long distances. Since the tubes can be below ground, on or above ground, underwater, or partially above water, the system of
FIG. 1A can connect any and all electrical generator sources along its route with all users along the same route. By interconnection between multiple systems most of the continents and peoples of the world may be interconnected for power distribution and transportation. -
FIGS. 2A , 2B, and 2C are side, top, and end views of the train showing continuous removable and breakaway debris and/or air sweeps 210 which act to provide lift to thetrain car bodies 110 under low air pressure. However, they break away and decelerate (brake) the train under the force and thermal impact of near atmospheric pressure at high train speeds in the event of some interruption of the power which levitates the train cars or the rapid loss of vacuum for any reason in which the magnetic regenerative braking (deceleration) is unable to adequately slow the train. -
FIGS. 3A , 3B, and 3C are cross-section, front, and side views of the lifting body showing the ablative surfaces of the train in tunnel. In addition, the replaceable edges of thetrain car body 320 are designed to contact with the tunnel low-speed track to provide controlled deceleration as the train comes to a complete stop. This will be described in additional detail below with reference toFIG. 4B . -
FIG. 4A is a side view showing arelief tunnel 400 for automatic response to power out.Tunnels 400 automatically unseal providing safe foot and wheelchair passage on ramps from the passenger compartments 420 to the surface within a few thousand meters of the train stop location (except in certain mountainous terrain). The sweeps and lifting body aerodynamic shape of thetrain car 320 in conjunction with air and escapetunnels 400 act to provide passengers a safe recovery from emergencies occurring when the train is at speed. - The train car includes passenger compartments 420, freight compartments 430, a power switching, cooling, levitation control and
acceleration control system 460 connected byconnection system 470 to the magnetic levitation and acceleration intunnel modules 450. These magnetic levitation modules in the tunnel interact with the magnetic levitation system on each side of the train car itself 440. The train cars may be interconnected, may operate very close to each other but unconnected, or may operate with any amount of headroom or spacing between the cars. Actual operation is dynamic and changes according to load, power, and other issues. -
FIG. 4B is a is a cross section view of the emergency stopping system that uses aircraft grade braking material attached to the underside of the car in rubbing contact with an abrasion rail built into or depending from the tube or tunnel floor or lower wall. When the levitation forces are removed, the pads on the undersurface of the train and act as aircraft brake pads to dissipate the kinetic energy of the train through friction with the low-speed track. Due to the high kinetic energy involved, aircraft style brake pads are preferred to deal with the extreme temperatures generated by friction. The pads can be sized to survive the most severe cases anticipated. After each emergency stop these pads will require inspection and replacement as necessary. -
FIGS. 5A and 5B are side and cross-sectional views ofpassive sealing structures 500 on the train in an embodiment of the present invention.FIGS. 6A and 6B are side and front views of active sealingstructures 600 on the train. Sweeps such as these have advantages in their ability to be used to clear gas from the tube and their design in ability to provide a true seal when exposed to normal atmospheric pressure, and generally represent the preferred embodiment. Suitable materials include high-temperature urethane rubber and stiff silicone rubber. - Preferred embodiments dispose sealing
500 or 600 on the front and rear of eachstructures car 110; these sealing structures act when there is a gas such as air in the tube to prevent the passage of such a gas around the car and permit the car's motion to sweep the gas in the direction of its motion. By moving slowly at full gas pressure and by the use of multiple such cars all possessing the 500 or 600, the entire tunnel or any portion thereof may be swept free of this gas or “roughed out.” Thus these cars with seal serve as roughing pump elements in an overall vacuum system. As shown instructures FIGS. 5A and 5B , the sealingelements 502 are passive in their relation with the gap between the car and wall fixed and necessary so as to permit the operation of the car at its maximal design speed without destructively interacting with the tube wall or magnetic levitation structure. - In
FIGS. 6A and 6B , the sealingelements 602 are active and can be made to come very close or even contact the tube and magnetic levitation structure walls. A car may have both sealing 502 and 602 along its length. Furthermore it is well understood that by using groups of cars the effective sealing is the sum of the sealing by each car. In particular in the preferred embodiment, sealingelements element 602 is inflatable from the car air supply and air/vacuum pump system 604 so that at less than local ambient air pressure,element 602 a conforms to the dimensions ofpassive element 502 and does not contact the wall, at ambient air pressure, 602 b is in sealing contact with the tube wall and at pressures up to two atmospheres additional compliance to wall and resistance to displacement or motion is obtained. - Seals can be used to position the car off the floor of the tube and any direct contact with the linear motor and levitation structures. Furthermore variable seal structure thicknesses and materials across the seal can accommodate special tube requirements or the very small separation between the magnetic levitation and acceleration elements of the car and tunnel/tube.
-
FIG. 7 is a top schematic view of the energy storage and warehouse train cars in the complete system that can take advantage of great velocity and mass of the train cars to store electrical energy and to transport it, exchange it or transfer it from one electrical system to another. As shown inFIG. 7 , the system consists of one or more tube/tunnel configurations such that cars 704 can be kept in motion at all times. Each car with its load and given velocity has the following kinetic energy Ke=(mv2)/2, where Ke is the kinetic energy in joules (watt-seconds), m is the mass in kg, v is the velocity in meters/sec. - At 1000 kph an empty car (20×10×100 meters) at 1000 metric tons has a Ke=109 joules or 103 megawatt-seconds, which is the energy that is output by an entire major power plant for one second and of course multiple such cars can be so discharged (so to speak) or charged (accelerated up to speed).
- A half full car (some material about the mass and weight of water like frozen food) has a mass of 20,000 metric tons or 2×104 megawatt-seconds (divide by 3600 for megawatt-hours) so 180 such cars represent the full output of a major power plant for one hour. Thus the system can provide and deliver via its distribution network an instantaneous supply equal to that of a full 1000-megawatt power plant filling an instantaneous power role presently not available. Without any passengers such storage cars can be accelerated and decelerated very rapidly perhaps at more then 10 g's, thus only short acceleration/deceleration tube/
tunnel segments 706 are required and can double as stations. - Furthermore each such energy storage car is also a potential warehouse car carrying goods and/or materials whose availability is time critical at localities all along the route for instance emergency supplies in time of war or specific material for a dispersed manufacturing sector all able to save substantial money by not warehousing material but leveraging extremely short delivery to gain manufacturing cost advantages.
- Thus even in a world where the system described herein was readily available as the low cost and most rapid shipper, a car full of goods nearby could easily beat the system by many minutes if not hours. So taking off a car for delivery in Los Angeles might mean simultaneously launching another moving warehouse on a nearly straight energy exchange. The cars also represent a means for exchanging energy across superconducting power systems. As an example a car can be transferred from an east/
west system 702 e to a north/south system 702 n or between any independent system and the power represented by the car in motion on the system to which it was transferred thus adding and subtracting stored power from one grid to another. -
FIGS. 8A and 8B are side views of side and front loading train car with another auxiliary car sealing the main tube/tunnel. Groups of cars and in particular cars with active sealing elements may be situated anywhere in the tunnels and be stopped (being either levitated or completely stopped and resting on the tunnel) and their seals deployed to seal off a section of tunnel which may then be filled with a gas such as air. Further this method as inFIGS. 8A and 8B of sealing is well suited to creating a loading zone in which one or more cars are loaded by dropping theirend doors 814 to permit ingress and egress of cargo, people and vehicles. -
Such tube stations 802 are very desirable since they can be readily made by the same tunnel boring machines that create the vacuum tunnel or (forabove ground 804, underwater 808, onwater 810 regions shown inFIG. 1B ) the tube forming method for such prefab tube components.Special cars 812 can act to use the linear motor and seal system, perform at very large accelerations for power storage, special materials storage and transfer, and act as airlock doors with common components and controls. -
FIG. 9 provides an overview of a mechanism for funding the development of a system as shown and described above. Undertaking the implementation of the technology described herein would likely be the largest capital project ever undertaken. Set forth here is a framework for providing long-term and short-term incentives. - A
block 900 represents schematically a legal mandate (e.g., statute, judicial decision, executive order, or a combination) to implement a form of restricted eminent domain for limited subterranean rights, preferably without impeding any existing mineral, water, or surface rights in the overlying land. It is believed that such a mechanism can provide incentives for investors to fund such a massive undertaking. - Entities willing to spend the many billions of dollars needed to build the tunnels would be granted rights to a
subterranean volume 902 adjacent the tunnel. The grant would include provision for multiple additional tunnels ortunnel enlargements 904. The grant could also include grants of surface plots (e.g., a square kilometer surface station plot every 100-200 miles) to providesurface access stations 906. These station areas will benefit from the subsequent growth of transport hubs, manufacturing, and cities around these “stations” 906. This grant provides the long term incentive, akin to that offered to the railroad companies in the 1870's to build the transcontinental railroad, which was extensive ownership of the land around the railroad. In that case, a successful railroad project added tremendous value to the land provided with each mile of road completed. - In order to encourage the investors in such a project, short term advantages (e.g., tax and carbon trading incentives stemming from the non-polluting nature of the technology and its compatibility with alternative energy sources) would likely also be provided.
- While the above is a complete description of specific embodiments of the invention, the above description should not be taken as limiting the scope of the invention as defined by the claims.
Claims (19)
1. A system combining magnetic levitation train car(s) with a superconducting wire assembly and electric power distribution system so that the basic infrastructure of each system may be shared and used by the other.
2. The system of claim 1 in which the shared elements include magnetic fields associated with the transmission of large amounts of electrical power.
3. The system of claim 1 in which train car(s) store energy in the form of kinetic energy.
4. The system of claim 1 or 3 in which the kinetic energy is returned to the power system as electrical energy in a process of regenerative braking using the linear motor system.
5. The system of claim 1 or 2 or 3 or 4 in which train car(s) is operational in a closed tunnel or tube.
6. The system of claim 1 or 2 or 3 or 4 or 5 in which the air is removed from the tunnel or tube and the electrical transmission lines to obtain a low air pressure and reduce or eliminate air friction, improve the electrical isolation of electrically charged system elements, and provide thermal isolation to maintain a constant temperature around the superconducting transmission system and any other superconducting elements.
7. The system of claim 1 or 2 or 3 or 4 or 5 or 6 in which the reintroduction of air into the system can by itself without any other active component cause the train car(s) of 1 and 3 to come to a near complete stop.
8. The system of claim 1 or 2 or 3 or 4 or 5 or 6 in which passive sealing members cause the motion of the train car to move and compress gas and/or air in the direction of the motion, and create a partial vacuum in the opposite direction.
9. The system of claim 1 or 2 or 3 or 4 or 5 or 6 in which active sealing members cause the motion of the train car to move and compress gas and/or air in the direction of the motion, and create a partial vacuum in the opposite direction.
10. The system of claim 1 or 2 or 3 or 4 or 5 or 6 in which active and passive sealing members cause the motion of the train car to move and compress gas and/or air in the direction of the motion, and create a partial vacuum in the opposite direction.
11. The system of claim 1 or 2 or 3 or 4 or 5 or 6 in which active and passive sealing members seal against the tube or tunnel on one or more train cars and provide a region in the tube or tunnel in which air may be introduced and loading/unloading operations take place without permitting air to enter the tube/tunnel regions beyond the at rest sealing cars.
12. The system of claim 1 or 2 or 3 or 4 or 5 or 6 in which one or more train cars are kept at rest and/or in motion in order to store and absorb electrical power by conversion of their kinetic energy to electrical energy via the linear motor used as a generator (decelerator) and/or the immediate storage of excess electrical energy by acceleration via the linear motor.
13. An active seal system in which a gas such as air is introduced at varying pressures to obtain close sealing or contact and compliant sealing with adjacent walls.
14. An active seal system of seal structures disposed on the outside of train cars in tunnels or tubes are not in contact with the tube or tunnel walls when the seal interior is at less than local ambient air pressure, are in contact when the seal interior is at ambient air pressure, and are in closer compliant contact when the seal interior is above ambient air pressure.
15. A seal system such that the seal interior must be maintained below ambient air pressure to be out of contact with the tunnel/tube walls.
16. An emergency support and braking system employing high temperature brake pads that contact the low-speed rail to support and decelerate the vehicle in the event of failure of the levitation system.
17. A method of capitalizing a system that requires the excavation of tunnels comprising:
setting aside by legal mandate a limited volume of subterranean real estate as an inducement and reward for the formation and use of the capital required to build and operate a system.
18. The method of claim 17 in which the no mineral, water or surface rights are retained by the subterranean real estate.
19. The method of claim 17 or 18 in which a large surface area for access stations is provided as further inducement and reward for the formation and use of the capital required to build and operate the system.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/125,288 US20120089525A1 (en) | 2008-10-20 | 2009-10-20 | Superconducting Power and Transport System |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10697008P | 2008-10-20 | 2008-10-20 | |
| PCT/US2009/061340 WO2010048194A2 (en) | 2008-10-20 | 2009-10-20 | Superconducting power and transport system |
| US13/125,288 US20120089525A1 (en) | 2008-10-20 | 2009-10-20 | Superconducting Power and Transport System |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2009/061340 A-371-Of-International WO2010048194A2 (en) | 2008-10-20 | 2009-10-20 | Superconducting power and transport system |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/140,231 Continuation US10308133B2 (en) | 2008-10-20 | 2016-04-27 | Superconducting power and transport system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20120089525A1 true US20120089525A1 (en) | 2012-04-12 |
Family
ID=42119941
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/125,288 Abandoned US20120089525A1 (en) | 2008-10-20 | 2009-10-20 | Superconducting Power and Transport System |
| US15/140,231 Expired - Fee Related US10308133B2 (en) | 2008-10-20 | 2016-04-27 | Superconducting power and transport system |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/140,231 Expired - Fee Related US10308133B2 (en) | 2008-10-20 | 2016-04-27 | Superconducting power and transport system |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US20120089525A1 (en) |
| BR (1) | BRPI0919689A2 (en) |
| RU (1) | RU2011120187A (en) |
| WO (1) | WO2010048194A2 (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140261055A1 (en) * | 2013-03-15 | 2014-09-18 | Daryl Oster | Evacuated tube transport system with improved cooling for superconductive elements |
| US20140378312A1 (en) * | 2011-12-14 | 2014-12-25 | Railway Technical Research Institute | Superconducting cable, and device and method for cooling superconducting cable |
| WO2016126504A1 (en) * | 2015-02-08 | 2016-08-11 | Hyperloop Technologies, Inc | Transportation system |
| US9533697B2 (en) * | 2015-02-08 | 2017-01-03 | Hyperloop Technologies, Inc. | Deployable decelerator |
| US9566987B2 (en) | 2015-02-08 | 2017-02-14 | Hyperloop Technologies, Inc. | Low-pressure environment structures |
| US9599235B2 (en) | 2015-02-08 | 2017-03-21 | Hyperloop Technologies, Inc. | Gate valves and airlocks for a transportation system |
| US9641117B2 (en) | 2015-02-08 | 2017-05-02 | Hyperloop Technologies, Inc. | Dynamic linear stator segment control |
| US9764648B2 (en) | 2015-02-08 | 2017-09-19 | Hyperloop Technologies, Inc. | Power supply system and method for a movable vehicle within a structure |
| US10308133B2 (en) | 2008-10-20 | 2019-06-04 | Metadigm Llc | Superconducting power and transport system |
| US10533289B2 (en) | 2016-03-28 | 2020-01-14 | Hyperloop Technologies, Inc. | Metamaterial null flux magnet bearing system |
| US10897216B2 (en) | 2015-10-29 | 2021-01-19 | Hyperloop Technologies, Inc. | Variable frequency drive system |
| US10958147B2 (en) | 2015-02-08 | 2021-03-23 | Hyperloop Technologies, Inc. | Continuous winding for electric motors |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10220972B2 (en) * | 2017-03-31 | 2019-03-05 | The Boeing Company | Vacuum volume reduction system and method for a vacuum tube vehicle station |
| US11319098B2 (en) * | 2017-03-31 | 2022-05-03 | The Boeing Company | Vacuum volume reduction system and method with fluid fill assembly for a vacuum tube vehicle station |
| CN115031066A (en) | 2017-12-01 | 2022-09-09 | 超级高铁技术公司 | Segment pipe |
| US11635754B1 (en) * | 2018-11-15 | 2023-04-25 | Flux Dynamics, LLC | High-velocity mobile imaging system |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1216694A (en) * | 1914-12-16 | 1917-02-20 | Charles Francis Jenkins | Gravity-railway device. |
| US3954064A (en) * | 1974-01-31 | 1976-05-04 | Gravity Transit Company | Rapid transit system |
| US4113202A (en) * | 1976-12-27 | 1978-09-12 | Ueno Kohgyo Limited | Air-borne transportation system conveying truck |
| US4841869A (en) * | 1986-01-27 | 1989-06-27 | Daifuki, Co., Ltd. | Conveyor system utilizing linear motor |
| US4947007A (en) * | 1988-11-08 | 1990-08-07 | General Atomics | Superconducting transmission line system |
| US5433155A (en) * | 1991-11-18 | 1995-07-18 | O'neill, Deceased; Gerard K. | High speed transport system |
| US5605100A (en) * | 1990-10-23 | 1997-02-25 | American Magley Technology Of Florida, Inc. | Propulsion system for a magnetically movable vehicle |
| US5653174A (en) * | 1995-07-20 | 1997-08-05 | Halus; William J. | Computerized electric cable powered/guided aircraft transportation/power/communication system |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1336732A (en) | 1919-05-23 | 1920-04-13 | Davy Robert Ballard | Vacuum-railway |
| US2488287A (en) | 1945-10-06 | 1949-11-15 | Esther C Goddard | Apparatus for vacuum tube transportation |
| FR1474851A (en) | 1966-01-19 | 1967-03-31 | Suspended vehicle transporter | |
| US3738281A (en) | 1971-05-06 | 1973-06-12 | Rohr Industries Inc | Emergency support and decelerating mechanism for magnetically supported vehicle |
| US3947622A (en) | 1975-01-03 | 1976-03-30 | Massachusetts Institute Of Technology | Vacuum insulated A-C superconducting cables |
| GB8415077D0 (en) * | 1984-06-13 | 1984-07-18 | Gec General Signal Ltd | Vehicle braking |
| US6262375B1 (en) | 1992-09-24 | 2001-07-17 | Electric Power Research Institute, Inc. | Room temperature dielectric HTSC cable |
| US5653175A (en) * | 1995-09-15 | 1997-08-05 | Milligan; George Truett | Vacuum highway vehicle |
| US6374746B1 (en) | 1999-06-21 | 2002-04-23 | Orlo James Fiske | Magnetic levitation transportation system and method |
| JP3094104B1 (en) * | 1999-08-31 | 2000-10-03 | 工業技術院長 | Superconducting magnetic levitation transport system |
| US6576843B1 (en) | 2000-07-17 | 2003-06-10 | Brookhaven Science Associates, Llc | Power superconducting power transmission cable |
| AU2002258579A1 (en) * | 2001-03-26 | 2002-10-08 | James Russell Powell | Electrical power storage and delivery using magnetic levitation technology |
| EP1829761A1 (en) * | 2004-12-03 | 2007-09-05 | Yotam S.A. | Multifunctional modular system for energy transformation |
| US8146508B2 (en) * | 2008-10-08 | 2012-04-03 | Patrick Joseph Flynn | Pneumatic mass transportation system |
| US20120089525A1 (en) | 2008-10-20 | 2012-04-12 | Metadigm Llc | Superconducting Power and Transport System |
-
2009
- 2009-10-20 US US13/125,288 patent/US20120089525A1/en not_active Abandoned
- 2009-10-20 WO PCT/US2009/061340 patent/WO2010048194A2/en active Application Filing
- 2009-10-20 RU RU2011120187/11A patent/RU2011120187A/en not_active Application Discontinuation
- 2009-12-20 BR BRPI0919689A patent/BRPI0919689A2/en not_active IP Right Cessation
-
2016
- 2016-04-27 US US15/140,231 patent/US10308133B2/en not_active Expired - Fee Related
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1216694A (en) * | 1914-12-16 | 1917-02-20 | Charles Francis Jenkins | Gravity-railway device. |
| US3954064A (en) * | 1974-01-31 | 1976-05-04 | Gravity Transit Company | Rapid transit system |
| US4113202A (en) * | 1976-12-27 | 1978-09-12 | Ueno Kohgyo Limited | Air-borne transportation system conveying truck |
| US4841869A (en) * | 1986-01-27 | 1989-06-27 | Daifuki, Co., Ltd. | Conveyor system utilizing linear motor |
| US4947007A (en) * | 1988-11-08 | 1990-08-07 | General Atomics | Superconducting transmission line system |
| US5605100A (en) * | 1990-10-23 | 1997-02-25 | American Magley Technology Of Florida, Inc. | Propulsion system for a magnetically movable vehicle |
| US5433155A (en) * | 1991-11-18 | 1995-07-18 | O'neill, Deceased; Gerard K. | High speed transport system |
| US5653174A (en) * | 1995-07-20 | 1997-08-05 | Halus; William J. | Computerized electric cable powered/guided aircraft transportation/power/communication system |
Cited By (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10308133B2 (en) | 2008-10-20 | 2019-06-04 | Metadigm Llc | Superconducting power and transport system |
| US20140378312A1 (en) * | 2011-12-14 | 2014-12-25 | Railway Technical Research Institute | Superconducting cable, and device and method for cooling superconducting cable |
| US10062478B2 (en) * | 2011-12-14 | 2018-08-28 | Railway Technical Research Institute | Superconducting cable having outgoing coolant inside a conductor and return coolant outside the conductor, and device and method for cooling superconducting cable |
| US20140261055A1 (en) * | 2013-03-15 | 2014-09-18 | Daryl Oster | Evacuated tube transport system with improved cooling for superconductive elements |
| US9085304B2 (en) * | 2013-03-15 | 2015-07-21 | Daryl Oster | Evacuated tube transport system with improved cooling for superconductive elements |
| US9533697B2 (en) * | 2015-02-08 | 2017-01-03 | Hyperloop Technologies, Inc. | Deployable decelerator |
| US10088061B2 (en) | 2015-02-08 | 2018-10-02 | Hyperloop Technologies, Inc. | Gate valves and airlocks for a transportation system |
| US9566987B2 (en) | 2015-02-08 | 2017-02-14 | Hyperloop Technologies, Inc. | Low-pressure environment structures |
| US9599235B2 (en) | 2015-02-08 | 2017-03-21 | Hyperloop Technologies, Inc. | Gate valves and airlocks for a transportation system |
| US9604798B2 (en) | 2015-02-08 | 2017-03-28 | Hyperloop Technologies, Inc. | Transportation system |
| US9641117B2 (en) | 2015-02-08 | 2017-05-02 | Hyperloop Technologies, Inc. | Dynamic linear stator segment control |
| US9718630B2 (en) | 2015-02-08 | 2017-08-01 | Hyperloop Technologies, Inc. | Transportation system |
| US9764648B2 (en) | 2015-02-08 | 2017-09-19 | Hyperloop Technologies, Inc. | Power supply system and method for a movable vehicle within a structure |
| US9809232B2 (en) | 2015-02-08 | 2017-11-07 | Hyperloop Technologies, Inc. | Deployable decelerator |
| US10046776B2 (en) | 2015-02-08 | 2018-08-14 | Hyperloop Technologies, Inc. | Low-pressure environment structures |
| US9511959B2 (en) | 2015-02-08 | 2016-12-06 | Hyperloop Technologies, Inc. | Transportation system |
| US9517901B2 (en) | 2015-02-08 | 2016-12-13 | Hyperloop Technologies, Inc. | Transportation system |
| US10093493B2 (en) | 2015-02-08 | 2018-10-09 | Hyperloop Technologies, Inc. | Transportation system |
| WO2016126504A1 (en) * | 2015-02-08 | 2016-08-11 | Hyperloop Technologies, Inc | Transportation system |
| US10326386B2 (en) | 2015-02-08 | 2019-06-18 | Hyperloop Technologies, Inc. | Dynamic linear stator segment control |
| US10370204B2 (en) | 2015-02-08 | 2019-08-06 | Hyperloop Technologies, Inc. | Transportation system |
| US11772914B2 (en) | 2015-02-08 | 2023-10-03 | Hyperloop Technologies, Inc. | Transportation system |
| US10958147B2 (en) | 2015-02-08 | 2021-03-23 | Hyperloop Technologies, Inc. | Continuous winding for electric motors |
| US10906411B2 (en) | 2015-02-08 | 2021-02-02 | Hyperloop Technologies, Inc. | Power supply system and method for a movable vehicle within a structure |
| US10897216B2 (en) | 2015-10-29 | 2021-01-19 | Hyperloop Technologies, Inc. | Variable frequency drive system |
| US11391002B2 (en) | 2016-03-28 | 2022-07-19 | Hyperloop Technologies, Inc. | Metamaterial null flux magnetic bearing system |
| US10533289B2 (en) | 2016-03-28 | 2020-01-14 | Hyperloop Technologies, Inc. | Metamaterial null flux magnet bearing system |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2010048194A2 (en) | 2010-04-29 |
| WO2010048194A3 (en) | 2010-07-15 |
| US10308133B2 (en) | 2019-06-04 |
| RU2011120187A (en) | 2012-11-27 |
| BRPI0919689A2 (en) | 2017-05-30 |
| US20170080823A1 (en) | 2017-03-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10308133B2 (en) | Superconducting power and transport system | |
| US4148260A (en) | High speed transit system | |
| US6321657B1 (en) | Rail transit system | |
| CA2025334C (en) | Transportation system | |
| US3404638A (en) | High-speed ground transportation systems | |
| US20130136546A1 (en) | Regional, national and international transport-web infrastructure network system | |
| EP3558780B1 (en) | Elevated transportation system | |
| ES2527399T3 (en) | System and procedure of freight transport | |
| Sawada | Development of magnetically levitated high speed transport system in Japan | |
| Shahooei et al. | Application of underground short-haul freight pipelines to large airports | |
| US20190251510A1 (en) | Multimodal transportation interworking system | |
| Shahooei et al. | Propulsion system design and energy optimization for autonomous underground freight transportation systems | |
| Gurol | General atomics linear motor applications: Moving towards deployment | |
| US20210214174A1 (en) | System, method, and layout for loading, unloading, and managing shipping containers and passenger containers transported by monorail, maglev line, grooved pathway, roadway, or rail tracks | |
| Barbosa | Hyperloop concept technological and operational review: the potential to fill rail niche markets | |
| Zobel et al. | Hyperloop–Civil engineering point of view according to Polish experience | |
| RU2347733C2 (en) | Pneumotransport device | |
| RU2547913C1 (en) | Cargo transportation network land-based robotised complex for fast continuous cargo delivery in containers and transfer of liquids, electric power and data | |
| Bolonkin | Air cable transport system | |
| Powell et al. | MAGLEV technology development | |
| Kumar et al. | Hyperloop high speed of transportation | |
| US20090107356A1 (en) | Transportation system and method | |
| Alizada | Hyperloop: T he Fifth Mode of Transportation | |
| WO2010006399A1 (en) | Multi articulated vehicle based on superconducting magnetic levitation | |
| WO1998034824A1 (en) | Transport system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: METADIGM LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KLEY, VICTOR B.;BULMAN, MELVIN J.;REEL/FRAME:038397/0084 Effective date: 20111205 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |