US20130305707A1 - Control apparatus for supercharger-equipped internal combustion engine - Google Patents
Control apparatus for supercharger-equipped internal combustion engine Download PDFInfo
- Publication number
- US20130305707A1 US20130305707A1 US13/881,084 US201113881084A US2013305707A1 US 20130305707 A1 US20130305707 A1 US 20130305707A1 US 201113881084 A US201113881084 A US 201113881084A US 2013305707 A1 US2013305707 A1 US 2013305707A1
- Authority
- US
- United States
- Prior art keywords
- blow
- amount
- exhaust
- valve
- determination value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 42
- 230000007246 mechanism Effects 0.000 claims abstract description 21
- 239000000446 fuel Substances 0.000 claims description 24
- 238000004904 shortening Methods 0.000 claims description 19
- 239000002699 waste material Substances 0.000 claims description 12
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 239000003054 catalyst Substances 0.000 abstract description 12
- 230000002265 prevention Effects 0.000 abstract description 5
- 230000001629 suppression Effects 0.000 abstract description 5
- 239000007789 gas Substances 0.000 description 7
- 230000001276 controlling effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/18—Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
- F02B37/183—Arrangements of bypass valves or actuators therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B25/00—Engines characterised by using fresh charge for scavenging cylinders
- F02B25/14—Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke
- F02B25/145—Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke with intake and exhaust valves exclusively in the cylinder head
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/18—Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0203—Variable control of intake and exhaust valves
- F02D13/0215—Variable control of intake and exhaust valves changing the valve timing only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0261—Controlling the valve overlap
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D23/00—Controlling engines characterised by their being supercharged
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D41/0007—Controlling intake air for control of turbo-charged or super-charged engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/0065—Specific aspects of external EGR control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D2041/001—Controlling intake air for engines with variable valve actuation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/18—Circuit arrangements for generating control signals by measuring intake air flow
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a control apparatus for a supercharged internal combustion engine, and more particular to a control apparatus for a supercharged internal combustion engine that is suitable for controlling the internal combustion engine that includes a variable valve operating mechanism capable of changing a valve overlap period and a waste gate valve.
- Patent Document 1 discloses a control apparatus for an internal combustion engine.
- This conventional control apparatus estimates a blow-through amount of fresh air that blows through a combustion chamber from an intake passage to an exhaust passage, on the basis of the concentration of oxygen in the exhaust passage detected by an air fuel ratio sensor. On that basis, a valve overlap period is controlled in accordance with this amount of blow-through of the fresh air.
- Patent Document 1 Japanese Laid-open Patent Application Publication No. 2007-263083
- Patent Document 2 Japanese Laid-open Patent Application Publication No. 2008-175201
- Patent Document 3 Japanese Laid-open Patent Application Publication No. 2010-163915
- Patent Document 4 Japanese Laid-open Patent Application Publication No. 2008-297930
- blow-through amount of fresh air that blows through the combustion chamber from the intake passage to the exhaust passage becomes too large, there is a concern that a catalyst disposed in the exhaust passage may be overheated.
- the blow-through amount of the fresh air is large, shortening the valve overlap period allows the blow-through amount to be reduced.
- an operating region is present in which reducing the blow-through amount to a desirable amount is difficult only by adjusting the valve overlap period. In such an operating region, it is not possible to adequately reduce the blow-through amount only by shortening the valve overlap period, and as a result, there is a concern that the overheat of the catalyst may be produced.
- the present invention has been made to solve the problem as described above, and has its object to provide a control apparatus for a supercharged internal combustion engine, which can favorably achieve a good balance between prevention of overheat of a catalyst disposed an exhaust passage and suppression of turbo lag, in a case in which a blow-through of fresh air that blows through a combustion chamber from an intake passage to an exhaust passage is generated.
- a first aspect of the present invention is a control apparatus for a supercharged internal combustion engine, comprising:
- a turbo supercharger which includes, in an exhaust passage, a turbine that is operated by exhaust energy
- a waste gate valve which is capable of switching an opening and closing of the exhaust bypass passage
- variable valve operating mechanism which is capable of changing a valve overlap period during which an opening period of an exhaust valve overlaps with an opening period of an intake valve
- blow-through amount obtaining means for obtaining a blow-through amount of fresh air that blows through a combustion chamber from an intake passage to the exhaust passage;
- overlap period shortening means for shortening the valve overlap period so that the blow-through amount becomes equal to or smaller than a predetermined blow-through determination value when the blow-through amount is larger than the blow-through determination value;
- blow-through amount determination means for determining whether or not the blow-through amount is still larger than the blow-through determination value after the valve overlap period has been shortened by the overlap period shortening means
- WGV control means for opening the waste gate valve when the blow-through amount is determined by the blow-through amount determination means to be still larger than the blow-through determination value.
- a second aspect of the present invention is the control apparatus for a supercharged internal combustion engine according to the first aspect of the present invention, further comprising an air fuel ratio sensor which is disposed in the exhaust passage to detect an air fuel ratio of exhaust gas,
- blow-through amount obtaining means is means for obtaining the blow-through amount based on an output value of the air fuel ratio sensor.
- the present invention when the blow-through amount of fresh air is larger than the blow-through determination value, it becomes possible to decrease the blow-through amount to the blow-through determination value or less, while suppressing the control amount of the opening degree of the waste gate valve to the minimum necessary. Therefore, the present invention can favorably achieve a good balance between prevention of overheat of a catalyst disposed an exhaust passage by controlling the blow-through amount and suppression of turbo lag, in a case in which the blow-through amount is larger than the blow-through amount.
- the second aspect of the present invention can favorably achieve a good balance between the prevention of overheat of the catalyst by controlling the blow-through amount and the suppression of turbo lag, by use of the configuration by which the aforementioned blow-through amount is obtained on the basis of the output value of the air fuel ratio sensor.
- FIG. 1 is a schematic diagram for illustrating a system configuration of an internal combustion engine according to a first embodiment of the present invention
- FIG. 2 is a diagram for explaining a blow-through of fresh air that blows through a combustion chamber from an intake passage to an exhaust passage;
- FIG. 3 is a flowchart of a routine that is executed in the first embodiment of the present invention.
- FIG. 1 is a schematic diagram for illustrating a system configuration of an internal combustion engine 10 according to a first embodiment of the present invention.
- the system of the present embodiment includes, as one example, a spark ignition type internal combustion engine (gasoline engine) 10 .
- a combustion chamber 12 is formed in each cylinder of the internal combustion engine 10 .
- An intake passage 14 and an exhaust passage 16 are in communication with the combustion chamber 12 .
- An air cleaner 18 is disposed at a position near an inlet of the intake passage 14 .
- An air flow meter 20 is disposed near a downstream position of the air cleaner 18 to output a signal according to a flow rate of air drawn into the intake passage 14 .
- a compressor 22 a of a turbo supercharger 22 is disposed downstream of the air flow meter 20 .
- the compressor 22 a is integrally connected, via a turbine shaft 22 c, to a turbine 22 b disposed at the exhaust passage 16 .
- each cylinder of the internal combustion engine 10 includes a fuel injection valve 30 for injecting fuel into an intake port, and an ignition plug 32 for igniting a mixture gas.
- an air fuel ratio sensor 34 for detecting an air fuel ratio (oxygen concentration) of exhaust gas is disposed on the upstream side of the turbine 22 c in the exhaust passage 16 .
- an exhaust bypass passage 36 which is configured to branch off the exhaust passage 16 at an upstream side portion of the turbine 22 b and merge with the exhaust passage 16 at a downstream side portion of the turbine 22 .
- a waste gate valve (WGV) 38 is provided for opening and closing the exhaust bypass passage 36 .
- the WGV 38 is herein assumed to be configured to be able to be adjusted to an arbitrary opening degree by means of a pressure-regulated or electrically-operated type actuator (not shown).
- a catalyst 40 for purifying the exhaust gas is disposed in the exhaust passage 16 on the further downstream side of its portion that is connected with the exhaust bypass passage 36 on the downstream side of the turbine 22 b.
- An intake valve 42 and an exhaust valve 44 are provided at the intake port and an exhaust port, respectively.
- the intake valve 42 establishes continuity or discontinuity between the combustion chamber 12 and the intake passage 14
- the exhaust valve 44 establishes continuity or discontinuity between the combustion chamber 12 and the exhaust passage 16 .
- the intake valve 42 and the exhaust valve 44 are driven by an intake variable valve operating mechanism 46 and an exhaust variable valve operating mechanism 48 , respectively.
- a variable valve timing (VVT) mechanism is used that continuously makes the opening and closing timing of the intake valve 42 variable by changing a rotation phase of an intake camshaft with respect to a rotation phase of a crankshaft
- the exhaust variable valve operating mechanism 48 also is a mechanism that has the same configuration as that.
- an intake cam angle sensor 50 and an exhaust cam angle sensor 52 are disposed for detecting rotational angles of the camshafts, that is, an intake cam angle and an exhaust cam angle, respectively.
- the system shown in FIG. 1 includes an ECU (Electronic Control Unit) 54 .
- An input section of the ECU 54 is connected with various types of sensors for detecting the operating state of the internal combustion engine 10 , such as a crank angle sensor 56 for detecting an engine speed, as well as the air flow meter 20 , the intake pressure sensor 28 and the air fuel ratio sensor 34 that are described above.
- an output section of the ECU 54 is connected with various types of actuators for controlling the operating state of the internal combustion engine 10 , such as the throttle valve 26 , the fuel injection valve 30 , the ignition plug 32 , the WGV 38 and the variable valve operating mechanisms 46 and 48 that are described above.
- the ECU 54 can control the operating state of the internal combustion engine 10 by actuating each actuator according to the output of the aforementioned each sensor and predetermined programs.
- FIG. 2 is a diagram for explaining a blow-through of fresh air that blows through the combustion chamber 12 from the intake passage 14 to the exhaust passage 16 .
- a valve overlap period during which the opening period of the exhaust valve 44 and the opening period of the intake valve 42 are overlapped with each other (hereinafter, simply referred to as the “valve overlap period”) can be changed by adjusting at least one of the advance amount of the opening and closing timing of the intake valve 42 and the retard amount of the opening and closing timing of the exhaust valve 44 .
- a fresh air blow-through amount Gsca is calculated by use of the output value of the air fuel ratio sensor 34 during operation of the internal combustion engine 10 , and further, when the blow-through amount Gsca calculated is larger than a predetermined blow-through determination value Gjudge, the valve overlap period is shortened so that the blow-through amount Gsca becomes smaller than or equal to the blow-through determination value Gjudge. On that basis, if the blow-through amount Gsca has not yet become smaller than or equal to the blow-through determination value Gjudge in spite of the shortening of the valve overlap period, the WGV 38 is opened.
- FIG. 3 is a flowchart showing a control routine executed by the ECU 54 to implement the control according to the first embodiment of the present invention.
- step 100 it is determined whether or not a blow-through occurrence condition of fresh air is established.
- the ECU 54 stores a map (not shown) that defines an operating region in which the blow-through occurrence condition under which the blow-through of fresh air is generated during setting of the valve overlap period is established, through the use of the operating region (region based on a load factor and an engine speed) of the internal combustion engine 10 .
- step 100 it is determined with reference to such a map whether or not the current operating region is an operating region in which the blow-through occurrence condition is established.
- determination as to whether or not the blow-through occurrence condition is established is not limited to the one using the aforementioned method, and if, for example, an exhaust pressure sensor for detecting the exhaust pressure P2 is included in addition to the intake pressure sensor 28 for detecting the intake pressure P1, may be the one performed by comparing values of those sensors.
- the fresh air blow-through amount Gsca is calculated on the basis of the output value of the air fuel ratio sensor 34 (step 102 ).
- the blow-through amount Gsca is calculated in accordance with the following expression.
- Gsca Sabyf/Iabyf ⁇ Ga
- Sabyf denotes an air fuel ratio of exhaust gas obtained by use of the air fuel ratio sensor 34
- Iabyf denotes a target air fuel ratio calculated on the basis of the intake air amount and the fuel injection amount
- Ga denotes an intake air amount obtained by use of the air flow meter 20 .
- step 104 it is determined whether or not the valve overlap period has been shortened. Specifically, in present step 104 , it is determined whether or not there is a situation in which the valve overlap period has been shortened to a predetermined value or less by means of the processing of step 108 described later, during establishment of the aforementioned blow-through occurrence condition.
- step 106 it is determined whether or not the fresh air blow-through amount Gsca is larger than a predetermined determination value Gjudge (step 106 ).
- the determination value Gjudge in present step 106 is a value that is set in advance as a threshold value for judging whether or not the current blow-through amount Gsca is an amount by which the overheat of the catalyst 40 may be produced.
- the valve overlap period is shortened by means of the variable valve operating mechanisms 46 and 48 so as to be shorter than or equal to a predetermined value (step 108 ).
- the valve overlap period is determined in aforementioned step 104 to have been shortened, it is then determined whether or not the current blow-through amount Gsca is larger than the determination value Gjudge by the processing similar to that of aforementioned step 106 (step 110 ).
- the current blow-through amount Gsca is determined in present step 110 to be larger than the determination value Gjudge, that is to say, it can be judged that the blow-through amount Gsca has not yet become smaller than or equal to the blow-through determination value Gjudge in spite of the shortening of the valve overlap period, the WGV 38 is opened to an opening degree necessary to decrease the boost pressure to a predetermined pressure or lower (step 112 ).
- the processing of present step 112 can be performed as follows. More specifically, for example, a feedback control of the WGV opening degree is performed so as to achieve the value of the boost pressure (obtained by a map or the like) necessary for the blow-through amount Gsca to be smaller than or equal to the blow-through determination value Gjudge, on the basis of the intake pressure P 1 detected by the intake pressure sensor 28 .
- the WGV 38 is opened in order to decrease the boost pressure.
- a control to reduce the blow-through amount Gsca is performed in the order from the shortening of the valve overlap period to the adjustment of the WGV 38 . More specifically, opening the WGV 38 for the purpose of reducing the blow-through amount is prohibited until it is judged that shortening the valve overlap period does not allow the blow-through amount Gsca to be smaller than or equal to the blow-through determination value Gjudge.
- the control amount of the opening degree of the WGV 38 that is necessary for the blow-through amount Gsca to be smaller than or equal to the blow-through determination value Gjudge becomes large.
- turbo lag becomes large due to a decrease in the flow rate of exhaust gas passing through the turbine 22 b.
- the blow-through amount Gsca is required to be suppressed by the WGV 38 , it becomes possible to suppress the control amount of the opening degree of the WGV 38 to the minimum necessary.
- the system according to the present embodiment can favorably achieve a good balance between prevention of overheat of the catalyst 40 by suppressing the blow-through amount Gsca and suppression of turbo lag, while obtaining the scavenging effect, in a case in which the blow-through amount Gsca is larger than the blow-through determination value Gjudge.
- the blow-through amount of fresh air is calculated by use of the output value of the air fuel ratio sensor 34 .
- the blow-through amount obtaining means of the present invention is not limited to the one using the aforementioned method.
- the valve overlap period is changed by means of the intake variable valve operating mechanism 46 that is capable of changing the opening and closing timing of the intake valve 42 and the exhaust variable valve operating mechanism 48 that is capable of changing the opening and closing timing of the exhaust valve 44 .
- the variable valve operating mechanism of the present invention is not limited to the one having the aforementioned configuration. More specifically, a configuration may be adopted that adjusts the valve overlap period by regulating at least one of the closing timing of the exhaust valve and the opening timing of the intake valve.
- the ECU 54 executes the aforementioned processing of step 102 , whereby the “blow-through amount obtaining means” according to the first aspect of the present invention is realized, the ECU 54 executes the aforementioned processing of step 108 when the aforementioned determination of step 106 is positive, whereby the “overlap period shortening means” according to the first aspect of the present invention is realized, the ECU 54 executes the aforementioned processing of step 110 when the aforementioned determination of step 104 is positive, whereby the “blow-through amount determination means” according to the first aspect of the present invention is realized, and the ECU 54 executes the aforementioned processing of step 112 when the aforementioned determination of step 110 is positive, whereby the “WGV control means” according to the first aspect of the present invention is realized.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Provided is a control apparatus for a supercharged internal combustion engine, which can favorably achieve a good balance between prevention of overheat of a catalyst disposed an exhaust passage and suppression of turbo lag, in a case in which a fresh air blow-through is generated through a combustion chamber from an intake passage to an exhaust passage. A turbo supercharger (22), an exhaust bypass passage (36), a WGV (38) capable of switching the opening and closing of the exhaust bypass passage (36), and variable valve operating mechanisms (46, 48) capable of changing a valve overlap period are included. The valve overlap period is shortened so that the fresh air blow-through amount Gsca becomes equal to or smaller than a predetermined blow-through determination value Gjudge when the blow-through amount Gsca is larger than the blow-through determination value Gjudge. The WGV (38) is opened when the blow-through amount Gsca is still larger than the blow-through determination value Gjudge after the valve overlap period has been shortened.
Description
- The present invention relates to a control apparatus for a supercharged internal combustion engine, and more particular to a control apparatus for a supercharged internal combustion engine that is suitable for controlling the internal combustion engine that includes a variable valve operating mechanism capable of changing a valve overlap period and a waste gate valve.
- So far, for example, Patent Document 1 discloses a control apparatus for an internal combustion engine. This conventional control apparatus estimates a blow-through amount of fresh air that blows through a combustion chamber from an intake passage to an exhaust passage, on the basis of the concentration of oxygen in the exhaust passage detected by an air fuel ratio sensor. On that basis, a valve overlap period is controlled in accordance with this amount of blow-through of the fresh air.
- Including the above described document, the applicant is aware of the following documents as related art of the present invention.
- Patent Document 1: Japanese Laid-open Patent Application Publication No. 2007-263083
- Patent Document 2: Japanese Laid-open Patent Application Publication No. 2008-175201
- Patent Document 3: Japanese Laid-open Patent Application Publication No. 2010-163915
- Patent Document 4: Japanese Laid-open Patent Application Publication No. 2008-297930
- If the blow-through amount of fresh air that blows through the combustion chamber from the intake passage to the exhaust passage becomes too large, there is a concern that a catalyst disposed in the exhaust passage may be overheated. According to the aforementioned conventional control apparatus, when the blow-through amount of the fresh air is large, shortening the valve overlap period allows the blow-through amount to be reduced. However, an operating region is present in which reducing the blow-through amount to a desirable amount is difficult only by adjusting the valve overlap period. In such an operating region, it is not possible to adequately reduce the blow-through amount only by shortening the valve overlap period, and as a result, there is a concern that the overheat of the catalyst may be produced.
- The present invention has been made to solve the problem as described above, and has its object to provide a control apparatus for a supercharged internal combustion engine, which can favorably achieve a good balance between prevention of overheat of a catalyst disposed an exhaust passage and suppression of turbo lag, in a case in which a blow-through of fresh air that blows through a combustion chamber from an intake passage to an exhaust passage is generated.
- A first aspect of the present invention is a control apparatus for a supercharged internal combustion engine, comprising:
- a turbo supercharger which includes, in an exhaust passage, a turbine that is operated by exhaust energy;
- an exhaust bypass passage which branches off from the exhaust passage at an upstream side portion of the turbine and merges with the exhaust passage at a downstream side portion of the turbine;
- a waste gate valve which is capable of switching an opening and closing of the exhaust bypass passage;
- a variable valve operating mechanism which is capable of changing a valve overlap period during which an opening period of an exhaust valve overlaps with an opening period of an intake valve;
- blow-through amount obtaining means for obtaining a blow-through amount of fresh air that blows through a combustion chamber from an intake passage to the exhaust passage;
- overlap period shortening means for shortening the valve overlap period so that the blow-through amount becomes equal to or smaller than a predetermined blow-through determination value when the blow-through amount is larger than the blow-through determination value;
- blow-through amount determination means for determining whether or not the blow-through amount is still larger than the blow-through determination value after the valve overlap period has been shortened by the overlap period shortening means; and
- WGV control means for opening the waste gate valve when the blow-through amount is determined by the blow-through amount determination means to be still larger than the blow-through determination value.
- A second aspect of the present invention is the control apparatus for a supercharged internal combustion engine according to the first aspect of the present invention, further comprising an air fuel ratio sensor which is disposed in the exhaust passage to detect an air fuel ratio of exhaust gas,
- wherein the blow-through amount obtaining means is means for obtaining the blow-through amount based on an output value of the air fuel ratio sensor.
- According to the first aspect of the present invention, when the blow-through amount of fresh air is larger than the blow-through determination value, it becomes possible to decrease the blow-through amount to the blow-through determination value or less, while suppressing the control amount of the opening degree of the waste gate valve to the minimum necessary. Therefore, the present invention can favorably achieve a good balance between prevention of overheat of a catalyst disposed an exhaust passage by controlling the blow-through amount and suppression of turbo lag, in a case in which the blow-through amount is larger than the blow-through amount.
- When the blow-through amount is larger than the blow-through determination value, the second aspect of the present invention can favorably achieve a good balance between the prevention of overheat of the catalyst by controlling the blow-through amount and the suppression of turbo lag, by use of the configuration by which the aforementioned blow-through amount is obtained on the basis of the output value of the air fuel ratio sensor.
-
FIG. 1 is a schematic diagram for illustrating a system configuration of an internal combustion engine according to a first embodiment of the present invention; -
FIG. 2 is a diagram for explaining a blow-through of fresh air that blows through a combustion chamber from an intake passage to an exhaust passage; and -
FIG. 3 is a flowchart of a routine that is executed in the first embodiment of the present invention. -
FIG. 1 is a schematic diagram for illustrating a system configuration of aninternal combustion engine 10 according to a first embodiment of the present invention. The system of the present embodiment includes, as one example, a spark ignition type internal combustion engine (gasoline engine) 10. Acombustion chamber 12 is formed in each cylinder of theinternal combustion engine 10. Anintake passage 14 and anexhaust passage 16 are in communication with thecombustion chamber 12. - An
air cleaner 18 is disposed at a position near an inlet of theintake passage 14. Anair flow meter 20 is disposed near a downstream position of theair cleaner 18 to output a signal according to a flow rate of air drawn into theintake passage 14. Acompressor 22 a of aturbo supercharger 22 is disposed downstream of theair flow meter 20. Thecompressor 22 a is integrally connected, via aturbine shaft 22 c, to aturbine 22 b disposed at theexhaust passage 16. - An
intercooler 24 that cools compressed air is disposed downstream of thecompressor 22 a. An electronically controlledthrottle valve 26 is disposed downstream of theintercooler 24. Anintake pressure sensor 28 for detecting an intake pressure P1 is disposed downstream of the throttle valve 26 (at an intake manifold part). In addition, each cylinder of theinternal combustion engine 10 includes afuel injection valve 30 for injecting fuel into an intake port, and anignition plug 32 for igniting a mixture gas. - Further, an air
fuel ratio sensor 34 for detecting an air fuel ratio (oxygen concentration) of exhaust gas is disposed on the upstream side of theturbine 22 c in theexhaust passage 16. Furthermore, there is connected in theexhaust passage 16, anexhaust bypass passage 36 which is configured to branch off theexhaust passage 16 at an upstream side portion of theturbine 22 b and merge with theexhaust passage 16 at a downstream side portion of theturbine 22. At some point of theexhaust bypass passage 36, a waste gate valve (WGV) 38 is provided for opening and closing theexhaust bypass passage 36. The WGV 38 is herein assumed to be configured to be able to be adjusted to an arbitrary opening degree by means of a pressure-regulated or electrically-operated type actuator (not shown). In addition, acatalyst 40 for purifying the exhaust gas is disposed in theexhaust passage 16 on the further downstream side of its portion that is connected with theexhaust bypass passage 36 on the downstream side of theturbine 22 b. - An
intake valve 42 and anexhaust valve 44 are provided at the intake port and an exhaust port, respectively. Theintake valve 42 establishes continuity or discontinuity between thecombustion chamber 12 and theintake passage 14, and theexhaust valve 44 establishes continuity or discontinuity between thecombustion chamber 12 and theexhaust passage 16. Theintake valve 42 and theexhaust valve 44 are driven by an intake variablevalve operating mechanism 46 and an exhaust variablevalve operating mechanism 48, respectively. It is assumed herein that as the intake variablevalve operating mechanism 46, a variable valve timing (VVT) mechanism is used that continuously makes the opening and closing timing of theintake valve 42 variable by changing a rotation phase of an intake camshaft with respect to a rotation phase of a crankshaft, and the exhaust variablevalve operating mechanism 48 also is a mechanism that has the same configuration as that. In addition, in the vicinity of the intake camshaft and an exhaust camshaft, an intakecam angle sensor 50 and an exhaustcam angle sensor 52 are disposed for detecting rotational angles of the camshafts, that is, an intake cam angle and an exhaust cam angle, respectively. - Furthermore, the system shown in
FIG. 1 includes an ECU (Electronic Control Unit) 54. An input section of theECU 54 is connected with various types of sensors for detecting the operating state of theinternal combustion engine 10, such as acrank angle sensor 56 for detecting an engine speed, as well as theair flow meter 20, theintake pressure sensor 28 and the airfuel ratio sensor 34 that are described above. In addition, an output section of theECU 54 is connected with various types of actuators for controlling the operating state of theinternal combustion engine 10, such as thethrottle valve 26, thefuel injection valve 30, theignition plug 32, theWGV 38 and the variablevalve operating mechanisms internal combustion engine 10 by actuating each actuator according to the output of the aforementioned each sensor and predetermined programs. -
FIG. 2 is a diagram for explaining a blow-through of fresh air that blows through thecombustion chamber 12 from theintake passage 14 to theexhaust passage 16. - According to the intake variable
valve operating mechanism 46 and the exhaust variablevalve operating mechanism 48 that are described above, a valve overlap period during which the opening period of theexhaust valve 44 and the opening period of theintake valve 42 are overlapped with each other (hereinafter, simply referred to as the “valve overlap period”) can be changed by adjusting at least one of the advance amount of the opening and closing timing of theintake valve 42 and the retard amount of the opening and closing timing of theexhaust valve 44. - When the supercharging by the
turbo supercharger 22 allows an intake pressure P1 to be higher than an exhaust pressure P2 in a state in which the aforementioned valve overlap period is set, as shown inFIG. 2 , the phenomenon is produced in which fresh air (intake air) blows through thecombustion chamber 12 from theintake passage 14 toward theexhaust passage 16. If such blow-through of the fresh air is produced, the residual gas in the cylinder can be scavenged, and therefore, effects such as improvement of the torque of theinternal combustion engine 10 and the like can be obtained. - However, if the amount of the blow-through of fresh air that is to be expelled to the
exhaust passage 16 without contributing to the combustion becomes too large, there is a concern that the overheat of thecatalyst 40 due to the combustion at theexhaust passage 16 and the deterioration of fuel efficiency of theinternal combustion engine 10 may be produced. When the amount of the blow-through of fresh air is large as seen above, shortening the valve overlap period by means of the variablevalve operating mechanisms - Accordingly, in the present embodiment, a fresh air blow-through amount Gsca is calculated by use of the output value of the air
fuel ratio sensor 34 during operation of theinternal combustion engine 10, and further, when the blow-through amount Gsca calculated is larger than a predetermined blow-through determination value Gjudge, the valve overlap period is shortened so that the blow-through amount Gsca becomes smaller than or equal to the blow-through determination value Gjudge. On that basis, if the blow-through amount Gsca has not yet become smaller than or equal to the blow-through determination value Gjudge in spite of the shortening of the valve overlap period, theWGV 38 is opened. -
FIG. 3 is a flowchart showing a control routine executed by theECU 54 to implement the control according to the first embodiment of the present invention. - According to the routine shown in
FIG. 3 , first, it is determined whether or not a blow-through occurrence condition of fresh air is established (step 100). Specifically, theECU 54 stores a map (not shown) that defines an operating region in which the blow-through occurrence condition under which the blow-through of fresh air is generated during setting of the valve overlap period is established, through the use of the operating region (region based on a load factor and an engine speed) of theinternal combustion engine 10. Inpresent step 100, it is determined with reference to such a map whether or not the current operating region is an operating region in which the blow-through occurrence condition is established. In this connection, determination as to whether or not the blow-through occurrence condition is established is not limited to the one using the aforementioned method, and if, for example, an exhaust pressure sensor for detecting the exhaust pressure P2 is included in addition to theintake pressure sensor 28 for detecting the intake pressure P1, may be the one performed by comparing values of those sensors. - If it is determined in
aforementioned step 100 that the blow-through occurrence condition of fresh air is established, the fresh air blow-through amount Gsca is calculated on the basis of the output value of the air fuel ratio sensor 34 (step 102). Inpresent step 102, the blow-through amount Gsca is calculated in accordance with the following expression. -
Gsca=Sabyf/Iabyf×Ga - where Sabyf denotes an air fuel ratio of exhaust gas obtained by use of the air
fuel ratio sensor 34, Iabyf denotes a target air fuel ratio calculated on the basis of the intake air amount and the fuel injection amount, and Ga denotes an intake air amount obtained by use of theair flow meter 20. - Next, it is determined whether or not the valve overlap period has been shortened (step 104). Specifically, in
present step 104, it is determined whether or not there is a situation in which the valve overlap period has been shortened to a predetermined value or less by means of the processing ofstep 108 described later, during establishment of the aforementioned blow-through occurrence condition. - If the valve overlap period is determined in
aforementioned step 104 not to have been shortened, it is determined whether or not the fresh air blow-through amount Gsca is larger than a predetermined determination value Gjudge (step 106). The determination value Gjudge inpresent step 106 is a value that is set in advance as a threshold value for judging whether or not the current blow-through amount Gsca is an amount by which the overheat of thecatalyst 40 may be produced. - If it is determined in
aforementioned step 106 that the current blow-through amount Gsca is larger than the determination value Gjudge, the valve overlap period is shortened by means of the variablevalve operating mechanisms - If, on the other hand, the valve overlap period is determined in
aforementioned step 104 to have been shortened, it is then determined whether or not the current blow-through amount Gsca is larger than the determination value Gjudge by the processing similar to that of aforementioned step 106 (step 110). As a result of this, if the current blow-through amount Gsca is determined inpresent step 110 to be larger than the determination value Gjudge, that is to say, it can be judged that the blow-through amount Gsca has not yet become smaller than or equal to the blow-through determination value Gjudge in spite of the shortening of the valve overlap period, theWGV 38 is opened to an opening degree necessary to decrease the boost pressure to a predetermined pressure or lower (step 112). As one example, the processing ofpresent step 112 can be performed as follows. More specifically, for example, a feedback control of the WGV opening degree is performed so as to achieve the value of the boost pressure (obtained by a map or the like) necessary for the blow-through amount Gsca to be smaller than or equal to the blow-through determination value Gjudge, on the basis of the intake pressure P1 detected by theintake pressure sensor 28. - According to the routine shown in
FIG. 3 described so far, if the blow-through amount Gsca is still not smaller than or equal to the blow-through determination value Gjudge after the shortening of the valve overlap period has been performed, theWGV 38 is opened in order to decrease the boost pressure. In other words, according to the aforementioned routine, under a situation in which the blow-through amount Gsca becomes larger than the blow-through determination value Gjudge, a control to reduce the blow-through amount Gsca is performed in the order from the shortening of the valve overlap period to the adjustment of theWGV 38. More specifically, opening theWGV 38 for the purpose of reducing the blow-through amount is prohibited until it is judged that shortening the valve overlap period does not allow the blow-through amount Gsca to be smaller than or equal to the blow-through determination value Gjudge. - If, in contrast to the aforementioned routine, the
WGV 38 is opened immediately when the blow-through amount Gsca becomes larger than the blow-through determination value Gjudge, the control amount of the opening degree of theWGV 38 that is necessary for the blow-through amount Gsca to be smaller than or equal to the blow-through determination value Gjudge becomes large. As a result of this, turbo lag becomes large due to a decrease in the flow rate of exhaust gas passing through theturbine 22 b. On the other hand, according to the method of the aforementioned routine, when the blow-through amount Gsca is required to be suppressed by theWGV 38, it becomes possible to suppress the control amount of the opening degree of theWGV 38 to the minimum necessary. Therefore, the system according to the present embodiment can favorably achieve a good balance between prevention of overheat of thecatalyst 40 by suppressing the blow-through amount Gsca and suppression of turbo lag, while obtaining the scavenging effect, in a case in which the blow-through amount Gsca is larger than the blow-through determination value Gjudge. - Incidentally, in the first embodiment, which has been described above, the blow-through amount of fresh air is calculated by use of the output value of the air
fuel ratio sensor 34. However, the blow-through amount obtaining means of the present invention is not limited to the one using the aforementioned method. - In addition, in the first embodiment, which has been described above, the valve overlap period is changed by means of the intake variable
valve operating mechanism 46 that is capable of changing the opening and closing timing of theintake valve 42 and the exhaust variablevalve operating mechanism 48 that is capable of changing the opening and closing timing of theexhaust valve 44. However, the variable valve operating mechanism of the present invention is not limited to the one having the aforementioned configuration. More specifically, a configuration may be adopted that adjusts the valve overlap period by regulating at least one of the closing timing of the exhaust valve and the opening timing of the intake valve. - It is noted that in the first embodiment, which has been described above, the
ECU 54 executes the aforementioned processing ofstep 102, whereby the “blow-through amount obtaining means” according to the first aspect of the present invention is realized, theECU 54 executes the aforementioned processing ofstep 108 when the aforementioned determination ofstep 106 is positive, whereby the “overlap period shortening means” according to the first aspect of the present invention is realized, theECU 54 executes the aforementioned processing ofstep 110 when the aforementioned determination ofstep 104 is positive, whereby the “blow-through amount determination means” according to the first aspect of the present invention is realized, and theECU 54 executes the aforementioned processing ofstep 112 when the aforementioned determination ofstep 110 is positive, whereby the “WGV control means” according to the first aspect of the present invention is realized. - 10 internal combustion engine
- 12 combustion chamber
- 14 intake passage
- 16 exhaust passage
- 20 air flow meter
- 22 turbo supercharger
- 22 a compressor
- 22 b turbine
- 22 c turbine shaft
- 26 throttle valve
- 28 intake pressure sensor
- 30 fuel injection valve
- 32 ignition plug
- 34 air fuel ratio sensor
- 36 exhaust bypass passage
- 38 waste gate valve
- 40 catalyst
- 42 intake valve
- 44 exhaust valve
- 46 intake variable valve operating mechanism
- 48 exhaust variable valve operating mechanism
- 50 intake cam angle sensor
- 52 exhaust cam angle sensor
- 54 ECU (Electronic Control Unit)
Claims (4)
1.-2. (canceled)
3. A control apparatus for a supercharged internal combustion engine, comprising:
a turbo supercharger which includes, in an exhaust passage, a turbine that is operated by exhaust energy;
an exhaust bypass passage which branches off from the exhaust passage at an upstream side portion of the turbine and merges with the exhaust passage at a downstream side portion of the turbine;
a waste gate valve which is capable of switching an opening and closing of the exhaust bypass passage;
a variable valve operating mechanism which is capable of changing a valve overlap period during which an opening period of an exhaust valve overlaps with an opening period of an intake valve; and
a controller that is configured to:
obtain a blow-through amount of fresh air that blows through a combustion chamber from an intake passage to the exhaust passage;
shorten the valve overlap period so that the blow-through amount becomes equal to or smaller than a predetermined blow-through determination value when the blow-through amount is larger than the blow-through determination value;
determine whether or not the blow-through amount is still larger than the blow-through determination value after shortening the valve overlap period; and
open the waste gate valve when determining the blow-through amount to be still larger than the blow-through determination value after the shortening of the valve overlap period, while, in order to decrease the blow-through amount, prohibiting opening of the waste gate valve until determining the blow-through amount to be still larger than the blow-through determination value after the shortening of the valve overlap period.
4. The control apparatus for a supercharged internal combustion engine according to claim 3 , further comprising an air fuel ratio sensor which is disposed in the exhaust passage to detect an air fuel ratio of exhaust gas,
wherein the controller obtains the blow-through amount based on an output value of the air fuel ratio sensor.
5. A control apparatus for a supercharged internal combustion engine, comprising:
a turbo supercharger which includes, in an exhaust passage, a turbine that is operated by exhaust energy;
an exhaust bypass passage which branches off from the exhaust passage at an upstream side portion of the turbine and merges with the exhaust passage at a downstream side portion of the turbine;
a waste gate valve which is capable of switching an opening and closing of the exhaust bypass passage;
a variable valve operating mechanism which is capable of changing a valve overlap period during which an opening period of an exhaust valve overlaps with an opening period of an intake valve;
blow-through amount obtaining means for obtaining a blow-through amount of fresh air that blows through a combustion chamber from an intake passage to the exhaust passage;
overlap period shortening means for shortening the valve overlap period so that the blow-through amount becomes equal to or smaller than a predetermined blow-through determination value when the blow-through amount is larger than the blow-through determination value;
blow-through amount determination means for determining whether or not the blow-through amount is still larger than the blow-through determination value after the valve overlap period has been shortened by the overlap period shortening means; and
WGV control means for opening the waste gate valve when the blow-through amount is determined by the blow-through amount determination means to be still larger than the blow-through determination value, while, in order to decrease the blow-through amount, prohibiting opening of the waste gate valve until the blow-through amount is determined by the blow-through amount determination means to be still larger than the blow-through determination value.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/051212 WO2012101737A1 (en) | 2011-01-24 | 2011-01-24 | Control device for supercharger-equipped internal combustion engine |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/051212 A-371-Of-International WO2012101737A1 (en) | 2011-01-24 | 2011-01-24 | Control device for supercharger-equipped internal combustion engine |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/568,190 Division US9470142B2 (en) | 2011-01-24 | 2014-12-12 | Control apparatus for supercharged internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130305707A1 true US20130305707A1 (en) | 2013-11-21 |
Family
ID=46580348
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/881,084 Abandoned US20130305707A1 (en) | 2011-01-24 | 2011-01-24 | Control apparatus for supercharger-equipped internal combustion engine |
US14/568,190 Expired - Fee Related US9470142B2 (en) | 2011-01-24 | 2014-12-12 | Control apparatus for supercharged internal combustion engine |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/568,190 Expired - Fee Related US9470142B2 (en) | 2011-01-24 | 2014-12-12 | Control apparatus for supercharged internal combustion engine |
Country Status (5)
Country | Link |
---|---|
US (2) | US20130305707A1 (en) |
EP (1) | EP2669497B1 (en) |
JP (1) | JP5447696B2 (en) |
CN (1) | CN103299050B (en) |
WO (1) | WO2012101737A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130283786A1 (en) * | 2012-04-02 | 2013-10-31 | Bosch Mahle Turbosysteme GmbH & Co. KG | Turbocharger for use in an internal combustion engine |
US20160290245A1 (en) * | 2015-03-30 | 2016-10-06 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine |
US10066560B2 (en) | 2014-02-07 | 2018-09-04 | Audi Ag | Method for operating an internal combustion engine and corresponding internal combustion engine |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9470183B2 (en) * | 2014-08-12 | 2016-10-18 | Ford Global Technologies, Llc | Coordination of secondary air and blow-through air delivery |
US9567886B2 (en) * | 2014-12-02 | 2017-02-14 | MAGNETI MARELLI S.p.A. | Method to control the temperature of the exhaust gases of a supercharged internal combustion engine |
JP6222193B2 (en) * | 2015-09-15 | 2017-11-01 | トヨタ自動車株式会社 | Control device for internal combustion engine |
JP7067003B2 (en) * | 2017-09-25 | 2022-05-16 | 三菱自動車工業株式会社 | Engine control |
DE102018217117A1 (en) * | 2018-10-08 | 2020-04-09 | Volkswagen Aktiengesellschaft | Method for regulating the boost pressure of an internal combustion engine |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030168037A1 (en) * | 2000-05-08 | 2003-09-11 | Cummins Inc. | Multiple operating mode engine and method of operation |
US6827051B2 (en) * | 1999-12-03 | 2004-12-07 | Nissan Motor Co., Ltd. | Internal EGR quantity estimation, cylinder intake air quantity calculation, valve timing control, and ignition timing control |
US6904356B2 (en) * | 2003-02-19 | 2005-06-07 | Toyota Jidosha Kabushiki Kaisha | Apparatus and method for estimating internal EGR amount in internal combustion engine |
US6917874B2 (en) * | 2003-02-19 | 2005-07-12 | Toyota Jidosha Kabushiki Kaisha | Apparatus for controlling internal combustion engine |
US20050251317A1 (en) * | 2004-04-21 | 2005-11-10 | Denso Corporation | Air amount calculator for internal combustion engine |
US7275516B1 (en) * | 2006-03-20 | 2007-10-02 | Ford Global Technologies, Llc | System and method for boosted direct injection engine |
US7295912B2 (en) * | 2003-07-03 | 2007-11-13 | Honda Motor Co., Ltd. | Intake air volume controller of internal combustion engine |
US20080077304A1 (en) * | 2006-09-21 | 2008-03-27 | Hitachi, Ltd. | Control Device of Internal Combustion Engine |
US7440836B2 (en) * | 2004-06-15 | 2008-10-21 | Honda Motor Co., Ltd. | Control system for internal combustion engine |
US20090007564A1 (en) * | 2007-06-26 | 2009-01-08 | Hitachi, Ltd. | Method and Apparatus for Controlling an Internal Combustion Engine |
US7480558B2 (en) * | 2007-02-28 | 2009-01-20 | Gm Global Technology Operations, Inc. | Method and apparatus for controlling a homogeneous charge compression ignition engine |
US20130255631A1 (en) * | 2012-03-27 | 2013-10-03 | Ford Global Technologies, Llc | Operation of an internal combustion engine |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2617491B2 (en) * | 1987-10-15 | 1997-06-04 | マツダ株式会社 | Engine with turbocharger |
JPH04132832A (en) * | 1990-09-25 | 1992-05-07 | Mazda Motor Corp | Intake/exhaust structure of engine |
JP3281068B2 (en) * | 1992-12-14 | 2002-05-13 | マツダ株式会社 | Variable valve timing device for engine with mechanical supercharger |
JP4532004B2 (en) * | 2001-03-08 | 2010-08-25 | 富士重工業株式会社 | Fuel injection control device for variable valve timing mechanism and supercharged engine |
DE10346747A1 (en) * | 2003-10-06 | 2005-05-12 | Fev Motorentech Gmbh | Method for optimizing the operation of a supercharged piston internal combustion engine in the lower speed range |
JP4779757B2 (en) | 2006-03-30 | 2011-09-28 | 日産自動車株式会社 | Control device and control method for internal combustion engine |
JP4924365B2 (en) * | 2006-12-20 | 2012-04-25 | トヨタ自動車株式会社 | Control device for internal combustion engine |
JP2008297930A (en) * | 2007-05-29 | 2008-12-11 | Toyota Motor Corp | Control device for internal combustion engine |
JP4893514B2 (en) * | 2007-07-13 | 2012-03-07 | トヨタ自動車株式会社 | Control device for an internal combustion engine with a supercharger |
US7801665B2 (en) * | 2007-07-13 | 2010-09-21 | Ford Global Technologies, Llc | Controlling cylinder mixture and turbocharger operation |
DE102007039613B4 (en) * | 2007-08-22 | 2014-10-09 | Continental Automotive Gmbh | Method for operating an internal combustion engine and control and regulating device |
US8141357B2 (en) * | 2007-10-12 | 2012-03-27 | Mazda Motor Corporation | Supercharger for an engine |
JP5157923B2 (en) | 2009-01-14 | 2013-03-06 | 日産自動車株式会社 | Torque control device for supercharged engine |
US8135535B2 (en) * | 2009-06-09 | 2012-03-13 | Ford Global Technologies, Llc | Modeling catalyst exotherm due to blowthrough |
CN102439276B (en) * | 2010-04-20 | 2014-06-04 | 丰田自动车株式会社 | Control device for an internal combustion engine |
-
2011
- 2011-01-24 CN CN201180064542.XA patent/CN103299050B/en not_active Expired - Fee Related
- 2011-01-24 JP JP2012554516A patent/JP5447696B2/en not_active Expired - Fee Related
- 2011-01-24 EP EP11857005.0A patent/EP2669497B1/en not_active Not-in-force
- 2011-01-24 WO PCT/JP2011/051212 patent/WO2012101737A1/en not_active Ceased
- 2011-01-24 US US13/881,084 patent/US20130305707A1/en not_active Abandoned
-
2014
- 2014-12-12 US US14/568,190 patent/US9470142B2/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6827051B2 (en) * | 1999-12-03 | 2004-12-07 | Nissan Motor Co., Ltd. | Internal EGR quantity estimation, cylinder intake air quantity calculation, valve timing control, and ignition timing control |
US20030168037A1 (en) * | 2000-05-08 | 2003-09-11 | Cummins Inc. | Multiple operating mode engine and method of operation |
US6904356B2 (en) * | 2003-02-19 | 2005-06-07 | Toyota Jidosha Kabushiki Kaisha | Apparatus and method for estimating internal EGR amount in internal combustion engine |
US6917874B2 (en) * | 2003-02-19 | 2005-07-12 | Toyota Jidosha Kabushiki Kaisha | Apparatus for controlling internal combustion engine |
US7295912B2 (en) * | 2003-07-03 | 2007-11-13 | Honda Motor Co., Ltd. | Intake air volume controller of internal combustion engine |
US20050251317A1 (en) * | 2004-04-21 | 2005-11-10 | Denso Corporation | Air amount calculator for internal combustion engine |
US7440836B2 (en) * | 2004-06-15 | 2008-10-21 | Honda Motor Co., Ltd. | Control system for internal combustion engine |
US7275516B1 (en) * | 2006-03-20 | 2007-10-02 | Ford Global Technologies, Llc | System and method for boosted direct injection engine |
US20080077304A1 (en) * | 2006-09-21 | 2008-03-27 | Hitachi, Ltd. | Control Device of Internal Combustion Engine |
US7480558B2 (en) * | 2007-02-28 | 2009-01-20 | Gm Global Technology Operations, Inc. | Method and apparatus for controlling a homogeneous charge compression ignition engine |
US20090007564A1 (en) * | 2007-06-26 | 2009-01-08 | Hitachi, Ltd. | Method and Apparatus for Controlling an Internal Combustion Engine |
US20130255631A1 (en) * | 2012-03-27 | 2013-10-03 | Ford Global Technologies, Llc | Operation of an internal combustion engine |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130283786A1 (en) * | 2012-04-02 | 2013-10-31 | Bosch Mahle Turbosysteme GmbH & Co. KG | Turbocharger for use in an internal combustion engine |
US9181858B2 (en) * | 2012-04-02 | 2015-11-10 | Robert Bosch Gmbh | Turbocharged engine with a sensor device in the turbocharger housing |
US10066560B2 (en) | 2014-02-07 | 2018-09-04 | Audi Ag | Method for operating an internal combustion engine and corresponding internal combustion engine |
US20160290245A1 (en) * | 2015-03-30 | 2016-10-06 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine |
US10180109B2 (en) * | 2015-03-30 | 2019-01-15 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
CN103299050A (en) | 2013-09-11 |
JP5447696B2 (en) | 2014-03-19 |
EP2669497A1 (en) | 2013-12-04 |
WO2012101737A1 (en) | 2012-08-02 |
CN103299050B (en) | 2014-10-15 |
EP2669497B1 (en) | 2016-01-06 |
JPWO2012101737A1 (en) | 2014-06-30 |
EP2669497A4 (en) | 2014-06-18 |
US9470142B2 (en) | 2016-10-18 |
US20150096282A1 (en) | 2015-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9470142B2 (en) | Control apparatus for supercharged internal combustion engine | |
JP4277897B2 (en) | Control device for internal combustion engine | |
US8813493B2 (en) | Supercharger control device for an internal combustion engine | |
JP2009243377A (en) | Internal combustion engine | |
JP5092962B2 (en) | Control device for an internal combustion engine with a supercharger | |
CN103975148A (en) | Control device for internal combustion engine | |
JP2010255603A (en) | Control device for an internal combustion engine with a supercharger | |
JP5590234B2 (en) | Control device for internal combustion engine | |
CN108026841B (en) | Control device for internal combustion engine and control method for internal combustion engine | |
WO2013114585A1 (en) | Control device for internal combustion engine | |
JP2012229666A (en) | Internal combustion engine control device | |
JP2014034959A (en) | Exhaust gas recirculation device of engine with supercharger | |
JP5531987B2 (en) | Control device for an internal combustion engine with a supercharger | |
JP4789756B2 (en) | Control device for internal combustion engine | |
JP4196343B2 (en) | Internal combustion engine and method for operating the same | |
JP6127906B2 (en) | Control device for internal combustion engine | |
JP6914591B2 (en) | Internal combustion engine control device | |
JP2013130121A (en) | Exhaust gas recirculation system for spark-ignition-type internal combustion engine | |
JP2012188994A (en) | Control apparatus for internal combustion engine with supercharger | |
JP2007009877A (en) | Abnormality diagnostic device for supercharging pressure control system | |
JP5800090B2 (en) | Control device for internal combustion engine | |
JP5338709B2 (en) | Control device for internal combustion engine | |
JP2011122466A (en) | Method of inhibiting knocking of internal combustion engine | |
JP6398279B2 (en) | Control device for an internal combustion engine with a supercharger | |
JP2017110549A (en) | Control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAKAGI, NOBORU;REEL/FRAME:030274/0752 Effective date: 20130306 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |