US20130030118A1 - Process for obtaining low free monomer levels in a block copolymer emulsion prepared with (reverse) iodine transfer polymerisation - Google Patents
Process for obtaining low free monomer levels in a block copolymer emulsion prepared with (reverse) iodine transfer polymerisation Download PDFInfo
- Publication number
- US20130030118A1 US20130030118A1 US13/648,080 US201213648080A US2013030118A1 US 20130030118 A1 US20130030118 A1 US 20130030118A1 US 201213648080 A US201213648080 A US 201213648080A US 2013030118 A1 US2013030118 A1 US 2013030118A1
- Authority
- US
- United States
- Prior art keywords
- block
- process according
- vinyl monomers
- block copolymer
- methacrylic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000178 monomer Substances 0.000 title claims abstract description 106
- 238000000034 method Methods 0.000 title claims abstract description 43
- 229920001400 block copolymer Polymers 0.000 title claims abstract description 39
- 239000000839 emulsion Substances 0.000 title claims abstract description 39
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 229910052740 iodine Inorganic materials 0.000 title claims abstract description 28
- 239000011630 iodine Substances 0.000 title claims description 17
- 230000002441 reversible effect Effects 0.000 title description 4
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 56
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims abstract description 52
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000007787 solid Substances 0.000 claims abstract description 14
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 8
- 239000002243 precursor Substances 0.000 claims abstract description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 29
- 125000000129 anionic group Chemical group 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 15
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 11
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 125000003006 2-dimethylaminoethyl group Chemical group [H]C([H])([H])N(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 claims description 7
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 6
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 claims description 5
- CYUZOYPRAQASLN-UHFFFAOYSA-N 3-prop-2-enoyloxypropanoic acid Chemical compound OC(=O)CCOC(=O)C=C CYUZOYPRAQASLN-UHFFFAOYSA-N 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 5
- 239000003999 initiator Substances 0.000 claims description 5
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 claims description 5
- 150000002978 peroxides Chemical class 0.000 claims description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 4
- 239000003638 chemical reducing agent Substances 0.000 claims description 3
- 239000006185 dispersion Substances 0.000 claims description 3
- 238000004945 emulsification Methods 0.000 claims description 3
- 150000001451 organic peroxides Chemical class 0.000 claims description 3
- 229920000180 alkyd Polymers 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 229920000570 polyether Polymers 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 18
- -1 I3 − Chemical compound 0.000 description 15
- 150000003254 radicals Chemical class 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000002253 acid Substances 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 125000000524 functional group Chemical group 0.000 description 6
- AVTLBBWTUPQRAY-UHFFFAOYSA-N 2-(2-cyanobutan-2-yldiazenyl)-2-methylbutanenitrile Chemical compound CCC(C)(C#N)N=NC(C)(CC)C#N AVTLBBWTUPQRAY-UHFFFAOYSA-N 0.000 description 5
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 5
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 5
- 229960005070 ascorbic acid Drugs 0.000 description 5
- 239000011668 ascorbic acid Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 239000012972 dimethylethanolamine Substances 0.000 description 5
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 5
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 4
- GZUXJHMPEANEGY-UHFFFAOYSA-N bromomethane Chemical compound BrC GZUXJHMPEANEGY-UHFFFAOYSA-N 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 102100040409 Ameloblastin Human genes 0.000 description 3
- 101000891247 Homo sapiens Ameloblastin Proteins 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 229960002887 deanol Drugs 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- LQZMLBORDGWNPD-UHFFFAOYSA-N N-iodosuccinimide Chemical compound IN1C(=O)CCC1=O LQZMLBORDGWNPD-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VXGABWCSZZWXPC-UHFFFAOYSA-N methyl 2-(methylamino)acetate Chemical compound CNCC(=O)OC VXGABWCSZZWXPC-UHFFFAOYSA-N 0.000 description 2
- 229940102396 methyl bromide Drugs 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 229920001567 vinyl ester resin Polymers 0.000 description 2
- ORMDVQRBTFCOGC-UHFFFAOYSA-N (2-hydroperoxy-4-methylpentan-2-yl)benzene Chemical compound CC(C)CC(C)(OO)C1=CC=CC=C1 ORMDVQRBTFCOGC-UHFFFAOYSA-N 0.000 description 1
- 125000006702 (C1-C18) alkyl group Chemical group 0.000 description 1
- PBLNBZIONSLZBU-UHFFFAOYSA-N 1-bromododecane Chemical compound CCCCCCCCCCCCBr PBLNBZIONSLZBU-UHFFFAOYSA-N 0.000 description 1
- HNTGIJLWHDPAFN-UHFFFAOYSA-N 1-bromohexadecane Chemical compound CCCCCCCCCCCCCCCCBr HNTGIJLWHDPAFN-UHFFFAOYSA-N 0.000 description 1
- LGJCFVYMIJLQJO-UHFFFAOYSA-N 1-dodecylperoxydodecane Chemical compound CCCCCCCCCCCCOOCCCCCCCCCCCC LGJCFVYMIJLQJO-UHFFFAOYSA-N 0.000 description 1
- CBQFBEBEBCHTBK-UHFFFAOYSA-N 1-phenylprop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)C(C=C)C1=CC=CC=C1 CBQFBEBEBCHTBK-UHFFFAOYSA-N 0.000 description 1
- HKUDVOHICUCJPU-UHFFFAOYSA-N 2-(2-methylprop-2-enoylamino)propane-1-sulfonic acid Chemical compound OS(=O)(=O)CC(C)NC(=O)C(C)=C HKUDVOHICUCJPU-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- MVYVKSBVZFBBPL-UHFFFAOYSA-N 2-(prop-2-enoylamino)propane-1-sulfonic acid Chemical compound OS(=O)(=O)CC(C)NC(=O)C=C MVYVKSBVZFBBPL-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- MIRQGKQPLPBZQM-UHFFFAOYSA-N 2-hydroperoxy-2,4,4-trimethylpentane Chemical compound CC(C)(C)CC(C)(C)OO MIRQGKQPLPBZQM-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- UDXXYUDJOHIIDZ-UHFFFAOYSA-N 2-phosphonooxyethyl prop-2-enoate Chemical compound OP(O)(=O)OCCOC(=O)C=C UDXXYUDJOHIIDZ-UHFFFAOYSA-N 0.000 description 1
- SKKXTPQPJYBUEF-UHFFFAOYSA-N 3-phosphonooxypropyl prop-2-enoate Chemical class OP(O)(=O)OCCCOC(=O)C=C SKKXTPQPJYBUEF-UHFFFAOYSA-N 0.000 description 1
- QBFNGLBSVFKILI-UHFFFAOYSA-N 4-ethenylbenzaldehyde Chemical compound C=CC1=CC=C(C=O)C=C1 QBFNGLBSVFKILI-UHFFFAOYSA-N 0.000 description 1
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 1
- OAOABCKPVCUNKO-UHFFFAOYSA-N 8-methyl Nonanoic acid Chemical compound CC(C)CCCCCCC(O)=O OAOABCKPVCUNKO-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- CIWBSHSKHKDKBQ-DUZGATOHSA-N D-isoascorbic acid Chemical compound OC[C@@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-DUZGATOHSA-N 0.000 description 1
- XLYMOEINVGRTEX-ARJAWSKDSA-N Ethyl hydrogen fumarate Chemical compound CCOC(=O)\C=C/C(O)=O XLYMOEINVGRTEX-ARJAWSKDSA-N 0.000 description 1
- 229920000028 Gradient copolymer Polymers 0.000 description 1
- 239000004608 Heat Stabiliser Substances 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical class ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- DJEQZVQFEPKLOY-UHFFFAOYSA-N N,N-dimethylbutylamine Chemical compound CCCCN(C)C DJEQZVQFEPKLOY-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- NJSSICCENMLTKO-HRCBOCMUSA-N [(1r,2s,4r,5r)-3-hydroxy-4-(4-methylphenyl)sulfonyloxy-6,8-dioxabicyclo[3.2.1]octan-2-yl] 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)O[C@H]1C(O)[C@@H](OS(=O)(=O)C=2C=CC(C)=CC=2)[C@@H]2OC[C@H]1O2 NJSSICCENMLTKO-HRCBOCMUSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- XFOZBWSTIQRFQW-UHFFFAOYSA-M benzyl-dimethyl-prop-2-enylazanium;chloride Chemical compound [Cl-].C=CC[N+](C)(C)CC1=CC=CC=C1 XFOZBWSTIQRFQW-UHFFFAOYSA-M 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 description 1
- MLUCVPSAIODCQM-UHFFFAOYSA-N crotonaldehyde Natural products CC=CC=O MLUCVPSAIODCQM-UHFFFAOYSA-N 0.000 description 1
- YQHLDYVWEZKEOX-UHFFFAOYSA-N cumene hydroperoxide Chemical compound OOC(C)(C)C1=CC=CC=C1 YQHLDYVWEZKEOX-UHFFFAOYSA-N 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000003412 degenerative effect Effects 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- JBSLOWBPDRZSMB-BQYQJAHWSA-N dibutyl (e)-but-2-enedioate Chemical compound CCCCOC(=O)\C=C\C(=O)OCCCC JBSLOWBPDRZSMB-BQYQJAHWSA-N 0.000 description 1
- JBSLOWBPDRZSMB-FPLPWBNLSA-N dibutyl (z)-but-2-enedioate Chemical compound CCCCOC(=O)\C=C/C(=O)OCCCC JBSLOWBPDRZSMB-FPLPWBNLSA-N 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 235000010350 erythorbic acid Nutrition 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- GLVVKKSPKXTQRB-UHFFFAOYSA-N ethenyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC=C GLVVKKSPKXTQRB-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- XLYMOEINVGRTEX-UHFFFAOYSA-N fumaric acid monoethyl ester Natural products CCOC(=O)C=CC(O)=O XLYMOEINVGRTEX-UHFFFAOYSA-N 0.000 description 1
- NKHAVTQWNUWKEO-UHFFFAOYSA-N fumaric acid monomethyl ester Natural products COC(=O)C=CC(O)=O NKHAVTQWNUWKEO-UHFFFAOYSA-N 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- PBZROIMXDZTJDF-UHFFFAOYSA-N hepta-1,6-dien-4-one Chemical compound C=CCC(=O)CC=C PBZROIMXDZTJDF-UHFFFAOYSA-N 0.000 description 1
- 229960002163 hydrogen peroxide Drugs 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 229920013747 hydroxypolyethylene Polymers 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229940026239 isoascorbic acid Drugs 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- TYQCGQRIZGCHNB-JLAZNSOCSA-N l-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(O)=C(O)C1=O TYQCGQRIZGCHNB-JLAZNSOCSA-N 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- ZCQGVFNHUATAJY-UHFFFAOYSA-N methyl 2-[methyl(prop-2-enoyl)amino]acetate Chemical compound COC(=O)CN(C)C(=O)C=C ZCQGVFNHUATAJY-UHFFFAOYSA-N 0.000 description 1
- NKHAVTQWNUWKEO-IHWYPQMZSA-N methyl hydrogen fumarate Chemical compound COC(=O)\C=C/C(O)=O NKHAVTQWNUWKEO-IHWYPQMZSA-N 0.000 description 1
- HQHSMYARHRXIDS-UHFFFAOYSA-N n,n-dimethyl-1-phenylprop-2-en-1-amine Chemical compound CN(C)C(C=C)C1=CC=CC=C1 HQHSMYARHRXIDS-UHFFFAOYSA-N 0.000 description 1
- DZAZONKTXYMCNK-UHFFFAOYSA-N n-(2,2-dimethyl-3-oxopropyl)-2-methylprop-2-enamide Chemical compound CC(=C)C(=O)NCC(C)(C)C=O DZAZONKTXYMCNK-UHFFFAOYSA-N 0.000 description 1
- WDGZBFNOKBYSEY-UHFFFAOYSA-N n-(2,2-dimethyl-3-oxopropyl)prop-2-enamide Chemical compound O=CC(C)(C)CNC(=O)C=C WDGZBFNOKBYSEY-UHFFFAOYSA-N 0.000 description 1
- WVFLGSMUPMVNTQ-UHFFFAOYSA-N n-(2-hydroxyethyl)-2-[[1-(2-hydroxyethylamino)-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCO WVFLGSMUPMVNTQ-UHFFFAOYSA-N 0.000 description 1
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical compound CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 description 1
- NPKVJXQSBAXJAQ-UHFFFAOYSA-N n-[(5-formyl-2-methoxyphenyl)methyl]prop-2-enamide Chemical compound COC1=CC=C(C=O)C=C1CNC(=O)C=C NPKVJXQSBAXJAQ-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- IBGXDQCATAOYOE-UHFFFAOYSA-N prop-2-enoyloxymethanesulfonic acid Chemical compound OS(=O)(=O)COC(=O)C=C IBGXDQCATAOYOE-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- XWGJFPHUCFXLBL-UHFFFAOYSA-M rongalite Chemical compound [Na+].OCS([O-])=O XWGJFPHUCFXLBL-UHFFFAOYSA-M 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 108700027361 sarcosine methyl ester Proteins 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- JVBXVOWTABLYPX-UHFFFAOYSA-L sodium dithionite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])=O JVBXVOWTABLYPX-UHFFFAOYSA-L 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 239000004296 sodium metabisulphite Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- TWPVZKPFIMFABN-UHFFFAOYSA-N sulfuryl diiodide Chemical compound IS(I)(=O)=O TWPVZKPFIMFABN-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 231100000440 toxicity profile Toxicity 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- FUSUHKVFWTUUBE-UHFFFAOYSA-N vinyl methyl ketone Natural products CC(=O)C=C FUSUHKVFWTUUBE-UHFFFAOYSA-N 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F293/00—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F293/00—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
- C08F293/005—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D153/00—Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J153/00—Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2438/00—Living radical polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/02—Organic macromolecular compounds, natural resins, waxes or and bituminous materials
Definitions
- the present invention concerns a process for obtaining low free monomer levels in an aqueous emulsion comprising a block copolymer where the block copolymer is prepared with (reverse) iodine transfer polymerisation, the aqueous emulsion comprising a block copolymer obtained by the process and the use of the aqueous emulsion for coating, adhesive and printing ink compositions.
- Control over polymer chain architecture, resulting in for instance block copolymers, may be very beneficial in achieving improved properties when the polymer is used for instance in coating, adhesive and printing ink compositions.
- Several polymerisation techniques also known as “living polymerisation techniques” have been found to be able to deliver such kind of control, such as for example Reversible Addition Fragmentation Chain Transfer (RAFT), Atom Transfer Radical Polymerisation (ATRP) and Nitroxide Mediated Controlled Radical Polymerisations (NRP).
- RAFT Reversible Addition Fragmentation Chain Transfer
- ATRP Atom Transfer Radical Polymerisation
- NRP Nitroxide Mediated Controlled Radical Polymerisations
- RITP is described in for example U.S. Pat. No. 7,078,473 which discloses a radical polymerisation process for the preparation of halogenated polymers and block copolymers using molecular iodine and a radical-generating agent.
- US 2007/0066781 discloses a process for preparing iodinated substances having a molecular mass of less than 2000 using molecular iodine and a radical-generating agent.
- WO 2004/009648 and US 2004/0054108 disclose a method for making a block or gradient copolymer comprising a step of radically polymerising a mixture of monomers to a iodine atom-containing polymeric compound, wherein the iodine atom-containing polymeric compound comprises at least 50 mol % of methacrylate monomers.
- WO 2004/009644 discloses a method for making a methacrylate unit-containing polymer with a polydispersity of less than 1.7 in the presence of a radical precursor and iodine or sulphonyl iodide.
- EP 0947527 discloses a controlled free-radical polymerisation process for forming waterborne block copolymers by an emulsion polymerisation process using for example degenerative iodine transfer polymerisation processes.
- WO 03/097704 discloses radical polymerisation methods, including the use of molecular iodine, for making halogenated polymers, including block copolymers where at least one block is halogenated.
- iodine functional polymer chains will then act as chain transfer agents for growing radical chains.
- the former iodine functional chain becomes an active radical, while the former active radical becomes iodine end capped.
- a growing radical chain has two options, it can propagate by adding monomer units or it can undergo chain transfer by reacting with a iodine functional compound. In this way the radical polymerisation becomes a controlled polymerisation.
- RITP a disadvantage with RITP is that it yields a very high free monomer level, i.e. the rate of monomer conversion is less than 99.5%.
- an aqueous emulsion comprising a block copolymer, which process comprises the following steps:
- the free monomer level may be measured by gas chromatography (GC).
- GC gas chromatography
- a free monomer level of 1000 ppm at 40% solids is equivalent to a monomer conversion of 99.75%. This is considered as an acceptable level of free monomers in a general emulsion.
- a free monomer level of 500 ppm at 40% solids is equivalent to a monomer conversion of 99.87%. This is considered as a good level of free monomers in a general emulsion.
- a free monomer level of ⁇ 100 ppm at 40% solids is equivalent to a monomer conversion of ⁇ 99.98%. This is considered as an excellent level of free monomers in a general emulsion.
- the aqueous emulsion has a free vinyl monomer level ⁇ 1000 ppm when having a solids content of 35 +/ ⁇ 15 wt %, more preferably 35 +/ ⁇ 10 wt % and most preferably 35 +/ ⁇ 5 wt %.
- the aqueous emulsion has a free vinyl monomer level ⁇ 800 ppm, more preferably ⁇ 500 ppm, most preferably ⁇ 400 ppm and especially ⁇ 300 ppm when having a solids content of ⁇ 20 wt %.
- the iodine atom containing block [A] is selected from the group consisting of vinyl polymers, polyurethanes, polyesters, polyethers, polyolefins, alkyds, and or mixtures thereof.
- the iodine atom containing block [A] is obtained by the polymerisation of vinyl monomers in the presence of
- iodine molecular iodine and compounds that can form iodine such as I 3 ⁇ , N-iodosuccinimide etc.
- iodine atom containing intermediate vinyl polymer is described in WO 04/009648.
- the polymerisation of vinyl monomers in step I in the presence of the iodine atom containing block [A] is carried out by solution polymerisation.
- the polymerisation of vinyl monomers in step I is carried out by solution polymerisation in an organic solvent.
- the resultant copolymer is a block copolymer with block [A] and the vinyl monomers polymerised in step I become block [B] and any optional further blocks [C] depending on the type of polymerisation carried out, such as multi-stage polymerisations.
- the block copolymer contains a first block [A], a second block [B] and optionally one or more blocks [C].
- the number average molecular weight of block [A] is in the range of from 200 to 60,000 g/mol, more preferably from 500 to 30,000 g/mol and most preferably from 700 to 15,000 g/mol.
- the number average molecular weight of block [B] is in range of from 200 to 60,000 g/mol, more preferably from 500 to 30,000 g/mol and most preferably from 700 to 15,000 g/mol.
- the block copolymer has an average particle size of ⁇ 600 nm, as determined by light scattering, more preferably ⁇ 300 nm and most preferably ⁇ 250 nm.
- the post-polymerisation reaction to reduce the free monomer level is done with a redox couple comprising an organic or inorganic peroxide or hydroperoxide and a reducing agent.
- a redox couple comprising an organic or inorganic peroxide or hydroperoxide and a reducing agent.
- intermediate reactants such as iron ions is optional.
- Preferred hydroperoxides are t-butyl hydroperoxide, cumyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, isopropylcumyl hydroperoxide, and hydrogenperoxide.
- Preferred inorganic peroxides are sodium, potassium or ammonium peroxide salts.
- Preferred organic peroxides are dilauryl peroxide, dibenzoyl peroxide, t-butyl-per-2-ethyl hexanoate, t-butyl perbenzoate, dicumyl peroxide, di-t-butyl peroxide.
- Preferred reducing agents are ascorbic acid, iso-ascorbic acid, sodium metabisulphite, sodium dithionite and sodium formaldehyde sulfoxylate.
- the post-polymerisation reaction to reduce the free monomer level may also be carried out by the reaction of an initiator selected from the group consisting of azo functional initiators, organic peroxides, inorganic peroxides or mixtures thereof.
- Preferred azo functional initiators are 2,2′-azodi isobutyronitrile, 2,2′-azodi(2-methylbutyronitrile), VAZO® 68 WSP, VAZO® 56, VAZO® 52 (ex. DuPont) or VA-086 (ex. WAKO Chemicals).
- More than one post-polymerisation reaction may be carried out.
- Blocks [A] and [B] should be different.
- the difference can be in the Tg of the blocks, the hydrophilic or hydrophobic nature of the monomers or the concentration of functional monomers within the blocks or combinations thereof.
- one of the blocks has a Tg ⁇ 20° C., more preferably ⁇ 0° C. and most preferably ⁇ 25 ° C. ⁇ 15° C.
- the other block preferably has a Tg of ⁇ 10° C., more preferably ⁇ 25° C., most preferably ⁇ 30° C., and especially ⁇ 50° C.
- the difference in Tg between blocks [A] and [B] is ⁇ 40° C.
- one of the blocks preferably contains ⁇ 5 wt of hydrophilic groups (for example acidic or hydroxyl functional groups), more preferably ⁇ 10 wt % and especially ⁇ 20 wt %, while the other block would contain ⁇ 2 wt %, more preferably ⁇ 1 wt % and most preferably no hydrophilic groups. It is also possible to induce a difference in hydrophilic or hydrophobic nature between the blocks by incorporating very hydrophobic monomers in the hydrophobic segment.
- hydrophilic groups for example acidic or hydroxyl functional groups
- Such monomers can be for instance 2-ethyl hexyl(meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, styrene or modified styrene monomers, or ⁇ -methyl styrene.
- this block may still contain low concentrations of hydrophilic monomers.
- Blocks [A] and [B] may contain functional monomers. These can be 1) acid monomers for enhanced stability and/or adhesion, 2) monomers that may typically yield improved adhesion, 3) crosslinking monomers that also may improve adhesion properties, 4) quaternary ammonium groups for antimicrobial activity, anti static properties or reduced grain raising, or 5) monomers that may induce semi-crystalline behaviour. If any of these monomers are used it is preferred that blocks [A] and [B] comprise different functionalities or if similar functionalities then in different concentrations.
- the acid value of the block copolymer is preferably ⁇ 120 mg KOH/g of solid polymer, more preferably ⁇ 80 mg KOH/g, even more preferably ⁇ 60 mg KOH/g, most preferably ⁇ 50 mg KOH/g and especially in the range of from 2 to 50 mg KOH/g of solid polymer.
- Block [B] and block [A] are derived from free-radically polymerisable olefinically unsaturated monomers, which are also usually referred to as vinyl monomers, and can contain polymerised units of a wide range of such vinyl monomers, especially those commonly used to make binders for the coatings industry.
- vinyl monomers which may be used to form the blocks include but are not limited to olefinically unsaturated monomers such as 1,3-butadiene, isoprene, divinyl benzene, aromatic vinyl monomers such as styrene, ⁇ -methyl styrene; vinyl monomers such as acrylonitrile, methacrylonitrile; vinyl halides such as vinyl chloride; vinylidene halides such as vinylidene chloride; vinyl esters such as vinyl acetate, vinyl propionate, vinyl laurate; vinyl esters of versatic acid such as VeoVa 9 and VeoVa 10 (VeoVa is a trademark of Resolution); heterocyclic vinyl compounds; alkyl esters of mono-olefinically unsaturated dicarboxylic acids such as di-n-butyl maleate and di-n-butyl fumarate and, in particular, esters of acrylic acid and methacrylic acid of formula CH 2 ⁇ CR 5 —COOR 4 where
- the vinyl monomers may also include vinyl monomers carrying functional groups as exemplified below. These may be in-chain, pendant or terminal groups.
- Water-dispersing functional groups provide the facility of self-dispersibility, stability, solubility in water and/or a substrate.
- the water dispersing groups may be ionic, potentially ionic, nonionic or a mixture of such water-dispersing groups.
- Preferred vinyl monomers providing nonionic water-dispersing groups include alkoxy polyethylene glycol (meth)acrylates, hydroxy polyethylene glycol (meth)acrylates, alkoxy prolyproplene glycol (meth)acrylates and hydroxy polypropylene glycol (meth)acrylates, preferably having a number average molecular weight of from 350 to 3,000.
- Vinyl monomers providing ionic or potentially ionic water-dispersing groups include vinyl monomers providing anionic or potentially anionic, cationic or potentially cationic water-dispersing groups.
- Preferred vinyl monomers providing anionic or potentially anionic water-dispersing groups include acrylic acid, itaconic acid, maleic acid, ⁇ -carboxyethyl acrylate, monoalkyl maleates (for example monomethyl maleate and monoethyl maleate), citraconic acid, styrenesulphonic acid, vinylbenzylsulphonic acid, vinylsulphonic acid, acryloyloxyalkyl sulphonic acids (for example acryloyloxymethyl sulphonic acid), 2-acrylamido-2-alkylalkane sulphonic acids (for example 2-acrylamido-2-methylethanesulphonic acid), 2-methacrylamido-2-alkylalkane sulphonic acids (for example 2-methacrylamido-2-methylethanesulphonic acid), mono(acryloyloxyalkyl)phosphates (for example, mono(acryloyloxyethyl)phosphate and mono(3-acryloyloxypropyl)phosphate
- the anionic or potentially anionic water-dispersing groups of the block copolymer may be neutralised before during or after the emulsification step II.
- Preferred neutralising agents include ammonia, trimethylamine, dimethyl ethanol amine, dimethyl butyl amine, sodium hydroxide, potassium hydroxide and or lithium hydroxide.
- Preferred vinyl monomers providing quaternary ammonium and/or quaternisable amine functional group include but are not limited to 2-trimethylammoniumethyl (meth)acrylate chloride, 2-dimethylaminoethyl (meth)acrylate methyl bromide, 2-dimethylaminoethyl (meth)acrylate methyl iodide, 2-dimethylaminoethyl (meth)acrylate dimethyl sulphate, 3-trimethylammoniumpropyl (meth)acrylamide chloride ((M)APTAC), vinylbenzyl trimethylammonium chloride, diallyldimethylammonium chloride, 2-dimethylaminoethyl (meth)acrylate (DMAE(M)A), 2-aminoethyl (meth)acrylate, 2-diethylaminoethyl (meth)acrylate, 3-dimethylaminopropyl (meth)acrylate, 3-dimethylamino-2,2-d
- block [A] and [B] together comprise 0 to 2 wt % of methacrylic acid, more preferably block [A] and [B] together comprise 0 to 1 wt % of methacrylic acid and most preferably block [A] and [B] together comprise 0 wt % of methacrylic acid.
- the block copolymer comprises 0 to 2 wt % of methacrylic acid, more preferably the block copolymer comprises 0 to 1 wt % of methacrylic acid and most preferably the block copolymer comprises 0 wt % of methacrylic acid.
- Preferably block [A] comprises 5 to 25 wt % and more preferably 8 to 22 wt % of vinyl monomers bearing ionic or potentially ionic water-dispersing groups not including methacrylic acid.
- Preferably block [B] comprises 0 to 15 wt % and more preferably 0 to 10 wt % of vinyl monomers bearing ionic or potentially ionic water-dispersing groups not including methacrylic acid.
- block [A] and block [B] together comprise 3.0 to 18 and more preferably 3.5 to 15 wt % of vinyl monomers bearing ionic or potentially ionic water-dispersing groups not including methacrylic acid.
- the vinyl monomers bearing ionic or potentially ionic water-dispersing groups are selected from the group consisting of 2 dimethylaminoethyl(meth)acrylate, 3-trimethylammoniumpropyl(meth)acrylamide chloride, acrylic acid, ⁇ -carboxyethyl acrylate, itaconic acid and mixtures thereof.
- the vinyl monomers bearing ionic or potentially ionic water-dispersing groups are anionic or potentially anionic water-dispersion groups.
- the vinyl monomers bearing anionic or potentially anionic water-dispersing groups are selected from the group consisting of acrylic acid, ⁇ -carboxyethyl acrylate, itaconic acid and mixtures thereof.
- Preferred vinyl monomers providing crosslinkable functional groups include hydroxyl functional monomers, epoxide functional monomers, acid functional monomers, carbonyl functional monomers or silane functional monomers.
- vinyl monomers providing carbonyl functional groups include acrolein, methacrolein, crotonaldehyde, 4-vinylbenzaldehyde, vinyl alkyl ketones of 4 to 7 carbon atoms such as vinyl methyl ketone.
- Further examples include acrylamidopivalaldehyde, methacrylamidopivalaldehyde, 3-acrylamidomethyl-anisaldehyde, diacetone acrylate and diacetone methacrylate, and keto-containing amides such as diacetone acrylamide.
- Preferred vinyl monomers providing crystallisable monomers include decyl (meth)acrylate, lauryl (meth)acrylate and stearyl (meth)acrylate.
- an aqueous emulsion comprising a block copolymer obtained by a process according to the invention.
- the aqueous emulsion has a pH in the range of from 2 to 11, more preferably 2 to 9, even more preferably 2.5 to 8.5 and most preferably 5 to 8.5.
- the aqueous emulsions obtained by the process of the present invention may be applied to a variety of substrates including wood, board, metals, stone, concrete, glass, cloth, leather, paper, plastics, foam and the like, by any conventional method including brushing, dipping, flow coating, spraying, flexo printing, gravure printing, ink-jet printing, any other graphic arts application methods and the like.
- the aqueous carrier medium is removed by natural drying or accelerated drying (by applying heat) to form a coating.
- a coating, an adhesive, a polymeric film, a printing ink and/or an overprint lacquer obtained from the aqueous emulsions obtained by the process of the present invention is provided.
- the aqueous emulsions obtained by the process of the present invention may contain conventional ingredients; examples include pigments, dyes, emulsifiers, surfactants, plasticisers, thickeners, heat stabilisers, levelling agents, anti-cratering agents, fillers, sedimentation inhibitors, UV absorbers, antioxidants, drier salts, organic co-solvents, wetting agents and the like introduced at any stage of the production process or subsequently. It is possible to include an amount of antimony oxide in the dispersions to enhance the fire retardant properties.
- the aqueous emulsions may comprise additional polymers not prepared using RITP.
- Suitable organic co-solvents which may be added during the process or after the process during formulation steps are well known in the art and include xylene, toluene, methyl ethyl ketone, acetone, diethylene glycol and 1-methyl-2-pyrrolidinone.
- an external crosslinking agent may be added to the aqueous emulsions obtained by the process of the present invention to aid crosslinking during or after drying.
- the solids content of the aqueous emulsions obtained by the process of the present invention is preferably within the range of from 20 to 60 wt %, and most preferably within the range of from 30 to 50 wt %.
- the resultant block copolymer solution was cooled to 60° C. and 34.1 parts of dimethyl ethanolamine were added.
- the block copolymer was emulsified by adding 440 parts of demineralised water.
- the monomer conversion was 97%, corresponding to a free monomer content of the block copolymer emulsion of 11700 ppm.
- step II To the block copolymer emulsion obtained after step II) 0.7 parts of t-butyl hydroperoxide and 0.3 parts of water were added. Next a solution of 1.5 parts of i-ascorbic acid in 29.5 parts of water was added over a period of 30 minutes. 15 minutes after the start of the i-ascorbic acid feed, another 0.7 parts of t-butyl hydroperoxide and 0.3 parts of water were added. At the end of the i-ascorbic acid feed the emulsion was kept at 60° C. for another hour after which it was cooled and filtered through a 75 ⁇ m filter cloth.
- the final free monomer level was 680 ppm and the solids content was 41%, corresponding to a final monomer conversion of 99.82%.
- Block copolymer emulsion were prepared according to the process for example 1 using components as listed in Table 1 below.
- All of the emulsions prepared in Examples 1 to 6 had a particle size in the range of from 50 to 350 nm.
- a block copolymer emulsion was prepared according to the process for Example 1 using components as listed in Table 1 below, where methacrylic acid was used instead of acrylic acid. However the after step II was completed the emulsion was extremely unstable and step III could not be carried out.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Graft Or Block Polymers (AREA)
Abstract
A process for obtaining an aqueous emulsion comprising a block copolymer by the solution polymerisation of vinyl monomers to obtain block [B] in the presence of a) a radical precursor; and b) an iodine atom containing block [A]; where block [A] and [B] together comprise 0 to 2 wt % of methacrylic acid; where block [A] and block [B] together comprise ≧2.5 wt % of vinyl monomers bearing ionic or potentially ionic water-dispersing groups not including methacrylic acid; and performing a post polymerisation reaction on the block copolymer emulsion obtained in step II; and wherein said aqueous emulsion has a free vinyl monomer level <1000 ppm when having a solids content of ≧20 wt %.
Description
- This application is a continuation of U.S. patent application Ser. No. 12/664,922, filed Jun. 1, 2010 (now abandoned) which is the national phase application of international application no. PCT/EP2008/057605, filed Jun. 17, 2008 which designated the U.S. and claims priority to EP Application No. 07012108.2 filed Jun. 21, 2007, the entire contents of each of which are hereby incorporated by reference.
- The present invention concerns a process for obtaining low free monomer levels in an aqueous emulsion comprising a block copolymer where the block copolymer is prepared with (reverse) iodine transfer polymerisation, the aqueous emulsion comprising a block copolymer obtained by the process and the use of the aqueous emulsion for coating, adhesive and printing ink compositions.
- Control over polymer chain architecture, resulting in for instance block copolymers, may be very beneficial in achieving improved properties when the polymer is used for instance in coating, adhesive and printing ink compositions. Several polymerisation techniques, also known as “living polymerisation techniques” have been found to be able to deliver such kind of control, such as for example Reversible Addition Fragmentation Chain Transfer (RAFT), Atom Transfer Radical Polymerisation (ATRP) and Nitroxide Mediated Controlled Radical Polymerisations (NRP). However each of these techniques have their disadvantages. With ATRP it is currently not possible to incorporate acid functional monomers; NRP can only be done effectively at temperatures above 110° C., and RAFT yields problems with the ultimate RAFT unit that should be removed because of the toxicity and odour of these units.
- It has been found that (reverse) Iodine Transfer Polymerisation (RITP) can circumvent all of these problems. RITP may be done at practical temperatures of below 100° C., allowing polymerisations in water and or solution. There are no restrictions of the type of monomer used (for example (meth)acrylic esters, styrene), nor any restriction on the functionality of the monomer (for example ionic functional groups and or crosslinking functional groups). Finally, as the active ingredient is an iodine atom group used at low concentrations, the toxicity profile appears to be more favourable.
- RITP is described in for example U.S. Pat. No. 7,078,473 which discloses a radical polymerisation process for the preparation of halogenated polymers and block copolymers using molecular iodine and a radical-generating agent.
- US 2007/0066781 discloses a process for preparing iodinated substances having a molecular mass of less than 2000 using molecular iodine and a radical-generating agent.
- WO 2004/009648 and US 2004/0054108 disclose a method for making a block or gradient copolymer comprising a step of radically polymerising a mixture of monomers to a iodine atom-containing polymeric compound, wherein the iodine atom-containing polymeric compound comprises at least 50 mol % of methacrylate monomers.
- WO 2004/009644 discloses a method for making a methacrylate unit-containing polymer with a polydispersity of less than 1.7 in the presence of a radical precursor and iodine or sulphonyl iodide.
- EP 0947527 discloses a controlled free-radical polymerisation process for forming waterborne block copolymers by an emulsion polymerisation process using for example degenerative iodine transfer polymerisation processes.
- WO 03/097704 discloses radical polymerisation methods, including the use of molecular iodine, for making halogenated polymers, including block copolymers where at least one block is halogenated.
- In RITP molecular iodine is added to a radical polymerisation causing the radicals to be trapped with iodine groups.
-
R•+I2→R—I - These iodine functional polymer chains will then act as chain transfer agents for growing radical chains. The former iodine functional chain becomes an active radical, while the former active radical becomes iodine end capped.
-
R—I+R′•→R•+R′—I - Hence, a growing radical chain has two options, it can propagate by adding monomer units or it can undergo chain transfer by reacting with a iodine functional compound. In this way the radical polymerisation becomes a controlled polymerisation.
- However a disadvantage with RITP is that it yields a very high free monomer level, i.e. the rate of monomer conversion is less than 99.5%. The lowest reported free vinyl monomer level, within a practical time frame, is 4,000 ppm (or a vinyl monomer conversion of 99% at 40% solids). Most of the reports on free vinyl monomer levels are, however, significantly higher at around 25,000 ppm (or a conversion of only 97%).
- We have now surprisingly found that we can make aqueous emulsions comprising polymer structures obtained through controlled polymerisations using RITP, having a low free monomer content.
- According to the invention the provided a process for obtaining an an aqueous emulsion comprising a block copolymer, which process comprises the following steps:
-
- I) solution polymerisation of vinyl monomers to obtain block [B] in the presence of
- a) a radical precursor; and
- b) an iodine atom containing block [A];
- to obtain a block copolymer comprising at least block [A] and a different block [B];
- where block [A] and [B] together comprise 0 to 2 wt % of methacrylic acid;
- where block [A] comprises 0 to 25 wt % of vinyl monomers bearing ionic or potentially ionic water-dispersing groups not including methacrylic acid;
- where block [B] comprises 0 to 25 wt % of vinyl monomers bearing ionic or potentially ionic water-dispersing groups not including methacrylic acid;
- where block [A] and block [B] together comprise ≧2.5 wt % of vinyl monomers bearing ionic or potentially ionic water-dispersing groups not including methacrylic acid;
- II) emulsification of the block copolymer obtained in step I);
- III) performing a post polymerisation reaction on the block copolymer emulsion obtained in step II; and
- wherein said aqueous emulsion has a free vinyl monomer level <1000 ppm when having a solids content of ≧20 wt %.
- I) solution polymerisation of vinyl monomers to obtain block [B] in the presence of
- The free monomer level may be measured by gas chromatography (GC). A free monomer level of 1000 ppm at 40% solids is equivalent to a monomer conversion of 99.75%. This is considered as an acceptable level of free monomers in a general emulsion. A free monomer level of 500 ppm at 40% solids is equivalent to a monomer conversion of 99.87%. This is considered as a good level of free monomers in a general emulsion. A free monomer level of ≦100 ppm at 40% solids is equivalent to a monomer conversion of ≧99.98%. This is considered as an excellent level of free monomers in a general emulsion.
- Preferably the aqueous emulsion has a free vinyl monomer level <1000 ppm when having a solids content of 35 +/−15 wt %, more preferably 35 +/−10 wt % and most preferably 35 +/−5 wt %.
- Preferably the aqueous emulsion has a free vinyl monomer level ≦800 ppm, more preferably ≦500 ppm, most preferably ≦400 ppm and especially ≦300 ppm when having a solids content of ≧20 wt %.
- Preferably the iodine atom containing block [A] is selected from the group consisting of vinyl polymers, polyurethanes, polyesters, polyethers, polyolefins, alkyds, and or mixtures thereof.
- More preferably the iodine atom containing block [A] is obtained by the polymerisation of vinyl monomers in the presence of
-
- a) a radical precursor and
- b) iodine or an iodine transfer agent.
- By iodine is meant molecular iodine and compounds that can form iodine such as I3 −, N-iodosuccinimide etc. The preparation of an iodine atom containing intermediate vinyl polymer is described in WO 04/009648.
- The polymerisation of vinyl monomers in step I in the presence of the iodine atom containing block [A] is carried out by solution polymerisation. Preferably the polymerisation of vinyl monomers in step I is carried out by solution polymerisation in an organic solvent.
- The resultant copolymer is a block copolymer with block [A] and the vinyl monomers polymerised in step I become block [B] and any optional further blocks [C] depending on the type of polymerisation carried out, such as multi-stage polymerisations. The block copolymer contains a first block [A], a second block [B] and optionally one or more blocks [C].
- Preferably the number average molecular weight of block [A] is in the range of from 200 to 60,000 g/mol, more preferably from 500 to 30,000 g/mol and most preferably from 700 to 15,000 g/mol.
- Preferably the number average molecular weight of block [B] is in range of from 200 to 60,000 g/mol, more preferably from 500 to 30,000 g/mol and most preferably from 700 to 15,000 g/mol.
- Preferably the block copolymer has a PDi (PDi=Mw/Mn) in the range of from 0.1 to 4, more preferably 1 to 3 and especially 1 to 2.
- Preferably the block copolymer has an average particle size of ≦600 nm, as determined by light scattering, more preferably ≦300 nm and most preferably ≦250 nm.
- Preferably the post-polymerisation reaction to reduce the free monomer level is done with a redox couple comprising an organic or inorganic peroxide or hydroperoxide and a reducing agent. The use of intermediate reactants such as iron ions is optional. Preferred hydroperoxides are t-butyl hydroperoxide, cumyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, isopropylcumyl hydroperoxide, and hydrogenperoxide. Preferred inorganic peroxides are sodium, potassium or ammonium peroxide salts. Preferred organic peroxides are dilauryl peroxide, dibenzoyl peroxide, t-butyl-per-2-ethyl hexanoate, t-butyl perbenzoate, dicumyl peroxide, di-t-butyl peroxide. Preferred reducing agents are ascorbic acid, iso-ascorbic acid, sodium metabisulphite, sodium dithionite and sodium formaldehyde sulfoxylate.
- The post-polymerisation reaction to reduce the free monomer level may also be carried out by the reaction of an initiator selected from the group consisting of azo functional initiators, organic peroxides, inorganic peroxides or mixtures thereof.
- Preferred azo functional initiators are 2,2′-azodi isobutyronitrile, 2,2′-azodi(2-methylbutyronitrile), VAZO® 68 WSP, VAZO® 56, VAZO® 52 (ex. DuPont) or VA-086 (ex. WAKO Chemicals).
- More than one post-polymerisation reaction may be carried out.
- Blocks [A] and [B] should be different. The difference can be in the Tg of the blocks, the hydrophilic or hydrophobic nature of the monomers or the concentration of functional monomers within the blocks or combinations thereof.
- Where the difference between blocks [A] and [B] is Tg, preferably one of the blocks has a Tg ≦20° C., more preferably ≦0° C. and most preferably ≧25° C. −15° C., while the other block preferably has a Tg of ≧10° C., more preferably ≧25° C., most preferably ≧30° C., and especially ≧50° C. Most preferably the difference in Tg between blocks [A] and [B] is ≧40° C.
- Where the difference between blocks [A] and [B] is the hydrophilic or hydrophobic nature of the blocks, then one of the blocks preferably contains ≧5 wt of hydrophilic groups (for example acidic or hydroxyl functional groups), more preferably ≧10 wt % and especially ≧20 wt %, while the other block would contain ≦2 wt %, more preferably ≦1 wt % and most preferably no hydrophilic groups. It is also possible to induce a difference in hydrophilic or hydrophobic nature between the blocks by incorporating very hydrophobic monomers in the hydrophobic segment. Such monomers can be for instance 2-ethyl hexyl(meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, styrene or modified styrene monomers, or α-methyl styrene. When such very hydrophobic monomers are used in the hydrophobic block, this block may still contain low concentrations of hydrophilic monomers.
- Blocks [A] and [B] may contain functional monomers. These can be 1) acid monomers for enhanced stability and/or adhesion, 2) monomers that may typically yield improved adhesion, 3) crosslinking monomers that also may improve adhesion properties, 4) quaternary ammonium groups for antimicrobial activity, anti static properties or reduced grain raising, or 5) monomers that may induce semi-crystalline behaviour. If any of these monomers are used it is preferred that blocks [A] and [B] comprise different functionalities or if similar functionalities then in different concentrations. When the emulsion is stabilised with anionic groups from the block copolymer the acid value of the block copolymer is preferably ≦120 mg KOH/g of solid polymer, more preferably ≦80 mg KOH/g, even more preferably ≦60 mg KOH/g, most preferably ≦50 mg KOH/g and especially in the range of from 2 to 50 mg KOH/g of solid polymer.
- Block [B] and block [A] (if block [A] is a vinyl polymer), are derived from free-radically polymerisable olefinically unsaturated monomers, which are also usually referred to as vinyl monomers, and can contain polymerised units of a wide range of such vinyl monomers, especially those commonly used to make binders for the coatings industry.
- Examples of vinyl monomers which may be used to form the blocks include but are not limited to olefinically unsaturated monomers such as 1,3-butadiene, isoprene, divinyl benzene, aromatic vinyl monomers such as styrene, α-methyl styrene; vinyl monomers such as acrylonitrile, methacrylonitrile; vinyl halides such as vinyl chloride; vinylidene halides such as vinylidene chloride; vinyl esters such as vinyl acetate, vinyl propionate, vinyl laurate; vinyl esters of versatic acid such as VeoVa 9 and VeoVa 10 (VeoVa is a trademark of Resolution); heterocyclic vinyl compounds; alkyl esters of mono-olefinically unsaturated dicarboxylic acids such as di-n-butyl maleate and di-n-butyl fumarate and, in particular, esters of acrylic acid and methacrylic acid of formula CH2═CR5—COOR4 wherein R5 is H or methyl and R4 is optionally substituted C1 to C20, more preferably C1 to C8, alkyl, cycloalkyl, aryl or (alkyl)aryl which are also known as acrylic monomers, examples of which are methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate (all isomers), 2-ethylhexyl (meth)acrylate, propyl (meth)acrylate (all isomers), and hydroxyalkyl (meth)acrylates such as hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate and their modified analogues like Tone M-100 (Tone is a trademark of Union Carbide Corporation).
- The vinyl monomers may also include vinyl monomers carrying functional groups as exemplified below. These may be in-chain, pendant or terminal groups.
- Water-dispersing functional groups provide the facility of self-dispersibility, stability, solubility in water and/or a substrate. The water dispersing groups may be ionic, potentially ionic, nonionic or a mixture of such water-dispersing groups.
- Preferred vinyl monomers providing nonionic water-dispersing groups include alkoxy polyethylene glycol (meth)acrylates, hydroxy polyethylene glycol (meth)acrylates, alkoxy prolyproplene glycol (meth)acrylates and hydroxy polypropylene glycol (meth)acrylates, preferably having a number average molecular weight of from 350 to 3,000.
- Vinyl monomers providing ionic or potentially ionic water-dispersing groups include vinyl monomers providing anionic or potentially anionic, cationic or potentially cationic water-dispersing groups.
- Preferred vinyl monomers providing anionic or potentially anionic water-dispersing groups include acrylic acid, itaconic acid, maleic acid, β-carboxyethyl acrylate, monoalkyl maleates (for example monomethyl maleate and monoethyl maleate), citraconic acid, styrenesulphonic acid, vinylbenzylsulphonic acid, vinylsulphonic acid, acryloyloxyalkyl sulphonic acids (for example acryloyloxymethyl sulphonic acid), 2-acrylamido-2-alkylalkane sulphonic acids (for example 2-acrylamido-2-methylethanesulphonic acid), 2-methacrylamido-2-alkylalkane sulphonic acids (for example 2-methacrylamido-2-methylethanesulphonic acid), mono(acryloyloxyalkyl)phosphates (for example, mono(acryloyloxyethyl)phosphate and mono(3-acryloyloxypropyl)phosphates) and mono(methacryloyloxyalkyl)phosphates.
- The anionic or potentially anionic water-dispersing groups of the block copolymer may be neutralised before during or after the emulsification step II. Preferred neutralising agents include ammonia, trimethylamine, dimethyl ethanol amine, dimethyl butyl amine, sodium hydroxide, potassium hydroxide and or lithium hydroxide.
- Preferred vinyl monomers providing quaternary ammonium and/or quaternisable amine functional group include but are not limited to 2-trimethylammoniumethyl (meth)acrylate chloride, 2-dimethylaminoethyl (meth)acrylate methyl bromide, 2-dimethylaminoethyl (meth)acrylate methyl iodide, 2-dimethylaminoethyl (meth)acrylate dimethyl sulphate, 3-trimethylammoniumpropyl (meth)acrylamide chloride ((M)APTAC), vinylbenzyl trimethylammonium chloride, diallyldimethylammonium chloride, 2-dimethylaminoethyl (meth)acrylate (DMAE(M)A), 2-aminoethyl (meth)acrylate, 2-diethylaminoethyl (meth)acrylate, 3-dimethylaminopropyl (meth)acrylate, 3-dimethylamino-2,2-dimethylprop-1-yl (meth)acrylate, dimethylaminoneopentyl acylate, N-acryloyl sarcosine methyl ester, N-methacryloyl sarcosine methyl ester, 2-N-morpholinoethyl (meth)acrylate, 2-N-piperidinoethyl (meth)acrylate, 3-dimethylaminopropyl (meth)acrylamide, 2-dimethylaminoethyl (meth)acrylamide, 2-diethylaminoethyl (meth)acrylamide, N-(4-morpholinoethyl) (meth)acrylamidevinylimidazole, N,N-dimethylvinyl benzylamine, where the amine functional monomers can be quaternised with C1-C18 alkyl halides such as for example methyl chloride, methyl bromide, methyl iodide, dimethyl sulphate, dodecyl bromide, hexadecyl bromide. The use of permanently quaternised monomers such as 2-trimethylammoniumethyl (meth)acrylate chloride or (M)APTAC is also possible.
- Preferably block [A] and [B] together comprise 0 to 2 wt % of methacrylic acid, more preferably block [A] and [B] together comprise 0 to 1 wt % of methacrylic acid and most preferably block [A] and [B] together comprise 0 wt % of methacrylic acid. Preferably the block copolymer comprises 0 to 2 wt % of methacrylic acid, more preferably the block copolymer comprises 0 to 1 wt % of methacrylic acid and most preferably the block copolymer comprises 0 wt % of methacrylic acid.
- Preferably block [A] comprises 5 to 25 wt % and more preferably 8 to 22 wt % of vinyl monomers bearing ionic or potentially ionic water-dispersing groups not including methacrylic acid.
- Preferably block [B] comprises 0 to 15 wt % and more preferably 0 to 10 wt % of vinyl monomers bearing ionic or potentially ionic water-dispersing groups not including methacrylic acid.
- Preferably block [A] and block [B] together comprise 3.0 to 18 and more preferably 3.5 to 15 wt % of vinyl monomers bearing ionic or potentially ionic water-dispersing groups not including methacrylic acid.
- Preferably the vinyl monomers bearing ionic or potentially ionic water-dispersing groups are selected from the group consisting of 2 dimethylaminoethyl(meth)acrylate, 3-trimethylammoniumpropyl(meth)acrylamide chloride, acrylic acid, β-carboxyethyl acrylate, itaconic acid and mixtures thereof.
- Preferably the vinyl monomers bearing ionic or potentially ionic water-dispersing groups are anionic or potentially anionic water-dispersion groups.
- Preferably the vinyl monomers bearing anionic or potentially anionic water-dispersing groups are selected from the group consisting of acrylic acid, β-carboxyethyl acrylate, itaconic acid and mixtures thereof.
- Preferred vinyl monomers providing crosslinkable functional groups include hydroxyl functional monomers, epoxide functional monomers, acid functional monomers, carbonyl functional monomers or silane functional monomers. Examples of vinyl monomers providing carbonyl functional groups include acrolein, methacrolein, crotonaldehyde, 4-vinylbenzaldehyde, vinyl alkyl ketones of 4 to 7 carbon atoms such as vinyl methyl ketone. Further examples include acrylamidopivalaldehyde, methacrylamidopivalaldehyde, 3-acrylamidomethyl-anisaldehyde, diacetone acrylate and diacetone methacrylate, and keto-containing amides such as diacetone acrylamide.
- Preferred vinyl monomers providing crystallisable monomers include decyl (meth)acrylate, lauryl (meth)acrylate and stearyl (meth)acrylate.
- According to an embodiment of the invention there is also provided an aqueous emulsion comprising a block copolymer obtained by a process according to the invention. Preferably the aqueous emulsion has a pH in the range of from 2 to 11, more preferably 2 to 9, even more preferably 2.5 to 8.5 and most preferably 5 to 8.5.
- The aqueous emulsions obtained by the process of the present invention may be applied to a variety of substrates including wood, board, metals, stone, concrete, glass, cloth, leather, paper, plastics, foam and the like, by any conventional method including brushing, dipping, flow coating, spraying, flexo printing, gravure printing, ink-jet printing, any other graphic arts application methods and the like. The aqueous carrier medium is removed by natural drying or accelerated drying (by applying heat) to form a coating.
- Accordingly, in a further embodiment of the invention there is provided a coating, an adhesive, a polymeric film, a printing ink and/or an overprint lacquer obtained from the aqueous emulsions obtained by the process of the present invention.
- The aqueous emulsions obtained by the process of the present invention may contain conventional ingredients; examples include pigments, dyes, emulsifiers, surfactants, plasticisers, thickeners, heat stabilisers, levelling agents, anti-cratering agents, fillers, sedimentation inhibitors, UV absorbers, antioxidants, drier salts, organic co-solvents, wetting agents and the like introduced at any stage of the production process or subsequently. It is possible to include an amount of antimony oxide in the dispersions to enhance the fire retardant properties. Optionally, the aqueous emulsions may comprise additional polymers not prepared using RITP.
- Suitable organic co-solvents which may be added during the process or after the process during formulation steps are well known in the art and include xylene, toluene, methyl ethyl ketone, acetone, diethylene glycol and 1-methyl-2-pyrrolidinone.
- Optionally an external crosslinking agent may be added to the aqueous emulsions obtained by the process of the present invention to aid crosslinking during or after drying.
- The solids content of the aqueous emulsions obtained by the process of the present invention is preferably within the range of from 20 to 60 wt %, and most preferably within the range of from 30 to 50 wt %.
- The present invention is now illustrated by reference to the following examples. Unless otherwise specified, all parts, percentages and ratios are on a weight basis.
- In the examples, the following abbreviations and terms are specified:
- Solvent=butyl acetate
- MMA=methyl methacrylate
- 2-HEMA=2-hydroxyethyl methacrylate
- AMBN=2,2′-azobis-(2-methylbutyronitrile)
- AA=acrylic acid
- MAA=methacrylic acid
- BA=butyl acrylate
- tBHPO=t-butyl hydroperoxide
- DMEA=dimethyl ethanolamine
- IAA=i-ascorbic acid
- I2=iodine
- To prepare block [A], a reactor was charged with 395.6 parts of butyl acetate, 138.1 parts of methyl methacrylate, 7.2 parts of iodine and 16.5 parts of 2,2′-azobis-(2-methylbutyronitrile), and the contents were heated to 80° C. As soon as the colour of the reaction phase changed from brown to yellow, 34.5 parts of acrylic acid were charged to the reactor and the mixture was allowed to polymerise at 80° C. for 6 hours.
- To prepare block [B] the reactants comprising 402.7 parts of butyl acrylate and 5.4 parts of 2,2′-azobis-(2-methylbutyronitrile) were added to the solution of block [A]. The mixture was allowed to react for 6 hours at 80° C.
- The resultant block copolymer solution was cooled to 60° C. and 34.1 parts of dimethyl ethanolamine were added.
- Next, the block copolymer was emulsified by adding 440 parts of demineralised water.
- At this point, the monomer conversion was 97%, corresponding to a free monomer content of the block copolymer emulsion of 11700 ppm.
- To the block copolymer emulsion obtained after step II) 0.7 parts of t-butyl hydroperoxide and 0.3 parts of water were added. Next a solution of 1.5 parts of i-ascorbic acid in 29.5 parts of water was added over a period of 30 minutes. 15 minutes after the start of the i-ascorbic acid feed, another 0.7 parts of t-butyl hydroperoxide and 0.3 parts of water were added. At the end of the i-ascorbic acid feed the emulsion was kept at 60° C. for another hour after which it was cooled and filtered through a 75 μm filter cloth.
- The final free monomer level was 680 ppm and the solids content was 41%, corresponding to a final monomer conversion of 99.82%.
- Block copolymer emulsion were prepared according to the process for example 1 using components as listed in Table 1 below.
- All of the emulsions prepared in Examples 1 to 6 had a particle size in the range of from 50 to 350 nm.
- A block copolymer emulsion was prepared according to the process for Example 1 using components as listed in Table 1 below, where methacrylic acid was used instead of acrylic acid. However the after step II was completed the emulsion was extremely unstable and step III could not be carried out.
- The amount of final free monomer and the total monomer conversion is given in Table 1 below.
-
TABLE 1 Example 1 2 3 4 5 6 CE1 Step I Block A Solvent 395.6 395.6 395.6 395.6 401.5 384.5 400 AA 34.5 34.5 — 80.5 29.2 28.0 — MAA — — — — — — 29.1 MMA 138.1 138.1 — 322.2 — — — 2-HEMA — — 115.1 — — — — AMBN 16.5 16.5 16.5 16.5 8.4 32.1 16.5 BA — — 172.6 — 262.7 251.6 261.7 I2 7.2 7.2 7.2 7.2 3.6 14 7.3 Block B AA — — 28.8 — — — — BA 402.7 402.7 — 172.6 — — — AMBN 5.4 5.4 5.4 5.4 2.7 10.5 5.4 MMA — — 402.7 — 291.9 279.5 290.8 Step II DMEA 34.1 34.1 28.5 79.6 28.9 27.6 24.1 Water 440 440 364 445 445 519 519 Conversion % 97 97 96 93 97 97 36 Free monomer ppm 11700 11700 13100 26400 11800 10800 241300 Step III tBHP0 0.7 1.5 1.0 1.9 1.1 1.2 * Water 0.3 0.6 0.4 0.8 0.5 0.5 * IAA 1.5 2.9 2.1 3.8 2.2 2.3 * Water 29.5 59.0 41.9 76.3 44.2 46.4 * tBHPO 0.7 1.5 1.0 1.9 1.1 1.2 * Water 0.3 0.6 0.4 0.8 0.5 0.5 * Final Conversion % 99.82 99.92 99.92 99.92 99.92 99.88 * Solids 41 41 35.1 39.6 40.6 39.8 * Final Free 680 285 335 290 320 406 * Monomer ppm * = unstable, no further treatment possible
Claims (15)
1. A process for obtaining an aqueous emulsion comprising a block copolymer, which process comprises the following steps:
I) solution polymerisation of vinyl monomers to obtain block in the presence of
a) a radical precursor; and
b) an iodine atom containing block [A];
to obtain a block copolymer comprising at least block [A] and a different block;
where block [A] and [B] together comprise 0 to 2 wt % of methacrylic acid;
where block [A] comprises 0 to 25 wt % of vinyl monomers bearing ionic or potentially ionic water-dispersing groups not including methacrylic acid;
where block [B] comprises 0 to 25 wt % of vinyl monomers bearing ionic or potentially ionic water-dispersing groups not including methacrylic acid;
where block [A] and block [B] together comprise >2.5 wt % of vinyl monomers bearing ionic or potentially ionic water-dispersing groups not including methacrylic acid;
II) emulsification of the block copolymer obtained in step I);
III) performing a post polymerisation reaction on the block copolymer emulsion obtained in step II; and
wherein said aqueous emulsion has a free vinyl monomer level <1000 ppm when having a solids content of >20 wt %.
2. A process according to claim 1 where block [A] comprises 5 to 25 wt % of vinyl monomers bearing ionic or potentially ionic water-dispersing groups not including methacrylic acid.
3. A process according to claim 1 where block [B] comprises 0 to 15 wt % of vinyl monomers bearing ionic or potentially ionic water-dispersing groups not including methacrylic acid.
4. A process according to claim 1 where block [A] and block [B] together comprise 3.0 to 18 wt % of vinyl monomers bearing ionic or potentially ionic water-dispersing groups not including methacrylic acid.
5. A process according to claim 1 where the vinyl monomers bearing ionic or potentially ionic water-dispersing groups are selected from the group consisting of 2-dimethylaminoethyl(meth)acrylate, 3-trimethylammoniumpropyl(meth)acrylamide chloride, acrylic acid, β-carboxyethyl acrylate, itaconic acid and mixtures thereof.
6. A process according to claim 1 where the vinyl monomers bearing ionic or potentially ionic water-dispersing groups are anionic or potentially anionic water-dispersion groups.
7. A process according to claim 6 where the vinyl monomers bearing anionic or potentially anionic water-dispersing groups are selected from the group consisting of acrylic acid, β-carboxyethyl acrylate, itaconic acid and mixtures thereof.
8. A process according to claim 1 wherein the difference in Tg between blocks [A] and [B] is >40° C.
9. A process according to claim 1 wherein said aqueous emulsion has a free vinyl monomer level <800 ppm.
10. A process according to claim 1 where the iodine atom containing block [A] is selected from the group consisting of vinyl polymers, polyurethanes, polyesters, polyethers, alkyds and or mixtures thereof.
11. A process according to claim 1 where the iodine atom containing block [A] is obtained by the polymerisation of vinyl monomers in the presence of
a) a radical precursor and
b) iodine or an iodine transfer agent.
12. A process according to claim 1 where the post polymerisation reaction is carried out by the reaction of a redox couple comprising an organic or inorganic peroxide or hydroperoxide and a reducing agent.
13. A process according to claim 1 where the post polymerisation reaction is carried out by the reaction of an initiator selected from the group consisting of azo functional initiators, organic peroxides, inorganic peroxides or mixtures thereof.
14. A process according to claim 1 where the block copolymer comprises an additional block [C].
15. An aqueous emulsion comprising a block copolymer obtained by a process according to claim 1 .
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/648,080 US20130030118A1 (en) | 2007-06-21 | 2012-10-09 | Process for obtaining low free monomer levels in a block copolymer emulsion prepared with (reverse) iodine transfer polymerisation |
| US14/140,356 US9096756B2 (en) | 2007-06-21 | 2013-12-24 | Process for obtaining low free monomer levels in a block copolymer emulsion prepared with (reverse) iodine transfer polymerisation |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP07012108.2 | 2007-06-21 | ||
| EP07012108 | 2007-06-21 | ||
| PCT/EP2008/057605 WO2008155324A1 (en) | 2007-06-21 | 2008-06-17 | Process for obtaining low free monomer levels in a block copolymer emulsion prepared with (reverse) iodine transfer polymerisation |
| US66492210A | 2010-06-01 | 2010-06-01 | |
| US13/648,080 US20130030118A1 (en) | 2007-06-21 | 2012-10-09 | Process for obtaining low free monomer levels in a block copolymer emulsion prepared with (reverse) iodine transfer polymerisation |
Related Parent Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2008/057605 Continuation WO2008155324A1 (en) | 2007-06-21 | 2008-06-17 | Process for obtaining low free monomer levels in a block copolymer emulsion prepared with (reverse) iodine transfer polymerisation |
| US12/664,922 Continuation US20100256299A1 (en) | 2007-06-21 | 2008-06-17 | Process for obtaining low free monomer levels in a block copolymer emulsion prepared with (reverse) iodine transfer polymerisation |
| US66492210A Continuation | 2007-06-21 | 2010-06-01 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/140,356 Continuation US9096756B2 (en) | 2007-06-21 | 2013-12-24 | Process for obtaining low free monomer levels in a block copolymer emulsion prepared with (reverse) iodine transfer polymerisation |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20130030118A1 true US20130030118A1 (en) | 2013-01-31 |
Family
ID=38564613
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/664,922 Abandoned US20100256299A1 (en) | 2007-06-21 | 2008-06-17 | Process for obtaining low free monomer levels in a block copolymer emulsion prepared with (reverse) iodine transfer polymerisation |
| US13/648,080 Abandoned US20130030118A1 (en) | 2007-06-21 | 2012-10-09 | Process for obtaining low free monomer levels in a block copolymer emulsion prepared with (reverse) iodine transfer polymerisation |
| US14/140,356 Expired - Fee Related US9096756B2 (en) | 2007-06-21 | 2013-12-24 | Process for obtaining low free monomer levels in a block copolymer emulsion prepared with (reverse) iodine transfer polymerisation |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/664,922 Abandoned US20100256299A1 (en) | 2007-06-21 | 2008-06-17 | Process for obtaining low free monomer levels in a block copolymer emulsion prepared with (reverse) iodine transfer polymerisation |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/140,356 Expired - Fee Related US9096756B2 (en) | 2007-06-21 | 2013-12-24 | Process for obtaining low free monomer levels in a block copolymer emulsion prepared with (reverse) iodine transfer polymerisation |
Country Status (3)
| Country | Link |
|---|---|
| US (3) | US20100256299A1 (en) |
| EP (1) | EP2158237B1 (en) |
| WO (1) | WO2008155324A1 (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2903409A1 (en) * | 2006-07-04 | 2008-01-11 | Solvay | Polymer production comprises dispersion polymerization of an ethylenically unsaturated monomer in the presence of a radical generator, iodine and a water-soluble oxidizing agent |
| EP2173777B1 (en) * | 2007-08-02 | 2011-05-18 | DSM IP Assets B.V. | Aqueous dispersions containing crystallisable block copolymers |
| DE102008034106A1 (en) * | 2008-07-21 | 2010-01-28 | Evonik Röhm Gmbh | Block copolymers based on (meth) acrylate with A-P structure |
| CN102471427B (en) * | 2009-07-16 | 2014-12-10 | 大金工业株式会社 | Method for producing fluorine-containing block copolymer |
| EP2809687A1 (en) * | 2012-02-03 | 2014-12-10 | DSM IP Assets B.V. | Polymer, process and composition |
| FR3003257B1 (en) * | 2013-03-13 | 2015-03-20 | Polymem | AMPHIPHILE BLOCK COPOLYMER AND USE THEREOF FOR MANUFACTURING POLYMER FILTRATION MEMBRANES |
| US10330840B2 (en) * | 2013-12-20 | 2019-06-25 | Lg Chem, Ltd. | Optical film |
| CN112384581A (en) * | 2018-06-11 | 2021-02-19 | 宣伟投资管理有限公司 | Packaging coatings comprising water-dispersible acrylic block copolymers |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4158678A (en) * | 1976-06-30 | 1979-06-19 | Daikin Kogyo Co., Ltd. | Segmented polymers containing fluorine and iodine and their production |
| EP0947527A1 (en) * | 1998-04-03 | 1999-10-06 | The B.F. Goodrich Company | Waterborne block copolymers and process for making the same |
| US20040054108A1 (en) * | 2002-07-23 | 2004-03-18 | Mestach Dirk Emiel Paula | Method for polymerizing ethylenically unsaturated monomers by degenerative iodine transfer |
| US7078473B2 (en) * | 2002-05-17 | 2006-07-18 | Solvay (Societe Anonyme) | Radical polymerization methods and halogenated polymers |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1558678A (en) * | 1925-03-16 | 1925-10-27 | Richard F Koenig | Paper-hanger's trimming gauge |
| JP2795699B2 (en) * | 1989-10-06 | 1998-09-10 | 日本メクトロン株式会社 | Method for producing fluorine-containing block copolymer |
| JPH0826087B2 (en) * | 1990-11-29 | 1996-03-13 | ダイキン工業株式会社 | Novel polymer production method |
| US5789487A (en) * | 1996-07-10 | 1998-08-04 | Carnegie-Mellon University | Preparation of novel homo- and copolymers using atom transfer radical polymerization |
| WO2000011055A1 (en) * | 1998-08-21 | 2000-03-02 | Elf Atochem S.A. | Method for making copolymers with controlled architecture and resulting copolymers |
| DE60316947T2 (en) * | 2002-07-23 | 2008-07-24 | Nuplex Resins B.V. | METHOD FOR POLYMERIZING ETHYLENICALLY UNSATURATED MONOMERS |
| WO2004009644A2 (en) * | 2002-07-23 | 2004-01-29 | Akzo Nobel N.V. | Method for making methacrylate unit-containing low-polydispersity polymers |
| CN1927987A (en) * | 2005-09-06 | 2007-03-14 | 鸿富锦精密工业(深圳)有限公司 | Heat interfacial material and method for making the same |
-
2008
- 2008-06-17 WO PCT/EP2008/057605 patent/WO2008155324A1/en active Application Filing
- 2008-06-17 US US12/664,922 patent/US20100256299A1/en not_active Abandoned
- 2008-06-17 EP EP08761100A patent/EP2158237B1/en not_active Not-in-force
-
2012
- 2012-10-09 US US13/648,080 patent/US20130030118A1/en not_active Abandoned
-
2013
- 2013-12-24 US US14/140,356 patent/US9096756B2/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4158678A (en) * | 1976-06-30 | 1979-06-19 | Daikin Kogyo Co., Ltd. | Segmented polymers containing fluorine and iodine and their production |
| EP0947527A1 (en) * | 1998-04-03 | 1999-10-06 | The B.F. Goodrich Company | Waterborne block copolymers and process for making the same |
| US7078473B2 (en) * | 2002-05-17 | 2006-07-18 | Solvay (Societe Anonyme) | Radical polymerization methods and halogenated polymers |
| US20040054108A1 (en) * | 2002-07-23 | 2004-03-18 | Mestach Dirk Emiel Paula | Method for polymerizing ethylenically unsaturated monomers by degenerative iodine transfer |
| US7034085B2 (en) * | 2002-07-23 | 2006-04-25 | Nuplex Resins, B.V. | Method for polymerizing ethylenically unsaturated monomers by degenerative iodine transfer |
Also Published As
| Publication number | Publication date |
|---|---|
| US20100256299A1 (en) | 2010-10-07 |
| US9096756B2 (en) | 2015-08-04 |
| US20140107290A1 (en) | 2014-04-17 |
| EP2158237A1 (en) | 2010-03-03 |
| WO2008155324A1 (en) | 2008-12-24 |
| EP2158237B1 (en) | 2012-10-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9096756B2 (en) | Process for obtaining low free monomer levels in a block copolymer emulsion prepared with (reverse) iodine transfer polymerisation | |
| EP2235080B1 (en) | Water borne crosslinkable block copolymers obtained using raft | |
| US9340699B2 (en) | Aqueous oligomer / polymer emulsion with cationic functionality | |
| US9255211B2 (en) | Adhesion to plastic with block copolymers obtained using RAFT | |
| US7049352B2 (en) | Aqueous coating compositions | |
| US20110159306A1 (en) | Adhesion to metal surfaces with block copolymers obtained using raft | |
| CN113646396A (en) | waterborne coating composition | |
| DE3817469A1 (en) | DISPERSION POLYMERISES CONTAINING UREA GROUPS BASED ON ETHYLENICALLY UNSATURATED MONOMERERS, PROCESS FOR THEIR PREPARATION AND THEIR USE | |
| EP3917975B1 (en) | Process for preparing waterborne dispersion | |
| US20110196084A1 (en) | Aqueous crosslinkable vinyl graft copolymer compositions | |
| US20080249242A1 (en) | Aqueous Vinyl Graft Copolymer Compositions | |
| US20110207871A1 (en) | Aqueous dispersions containing crystallisable block copolymers | |
| CA2424544A1 (en) | Water-based coating composition | |
| CN111491984A (en) | Aqueous crosslinkable dispersions | |
| WO2025098970A1 (en) | Waterborne coating composition | |
| GB2413330A (en) | Vinyl graft polymer composition | |
| HK1152059A (en) | Water borne crosslinkable block copolymers obtained using raft |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |