US20130338064A1 - Insulin-lipid complex,preparation method therefor, and preparation thereof - Google Patents
Insulin-lipid complex,preparation method therefor, and preparation thereof Download PDFInfo
- Publication number
- US20130338064A1 US20130338064A1 US13/810,098 US201113810098A US2013338064A1 US 20130338064 A1 US20130338064 A1 US 20130338064A1 US 201113810098 A US201113810098 A US 201113810098A US 2013338064 A1 US2013338064 A1 US 2013338064A1
- Authority
- US
- United States
- Prior art keywords
- insulin
- lipid
- solution
- complex
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 41
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims abstract description 337
- 102000004877 Insulin Human genes 0.000 claims abstract description 171
- 108090001061 Insulin Proteins 0.000 claims abstract description 171
- 229940125396 insulin Drugs 0.000 claims abstract description 169
- 150000002632 lipids Chemical class 0.000 claims abstract description 68
- 239000000463 material Substances 0.000 claims abstract description 47
- 239000003960 organic solvent Substances 0.000 claims abstract description 35
- 239000002253 acid Substances 0.000 claims abstract description 16
- 238000009835 boiling Methods 0.000 claims abstract description 14
- 238000001035 drying Methods 0.000 claims abstract description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 135
- 239000000243 solution Substances 0.000 claims description 124
- 239000003921 oil Substances 0.000 claims description 87
- 150000003904 phospholipids Chemical class 0.000 claims description 60
- 239000002904 solvent Substances 0.000 claims description 59
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 53
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 38
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 claims description 31
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 30
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 27
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 26
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 25
- 239000007789 gas Substances 0.000 claims description 19
- 238000002390 rotary evaporation Methods 0.000 claims description 17
- 238000004821 distillation Methods 0.000 claims description 15
- 239000003995 emulsifying agent Substances 0.000 claims description 15
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 15
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 14
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 10
- 238000004108 freeze drying Methods 0.000 claims description 9
- 238000002347 injection Methods 0.000 claims description 9
- 239000007924 injection Substances 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 7
- PBGKTOXHQIOBKM-FHFVDXKLSA-N insulin (human) Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3NC=NC=3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)[C@@H](C)CC)[C@@H](C)O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 PBGKTOXHQIOBKM-FHFVDXKLSA-N 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 101000976075 Homo sapiens Insulin Proteins 0.000 claims description 6
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 6
- 239000007957 coemulsifier Substances 0.000 claims description 6
- 229940042880 natural phospholipid Drugs 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 238000001694 spray drying Methods 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 5
- 229920001213 Polysorbate 20 Polymers 0.000 claims description 4
- HVUMOYIDDBPOLL-XGKPLOKHSA-N [2-[(2r,3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XGKPLOKHSA-N 0.000 claims description 4
- 239000004359 castor oil Substances 0.000 claims description 4
- 235000019438 castor oil Nutrition 0.000 claims description 4
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 claims description 4
- 239000007972 injectable composition Substances 0.000 claims description 4
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 claims description 4
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 claims description 4
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 claims description 4
- 229920000053 polysorbate 80 Polymers 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 238000005086 pumping Methods 0.000 claims description 4
- 239000004094 surface-active agent Substances 0.000 claims description 4
- 239000000263 2,3-dihydroxypropyl (Z)-octadec-9-enoate Substances 0.000 claims description 3
- RZRNAYUHWVFMIP-GDCKJWNLSA-N 3-oleoyl-sn-glycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-GDCKJWNLSA-N 0.000 claims description 3
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 claims description 3
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 claims description 3
- 235000012000 cholesterol Nutrition 0.000 claims description 3
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 claims description 3
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 claims description 3
- 229940093471 ethyl oleate Drugs 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 3
- 210000004072 lung Anatomy 0.000 claims description 3
- RZRNAYUHWVFMIP-UHFFFAOYSA-N monoelaidin Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-UHFFFAOYSA-N 0.000 claims description 3
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical group CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 claims description 3
- BHQCQFFYRZLCQQ-UHFFFAOYSA-N (3alpha,5alpha,7alpha,12alpha)-3,7,12-trihydroxy-cholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 BHQCQFFYRZLCQQ-UHFFFAOYSA-N 0.000 claims description 2
- 101001011741 Bos taurus Insulin Proteins 0.000 claims description 2
- 239000004380 Cholic acid Substances 0.000 claims description 2
- 108010092217 Long-Acting Insulin Proteins 0.000 claims description 2
- 102000016261 Long-Acting Insulin Human genes 0.000 claims description 2
- 229940100066 Long-acting insulin Drugs 0.000 claims description 2
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 claims description 2
- 108010005991 Pork Regular Insulin Proteins 0.000 claims description 2
- LWZFANDGMFTDAV-BURFUSLBSA-N [(2r)-2-[(2r,3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O LWZFANDGMFTDAV-BURFUSLBSA-N 0.000 claims description 2
- 239000003963 antioxidant agent Substances 0.000 claims description 2
- IXIBAKNTJSCKJM-BUBXBXGNSA-N bovine insulin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3NC=NC=3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 IXIBAKNTJSCKJM-BUBXBXGNSA-N 0.000 claims description 2
- 239000002738 chelating agent Substances 0.000 claims description 2
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 claims description 2
- 235000019416 cholic acid Nutrition 0.000 claims description 2
- 229960002471 cholic acid Drugs 0.000 claims description 2
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 claims description 2
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 claims description 2
- 239000006185 dispersion Substances 0.000 claims description 2
- JLFNLZLINWHATN-UHFFFAOYSA-N pentaethylene glycol Chemical compound OCCOCCOCCOCCOCCO JLFNLZLINWHATN-UHFFFAOYSA-N 0.000 claims description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 235000002639 sodium chloride Nutrition 0.000 claims description 2
- 235000011067 sorbitan monolaureate Nutrition 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 2
- 239000000203 mixture Substances 0.000 abstract description 20
- 238000013329 compounding Methods 0.000 abstract description 5
- 238000009472 formulation Methods 0.000 abstract description 4
- 235000019198 oils Nutrition 0.000 description 75
- 239000003814 drug Substances 0.000 description 72
- 229940079593 drug Drugs 0.000 description 71
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 30
- 230000006798 recombination Effects 0.000 description 28
- 238000005215 recombination Methods 0.000 description 28
- 239000012071 phase Substances 0.000 description 22
- 238000004128 high performance liquid chromatography Methods 0.000 description 19
- 229960000583 acetic acid Drugs 0.000 description 15
- 239000012362 glacial acetic acid Substances 0.000 description 15
- 229940057917 medium chain triglycerides Drugs 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 239000002502 liposome Substances 0.000 description 11
- 238000004817 gas chromatography Methods 0.000 description 9
- 238000011160 research Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- JLPULHDHAOZNQI-ZTIMHPMXSA-N 1-hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC JLPULHDHAOZNQI-ZTIMHPMXSA-N 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 102100023915 Insulin Human genes 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 229960003964 deoxycholic acid Drugs 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- -1 insulin phospholipid Chemical class 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- 235000013824 polyphenols Nutrition 0.000 description 5
- FHHPUSMSKHSNKW-SMOYURAASA-M sodium deoxycholate Chemical compound [Na+].C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 FHHPUSMSKHSNKW-SMOYURAASA-M 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000001291 vacuum drying Methods 0.000 description 5
- JQWAHKMIYCERGA-UHFFFAOYSA-N (2-nonanoyloxy-3-octadeca-9,12-dienoyloxypropoxy)-[2-(trimethylazaniumyl)ethyl]phosphinate Chemical compound CCCCCCCCC(=O)OC(COP([O-])(=O)CC[N+](C)(C)C)COC(=O)CCCCCCCC=CCC=CCCCCC JQWAHKMIYCERGA-UHFFFAOYSA-N 0.000 description 4
- 101100248253 Arabidopsis thaliana RH40 gene Proteins 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 238000011010 flushing procedure Methods 0.000 description 4
- 210000001035 gastrointestinal tract Anatomy 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 239000004530 micro-emulsion Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229940083466 soybean lecithin Drugs 0.000 description 4
- 239000012085 test solution Substances 0.000 description 4
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 4
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 235000019439 ethyl acetate Nutrition 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000002496 gastric effect Effects 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 230000002218 hypoglycaemic effect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 239000008363 phosphate buffer Substances 0.000 description 3
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 3
- 239000008347 soybean phospholipid Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- 239000000232 Lipid Bilayer Substances 0.000 description 2
- 102100021425 Monocarboxylate transporter 10 Human genes 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- 108091006608 SLC16A10 Proteins 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 125000004442 acylamino group Chemical group 0.000 description 2
- 230000001476 alcoholic effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000003012 bilayer membrane Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 210000004211 gastric acid Anatomy 0.000 description 2
- 210000004051 gastric juice Anatomy 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000004877 mucosa Anatomy 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000012088 reference solution Substances 0.000 description 2
- 239000013558 reference substance Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 229940122254 Intermediate acting insulin Drugs 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000000337 buffer salt Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 238000009513 drug distribution Methods 0.000 description 1
- 235000013345 egg yolk Nutrition 0.000 description 1
- 210000002969 egg yolk Anatomy 0.000 description 1
- 239000008344 egg yolk phospholipid Substances 0.000 description 1
- 229940068998 egg yolk phospholipid Drugs 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010812 external standard method Methods 0.000 description 1
- 229930003935 flavonoid Natural products 0.000 description 1
- 150000002215 flavonoids Chemical class 0.000 description 1
- 235000017173 flavonoids Nutrition 0.000 description 1
- 239000013022 formulation composition Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000004026 insulin derivative Substances 0.000 description 1
- 229950004152 insulin human Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 230000004677 mucosal permeability Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000004526 pharmaceutical effect Effects 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- NRHMKIHPTBHXPF-TUJRSCDTSA-M sodium cholate Chemical compound [Na+].C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 NRHMKIHPTBHXPF-TUJRSCDTSA-M 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K17/00—Carrier-bound or immobilised peptides; Preparation thereof
- C07K17/02—Peptides being immobilised on, or in, an organic carrier
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/28—Insulins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/24—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/107—Emulsions ; Emulsion preconcentrates; Micelles
- A61K9/1075—Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/141—Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
- A61K9/145—Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/48—Drugs for disorders of the endocrine system of the pancreatic hormones
- A61P5/50—Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
- C07K14/62—Insulins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the invention relates to an insulin-lipid complex and a method for the preparation thereof.
- the invention also relates to an oil solution containing the insulin-lipid complex, the use thereof in the preparation of formulations for sustained-released injection and non injection administration, and the use of novel vesicles (liposomes) that contain the insulin-lipid complex in the preparation of a formulation for non-injection administration.
- the invention generally relates to the field of medicine.
- Phospholipid complexes were discovered by the Italian scholar, Bombardelli, in the study of liposomes. Early research on phospholipid complexes was mostly on flavonoid containing phenolic hydroxyls or polyphenols. Subsequently, further research proved that in addition to phenolic hydroxyls, some polar groups such as alcoholic hydroxyl groups, amide groups, or carbonyl groups might react with the hydrophilic head of phospholipids or other lipid materials (such as cholesterol, sodium cholate, etc.) to form a complex spheroid by intermolecular hydrogen bonding or VDW (Van der Waals' force). Both hydrophilic drugs and lipophilic drugs can form lipid complex as long as they contain a polar group for forming the complex. Formation of a lipid complex can significantly improve the lipophilicity and oil solubility of drugs.
- vesicles also known as liposomes
- a liposome is an artificially-prepared vesicle composed of a lipid bilayer with the hydrophilic heads of the phospholipid molecules facing outward and the hydrophobic tails facing inward.
- a phospholipid complex is a lipophilicity spheroid, fixed by the interactions between the polar groups of active ingredients and the hydrophilic heads of phospholipids. The hydrophilic heads are encapsulated, whereas the hydrophobic tails do not participate in the recombination reaction and can move freely.
- a liposome vesicle may be formed by hundreds or thousands of phospholipid molecules, with the hydrophilic heads of phospholipids constituting the outer and inner layers of the lipid bilayer, and with the hydrophobic tails in the middle interlayer.
- Lipophilic drugs can be encapsulated in the interlayer of a bilayer membrane (blue square in the figure), with high and stable entrapment efficiency, and are not prone to leakage.
- hydrophilic drugs can only be kept in the interior of the vesicles or around the exterior periphery of the vesicles and mostly around the exterior periphery of the vesicles due to the difficulty in getting the drugs enter the vesicles, which is associated with poor stability and are prone to leakage. Liposomes of lipophilic drugs are significantly better than liposomes of hydrophilic drugs in terms of membrane permeability.
- lipid complex can be prepared first to improve lipophilicity, and then liposome vesicles can be prepared; this can improve entrapment efficiency and stability, and improve membrane permeability.
- Insulin is susceptible to gastric acid and various proteolytic enzymes in the digestive tract and because of its big molecular weight, has difficulty penetrating the gastrointestinal barrier, normal oral preparations are ineffective, and subcutaneous injection is still the main route of administration, but long-term frequent injection in patients has poor compliance.
- the insulin is lacking in lipophilicity, limiting the preparation and development of the microparticle support.
- Insulin liposomes are the most reported particulate carriers both at home and abroad, but with big molecular weight and strong hydrophilicity, most drugs exist in the periphery of the phospholipid bilayer, entrapment efficiency is low, are prone to leakage, and improvement of the stability of insulin in the gastrointestinal tract and mucosal permeability are limited.
- the preparation of nanoparticles and microspheres is mostly in organic solvent systems, and insulin has poor solubility in organic solvents, low entrapment efficiency, is only adsorbed on the particle surface, is prone to release after drug administration, and the stabilization effect is likewise poor.
- the insulin molecule contains a large number of polar groups, such as acylaminos, phenolic hydroxyls, hydroxys, and carbonyls, all groups have the ability to generate intermolecular interactions with hydrophilic ends of lipid materials and form lipid complexes, thereby improving the lipophilicity, and breaking through the limits of microparticle carrier preparations.
- polar groups such as acylaminos, phenolic hydroxyls, hydroxys, and carbonyls
- Insulin is a protein consisting of two subunit polypeptides commonly referred to as the A-chain and the B-chain, and its molecular weight is close to 6000.
- the human Insulin (Insulin Human) A-chain has 21 amino acids of 11 kinds, and the B-chain has 30 amino acids of 15 kinds, for a total of 51 amino acids of 26 kinds. Insulin is insoluble in water and organic solvents, but soluble in acid diluted methanol, pH 7.4 phosphate buffer, low-concentration acid and low-concentration alkali.
- Insulin contains a lot of polar groups and molecular interactions may occur between the hydrophilic ends of lipid materials, and meets the requirement to form lipid complexes. But the structural features and physical and chemical properties of insulin proteins make the preparation of lipid complexes extremely difficult, and the biggest obstacle is the choice of complex solvents.
- insulin contains 53 acylamino groups, 4 phenolic hydroxyl groups, 12 alcoholic hydroxyl groups, and these groups are able to combine with phospholipids, and 1 mole of the drug needs about 70 moles of phospholipids in theory (the weight ratio is about 1:10).
- the feed volume of lipid material should be slightly higher than the theoretical value, at the 1.5 times of theoretical value, and the maximum amount of lipid material shall not exceed 15 times of drug mass that is, it is economical and reasonable that the phospholipid dosage should be controlled to ⁇ 15 times the insulin mass.
- patent No. 01140047 when the mass of the phospholipid was as high as 150 times the insulin, it still cannot be fully compounded, which indicates that the compounding efficiency is too low with water as the solvent.
- the inventor performed a verification of the method of patent No. 97196069.
- the recombination rate determination method HPLC Quantitative methods
- HPLC Quantitative methods HPLC Quantitative methods
- the mixture ratio of the drug and lipid materials has not been scientifically optimized, obtains complexes with low recombination rate and the improvement of the solubility in oil phase is limited, creates oil solutions with low drug loading capacity and manifests instability phenomena such as being prone to sedimentation in storage process, etc.
- the present invention provides an insulin-lipid complex, compounded from insulin and lipid material in an organic solvent system containing a low boiling point acid, with the mass ratio of insulin and lipid material in the complex being 1:3 ⁇ 1:15; 1:4 ⁇ 1:12 being preferred; and 1:5 ⁇ 1:10 being more preferred.
- the present invention provides an insulin-lipid complex, the insulin being selected from the group consisting of natural insulin, porcine insulin, bovine insulin, recombinant human insulin and intermediate-acting and long-acting insulin, recombinant human insulin is preferred;
- the lipid material is selected from the group consisting of natural phospholipids, synthetic phospholipids, cholesterol, cholic acid, salts thereof, and a combination thereof, natural phospholipids being preferred for the lipid material, and egg yolk phospholipid, or soybean phospholipid being preferred for the natural phospholipid.
- the present invention provides an insulin-lipid complex, containing one or more ingredients selected from antioxidants, metal chelating agents and protease inhibitors.
- the present invention provides an insulin-lipid complex, organic solvents used being complex solvents containing a low boiling point acid, wherein, the low boiling point acid is selected from the group consisting of trifluoroacetic acid, hydrogen chloride, and a combination thereof, and the organic solvent being selected from the group consisting of methanol, tetrahydrofuran, DMSO, chloroform, dichloromethane, ether and a combination thereof.
- Method 1 take some organic solvent, add some trifluoroacetic acid first or some hydrogen chloride gas, then add the insulin and lipid material, stiffing fully to compound and form a transparent solution, remove the organic solvent by rotary evaporation or the spray drying method, and drying.
- Method 2 take some organic solvent, dissolve the lipid material in it, and add insulin, stiffing while adding some hydrogen chloride gas or some trifluoroacetic acid to form a transparent solution, stirring or ultrasonic processing for a given time at room temperature, fully compound the insulin and lipid material, remove the organic solvent by rotary evaporation or the spray drying method, and drying.
- Method 3 dissolve insulin in solvent A containing some trifluoroacetic acid or hydrogen chloride gas, to form a pellucid insulin solution, and dissolve lipid material in solvent B to form a pellucid lipid solution, mix the insulin solution and lipid solution even, and then perform reduced pressure distillation with a water bath, and remove the solvent by pumping, and drying.
- Method 4 dissolve insulin in solvent A containing some trifluoroacetic acid or hydrogen chloride gas to form a pellucid insulin solution, and dissolve a lipid material in solvent B to form a pellucid lipid solution, mix the insulin solution and lipid solution with reduced pressure distillation under water bathing conditions and a given temperature, and slowly add some solvent B during the distillation process, and remove the solvent by pumping, and drying.
- Said “organic solvent” in Method 1) and Method 2) is selected from the group consisting of methanol, tetrahydrofuran, DMSO, or a combination thereof, methanol being preferred.
- the added amount of trifluoroacetic acid and hydrogen chloride gas are preferably standardized on the insulin being completely dissolved thereby, the concentration of acid in the organic solvent being 0.01-0.5%, and preferably 0.05-0.1% (weight/volume, g/ml).
- Said “solvent A” in Method 3) and Method 4) is selected from a group consisting of methanol, tetrahydrofuran, DMSO or a combination thereof, methanol being preferred;
- Said “solvent B” is selected from a group consisting of chloroform, dichloromethane or a combination thereof, dichloromethane being preferred.
- concentration of TCA or hydrogen chloride gas in solvent A is about 0.01-0.5%, 0.05-0.1% being preferred.
- the dosage of solvent B is about 3-8 times of solvent A, 4-6 times being preferred.
- the concentration of insulin should be controlled to 0.5 ⁇ 30 mg/ml, 1.0 ⁇ 10.0 mg/ml being preferred.
- the “room temperature” in “stirring at room temperature or ultrasonic processing for a given time” should be controlled at 15° C.° C. ⁇ 30° C., for example 15° C., 20° C., 25° C. or 30° C.; “given time” means within 30 min, for example 30 min, 20 min, 10 min or 5 min.”
- the method for removing the organic solvent can be the rotary evaporation method, and also the freeze drying method, or another method to remove solvent and with no influence on the stability of drugs can be adopted.
- the solvent by the rotary evaporation method below 40° C., and for example, it can be 35° C. and 30° C. or 25° C.
- the present invention provides a formulation for an insulin oil solution, and it contains the insulin-lipid complex of this invention and oil.
- the oil is selected from the group consisting of LCT (Long chain Triglyceride), MCT (Medium Chain Triglyceride), Glyceryl monooleate, ethyl oleate, isopropyl myristate or a combination thereof.
- the oil solution containing the insulin-lipid complex of this invention is characterized by an emulsifier selectable from one or several of Tween 80, Span 20, Brij, Ethoxylated hydrogenated castor oil (Cremphor RH40), polyoxyethylated castor oil (Cremphor EL35) and Labrosal emulsifier being freely selected and added.
- an emulsifier selectable from one or several of Tween 80, Span 20, Brij, Ethoxylated hydrogenated castor oil (Cremphor RH40), polyoxyethylated castor oil (Cremphor EL35) and Labrosal emulsifier being freely selected and added.
- the oil solution containing an insulin-lipid complex of this invention can include one or several co-emulsifiers freely selectable from propanediol, PEG400 and Transcutol.
- the oil solution containing an insulin-lipid complex of this invention can have a drug content of 12 mg/g, 10 mg/g, 8 mg/g, 6 mg/g, 5 mg/g, 4 mg/g, 2 mg/g or less.
- the insulin-lipid complex of this invention is applied to the preparation of the insulin-lipid complex to prepare a sustained-release insulin injection.
- the oil solution containing an insulin-lipid complex of this invention is applied to the preparation of a non-injectable formulation such as oral, percutaneous, mucosal, and lung-inhaled insulin.
- the present invention provides a new insulin vesicle, containing an insulin-lipid complex and phospholipids, and can include one or more mixed surfactant such as Tween20, Span60, and the like, the average Particle Size is about 20 nm-200 nm
- the new vesicle containing the insulin-lipid complex of this invention can be an aqueous dispersion, and powder made by freeze drying or spray drying.
- the new vesicle containing the insulin complex of this invention applies to the preparation of non-injectable formulations such as oral, percutaneous, mucosal, and lung-inhaled.
- the complex of the present invention has the following advantages:
- organic solvent system containing low boiling point acid is used as the complex solvent: the complex solvent contains no water, the low boiling point trifluoroacetic acid and hydrogen chloride gas is easy to evaporate, provides an acidic environment for insulin to dissolve and shortens the volatilization time of the organic solvent.
- the selected organic solvent can ensure the complex solution clarification of insulin and lipid material, and the polarity can ensure the compound stability of the insulin and lipid material, which does not affect the mass stability of insulin, obtaining a complex with no acidic material or water residues, the recombination rate is more than 90%, drug content has no obvious changes in the process of preparation and storage.
- the complex significantly improves the lipophilicity of insulin, making the drug distribution in the bilayer membrane of vesicle, markedly improving the stability of the drugs in gastric and intestinal juice, and mucosal transport rate.
- FIG. 1 Graph showing decrease of blood sugar by oil solution containing insulin-lipid complex and new vesicle.
- FIG. 2 Structural diagram of phospholipid complexes and liposome.
- Ethanol and acetone made drug content fall about 5-10%, ether: dropped about 15%, acetic ether, chloroform and tetrahydrofuran fell more markedly, about 30-40%.
- the chemical properties of insulin are relatively stable in the methanol and tetrahydrofuran.
- DMSO and DMF were also investigated. With their high boiling points, it was difficult to dry them by nitrogen flushing, so the freeze drying method was used to remove the solvent, and PBS solution (pH7.4) added to redissolve. After filtration, measurement was performed by HPLC as above to calculate the insulin content, the results showed that insulin content fell markedly in DMF, perhaps related to the alkaline conditions, and DMSO was relatively stable.
- test solution containing 0.1 mg/ml insulin
- the test solution is placed in a quartz cuvette (optical path 0.1 cm) and assayed in the far-ultraviolet region (190 nm ⁇ 250 nm) and the by circular dichromic spectroscopy, and the characteristic peaks and minimum ellipticity of the secondary structure map recorded.
- the other test solution was placed in a 1 cm cuvette, and assayed in the near-ultraviolet region (250 nm ⁇ 350 nm), and the characteristic negative peak and minimum ellipticity of the tertiary structure map recorded.
- the results showed having been treated by three kinds of solvents, the secondary structure map of the insulin showed two negative peaks, at 210 nm and 223 nm, respectively, and minimum ellipticity were ⁇ 10.63 and ⁇ 8.45; the tertiary structure map had a negative peak at 274.5 nm, minimum ellipticity was about ⁇ 2.26.
- the results of the insulin PBS without organic solvent there was no obvious change compared to the untreated insulin PBS, so methanol, tetrahydrofuran and DMSO will not lead to modifications in the spatial structure.
- Glacial acetic acid has a high boiling point, its rotary evaporation is time consuming, and, the concentration of glacial acetic acid becomes more and stronger as the organic solvent volatizes, which causes insulin degradation. In particular, the remaining glacial acetic acid can't be removed in the final complex, harming the storage stability of the complex.
- This kind of complex with its relatively high residual volume of glacial acetic acid still has a marked drop in drug content despite having been dissolve in oil solution, with the content usually dropping in the first 24 hours.
- the inventor has chosen methanol as complex solvent which has no effect on the content of insulin content, added 1-5% glacial acetic acid, to prepare its complex with a drug/phospholipid mass ratio of 1:10, removed the solvent at 35° C. by the rotary evaporation method, dried for 48 hours under vacuum conditions, and assayed the complex.
- the recombination rate was more than 98%, but residues of glacial acetic acid exceeded 0.5% by gas chromatography.
- the complex was stored for 4 weeks at 2-8° C., and compared with the initial content, whereupon the insulin content had fallen about 20%.
- the complex was dissolved in medium chain triglycerides, and placed for 24 hours at room temperature, then compared with the initial content, whereupon the insulin content had fallen about 15%. So, the residual glacial acetic acid had a significant effect on product stability.
- the inventor performed further testing with a methanol solution containing HCl as a reaction solvent and with the distillation method at 35° C. rotary evaporation (temperature is above 50° C. will significantly affect the quality of insulin, so it usually needs to be below 40° C., nor should the time be excessively long), the results showed that, due to the adding of water, it was more difficult to remove the solvent, and complex formation was poor.
- HCl residue was measured at about 0.2% by gas chromatography.
- the complex was stored for 4 weeks at 2-8° C., and thereafter compared with the initial content, the insulin content had fallen about 10%.
- the complex was dissolved in medium chain triglycerides, and placed for 24 hours at room temperature, then compared with the initial content, whereupon the insulin content had fallen about 5%.
- the feed ratios of insulin and soybean phospholipid was 1:1, 1:3, 1:5, 1:7.5, 1:10, 1:15 and 1:20(w/w) respectively.
- the insulin was dissolved in methanol, dichloromethane added to the phospholipids, and mixed.
- the solvent was removed by rotary evaporation with a bath temperature was 37° C., and nitrogen flushing.
- the recombination rate was measured using the solubility of the insulin complex in C6H12, and the insolubility of free insulin in C6H12.
- a suitable volume of the insulin phospholipid complex was accurately weighed out, dissolved in methanol containing 1% glacial acetic acid a suitable volume of the insulin reference substance was dissolved in PBS solution (pH7.4) to prepare a solution (concentration of 1 mg/ml), and diluted in methanol containing 1% glacial acetic acid to make a 0.2 mg/mL solution as the reference solution.
- a suitable volume of the insulin phospholipid complexes (containing about 10 mg insulin) was accurately weighed out, placed in a 10 mL volumetric flask, cyclohexane added, dissolved to constant volume, and shaken, the free insulin which was not compounded was filtered by 0.45 ⁇ m organic membrane, 2 mL of the subsequent filtrate was accurately measured out into a 10 mL volumetric flask, the solvent removed by nitrogen flushing, and methanol containing 1% glacial acetic acid added, dissolved to volume, shaken, and content measured by the above HPLC method, and drug content calculated by the external standard method, and recorded as W composite .
- the recombination rate was calculated according to the following formula:
- a suitable volume of the insulin and phospholipid complex was taken, soybean oil or medium chain Triglycerides added, stirred by a magnetic stirrer at 30° C. for 6 h to mix and dissolve, and placed at 30° C. for 24 h, and observed as to whether the drug was separated out. If no drug was separated out, insulin phospholipid complex was added, and the same operation performed until the drug is separated out. 5 ml were sampled and filtered by 0.45 ⁇ m membrane filtration, and the subsequent filtrate diluted with 1% acetate and methanol as appropriate, measured HPLC, and the apparent solubility in the soybean oil and medium chain triglycerides calculated.
- the content of the drug increases as the insulin drops in the system; when mass ratio of insulin and phospholipids is 1:5, the two compound completely, but if the ratio is above 1:15, the recombination rate enters in a downtrend.
- the solubility increases with the ratio of the phospholipids, and when the ratio is above 1:7.5, the solubility tends towards stability
- the purpose of this invention is to choose the appropriate complex solvent system, improve the compounding efficiency and quality stability of insulin and lipid material.
- the selected solvent system can also meet the following requirements:
- Lipid material and insulin can be dissolved to form a pellucid solution; 2)
- the system contains no water, with low polarity, benefiting intermolecular compounding between insulin and lipid material; 3)
- the solvent system has high evaporation efficiency, and easy vaporization without residual acid or water; 4)
- the insulin properties are stable in the preparation.
- 0.2 g insulin was weighed out and put into a conical flask 9 times, 0.6 g, 1 g, 1.2 g, 1.4 g, 1.6 g, 1.8 g, 2.0 g, 2.4 g and 3.0 g soybean lecithin were added, respectively, then 20 ml methanol solution containing hydrogen chloride gas (concentration 0.1%, weight/volume, g/ml) was added, the mixture was stirred for 10 min at room temperature to dissolve the lipid material and drug to a pellucid solution, which was moved to flasks, and
- the solvent was removed by rotary evaporation, at 35° C., reduced pressure distillation and vacuum drying at room temperature for over 12 hours to obtain 9 groups of complex powders with drug/phospholipid weight ratios of 1:3 ⁇ 1:15.
- 0.2 g insulin was weighed out and put into a conical flask 9 times, and 0.6 g, 1 g, 1.2 g, 1.4 g, 1.6 g, 1.8 g, 2.0 g, 2.4 g and 3.0 g egg yolk lecithin were added, respectively, then 20 ml methanol solution containing hydrogen chloride gas (concentration 0.1%, weight/volume, g/ml) was added, stirred for 10 min at room temperature to dissolve the lipid material and drug to a pellucid solution, which was moved to rotary evaporation flasks, the solvent was removed by rotary evaporation at 35° C., reduced pressure distillation and vacuum drying at room temperature for over 12 hours to obtain 9 groups of complex powders with drug/phospholipid weight ratios of 1:3 ⁇ 1:15.
- hydrogen chloride gas concentration 0.1%, weight/volume, g/ml
- 0.2 g insulin was weighed out and put into a conical flask 9 times, a suitable volume of methanol (containing 0.1%, v/v trifluoroacetic acid) was added to control the concentration of insulin to 10 mg/ml-2 mg/ml, and stirred at room temperature to dissolve the lipid material and drug to a pellucid solution; then 0.6 g, 1 g, 1.2 g, 1.4 g, 1.6 g, 1.8 g, 2.0 g, 2.4 g and 3.0 g soybean lecithin were taken, a suitable volume of dichloromethane (is about 3-6 times the methanol) added, then distilled under reduced pressure in a water bath at 37° C., a suitable volume of dichloromethane was added in the evaporation process (about 1-2 times the methanol), then switched to pump extraction for 10 min
- 0.2 g insulin was weighed out and put into a conical flask 9 times, a suitable volume of methanol (containing 0.1%, v/v trifluoroacetic acid) was added, controlling the concentration of insulin to 10 mg/ml-2 mg/ml, stirred at room temperature to dissolve the lipid material and drug to a pellucid solution, then taking 0.6 g, 1 g, 1.2 g, 1.4 g, 1.6 g, 1.8 g, 2.0 g, 2.4 g and 3.0 g egg yolk lecithin, a suitable amount of dichloromethane (about 3-6 times the methanol) was added, then distilled under reduced pressure in a water bath at 37° C., a suitable volume of dichloromethane was added in the pressure distillation (about 1-2 times the methanol), then switched to pump extraction for 10 min
- 0.2 g insulin was weighed out and put in to a conical flask 8 times, 1 g, 1.2 g, 1.4 g, 1.6 g, 1.8 g, 2.0 g, 2.4 g and 3.0 g sodium deoxycholate were added respectively, then 20 ml tetrahydrofuran solution containing hydrogen chloride gas (concentration 0.1%, weight/volume, g/ml) was added, stirred for 5 min at room temperature and moved to rotary evaporator, and the solvent was removed by rotary evaporation at 35° C., reduced pressure distillation and vacuum drying at room temperature for over 12 hours. 8 groups of complex powder with drug/phospholipid weight ratios of 1:5-1:15 were obtained.
- the 8 groups of complexes were assayed by gas chromatography and all were free of residual hydrogen chloride gas.
- 0.2 g insulin was weighed out and put to a conical flask 9 times, a suitable volume of methanol (containing 0.1%, v/v trifluoroacetic acid) was added, with the concentration of insulin controlled to 10 mg/ml-2 mg/ml, then stirred at room temperature to dissolve lipid material and drug to a pellucid solution then 0.6 g, 1 g, 1.2 g, 1.4 g, 1.6 g, 1.8 g, 2.0 g, 2.4 g and 3.0 g sodium deoxycholate were taken, a suitable amount of dichloromethane (about 3-6 times the methanol) was added, and distilled under reduced pressure in a water bath at 37° C., a suitable volume of dichloromethane was added to distillation (about 1-2 times the methanol), pumping for 10 min after drying.
- methanol containing 0.1%, v/v trifluoroacetic acid
- 0.2 g insulin was weighed out and put to a conical flask 3 times, 2.0 g of soy phosphatidylcholine, egg yolk phosphatidylcholine and sodium deoxycholate were added, and 15 ml DMSO solution containing hydrogen chloride gas (concentration 0.1%, weight/volume, g/ml) was added, stirred at room temperature for 15 min, pre-frozen below ⁇ 40° C. and the solvent was removed by freeze drying, obtaining 3 groups of complexes.
- DMSO solution containing hydrogen chloride gas concentration 0.1%, weight/volume, g/ml
- 0.3 g of the complex was weighed out 5 times, and to each, the following was added: 2.7 g of Glyceryl monooleate, medium chain Triglycerides (medium chain oils), ethyl oleate and isopropyl myristate; the mixture was stirred to dissolve, thereby obtaining an oil solution with 10 mg/g of drug loading capacity, which was then filtered.
- Formulation Composition Formula 1 Formula 2 Formula 3 Formula 4 Complex Example 1 Example 2 Example 3 Example 4 Amount of 110 mg 220 mg 330 mg 550 mg complex Drug loading 1 mg/g 2 mg/g 3 mg/g 5 mg/g capacity Added medium chain oils or long chain oils to 10 g, respectively, to prepare 8 samples
- Oil phase 1 Oil phase 2
- Oil phase 3 MCT 10 g 10 g 10 g Tween 80 1 g 2 g 4 g MCT: Medium Chain Triglycerides
- Said oil solution contained an emulsifier, will be emulsified when 50 times water is added and magnetically stirred for 3 minutes, and the average Particle Size ⁇ 1 ⁇ m after emulsification.
- Oil phase 1 Oil phase 2
- Oil phase 3 MCT 10 g 10 g 10 g Cremphor RH40 1 g 2 g 4 g MCT: Medium Chain Triglycerides
- Said oil solution was stored at room temperature for 24 hours until the solutions were clear and transparent, the residual contents were measured by HPLC, and all were more than 98.6% of the initial amounts, indicating that the drug was not degraded; these were stored at 2-4° C. for 6 months until the solutions were clear and transparent, the residual contents were measured by HPLC, and all were more than 99.2% of the initial amounts, showing stable quality.
- Said oil solution contained an emulsifier, and was emulsified when adding 50 times water and magnetically stirred for 3 minutes, and the average Particle Size was ⁇ 1 nm after emulsion.
- Example 1 to 4 The complexes (with the ratio 1:10, w/w of drug to lipid) of Example 1 to 4 were weighted to 4 groups, oil, emulsifier and co-emulsifier were added based on the following table, the mixture was stirred to dissolve to form self-microemulsion concentrated solution with drug loading capacity of 10 mg/g.
- 4 groups of oil solutions contain emulsifier and co-emulsifier, will be emulsified instantly when adding 5-500 times of the water, HCl or pH6.8 buffer solution, the average Particle Size within 20 ⁇ 50 nm after emulsion determined by laser particle analyzer.
- a suitable amount of the complexes of Examples 1 to 3 (all samples with a drug/lipid ratio of 1:10, w/w) was weighed out to a round-bottom flask, a suitable volume of free phospholipids was added (Free phospholipids content was the same as the phospholipids of the complex), 20 ml dichloromethane was added, and the complexes and phospholipids were dissolved, and vacuum distilled to control the concentration of insulin to 1 mg/mL-10 mg/mL, at a bath temperature of 37° C., and after drying to form a film, 10 m LPBS solution was added to hydrate for 1 h, forming multicellular vesicles, and these were treated by ultrasonic fractionation or High Pressure Homogenization, to form single vesicles with a Particle Size of 50 nm
- Formula Composition Formula 1 Formula 2 Formula 3 Complex (Example Example 1 Example 2 Example 3 1-3) 110 mg 220 mg 550 mg Free phospholipids 100 mg 200 mg 500 mg
- a suitable amount of complexes of Examples 1 to 8 (all samples with a drug/lipid ratio of 1:10, w/w) were weighed out into round-bottom flasks, a suitable amount of free phospholipids was added (Free phospholipids content was the same as phospholipids of the complex), a suitable amount of Tween20 or Span60 surfactant, or a combination thereof, was added, 20 ml dichloromethane was also added, the complexes and phospholipids were dissolved, then vacuum distilled with the insulin concentration controlled to 1 mg/mL-10 mg/mL at a bath temperature of 37° C., a film was formed after drying, 10 m LPBS solution was added to hydrate for lh, forming multicellular vesicles, which were treated by ultrasonic fracturing or High Pressure Homogenization, to form single vesicles with a Particle Size of 50 nm
- Formula Composition Formula 1 Formula 2 Formula 3 Complex (Example Example 1 Example 2 Example 3 1-3) 110 mg 220 mg 550 mg Free phospholipids 100 mg 200 mg 500 mg Tween20 200 mg 400 mg 600 mg
- Formula Composition Formula 1 Formula 2 Formula 3 Complex (Example Example 1 Example 2 Example 3 1-3) 110 mg 220 mg 550 mg Free phospholipids 100 mg 200 mg 500 mg Span60 200 mg 400 mg 600 mg
- test samples were placed in artificial gastric juice containing 1% (weight/volume, g/ml) of protease, incubated in a bath temperature of 37° C., and after vortex blending, 0.5 ml samples were taken at 1 min, 5 min, 30 min and 60 min, add 0.1 ml of cold Tris solution (take Tris reagent 6.07 g, added water to the 500 ml), centrifuge at 10000 RPM, 5 min, and after vortex blending, obtained the supernatant fluid, and the residual percentage of insulin measured by HPLC as above, the results were as follows:
- Test sample insulin solution (INS)
- test samples were placed in artificial gastric juice containing 1% (weight/volume, g/ml) of protease, incubated at a bath temperature of 37° C., and after vortex blending 0.5 ml samples were taken at 1 min, 5 min, 30 min and 60 min, 0.1 ml of cold Tris solution added (take Tris reagent 6.07 g, add water to the 500 ml), centrifuged at 10000 RPM, 5 min, and after vortex blending, the supernatant fluid, and obtained and the residual percentage of insulin measured by HPLC as above, and the results were as follows:
- 0.5 mL of insulin solution of the same concentration was accurately weighed out, the insulin was encapsulated in the same vesicle as the insulin phospholipid complexes (Example 13), moved to 12 WL Caco-2 cells, 1.5 mL HBSS solution was added below the cells as acceptance medium, incubated at a bath temperature of 37° C., and took 200 ⁇ l samples at 30, 60, 120, 180 and 240 min, assayed by the HPLC method, the cumulative permeation amount was calculated, and the results were as follows:
- 35 rats were fasted for a night, but not dehydrated, randomly divided into 5 groups and administered as follows, and blood sugar was examined after the injection.
- the blood sugar percentage of each animal was calculated at each point of time, and the Hypoglycemic effect curve drawn as shown in FIG. 1 , with the hypoglycemic percentage as the Y-axis, and time as the X-axis.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Diabetes (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Dispersion Chemistry (AREA)
- Endocrinology (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Toxicology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Immunology (AREA)
- Emergency Medicine (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
- Peptides Or Proteins (AREA)
Abstract
Provided are an insulin-lipid complex, a preparation method thereof, and a formulation thereof. The insulin-lipid complex is prepared by compounding insulin and a lipid material in an organic solvent system containing a low boiling point acid, and drying. The mass ratio of insulin to the lipid material is 1:3˜1:20. An oil solution of the insulin-lipid complex and vesicles containing insulin are further provided.
Description
- The invention relates to an insulin-lipid complex and a method for the preparation thereof. The invention also relates to an oil solution containing the insulin-lipid complex, the use thereof in the preparation of formulations for sustained-released injection and non injection administration, and the use of novel vesicles (liposomes) that contain the insulin-lipid complex in the preparation of a formulation for non-injection administration. The invention generally relates to the field of medicine.
- Phospholipid complexes were discovered by the Italian scholar, Bombardelli, in the study of liposomes. Early research on phospholipid complexes was mostly on flavonoid containing phenolic hydroxyls or polyphenols. Subsequently, further research proved that in addition to phenolic hydroxyls, some polar groups such as alcoholic hydroxyl groups, amide groups, or carbonyl groups might react with the hydrophilic head of phospholipids or other lipid materials (such as cholesterol, sodium cholate, etc.) to form a complex spheroid by intermolecular hydrogen bonding or VDW (Van der Waals' force). Both hydrophilic drugs and lipophilic drugs can form lipid complex as long as they contain a polar group for forming the complex. Formation of a lipid complex can significantly improve the lipophilicity and oil solubility of drugs.
- As
FIG. 2 shows, the composition and structure of phospholipid complexes are markedly different from vesicles (also known as liposomes), which are also composed of phospholipids. A liposome is an artificially-prepared vesicle composed of a lipid bilayer with the hydrophilic heads of the phospholipid molecules facing outward and the hydrophobic tails facing inward. A phospholipid complex is a lipophilicity spheroid, fixed by the interactions between the polar groups of active ingredients and the hydrophilic heads of phospholipids. The hydrophilic heads are encapsulated, whereas the hydrophobic tails do not participate in the recombination reaction and can move freely. - A liposome vesicle may be formed by hundreds or thousands of phospholipid molecules, with the hydrophilic heads of phospholipids constituting the outer and inner layers of the lipid bilayer, and with the hydrophobic tails in the middle interlayer. Lipophilic drugs can be encapsulated in the interlayer of a bilayer membrane (blue square in the figure), with high and stable entrapment efficiency, and are not prone to leakage. On the other hand, hydrophilic drugs can only be kept in the interior of the vesicles or around the exterior periphery of the vesicles and mostly around the exterior periphery of the vesicles due to the difficulty in getting the drugs enter the vesicles, which is associated with poor stability and are prone to leakage. Liposomes of lipophilic drugs are significantly better than liposomes of hydrophilic drugs in terms of membrane permeability.
- Thus, for hydrophilic drugs, if a lipid complex can be prepared first to improve lipophilicity, and then liposome vesicles can be prepared; this can improve entrapment efficiency and stability, and improve membrane permeability.
- Insulin is susceptible to gastric acid and various proteolytic enzymes in the digestive tract and because of its big molecular weight, has difficulty penetrating the gastrointestinal barrier, normal oral preparations are ineffective, and subcutaneous injection is still the main route of administration, but long-term frequent injection in patients has poor compliance. To overcome the compliance problem with frequent injections, domestic and foreign medical workers have carried out a large number of research in the past few decades, on one hand preparing long-acting and intermediate-acting insulins through minor structural modifications, extending the maintenance time of the pharmaceutical effect, and reducing the quantity of injections, and on the other hand, to preparing liposomes and nanoparticles, microspheres, micro emulsions or oil solutions through pharmaceutical technology to improve acidity/alkalinity resistance of the drug and stability of the bio-enzyme, promote the transfer and absorption of drug through the epithelial mucosa, and to provide a sustained release drug carrier for the development of non-injectable drug preparations to be administered orally, percutaneously, via the mucosa, inhalation to the lungs, etc.
- The insulin is lacking in lipophilicity, limiting the preparation and development of the microparticle support. Insulin liposomes are the most reported particulate carriers both at home and abroad, but with big molecular weight and strong hydrophilicity, most drugs exist in the periphery of the phospholipid bilayer, entrapment efficiency is low, are prone to leakage, and improvement of the stability of insulin in the gastrointestinal tract and mucosal permeability are limited. Moreover, the preparation of nanoparticles and microspheres is mostly in organic solvent systems, and insulin has poor solubility in organic solvents, low entrapment efficiency, is only adsorbed on the particle surface, is prone to release after drug administration, and the stabilization effect is likewise poor. The microemulsions or self-microemulsions reported in the existing literature, all make the insulin soluble in the aqueous phase so the drug is in contact with gastric acid and bio-enzymes, and do not improve the stability in the gastrointestinal environment.
- The insulin molecule contains a large number of polar groups, such as acylaminos, phenolic hydroxyls, hydroxys, and carbonyls, all groups have the ability to generate intermolecular interactions with hydrophilic ends of lipid materials and form lipid complexes, thereby improving the lipophilicity, and breaking through the limits of microparticle carrier preparations. Research on insulin-lipid complexes has become the focus of attention at home and abroad in recent years. But the poor lipophilicity of insulin also limits the preparation of lipid complexes, and defects such as low recombination rate and variable quality were widely found in the domestic and foreign literature and patents.
- Insulin is a protein consisting of two subunit polypeptides commonly referred to as the A-chain and the B-chain, and its molecular weight is close to 6000. The human Insulin (Insulin Human) A-chain has 21 amino acids of 11 kinds, and the B-chain has 30 amino acids of 15 kinds, for a total of 51 amino acids of 26 kinds. Insulin is insoluble in water and organic solvents, but soluble in acid diluted methanol, pH 7.4 phosphate buffer, low-concentration acid and low-concentration alkali.
- Insulin contains a lot of polar groups and molecular interactions may occur between the hydrophilic ends of lipid materials, and meets the requirement to form lipid complexes. But the structural features and physical and chemical properties of insulin proteins make the preparation of lipid complexes extremely difficult, and the biggest obstacle is the choice of complex solvents.
- Organic solvents, especially aprotic solvents, benefit recombination reactions, but insulin is insoluble in organic solvents and organic solvents may cause degradation or morphological changes in insulin, therefore, pure organic solvents can't prepare insulin complexes, and this has not been reported in the literature. If a pH7.4 phosphate buffer is chosen, insulin has certain solubility and stable quality, but the lipid materials cannot dissolve into clear transparent solution, and the polarity is too great to add to water, so entrapment efficiency of the complex obtained is extremely low, with weak intermolecular action, and unstable quality. Wo Weihan [Wo Weihan, recombinant human insulin complex, and its preparation methods and drug combination containing the complex, Chinese patent: 01140047, 2004 Oct. 6] using a phosphate buffer liquid as the solvent, dissolved or suspended insulin and phospholipids, respectively, in an aqueous solution, mixed it evenly, and removed water by freeze drying to prepare phospholipid complexes, and the results showed that, when the mass ratio of phospholipids and drug is 25:1 (mole ratio is about 185:1), the recombination rate is only 21.35%, and when 150:1 (molar ratio is about 1110:1) the recombination rate is 72.0%.
- Theoretically, insulin contains 53 acylamino groups, 4 phenolic hydroxyl groups, 12 alcoholic hydroxyl groups, and these groups are able to combine with phospholipids, and 1 mole of the drug needs about 70 moles of phospholipids in theory (the weight ratio is about 1:10). Usually, in order to ensure complete compounding of the drug, the feed volume of lipid material should be slightly higher than the theoretical value, at the 1.5 times of theoretical value, and the maximum amount of lipid material shall not exceed 15 times of drug mass that is, it is economical and reasonable that the phospholipid dosage should be controlled to ≦15 times the insulin mass. But in patent No. 01140047, when the mass of the phospholipid was as high as 150 times the insulin, it still cannot be fully compounded, which indicates that the compounding efficiency is too low with water as the solvent.
- Another laid-open document [R•R•C•New, Hydrophobic preparation containing medium chain monoglyceride, Chinese patent: 97196069, 1999 Jul. 28] the so-called Macrosol technique provides a insulin oil solution containing a lipid complex, and the preparation method for this lipid complex dissolves the drug and an amphipathic lipid material together in a buffer salt solution, and removes the solvent by rotary evaporation or freeze drying, and then dissolves it in an oil phase system to make an oil solution (or mixing the compound solution directly with oil, and then freeze drying). The determined weight ratio of insulin and phospholipids is 1:1 to 1:20, and 1:2 to 1:8 is preferred, however recombination rate evaluation results were not provided. In consideration of patent NO. 01140047, it is difficult to obtain high recombination recombination rate with water as the solvent, and it is not hard to surmise that the preparation of complex under the conditions of patent No. 97196069, most of the drugs may not compound with phosphatides.
- The inventor performed a verification of the method of patent No. 97196069. First, the recombination rate determination method (HPLC Quantitative methods) was established according to characteristics that insulin complex is easy to dissolve in cyclohexane but free insulin is insoluble. Having prepared insulin phospholipid complexes according to method of patent No. 97196069, when the mass ratio of insulin/phospholipids is 1:2, the recombination rate was below 8%; when the mass ratio was 1:8, the recombination rate did not exceed 21%; when the mass ratio was 1:12, the recombination rate did not exceed 25%. When complexes of insulin/phospholipids with mass ratios of 1:8 and 1:12 were further dissolved in medium chain triglyceride oil, stirred to prepare medium chain triglyceride oil solutions with concentration of 1.5 mg/g, and kept at room temperature and for 1 month and in a refrigerator (2-8° C.) for 3 months, sediment appeared in all. Although mass ratios of insulin/phospholipids in patent No. 97196069 are close to the theoretical values, its preparation method used water as the complex solvent, and the recombination rate is very low, this is consistent with the results of the technology of patent No. 01140047.
- Integrating the above two patents, they have the obvious flaw of preparing insulin-lipid complexes with water as the solvent, and the recombination rate is low.
- The solvent system in some subsequent patents or reports, all implemented improvements based on patent No. 97196069, and selected solvents such as ethanol containing glacial acetic acid and DMSOs containing glacial acetic acid, or ethers containing HCl solution for the recombination reaction. Compared with aqueous solutions, organic solvents have relatively less polarity, and the addition of acid was to increase the solubility of insulin, and improve composite efficiency. The inventor has also performed verification tests and the results showed that, due to the strong acidity of glacial acetic acid and HC1, and their non-volatility, insulin content falls to 5-10% during the preparation, and continues to fall to 20% or more in storage. In addition, the mixture ratio of the drug and lipid materials has not been scientifically optimized, obtains complexes with low recombination rate and the improvement of the solubility in oil phase is limited, creates oil solutions with low drug loading capacity and manifests instability phenomena such as being prone to sedimentation in storage process, etc.
- The present invention provides an insulin-lipid complex, compounded from insulin and lipid material in an organic solvent system containing a low boiling point acid, with the mass ratio of insulin and lipid material in the complex being 1:3˜1:15; 1:4˜1:12 being preferred; and 1:5˜1:10 being more preferred.
- The present invention provides an insulin-lipid complex, the insulin being selected from the group consisting of natural insulin, porcine insulin, bovine insulin, recombinant human insulin and intermediate-acting and long-acting insulin, recombinant human insulin is preferred; the lipid material is selected from the group consisting of natural phospholipids, synthetic phospholipids, cholesterol, cholic acid, salts thereof, and a combination thereof, natural phospholipids being preferred for the lipid material, and egg yolk phospholipid, or soybean phospholipid being preferred for the natural phospholipid.
- The present invention provides an insulin-lipid complex, containing one or more ingredients selected from antioxidants, metal chelating agents and protease inhibitors.
- The present invention provides an insulin-lipid complex, organic solvents used being complex solvents containing a low boiling point acid, wherein, the low boiling point acid is selected from the group consisting of trifluoroacetic acid, hydrogen chloride, and a combination thereof, and the organic solvent being selected from the group consisting of methanol, tetrahydrofuran, DMSO, chloroform, dichloromethane, ether and a combination thereof.
- The following methods can be used to prepare the insulin-lipid complex of the present invention:
- Method 1) take some organic solvent, add some trifluoroacetic acid first or some hydrogen chloride gas, then add the insulin and lipid material, stiffing fully to compound and form a transparent solution, remove the organic solvent by rotary evaporation or the spray drying method, and drying.
- Method 2) take some organic solvent, dissolve the lipid material in it, and add insulin, stiffing while adding some hydrogen chloride gas or some trifluoroacetic acid to form a transparent solution, stirring or ultrasonic processing for a given time at room temperature, fully compound the insulin and lipid material, remove the organic solvent by rotary evaporation or the spray drying method, and drying.
- Method 3) dissolve insulin in solvent A containing some trifluoroacetic acid or hydrogen chloride gas, to form a pellucid insulin solution, and dissolve lipid material in solvent B to form a pellucid lipid solution, mix the insulin solution and lipid solution even, and then perform reduced pressure distillation with a water bath, and remove the solvent by pumping, and drying.
- Method 4) dissolve insulin in solvent A containing some trifluoroacetic acid or hydrogen chloride gas to form a pellucid insulin solution, and dissolve a lipid material in solvent B to form a pellucid lipid solution, mix the insulin solution and lipid solution with reduced pressure distillation under water bathing conditions and a given temperature, and slowly add some solvent B during the distillation process, and remove the solvent by pumping, and drying.
- Said “organic solvent” in Method 1) and Method 2) is selected from the group consisting of methanol, tetrahydrofuran, DMSO, or a combination thereof, methanol being preferred. The added amount of trifluoroacetic acid and hydrogen chloride gas are preferably standardized on the insulin being completely dissolved thereby, the concentration of acid in the organic solvent being 0.01-0.5%, and preferably 0.05-0.1% (weight/volume, g/ml).
- Said “solvent A” in Method 3) and Method 4) is selected from a group consisting of methanol, tetrahydrofuran, DMSO or a combination thereof, methanol being preferred; Said “solvent B” is selected from a group consisting of chloroform, dichloromethane or a combination thereof, dichloromethane being preferred. The concentration of TCA or hydrogen chloride gas in solvent A is about 0.01-0.5%, 0.05-0.1% being preferred. The dosage of solvent B is about 3-8 times of solvent A, 4-6 times being preferred.
- Within the composite solution of insulin and lipid material, the concentration of insulin should be controlled to 0.5˜30 mg/ml, 1.0˜10.0 mg/ml being preferred. The “room temperature” in “stirring at room temperature or ultrasonic processing for a given time” should be controlled at 15° C.° C.˜30° C., for example 15° C., 20° C., 25° C. or 30° C.; “given time” means within 30 min, for example 30 min, 20 min, 10 min or 5 min.”
- In the preparation method of this invention, the method for removing the organic solvent can be the rotary evaporation method, and also the freeze drying method, or another method to remove solvent and with no influence on the stability of drugs can be adopted. To remove the solvent by the rotary evaporation method below 40° C., and for example, it can be 35° C. and 30° C. or 25° C.
- The present invention provides a formulation for an insulin oil solution, and it contains the insulin-lipid complex of this invention and oil. Wherein, the oil is selected from the group consisting of LCT (Long chain Triglyceride), MCT (Medium Chain Triglyceride), Glyceryl monooleate, ethyl oleate, isopropyl myristate or a combination thereof.
- The oil solution containing the insulin-lipid complex of this invention is characterized by an emulsifier selectable from one or several of Tween 80, Span 20, Brij, Ethoxylated hydrogenated castor oil (Cremphor RH40), polyoxyethylated castor oil (Cremphor EL35) and Labrosal emulsifier being freely selected and added.
- The oil solution containing an insulin-lipid complex of this invention can include one or several co-emulsifiers freely selectable from propanediol, PEG400 and Transcutol.
- The oil solution containing an insulin-lipid complex of this invention can have a drug content of 12 mg/g, 10 mg/g, 8 mg/g, 6 mg/g, 5 mg/g, 4 mg/g, 2 mg/g or less.
- The insulin-lipid complex of this invention is applied to the preparation of the insulin-lipid complex to prepare a sustained-release insulin injection.
- The oil solution containing an insulin-lipid complex of this invention is applied to the preparation of a non-injectable formulation such as oral, percutaneous, mucosal, and lung-inhaled insulin.
- The present invention provides a new insulin vesicle, containing an insulin-lipid complex and phospholipids, and can include one or more mixed surfactant such as Tween20, Span60, and the like, the average Particle Size is about 20 nm-200 nm
- The new vesicle containing the insulin-lipid complex of this invention, can be an aqueous dispersion, and powder made by freeze drying or spray drying.
- The new vesicle containing the insulin complex of this invention, applies to the preparation of non-injectable formulations such as oral, percutaneous, mucosal, and lung-inhaled.
- Compared to the existing art, the complex of the present invention has the following advantages:
- 1) organic solvent system containing low boiling point acid is used as the complex solvent: the complex solvent contains no water, the low boiling point trifluoroacetic acid and hydrogen chloride gas is easy to evaporate, provides an acidic environment for insulin to dissolve and shortens the volatilization time of the organic solvent. The selected organic solvent can ensure the complex solution clarification of insulin and lipid material, and the polarity can ensure the compound stability of the insulin and lipid material, which does not affect the mass stability of insulin, obtaining a complex with no acidic material or water residues, the recombination rate is more than 90%, drug content has no obvious changes in the process of preparation and storage.
- 2) Reasonable drug/lipid material dosage: Based on this composite solvent breakthrough, it is possible to obtain a completely compounded complex when the mass ratio of insulin and lipid material is 1:3˜1:15. The lipid material dosage coincides with the theoretical value.
- 3) Preparation of stable oil solution: the complex significantly improves the oil solubility of insulin, with improved drug loading capacity, good stability with no turbidity during long-term storage, and physical properties and chemical properties are stable.
- 4) Preparation of stable new vesicles: the complex significantly improves the lipophilicity of insulin, making the drug distribution in the bilayer membrane of vesicle, markedly improving the stability of the drugs in gastric and intestinal juice, and mucosal transport rate.
- Unless otherwise specified, the scientific and technical terms and names in this invention have the same meaning as the common understanding of persons skilled in the art which the invention belongs to; And, unless otherwise specified, the substances used herein and the quantities and proportions thereof, and the equipment, instruments, and preparation conditions can be understood as known to persons skilled in the art or as per the description.
-
FIG. 1 : Graph showing decrease of blood sugar by oil solution containing insulin-lipid complex and new vesicle. -
FIG. 2 : Structural diagram of phospholipid complexes and liposome. - In earlier research work, the inventor investigated different organic solvents. The specific methods were as follows: take some insulin solution (pH7.4PBS), add an appropriate amount of methanol, ethanol, acetone, tetrahydrofuran, ethyl acetate, ether, chloroform, mix fully and place for 1 hour, dry by nitrogen flushing, add PBS solution (pH7.4) to redissolve, and after filtration, detect by HPLC, and compare with the same concentration of an insulin reference substance PBS solution, to calculate the change of insulin content. The results showed that the content of drug in methanol had no obvious change, and was the most stable, followed by tetrahydrofuran. Ethanol and acetone made drug content fall about 5-10%, ether: dropped about 15%, acetic ether, chloroform and tetrahydrofuran fell more markedly, about 30-40%. The chemical properties of insulin are relatively stable in the methanol and tetrahydrofuran. DMSO and DMF were also investigated. With their high boiling points, it was difficult to dry them by nitrogen flushing, so the freeze drying method was used to remove the solvent, and PBS solution (pH7.4) added to redissolve. After filtration, measurement was performed by HPLC as above to calculate the insulin content, the results showed that insulin content fell markedly in DMF, perhaps related to the alkaline conditions, and DMSO was relatively stable.
- Further operating by the above method of methanol, tetrahydrofuran, and DMSO, after removing the solvent 5 mM PBS (pH7.4) is dissolved to create a test solution containing 0.1 mg/ml insulin, the test solution is placed in a quartz cuvette (optical path 0.1 cm) and assayed in the far-ultraviolet region (190 nm˜250 nm) and the by circular dichromic spectroscopy, and the characteristic peaks and minimum ellipticity of the secondary structure map recorded. The other test solution was placed in a 1 cm cuvette, and assayed in the near-ultraviolet region (250 nm˜350 nm), and the characteristic negative peak and minimum ellipticity of the tertiary structure map recorded. The results showed having been treated by three kinds of solvents, the secondary structure map of the insulin showed two negative peaks, at 210 nm and 223 nm, respectively, and minimum ellipticity were −10.63 and −8.45; the tertiary structure map had a negative peak at 274.5 nm, minimum ellipticity was about −2.26. Compared to the results of the insulin PBS without organic solvent, there was no obvious change compared to the untreated insulin PBS, so methanol, tetrahydrofuran and DMSO will not lead to modifications in the spatial structure.
- In the existing literature, most organic solvents are added to glacial acetic acid or HCl to make the insulin form a pellucid solution.
- Glacial acetic acid has a high boiling point, its rotary evaporation is time consuming, and, the concentration of glacial acetic acid becomes more and stronger as the organic solvent volatizes, which causes insulin degradation. In particular, the remaining glacial acetic acid can't be removed in the final complex, harming the storage stability of the complex. This kind of complex with its relatively high residual volume of glacial acetic acid, still has a marked drop in drug content despite having been dissolve in oil solution, with the content usually dropping in the first 24 hours.
- The inventor has chosen methanol as complex solvent which has no effect on the content of insulin content, added 1-5% glacial acetic acid, to prepare its complex with a drug/phospholipid mass ratio of 1:10, removed the solvent at 35° C. by the rotary evaporation method, dried for 48 hours under vacuum conditions, and assayed the complex. The recombination rate was more than 98%, but residues of glacial acetic acid exceeded 0.5% by gas chromatography. The complex was stored for 4 weeks at 2-8° C., and compared with the initial content, whereupon the insulin content had fallen about 20%. The complex was dissolved in medium chain triglycerides, and placed for 24 hours at room temperature, then compared with the initial content, whereupon the insulin content had fallen about 15%. So, the residual glacial acetic acid had a significant effect on product stability.
- The inventor performed further testing with a methanol solution containing HCl as a reaction solvent and with the distillation method at 35° C. rotary evaporation (temperature is above 50° C. will significantly affect the quality of insulin, so it usually needs to be below 40° C., nor should the time be excessively long), the results showed that, due to the adding of water, it was more difficult to remove the solvent, and complex formation was poor. HCl residue was measured at about 0.2% by gas chromatography. The complex was stored for 4 weeks at 2-8° C., and thereafter compared with the initial content, the insulin content had fallen about 10%. The complex was dissolved in medium chain triglycerides, and placed for 24 hours at room temperature, then compared with the initial content, whereupon the insulin content had fallen about 5%.
- Using methanol (containing 0.1% trifluoroacetic acid)-dichloromethane as the solvent, and setting the drug concentration as 1.5 mg/ml, the feed ratios of insulin and soybean phospholipid was 1:1, 1:3, 1:5, 1:7.5, 1:10, 1:15 and 1:20(w/w) respectively. The insulin was dissolved in methanol, dichloromethane added to the phospholipids, and mixed. The solvent was removed by rotary evaporation with a bath temperature was 37° C., and nitrogen flushing.
- The recombination rate and solubility in oil phase were determined as follows:
- Recombination Rate (Entrapment Efficiency):
- The recombination rate was measured using the solubility of the insulin complex in C6H12, and the insolubility of free insulin in C6H12.
- A suitable volume of the insulin phospholipid complex was accurately weighed out, dissolved in methanol containing 1% glacial acetic acid a suitable volume of the insulin reference substance was dissolved in PBS solution (pH7.4) to prepare a solution (concentration of 1 mg/ml), and diluted in methanol containing 1% glacial acetic acid to make a 0.2 mg/mL solution as the reference solution. 10 μL of the test solution and reference solution were measured out respectively, and the total content (recorded as Wtotal) was assayed by the HPLC method with 0.2% TFA: acetonitrile=70:30, column temperature 30° C., velocity 1 mL/min, wavelength of 214 nm, chromatographic column: Agilent ZORBAX 300 SB-C8.
- Measurement of the Complex Content Combined with Phospholipids:
- A suitable volume of the insulin phospholipid complexes (containing about 10 mg insulin) was accurately weighed out, placed in a 10 mL volumetric flask, cyclohexane added, dissolved to constant volume, and shaken, the free insulin which was not compounded was filtered by 0.45 μm organic membrane, 2 mL of the subsequent filtrate was accurately measured out into a 10 mL volumetric flask, the solvent removed by nitrogen flushing, and methanol containing 1% glacial acetic acid added, dissolved to volume, shaken, and content measured by the above HPLC method, and drug content calculated by the external standard method, and recorded as Wcomposite.
- The recombination rate was calculated according to the following formula:
-
recombination rate %=(W composite /W total)×100% - Solubility in Oil:
- A suitable volume of the insulin and phospholipid complex was taken, soybean oil or medium chain Triglycerides added, stirred by a magnetic stirrer at 30° C. for 6 h to mix and dissolve, and placed at 30° C. for 24 h, and observed as to whether the drug was separated out. If no drug was separated out, insulin phospholipid complex was added, and the same operation performed until the drug is separated out. 5 ml were sampled and filtered by 0.45 μm membrane filtration, and the subsequent filtrate diluted with 1% acetate and methanol as appropriate, measured HPLC, and the apparent solubility in the soybean oil and medium chain triglycerides calculated.
- The results of 7 groups of complexes are shown below:
- Influence of ratio of drug and phospholipids on the complex
-
medium chain recombination solubility in oil insulin:phospholipids content (%) rate (%) (mg/g) 1:1 86.34 4.48 0.116 1:3 91.23 9.76 1.492 1:5 94.77 98.5 2.39 1:7.5 96.17 97.3 7.83 1:10 98.31 96.0 7.09 1:15 98.74 96.6 6.59 1:20 97.82 93.2 6.71 - The results show that the feed ratio of the drug to phospholipids has a significant influence on drug content, recombination rate and solubility. The content of the drug increases as the insulin drops in the system; when mass ratio of insulin and phospholipids is 1:5, the two compound completely, but if the ratio is above 1:15, the recombination rate enters in a downtrend. In medium chain triglycerides the solubility increases with the ratio of the phospholipids, and when the ratio is above 1:7.5, the solubility tends towards stability
- 1.4 Discussion of Using Methanol (with Hydrogen Chloride Gas) as a Complex Solvent
- Using methanol (with a suitable volume of hydrogen chloride gas) as complex solvent, drug concentration was set at 2 mg/ml, raw ratios of insulin and soybean phospholipid were 1:1, 1:3, 1:5, 1:7.5, 1:10, 1:15 and 1:20 (w/w) respectively. Insulin and lipid material were dissolved in methanol, stirred for 10 minutes at room temperature, the lipid material and drug dissolved to a pellucid solution, moved to a rotary evaporation flask, and the solvent removed by rotary evaporation at 35° C., reduced pressure distillation, and vacuum drying at room temperature for over 12 hours. The recombination rate and the solubility in oil phase were determined according to the method in Item 3.3 above, and the results were as follows:
-
-
medium chain recombination solubility in insulin:phospholipids content (%) rate (%) oil (mg/g) 1:1 82.55 4.16 0.12 1:3 90.12 8.83 1.45 1:5 92.57 97.3 2.72 1:7.5 94.68 98.7 7.32 1:10 98.72 97.9 8.51 1:15 97.29 97.5 7.33 1:20 96.33 94.1 6.43 - The purpose of this invention is to choose the appropriate complex solvent system, improve the compounding efficiency and quality stability of insulin and lipid material.
- The selected solvent system can also meet the following requirements:
- 1) Lipid material and insulin can be dissolved to form a pellucid solution;
2) The system contains no water, with low polarity, benefiting intermolecular compounding between insulin and lipid material;
3) The solvent system has high evaporation efficiency, and easy vaporization without residual acid or water;
4) The insulin properties are stable in the preparation. - 0.2 g insulin was weighed out and put into a conical flask 9 times, 0.6 g, 1 g, 1.2 g, 1.4 g, 1.6 g, 1.8 g, 2.0 g, 2.4 g and 3.0 g soybean lecithin were added, respectively, then 20 ml methanol solution containing hydrogen chloride gas (concentration 0.1%, weight/volume, g/ml) was added, the mixture was stirred for 10 min at room temperature to dissolve the lipid material and drug to a pellucid solution, which was moved to flasks, and
- the solvent was removed by rotary evaporation, at 35° C., reduced pressure distillation and vacuum drying at room temperature for over 12 hours to obtain 9 groups of complex powders with drug/phospholipid weight ratios of 1:3˜1:15.
- The 9 groups of complexes were assayed by gas chromatography and all were free of residual hydrogen chloride gas.
- Preparation of Insulin Complex Containing Different Ratios of Egg Yolk Lecithin
- 0.2 g insulin was weighed out and put into a conical flask 9 times, and 0.6 g, 1 g, 1.2 g, 1.4 g, 1.6 g, 1.8 g, 2.0 g, 2.4 g and 3.0 g egg yolk lecithin were added, respectively, then 20 ml methanol solution containing hydrogen chloride gas (concentration 0.1%, weight/volume, g/ml) was added, stirred for 10 min at room temperature to dissolve the lipid material and drug to a pellucid solution, which was moved to rotary evaporation flasks, the solvent was removed by rotary evaporation at 35° C., reduced pressure distillation and vacuum drying at room temperature for over 12 hours to obtain 9 groups of complex powders with drug/phospholipid weight ratios of 1:3˜1:15.
- The 9 groups of complexes were assayed by gas chromatography and all were free of residual hydrogen chloride gas.
- 0.2 g insulin was weighed out and put into a conical flask 9 times, a suitable volume of methanol (containing 0.1%, v/v trifluoroacetic acid) was added to control the concentration of insulin to 10 mg/ml-2 mg/ml, and stirred at room temperature to dissolve the lipid material and drug to a pellucid solution; then 0.6 g, 1 g, 1.2 g, 1.4 g, 1.6 g, 1.8 g, 2.0 g, 2.4 g and 3.0 g soybean lecithin were taken, a suitable volume of dichloromethane (is about 3-6 times the methanol) added, then distilled under reduced pressure in a water bath at 37° C., a suitable volume of dichloromethane was added in the evaporation process (about 1-2 times the methanol), then switched to pump extraction for 10 min
- The 9 groups of complexes were assayed by gas chromatography and all were free of residual trifluoroacetic acid.
- 0.2 g insulin was weighed out and put into a conical flask 9 times, a suitable volume of methanol (containing 0.1%, v/v trifluoroacetic acid) was added, controlling the concentration of insulin to 10 mg/ml-2 mg/ml, stirred at room temperature to dissolve the lipid material and drug to a pellucid solution, then taking 0.6 g, 1 g, 1.2 g, 1.4 g, 1.6 g, 1.8 g, 2.0 g, 2.4 g and 3.0 g egg yolk lecithin, a suitable amount of dichloromethane (about 3-6 times the methanol) was added, then distilled under reduced pressure in a water bath at 37° C., a suitable volume of dichloromethane was added in the pressure distillation (about 1-2 times the methanol), then switched to pump extraction for 10 min
- The 9 groups of complexes were assayed by gas chromatography and all were free of residual trifluoroacetic acid.
- 0.2 g insulin was weighed out and put in to a
conical flask 8 times, 1 g, 1.2 g, 1.4 g, 1.6 g, 1.8 g, 2.0 g, 2.4 g and 3.0 g sodium deoxycholate were added respectively, then 20 ml tetrahydrofuran solution containing hydrogen chloride gas (concentration 0.1%, weight/volume, g/ml) was added, stirred for 5 min at room temperature and moved to rotary evaporator, and the solvent was removed by rotary evaporation at 35° C., reduced pressure distillation and vacuum drying at room temperature for over 12 hours. 8 groups of complex powder with drug/phospholipid weight ratios of 1:5-1:15 were obtained. - The 8 groups of complexes were assayed by gas chromatography and all were free of residual hydrogen chloride gas.
- 0.2 g insulin was weighed out and put to a conical flask 9 times, a suitable volume of methanol (containing 0.1%, v/v trifluoroacetic acid) was added, with the concentration of insulin controlled to 10 mg/ml-2 mg/ml, then stirred at room temperature to dissolve lipid material and drug to a pellucid solution then 0.6 g, 1 g, 1.2 g, 1.4 g, 1.6 g, 1.8 g, 2.0 g, 2.4 g and 3.0 g sodium deoxycholate were taken, a suitable amount of dichloromethane (about 3-6 times the methanol) was added, and distilled under reduced pressure in a water bath at 37° C., a suitable volume of dichloromethane was added to distillation (about 1-2 times the methanol), pumping for 10 min after drying.
- The 9 groups of complexes were assayed by gas chromatography and all were free of residual hydrogen chloride.
- 0.2 g insulin was weighed out and put to a conical flask 3 times, 2.0 g of soy phosphatidylcholine, egg yolk phosphatidylcholine and sodium deoxycholate were added, and 15 ml DMSO solution containing hydrogen chloride gas (concentration 0.1%, weight/volume, g/ml) was added, stirred at room temperature for 15 min, pre-frozen below −40° C. and the solvent was removed by freeze drying, obtaining 3 groups of complexes.
- The 3 groups of complexes were assayed by gas chromatography and all were free of residual hydrogen chloride gas.
- 1.8 g soy phosphatidylcholine was weighed out, 30 ml methanol solution was added, stirred to dissolve, 0.2 g insulin and hydrogen chloride gas were added until the solution was clear and transparent, stirred for 5 min at room temperature, and the solvent removed by rotary evaporation at 35° C., reduced pressure distillation and vacuum drying at room temperature for over 12 hours to obtain the complex.
- 0.3 g of the complex was weighed out 5 times, and to each, the following was added: 2.7 g of Glyceryl monooleate, medium chain Triglycerides (medium chain oils), ethyl oleate and isopropyl myristate; the mixture was stirred to dissolve, thereby obtaining an oil solution with 10 mg/g of drug loading capacity, which was then filtered.
- Said oil solution was kept at room temperature for 24 hours until the solution was clear and transparent, the residual content was determined by HPLC to be 99.7% of the initial amount, which indicates that the drug was undegraded; the solution was kept at 2-8° C. for 6 months until the solution was clear and transparent, and the residual content was determined by HPLC to beis 99.1% of the initial amount, showing stable quality.
- The complexes of Examples 1 to 4 (all samples with a drug/lipid ratio of 1:10, w/w) were weighed out, 2 each, medium chain triglycerides (medium chain oils) or long chain triglycerides (long chain oils) to 10 g were added, and stirred to dissolve thereby obtaining oil solutions with drug loads of 1 mg/g, 2 mg/g, 3 mg/g and 5 mg/g.
-
Formulation Composition Formula 1 Formula 2Formula 3 Formula 4Complex Example 1 Example 2 Example 3 Example 4 Amount of 110 mg 220 mg 330 mg 550 mg complex Drug loading 1 mg/ g 2 mg/g 3 mg/g 5 mg/g capacity Added medium chain oils or long chain oils to 10 g, respectively, to prepare 8 samples - Said oil solutions were kept at room temperature for 24 hours until the solutions were clear and transparent, and the residual contents were measured by HPLC, and all were more than 98.5% of the initial amounts, indicating that the drug was not degraded; these were kept at 2-4° C. for 6 months until the solutions were clear and transparent, and the residual contents were measured by HPLC and all were more than 99.4% of the initial amounts, showing stable quality.
- 10 g medium chain Triglycerides (medium chain oils) were weighed out in 3 groups, 1 g, 2 g and 4 g of Tween 80 were added, respectively, and shaken to form oil phase containing an emulsifier.
-
Formula Composition Oil phase 1 Oil phase 2Oil phase 3 MCT 10 g 10 g 10 g Tween 80 1 g 2 g 4 g MCT: Medium Chain Triglycerides - The complexes of Examples 5 to 7 (all samples with a drug/lipid ratio of 1:10, w/w) were weighed out into 3 groups in all, 9.45 g of each oil phase with different emulsifier ratios was added, stirred to dissolve to form an oil solution with capacity drug load of 5 mg/g, and filtered.
-
Formula Composition Formula 1 Formula 2Formula 3 Amount of complex Example 5 Example 6 Example 7 were all 550 mg Oil phase was 9.45 g Oil phase 1 Oil phase 2Oil phase 3 - Said oil solutions were kept at room temperature for 24 hours until the solutions were clear and transparent, the residual contents were determined by HPLC to be more than 98.3% of the initial amounts, which indicates that the drug was undegraded; the solutions were kept at 2-4° C. for 6 months until the solutions were clear and transparent, and the residual contents were measured by HPLC and all were more than 97.7% of the initial amounts, showing stable quality.
- Said oil solution contained an emulsifier, will be emulsified when 50 times water is added and magnetically stirred for 3 minutes, and the average Particle Size ≦1 μm after emulsification.
- Oil Solution Containing Insulin and Phospholipid Complexes (Containing an Emulsifier)
- 10 g of medium chain Triglycerides (medium chain oils) were weighed out, and 1 g, 2 g and 4 g of Cremphor RH40 were added, respectively, and shaken to form 3 groups of oil phases with different emulsifier ratios.
-
Formula composition Oil phase 1 Oil phase 2Oil phase 3 MCT 10 g 10 g 10 g Cremphor RH40 1 g 2 g 4 g MCT: Medium Chain Triglycerides - The complexes of Examples 2 to 4 (all samples with a drug/lipid ratio of 1:10, w/w) were weighed out into 3 groups, 9.12 g of each of the oil phases with different emulsifier ratios were added, and stirred to dissolve to form oil solutions with a drug load of 8 mg/g, and filtered.
-
Formula Composition Formula 1 Formula 2Formula 3 Complex amount Example 2 Example 3 Example 4 880 mg Oil phase was 9.12 g Oil phase 1 Oil phase 2Oil phase 3 - Said oil solution was stored at room temperature for 24 hours until the solutions were clear and transparent, the residual contents were measured by HPLC, and all were more than 98.6% of the initial amounts, indicating that the drug was not degraded; these were stored at 2-4° C. for 6 months until the solutions were clear and transparent, the residual contents were measured by HPLC, and all were more than 99.2% of the initial amounts, showing stable quality.
- Said oil solution contained an emulsifier, and was emulsified when adding 50 times water and magnetically stirred for 3 minutes, and the average Particle Size was ≦1 nm after emulsion.
- The complexes (with the ratio 1:10, w/w of drug to lipid) of Example 1 to 4 were weighted to 4 groups, oil, emulsifier and co-emulsifier were added based on the following table, the mixture was stirred to dissolve to form self-microemulsion concentrated solution with drug loading capacity of 10 mg/g.
-
Composition prescription 1 prescription 2prescription 3 prescription 4Complex amount 1100 mg Example 1 Example 2 Example 3 Example 4 Cremphor RH40 4 g 4 g 4 g 4 g propanediol 5 g / / / Transcutol P / 4.5 g 4 g 3.5 g Add MCT/LCT (1:1) solution to 10 g - The 4 groups of oil solutions were kept at room temperature for 24 hours until the solutions were clear and transparent, the residual contents were determined by HPLC, and all were more than 98.3% of the initial amounts, indicating that the drug was undegraded; these groups were kept at −4° C. for 6 months until the solutions were clear and transparent, the residual contents were determined by HPLC, and all were more than 97.8% of the initial, with stable quality.
- 4 groups of oil solutions contain emulsifier and co-emulsifier, will be emulsified instantly when adding 5-500 times of the water, HCl or pH6.8 buffer solution, the average Particle Size within 20˜50 nm after emulsion determined by laser particle analyzer.
- A suitable amount of the complexes of Examples 1 to 3 (all samples with a drug/lipid ratio of 1:10, w/w) was weighed out to a round-bottom flask, a suitable volume of free phospholipids was added (Free phospholipids content was the same as the phospholipids of the complex), 20 ml dichloromethane was added, and the complexes and phospholipids were dissolved, and vacuum distilled to control the concentration of insulin to 1 mg/mL-10 mg/mL, at a bath temperature of 37° C., and after drying to form a film, 10 m LPBS solution was added to hydrate for 1 h, forming multicellular vesicles, and these were treated by ultrasonic fractionation or High Pressure Homogenization, to form single vesicles with a Particle Size of 50 nm
-
Formula Composition Formula 1 Formula 2Formula 3 Complex (Example Example 1 Example 2 Example 3 1-3) 110 mg 220 mg 550 mg Free phospholipids 100 mg 200 mg 500 mg - A suitable amount of complexes of Examples 1 to 8 (all samples with a drug/lipid ratio of 1:10, w/w) were weighed out into round-bottom flasks, a suitable amount of free phospholipids was added (Free phospholipids content was the same as phospholipids of the complex), a suitable amount of Tween20 or Span60 surfactant, or a combination thereof, was added, 20 ml dichloromethane was also added, the complexes and phospholipids were dissolved, then vacuum distilled with the insulin concentration controlled to 1 mg/mL-10 mg/mL at a bath temperature of 37° C., a film was formed after drying, 10 m LPBS solution was added to hydrate for lh, forming multicellular vesicles, which were treated by ultrasonic fracturing or High Pressure Homogenization, to form single vesicles with a Particle Size of 50 nm
-
Formula Composition Formula 1 Formula 2Formula 3 Complex (Example Example 1 Example 2 Example 3 1-3) 110 mg 220 mg 550 mg Free phospholipids 100 mg 200 mg 500 mg Tween20 200 mg 400 mg 600 mg -
Formula Composition Formula 1 Formula 2Formula 3 Complex (Example Example 1 Example 2 Example 3 1-3) 110 mg 220 mg 550 mg Free phospholipids 100 mg 200 mg 500 mg Span60 200 mg 400 mg 600 mg - This was obtained by freeze drying the vesicle solution of Examples 13 and 14.
-
-
- Test samples: Insulin solution (INS)
- Supernatant fluid: Insulin complex (Phytosome) dissolved in water
- Oil solution of Example 8—Example 12
- Test samples: Insulin solution (INS)
- The test samples were placed in artificial gastric juice containing 1% (weight/volume, g/ml) of protease, incubated in a bath temperature of 37° C., and after vortex blending, 0.5 ml samples were taken at 1 min, 5 min, 30 min and 60 min, add 0.1 ml of cold Tris solution (take Tris reagent 6.07 g, added water to the 500 ml), centrifuge at 10000 RPM, 5 min, and after vortex blending, obtained the supernatant fluid, and the residual percentage of insulin measured by HPLC as above, the results were as follows:
-
Sample 1 min 5 min 30 min 60 min Insulin solution (INS) 0.56% can't be can't be can't be detected detected detected Insulin complex 50.4% 35.4% 28.4% 12.4% (Phytosome) Oil solution of Above Above Above Above Example 8-Example than than than than 12 87.2% 63.9% 43.7% 35.2% - Test sample: insulin solution (INS)
-
- Insulin vesicle (insulin instead of insulin complex, prepared as above)
- New vesicle containing complex of Example 13
- The test samples were placed in artificial gastric juice containing 1% (weight/volume, g/ml) of protease, incubated at a bath temperature of 37° C., and after vortex blending 0.5 ml samples were taken at 1 min, 5 min, 30 min and 60 min, 0.1 ml of cold Tris solution added (take Tris reagent 6.07 g, add water to the 500 ml), centrifuged at 10000 RPM, 5 min, and after vortex blending, the supernatant fluid, and obtained and the residual percentage of insulin measured by HPLC as above, and the results were as follows:
-
Sample 1 min 5 min 30 min 60 min Iinsulin 0.76% Undetected Undetected Undetected solution(INS) Insulin vesicle 53.5-56.1% 33.2-37.4% 22.1-28.6% 11.5-14.7% Vesicle of 82.2-85.2% 68.3-72.9% 43.2-45.7% 30.8-33.2% Example 13 -
-
- Test sample: insulin solution (INS)
- Insulin vesicle (insulin instead of insulin complex, prepared as above)
- Test sample: insulin solution (INS)
- 0.5 mL of insulin solution of the same concentration was accurately weighed out, the insulin was encapsulated in the same vesicle as the insulin phospholipid complexes (Example 13), moved to 12 WL Caco-2 cells, 1.5 mL HBSS solution was added below the cells as acceptance medium, incubated at a bath temperature of 37° C., and took 200 μl samples at 30, 60, 120, 180 and 240 min, assayed by the HPLC method, the cumulative permeation amount was calculated, and the results were as follows:
-
Sample Cumulative permeation (%) Insulin solution (INS) 1.65 Insulin vesicle 8.70 Vesicle of Example 13 Above 17.52 - Normal male rats, weight: 200±20 g, were fasted for 12 h (Overnight), intraperitoneally injected with 10 mg/ml streptozocin-trisodium citrate buffer (pH is about 4.5) at 60 mg/kg for a week, and rats with blood sugar level more than 16.7 mmol/l were chosen for the diabetes model.
- 35 rats were fasted for a night, but not dehydrated, randomly divided into 5 groups and administered as follows, and blood sugar was examined after the injection.
-
- The first group: blank control,
- The second group: insulin vesicles, orally administrated at 70 IU/kg
- The third group: oil solution of formula 1 of Example 9 prepared by medium chain triglycerides, orally administrated at 70 IU/kg
- The fourth group: new nanometer vesicles of Example 13, orally administrated at 70 IU/kg.
- The blood sugar percentage of each animal was calculated at each point of time, and the Hypoglycemic effect curve drawn as shown in
FIG. 1 , with the hypoglycemic percentage as the Y-axis, and time as the X-axis.
Claims (23)
1. A insulin-lipid complex, wherein the insulin-lipid complex is composed of insulin and lipid material, the mass ratio of insulin to the lipid material being 1:3˜1:20.
2. The insulin-lipid complex according to claim 1 , wherein
said insulin is selected from the group consisting of natural insulin, porcine insulin, bovine insulin, recombinant human insulin and medium or long-acting insulin, and;
said lipid material is selected from the group consisting of natural phospholipids, synthetic phospholipids, cholesterol, cholic acid and salts thereof.
3. The insulin-lipid complex according to claim 2 , wherein said insulin is recombinant human insulin, said lipid material is natural phospholipids, and the mass ratio of insulin to the natural phospholipids is 1:5˜1:10.
4. The insulin-lipid complex according to claim 1 , wherein said insulin-lipid complex contains at least one of antioxidants, metal-chelators or protease inhibitors.
5. The insulin-lipid complex according to claim 1 , wherein said insulin-lipid complex uses an organic solvent system containing a low boiling point acid as a complex solvent.
6. The insulin-lipid complex according to claim 5 , wherein said low boiling point acid is selected from the group consisting of trifluoroacetic acid, hydrogen chloride gas, and a combination thereof, and said organic solvent is the group consisting of methanol, tetrahydrofuran, DMSO, chloroform, dichloromethane, and a combination thereof.
7. An insulin-lipid complex oil solution, wherein said solution contains an insulin-lipid complex oil according to claim 1 .
8. The insulin-lipid complex oil solution according to claim 7 , wherein said oil is selected from the group consisting of LCT, MCT, Glyceryl monooleate, GMS, ethyl oleate, isopropyl myristate, and a combination thereof.
9. The insulin-lipid complex oil solution according to claim 7 , wherein said oil contains an emulsifier.
10. The insulin-lipid complex oil solution according to claim 9 , wherein said emulsifier is selected from the group consisting of Tween 80, Span 20, Brij, Ethoxylated hydrogenated castor oil, polyoxyethylated castor oil, and Labrosal.
11. The insulin-lipid complex oil solution according to claim 7 , wherein said oil contains a co-emulsifier.
12. The insulin-lipid complex oil solution according to claim 11 wherein said co-emulsifier is selected from the group consisting of propanediol, PEG400, and Transcutol P.
13. Use of the oil solution containing insulin-lipid complex according to claim 7 in the manufacture of insulin sustained-released injection.
14. Use of the oil solution containing insulin-lipid complex according to claim 7 in the manufacture of non-injectable formulation for oral, percutaneous, mucosal, and lung inhalation administration.
15. A novel insulin vesicle, comprising an insulin-lipid complex according to claim 1 and phospholipids.
16. The novel insulin vesicle according to claim 15 , further comprising a surfactant.
17. The novel insulin vesicle according to claim 16 wherein, said surfactant is selected from the group consisting of Tween20 and Span60.
18. The novel insulin vesicle according to claim 15 wherein said vesicle is an aqueous dispersion, or prepared into a powder by freeze drying or spray drying.
19. The novel insulin vesicle according to claim 15 , used in the preparation of non-injectable formulation for oral, percutaneous, mucosal, and lung inhalation administration.
20. A process for preparation of the insulin-lipid complex according to claim 1 , comprising the following steps: taking an organic solvent, adding a suitable amount of low boiling point acid, then adding insulin and lipid material, stirring fully to form a clear, transparent solution, removing the organic solvent by the rotary evaporation method or spray drying, and obtaining by drying the residual material; wherein the organic solvent is selected from the group consisting of methanol, tetrahydrofuran, DMSO, and a combination thereof, with methanol being preferred.
21. A process for preparation of the insulin-lipid complex according to claim 1 , comprising the following steps: dissolving lipid material in an organic solvent, adding insulin, stirring and adding low boiling point acid until the solution is clear and transparent, stirring at room temperature or ultrasonic processing for a given time, to fully compound the insulin and lipid material, removing the organic solvent by distillation or spray drying, and obtaining said complex by drying the residual material; wherein the organic solvent is selected from the group consisting of methanol, tetrahydrofuran, DMSO, and a combination thereof, with methanol being preferred.
22. A process for preparation of the insulin-lipid complex according to claim 1 , comprising the following steps: dissolving insulin in a solvent A containing a suitable amount of a low boiling point acid to form a clear and transparent insulin solution, dissolving the lipid material in a solvent B to form a clear and transparent lipid solution, evenly mixing the insulin solution and lipid solution, and thereafter distilling at reduced pressure in a water bath, further processing by pump extraction, and obtaining said complex by drying; wherein the solvent A is selected from the group consisting of methanol, tetrahydrofuran, DMSO, and a combination thereof, with methanol being preferred; and solvent B is selected from the group consisting of chloroform, dichloromethane, ether, and a combination thereof, with dichloromethane being preferred.
23. A process for preparation of the insulin-lipid complex according to claim 1 , comprising the following steps: dissolving insulin in a solvent A containing a suitable amount of a low boiling point acid to form a clear and transparent insulin solution, dissolving the lipid material in a solvent B to form a clear and transparent lipid solution, mixing the insulin solution and lipid solution, thereafter performing reduced pressure distillation in a water bath at a fixed temperature, gradually adding a suitable amount of solvent B during the distillation process, continuing the distillation, then removing the solvent by pumping and obtaining said complex by drying, wherein the solvent A is selected from the group consisting of methanol, tetrahydrofuran, DMSO, and a combination thereof, with methanol being preferred; and solvent B is selected from the group consisting of chloroform, dichloromethane, ether, and a combination thereof, with dichloromethane being preferred.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201010226102 | 2010-07-14 | ||
| CNCN201010226102.7 | 2010-07-14 | ||
| PCT/CN2011/077152 WO2012006956A1 (en) | 2010-07-14 | 2011-07-14 | Insulin-lipid complex, preparation method therefor, and preparation thereof |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CN2011/077152 A-371-Of-International WO2012006956A1 (en) | 2010-07-14 | 2011-07-14 | Insulin-lipid complex, preparation method therefor, and preparation thereof |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/895,282 Division US10611852B2 (en) | 2010-07-14 | 2018-02-13 | Insulin-lipid complex, preparation method therefor, and preparation thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20130338064A1 true US20130338064A1 (en) | 2013-12-19 |
Family
ID=45468937
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/810,098 Abandoned US20130338064A1 (en) | 2010-07-14 | 2011-07-14 | Insulin-lipid complex,preparation method therefor, and preparation thereof |
| US15/895,282 Active US10611852B2 (en) | 2010-07-14 | 2018-02-13 | Insulin-lipid complex, preparation method therefor, and preparation thereof |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/895,282 Active US10611852B2 (en) | 2010-07-14 | 2018-02-13 | Insulin-lipid complex, preparation method therefor, and preparation thereof |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US20130338064A1 (en) |
| EP (1) | EP2594281B1 (en) |
| JP (1) | JP6051157B2 (en) |
| KR (1) | KR101801426B1 (en) |
| CN (3) | CN102573889B (en) |
| CA (1) | CA2805325C (en) |
| WO (1) | WO2012006956A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10611852B2 (en) | 2010-07-14 | 2020-04-07 | Institute Of Materia Medica, Chinese Academy Of Medical Sciences | Insulin-lipid complex, preparation method therefor, and preparation thereof |
| WO2022031842A1 (en) * | 2020-08-04 | 2022-02-10 | Reddy Robert R | Polyphenolic insulin |
| CN114767837A (en) * | 2022-05-05 | 2022-07-22 | 合肥工业大学 | Oral insulin liposome hydrogel and application thereof |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2511028A (en) * | 2012-12-18 | 2014-08-27 | Univ Manchester Metropolitan | Nano emulsions, methods of forming the same and uses thereof |
| CN105617362B (en) * | 2014-10-27 | 2021-05-11 | 中国医学科学院药物研究所 | A novel insulin-phospholipid-chitosan self-assembled microparticle carrier and its preparation |
| CN107308132B (en) * | 2016-04-26 | 2021-08-17 | 北京五和博澳药业股份有限公司 | A kind of phospholipid chitosan drug delivery system and preparation method and use thereof |
| CN106581646A (en) * | 2016-11-03 | 2017-04-26 | 广州凯耀资产管理有限公司 | Oral insulin composition |
| CN110464836A (en) * | 2018-05-11 | 2019-11-19 | 中国医学科学院药物研究所 | A kind of insulin flexible microparticle composition |
| CN109498559B (en) * | 2018-11-30 | 2022-04-12 | 复旦大学 | Oral preparation loaded with diabetes treatment polypeptide and preparation method thereof |
| CN115389640B (en) * | 2021-05-25 | 2024-12-10 | 中国医学科学院药物研究所 | A method for determining the content of insulin liposome drug |
| CN113616798A (en) * | 2021-09-06 | 2021-11-09 | 天津农学院 | Mebendazole lipid complex, preparation method and application |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1990011780A1 (en) * | 1989-03-31 | 1990-10-18 | The Regents Of The University Of California | Preparation of liposome and lipid complex compositions |
| US5858398A (en) * | 1994-11-03 | 1999-01-12 | Isomed Inc. | Microparticular pharmaceutical compositions |
| US6258377B1 (en) * | 1996-07-02 | 2001-07-10 | Provalis Uk Limited | Hydrophobic preparations containing medium chain monoglycerides |
| US20080279815A1 (en) * | 1998-10-23 | 2008-11-13 | Idea Ag | Method for developing testing, and using associates of macromolecules and complex aggregates for improved payload and controllable de/association rates |
| WO2010060667A1 (en) * | 2008-11-28 | 2010-06-03 | Novo Nordisk A/S | Pharmaceutical compositions suitable for oral administration of derivatized insulin peptides |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| NL193099C (en) * | 1981-10-30 | 1998-11-03 | Novo Industri As | Stabilized insulin solution. |
| DD212185A1 (en) * | 1982-12-21 | 1984-08-08 | Adw Ddr | PROCESS FOR PREPARING PHOSPHOLIPID-ACTIVE COMBINATIONS |
| GB9323588D0 (en) * | 1993-11-16 | 1994-01-05 | Cortecs Ltd | Hydrophobic preparation |
| CN101524349B (en) * | 2007-09-20 | 2014-01-15 | 中国医学科学院药物研究所 | Phospholipid complex of bicyclol and preparation method thereof |
| CN101380462A (en) * | 2008-09-04 | 2009-03-11 | 中国药科大学 | Obtaining method and preparation technology of a novel insulin oil phase solution |
| JP6051157B2 (en) * | 2010-07-14 | 2016-12-27 | 中国医学科学院▲薬▼物研究所 | Insulin lipid complex and preparation method and preparation |
-
2011
- 2011-07-14 JP JP2013518942A patent/JP6051157B2/en active Active
- 2011-07-14 CN CN201180002259.4A patent/CN102573889B/en active Active
- 2011-07-14 CN CN201110196733.3A patent/CN102512667B/en active Active
- 2011-07-14 US US13/810,098 patent/US20130338064A1/en not_active Abandoned
- 2011-07-14 KR KR1020137003805A patent/KR101801426B1/en active Active
- 2011-07-14 WO PCT/CN2011/077152 patent/WO2012006956A1/en active Application Filing
- 2011-07-14 CN CN201410174195.1A patent/CN104001159B/en active Active
- 2011-07-14 CA CA2805325A patent/CA2805325C/en active Active
- 2011-07-14 EP EP11806298.3A patent/EP2594281B1/en active Active
-
2018
- 2018-02-13 US US15/895,282 patent/US10611852B2/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1990011780A1 (en) * | 1989-03-31 | 1990-10-18 | The Regents Of The University Of California | Preparation of liposome and lipid complex compositions |
| US5858398A (en) * | 1994-11-03 | 1999-01-12 | Isomed Inc. | Microparticular pharmaceutical compositions |
| US6258377B1 (en) * | 1996-07-02 | 2001-07-10 | Provalis Uk Limited | Hydrophobic preparations containing medium chain monoglycerides |
| US20080279815A1 (en) * | 1998-10-23 | 2008-11-13 | Idea Ag | Method for developing testing, and using associates of macromolecules and complex aggregates for improved payload and controllable de/association rates |
| WO2010060667A1 (en) * | 2008-11-28 | 2010-06-03 | Novo Nordisk A/S | Pharmaceutical compositions suitable for oral administration of derivatized insulin peptides |
Non-Patent Citations (4)
| Title |
|---|
| Cui et al. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: Preparation, in vitro characterization and in vivo evaluation. Journal of Controlled Release, 2006; 114:242-250 * |
| Kisel et al. Liposomes with phosphatidylethanol as a carrier for oral delivery of insulin: studies in the rat. International Journal of Pharmaceutics. 2001; 216:105-114. * |
| Kisel et al.Liposomes with phosphatidylethanol as a carrier for oral delivery of insulin: studies in the rat. International Journal of Pharamceutics. 2001; 216:105-114. * |
| Sarmento et al. Oral insulin delivery by means of solid lipid nanoparticles. International Journal of Nanomedicine, 2007;2(4): 743-749 * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10611852B2 (en) | 2010-07-14 | 2020-04-07 | Institute Of Materia Medica, Chinese Academy Of Medical Sciences | Insulin-lipid complex, preparation method therefor, and preparation thereof |
| WO2022031842A1 (en) * | 2020-08-04 | 2022-02-10 | Reddy Robert R | Polyphenolic insulin |
| CN114767837A (en) * | 2022-05-05 | 2022-07-22 | 合肥工业大学 | Oral insulin liposome hydrogel and application thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| CN104001159A (en) | 2014-08-27 |
| JP6051157B2 (en) | 2016-12-27 |
| CN102512667A (en) | 2012-06-27 |
| JP2013531015A (en) | 2013-08-01 |
| KR101801426B1 (en) | 2017-12-20 |
| CN102512667B (en) | 2015-08-19 |
| WO2012006956A1 (en) | 2012-01-19 |
| CN102573889B (en) | 2014-10-22 |
| CN104001159B (en) | 2016-08-24 |
| US20180171031A1 (en) | 2018-06-21 |
| CA2805325C (en) | 2020-08-04 |
| CA2805325A1 (en) | 2012-01-19 |
| US10611852B2 (en) | 2020-04-07 |
| KR20130043193A (en) | 2013-04-29 |
| CN102573889A (en) | 2012-07-11 |
| EP2594281A1 (en) | 2013-05-22 |
| EP2594281B1 (en) | 2019-08-28 |
| EP2594281A4 (en) | 2014-02-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10611852B2 (en) | Insulin-lipid complex, preparation method therefor, and preparation thereof | |
| JP5908847B2 (en) | Pharmaceutical composition for oral administration of insulin peptides | |
| US20110293714A1 (en) | Pharmaceutical compositions suitable for oral administration of derivatized insulin peptides | |
| KR980008239A (en) | Cyclosporin-containing pharmaceutical composition | |
| CN102218035A (en) | Formula of combined medicament of esomeprazole sodium liposomes, method for preparing same and application thereof | |
| US20130150335A1 (en) | Paclitaxel/steroidal complex | |
| CN101780037B (en) | Dipyridamole self-emulsifying medicament administration system and preparation method thereof | |
| CN106334185B (en) | Oral preparation containing polypeptide drug self-nanoemulsion and preparation method thereof | |
| CN108938566B (en) | Asarin self-emulsifying system | |
| CN101584661B (en) | Preparation of sorafenib self-microemulsifying drug delivery system for oral administration or intravenous injection and use thereof | |
| CN101406452B (en) | Cyclosporine A microemulsion preparation for injection and preparation method thereof | |
| JP2942556B2 (en) | Novel composition containing cyclosporin | |
| CN111643451B (en) | Honokiol self-emulsifying microemulsion preparation for injection and preparation method thereof | |
| WO2024153103A1 (en) | Albumin composition containing silybin, and preparation method therefor | |
| CN104055749B (en) | Self-microemulsifying soft capsule content combination of ciclosporin A and preparation method thereof | |
| CN115389640B (en) | A method for determining the content of insulin liposome drug | |
| CN107080748B (en) | Ligustrazine Ferulic Acid Solid Lipid Nanoparticles and Its Preparation Method and Application | |
| CN115420886B (en) | Method for extracting liposome in blood plasma based on titanium dioxide microspheres and measuring free drug, encapsulated drug and total drug content | |
| CN119053322A (en) | Steroid hormone phospholipid composition and preparation method thereof | |
| CN118873492A (en) | Vitamin K1 injection and preparation method thereof | |
| CN119139480A (en) | A composition for increasing the solubility of quinone compounds and its application | |
| CN120605250A (en) | A semaglutide self-emulsifying composition and its application | |
| CN111840223A (en) | Alisol A self-microemulsion composition and preparation method thereof | |
| KR19990047897A (en) | Cyclosporine-containing pharmaceutical composition | |
| CN104042644A (en) | Ginkgo biloba extract self-microemulsion preparation and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: INSTITUTE OF MATERIA MEDICA, CHINESE ACADEMY OF ME Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIU, YULING;ZHOU, CUIPING;SONG, ZHIHUI;AND OTHERS;REEL/FRAME:031126/0591 Effective date: 20130301 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |