US20140171544A1 - Contact lens - Google Patents
Contact lens Download PDFInfo
- Publication number
- US20140171544A1 US20140171544A1 US14/187,932 US201414187932A US2014171544A1 US 20140171544 A1 US20140171544 A1 US 20140171544A1 US 201414187932 A US201414187932 A US 201414187932A US 2014171544 A1 US2014171544 A1 US 2014171544A1
- Authority
- US
- United States
- Prior art keywords
- solvent
- weight percent
- amount
- weight
- silicone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000178 monomer Substances 0.000 claims abstract description 73
- 239000002904 solvent Substances 0.000 claims abstract description 65
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 28
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 28
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 24
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 18
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 claims description 14
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 239000000376 reactant Substances 0.000 claims description 9
- 239000011541 reaction mixture Substances 0.000 claims description 9
- 239000012046 mixed solvent Substances 0.000 claims description 7
- 150000003138 primary alcohols Chemical class 0.000 claims description 7
- 239000006184 cosolvent Substances 0.000 claims description 6
- 230000002209 hydrophobic effect Effects 0.000 claims description 6
- 150000003333 secondary alcohols Chemical class 0.000 claims description 4
- 150000003509 tertiary alcohols Chemical class 0.000 claims description 4
- 239000000203 mixture Substances 0.000 abstract description 61
- 229920000036 polyvinylpyrrolidone Polymers 0.000 abstract description 28
- 239000001267 polyvinylpyrrolidone Substances 0.000 abstract description 28
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 abstract description 28
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 abstract description 20
- 229920001519 homopolymer Polymers 0.000 abstract description 9
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 abstract description 6
- BESKSSIEODQWBP-UHFFFAOYSA-N 3-tris(trimethylsilyloxy)silylpropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC[Si](O[Si](C)(C)C)(O[Si](C)(C)C)O[Si](C)(C)C BESKSSIEODQWBP-UHFFFAOYSA-N 0.000 abstract description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 18
- 239000000017 hydrogel Substances 0.000 description 17
- 229920000642 polymer Polymers 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000007983 Tris buffer Substances 0.000 description 11
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000004205 dimethyl polysiloxane Substances 0.000 description 7
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 7
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000003999 initiator Substances 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000003431 cross linking reagent Substances 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- -1 poly(hydroxyethyl methacrylate) Polymers 0.000 description 5
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 4
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 4
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- HWSSEYVMGDIFMH-UHFFFAOYSA-N 2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOC(=O)C(C)=C HWSSEYVMGDIFMH-UHFFFAOYSA-N 0.000 description 3
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 3
- RZKKLXUEULTOGP-UHFFFAOYSA-N C=C(C)C(=O)OC[Si](C)(C)O[Si](C)(C)C Chemical compound C=C(C)C(=O)OC[Si](C)(C)O[Si](C)(C)C RZKKLXUEULTOGP-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- IAXXETNIOYFMLW-COPLHBTASA-N [(1s,3s,4s)-4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl] 2-methylprop-2-enoate Chemical compound C1C[C@]2(C)[C@@H](OC(=O)C(=C)C)C[C@H]1C2(C)C IAXXETNIOYFMLW-COPLHBTASA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229920001477 hydrophilic polymer Polymers 0.000 description 3
- 229940119545 isobornyl methacrylate Drugs 0.000 description 3
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 125000004890 (C1-C6) alkylamino group Chemical group 0.000 description 2
- KQHBXKZPRBHDBF-UHFFFAOYSA-N 2-methyl-n-[3-[[3-(2-methylprop-2-enoylamino)propyl-bis(trimethylsilyloxy)silyl]oxy-bis(trimethylsilyloxy)silyl]propyl]prop-2-enamide Chemical compound CC(=C)C(=O)NCCC[Si](O[Si](C)(C)C)(O[Si](C)(C)C)O[Si](O[Si](C)(C)C)(O[Si](C)(C)C)CCCNC(=O)C(C)=C KQHBXKZPRBHDBF-UHFFFAOYSA-N 0.000 description 2
- ZIFLDVXQTMSDJE-UHFFFAOYSA-N 3-[[dimethyl-[3-(2-methylprop-2-enoyloxy)propyl]silyl]oxy-dimethylsilyl]propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC[Si](C)(C)O[Si](C)(C)CCCOC(=O)C(C)=C ZIFLDVXQTMSDJE-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical group 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000007975 buffered saline Substances 0.000 description 2
- 238000013036 cure process Methods 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 2
- 229920002959 polymer blend Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 0 *[S+](*)(*)OS1C=CC1N Chemical compound *[S+](*)(*)OS1C=CC1N 0.000 description 1
- WVAFEFUPWRPQSY-UHFFFAOYSA-N 1,2,3-tris(ethenyl)benzene Chemical compound C=CC1=CC=CC(C=C)=C1C=C WVAFEFUPWRPQSY-UHFFFAOYSA-N 0.000 description 1
- CTXUTPWZJZHRJC-UHFFFAOYSA-N 1-ethenylpyrrole Chemical class C=CN1C=CC=C1 CTXUTPWZJZHRJC-UHFFFAOYSA-N 0.000 description 1
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- WYGWHHGCAGTUCH-UHFFFAOYSA-N 2-[(2-cyano-4-methylpentan-2-yl)diazenyl]-2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)C WYGWHHGCAGTUCH-UHFFFAOYSA-N 0.000 description 1
- LTHJXDSHSVNJKG-UHFFFAOYSA-N 2-[2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical group CC(=C)C(=O)OCCOCCOCCOCCOC(=O)C(C)=C LTHJXDSHSVNJKG-UHFFFAOYSA-N 0.000 description 1
- YPWGFCFIFSGMRT-UHFFFAOYSA-N 2-[3-[[3-[2-(2-methylprop-2-enoyloxy)ethylcarbamoylamino]propyl-bis(trimethylsilyloxy)silyl]oxy-bis(trimethylsilyloxy)silyl]propylcarbamoylamino]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCNC(=O)NCCC[Si](O[Si](C)(C)C)(O[Si](C)(C)C)O[Si](O[Si](C)(C)C)(O[Si](C)(C)C)CCCNC(=O)NCCOC(=O)C(C)=C YPWGFCFIFSGMRT-UHFFFAOYSA-N 0.000 description 1
- MYFYSINLLGDXMA-UHFFFAOYSA-N 2-[3-tris(trimethylsilyloxy)silylpropoxycarbonylamino]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCNC(=O)OCCC[Si](O[Si](C)(C)C)(O[Si](C)(C)C)O[Si](C)(C)C MYFYSINLLGDXMA-UHFFFAOYSA-N 0.000 description 1
- BQBSIHIZDSHADD-UHFFFAOYSA-N 2-ethenyl-4,5-dihydro-1,3-oxazole Chemical class C=CC1=NCCO1 BQBSIHIZDSHADD-UHFFFAOYSA-N 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- NWBTXZPDTSKZJU-UHFFFAOYSA-N 3-[dimethyl(trimethylsilyloxy)silyl]propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC[Si](C)(C)O[Si](C)(C)C NWBTXZPDTSKZJU-UHFFFAOYSA-N 0.000 description 1
- KFDVPJUYSDEJTH-UHFFFAOYSA-N 4-ethenylpyridine Chemical compound C=CC1=CC=NC=C1 KFDVPJUYSDEJTH-UHFFFAOYSA-N 0.000 description 1
- 239000004160 Ammonium persulphate Substances 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 1
- 235000019395 ammonium persulphate Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- UIQDGZSSZYWSAH-UHFFFAOYSA-N ethanol;propyl acetate Chemical compound CCO.CCCOC(C)=O UIQDGZSSZYWSAH-UHFFFAOYSA-N 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 150000002678 macrocyclic compounds Chemical class 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- AECYEHSJOOHNED-UHFFFAOYSA-N n,2-dimethyl-n-[3-[[3-[methyl(2-methylprop-2-enoyl)amino]propyl-bis(trimethylsilyloxy)silyl]oxy-bis(trimethylsilyloxy)silyl]propyl]prop-2-enamide Chemical compound CC(=C)C(=O)N(C)CCC[Si](O[Si](C)(C)C)(O[Si](C)(C)C)O[Si](O[Si](C)(C)C)(O[Si](C)(C)C)CCCN(C)C(=O)C(C)=C AECYEHSJOOHNED-UHFFFAOYSA-N 0.000 description 1
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 1
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 1
- BOJYOZQNQLXPOU-UHFFFAOYSA-N n-[3-[[3-(prop-2-enoylamino)propyl-bis(trimethylsilyloxy)silyl]oxy-bis(trimethylsilyloxy)silyl]propyl]prop-2-enamide Chemical compound C=CC(=O)NCCC[Si](O[Si](C)(C)C)(O[Si](C)(C)C)O[Si](CCCNC(=O)C=C)(O[Si](C)(C)C)O[Si](C)(C)C BOJYOZQNQLXPOU-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 229920000191 poly(N-vinyl pyrrolidone) Polymers 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- BWJUFXUULUEGMA-UHFFFAOYSA-N propan-2-yl propan-2-yloxycarbonyloxy carbonate Chemical compound CC(C)OC(=O)OOC(=O)OC(C)C BWJUFXUULUEGMA-UHFFFAOYSA-N 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- MNCGMVDMOKPCSQ-UHFFFAOYSA-M sodium;2-phenylethenesulfonate Chemical class [Na+].[O-]S(=O)(=O)C=CC1=CC=CC=C1 MNCGMVDMOKPCSQ-UHFFFAOYSA-M 0.000 description 1
- BWYYYTVSBPRQCN-UHFFFAOYSA-M sodium;ethenesulfonate Chemical class [Na+].[O-]S(=O)(=O)C=C BWYYYTVSBPRQCN-UHFFFAOYSA-M 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960000834 vinyl ether Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
- G02B1/043—Contact lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F283/00—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
- C08F283/12—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
- C08F290/068—Polysiloxanes
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/04—Contact lenses for the eyes
Definitions
- the present invention relates to hydrogel contact lenses made from silicone-containing monomers.
- a hydrogel is a hydrated cross-linked polymeric system that contains water in an equilibrium state.
- Hydrogels typically are oxygen permeable and biocompatible, making them a preferred material for producing biomedical devices and in particular contact or intraocular lenses.
- hydrogels are prepared from monomeric mixtures predominantly containing hydrophilic monomers, such as 2-hydroxyethyl methacrylate (HEMA) or N-vinyl pyrrolidone (NVP).
- hydrophilic monomers such as 2-hydroxyethyl methacrylate (HEMA) or N-vinyl pyrrolidone (NVP).
- HEMA 2-hydroxyethyl methacrylate
- NDP N-vinyl pyrrolidone
- silicone-containing polymers means that contact lenses made from them are difficult to wet.
- the suitability of a material for use in biomedical devices depends on the wettability of the material and its proclivity for adhesion or reaction with biological materials such as proteins and lipids.
- U.S. Pat. No. 5,219,965 proposes modifying the surface properties of polymeric objects such as contact lenses by the inclusion of macromers having a hydrophobic portion, a hydrophilic portion, a chain transfer agent, and an unsaturated end group in the monomer mix used to make the objects.
- the macromers can include poly-N-vinyl pyrrolidone having molecular weights of 500 to 10,000 with 1,000 to 5,000 being most preferred.
- the macromers are polymerized into the hydrogel and do improve wettability of the polymers. However, the improvement is generally not to such a degree that lenses can be made from the hydrogels without the need for a hydrophilic coating. In any event, enhancing the wettability of biomedical devices such as contact lenses without the need for lens coating would be considered a significant advance in the art.
- U.S. Pat. Nos. 4,045,547 and 4,042,552 propose the polymerization of large amounts (14.25 to 35% wt) of polyvinyl pyrrolidone (PVP) into a poly(hydroxyethyl methacrylate) (HEMA) based contact lens formulation.
- PVP polyvinyl pyrrolidone
- HEMA poly(hydroxyethyl methacrylate)
- U.S. Pat. Nos. 4,833,196; 4,791,175; and 4,678,838 are directed to the incorporation of poly-N-vinyl lactams into polymers used to make contact lenses.
- Polyvinyl pyrrolidone (PVP) is the preferred polylactam.
- Low molecular weight (about 40,000 Daltons) PVP is covalently bonded with the monomers used to form the lens by first hydroperoxidizing the PVP by reaction with ozone and then polymerizing the PVP with the other monomers.
- U.S. Pat. No. 5,198,477 employs low molecular weight (about 25,000 Daltons) PVP within an interpenetrating polymer network formed principally from macrocycles made from vinyl containing monomers. The PVP appears to be crosslinked into the interpenetrating network.
- U.S. Pat. No. 6,367,929 discloses a wettable silicone hydrogel made by including a high molecular weight hydrophilic polymer into the silicone hydrogel monomer mix.
- the hydrophilic polymer is entrapped in the hydrogel with little or no covalent bonding between it and the hydrogel matrix.
- the hydrophilic polymer is polyvinyl pyrrolidone.
- a contact lens formed of a composition comprising the reaction product of:
- the production of a PVP homopolymer can be tested by measurement of residual monomers present during curing. Sample compositions can be measured at different points of the cure, and the residual monomeric mixture can be tested to see which monomers remain.
- a contact lens formed of a composition comprising the reaction product of:
- a contact lens comprising the steps of:
- the silicone containing monomers A) are generally not fully miscible with the other monomers. If components A) to E) are simply mixed in the absence of solvent, the mixture generally becomes cloudy when stirred, and separates into two distinct layers when left to stand for a few minutes. It is therefore preferred to utilise a suitable solvent, which will improve the mutual compatibility of the monomer components.
- the weight percentages of the reactants mentioned above are however calculated based on the total amount of reactants excluding any solvent.
- the solvent is utilised in an amount of from 10 to 30 parts by weight, based on 100 parts by weight of the total amount of reactants excluding solvent.
- the solvent comprises at least one primary alcohol, preferably ethanol, propanol or decanol.
- the solvent comprises at least one primary alcohol (for example ethanol) and at least one additional solvent which is more hydrophobic than the primary alcohol, and which is present in an amount of from 20 to 50 weight percent of the solvent.
- the additional solvent may also be a primary alcohol.
- Particularly preferred additional solvents include propanol, hexanol, octanol, decanol and ethyl acetate.
- the solvent comprises a mixture of ethanol and at least one of hexanol, octanol, decanol and ethyl acetate.
- the solvent does not comprise any secondary or tertiary alcohols.
- a method of making a contact lens comprising the reaction product of at least one silicone-containing monomer and at least one hydrophilic monomer, wherein the method comprises the step of incorporating in the reaction mixture from 10 to 30 weight percent, based on 100 weight percent of the reactants, of a mixed solvent, wherein the mixed solvent comprises ethanol and a co-solvent in an amount of at least 20 weight percent based on the total amount of solvent, wherein the co-solvent is at least one of propanol, hexanol, octanol, decanol and ethyl acetate.
- This method is particularly useful for making the contact lens of the first aspect of the present invention.
- the solvent mixture is particularly good at preventing phase separation of the hydrophilic and hydrophobic monomers.
- Methacrylic acid is not usually added to silicone-containing contact lenses.
- ionic materials such as methacrylic acid have been associated with increased bio-fouling, especially protein deposition. For this reason silicone hydrogel materials do not typically include ionic monomers.
- MAA metal-organic adiol
- the MAA is most preferably used in an amount of less than 2 weight percent, based on the total composition weight excluding solvent. However, it can be used in an amount of up to 4 weight percent, more preferably less than 3 weight percent.
- the amounts of monomers used are “normalised” i.e. the amount of monomers are chosen to ensure that the complete consumption of all of the monomers present occurs at approximately the same time so that homopolymers of one particular species are not produced. It was believed that if the amount of the monomers were not normalised, problems would arise with the resulting lens such as separation of hydrophobic and hydrophilic phases and haze or even opacity in either the dry or hydrated lens materials.
- PVP homopolymer is to be understood as covering polymers which consist essentially only of polymerized NVP with trace amounts of other monomers present.
- the amount of N-vinyl pyrrolidone is present in an amount of from 20 to 60 weight percent. More preferably, N-vinyl pyrrolidone is present in an amount of at least 30 weight percent, and most preferably at least 40 weight percent. If the N-vinyl pyrrolidone is present in an amount greater than 60 weight percent, the resultant lens will not contain enough silicone-based material to have sufficient oxygen permeability.
- At least one other non-ionic hydrophilic monomer is used.
- a hydrophilic monomer is one which can combine with other monomers to form a polymer that has hydrophilic properties or can impart such properties to the final polymer. Molecules with hydrophilic properties have an affinity to water and are typically charged or have polar side groups to their structure that will attract water.
- hydrophilic monomers include hydroxyl substituted C 1-6 alkyl acrylates and methacrylates, for example 2-hydroxyethyl methacrylate (HEMA), (meth)acrylamide, (C 1-6 alkyl)-acrylamides and -methacrylamides, for example N,N-dimethylacrylamide (DMA), ethoxylated acrylates and methacrylates, hydroxyl substituted (C 1-6 alkyl)acrylamides and -methacrylamides, hydroxyl-substituted C 1-6 alkyl vinyl ethers, sodium vinylsulfonate, sodium styrenesulfonate, N-vinylpyrrole, 2-vinyloxazoline, 2-vinyl-4,4′-dialkyloxazolin-5-one, 2- and 4-vinylpyridine, amino(C 1-6 alkyl)- (where the term “amino” also includes quaternary ammonium), mono(C 1-6 alkylamino)(C 1-6 al
- the additional hydrophilic monomer is selected from hydroxyl-substituted C 1-6 alkyl acrylates and methacrylates, most preferably 2-hydroxyethyl methacrylate (HEMA).
- HEMA 2-hydroxyethyl methacrylate
- the additional hydrophilic monomers are present in an amount of from 2 to 10 weight percent. It is yet further preferred that the hydrophilic monomers are present in an amount of from 2 to 6 weight percent.
- HEMA When HEMA is used, it is used in an amount of from 2 to 10 weight percent. Preferably, it is used in an amount of from 4 to 6 weight percent.
- Monomer Component A is at least one silicone-containing monomer having the formula:
- n is from 1 to 3
- m is from 9 to 15
- each a independently is C 1-4 alkyl
- each b independently is C 1-4 alkyl.
- silicone-containing monomers present is methacryloxypropyl(polydimethyl siloxane).
- methacryl-oxypropyl(polydimethyl siloxane) has an average molecular weight of approximately 1000.
- a particularly preferred silicone monomer is methacryloxypropyl(polydimethyl siloxane) which is terminated with a trimethyl silyl group.
- a contact lens formed of the reaction product of a composition comprising trimethylsilyl methacryl-oxypropyl(polydimethyl siloxane).
- silicone-containing monomers other than those of the Component A) or B).
- examples of other silicone monomers may include, but are not limited to, 3-methacryloxy propylpentamethyldisiloxane, bis(methacryloxypropyl)-tetramethyldisiloxane, N[tris(trimethylsiloxy)silylpropyl]methacrylamide (TSMAA), N[tris(trimethylsiloxy)silylpropyl]acrylamide, [tris(trimethylsiloxy)silylpropyl]-methacryloxyethylcarbamate, N[tris(dimethylpropylsiloxy)silylpropyl]methacrylamide, N[tris(dimethylphenylsiloxy)silylpropyl]methacrylamide, N[tris(trimethylsiloxy)-silylpropyl]methacryloxyglycerylcarbamate, N[tris(dimethylethyls)
- an initiator such as a free-radical initiator.
- suitable polymerisation initiators or catalysts which are well understood in the art include peroxide or azo containing compounds such as benzoyl peroxide, lauroyl peroxide, di-isopropyl-peroxy dicarbonate, azo bis(2,4-dimethyl valeronitrile), azo bis(isobutyronitrile), redox systems, for example ammonium persulphate, and photoinitiators for example benzoin methyl ether. Particularly preferred is 2,2′-azobisisobutyronitrile, (AZBN).
- AZBN 2,2′-azobisisobutyronitrile
- the composition also preferably comprises a cross-linker.
- suitable cross-linking agents include, C 2-6 alkylene glycol di(meth)acrylate, poly(C 2-6 alkylene) glycol di(meth)acrylate, C 2-6 alkylene di(meth)acrylate, divinyl ether, divinyl sulfone, di- and trivinylbenzene, trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, bisphenol A di(meth)acrylate, methylenebis(meth)acrylamide, triallyl phthalate and diallyl phthalate.
- Standard UV absorbers and/or colorants may be added to the monomer mix using methods known to those skilled in the art.
- Silicon-containing dimers may also be used as cross linking agents.
- suitable silicon-containing dimers include 1,3-Bis(methacrylamidopropyl)-1,1,3,3-tetrakis(trimethylsiloxy)disiloxane, 1,3-Bis(3-methacryloxypropyl)tetramethyldisiloxane, 1,3-Bis(N-methylmethacrylamidopropyl)-1,1,3,3-tetrakis(trimethylsiloxy) disiloxane, 1,3-Bis(methacrylamidopropyl)-1,1,3,3-tetrakis(trimethylsiloxy)disiloxane, Bis(methacryloxypropyl)polydimethylsiloxane, 1,3-Bis(acrylamidopropyl)-1,1,3,3-tetrakis(trimethylsiloxy)disiloxane, and 1,3-Bis(methacryloxyethylureido
- the preferred cross linking agent is tetraethyleneglycol dimethacrylate.
- FIG. 1 shows the contact angle of lens formulations made using different amounts of methacrylic acid, as measured by sessile drop
- FIG. 2 shows the contact angle of lens formulations made using different amounts of methacrylic acid, as measured by captive bubble.
- Contact lenses were made by reacting various monomer mixtures having the compositions shown in Table 1. For all contact lenses, a 50:50 mixture of ethanol and ethyl acetate was used as the solvent.
- the reactants and solvent were mixed at room temperature to produce a curable mixture.
- the mixtures were placed in a contact lens mould and cured using a two stage cure in a nitrogen atmosphere.
- the cure involved a 1 hour purge in Nitrogen, followed by a first temperature ramp of 45° C./minute to 55° C., followed by curing at that temperature for 8.5 hours. Thereafter, the temperature was ramped to 124° C. at 45° C./minute, and then cured at 124° C. for 1 hour.
- the O 2 concentration in the oven is preferably less than 100 ppm, and more preferably less than 50 ppm.
- TEGDMA cross-linker
- AZBN initiator
- the lenses were typically tested for a number of different characteristics, including thickness, power, haze (subjective), surface quality, diameter, base curve (calculated from saggital height measurement), water content, and wettability by sessile drop and captive bubble contact angle measurement.
- Dry centre thickness is measured with a Mitutoyo Digimatic Indicator model 1D110-ME fitted to a model DGS-E stand.
- Lens powers and image quality are measured using a Nikon PL2 Focimeter.
- Lens wet centre thickness is measured using a Rehder ET-3 electronic thickness gauge.
- Haze was assessed subjectively by viewing wet lenses in a wet cell on a documator.
- the documator is a device which illuminates the lenses from underneath, and allows the lenses to be observed at approximately 45° to the light source, to enable haze to be observed.
- Haze was assessed subjectively with a value of 5 indicating a completely opaque lens, and a level of 0 indicating no discernable haze. The values shown indicate the average of several assessments.
- Atago CL-1 contact lens refractometer or an Index Instruments Contact Lens Refractometer CLR12-70.
- the Atago refractometer is used by placing a sample lens directly onto the prism, gently clamping the sample with light finger pressure on the daylight plate, and focussing so that the scale can be clearly read.
- the upper area of the scale appears as a blue band, and the lower screen appears as a white band. Water content can be directly read from the scale at the point where the blue and white bands meet.
- the Index refractometer is used by gently placing a lens on the sample holder and closing the lid. After a few seconds the reading stabilises and the result printed. The refractive index reading is converted to a water content using a previously validated equation.
- Sessile drop (water in air) and captive bubble (air in water) contact angles were measured using a Data physics OCA15 contact angle analyzer with contact lens adaptor. Lenses were equilibrated and measured in bicarbonate buffered saline.
- Oxygen permeability can also be measured using a Rheder O2 Permeometer model 201T using the method described in the international standard ISO 9913-1.
- the inclusion of MAA decreases the amount of haze in the lens. It can also be seen that the lenses according to the present invention have good contact angles, water content, clarity and surface quality.
- Examples 11 to 13 demonstrate the effect of methacrylic acid on compositions where ethanol and decanol as used as co-solvents in equal proportions.
- the contact lenses were made in the same way as Examples 1 to 10 according to the compositions in Table 3.
- Example 12 Sessile Captive Sessile Captive Sessile Captive Drop Bubble Drop Bubble Drop Bubble 48.3 23.3 59.8 27.2 73 40.5 28.6 26.4 49.6 29.6 75.9 35.2 26.4 22.9 44.6 29.5 80.1 37.8 32 26.5 49.3 25.7 80 35.6 35.2 26.3 48.1 21.7 81.2 39.2 52.3 Mean 34.1 25.1 50.6 26.7 78.0 37.7 Standard 8.61 1.81 5.15 3.26 3.47 2.28 Deviation
- contact lenses made according to the present invention have good properties for haze, wettability, sessile drop and captive bubble.
- the contact lenses can be produced easily and reproducibly using a conventional cast moulding process, such as that described in GB2004/000514.
- the lenses according to the present invention have good mechanical properties including tensile strength, elongation at break etc. The skilled person is aware of the mechanical properties required by a contact lens.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ophthalmology & Optometry (AREA)
- General Health & Medical Sciences (AREA)
- Eyeglasses (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Tumbler Switches (AREA)
- Auxiliary Devices For And Details Of Packaging Control (AREA)
- Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Abstract
Description
- The present invention relates to hydrogel contact lenses made from silicone-containing monomers.
- A hydrogel is a hydrated cross-linked polymeric system that contains water in an equilibrium state. Hydrogels typically are oxygen permeable and biocompatible, making them a preferred material for producing biomedical devices and in particular contact or intraocular lenses.
- Conventional hydrogels are prepared from monomeric mixtures predominantly containing hydrophilic monomers, such as 2-hydroxyethyl methacrylate (HEMA) or N-vinyl pyrrolidone (NVP). U.S. Pat. Nos. 4,495,313; 4,889,664 and 5,039,459 disclose the formation of conventional hydrogels.
- Conventional hydrogels have poor levels of oxygen permeability. Therefore, there has been a shift towards the introduction of silicone-containing monomers to increase the oxygen permeability. Silicone-containing polymers generally have higher oxygen permeabilities than conventional hydrogels.
- However, the hydrophobic nature of silicone-containing polymers means that contact lenses made from them are difficult to wet. The suitability of a material for use in biomedical devices depends on the wettability of the material and its proclivity for adhesion or reaction with biological materials such as proteins and lipids.
- One approach for dealing with the low wettability of silicone-containing contact lenses is to coat the hydrogels with a more hydrophilic coating. This adds an additional level of complexity to their manufacture. Additionally, coating material selection can be difficult as can the determination of proper coating thickness, coating uniformity and other factors that can affect physiological performance.
- U.S. Pat. No. 5,219,965 proposes modifying the surface properties of polymeric objects such as contact lenses by the inclusion of macromers having a hydrophobic portion, a hydrophilic portion, a chain transfer agent, and an unsaturated end group in the monomer mix used to make the objects. The macromers can include poly-N-vinyl pyrrolidone having molecular weights of 500 to 10,000 with 1,000 to 5,000 being most preferred. The macromers are polymerized into the hydrogel and do improve wettability of the polymers. However, the improvement is generally not to such a degree that lenses can be made from the hydrogels without the need for a hydrophilic coating. In any event, enhancing the wettability of biomedical devices such as contact lenses without the need for lens coating would be considered a significant advance in the art.
- U.S. Pat. Nos. 4,045,547 and 4,042,552 propose the polymerization of large amounts (14.25 to 35% wt) of polyvinyl pyrrolidone (PVP) into a poly(hydroxyethyl methacrylate) (HEMA) based contact lens formulation. The polymerizations are conducted without regard for the presence of water. No mention is made of the molecular weight of the PVP.
- U.S. Pat. Nos. 4,833,196; 4,791,175; and 4,678,838 are directed to the incorporation of poly-N-vinyl lactams into polymers used to make contact lenses. Polyvinyl pyrrolidone (PVP) is the preferred polylactam. Low molecular weight (about 40,000 Daltons) PVP is covalently bonded with the monomers used to form the lens by first hydroperoxidizing the PVP by reaction with ozone and then polymerizing the PVP with the other monomers.
- U.S. Pat. No. 5,198,477 employs low molecular weight (about 25,000 Daltons) PVP within an interpenetrating polymer network formed principally from macrocycles made from vinyl containing monomers. The PVP appears to be crosslinked into the interpenetrating network.
- U.S. Pat. No. 6,367,929 discloses a wettable silicone hydrogel made by including a high molecular weight hydrophilic polymer into the silicone hydrogel monomer mix. The hydrophilic polymer is entrapped in the hydrogel with little or no covalent bonding between it and the hydrogel matrix. Typically the hydrophilic polymer is polyvinyl pyrrolidone.
- We have now found that it is possible to produce a wettable silicone hydrogel contact lens without the need to introduce polyvinyl pyrrolidone as a polymer into the reaction mixture.
- Accordingly, in a first aspect of the present invention, there is provided a contact lens formed of a composition comprising the reaction product of:
- A) at least 10 weight percent, based on the total composition weight excluding solvent, of at least one silicone-containing monomer of the formula I:
- where n is from 1 to 3, m is from 9 to 15, each a independently is C1-4 alkyl, and each b independently is C1-4 alkyl;
- B) at least 10 weight percent, based on the total composition weight excluding solvent, of 3-methacryloxypropyl tris(trimethylsiloxy)silane;
- C) N-vinyl pyrrolidone;
- D) at least one other non-ionic hydrophilic monomer; and
- wherein the combined amount of A) and B) is at least 20 weight percent based on the total composition weight excluding solvent, and wherein the N-vinyl pyrrolidone (NVP) is present in such an amount that the reaction product comprises polyvinyl pyrrolidone (PVP) homopolymer. Optionally, the reaction mixture additionally comprises up to 3 weight percent, based on the total composition weight excluding solvent, of acrylic or methacrylic acid.
- The production of a PVP homopolymer can be tested by measurement of residual monomers present during curing. Sample compositions can be measured at different points of the cure, and the residual monomeric mixture can be tested to see which monomers remain.
- One method by which the remaining monomers can be tested is described below. Other methods will be apparent to the skilled person. Sealed moulds filled with monomer are removed at various points during the cure process. The part-cured monomer/polymer mixture is removed, and a known amount of the monomer/polymer mixture placed into a known amount of solvent. The solvent/monomer mix is then analysed quantitatively to measure its components parts. This may be done, for example, using gas chromatography or high pressure liquid chromatography, although other methods may be employed. By removing moulds at different points through the cure process, a profile of the incorporation of the various monomers throughout the cure profile can be established. For contact lenses according to the present invention, the remaining monomers at some stage of the cure will be essentially only N-vinyl pyrrolidone, so that polymerisation of the remaining monomers will necessarily produce PVP homopolymer.
- In a second aspect of the present invention, there is provided a contact lens formed of a composition comprising the reaction product of:
- A) at least 10 weight percent, based on the total composition weight excluding solvent, of at least one silicone-containing monomer of Formula I above;
- B) at least 10 weight percent, based on the total composition weight excluding solvent, of 3-methacryloxypropyl tris(trimethylsiloxy)silane;
- C) from 20 to 60 weight percent, based on the total composition weight excluding solvent, N-vinyl pyrrolidone;
- D) from 2 to 10 weight percent, based on the total composition weight excluding solvent, of at least one other non-ionic hydrophilic monomer;
- E) from 0.2 to 2 weight percent, based on the total composition weight excluding solvent, of a free radical initiator; and
- F) from 0.2 to 5 weight percent, based on the total composition weight excluding solvent, of a cross-linking agent,
- wherein A) and B) are present in a combined amount of at least 20 weight percent based on the total composition weight excluding solvent. Optionally, the reaction mixture additionally comprises up to 3 weight percent, based on the total composition weight excluding solvent, of acrylic or methacrylic acid.
- In a third aspect of the present invention, there is provided a method of making a contact lens comprising the steps of:
- mixing
- A) at least 10 weight percent, based on the total composition weight excluding solvent, of at least one silicone-containing monomer of Formula I above;
- B) at least 10 weight percent, based on the total composition weight excluding solvent, of 3-methacryloxypropyl tris(trimethylsiloxy)silane;
- C) from 20 to 60 weight percent, based on the total composition weight excluding solvent, N-vinyl pyrrolidone;
- D) from 2 to 10 weight percent, based on the total composition weight excluding solvent, of at least one other non-ionic hydrophilic monomer;
- E) from 0.2 to 2 weight percent, based on the total composition weight excluding solvent, of a free radical initiator; and
- F) from 0.2 to 5 weight percent, based on the total composition weight excluding solvent, of a cross-linking agent,
- wherein A) and B) are present in a combined amount of at least 20 weight percent based on the total composition weight excluding solvent addition of a solvent in an amount of from 15 to 30 weight percent based on the weight of reactants, wherein the solvent comprises at least one primary alcohol;
- adding the mixture into a contact lens mould; and
- curing the reaction mixture to form a contact lens. Optionally, the reaction mixture additionally comprises up to 3 weight percent, based on the total composition weight excluding solvent, of acrylic or methacrylic acid.
- The silicone containing monomers A) are generally not fully miscible with the other monomers. If components A) to E) are simply mixed in the absence of solvent, the mixture generally becomes cloudy when stirred, and separates into two distinct layers when left to stand for a few minutes. It is therefore preferred to utilise a suitable solvent, which will improve the mutual compatibility of the monomer components. The weight percentages of the reactants mentioned above are however calculated based on the total amount of reactants excluding any solvent.
- Preferably, the solvent is utilised in an amount of from 10 to 30 parts by weight, based on 100 parts by weight of the total amount of reactants excluding solvent. It is preferred that the solvent comprises at least one primary alcohol, preferably ethanol, propanol or decanol. In a particularly preferred embodiment, the solvent comprises at least one primary alcohol (for example ethanol) and at least one additional solvent which is more hydrophobic than the primary alcohol, and which is present in an amount of from 20 to 50 weight percent of the solvent. The additional solvent may also be a primary alcohol. Particularly preferred additional solvents include propanol, hexanol, octanol, decanol and ethyl acetate. In a most favourable embodiment, the solvent comprises a mixture of ethanol and at least one of hexanol, octanol, decanol and ethyl acetate. Preferably, the solvent does not comprise any secondary or tertiary alcohols.
- In a further aspect of the present invention, there is provided a method of making a contact lens comprising the reaction product of at least one silicone-containing monomer and at least one hydrophilic monomer, wherein the method comprises the step of incorporating in the reaction mixture from 10 to 30 weight percent, based on 100 weight percent of the reactants, of a mixed solvent, wherein the mixed solvent comprises ethanol and a co-solvent in an amount of at least 20 weight percent based on the total amount of solvent, wherein the co-solvent is at least one of propanol, hexanol, octanol, decanol and ethyl acetate.
- This method is particularly useful for making the contact lens of the first aspect of the present invention. The solvent mixture is particularly good at preventing phase separation of the hydrophilic and hydrophobic monomers.
- In situ production of PVP results in the ability to produce PVP-containing contact lenses without the need to add pre-polymerised PVP to the monomer mixture. If PVP is incorporated into the monomer mixture in polymerised form, it is necessary to employ secondary or tertiary alcohols, in order to ensure dissolution of the PVP polymer, as is discussed, for example, in U.S. Pat. No. 6,020,445. However, the use of secondary or tertiary alcohols in the polymerisation mixture is undesirable, because they are difficult to extract from the cured lens using water based extraction systems. In general, they require the use of complex solvent/water systems for their extraction, which leads to increased complexity and cost in manufacturing, as disclosed in WO01/27174. Therefore, by producing the PVP in situ, such complexity can be avoided.
- Methacrylic acid (MAA) is not usually added to silicone-containing contact lenses. In conventional, non-silicone containing hydrogels, ionic materials such as methacrylic acid have been associated with increased bio-fouling, especially protein deposition. For this reason silicone hydrogel materials do not typically include ionic monomers.
- It has now been found that, surprisingly, the addition of relatively small amounts of MAA reduces the haze of the produced contact lenses. Accordingly, when MAA is used in an amount of at least 1.5 weight percent, based on the total composition weight excluding solvent, haze is reduced in the hydrated contact lenses. The MAA is most preferably used in an amount of less than 2 weight percent, based on the total composition weight excluding solvent. However, it can be used in an amount of up to 4 weight percent, more preferably less than 3 weight percent.
- Previously, it has been considered preferable to ensure that the amounts of monomers used are “normalised” i.e. the amount of monomers are chosen to ensure that the complete consumption of all of the monomers present occurs at approximately the same time so that homopolymers of one particular species are not produced. It was believed that if the amount of the monomers were not normalised, problems would arise with the resulting lens such as separation of hydrophobic and hydrophilic phases and haze or even opacity in either the dry or hydrated lens materials.
- Because different monomers have different reactivity ratios, it is difficult to normalise the amount of monomers. Typically, monomers will polymerise at different rates, and therefore it is not straightforward to ensure that the different monomers react to form a single phase polymer. What the applicant has found is that normalization is not necessary. By the use of N-vinyl pyrrolidone with a careful choice of particular silicone monomers it is possible to produce a lens containing a silicon-containing copolymer and a PVP homopolymer. The resulting contact lens is wettable and does not suffer from phase separation or haze.
- It will be apparent to those skilled in the art that in free radical initiated bulk polymerisations of this type that 100% conversion of monomer to polymer is difficult, if not impossible to achieve. For this reason, there are low levels of residual, unreacted monomers in the polymer at the completion of the reaction, which are typically removed by an aqueous or solvent extraction process to yield a contact lens suitable for in vivo use. It follows that some of these residual monomers will be incorporated into the polymer at the end of the reaction. For these reasons, it is understood that the PVP homopolymer produced at the end of the polymerisation will necessarily include very low levels of the other monomeric components of the formulation. Accurate quantification of the levels of these residual monomers incorporated into the lens polymer at the end of the reaction is very difficult due to the nature of the polymers produced. However it is understood that trace levels of the other components will be incorporated into the PVP homopolymer. Therefore, according to the present invention, PVP homopolymer is to be understood as covering polymers which consist essentially only of polymerized NVP with trace amounts of other monomers present.
- It is preferred that the amount of N-vinyl pyrrolidone is present in an amount of from 20 to 60 weight percent. More preferably, N-vinyl pyrrolidone is present in an amount of at least 30 weight percent, and most preferably at least 40 weight percent. If the N-vinyl pyrrolidone is present in an amount greater than 60 weight percent, the resultant lens will not contain enough silicone-based material to have sufficient oxygen permeability.
- As well as N-vinyl pyrrolidone, at least one other non-ionic hydrophilic monomer is used. A hydrophilic monomer is one which can combine with other monomers to form a polymer that has hydrophilic properties or can impart such properties to the final polymer. Molecules with hydrophilic properties have an affinity to water and are typically charged or have polar side groups to their structure that will attract water.
- Examples of suitable hydrophilic monomers include hydroxyl substituted C1-6 alkyl acrylates and methacrylates, for example 2-hydroxyethyl methacrylate (HEMA), (meth)acrylamide, (C1-6 alkyl)-acrylamides and -methacrylamides, for example N,N-dimethylacrylamide (DMA), ethoxylated acrylates and methacrylates, hydroxyl substituted (C1-6 alkyl)acrylamides and -methacrylamides, hydroxyl-substituted C1-6 alkyl vinyl ethers, sodium vinylsulfonate, sodium styrenesulfonate, N-vinylpyrrole, 2-vinyloxazoline, 2-vinyl-4,4′-dialkyloxazolin-5-one, 2- and 4-vinylpyridine, amino(C 1-6 alkyl)- (where the term “amino” also includes quaternary ammonium), mono(C1-6 alkylamino)(C1-6 alkyl) and di(C1-6 alkylamino)(C1-6 alkyl) acrylates and methacrylates and allyl alcohol.
- It is preferred that the additional hydrophilic monomer is selected from hydroxyl-substituted C1-6 alkyl acrylates and methacrylates, most preferably 2-hydroxyethyl methacrylate (HEMA).
- In a particularly preferred embodiment, the additional hydrophilic monomers are present in an amount of from 2 to 10 weight percent. It is yet further preferred that the hydrophilic monomers are present in an amount of from 2 to 6 weight percent.
- When HEMA is used, it is used in an amount of from 2 to 10 weight percent. Preferably, it is used in an amount of from 4 to 6 weight percent.
- Monomer Component A is at least one silicone-containing monomer having the formula:
- where n is from 1 to 3, m is from 9 to 15, each a independently is C1-4 alkyl, and each b independently is C1-4 alkyl.
- It is particularly preferred that at least one of the silicone-containing monomers present is methacryloxypropyl(polydimethyl siloxane). Preferably the methacryl-oxypropyl(polydimethyl siloxane) has an average molecular weight of approximately 1000. A particularly preferred silicone monomer is methacryloxypropyl(polydimethyl siloxane) which is terminated with a trimethyl silyl group.
- In a further aspect of the present invention, there is provided a contact lens formed of the reaction product of a composition comprising trimethylsilyl methacryl-oxypropyl(polydimethyl siloxane).
- It is possible to include other silicone-containing monomers other than those of the Component A) or B). Examples of other silicone monomers may include, but are not limited to, 3-methacryloxy propylpentamethyldisiloxane, bis(methacryloxypropyl)-tetramethyldisiloxane, N[tris(trimethylsiloxy)silylpropyl]methacrylamide (TSMAA), N[tris(trimethylsiloxy)silylpropyl]acrylamide, [tris(trimethylsiloxy)silylpropyl]-methacryloxyethylcarbamate, N[tris(dimethylpropylsiloxy)silylpropyl]methacrylamide, N[tris(dimethylphenylsiloxy)silylpropyl]methacrylamide, N[tris(trimethylsiloxy)-silylpropyl]methacryloxyglycerylcarbamate, N[tris(dimethylethylsiloxy)silylpropyl]-methacrylamide, N[tris(trimethylsiloxy)silylpropyl]methacryloxyacetamide, and N[tris(trimethylsiloxy)silylpropyl]methacryloxymethyl dimethylacetamide. Additional silicone-containing monomers may be used up to a maximum amount of 10 weight percent, based on the total composition weight excluding solvent, preferably less than 5 weight percent, and more preferably no other silicone-containing monomers are included.
- Preferably, an initiator is used, such as a free-radical initiator. Examples of suitable polymerisation initiators or catalysts which are well understood in the art include peroxide or azo containing compounds such as benzoyl peroxide, lauroyl peroxide, di-isopropyl-peroxy dicarbonate, azo bis(2,4-dimethyl valeronitrile), azo bis(isobutyronitrile), redox systems, for example ammonium persulphate, and photoinitiators for example benzoin methyl ether. Particularly preferred is 2,2′-azobisisobutyronitrile, (AZBN).
- The composition also preferably comprises a cross-linker. Examples of suitable cross-linking agents include, C2-6 alkylene glycol di(meth)acrylate, poly(C2-6 alkylene) glycol di(meth)acrylate, C2-6 alkylene di(meth)acrylate, divinyl ether, divinyl sulfone, di- and trivinylbenzene, trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, bisphenol A di(meth)acrylate, methylenebis(meth)acrylamide, triallyl phthalate and diallyl phthalate.
- Standard UV absorbers and/or colorants may be added to the monomer mix using methods known to those skilled in the art.
- Silicon-containing dimers may also be used as cross linking agents. Examples of suitable silicon-containing dimers include 1,3-Bis(methacrylamidopropyl)-1,1,3,3-tetrakis(trimethylsiloxy)disiloxane, 1,3-Bis(3-methacryloxypropyl)tetramethyldisiloxane, 1,3-Bis(N-methylmethacrylamidopropyl)-1,1,3,3-tetrakis(trimethylsiloxy) disiloxane, 1,3-Bis(methacrylamidopropyl)-1,1,3,3-tetrakis(trimethylsiloxy)disiloxane, Bis(methacryloxypropyl)polydimethylsiloxane, 1,3-Bis(acrylamidopropyl)-1,1,3,3-tetrakis(trimethylsiloxy)disiloxane, and 1,3-Bis(methacryloxyethylureidopropyl)-1,1,3,3-tetrakis(trimethylsiloxy) disiloxane.
- The preferred cross linking agent is tetraethyleneglycol dimethacrylate.
- The present invention is further illustrated by the following Examples and also with reference to the drawings in which:
-
FIG. 1 shows the contact angle of lens formulations made using different amounts of methacrylic acid, as measured by sessile drop; -
FIG. 2 shows the contact angle of lens formulations made using different amounts of methacrylic acid, as measured by captive bubble. - Contact lenses were made by reacting various monomer mixtures having the compositions shown in Table 1. For all contact lenses, a 50:50 mixture of ethanol and ethyl acetate was used as the solvent.
- The reactants and solvent were mixed at room temperature to produce a curable mixture. The mixtures were placed in a contact lens mould and cured using a two stage cure in a nitrogen atmosphere. The cure involved a 1 hour purge in Nitrogen, followed by a first temperature ramp of 45° C./minute to 55° C., followed by curing at that temperature for 8.5 hours. Thereafter, the temperature was ramped to 124° C. at 45° C./minute, and then cured at 124° C. for 1 hour. The O2 concentration in the oven is preferably less than 100 ppm, and more preferably less than 50 ppm.
-
TABLE 1 Meth- Total Total acrylic MA (exc. Ethyl (inc HEMA NVP acid Tris TEGDMA PDMS AZBN solvent) EtOH Acetate solvent) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 1 4.67 52.55 0.00 20.06 2.40 19.94 0.38 100 10.00 10.00 120 2 4.67 52.53 0.00 20.05 2.02 19.93 0.79 100 10.00 10.00 120 3 4.56 51.25 2.00 19.56 2.40 19.44 0.79 100 10.00 10.00 120 4 4.59 51.68 2.00 19.72 2.02 19.61 0.38 100 10.00 10.00 120 5 4.57 51.46 2.00 19.64 2.02 19.52 0.79 100 10.00 10.00 120 6 4.58 51.47 2.00 19.65 2.40 19.53 0.38 100 10.00 10.00 120 7 4.65 52.33 0.00 19.97 2.40 19.86 0.79 100 10.00 10.00 120 8 4.69 52.75 0.00 20.14 2.02 20.02 0.38 100 10.00 10.00 120 9 4.57 51.46 2.00 19.64 2.02 19.52 0.79 100 10.00 10.00 120 10 4.57 51.46 2.00 19.64 2.02 19.52 0.79 100 10.00 10.00 120 - Different lenses were made to vary the amount of methacrylic acid, cross-linker (TEGDMA) and initiator (AZBN). The lenses were typically tested for a number of different characteristics, including thickness, power, haze (subjective), surface quality, diameter, base curve (calculated from saggital height measurement), water content, and wettability by sessile drop and captive bubble contact angle measurement.
- Prior to measurement lenses were hydrated in vials in bicarbonate buffered saline and equilibrated for at least 4 hours at 21° C.+/−1° prior to measurement. Where appropriate, equipment was calibrated prior to use.
- Dry centre thickness is measured with a Mitutoyo Digimatic Indicator model 1D110-ME fitted to a model DGS-E stand.
- Wet lens diameter and saggital height are measured on an Optimec type B contact lens analyser SAG model, and the base curve calculated.
- Lens powers and image quality are measured using a Nikon PL2 Focimeter. Lens wet centre thickness is measured using a Rehder ET-3 electronic thickness gauge.
- Surface quality was determined subjectively by inspecting the lens in a wet cell, with the lens image projected onto a screen with a magnification of ×17.5. Apart from the usual defects found in moulded contact lenses, surface marks of undetermined cause could be identified on lenses made under certain formulation and cure conditions. These marks were scored as a percentage of marks found, with zero being the preferred result.
- Haze was assessed subjectively by viewing wet lenses in a wet cell on a documator. The documator is a device which illuminates the lenses from underneath, and allows the lenses to be observed at approximately 45° to the light source, to enable haze to be observed. Haze was assessed subjectively with a value of 5 indicating a completely opaque lens, and a level of 0 indicating no discernable haze. The values shown indicate the average of several assessments.
- Water content measurements are made on either an Atago CL-1 contact lens refractometer or an Index Instruments Contact Lens Refractometer CLR12-70. The Atago refractometer is used by placing a sample lens directly onto the prism, gently clamping the sample with light finger pressure on the daylight plate, and focussing so that the scale can be clearly read. The upper area of the scale appears as a blue band, and the lower screen appears as a white band. Water content can be directly read from the scale at the point where the blue and white bands meet.
- The Index refractometer is used by gently placing a lens on the sample holder and closing the lid. After a few seconds the reading stabilises and the result printed. The refractive index reading is converted to a water content using a previously validated equation.
- Prior to measurement all lenses are equilibrated at 21°+/−1° C. in saline solution for a minimum of 2 hours, and gently blotted with lint free tissue to remove excess surface water immediately prior to measurement. Bulk water content may also be measured gravimetrically.
- Sessile drop (water in air) and captive bubble (air in water) contact angles were measured using a Data physics OCA15 contact angle analyzer with contact lens adaptor. Lenses were equilibrated and measured in bicarbonate buffered saline.
- Oxygen permeability can also be measured using a Rheder O2 Permeometer model 201T using the method described in the international standard ISO 9913-1.
- The results of the tests for Examples 1 to 10 are shown in Table 2 below.
-
TABLE 2 Base- Diameter curve Surface Sessile Captive (mm) (mm) % Water Marks % Haze Drop Bubble 1 12.81 7.96 55.3 23 2.72 65.2 38.3 2 13.20 8.30 57.7 30 3.00 53.0 31.5 3 13.23 8.30 58.2 0 1.00 75.4 38.2 4 13.26 8.11 60.7 0 0.94 82.2 45.2 5 13.06 7.87 59.1 1 0.50 85.9 37.1 6 13.08 8.04 57.3 0 0.50 87.3 45.3 7 12.80 7.97 55.8 5 1.00 56.0 28.9 8 12.83 7.89 56.8 15 1.00 64.1 32.2 9 13.18 8.12 60.0 30 0.50 54.6 36.2 10 13.17 8.12 58.7 1 0.50 86.4 42.1 - It can bee seen that the inclusion of MAA decreases the amount of haze in the lens. It can also be seen that the lenses according to the present invention have good contact angles, water content, clarity and surface quality.
- Examples 11 to 13 demonstrate the effect of methacrylic acid on compositions where ethanol and decanol as used as co-solvents in equal proportions.
- The contact lenses were made in the same way as Examples 1 to 10 according to the compositions in Table 3.
-
TABLE 3 Meth- Total Total acrylic MA (exc. Ethyl (inc HEMA NVP acid Tris TEGDMA PDMS AZBN solvent) EtOH Acetate solvent) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 11 4.67 52.51 0.00 20.04 2.04 19.93 0.81 100.00 10.00 10.00 120.00 12 4.62 51.99 0.99 19.84 2.02 19.73 0.80 100.00 10.00 10.00 120.00 13 4.58 51.48 1.97 19.65 2.00 19.53 0.80 100.00 10.00 10.00 120.00 - Several different contact lenses of each composition were tested to measure the contact angle as measured by sessile drop and captive bubble as described above. The results are shown in Table 4 below and in
FIGS. 1 and 2 . -
TABLE 4 Example 11 Example 12 Example 13 Sessile Captive Sessile Captive Sessile Captive Drop Bubble Drop Bubble Drop Bubble 48.3 23.3 59.8 27.2 73 40.5 28.6 26.4 49.6 29.6 75.9 35.2 26.4 22.9 44.6 29.5 80.1 37.8 32 26.5 49.3 25.7 80 35.6 35.2 26.3 48.1 21.7 81.2 39.2 52.3 Mean 34.1 25.1 50.6 26.7 78.0 37.7 Standard 8.61 1.81 5.15 3.26 3.47 2.28 Deviation - It can be seen that an increase in the amount of methacrylic acid results in an increase in the contact angle as measured by both sessile drop and captive bubble. Increased contact angle is not favourable. However, at low levels of methacrylic acid, formulations have a tendency to produce lenses with high levels of haze. By carefully balancing the methacrylic acid content with the other formulation components, lenses with both low haze and good wettability may be obtained.
- Further contact lenses were made by reacting various monomer mixtures having the compositions shown in Table 5. The contact lenses were made using the same method as described for Examples 1 to 10 and the resultant contact lenses were tested in the same manner. In Examples 33 to 37, the wet lens diameter and base curve were measured on an Optimec type JCF.
-
TABLE 5 TEG n- Ethyl Total % Total % HEMA NVP MAA DMA TRIS DMA IBoMA MAPDMS AZBN Ethanol Propanol Acetate (exc. (inc. Example (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) EtOH) EtOH) 14 4.84 54.72 1.98 0 17.84 1.98 0 17.84 0.79 15.03 0 0 100.00 115.03 15 4.59 51.87 2.00 0 19.77 1.22 0 19.77 0.79 15.03 0 0 100.00 115.03 16 4.72 53.40 1.50 0 18.96 1.65 0 18.96 0.81 17.50 0 0 100.00 117.50 17 4.93 55.71 1.00 0 18.17 1.22 0 18.17 0.81 15.03 0 0 100.00 115.03 18 4.63 52.40 1.00 0 19.97 1.22 0 19.97 0.80 20.03 0 0 100.00 120.03 19 4.89 55.28 1.00 0 18.03 1.98 0 18.03 0.80 20.03 0 0 100.00 120.03 20 4.55 51.46 2.00 0 19.62 1.98 0 19.62 0.78 20.03 0 0 100.00 120.03 21 4.72 53.42 1.50 0 18.97 1.65 0 18.97 0.77 17.50 0 0 100.00 117.50 22 4.60 52.00 0.99 0 19.82 1.97 0 19.82 0.79 15.03 0 0 100.00 115.03 23 4.72 53.42 1.50 0 18.97 1.65 0 18.97 0.77 17.50 0 0 100.00 117.50 24 4.87 55.14 2.00 0 17.98 1.22 0 17.98 0.80 20.03 0 0 100.00 120.03 25 4.84 54.72 1.98 0 17.84 1.98 0 17.84 0.79 25.02 0 0 100.00 125.02 26 4.59 51.87 2.00 0 19.77 1.22 0 19.77 0.79 25.02 0 0 100.00 125.02 27 4.72 53.40 1.50 0 18.96 1.65 0 18.96 0.81 22.51 0 0 100.00 122.51 28 4.93 55.71 1.00 0 18.17 1.22 0 18.17 0.81 22.51 0 0 100.00 122.51 29 4.93 55.71 1.00 0 18.17 1.22 0 18.17 0.81 22.51 0 0 100.00 122.51 30 4.60 52.00 0.99 0 19.82 1.97 0 19.82 0.79 25.02 0 0 100.00 125.02 31 4.93 55.71 1.00 0 18.17 1.22 0 18.17 0.81 22.51 0 0 100.00 122.51 32 (C) 10.61 30.94 0 0 43.76 0.10 0 14.59 0.05 21.07 0 0 100.05 121.12 33 (C) 4.89 24.64 0 24.64 32.00 1.00 0 12.00 0.83 0 10.00 0 100.00 110.00 34 (C) 4.89 24.64 0 24.64 32.00 1.00 0 12.00 0.83 10.00 0 0 100.00 110.00 35 6.55 38.97 0 12.99 19.91 1.00 0 19.80 0.78 0 0 11.20 100.00 111.20 36 6.55 38.97 0 12.99 19.91 1.00 0 19.80 0.78 0 11.20 0 100.00 111.20 37 6.36 44.14 0 6.31 19.33 0.97 2.91 19.22 0.76 0 16.02 0 100.00 116.02 (C) is a comparative example. Example 37 includes 2.91% isobornyl methacrylate (IBoMA). - The results are shown in Table 6.
-
TABLE 6 Surface Base Sessile Captive Example Haze Marks % Diameter Curve % Water drop bubble 14 1 1.7 13.75 8.65 66.2 74.5 48.4 15 0.83 0 13.77 8.71 65.6 90.6 59.7 16 1 2 13.98 8.82 65.2 — — 17 1.4 6.6 13.91 8.75 67.7 54.4 38.1 18 2.8 2 13.9 8.68 66.6 42.5 37.9 19 2 35 13.88 8.89 66.3 35.3 34.6 20 1.9 11 13.46 8.59 66.6 55.0 40.0 21 1 10 13.75 8.79 65.1 44.0 43.4 22 2 15 13.53 8.63 62.5 90.2 49 23 2 4 13.81 8.81 66.6 46.2 34.3 24 3 20 13.83 8.69 65.4 42.8 32.9 25 1 1.7 13.75 8.65 66.2 74.5 48.4 26 0.83 0 13.77 8.71 65.6 90.6 59.7 27 1 2 13.98 8.82 65.2 — — 28 1.4 6.6 13.91 8.75 67.7 54.4 38.1 29 2.8 20 13.90 8.68 66.6 42.5 37.9 30 2 35 13.88 8.89 66.3 35.3 34.6 31 1.9 11 13.46 8.59 66.6 55.0 40.0 32 (C) 5 — 12.24 7.28 47.8 99.4 65.4 33 (C) 1 — 14.33* 8.88* 64.8 103.2 32.7 34 (C) 1 — 14.50* 8.85* 64.8 108.5 26.8 35 1 — 13.70* 8.65* 62.7 93.6 36.0 36 1 — 13.99* 9.29* 62.6 95.6 29.3 37 2 — 14.03* 8.87* 64.3 101.6 31.6 - It can be seen from the above results that contact lenses made according to the present invention have good properties for haze, wettability, sessile drop and captive bubble. In addition, the contact lenses can be produced easily and reproducibly using a conventional cast moulding process, such as that described in GB2004/000514. Furthermore, the lenses according to the present invention have good mechanical properties including tensile strength, elongation at break etc. The skilled person is aware of the mechanical properties required by a contact lens.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/187,932 US20140171544A1 (en) | 2006-11-22 | 2014-02-24 | Contact lens |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GBGB0623299.5A GB0623299D0 (en) | 2006-11-22 | 2006-11-22 | Contact lens |
| EP0623299.5 | 2006-11-22 | ||
| PCT/EP2007/062592 WO2008061992A2 (en) | 2006-11-22 | 2007-11-20 | Contact lens |
| US51505409A | 2009-08-25 | 2009-08-25 | |
| US13/625,459 US8703891B2 (en) | 2006-11-22 | 2012-09-24 | Contact lens |
| US14/187,932 US20140171544A1 (en) | 2006-11-22 | 2014-02-24 | Contact lens |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/625,459 Continuation US8703891B2 (en) | 2006-11-22 | 2012-09-24 | Contact lens |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20140171544A1 true US20140171544A1 (en) | 2014-06-19 |
Family
ID=37636329
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/515,054 Abandoned US20100048847A1 (en) | 2006-11-22 | 2007-11-20 | Contact Lens |
| US13/625,459 Active US8703891B2 (en) | 2006-11-22 | 2012-09-24 | Contact lens |
| US14/187,932 Abandoned US20140171544A1 (en) | 2006-11-22 | 2014-02-24 | Contact lens |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/515,054 Abandoned US20100048847A1 (en) | 2006-11-22 | 2007-11-20 | Contact Lens |
| US13/625,459 Active US8703891B2 (en) | 2006-11-22 | 2012-09-24 | Contact lens |
Country Status (12)
| Country | Link |
|---|---|
| US (3) | US20100048847A1 (en) |
| EP (1) | EP2087384B1 (en) |
| JP (1) | JP5568310B2 (en) |
| KR (1) | KR101532394B1 (en) |
| CN (1) | CN101542321B (en) |
| AT (1) | ATE479121T1 (en) |
| DE (1) | DE602007008753D1 (en) |
| DK (1) | DK2087384T3 (en) |
| ES (1) | ES2347839T3 (en) |
| GB (1) | GB0623299D0 (en) |
| MY (1) | MY145978A (en) |
| WO (1) | WO2008061992A2 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019186426A1 (en) * | 2018-03-28 | 2019-10-03 | Alcon Inc. | Method for making silicone hydrogel contact lenses |
| EP3822296A4 (en) * | 2019-02-26 | 2022-07-06 | Menicon Co., Ltd. | POLYMER MATERIAL |
| GB2626103A (en) * | 2020-12-15 | 2024-07-10 | Coopervision Int Ltd | Cationic contact lens |
Families Citing this family (138)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130203812A1 (en) | 2008-09-30 | 2013-08-08 | Johnson & Johnson Vision Care, Inc. | Ionic silicone hydrogels comprising pharmaceutical and/or nutriceutical components and having improved hydrolytic stability |
| US8470906B2 (en) | 2008-09-30 | 2013-06-25 | Johnson & Johnson Vision Care, Inc. | Ionic silicone hydrogels having improved hydrolytic stability |
| GB0917806D0 (en) * | 2009-10-12 | 2009-11-25 | Sauflon Cl Ltd | Fluorinated silicone hydrogels |
| US8877103B2 (en) | 2010-04-13 | 2014-11-04 | Johnson & Johnson Vision Care, Inc. | Process for manufacture of a thermochromic contact lens material |
| US8697770B2 (en) | 2010-04-13 | 2014-04-15 | Johnson & Johnson Vision Care, Inc. | Pupil-only photochromic contact lenses displaying desirable optics and comfort |
| US9690115B2 (en) | 2010-04-13 | 2017-06-27 | Johnson & Johnson Vision Care, Inc. | Contact lenses displaying reduced indoor glare |
| US9522980B2 (en) | 2010-05-06 | 2016-12-20 | Johnson & Johnson Vision Care, Inc. | Non-reactive, hydrophilic polymers having terminal siloxanes and methods for making and using the same |
| TWI758885B (en) | 2010-07-30 | 2022-03-21 | 瑞士商愛爾康公司 | Hydrated contact lens |
| KR101743320B1 (en) * | 2011-02-28 | 2017-06-02 | 쿠퍼비젼 인터내셔날 홀딩 캄파니, 엘피 | Silicone hydrogel contact lenses |
| AU2012223592B2 (en) * | 2011-02-28 | 2014-10-30 | Coopervision International Limited | Silicone hydrogel contact lenses having acceptable levels of energy loss |
| US20120283381A1 (en) | 2011-05-04 | 2012-11-08 | Ryuta Tamiya | Macroinitiator containing hydrophobic segment |
| US20130203813A1 (en) | 2011-05-04 | 2013-08-08 | Johnson & Johnson Vision Care, Inc. | Medical devices having homogeneous charge density and methods for making same |
| US9170349B2 (en) | 2011-05-04 | 2015-10-27 | Johnson & Johnson Vision Care, Inc. | Medical devices having homogeneous charge density and methods for making same |
| US8865685B2 (en) | 2011-06-30 | 2014-10-21 | Johnson & Johnson Vision Care, Inc. | Esters for treatment of ocular inflammatory conditions |
| US20130083286A1 (en) | 2011-09-30 | 2013-04-04 | Johnson & Johnson Vision Care, Inc. | Method of creating a visible mark on lens using a leuco dye |
| US20130083287A1 (en) | 2011-09-30 | 2013-04-04 | Johnson & Johnson Vision Care, Inc. | Method of creating a visible mark on lens using a leuco dye |
| EP2766750B1 (en) | 2011-10-12 | 2016-02-03 | Novartis AG | Method for making uv-absorbing ophthalmic lenses by coating |
| WO2013115917A1 (en) | 2011-12-14 | 2013-08-08 | Semprus Biosciences Corp. | Imbibing process for contact lens surface modification |
| US8870372B2 (en) | 2011-12-14 | 2014-10-28 | Semprus Biosciences Corporation | Silicone hydrogel contact lens modified using lanthanide or transition metal oxidants |
| WO2013090801A1 (en) | 2011-12-14 | 2013-06-20 | Semprus Biosciences Corp. | Multistep uv process to create surface modified contact lenses |
| WO2013090780A1 (en) | 2011-12-14 | 2013-06-20 | Semprus Biosciences Corp. | Surface modified contact lenses |
| CA2859047C (en) | 2011-12-14 | 2017-03-21 | Semprus Biosciences Corp. | Redox processes for contact lens modification |
| US8937110B2 (en) | 2011-12-23 | 2015-01-20 | Johnson & Johnson Vision Care, Inc. | Silicone hydrogels having a structure formed via controlled reaction kinetics |
| US9140825B2 (en) * | 2011-12-23 | 2015-09-22 | Johnson & Johnson Vision Care, Inc. | Ionic silicone hydrogels |
| US9588258B2 (en) | 2011-12-23 | 2017-03-07 | Johnson & Johnson Vision Care, Inc. | Silicone hydrogels formed from zero diluent reactive mixtures |
| US8937111B2 (en) | 2011-12-23 | 2015-01-20 | Johnson & Johnson Vision Care, Inc. | Silicone hydrogels comprising desirable water content and oxygen permeability |
| US9156934B2 (en) | 2011-12-23 | 2015-10-13 | Johnson & Johnson Vision Care, Inc. | Silicone hydrogels comprising n-vinyl amides and hydroxyalkyl (meth)acrylates or (meth)acrylamides |
| US9125808B2 (en) * | 2011-12-23 | 2015-09-08 | Johnson & Johnson Vision Care, Inc. | Ionic silicone hydrogels |
| US10209534B2 (en) | 2012-03-27 | 2019-02-19 | Johnson & Johnson Vision Care, Inc. | Increased stiffness center optic in soft contact lenses for astigmatism correction |
| JP5927014B2 (en) | 2012-04-18 | 2016-05-25 | Hoya株式会社 | Silicone hydrogel soft contact lens with wettable surface |
| US9297929B2 (en) | 2012-05-25 | 2016-03-29 | Johnson & Johnson Vision Care, Inc. | Contact lenses comprising water soluble N-(2 hydroxyalkyl) (meth)acrylamide polymers or copolymers |
| BR112014029270A2 (en) | 2012-05-25 | 2017-06-27 | Johnson & Johnson Vision Care | contact lenses comprising water-soluble n- (2-hydroxy alkyl) (meth) acrylamide polymers or copolymers |
| US9244196B2 (en) | 2012-05-25 | 2016-01-26 | Johnson & Johnson Vision Care, Inc. | Polymers and nanogel materials and methods for making and using the same |
| US10073192B2 (en) | 2012-05-25 | 2018-09-11 | Johnson & Johnson Vision Care, Inc. | Polymers and nanogel materials and methods for making and using the same |
| HUE031702T2 (en) | 2012-12-17 | 2017-07-28 | Novartis Ag | Method for making improved uv-absorbing ophthalmic lenses |
| US9498035B2 (en) | 2012-12-21 | 2016-11-22 | Coopervision International Holding Company, Lp | Silicone hydrogel contact lenses for sustained release of beneficial polymers |
| US8974055B2 (en) | 2013-03-15 | 2015-03-10 | Johnson & Johnson Vision Care, Inc. | Method and apparatus for encapsulating a rigid insert in a contact lens for correcting vision in astigmatic patients |
| JP5452756B1 (en) | 2013-07-02 | 2014-03-26 | Hoya株式会社 | Method for producing silicone-containing copolymer molded article having hydrophilic surface and silicone hydrogel contact lens having hydrophilic surface |
| CN105829081B (en) | 2013-12-17 | 2017-12-19 | 诺华股份有限公司 | Silicone hydrogel lenses with cross-linked hydrophilic coating |
| US10087274B2 (en) | 2014-06-27 | 2018-10-02 | Toray Industries, Inc. | Silicone hydrogel, medical device, lens for eye and contact lens |
| CN106715101B (en) | 2014-08-26 | 2019-11-05 | 诺华股份有限公司 | Method for applying a stable coating on a silicone hydrogel contact lens |
| EP3268804B1 (en) | 2015-03-11 | 2020-11-04 | University of Florida Research Foundation, Inc. | Mesh size control of lubrication in gemini hydrogels |
| CN104877068B (en) * | 2015-05-21 | 2017-08-25 | 爱生华(苏州)光学有限公司 | A kind of preparation method of practical silicone hydrogel contact mirror |
| WO2017103785A1 (en) | 2015-12-15 | 2017-06-22 | Novartis Ag | Method for producing contact lenses with a lubricious surface |
| MY184638A (en) | 2015-12-15 | 2021-04-13 | Alcon Inc | Method for applying stable coating on silicone hydrogel contact lenses |
| US10371865B2 (en) | 2016-07-06 | 2019-08-06 | Johnson & Johnson Vision Care, Inc. | Silicone hydrogels comprising polyamides |
| CN109416414B (en) | 2016-07-06 | 2023-03-10 | 庄臣及庄臣视力保护公司 | Central vision zone of increased stiffness in soft contact lenses for astigmatism correction |
| US10370476B2 (en) | 2016-07-06 | 2019-08-06 | Johnson & Johnson Vision Care, Inc. | Silicone hydrogels comprising high levels of polyamides |
| US11125916B2 (en) | 2016-07-06 | 2021-09-21 | Johnson & Johnson Vision Care, Inc. | Silicone hydrogels comprising N-alkyl methacrylamides and contact lenses made thereof |
| US10676575B2 (en) | 2016-10-06 | 2020-06-09 | Johnson & Johnson Vision Care, Inc. | Tri-block prepolymers and their use in silicone hydrogels |
| CA3062206C (en) | 2017-06-07 | 2022-01-04 | Alcon Inc. | Silicone hydrogel contact lenses |
| MY197603A (en) | 2017-06-07 | 2023-06-27 | Alcon Inc | Silicone hydrogel contact lenses |
| WO2018224974A1 (en) | 2017-06-07 | 2018-12-13 | Novartis Ag | Method for producing silicone hydrogel contact lenses |
| US10752720B2 (en) | 2017-06-26 | 2020-08-25 | Johnson & Johnson Vision Care, Inc. | Polymerizable blockers of high energy light |
| US10526296B2 (en) | 2017-06-30 | 2020-01-07 | Johnson & Johnson Vision Care, Inc. | Hydroxyphenyl naphthotriazoles as polymerizable blockers of high energy light |
| US10723732B2 (en) | 2017-06-30 | 2020-07-28 | Johnson & Johnson Vision Care, Inc. | Hydroxyphenyl phenanthrolines as polymerizable blockers of high energy light |
| EP3447475B1 (en) | 2017-08-24 | 2020-06-17 | Alcon Inc. | Method and apparatus for determining a coefficient of friction at a test site on a surface of a contact lens |
| MY201826A (en) | 2017-12-13 | 2024-03-19 | Alcon Inc | Method for producing mps-compatible water gradient contact lenses |
| US11993037B1 (en) | 2018-03-02 | 2024-05-28 | Johnson & Johnson Vision Care, Inc. | Contact lens displaying improved vision attributes |
| US11543683B2 (en) | 2019-08-30 | 2023-01-03 | Johnson & Johnson Vision Care, Inc. | Multifocal contact lens displaying improved vision attributes |
| US20210061934A1 (en) | 2019-08-30 | 2021-03-04 | Johnson & Johnson Vision Care, Inc. | Contact lens displaying improved vision attributes |
| US10935695B2 (en) | 2018-03-02 | 2021-03-02 | Johnson & Johnson Vision Care, Inc. | Polymerizable absorbers of UV and high energy visible light |
| US10996491B2 (en) | 2018-03-23 | 2021-05-04 | Johnson & Johnson Vision Care, Inc. | Ink composition for cosmetic contact lenses |
| US11345773B2 (en) | 2018-05-15 | 2022-05-31 | Bausch & Lomb Incorporated | Water extractable ophthalmic devices |
| US11046636B2 (en) | 2018-06-29 | 2021-06-29 | Johnson & Johnson Vision Care, Inc. | Polymerizable absorbers of UV and high energy visible light |
| US12174465B2 (en) | 2018-08-03 | 2024-12-24 | Johnson & Johnson Vision Care, Inc. | Dynamically tunable apodized multiple-focus opthalmic devices and methods |
| US10932902B2 (en) | 2018-08-03 | 2021-03-02 | Johnson & Johnson Vision Care, Inc. | Dynamically tunable apodized multiple-focus opthalmic devices and methods |
| US20200073145A1 (en) | 2018-09-05 | 2020-03-05 | Johnson & Johnson Vision Care, Inc. | Vision care kit |
| US11867875B2 (en) | 2018-09-25 | 2024-01-09 | Nof Corporation | Monomer composition for contact lenses, polymer for contact lenses, contact lens, and method of producing the contact lens |
| US11493668B2 (en) | 2018-09-26 | 2022-11-08 | Johnson & Johnson Vision Care, Inc. | Polymerizable absorbers of UV and high energy visible light |
| WO2020115569A1 (en) | 2018-12-03 | 2020-06-11 | Alcon Inc. | Method for coated silicone hydrogel contact lenses |
| EP3890952B1 (en) | 2018-12-03 | 2023-07-05 | Alcon Inc. | Method for making coated silicone hydrogel contact lenses |
| US11724471B2 (en) | 2019-03-28 | 2023-08-15 | Johnson & Johnson Vision Care, Inc. | Methods for the manufacture of photoabsorbing contact lenses and photoabsorbing contact lenses produced thereby |
| MY203786A (en) | 2019-04-10 | 2024-07-18 | Alcon Inc | Method for producing coated contact lenses |
| US11578176B2 (en) | 2019-06-24 | 2023-02-14 | Johnson & Johnson Vision Care, Inc. | Silicone hydrogel contact lenses having non-uniform morphology |
| US11958824B2 (en) | 2019-06-28 | 2024-04-16 | Johnson & Johnson Vision Care, Inc. | Photostable mimics of macular pigment |
| US20200407324A1 (en) | 2019-06-28 | 2020-12-31 | Johnson & Johnson Vision Care, Inc. | Polymerizable fused tricyclic compounds as absorbers of uv and visible light |
| US20210003754A1 (en) | 2019-07-02 | 2021-01-07 | Johnson & Johnson Vision Care, Inc. | Core-shell particles and methods of making and using thereof |
| US11891526B2 (en) | 2019-09-12 | 2024-02-06 | Johnson & Johnson Vision Care, Inc. | Ink composition for cosmetic contact lenses |
| ES2993009T3 (en) | 2019-12-16 | 2024-12-20 | Alcon Inc | Wettable silicone hydrogel contact lenses |
| US11360240B2 (en) | 2019-12-19 | 2022-06-14 | Johnson & Johnson Vision Care, Inc. | Contact lens containing photosensitive chromophore and package therefor |
| US20210301088A1 (en) | 2020-03-18 | 2021-09-30 | Johnson & Johnson Vision Care, Inc. | Ophthalmic devices containing transition metal complexes as high energy visible light filters |
| US11853013B2 (en) | 2020-06-15 | 2023-12-26 | Johnson & Johnson Vision Care, Inc. | Systems and methods for indicating the time elapsed since the occurrence of a triggering event |
| US12116443B2 (en) | 2020-06-16 | 2024-10-15 | Johnson & Johnson Vision Care, Inc. | Amino acid-based polymerizable compounds and ophthalmic devices prepared therefrom |
| US12180318B2 (en) | 2020-06-16 | 2024-12-31 | Johnson & Johnson Vision Care, Inc. | Imidazolium zwitterion polymerizable compounds and ophthalmic devices incorporating them |
| TW202231215A (en) | 2020-09-14 | 2022-08-16 | 美商壯生和壯生視覺關懷公司 | Single touch contact lens case |
| TW202225787A (en) | 2020-09-14 | 2022-07-01 | 美商壯生和壯生視覺關懷公司 | Single touch contact lens package |
| US20220113558A1 (en) | 2020-10-13 | 2022-04-14 | Johnson & Johnson Vision Care, Inc. | Contact lens position and rotation control using the pressure of the eyelid margin |
| CA3183624A1 (en) | 2020-12-13 | 2022-06-16 | Johnson & Johnson Vision Care, Inc. | Contact lens packages and methods of opening |
| US20220194944A1 (en) | 2020-12-18 | 2022-06-23 | Johnson & Johnson Vision Care, Inc. | Photostable mimics of macular pigment |
| US12049606B2 (en) | 2021-01-12 | 2024-07-30 | Johnson & Johnson Vision Care, Inc. | Compositions for ophthalmologic devices |
| US12054499B2 (en) | 2021-06-30 | 2024-08-06 | Johnson & Johnson Vision Care, Inc. | Transition metal complexes as visible light absorbers |
| US12405488B2 (en) | 2021-08-31 | 2025-09-02 | Bausch + Lomb Ireland Limited | Ophthalmic devices |
| US11873361B2 (en) | 2021-08-31 | 2024-01-16 | Bausch + Lomb Ireland Limited | Ophthalmic devices |
| US20230096315A1 (en) | 2021-08-31 | 2023-03-30 | Bausch + Lomb Ireland Limited | Ophthalmic devices |
| CA3173598A1 (en) | 2021-09-13 | 2023-03-13 | Johnson & Johnson Vision Care, Inc. | Contact lens packages and methods of handling and manufacture |
| US12310474B2 (en) | 2021-10-08 | 2025-05-27 | Johnson & Johnson Vision Care, Inc. | Multi-material lens package |
| KR20240089389A (en) | 2021-10-08 | 2024-06-20 | 존슨 앤드 존슨 비젼 케어, 인코포레이티드 | Multi-material lens package |
| WO2023057921A1 (en) | 2021-10-08 | 2023-04-13 | Johnson & Johnson Vision Care, Inc. | Multi-material lens package |
| US11708209B2 (en) | 2021-11-05 | 2023-07-25 | Johnson & Johnson Vision Care, Inc. | Touchless contact lens packages and methods of handling |
| TW202335928A (en) | 2021-12-08 | 2023-09-16 | 美商壯生和壯生視覺關懷公司 | Contact lens packages having lens lifting arms and methods of handling |
| TW202415312A (en) | 2021-12-08 | 2024-04-16 | 美商壯生和壯生視覺關懷公司 | Slotted contact lens packages and methods of handling |
| KR20240124954A (en) | 2021-12-13 | 2024-08-19 | 존슨 앤드 존슨 비젼 케어, 인코포레이티드 | Contact lens packaging and handling method with sliding or tilting lens movement |
| TW202332416A (en) | 2021-12-14 | 2023-08-16 | 美商壯生和壯生視覺關懷公司 | Contact lens packages having twisting or thimble levers and methods of handling |
| WO2023111851A1 (en) | 2021-12-15 | 2023-06-22 | Johnson & Johnson Vision Care, Inc. | Solutionless contact lens packages and methods of manufacture |
| WO2023111852A1 (en) | 2021-12-15 | 2023-06-22 | Johnson & Johnson Vision Care, Inc. | No-touch contact lens packages and methods of handling |
| TW202337347A (en) | 2021-12-16 | 2023-10-01 | 美商壯生和壯生視覺關懷公司 | No-touch contact lens packages and methods of handling |
| US20250058951A1 (en) | 2021-12-16 | 2025-02-20 | Johnson & Johnson Vision Care, Inc. | Pressurized or vacuum-sealed contact lens packages |
| KR20240115343A (en) | 2021-12-17 | 2024-07-25 | 존슨 앤드 존슨 비젼 케어, 인코포레이티드 | contact lens dispenser |
| EP4448410A1 (en) | 2021-12-17 | 2024-10-23 | Johnson & Johnson Vision Care, Inc. | Contact lens packages having a pivot mechanism and methods of handling |
| US20230296807A1 (en) | 2021-12-20 | 2023-09-21 | Johnson & Johnson Vision Care, Inc. | Contact lenses containing light absorbing regions and methods for their preparation |
| US20230244000A1 (en) | 2022-02-02 | 2023-08-03 | Bausch + Lomb Ireland Limited | Multifunctional crosslinking agents and ophthalmic devices formed therefrom |
| US20230348717A1 (en) | 2022-04-28 | 2023-11-02 | Johnson & Johnson Vision Care, Inc. | Particle surface modification to increase compatibility and stability in hydrogels |
| US11971518B2 (en) | 2022-04-28 | 2024-04-30 | Johnson & Johnson Vision Care, Inc. | Shape engineering of particles to create a narrow spectral filter against a specific portion of the light spectrum |
| US20230350230A1 (en) | 2022-04-28 | 2023-11-02 | Johnson & Johnson Vision Care, Inc. | Using particles for light filtering |
| US20230348718A1 (en) | 2022-04-28 | 2023-11-02 | Johnson & Johnson Vision Care, Inc. | Light-filtering materials for biomaterial integration and methods thereof |
| US11733440B1 (en) | 2022-04-28 | 2023-08-22 | Johnson & Johnson Vision Care, Inc. | Thermally stable nanoparticles and methods thereof |
| EP4540638A1 (en) | 2022-06-16 | 2025-04-23 | Johnson & Johnson Vision Care, Inc. | Ophthalmic devices containing photostable mimics of macular pigment and other visible light filters |
| USD1062223S1 (en) | 2022-06-21 | 2025-02-18 | Johnson & Johnson Vision Care, Inc. | Contact lens package |
| USD1061023S1 (en) | 2022-06-21 | 2025-02-11 | Johnson & Johnson Vision Care, Inc. | Contact lens package |
| US12064018B2 (en) | 2022-09-27 | 2024-08-20 | Johnson & Johnson Vision Care, Inc. | Contact lens package with draining port |
| US20240099435A1 (en) | 2022-09-27 | 2024-03-28 | Johnson & Johnson Vision Care, Inc. | Flat contact lens packages and methods of handling |
| US20240122321A1 (en) | 2022-10-18 | 2024-04-18 | Johnson & Johnson Vision Care, Inc. | Contact lens packages having an absorbent member |
| TWI873472B (en) * | 2022-10-26 | 2025-02-21 | 望隼科技股份有限公司 | Contact lens and silicone hydrogel contact lens |
| US20240165019A1 (en) | 2022-11-21 | 2024-05-23 | Bausch + Lomb Ireland Limited | Methods for Treating Eyetear Film Deficiency |
| US20240228466A1 (en) | 2022-12-15 | 2024-07-11 | Johnson & Johnson Vision Care, Inc. | Transition metal complexes as visible light absorbers |
| TW202434214A (en) | 2022-12-21 | 2024-09-01 | 美商壯生和壯生視覺關懷公司 | Compositions for ophthalmologic devices |
| TW202439974A (en) | 2022-12-21 | 2024-10-16 | 美商壯生和壯生視覺關懷公司 | Compositions for ophthalmic devices |
| TW202439971A (en) | 2022-12-21 | 2024-10-16 | 美商壯生和壯生視覺關懷公司 | Compositions for ophthalmologic devices |
| TW202430231A (en) | 2022-12-21 | 2024-08-01 | 美商壯生和壯生視覺關懷公司 | Compositions for ophthalmic devices |
| US12187522B2 (en) | 2023-01-13 | 2025-01-07 | Johnson & Johnson Vision Care, Inc. | Contact lens packages having an absorbent member |
| US20240302569A1 (en) | 2023-03-08 | 2024-09-12 | Bausch + Lomb Ireland Limited | Contact lens containing deprotected ultraviolet blockers |
| US20240317943A1 (en) | 2023-03-22 | 2024-09-26 | Bausch + Lomb Ireland Limited | Silicone hydrogels |
| US20240317988A1 (en) | 2023-03-22 | 2024-09-26 | Bausch + Lomb Ireland Limited | Monofunctional silicone monomers and silicone hydrogels formed therefrom |
| US20240352170A1 (en) | 2023-04-21 | 2024-10-24 | Bausch + Lomb Ireland Limited | Rigid gas permeable prepolymer and rigid gas permeable contact lens formed therefrom |
| WO2025024631A1 (en) | 2023-07-27 | 2025-01-30 | Johnson & Johnson Vision Care, Inc. | Supervised machine learning curing systems |
| US20250040673A1 (en) | 2023-07-28 | 2025-02-06 | Bausch + Lomb Ireland Limited | Packaging solutions |
| WO2025125986A1 (en) | 2023-12-12 | 2025-06-19 | Johnson & Johnson Vision Care, Inc. | Ophthalmic devices containing photostable mimics of macular pigment and other visible light filters |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040054106A1 (en) * | 1999-05-12 | 2004-03-18 | Menicon Co., Ltd. | Ocular lens material and process for producing the same |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5455455A (en) * | 1977-10-12 | 1979-05-02 | Toyo Contact Lens Co Ltd | Contact lens |
| JPS5466853A (en) * | 1977-11-08 | 1979-05-29 | Toyo Contact Lens Co Ltd | Soft contact lens |
| US4216303A (en) * | 1979-01-26 | 1980-08-05 | George F. Tsuetaki | Oxygen-permeable contact lens compositions, methods and articles of manufacture |
| JPH08319329A (en) * | 1995-05-25 | 1996-12-03 | Seiko Epson Corp | Method for producing hydrogel |
| US7461937B2 (en) * | 2001-09-10 | 2008-12-09 | Johnson & Johnson Vision Care, Inc. | Soft contact lenses displaying superior on-eye comfort |
| US6367929B1 (en) * | 1998-03-02 | 2002-04-09 | Johnson & Johnson Vision Care, Inc. | Hydrogel with internal wetting agent |
| US7052131B2 (en) * | 2001-09-10 | 2006-05-30 | J&J Vision Care, Inc. | Biomedical devices containing internal wetting agents |
| CA2394939C (en) | 1999-12-16 | 2007-10-30 | Asahikasei Aime Co., Ltd. | Long-wearable soft contact lens |
| CN102323629B (en) * | 2004-08-27 | 2015-08-19 | 库柏维景国际控股公司 | Silicone hydrogel contact lens |
| US7249848B2 (en) * | 2004-09-30 | 2007-07-31 | Johnson & Johnson Vision Care, Inc. | Wettable hydrogels comprising reactive, hydrophilic, polymeric internal wetting agents |
| AU2006227418A1 (en) * | 2005-03-17 | 2006-09-28 | Johnson & Johnson Vision Care, Inc. | Process for the production of monodisperse and narrow disperse monofunctional silicones |
-
2006
- 2006-11-22 GB GBGB0623299.5A patent/GB0623299D0/en not_active Ceased
-
2007
- 2007-11-20 CN CN200780043143.9A patent/CN101542321B/en active Active
- 2007-11-20 JP JP2009537624A patent/JP5568310B2/en active Active
- 2007-11-20 WO PCT/EP2007/062592 patent/WO2008061992A2/en active Application Filing
- 2007-11-20 MY MYPI20091884A patent/MY145978A/en unknown
- 2007-11-20 AT AT07847232T patent/ATE479121T1/en not_active IP Right Cessation
- 2007-11-20 DK DK07847232.1T patent/DK2087384T3/en active
- 2007-11-20 DE DE602007008753T patent/DE602007008753D1/en active Active
- 2007-11-20 ES ES07847232T patent/ES2347839T3/en active Active
- 2007-11-20 KR KR1020097010515A patent/KR101532394B1/en active Active
- 2007-11-20 US US12/515,054 patent/US20100048847A1/en not_active Abandoned
- 2007-11-20 EP EP07847232A patent/EP2087384B1/en active Active
-
2012
- 2012-09-24 US US13/625,459 patent/US8703891B2/en active Active
-
2014
- 2014-02-24 US US14/187,932 patent/US20140171544A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040054106A1 (en) * | 1999-05-12 | 2004-03-18 | Menicon Co., Ltd. | Ocular lens material and process for producing the same |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019186426A1 (en) * | 2018-03-28 | 2019-10-03 | Alcon Inc. | Method for making silicone hydrogel contact lenses |
| EP3774310B1 (en) | 2018-03-28 | 2022-07-06 | Alcon Inc. | Method for making silicone hydrogel contact lenses |
| US11427685B2 (en) | 2018-03-28 | 2022-08-30 | Alcon Inc. | Method for making silicone hydrogel contact lenses |
| EP3822296A4 (en) * | 2019-02-26 | 2022-07-06 | Menicon Co., Ltd. | POLYMER MATERIAL |
| US12209154B2 (en) | 2019-02-26 | 2025-01-28 | Menicon Co., Ltd. | Polymer material |
| GB2626103A (en) * | 2020-12-15 | 2024-07-10 | Coopervision Int Ltd | Cationic contact lens |
| GB2626103B (en) * | 2020-12-15 | 2025-01-15 | Coopervision Int Ltd | Cationic contact lens |
Also Published As
| Publication number | Publication date |
|---|---|
| US8703891B2 (en) | 2014-04-22 |
| JP2010510550A (en) | 2010-04-02 |
| MY145978A (en) | 2012-05-31 |
| KR20090089856A (en) | 2009-08-24 |
| HK1130905A1 (en) | 2010-01-08 |
| WO2008061992A3 (en) | 2008-07-17 |
| JP5568310B2 (en) | 2014-08-06 |
| ES2347839T3 (en) | 2010-11-04 |
| CN101542321A (en) | 2009-09-23 |
| US20130015595A1 (en) | 2013-01-17 |
| CN101542321B (en) | 2015-05-27 |
| GB0623299D0 (en) | 2007-01-03 |
| DE602007008753D1 (en) | 2010-10-07 |
| ATE479121T1 (en) | 2010-09-15 |
| EP2087384B1 (en) | 2010-08-25 |
| WO2008061992A2 (en) | 2008-05-29 |
| EP2087384A2 (en) | 2009-08-12 |
| US20100048847A1 (en) | 2010-02-25 |
| KR101532394B1 (en) | 2015-06-29 |
| DK2087384T3 (en) | 2010-11-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8703891B2 (en) | Contact lens | |
| EP1800150B1 (en) | Wettable hydrogels comprising reactive, hydrophilic, polymeric internal wetting agents | |
| KR102050707B1 (en) | Silicone hydrogels comprising n-vinyl amides and hydroxyalkyl (meth)acrylates or (meth)acrylamides | |
| KR102056040B1 (en) | Silicone hydrogels having a structure formed via controlled reaction kinetics | |
| KR100719796B1 (en) | A macromer useful for making silicone hydrogels | |
| US20120184696A1 (en) | Method of making a contact lens | |
| US20070155851A1 (en) | Silicone containing polymers formed from non-reactive silicone containing prepolymers | |
| KR102387209B1 (en) | Polysiloxane monomer containing phosphorylcholine group | |
| CN112437889A (en) | Silicone hydrogel contact lenses with heterogeneous morphology | |
| CN113544176A (en) | Monomer composition for contact lens, polymer for contact lens and method for producing same, and contact lens and method for producing same | |
| HK1130905B (en) | Contact lens | |
| KR102867495B1 (en) | Monomer composition for contact lenses, polymer for contact lenses and method for producing the same, and contact lenses and method for producing the same | |
| CN120271830A (en) | Side chain type amphiphilic organosiloxane macromer and preparation method and application thereof | |
| HK1105683B (en) | Wettable hydrogels comprising reactive, hydrophilic, polymeric internal wetting agents | |
| HK1114182B (en) | Wettable hydrogels comprising reactive, hydrophilic, polymeric internal wetting agents |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SAUFLON CL LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROAD, ROBERT ANDREW;REEL/FRAME:032973/0253 Effective date: 20090810 |
|
| AS | Assignment |
Owner name: COOPERVISION INTERNATIONAL HOLDING COMPANY, L.P., Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAUFLON CL LIMITED;REEL/FRAME:037306/0453 Effective date: 20151130 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: COOPERVISION INTERNATIONAL LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COOPERVISION INTERNATIONAL HOLDING COMPANY, LP;REEL/FRAME:054370/0631 Effective date: 20201102 |