[go: up one dir, main page]

US20120181313A1 - Vehicle boat loading device - Google Patents

Vehicle boat loading device Download PDF

Info

Publication number
US20120181313A1
US20120181313A1 US13/275,705 US201113275705A US2012181313A1 US 20120181313 A1 US20120181313 A1 US 20120181313A1 US 201113275705 A US201113275705 A US 201113275705A US 2012181313 A1 US2012181313 A1 US 2012181313A1
Authority
US
United States
Prior art keywords
assembly
load
load bars
roller
crossbar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/275,705
Inventor
Chris Sautter
Mike Kemery
Eric Roesinger
Zac Elder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yakima Products Inc
Original Assignee
Yakima Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yakima Products Inc filed Critical Yakima Products Inc
Priority to US13/275,705 priority Critical patent/US20120181313A1/en
Publication of US20120181313A1 publication Critical patent/US20120181313A1/en
Assigned to YAKIMA PRODUCTS, INC. reassignment YAKIMA PRODUCTS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROESINGER, ERIC, ELDER, ZAC, KEMERY, MIKE, SAUTTER, CHRIS
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R9/00Supplementary fittings on vehicle exterior for carrying loads, e.g. luggage, sports gear or the like
    • B60R9/04Carriers associated with vehicle roof
    • B60R9/042Carriers characterised by means to facilitate loading or unloading of the load, e.g. rollers, tracks, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R9/00Supplementary fittings on vehicle exterior for carrying loads, e.g. luggage, sports gear or the like
    • B60R9/08Supplementary fittings on vehicle exterior for carrying loads, e.g. luggage, sports gear or the like specially adapted for sports gear

Definitions

  • Top-mounted vehicle racks provide a versatile platform for transporting bicycles, skis, snowboards, boats, cargo boxes, gear racks, and other items.
  • Such racks typically include a pair of crossbars that extend side-to-side across the top of a vehicle.
  • Each crossbar is supported on each side of the vehicle's roof by a tower, where the length of each crossbar and the distance between crossbars depend on factors such as the shape and size of the vehicle's roof.
  • the towers supporting the rack crossbars are securely fastened to the vehicle to prevent the rack from slipping during use.
  • a typical top-mounted boat mount system includes two crossbars of the type described above, with supporting mounts of some type (e.g., a pair of saddles or J-shaped cradles) attached to the crossbars for supporting a boat, for example, a kayak or a canoe.
  • mounts e.g., a pair of saddles or J-shaped cradles
  • the user After placing a boat on the mounts, the user then secures the boat to the rack by strapping it to both the cradles and the crossbars.
  • placing the boat on the mounts may be cumbersome and difficult, and may result in damage to the vehicle, the boat, or injury to person(s) loading the boat.
  • a common method of placing a boat on a vehicle roof rack is for a user to lift the bow of the boat onto the rear mount from the rear of the car, and then to slide the boat forward.
  • This method has the advantage of allowing the user to lift only one half of the boat at a time, but it has the disadvantage that the bow of the boat often touches the upper rear corner of the car, resulting in scratches or other damage either to the car or the boat.
  • An additional problem with this method is that the boat may be difficult to slide on the rear mount, due to friction between the mount and the boat hull.
  • FIG. 1 is a top view of an apparatus for loading cargo on top of a vehicle.
  • FIG. 2 is a side view of the rack shown in FIG. 1 .
  • FIGS. 3 and 4 are partial perspective views of a roller device used in a loading apparatus such as the ones shown in FIGS. 1 and 2 .
  • FIG. 5 is a perspective view of a rear clamp assembly used on a loading apparatus such as the ones shown in FIGS. 1 and 2 .
  • FIG. 6 is a cross-sectional view of the clamp shown in FIG. 5 .
  • FIG. 7 is a perspective view of a front clamp used on a loading apparatus such as the ones shown in FIGS. 1 and 2 .
  • FIG. 8 is a top view of the clamp shown in FIG. 7 .
  • FIG. 9 is a top view of an alternative loading apparatus for loading cargo on top of a vehicle.
  • FIG. 10 is a top view of an alternative loading apparatus for loading cargo on top of a vehicle.
  • FIG. 11 is a top view of an alternative loading apparatus for loading cargo on top of a vehicle.
  • FIG. 12 is a top view of an alternative loading apparatus for loading cargo on top of a vehicle.
  • FIG. 13 is a partial perspective view of another example of a roller device used in a loading apparatus such as the ones shown in FIGS. 1 and 2 .
  • boat loading device 10 attaches to front and rear crossbars 12 , 14 of a rack disposed on top of a vehicle.
  • Loading device 10 has a roller 40 located behind rear crossbar 14 .
  • Roller 40 does not interfere with other supporting boat mounts or rack components installed on the crossbars, such as saddles 15 or J-cradles (not shown).
  • the user may choose any desired supporting mounts to use in conjunction with loading device 10 , or may add loading device 10 to a rack previously configured with supporting boat mounts of any type.
  • Loading device 10 includes a pair of longitudinal load bars 18 , 20 , which distribute the any load placed on the loading device to the roof of the vehicle via crossbars 12 , 14 .
  • Load bars 18 , 20 may be attached to crossbars 12 , 14 by any suitable mechanism, such as with front clamps 70 and/or rear clamps 50 , which may be configured to accommodate crossbars of various cross-sectional shapes.
  • Load bars 18 , 20 may be attached to roller 40 via t-lugs 42 .
  • load bars 18 , 20 are adjustable from side to side, allowing the user to configure the bars to accommodate locations of the crossbar towers, as well as any other preexisting roof rack components. As shown in FIG.
  • loading device 10 may have a width approximately equal to or slightly greater than the width of the vehicle. This allows the device to be used for loading of two or more boats onto a single vehicle without additional adjustments of the roller. As apparent in FIGS. 1 and 2 , a boat or other object may be loaded into saddles using device 10 without the boat touching the vehicle.
  • Roller assembly 40 includes crossbar 41 attached to distal ends of load bars 18 , 20 via t-lugs 42 .
  • Roller extrusion 43 including roller pad 44 holds a roller bar (not shown).
  • the roller bar may be made of any suitable material, including elastomers.
  • the roller extrusion 43 may be coupled to crossbar 41 via endcap 45 .
  • Endcap 45 may extend partially into roller extrusion 43 , and may be stabilized within extrusion 43 by bushing 46 .
  • Bushing 46 may be configured to rotate around endcap 45 .
  • Roller assembly 40 may be approximately 40′′ wide, which allows the loading of two boats side by side.
  • crossbar 41 may be non-circular, for example, oval-shaped to prevent it from rotating within t-lugs 42 (as shown in FIG. 13 ), while allowing sideways movement of roller 40 .
  • Alternative configurations for crossbar 41 may be used to prevent rotation of crossbar 41 within t-lugs 42 .
  • the crossbar may have other cross-sectional shapes such as rectangular, triangular, or may have ridges, flanges, or other projections that prevent rotation.
  • T-lugs 42 are adjustable along crossbar 41 . This allows for placement of load bars 18 and 20 at various distances from one another, making loading device 10 compatible with a variety of vehicles and boat saddles. T-lugs 42 may be clamped to crossbar 41 via tamper-proof fasteners or bolts, to prevent theft.
  • Roller 40 may be adjustable between multiple positions, as shown in FIGS. 1 and 2 .
  • roller 40 In a stowed or stored position roller 40 is located relatively close behind rear crossbar 14 , to allow full use of the vehicle's rear door (such as a hatch) without interference from roller 40 .
  • roller 40 In a loading/unloading position, as shown in FIGS. 1 and 2 , roller 40 is located to the rear of the back corner of the vehicle, to allow the boat to move on the roller without contacting the vehicle.
  • roller 40 may be moved back and forth by sliding load bars 18 , 20 back and forth through clamps 50 , 70 .
  • clamps 50 , 70 may be equipped with a stop break, or lock to restrict back and forth movement of roller 40 and load bars 18 , 20 .
  • Roller 40 may also be adjustable in a side-to-side direction relative to the vehicle as shown in FIG. 1 , so the roller may be approximately centered underneath each boat being loaded side by side.
  • Support bars 18 , 20 may be affixed to the cross bars using rear clamps 50 and front clamps 70 .
  • rear clamp 50 includes upper and lower jaws 52 , 54 manipulable towards one another to secure loading device 10 to rear crossbar 14 .
  • T-bolt 56 is adapted to be coupled with nut 58 via intermediate threaded member 60 , and is manipulable to bias lower jaw 54 toward upper jaw 52 .
  • Lower jaw 54 is rotatably coupled to upper tube member 62 via hinge 64 .
  • Upper tube member 62 receives bar 18 or 20 .
  • Quick release clamp 66 may be disposed on upper tube member 62 of rear clamp 50 via a tightening device 68 , as shown in FIG. 7 .
  • Quick release clamp 66 may be actuated to restrict or permit sliding movement of load bar 18 or 20 through tube member 62 , thus enabling back and forth movement of roller 40 between stowed and loading positions.
  • clamp 66 may be tightened by moving quick release lever 69 toward clamp 66 .
  • Clamp 66 likewise may be released (i.e. untightened) by pulling quick release lever 69 away from clamp 66 .
  • the tightness of clamp 66 may be micro-adjusted by releasing quick release lever 69 and spinning it to tighten a screw in tightening device 68 .
  • front clamp 70 includes upper and lower jaws 72 , 74 manipulable toward one another to secure load bar 18 or 20 to crossbar 12 .
  • T-bolt 76 is coupled with nut 78 via intermediate threaded member 80 to bias lower jaw 74 against upper jaw 72 .
  • Lower jaw 74 may be rotatably coupled to upper tube member 82 via hinge 84 .
  • Upper tube member 82 receives load bar 18 or 20 .
  • Front clamp 70 may also include stop collar 86 coupled to load bar 18 or 20 to limit how far load bar 18 or 20 may slide towards the rear of the vehicle.
  • Stop collar 86 may include a security mechanism, such as a tamper-proof screw for tightening stop collar 86 around load bar 18 or 20 , making removal of roller 40 and/or other components of loading device 10 difficult, discouraging theft.
  • T-bolt 76 on front clamp 70 may be configured so that when upper member 82 receives load bar 18 or 20 , t-bolt 76 cannot be rotated. This arrangement prevents loosening of clamp 70 when load bar 18 of 20 engages tube member 82 .
  • the various jaws of rear clamps 50 and front clamps 70 may be adapted to accommodate variously-shaped cross beams. Such shapes may include circles, ellipses, squares, rectangles, factory default vehicle rack shapes, or any other shape found in cross beams sold by various manufacturers.
  • the jaws may also include jagged edges, curves, high friction materials, etc., to improve their grip on crossbars.
  • FIG. 9 shows alternative L-shaped loading device 100 having a single longitudinal support bar 102 , and roller 104 .
  • Roller 104 may be adjustable from a storage position to a loading/unloading position, through extension of support bar 102 to various lengths.
  • the support bar may include a telescoping extension portion 108 configured to slide in and out of outer sleeve portion 110 .
  • Quick release gripping device 112 may be provided to control freedom of back and forth movement of extension portion 108 .
  • FIG. 10 shows another loading device 200 that includes a single longitudinal support bar 202 , and roller 204 .
  • Support bar 202 is configured to lie between pairs of saddles 206 , 208 that are attached to the crossbars of a rooftop rack.
  • Support bar 202 is attached to the crossbars at locations between the saddles of each pair.
  • FIG. 11 shows still another loading device 300 having a single longitudinal crossbar 302 , and a roller 304 .
  • Crossbar 302 is configured to lie to one side of supporting saddle mount pairs 306 , 308 .
  • Hinge 310 allows roller 304 to be selectively pivoted between a stored position and a loading/unloading position. This may allow, for example, improved aerodynamics during transport of a boat, and also may allow the roller to be pivoted to one side of the vehicle to allow access to a rear hatch.
  • Loading device 300 is preferably provided with a back and forth movement device similar to those described above.
  • FIG. 12 shows yet another example.
  • Loading device 400 has dual longitudinal support members 402 , 404 connected at both ends to form loops 406 , 408 .
  • Support members 402 and 404 are configured to be attached to the crossbars of a rack adjacent supporting boat mounts such as saddles 410 , 412 .
  • Loop 406 extends far enough laterally so that roller 414 may slide along the loop 406 until roller 414 is aligned with the saddles. Alternatively, a roller may extend along the entire width of loop 406 .
  • Support members 402 and 404 may further be connected by one or more connecting members 416 , 418 configured to support and securely transport accessories, such as paddle 420 .
  • FIG. 13 shows yet another example.
  • Loading device 400 has dual longitudinal support members 402 , 404 connected at both ends to form loops 406 , 408 .
  • Support members 402 and 404 are configured to be attached to the crossbars of a rack adjacent supporting boat mounts such as saddles 410 , 412 .
  • Loop 406 extends far enough laterally so that roller 414 may slide along the loop 406 until roller 414 is aligned with the saddles. Alternatively, a roller may extend along the entire width of loop 406 .
  • Support members 402 and 404 may further be connected by one or more connecting members 416 , 418 configured to support and securely transport accessories, such as paddle 420 .
  • each of load bars 18 and 20 may have an outer tube secured in a constant position by crossbar clamps.
  • a smaller diameter tube is then positioned concentrically in the outer tube and is moveable to adjust the effective overall length of the load bar.
  • the position of the small tube relative to the outer tube may be locked by a clamp device located either in one of the crossbar clamps or in a separate clamp device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

An assembly for loading cargo on top of a vehicle includes at least one load bar oriented perpendicular to a pair of crossbars. The load bar is movable between stowed and loading positions in a direction parallel to the direction of vehicle travel. A rear end of the load bar is connected to a roller device for minimizing friction and avoiding contact with the vehicle when cargo is being elevated to the roof of the vehicle.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This is a divisional application of Ser. No. 11/975,734 filed Oct. 19, 2007 which application claims priority to and incorporates by reference in their entirety for all purposes the following U.S. Provisional Patent Applications: Ser. No. 60/853,116 filed Oct. 20, 2006 and Ser. No. 60/958,475 filed Jul. 6, 2007.
  • BACKGROUND
  • Top-mounted vehicle racks provide a versatile platform for transporting bicycles, skis, snowboards, boats, cargo boxes, gear racks, and other items. Such racks typically include a pair of crossbars that extend side-to-side across the top of a vehicle. Each crossbar is supported on each side of the vehicle's roof by a tower, where the length of each crossbar and the distance between crossbars depend on factors such as the shape and size of the vehicle's roof. The towers supporting the rack crossbars are securely fastened to the vehicle to prevent the rack from slipping during use.
  • A typical top-mounted boat mount system includes two crossbars of the type described above, with supporting mounts of some type (e.g., a pair of saddles or J-shaped cradles) attached to the crossbars for supporting a boat, for example, a kayak or a canoe. After placing a boat on the mounts, the user then secures the boat to the rack by strapping it to both the cradles and the crossbars. However, placing the boat on the mounts may be cumbersome and difficult, and may result in damage to the vehicle, the boat, or injury to person(s) loading the boat.
  • A common method of placing a boat on a vehicle roof rack is for a user to lift the bow of the boat onto the rear mount from the rear of the car, and then to slide the boat forward. This method has the advantage of allowing the user to lift only one half of the boat at a time, but it has the disadvantage that the bow of the boat often touches the upper rear corner of the car, resulting in scratches or other damage either to the car or the boat. An additional problem with this method is that the boat may be difficult to slide on the rear mount, due to friction between the mount and the boat hull.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a top view of an apparatus for loading cargo on top of a vehicle.
  • FIG. 2 is a side view of the rack shown in FIG. 1.
  • FIGS. 3 and 4 are partial perspective views of a roller device used in a loading apparatus such as the ones shown in FIGS. 1 and 2.
  • FIG. 5 is a perspective view of a rear clamp assembly used on a loading apparatus such as the ones shown in FIGS. 1 and 2.
  • FIG. 6 is a cross-sectional view of the clamp shown in FIG. 5.
  • FIG. 7 is a perspective view of a front clamp used on a loading apparatus such as the ones shown in FIGS. 1 and 2.
  • FIG. 8 is a top view of the clamp shown in FIG. 7.
  • FIG. 9 is a top view of an alternative loading apparatus for loading cargo on top of a vehicle.
  • FIG. 10 is a top view of an alternative loading apparatus for loading cargo on top of a vehicle.
  • FIG. 11 is a top view of an alternative loading apparatus for loading cargo on top of a vehicle.
  • FIG. 12 is a top view of an alternative loading apparatus for loading cargo on top of a vehicle.
  • FIG. 13 is a partial perspective view of another example of a roller device used in a loading apparatus such as the ones shown in FIGS. 1 and 2.
  • DETAILED DESCRIPTION
  • As shown in FIGS. 1 and 2, boat loading device 10 attaches to front and rear crossbars 12, 14 of a rack disposed on top of a vehicle. Loading device 10 has a roller 40 located behind rear crossbar 14. Roller 40 does not interfere with other supporting boat mounts or rack components installed on the crossbars, such as saddles 15 or J-cradles (not shown). As a result, the user may choose any desired supporting mounts to use in conjunction with loading device 10, or may add loading device 10 to a rack previously configured with supporting boat mounts of any type.
  • Loading device 10 includes a pair of longitudinal load bars 18, 20, which distribute the any load placed on the loading device to the roof of the vehicle via crossbars 12, 14. Load bars 18, 20 may be attached to crossbars 12, 14 by any suitable mechanism, such as with front clamps 70 and/or rear clamps 50, which may be configured to accommodate crossbars of various cross-sectional shapes. Load bars 18, 20 may be attached to roller 40 via t-lugs 42. As shown in FIG. 1, load bars 18, 20 are adjustable from side to side, allowing the user to configure the bars to accommodate locations of the crossbar towers, as well as any other preexisting roof rack components. As shown in FIG. 1, loading device 10 may have a width approximately equal to or slightly greater than the width of the vehicle. This allows the device to be used for loading of two or more boats onto a single vehicle without additional adjustments of the roller. As apparent in FIGS. 1 and 2, a boat or other object may be loaded into saddles using device 10 without the boat touching the vehicle.
  • Partial views of roller assembly 40 are depicted in FIGS. 3 and 4. Roller assembly 40 includes crossbar 41 attached to distal ends of load bars 18, 20 via t-lugs 42. Roller extrusion 43 including roller pad 44 holds a roller bar (not shown). The roller bar may be made of any suitable material, including elastomers. The roller extrusion 43 may be coupled to crossbar 41 via endcap 45. Endcap 45 may extend partially into roller extrusion 43, and may be stabilized within extrusion 43 by bushing 46. Bushing 46 may be configured to rotate around endcap 45. Roller assembly 40 may be approximately 40″ wide, which allows the loading of two boats side by side. Additionally, crossbar 41 may be non-circular, for example, oval-shaped to prevent it from rotating within t-lugs 42 (as shown in FIG. 13), while allowing sideways movement of roller 40. Alternative configurations for crossbar 41 may be used to prevent rotation of crossbar 41 within t-lugs 42. For example, the crossbar may have other cross-sectional shapes such as rectangular, triangular, or may have ridges, flanges, or other projections that prevent rotation.
  • T-lugs 42 are adjustable along crossbar 41. This allows for placement of load bars 18 and 20 at various distances from one another, making loading device 10 compatible with a variety of vehicles and boat saddles. T-lugs 42 may be clamped to crossbar 41 via tamper-proof fasteners or bolts, to prevent theft.
  • Roller 40 may be adjustable between multiple positions, as shown in FIGS. 1 and 2. In a stowed or stored position roller 40 is located relatively close behind rear crossbar 14, to allow full use of the vehicle's rear door (such as a hatch) without interference from roller 40. In a loading/unloading position, as shown in FIGS. 1 and 2, roller 40 is located to the rear of the back corner of the vehicle, to allow the boat to move on the roller without contacting the vehicle.
  • As shown in FIG. 1, roller 40 may be moved back and forth by sliding load bars 18, 20 back and forth through clamps 50, 70. As described in more detail below, one or more of clamps 50, 70 may be equipped with a stop break, or lock to restrict back and forth movement of roller 40 and load bars 18, 20. Roller 40 may also be adjustable in a side-to-side direction relative to the vehicle as shown in FIG. 1, so the roller may be approximately centered underneath each boat being loaded side by side.
  • Support bars 18, 20 may be affixed to the cross bars using rear clamps 50 and front clamps 70. As shown in FIGS. 5 and 6, rear clamp 50 includes upper and lower jaws 52, 54 manipulable towards one another to secure loading device 10 to rear crossbar 14. T-bolt 56 is adapted to be coupled with nut 58 via intermediate threaded member 60, and is manipulable to bias lower jaw 54 toward upper jaw 52. Lower jaw 54 is rotatably coupled to upper tube member 62 via hinge 64. Upper tube member 62 receives bar 18 or 20.
  • Quick release clamp 66 may be disposed on upper tube member 62 of rear clamp 50 via a tightening device 68, as shown in FIG. 7. Quick release clamp 66 may be actuated to restrict or permit sliding movement of load bar 18 or 20 through tube member 62, thus enabling back and forth movement of roller 40 between stowed and loading positions. For example, clamp 66 may be tightened by moving quick release lever 69 toward clamp 66. Clamp 66 likewise may be released (i.e. untightened) by pulling quick release lever 69 away from clamp 66. In some embodiments, the tightness of clamp 66 may be micro-adjusted by releasing quick release lever 69 and spinning it to tighten a screw in tightening device 68.
  • As shown in FIGS. 7 and 8, front clamp 70 includes upper and lower jaws 72, 74 manipulable toward one another to secure load bar 18 or 20 to crossbar 12. T-bolt 76 is coupled with nut 78 via intermediate threaded member 80 to bias lower jaw 74 against upper jaw 72. Lower jaw 74 may be rotatably coupled to upper tube member 82 via hinge 84. Upper tube member 82 receives load bar 18 or 20.
  • Front clamp 70 may also include stop collar 86 coupled to load bar 18 or 20 to limit how far load bar 18 or 20 may slide towards the rear of the vehicle. Stop collar 86 may include a security mechanism, such as a tamper-proof screw for tightening stop collar 86 around load bar 18 or 20, making removal of roller 40 and/or other components of loading device 10 difficult, discouraging theft.
  • T-bolt 76 on front clamp 70 may be configured so that when upper member 82 receives load bar 18 or 20, t-bolt 76 cannot be rotated. This arrangement prevents loosening of clamp 70 when load bar 18 of 20 engages tube member 82.
  • The various jaws of rear clamps 50 and front clamps 70 may be adapted to accommodate variously-shaped cross beams. Such shapes may include circles, ellipses, squares, rectangles, factory default vehicle rack shapes, or any other shape found in cross beams sold by various manufacturers. The jaws may also include jagged edges, curves, high friction materials, etc., to improve their grip on crossbars.
  • Various alternative examples of loading devices may include only one longitudinal support bar, or may include two support bars configured differently from the embodiment described above and shown in FIGS. 1-8. For example, FIG. 9 shows alternative L-shaped loading device 100 having a single longitudinal support bar 102, and roller 104. Roller 104 may be adjustable from a storage position to a loading/unloading position, through extension of support bar 102 to various lengths. For instance, the support bar may include a telescoping extension portion 108 configured to slide in and out of outer sleeve portion 110. Quick release gripping device 112 may be provided to control freedom of back and forth movement of extension portion 108.
  • FIG. 10 shows another loading device 200 that includes a single longitudinal support bar 202, and roller 204. Support bar 202 is configured to lie between pairs of saddles 206, 208 that are attached to the crossbars of a rooftop rack. Support bar 202 is attached to the crossbars at locations between the saddles of each pair.
  • FIG. 11 shows still another loading device 300 having a single longitudinal crossbar 302, and a roller 304. Crossbar 302 is configured to lie to one side of supporting saddle mount pairs 306, 308. Hinge 310 allows roller 304 to be selectively pivoted between a stored position and a loading/unloading position. This may allow, for example, improved aerodynamics during transport of a boat, and also may allow the roller to be pivoted to one side of the vehicle to allow access to a rear hatch. Loading device 300 is preferably provided with a back and forth movement device similar to those described above.
  • FIG. 12 shows yet another example. Loading device 400 has dual longitudinal support members 402, 404 connected at both ends to form loops 406, 408. Support members 402 and 404 are configured to be attached to the crossbars of a rack adjacent supporting boat mounts such as saddles 410, 412. Loop 406 extends far enough laterally so that roller 414 may slide along the loop 406 until roller 414 is aligned with the saddles. Alternatively, a roller may extend along the entire width of loop 406. Support members 402 and 404 may further be connected by one or more connecting members 416, 418 configured to support and securely transport accessories, such as paddle 420.
  • FIG. 13 shows yet another example. Loading device 400 has dual longitudinal support members 402, 404 connected at both ends to form loops 406, 408. Support members 402 and 404 are configured to be attached to the crossbars of a rack adjacent supporting boat mounts such as saddles 410, 412. Loop 406 extends far enough laterally so that roller 414 may slide along the loop 406 until roller 414 is aligned with the saddles. Alternatively, a roller may extend along the entire width of loop 406. Support members 402 and 404 may further be connected by one or more connecting members 416, 418 configured to support and securely transport accessories, such as paddle 420.
  • There are various alternative ways to facilitate forward and backward movement of roller 40 relative to the rear end of a vehicle. One approach is to equip each of load bars 18 and 20 with a telescoping device. Each load bar may have an outer tube secured in a constant position by crossbar clamps. A smaller diameter tube is then positioned concentrically in the outer tube and is moveable to adjust the effective overall length of the load bar. The position of the small tube relative to the outer tube may be locked by a clamp device located either in one of the crossbar clamps or in a separate clamp device.
  • Although the present disclosure has been provided with reference to the foregoing operational principles and embodiments, it will be apparent to those skilled in the art that various changes in form and detail may be made without departing from the spirit and scope of the disclosure. The present disclosure is intended to embrace all such alternatives, modifications and variances. Where the disclosure recites “a,” “a first,” or “another” element, or the equivalent thereof, it should be interpreted to include one or more such elements, neither requiring nor excluding two or more such elements. Furthermore, any aspect shown or described with reference to a particular embodiment should be interpreted to be compatible with any other embodiment, alternative, modification, or variance.

Claims (20)

1. An assembly for loading cargo on a roof of a vehicle, comprising:
a crossbar mounted on the roof of a vehicle perpendicular to the direction of vehicle travel,
a saddle mounted on the crossbar and configured to support a cargo item on the roof;
a load bar oriented substantially perpendicular to the crossbar and having a front end and a rear end;
a roller member connected to the rear end of the load bar, the roller member being configured to support the cargo item while loading; and
a clamp for coupling the load bar to the crossbar, the clamp having a gripping mechanism controlling freedom of the load bar to move forward and backward relative to the crossbar between stowed and loading positions, wherein the saddle is configured to be moved along the crossbar independent of the clamp and the load bar.
2. The assembly of claim 1, wherein the roller member is slidingly connected to the rear end of the load bar allowing the roller member to move along an axis parallel to the crossbar relative to the load bar.
3. The assembly of claim 1, wherein the roller member is pivotably connected to the rear end of the load bar allowing the roller member to pivot between stored and loading positions relative to the load bar.
4. The assembly of claim 1, wherein the roller member includes a hoop structure having a linear support portion parallel to a linear roller portion, and a t-fitting connecting the rear end of the load bar to the linear support portion of the hoop structure.
5. The assembly of claim 4, wherein the linear support portion of the hoop structure has a non-circular cross-section restricting rotation of the linear support portion within the t-fitting.
6. The assembly of claim 1, wherein the load bar includes a telescoping pair of concentric tubes for permitting extension of the roller member to a loading position at the rear of the vehicle.
7. The assembly of claim 1, wherein the saddle includes a J-shaped cradle.
8. The assembly of claim 1, further comprising a roller pad mounted on the roller member.
9. An assembly for loading cargo on a roof of a vehicle, comprising:
first and second load bars each having a front end and a rear end;
front clamps for coupling the first and second load bars to a front crossbar on the roof;
rear clamps for coupling the first and second load bars to a rear crossbar on the roof; and
a roller member connected to the rear end of the first and second load bars and configured to support a cargo item while loading, wherein the front and rear clamps are configured to permit selective alternating among (i) a first mode in which the first and second load bars are secured to the front and rear crossbars, (ii) a second mode in which the first and second load bars are permitted to move along a first axis perpendicular to the front and rear crossbars relative to those crossbars, and (iii) a third mode in which one of the first and second load bars is permitted to move along a second axis parallel to the front and rear crossbars relative to the other of the first and second load bars.
10. The assembly of claim 9, wherein, in the third mode, the other of the first and second load bars is permitted to move along the second axis relative to the one of the first and second load bars.
11. The assembly of claim 9, wherein the roller member includes a hoop structure having a linear support portion parallel to a linear roller portion, and a t-fitting connecting the rear ends of the first and second load bars to the linear support portion of the hoop structure.
12. The assembly of claim 11, wherein the linear support portion of the hoop structure has a non-circular cross-section restricting rotation of the linear support portion within the t-fitting.
13. The assembly of claim 9, further comprising a roller pad mounted on the roller member.
14. An assembly for loading cargo on a roof of a vehicle, comprising:
first and second load bars each having a front end and a rear end;
front clamps for coupling the first and second load bars to a front crossbar on the roof;
rear clamps for coupling the first and second load bars to a rear crossbar on the roof;
a saddle mounted on the front and rear crossbars and configured to support a cargo item on the roof; and
a roller member connected to the rear end of the first and second load bars and configured to support the cargo item while loading, wherein the front and rear clamps are configured to permit selective alternating among (i) a first mode in which the first and second load bars are secured to the front and rear crossbars, (ii) a second mode in which the first and second load bars are permitted to move along a first axis perpendicular to the front and rear crossbars relative to those crossbars, and (iii) a third mode in which one of the first and second load bars is permitted to move along a second axis parallel to the front and rear crossbars relative to the other of the first and second load bars, wherein the saddle is configured to be moved along the front and rear crossbars independent of the front and rear clamps and the first and second load bars.
15. The assembly of claim 14, wherein, in the third mode, the other of the first and second load bars is permitted to move along the second axis relative to the one of the first and second load bars.
16. The assembly of claim 14, wherein the roller member is slidingly connected to the rear end of the first and second load bars allowing the roller member to move along a third axis parallel to the front and rear crossbars relative to the first and second load bars.
17. The assembly of claim 14, wherein the roller member includes a hoop structure having a linear support portion parallel to a linear roller portion, and a t-fitting connecting the rear end of the first and second load bars to the linear support portion of the hoop structure.
18. The assembly of claim 17, wherein the linear support portion of the hoop structure has a non-circular cross-section restricting rotation of the linear support portion within the t-fitting.
19. The assembly of claim 18, further comprising a roller pad mounted on the linear roller portion.
20. The assembly of claim 14, wherein the saddle includes a J-shaped cradle.
US13/275,705 2006-10-20 2011-10-18 Vehicle boat loading device Abandoned US20120181313A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/275,705 US20120181313A1 (en) 2006-10-20 2011-10-18 Vehicle boat loading device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US85311606P 2006-10-20 2006-10-20
US95847507P 2007-07-06 2007-07-06
US11/975,734 US8245893B2 (en) 2006-10-20 2007-10-19 Vehicle boat loading device
US13/275,705 US20120181313A1 (en) 2006-10-20 2011-10-18 Vehicle boat loading device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/975,734 Division US8245893B2 (en) 2006-10-20 2007-10-19 Vehicle boat loading device

Publications (1)

Publication Number Publication Date
US20120181313A1 true US20120181313A1 (en) 2012-07-19

Family

ID=39685970

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/975,734 Expired - Fee Related US8245893B2 (en) 2006-10-20 2007-10-19 Vehicle boat loading device
US13/275,705 Abandoned US20120181313A1 (en) 2006-10-20 2011-10-18 Vehicle boat loading device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/975,734 Expired - Fee Related US8245893B2 (en) 2006-10-20 2007-10-19 Vehicle boat loading device

Country Status (1)

Country Link
US (2) US8245893B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150028072A1 (en) * 2013-07-26 2015-01-29 Thule Sweden Ab Convertible mounting bracket
US20170028929A1 (en) * 2015-07-28 2017-02-02 Thule Sweden Ab Support Pad For A Load Carrier
US20180257579A1 (en) * 2014-12-10 2018-09-13 Richard Ottaway Roof box apparatus
US10285495B1 (en) * 2017-09-06 2019-05-14 Ronald Joseph Valme Portable desk tray table
US10538152B1 (en) 2016-10-27 2020-01-21 Nicholas J. Singer Skeleton for truck bed and convertible top
US11046159B2 (en) 2016-10-27 2021-06-29 Nicholas J. Singer Skeleton for truck bed and convertible top
US11602982B2 (en) 2016-10-27 2023-03-14 Nicholas J. Singer Skeleton for truck bed and convertible top

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8733604B2 (en) * 2006-08-08 2014-05-27 Thule Sweden Ab Translating roller load assist
US8136708B2 (en) * 2007-07-06 2012-03-20 Yakima Products, Inc. Load-carrying members for vehicle roofs
US20090120981A1 (en) * 2007-07-06 2009-05-14 Chris Sautter Load-supporting device
NZ561811A (en) 2007-09-21 2010-06-25 Hubco Automotive Ltd Extendable roof rack
TW201111201A (en) * 2009-06-05 2011-04-01 Yakima Products Inc Upright bike mount
US8496145B2 (en) * 2009-06-05 2013-07-30 Yakima Innovation Development Corporation Vehicle rack for carrying a wheel
TW201109204A (en) 2009-06-08 2011-03-16 Yakima Products Inc Boat rack
TWI594906B (en) * 2009-06-15 2017-08-11 亞奇瑪產品公司 Crossbar clamp devices
CA2715308C (en) * 2009-09-22 2013-12-10 Thule Sweden Ab Adjustable kayak carrier
WO2014076583A2 (en) 2012-04-30 2014-05-22 Yakima Innovation Development Corporation Load-carrying devices for vehicle roofs
EP2844523B1 (en) 2012-04-30 2017-04-26 Yakima Australia Pty Limited Retention dock
USD719902S1 (en) 2013-01-22 2014-12-23 Yakima Innovation Development Corporation Boat carrier
USD739990S1 (en) 2013-06-18 2015-09-29 Yakima Products, Inc. Boat carrier having two saddles
WO2015106040A1 (en) 2014-01-08 2015-07-16 Yakima Innovation Development Corporation Board carrier
US10040403B2 (en) 2015-06-09 2018-08-07 Yakima Products, Inc. Crossbar clamp actuator
US10543771B2 (en) 2016-06-05 2020-01-28 Yakima Products, Inc. Vehicle rooftop rack assembly
CN109641558B (en) 2016-06-05 2022-09-16 雅捷马产品公司 Upright Bike Carrier
US10005402B2 (en) 2016-10-06 2018-06-26 Bestrident Ltd. Load-assisting cargo bracket for vehicles
US10059273B1 (en) 2017-05-17 2018-08-28 James Ira Mercurio Vehicle roof top cargo carrier
US10464495B2 (en) * 2017-05-17 2019-11-05 James Ira Mercurio Vehicle roof top cargo carrier
US11304516B2 (en) * 2020-05-29 2022-04-19 Stillwater Consulting, LLC Equipment mounting system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2668646A (en) * 1950-10-28 1954-02-09 Wesbar Stamping Corp Car top carrier with side loading device
US3452893A (en) * 1967-09-15 1969-07-01 Kenneth C Heflin Cargo carrying and loading apparatus for use on a vehicle roof
US4960356A (en) * 1989-11-29 1990-10-02 Personal Watercraft Creations, Inc. Jet propelled watercraft loading and storing apparatus
US5016893A (en) * 1990-02-12 1991-05-21 Hart Jr Charles R Collapsible support and transport stand for personal watercraft
US5730343A (en) * 1996-01-12 1998-03-24 Settelmayer; Joseph J. Tower assembly for mounting a crossbar to a vehicle roof rack
US6164507A (en) * 1999-03-29 2000-12-26 Yakima Products, Inc. Boat rack with selectively engageable gripping surface
US6467662B1 (en) * 2002-02-25 2002-10-22 Larochelle Fernand Fixed loading roller attachable to a vehicle rack
US6972042B2 (en) * 2003-08-28 2005-12-06 Ampu-Clamp Llc Quick-release tube clamp for modular lower limb prosthetic systems and method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058243A (en) * 1976-04-29 1977-11-15 Tappan Leonard E Car top load carrier
US5690259A (en) * 1996-05-02 1997-11-25 Montani; John J. Modular bicycle rack system
US6279801B1 (en) * 1999-08-20 2001-08-28 Marek R. V. Harrison Vehicle roof rack and carrier for easy loading/unloading
US20060237500A1 (en) * 2004-12-13 2006-10-26 Settelmayer Joseph J Side rail rack with removable base
US8733604B2 (en) * 2006-08-08 2014-05-27 Thule Sweden Ab Translating roller load assist

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2668646A (en) * 1950-10-28 1954-02-09 Wesbar Stamping Corp Car top carrier with side loading device
US3452893A (en) * 1967-09-15 1969-07-01 Kenneth C Heflin Cargo carrying and loading apparatus for use on a vehicle roof
US4960356A (en) * 1989-11-29 1990-10-02 Personal Watercraft Creations, Inc. Jet propelled watercraft loading and storing apparatus
US5016893A (en) * 1990-02-12 1991-05-21 Hart Jr Charles R Collapsible support and transport stand for personal watercraft
US5730343A (en) * 1996-01-12 1998-03-24 Settelmayer; Joseph J. Tower assembly for mounting a crossbar to a vehicle roof rack
US6164507A (en) * 1999-03-29 2000-12-26 Yakima Products, Inc. Boat rack with selectively engageable gripping surface
US6467662B1 (en) * 2002-02-25 2002-10-22 Larochelle Fernand Fixed loading roller attachable to a vehicle rack
US6972042B2 (en) * 2003-08-28 2005-12-06 Ampu-Clamp Llc Quick-release tube clamp for modular lower limb prosthetic systems and method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9266478B2 (en) * 2013-07-26 2016-02-23 Thule Sweden Ab Convertible mounting bracket
US20150028072A1 (en) * 2013-07-26 2015-01-29 Thule Sweden Ab Convertible mounting bracket
US20180257579A1 (en) * 2014-12-10 2018-09-13 Richard Ottaway Roof box apparatus
US10358097B2 (en) * 2014-12-10 2019-07-23 Richard Ottaway Roof box apparatus
US9975494B2 (en) * 2015-07-28 2018-05-22 Thule Sweden Ab Support pad for a load carrier
US20170028929A1 (en) * 2015-07-28 2017-02-02 Thule Sweden Ab Support Pad For A Load Carrier
US10538152B1 (en) 2016-10-27 2020-01-21 Nicholas J. Singer Skeleton for truck bed and convertible top
US11046159B2 (en) 2016-10-27 2021-06-29 Nicholas J. Singer Skeleton for truck bed and convertible top
US11602982B2 (en) 2016-10-27 2023-03-14 Nicholas J. Singer Skeleton for truck bed and convertible top
US11618306B2 (en) 2016-10-27 2023-04-04 Nicholas J. Singer Skeleton for truck bed and convertible top
US11951819B2 (en) 2016-10-27 2024-04-09 Nicholas J. Singer Skeleton for truck bed and convertible top
US12286001B2 (en) 2016-10-27 2025-04-29 Nicholas J. Singer Skeleton for truck bed and convertible top
US10285495B1 (en) * 2017-09-06 2019-05-14 Ronald Joseph Valme Portable desk tray table

Also Published As

Publication number Publication date
US8245893B2 (en) 2012-08-21
US20080193265A1 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
US8245893B2 (en) Vehicle boat loading device
US10780837B2 (en) Vehicle rack with loading apparatus
US6561396B2 (en) Automobile cargo carrier system
US6164507A (en) Boat rack with selectively engageable gripping surface
US8136708B2 (en) Load-carrying members for vehicle roofs
US20060273122A1 (en) Lean support for elongate articles on a load carrier
US9132780B2 (en) Ladder rack system
CA2177530C (en) Boat loader and carrier
US7641086B2 (en) Motorcycle rack for pickup trucks and trailers
US3128893A (en) Boat handling and loading assembly
US5169202A (en) Multiple-use workbench for use as a tailgate on a truck
US20140144959A1 (en) Adjustable boat carrier
US4531879A (en) Boat loading and carrying device
US7108163B1 (en) Universal system for securing an equipment carrier to a vehicle-mounted support
US9174585B2 (en) Devices and methods for securing skis, snowboards, etc. to crossbars of vehicle roof racks
US20090120981A1 (en) Load-supporting device
US20020020728A1 (en) Securement arrangement for a hitch-mount carrier
US20040028510A1 (en) Mechanically assisted vehicular roof rack
US20250115318A1 (en) Bicycle stand
US20050077335A1 (en) Kayak carrier for vehicle roof rack
US5826769A (en) Multi-purpose folding carrier
US3837509A (en) Boat alignment apparatus for attachment to boat trailer
GB2118501A (en) Roof rack device
US20110309120A1 (en) Devices and Methods For Securing Skis, Snowboards, etc. to Crossbars of Vehicle Roof Racks
US6126052A (en) Canoe carrier system

Legal Events

Date Code Title Description
AS Assignment

Owner name: YAKIMA PRODUCTS, INC., OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAUTTER, CHRIS;KEMERY, MIKE;ROESINGER, ERIC;AND OTHERS;SIGNING DATES FROM 20120223 TO 20120227;REEL/FRAME:030646/0007

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION