US20140213470A1 - Methods for use with baff antagonists - Google Patents
Methods for use with baff antagonists Download PDFInfo
- Publication number
- US20140213470A1 US20140213470A1 US14/086,352 US201314086352A US2014213470A1 US 20140213470 A1 US20140213470 A1 US 20140213470A1 US 201314086352 A US201314086352 A US 201314086352A US 2014213470 A1 US2014213470 A1 US 2014213470A1
- Authority
- US
- United States
- Prior art keywords
- baff
- molecule
- mammal
- seq
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 81
- 239000005557 antagonist Substances 0.000 title claims abstract description 76
- 102100036922 Tumor necrosis factor ligand superfamily member 13B Human genes 0.000 claims abstract description 291
- 241000124008 Mammalia Species 0.000 claims abstract description 100
- 101100295563 Mus musculus Pou2af1 gene Proteins 0.000 claims abstract description 57
- 108010074852 NF-kappa B p52 Subunit Proteins 0.000 claims abstract description 45
- 102000008125 NF-kappa B p52 Subunit Human genes 0.000 claims abstract description 45
- 101000878605 Homo sapiens Low affinity immunoglobulin epsilon Fc receptor Proteins 0.000 claims abstract description 39
- 102100038007 Low affinity immunoglobulin epsilon Fc receptor Human genes 0.000 claims abstract description 39
- 239000012472 biological sample Substances 0.000 claims abstract description 33
- 101710181056 Tumor necrosis factor ligand superfamily member 13B Proteins 0.000 claims abstract description 26
- 230000000694 effects Effects 0.000 claims abstract description 26
- 238000012544 monitoring process Methods 0.000 claims abstract description 22
- 102100029690 Tumor necrosis factor receptor superfamily member 13C Human genes 0.000 claims description 88
- 230000014509 gene expression Effects 0.000 claims description 68
- 210000003719 b-lymphocyte Anatomy 0.000 claims description 63
- 150000001413 amino acids Chemical class 0.000 claims description 42
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 41
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 37
- 229920001184 polypeptide Polymers 0.000 claims description 33
- 241000282414 Homo sapiens Species 0.000 claims description 30
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 30
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 24
- 108010046304 B-Cell Activation Factor Receptor Proteins 0.000 claims description 23
- 208000035475 disorder Diseases 0.000 claims description 23
- 230000002103 transcriptional effect Effects 0.000 claims description 22
- 239000000523 sample Substances 0.000 claims description 17
- 208000023275 Autoimmune disease Diseases 0.000 claims description 15
- 108020004999 messenger RNA Proteins 0.000 claims description 13
- 230000003463 hyperproliferative effect Effects 0.000 claims description 9
- 208000026278 immune system disease Diseases 0.000 claims description 9
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 claims description 7
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 7
- 208000021386 Sjogren Syndrome Diseases 0.000 claims description 5
- 206010025135 lupus erythematosus Diseases 0.000 claims description 4
- 208000034578 Multiple myelomas Diseases 0.000 claims description 3
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 3
- 239000002773 nucleotide Substances 0.000 claims description 3
- 125000003729 nucleotide group Chemical group 0.000 claims description 3
- 108090000623 proteins and genes Proteins 0.000 abstract description 86
- 238000011282 treatment Methods 0.000 abstract description 49
- 230000036039 immunity Effects 0.000 abstract description 8
- 239000000203 mixture Substances 0.000 abstract description 8
- 101710178300 Tumor necrosis factor receptor superfamily member 13C Proteins 0.000 description 83
- 241000699670 Mus sp. Species 0.000 description 67
- 235000001014 amino acid Nutrition 0.000 description 39
- 229940024606 amino acid Drugs 0.000 description 38
- 230000002950 deficient Effects 0.000 description 34
- 210000004027 cell Anatomy 0.000 description 28
- 102000004169 proteins and genes Human genes 0.000 description 28
- 101000795167 Homo sapiens Tumor necrosis factor receptor superfamily member 13B Proteins 0.000 description 27
- 235000018102 proteins Nutrition 0.000 description 26
- 102100029675 Tumor necrosis factor receptor superfamily member 13B Human genes 0.000 description 25
- BGFTWECWAICPDG-UHFFFAOYSA-N 2-[bis(4-chlorophenyl)methyl]-4-n-[3-[bis(4-chlorophenyl)methyl]-4-(dimethylamino)phenyl]-1-n,1-n-dimethylbenzene-1,4-diamine Chemical compound C1=C(C(C=2C=CC(Cl)=CC=2)C=2C=CC(Cl)=CC=2)C(N(C)C)=CC=C1NC(C=1)=CC=C(N(C)C)C=1C(C=1C=CC(Cl)=CC=1)C1=CC=C(Cl)C=C1 BGFTWECWAICPDG-UHFFFAOYSA-N 0.000 description 21
- 102000007536 B-Cell Activation Factor Receptor Human genes 0.000 description 21
- 102000006942 B-Cell Maturation Antigen Human genes 0.000 description 21
- 108010008014 B-Cell Maturation Antigen Proteins 0.000 description 21
- 150000007523 nucleic acids Chemical group 0.000 description 21
- 241001529936 Murinae Species 0.000 description 18
- 108060003951 Immunoglobulin Proteins 0.000 description 16
- 102000018358 immunoglobulin Human genes 0.000 description 16
- 230000001105 regulatory effect Effects 0.000 description 16
- 230000001363 autoimmune Effects 0.000 description 15
- 102000039446 nucleic acids Human genes 0.000 description 15
- 108020004707 nucleic acids Proteins 0.000 description 15
- 230000001900 immune effect Effects 0.000 description 14
- 239000000427 antigen Substances 0.000 description 13
- 108091007433 antigens Proteins 0.000 description 13
- 102000036639 antigens Human genes 0.000 description 13
- 230000008859 change Effects 0.000 description 13
- 239000003446 ligand Substances 0.000 description 13
- 230000036961 partial effect Effects 0.000 description 12
- 230000003393 splenic effect Effects 0.000 description 12
- 238000013518 transcription Methods 0.000 description 12
- 230000035897 transcription Effects 0.000 description 12
- 108010029485 Protein Isoforms Proteins 0.000 description 10
- 102000001708 Protein Isoforms Human genes 0.000 description 10
- 241000894007 species Species 0.000 description 10
- SPLKSRDVCTUAGF-UHFFFAOYSA-N 3-(1-adamantyl)-4-methyl-5-phenyl-1,2,4-triazole Chemical compound N=1N=C(C23CC4CC(CC(C4)C2)C3)N(C)C=1C1=CC=CC=C1 SPLKSRDVCTUAGF-UHFFFAOYSA-N 0.000 description 9
- 238000011740 C57BL/6 mouse Methods 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 102000037865 fusion proteins Human genes 0.000 description 9
- 108020001507 fusion proteins Proteins 0.000 description 9
- 102000005962 receptors Human genes 0.000 description 9
- 108020003175 receptors Proteins 0.000 description 9
- 238000010186 staining Methods 0.000 description 9
- 230000004083 survival effect Effects 0.000 description 9
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 8
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 239000002243 precursor Substances 0.000 description 8
- 102000043131 MHC class II family Human genes 0.000 description 7
- 108091054438 MHC class II family Proteins 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 239000002299 complementary DNA Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 210000000952 spleen Anatomy 0.000 description 7
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 6
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 6
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 6
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 6
- -1 THANK Proteins 0.000 description 6
- 102100040247 Tumor necrosis factor Human genes 0.000 description 6
- 230000004071 biological effect Effects 0.000 description 6
- 230000033228 biological regulation Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 201000003444 follicular lymphoma Diseases 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- 230000035772 mutation Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 6
- 108010028006 B-Cell Activating Factor Proteins 0.000 description 5
- 208000037914 B-cell disorder Diseases 0.000 description 5
- 102100031258 HLA class II histocompatibility antigen, DM beta chain Human genes 0.000 description 5
- 108010050568 HLA-DM antigens Proteins 0.000 description 5
- 101000979338 Homo sapiens Nuclear factor NF-kappa-B p100 subunit Proteins 0.000 description 5
- 101000795169 Homo sapiens Tumor necrosis factor receptor superfamily member 13C Proteins 0.000 description 5
- 102100023059 Nuclear factor NF-kappa-B p100 subunit Human genes 0.000 description 5
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 210000004602 germ cell Anatomy 0.000 description 5
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 4
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 4
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 4
- 208000031981 Thrombocytopenic Idiopathic Purpura Diseases 0.000 description 4
- 235000004279 alanine Nutrition 0.000 description 4
- 201000003710 autoimmune thrombocytopenic purpura Diseases 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 239000006285 cell suspension Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 102000047802 human TNFRSF13C Human genes 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 108020001756 ligand binding domains Proteins 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 206010028417 myasthenia gravis Diseases 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 208000035408 type 1 diabetes mellitus 1 Diseases 0.000 description 4
- 239000004474 valine Substances 0.000 description 4
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 108010087819 Fc receptors Proteins 0.000 description 3
- 102000009109 Fc receptors Human genes 0.000 description 3
- 208000015023 Graves' disease Diseases 0.000 description 3
- 206010021245 Idiopathic thrombocytopenic purpura Diseases 0.000 description 3
- 208000005777 Lupus Nephritis Diseases 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 102000003945 NF-kappa B Human genes 0.000 description 3
- 108010057466 NF-kappa B Proteins 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 208000021161 Plasma cell disease Diseases 0.000 description 3
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 210000001744 T-lymphocyte Anatomy 0.000 description 3
- 206010052779 Transplant rejections Diseases 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 239000012636 effector Substances 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 229940072221 immunoglobulins Drugs 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 230000035800 maturation Effects 0.000 description 3
- 210000003519 mature b lymphocyte Anatomy 0.000 description 3
- 238000002493 microarray Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000009826 neoplastic cell growth Effects 0.000 description 3
- 230000007170 pathology Effects 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 208000002267 Anti-neutrophil cytoplasmic antibody-associated vasculitis Diseases 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 208000023328 Basedow disease Diseases 0.000 description 2
- 208000019838 Blood disease Diseases 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 208000011691 Burkitt lymphomas Diseases 0.000 description 2
- 206010009900 Colitis ulcerative Diseases 0.000 description 2
- 208000011231 Crohn disease Diseases 0.000 description 2
- 238000000018 DNA microarray Methods 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 208000017701 Endocrine disease Diseases 0.000 description 2
- 206010014982 Epidermal and dermal conditions Diseases 0.000 description 2
- 241001226424 Erato <angiosperm> Species 0.000 description 2
- 108091006020 Fc-tagged proteins Proteins 0.000 description 2
- 208000018522 Gastrointestinal disease Diseases 0.000 description 2
- 208000024869 Goodpasture syndrome Diseases 0.000 description 2
- 208000009329 Graft vs Host Disease Diseases 0.000 description 2
- 206010072579 Granulomatosis with polyangiitis Diseases 0.000 description 2
- 208000030836 Hashimoto thyroiditis Diseases 0.000 description 2
- 208000035186 Hemolytic Autoimmune Anemia Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000801255 Homo sapiens Tumor necrosis factor receptor superfamily member 17 Proteins 0.000 description 2
- 101150062179 II gene Proteins 0.000 description 2
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 2
- 102100029572 Immunoglobulin kappa constant Human genes 0.000 description 2
- 108010090227 Immunoglobulin kappa-Chains Proteins 0.000 description 2
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 2
- 102000004388 Interleukin-4 Human genes 0.000 description 2
- 108090000978 Interleukin-4 Proteins 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 2
- 208000025205 Mantle-Cell Lymphoma Diseases 0.000 description 2
- 241001059331 Murine AIDS virus-related provirus Species 0.000 description 2
- 241000699660 Mus musculus Species 0.000 description 2
- 101100280138 Mus musculus Evi2a gene Proteins 0.000 description 2
- 102100022219 NF-kappa-B essential modulator Human genes 0.000 description 2
- 101710090077 NF-kappa-B essential modulator Proteins 0.000 description 2
- 208000012902 Nervous system disease Diseases 0.000 description 2
- 208000025966 Neurological disease Diseases 0.000 description 2
- 201000011152 Pemphigus Diseases 0.000 description 2
- 208000031845 Pernicious anaemia Diseases 0.000 description 2
- 201000004681 Psoriasis Diseases 0.000 description 2
- 201000001263 Psoriatic Arthritis Diseases 0.000 description 2
- 208000036824 Psoriatic arthropathy Diseases 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 208000025747 Rheumatic disease Diseases 0.000 description 2
- 108700002718 TACI receptor-IgG Fc fragment fusion Proteins 0.000 description 2
- 201000006704 Ulcerative Colitis Diseases 0.000 description 2
- 206010047115 Vasculitis Diseases 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 230000001594 aberrant effect Effects 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 108010004469 allophycocyanin Proteins 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 201000000448 autoimmune hemolytic anemia Diseases 0.000 description 2
- 208000010928 autoimmune thyroid disease Diseases 0.000 description 2
- 229960003270 belimumab Drugs 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 206010012818 diffuse large B-cell lymphoma Diseases 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 230000000925 erythroid effect Effects 0.000 description 2
- 238000010195 expression analysis Methods 0.000 description 2
- 239000012894 fetal calf serum Substances 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 208000024908 graft versus host disease Diseases 0.000 description 2
- 208000014951 hematologic disease Diseases 0.000 description 2
- 102000056239 human TNFRSF13B Human genes 0.000 description 2
- 102000046935 human TNFRSF17 Human genes 0.000 description 2
- 230000008348 humoral response Effects 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 206010020718 hyperplasia Diseases 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000004068 intracellular signaling Effects 0.000 description 2
- 208000017169 kidney disease Diseases 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 208000019423 liver disease Diseases 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 210000001616 monocyte Anatomy 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 201000001976 pemphigus vulgaris Diseases 0.000 description 2
- 230000001686 pro-survival effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 201000006845 reticulosarcoma Diseases 0.000 description 2
- 208000029922 reticulum cell sarcoma Diseases 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 210000004989 spleen cell Anatomy 0.000 description 2
- 210000004988 splenocyte Anatomy 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 230000009469 supplementation Effects 0.000 description 2
- 206010043778 thyroiditis Diseases 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000003827 upregulation Effects 0.000 description 2
- 239000011534 wash buffer Substances 0.000 description 2
- DXBHBZVCASKNBY-UHFFFAOYSA-N 1,2-Benz(a)anthracene Chemical compound C1=CC=C2C3=CC4=CC=CC=C4C=C3C=CC2=C1 DXBHBZVCASKNBY-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 102100031126 6-phosphogluconolactonase Human genes 0.000 description 1
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 1
- 101150019464 ARAF gene Proteins 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 208000026872 Addison Disease Diseases 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 102100025672 Angiopoietin-related protein 2 Human genes 0.000 description 1
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 1
- 208000003343 Antiphospholipid Syndrome Diseases 0.000 description 1
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 101000643717 Arabidopsis thaliana Surfeit locus protein 1 Proteins 0.000 description 1
- 206010003827 Autoimmune hepatitis Diseases 0.000 description 1
- 208000004736 B-Cell Leukemia Diseases 0.000 description 1
- 208000003950 B-cell lymphoma Diseases 0.000 description 1
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 1
- 102100026596 Bcl-2-like protein 1 Human genes 0.000 description 1
- 208000008439 Biliary Liver Cirrhosis Diseases 0.000 description 1
- 208000033222 Biliary cirrhosis primary Diseases 0.000 description 1
- 102100031658 C-X-C chemokine receptor type 5 Human genes 0.000 description 1
- 101150045282 CD81 gene Proteins 0.000 description 1
- 108010061298 CXCR5 Receptors Proteins 0.000 description 1
- 101100111635 Caenorhabditis elegans bir-1 gene Proteins 0.000 description 1
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 description 1
- 206010008609 Cholangitis sclerosing Diseases 0.000 description 1
- 108010009685 Cholinergic Receptors Proteins 0.000 description 1
- 208000006344 Churg-Strauss Syndrome Diseases 0.000 description 1
- 208000015943 Coeliac disease Diseases 0.000 description 1
- 102000011412 Complement 3d Receptors Human genes 0.000 description 1
- 108010023729 Complement 3d Receptors Proteins 0.000 description 1
- 108010028778 Complement C4 Proteins 0.000 description 1
- 108020004394 Complementary RNA Proteins 0.000 description 1
- 101150117085 Csn1s2a gene Proteins 0.000 description 1
- 102000001493 Cyclophilins Human genes 0.000 description 1
- 108010068682 Cyclophilins Proteins 0.000 description 1
- 101150037071 Cyp1b1 gene Proteins 0.000 description 1
- 102220563802 Cysteine and histidine-rich protein 1_A23T_mutation Human genes 0.000 description 1
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 1
- 102000003849 Cytochrome P450 Human genes 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 208000018428 Eosinophilic granulomatosis with polyangiitis Diseases 0.000 description 1
- 101100218845 Escherichia coli (strain K12) bioH gene Proteins 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 101150098511 GPX3 gene Proteins 0.000 description 1
- 101710177291 Gag polyprotein Proteins 0.000 description 1
- 101100133200 Gallus gallus NTN3 gene Proteins 0.000 description 1
- 206010018364 Glomerulonephritis Diseases 0.000 description 1
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 1
- 102100033053 Glutathione peroxidase 3 Human genes 0.000 description 1
- 101710119049 Glutathione peroxidase 3 Proteins 0.000 description 1
- BCCRXDTUTZHDEU-VKHMYHEASA-N Gly-Ser Chemical compound NCC(=O)N[C@@H](CO)C(O)=O BCCRXDTUTZHDEU-VKHMYHEASA-N 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 206010018498 Goitre Diseases 0.000 description 1
- 208000003807 Graves Disease Diseases 0.000 description 1
- 102100023683 GrpE protein homolog 2, mitochondrial Human genes 0.000 description 1
- 102220466793 HLA class II histocompatibility antigen, DR beta 5 chain_L28S_mutation Human genes 0.000 description 1
- 108010081348 HRT1 protein Hairy Proteins 0.000 description 1
- 101001113900 Homo sapiens 52 kDa repressor of the inhibitor of the protein kinase Proteins 0.000 description 1
- 101000853243 Homo sapiens 60S ribosomal protein L7a Proteins 0.000 description 1
- 101000693081 Homo sapiens Angiopoietin-related protein 2 Proteins 0.000 description 1
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 1
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 1
- 101100273713 Homo sapiens CD2 gene Proteins 0.000 description 1
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 description 1
- 101000829465 Homo sapiens GrpE protein homolog 2, mitochondrial Proteins 0.000 description 1
- 101001059535 Homo sapiens Megakaryocyte-associated tyrosine-protein kinase Proteins 0.000 description 1
- 101000990723 Homo sapiens POU domain class 2-associating factor 1 Proteins 0.000 description 1
- 101001072420 Homo sapiens Protocadherin-20 Proteins 0.000 description 1
- 101000999079 Homo sapiens Radiation-inducible immediate-early gene IEX-1 Proteins 0.000 description 1
- 101000614403 Homo sapiens Serine/threonine-protein phosphatase 2A regulatory subunit B'' subunit gamma Proteins 0.000 description 1
- 101000584461 Homo sapiens Surfeit locus protein 1 Proteins 0.000 description 1
- 101000851434 Homo sapiens Tumor necrosis factor ligand superfamily member 13B Proteins 0.000 description 1
- 101000818563 Homo sapiens Zinc finger and BTB domain-containing protein 25 Proteins 0.000 description 1
- 101000818820 Homo sapiens Zinc finger protein 436 Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010020850 Hyperthyroidism Diseases 0.000 description 1
- 208000010159 IgA glomerulonephritis Diseases 0.000 description 1
- 206010021263 IgA nephropathy Diseases 0.000 description 1
- 108010073816 IgE Receptors Proteins 0.000 description 1
- 102000009438 IgE Receptors Human genes 0.000 description 1
- 101150004367 Il4i1 gene Proteins 0.000 description 1
- 208000028622 Immune thrombocytopenia Diseases 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000012745 Immunoglobulin Subunits Human genes 0.000 description 1
- 108010079585 Immunoglobulin Subunits Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 101710203526 Integrase Proteins 0.000 description 1
- 102000004195 Isomerases Human genes 0.000 description 1
- 108090000769 Isomerases Proteins 0.000 description 1
- 108010008292 L-Amino Acid Oxidase Proteins 0.000 description 1
- 102000007070 L-amino-acid oxidase Human genes 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 101150108332 LYL1 gene Proteins 0.000 description 1
- 102100032127 Lymphocyte antigen 6D Human genes 0.000 description 1
- 101710157878 Lymphocyte antigen 6D Proteins 0.000 description 1
- 208000030289 Lymphoproliferative disease Diseases 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 241000921242 Mouse endogenous murine leukemia virus Species 0.000 description 1
- 101100381299 Mus musculus Atp5po gene Proteins 0.000 description 1
- 101100168797 Mus musculus Csprs gene Proteins 0.000 description 1
- 101100390518 Mus musculus Fcer2 gene Proteins 0.000 description 1
- 101100013793 Mus musculus G6pd2 gene Proteins 0.000 description 1
- 101100179469 Mus musculus Ighg2b gene Proteins 0.000 description 1
- 101100518615 Mus musculus Ppp2r3c gene Proteins 0.000 description 1
- 101000818821 Mus musculus Zinc finger protein 436 Proteins 0.000 description 1
- 241000699658 Mus musculus domesticus Species 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 230000004989 O-glycosylation Effects 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 208000005225 Opsoclonus-Myoclonus Syndrome Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 206010036105 Polyneuropathy Diseases 0.000 description 1
- 208000012654 Primary biliary cholangitis Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 108010018070 Proto-Oncogene Proteins c-ets Proteins 0.000 description 1
- 102000004053 Proto-Oncogene Proteins c-ets Human genes 0.000 description 1
- 102100036739 Protocadherin-20 Human genes 0.000 description 1
- 206010037549 Purpura Diseases 0.000 description 1
- 241001672981 Purpura Species 0.000 description 1
- 102100029143 RNA 3'-terminal phosphate cyclase Human genes 0.000 description 1
- 108010005509 RNA 3'-terminal phosphate cyclase Proteins 0.000 description 1
- 102100036900 Radiation-inducible immediate-early gene IEX-1 Human genes 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- 102100030639 Surfeit locus protein 1 Human genes 0.000 description 1
- 102100040952 Tetraspanin-7 Human genes 0.000 description 1
- 101710151639 Tetraspanin-7 Proteins 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 206010043561 Thrombocytopenic purpura Diseases 0.000 description 1
- 201000007023 Thrombotic Thrombocytopenic Purpura Diseases 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 208000003441 Transfusion reaction Diseases 0.000 description 1
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 1
- 102220477731 Tumor necrosis factor receptor superfamily member 13C_L28A_mutation Human genes 0.000 description 1
- 208000024780 Urticaria Diseases 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 102100021127 Zinc finger and BTB domain-containing protein 25 Human genes 0.000 description 1
- 102100021368 Zinc finger protein 436 Human genes 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 102000034337 acetylcholine receptors Human genes 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 230000002424 anti-apoptotic effect Effects 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 230000008350 antigen-specific antibody response Effects 0.000 description 1
- 210000004436 artificial bacterial chromosome Anatomy 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 201000005000 autoimmune gastritis Diseases 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 230000001357 autoimmunogenic effect Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 101150029327 bioB gene Proteins 0.000 description 1
- 101150085692 bioC gene Proteins 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000002459 blastocyst Anatomy 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000006727 cell loss Effects 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 230000010001 cellular homeostasis Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 208000025302 chronic primary adrenal insufficiency Diseases 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000024203 complement activation Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000004940 costimulation Effects 0.000 description 1
- 201000003278 cryoglobulinemia Diseases 0.000 description 1
- 208000004921 cutaneous lupus erythematosus Diseases 0.000 description 1
- 238000004163 cytometry Methods 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 201000001981 dermatomyositis Diseases 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- 230000008482 dysregulation Effects 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002550 fecal effect Effects 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 210000000285 follicular dendritic cell Anatomy 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000009650 gentamicin protection assay Methods 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 201000003872 goiter Diseases 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 229940094991 herring sperm dna Drugs 0.000 description 1
- 102000052755 human MATK Human genes 0.000 description 1
- 102000050326 human TNFSF13B Human genes 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229940028885 interleukin-4 Drugs 0.000 description 1
- 230000037041 intracellular level Effects 0.000 description 1
- 238000010212 intracellular staining Methods 0.000 description 1
- 108010028930 invariant chain Proteins 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 210000005210 lymphoid organ Anatomy 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 238000002826 magnetic-activated cell sorting Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 208000008795 neuromyelitis optica Diseases 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 208000005987 polymyositis Diseases 0.000 description 1
- 230000007824 polyneuropathy Effects 0.000 description 1
- 230000034190 positive regulation of NF-kappaB transcription factor activity Effects 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 1
- 210000001586 pre-b-lymphocyte Anatomy 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 201000000742 primary sclerosing cholangitis Diseases 0.000 description 1
- 210000001948 pro-b lymphocyte Anatomy 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 102200025793 rs179363878 Human genes 0.000 description 1
- 102220081225 rs863223467 Human genes 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 210000003079 salivary gland Anatomy 0.000 description 1
- 208000010157 sclerosing cholangitis Diseases 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 210000001179 synovial fluid Anatomy 0.000 description 1
- 210000005222 synovial tissue Anatomy 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 201000003067 thrombocytopenia due to platelet alloimmunization Diseases 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 102000015486 thyroid-stimulating hormone receptor activity proteins Human genes 0.000 description 1
- 108040006218 thyroid-stimulating hormone receptor activity proteins Proteins 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/502—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
- G01N33/5041—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects involving analysis of members of signalling pathways
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/564—Immunoassay; Biospecific binding assay; Materials therefor for pre-existing immune complex or autoimmune disease, i.e. systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, rheumatoid factors or complement components C1-C9
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57426—Specifically defined cancers leukemia
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6872—Intracellular protein regulatory factors and their receptors, e.g. including ion channels
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/106—Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/46—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
- G01N2333/47—Assays involving proteins of known structure or function as defined in the subgroups
- G01N2333/4701—Details
- G01N2333/4703—Regulators; Modulating activity
- G01N2333/4706—Regulators; Modulating activity stimulating, promoting or activating activity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/70503—Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
- G01N2333/70539—MHC-molecules, e.g. HLA-molecules
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/7056—Selectin superfamily, e.g. LAM-1, GlyCAM, ELAM-1, PADGEM
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/902—Oxidoreductases (1.)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/52—Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
Definitions
- the invention is in the fields of immunology and pharmacology.
- the invention generally relates to diagnosis and treatment of immunologic disorders and, particularly, disorders that are amendable to treatment with antagonists of BAFF (B cell activating factor of the TNF family).
- BAFF B cell activating factor of the TNF family
- B cells play a central role in acquired immunity. These cells possess the unique ability to mount a rapid and directed antibody response against foreign antigens, and to act as antigen-presenting cells. To maintain B cell homeostasis and a self-tolerant state, it is important to have a continuous pool of B cell precursors that will mature and migrate to peripheral organs, as well as maintain a process of negative selection to eliminate autoreactive B cells. Dysregulation in the B cell developmental process could lead to a block in B cell development, and thus immune deficiency, or conversely, to an escape and expansion of self-reactive B cells leading to autoimmunity.
- Autoantibodies can cause severe tissue damage (e.g., as in lupus nephritis) or loss of blood components (e.g., as in immune thrombocytopenia purpura).
- the prevailing treatment strategies for autoimmune disorders employ global immunosuppressants that have harmful side effects with long-term use.
- BAFF B cell survival and maturation factor
- B cell maturation antigen (BCMA; Accession No. S43486; Gross et al. (2000) Nature, 404:995-999; PCT Publication WO 01/12812; U.S. patent application Ser. No. 10/077,137); transmembrane activator and cyclophilin ligand interactor (TACI; Accession No. AAP57629; Gross et al., supra); and more recently, BAFF-R (also called BR3; Accession No. AF373846; Thompson et al. (2001) Science, 293:2108-2111).
- BCMA B cell maturation antigen
- TACI transmembrane activator and cyclophilin ligand interactor
- BAFF-R also called BR3; Accession No. AF373846; Thompson et al. (2001) Science, 293:2108-2111.
- BAFF-R is the only one of the three receptors that is specific for BAFF (Thompson et al., supra).
- BCMA and TACI bind not only to BAFF but also to another TNF family ligand, APRIL (Yu et al. (2000) Nat. Immunol., 1:252-256; Wu et al. (2000) J. Biol. Chem., 275:35478-35485; Rennert et al. (2000) J. Exp. Med., 192:1677-1684; PCT Publication WO 01/24811; U.S. patent application Ser. No. 10/115,192).
- Soluble forms of BAFF receptors have been made by fusing their extra-cellular domains to the Fc portion of immunoglobulin.
- Treatment of normal mice with such a soluble form of TACI or BCMA leads to reduced B cell numbers and a lack of humoral response (Shu et al. (1999) J. Leukoc. Biol., 65:680-683; Yan et al. (2000) Nat. Immunol., 1:37-41; Xia et al. (2000) J. Exp. Med., 192:137-143; Wang et al. (2001) Nat. Immunol., 2:632-637; Yu et al. (2000) Nat.
- BAFF-specific agents including BAFF-R-Fc and BAFF antibodies
- BAFF-R-Fc BAFF antibodies
- BAFF antibodies have been developed for treatment of autoimmune and other disorders (see, e.g., U.S. patent application Ser. Nos. 09/911,777; 10/380,703; 10/045,574; and 60/458,707); Kalled et al. (2003) Expert Opin. Ther. Targets, 7(1):115-23).
- the present invention is based, at least in part, on the identification of genes that are regulated by BAFF.
- DNA microarray chips were used to compare gene expression profiles of splenic cells obtained from BAFF-deficient and wildtype mice which were treated with soluble BAFF and BAFF-R Fc fusion protein (BAFF-R:Fc), respectively.
- a number of BAFF-responsive genes were identified (see Table 2). Five of these genes were substantially upregulated in the BAFF-treated mice while being substantially downregulated in the BAFF-R:Fc-treated mice.
- the five genes are: NF- ⁇ B2, CD23, H2-M ⁇ 2 (a beta chain of H2-DM), Fig-1, and OBF-1.
- the invention provides methods, compositions and kits for monitoring the activity of a BAFF antagonist in a mammal; monitoring BAFF activity in a mammal; identifying a mammal to be treated with a BAFF antagonist; treating and preventing disorders, including optimizing amounts and scheduling of administration or readministration of therapeutics such as BAFF antagonists, as well as related uses.
- the invention provides a method for monitoring efficacy of a BAFF antagonist in a mammal in some embodiments, the method includes the steps of administering the BAFF antagonist to the mammal and detecting one or more molecules selected from the group consisting of Fig-1 molecule, OBF-1 molecule, and H2-M ⁇ molecule in a biological sample of the treated mammal wherein the level of expression, relative to a control, of at least one of the detected molecules indicates efficacy of the BAFF antagonist in the mammal.
- the methods includes the steps of administering the BAFF antagonist to the mammal end detecting at the transcriptional level one or both molecules selected from the group consisting of NF- ⁇ B2 molecule and CD23 molecule in a biological sample of the treated mammal, wherein the level of expression, relative to a control of at least one of the detected molecules indicates efficacy of the BAFF antagonist in the mammal.
- the invention provides a method for monitoring BAFF activity in a mammal.
- the method includes the step of detecting in a biological sample of the mammal one or more molecules selected from the group consisting of H2-M ⁇ molecule, Fig-1 molecule, OBF-1 molecule, wherein elevated expression, relative to a control, of at least one of the detected molecules indicates elevated BAFF activity in the mammal.
- the method includes the step of detecting at the transcriptional level in a biological sample of the mammal one or both molecules selected from the group consisting of NF- ⁇ B2 molecule and CD23 molecule, wherein elevated expression, relative to a control, of at least one of the detected molecules indicates elevated BAFF activity in the mammal.
- the invention provides a method of identifying a mammal to be bested with a BAFF antagonist.
- the method includes the steps of providing a biological sample from a mammal and detecting one or more molecules selected from the group consisting of Fig-1 molecule, OBF-1 molecule, and H2-M ⁇ molecule in a biological the sample, wherein elevated expression, relative to a control, of at least one of the detected molecules indicates that the mammal should be treated with the BAFF antagonist.
- the method includes the steps of providing a biological sample from a mammal and detecting at the transcriptional level in a biological sample of the mammal one or both molecules selected from the group consisting of NF- ⁇ B2 molecule and CD23 molecule, wherein elevated expression, relative to a control, of at least one of the detected molecules indicates that the mammal should be treated with the BAFF antagonist.
- Each one of the above methods may further include an additional step of detecting, in the biological sample, NF- ⁇ B2 molecule, CD23 molecule, and/or another BAFF- and/or BAFF-R-responsive molecule, e.g., as listed in Table 2, at the transcriptional and/or translational level(s).
- the methods may further comprise detecting BAFF molecule and/or BAFF-R molecule in the sample.
- the invention provides methods for treating or preventing an immunologic disorder in a mammal comprising the steps of administering a BAFF antagonist to a mammal in need thereof and detecting a molecule selected from the group consisting of a H2-M ⁇ molecule, a Fig-1 molecule, and an OBF-1 molecule in a biological sample of the mammal.
- the mammal is administered another dose of a BAFF antagonist if detection of the molecule indicates that the molecule is elevated relative to a control.
- the stops of detecting a molecule selected from the group consisting of a H2-M ⁇ molecule, a Fig-1 molecule, and an OBF-1 molecule in a biological sample of the mammal and administering additional doses of a BAFF antagonist if levels of the molecule rise relative to a control are repeated as necessary to treat or prevent the immunologic disorder.
- the BAFF molecules in the mammal to be treated are detected before, during and/or after treatment with the BAFF antagonist to monitor BAFF molecule levels.
- the mammal having the immunologic disorder has elevated BAFF molecule levels relative to a control.
- the immunologic disorder is selected from the group consisting of an autoimmune disorder, a hyperproliferative immune disorder, such as B cell neoplasias and B cell hyperplasias, an antibody-mediated pathology and transplant rejection.
- autoimmune disorder is selected from the group consisting of autoimmune rheumatologic disorders, autoimmune gastrointestinal and liver disorders, vasculitis, autoimmune neurological disorders, autoimmune dermatologic disorders, autoimmune endocrine disorders, autoimmune thyroid disease, autoimmune renal disorders, and autoimmune hematologic disorders.
- the immunologic disorder is selected from the group consisting of rheumatoid arthritis, asthma, psoriasis, psoriatic arthritis, inflammatory bowel disease including ulcerative colitis and Crohn's Disease, pemphigus vulgaris, ANCA-associated vasculitis, lupus including lupus nephritis and systemic lupus erythematosus (SLE), multiple sclerosis, Sjogren's syndrome, Graves' disease, insulin-dependent diabetes mellitus (IDDM), type I diabetes, pernicious anemia, thyroiditis, glomerulnephritis, rejection, B cell hyperproliferative disorders, Wegener's granulomatosis, transplant rejection, graft-versus-host disease (GVHD), idiopathic thrombocytopenic purpura (ITP) and myasthenia gravis.
- IDDM insulin-dependent diabetes mellitus
- type I diabetes pernicious anemia
- thyroiditis thyroid
- the hyperproliferative immune disorder is selected from the group consisting of non-Hodgkin's lymphoma (NHL), chronic lymphocytic leukemia (CLL), acute lymphocytic leukemia (ALL), mantle cell lymphoma, marginal zone related tumors, follicular lymphoma (FL), large cell lymphoma such as diffuse large B-cell lymphoma, Burkitt's lymphoma, plasma cell disorders such as multiple myeloma.
- NHL non-Hodgkin's lymphoma
- CLL chronic lymphocytic leukemia
- ALL acute lymphocytic leukemia
- mantle cell lymphoma marginal zone related tumors
- FL follicular lymphoma
- large cell lymphoma such as diffuse large B-cell lymphoma
- Burkitt's lymphoma Burkitt's lymphoma
- plasma cell disorders such as multiple myeloma.
- the BAFF antagonist is selected from the group consisting of an anti-BAFF antibody, an antibody against one or more BAFF receptors, a dominant negative BAFF, a soluble BAFF receptor (e.g., BAFF-R, BCMA, and TACI) and other proteins that bind BAFF or BAFF receptors and inhibit BAFF signaling (e.g., immunoadhesions comprising BAFF-binding polypeptides or BAFF receptor-binding polypeptides fused to the Fc region of an IgG).
- the BAFF antagonist inhibits the interaction between BAFF and a BAFF receptor.
- the BAFF antagonist inhibits the interaction between BAFF and BAFF-R.
- the BAFF antagonist is selected from the group consisting of BCMA-Fc, BAFF-R-Fc, TACI-Ig, belimumab, an anti-BAFF-R antibody, a BAFF-binding peptibody and a dominant negative BAFF.
- kits for patients treated or to be treated for an immunological disorder and/or for identifying patients treated or to be treated with a BAFF antagonist are also provided.
- a kit comprises reagents for detecting at the transcription of one or both molecules selected from the group consisting of NF- ⁇ B2 molecule and CD23 molecule.
- a kit comprises reagents for detecting one or more molecules selected from the group consisting of H2-M ⁇ molecule, Fig-1 molecule, and OBF-1 molecule.
- a kit for patients to be treated for an immunological disorder comprising reagents for detecting at the transcription of one or both molecules selected from the group consisting of NF- ⁇ B2 molecule and CD23 molecule.
- the kids may further comprise a reagent for detecting a BAFF molecule, printed material having information for monitoring the efficacy of treatment of a mammal with a BAFF antagonist, and/or instructions for detecting a BAFF molecule.
- FIG. 1 Identification of BAFF-regulated genes.
- cDNA was generated from splenic RNA of BAFF-deficient mice 6 hours or 12 hours post i.p. treatment with soluble BAFF and from C57BL/6 mice 2 days after i.p. treatment with BAFF-R:Fc.
- the cDNA was analyzed on the Affymetrix chip U74Av2.
- 5 genes were upregulated in BAFF treated, and concomitantly down-regulated in the BAFF-R:Fc treated, mice.
- FIGS. 2A and 2B Regulation of H2-DM and MHC Class II by BAFF signaling.
- FIG. 2 A Single cell suspensions were prepared from spleens from C57BL/6 mice injected i.p. with BAFF-R:Fc (or normal IgG) 2 or 7 days prior to staining, or from BAFF-deficient mice i.p. injected with soluble BAFF (or PBS) 2 days prior to staining. Intracellular staining of CD19 + B cells for H2-DM was performed. Mean fluorescent intensity (MFI) of the staining is shown for groups of 3 mice. Error bars show standard deviations. All treatment groups are different from the appropriate controls with the p ⁇ 0.03.
- FIG. 2 A Single cell suspensions were prepared from spleens from C57BL/6 mice injected i.p. with BAFF-R:Fc (or normal IgG) 2 or 7 days prior to staining, or from BAFF-deficient mice i.p. injected with soluble BAFF (
- FIG. 3 BAFF-R mediates BAFF-induced OBF-1 protein expression.
- Cell extracts were prepared from purified splenic B cells isolated from BAFF-deficient mice injected i.p. with BAFF 24 hours and from wildtype mice injected i.p. with BAFF-R:Fc 3 days prior to analysis.
- FIG. 4 Cell surface expression of IgG2a/b and survival of IgG2a/b + B-cells depend on endogenous BAFF signaling.
- Splenocytes were isolated from C57BL/6 mice injected i.p. with either BAFF-R:Fc 2 or 7 days earlier or from mice treated with normal human IgG 7 days earlier. Cells from the lymphocyte gate are shown. Percent of B200 + cells in the respective population is depicted in the upper panel. The percentage of IgG2a/b + cells and MFI of IgG2a/b staining on these cells are shown next to IgG2a/b + B200 + gate in the lower panel.
- FIGS. 5A and 5B Skewed V ⁇ repertoire under BAFF deficient conditions.
- V ⁇ family usage (percent of total sequences from each group) in productive joints derived from splenic B cells in C57BL6 mice treated with BAFF-R:Fc or PBS 7 days prior to analysis ( FIG. 5A ), as well as in BAFF-deficient mice supplemented with BAFF or PBS 2 days prior to analysis ( FIG. 5B ).
- Total genomic DMA was prepared from the spleens (pooled from 3 mice per group) of mice treated as indicated and amplified using PCR with mixture of universal VK1, VK2 primers as forward primers in conjunction with a J ⁇ 2 specific primer as a reverse primer.
- V ⁇ J ⁇ amplified products were analyzed to determine productive V ⁇ J ⁇ 2 rearrangements. The absolute number of sequences obtained for each set is shown above the corresponding bar.
- H2-MB ⁇ The murine orthologue is referred to as “H2-MB ⁇ ”; the human orthologue is referred to as “HLA-DMB”; H2-M ⁇ refers to H2-M ⁇ 2, HLA-DMB, or an orthologue from another species.
- SEQ ID NO:21 is an amino acid sequence of human BAFF-R (GenBankTM Accession No. AF373846). Special features noted in the Sequence Listing for this sequence: residue 1—none or any amino acid; residue 2—methionine, none, or any amino acid; residue 21—valine (wild type), asparagine, or another amino acid; residue 28—leucine (wild type), proline, or another amino add; residue 47—none, any amino acid, or alanine.
- SEQ ID NO:22 is an amino acid sequence of human BAFF-R-Fc fusion protein, which includes a signal sequence (amino acids 1-22) and a human IgG1 Fc portion (amino acids 95-321). Special features noted in the Sequence Listing for this sequence: residue 41—valine (wild type), asperagine, or another amino acid; residue 48—leucine (wild type), proline, or another amino acid; residue 67—none, any amino acid, or alanine.
- SEQ ID NO:23 is an amino acid sequence of murine BAFF-R (GenBankTM Accession No. Q96RJ3).
- SEQ ID NO:24 is an amino acid sequence of murine BAFF-R-Fc fusion protein, which includes a signal sequence (amino acids 1-22) and a murine IgG1 Fc portion (amino acids 88-316).
- SEQ I NO:25 is an amino acid sequence of a BAFF-binding peptide derived from BAFF-R.
- SEQ ID NO:26 is an amino acid sequence of one embodiment of human BAFF-R-Fc fusion protein, which includes no signal sequence and a truncated version of the BAFF receptor (amino acids 1-71) and a human IgG1 Fc portion (amino acids 73-298).
- residues 1-10 none, RRGPRSLRGR, or other amino acids
- residues 6-10 none, SLRGR, or other amino acids
- residue 21 valine (wild type), asparagine, or another amino acid
- residue 26 leucine (wild type), proline, or another amino acid
- residue 45 residue, any amino acid, or alanine
- residue 72 linker—none or any amino acid, e.g., valine.
- SEQ ID NO:27 is an amino acid sequence of human BCMA.
- SEQ ID NO:28 is an amino acid sequence of human TACI.
- SEQ ID NO:29 is a (dT)-T7 primer used for AffymetrixTM analysis.
- antibody refers to an immunoglobulin or a part thereof, and encompasses any polypeptide comprising an antigen-binding site regardless of the source, method of production, and other characteristics.
- the term includes but is not limited to polyclonal, monoclonal, monospecific, polyspecific, non-specific, humanized, single-chain, chimeric, synthetic, recombinant, hybrid, mutated, and CDR-grafted antibodies.
- antigen-binding domain refers to the part of an antibody molecule that comprises the area specifically binding to or complementary to a part or all of an antigen. Where an antigen is large, an antibody may only bind to a particular part of the antigen.
- the “epitope,” or “antigenic determinant” is a portion of an antigen molecule that is responsible for specific interactions with the antigen-binding domain of an antibody.
- An antigen-binding domain may be provided by one or more antibody variable domains (e.g., a so-called Fd antibody fragment consisting of a V H domain).
- An antigen-binding domain comprises an antibody light chain variable region (V L ) and an antibody heavy chain variable region (V H ).
- V L antibody light chain variable region
- V H antibody heavy chain variable region
- anti-BAFF antibody and “antibody directed against BAFF” refer so any antibody that specifically binds to at least one epitope of BAFF.
- BAFF refers to B cell-activating factor of the TNF family, characterized by its role as a B cell survival factor.
- a summary of BAFF's characteristics is provided in Mackay et al. (2002) Nature Reviews: Immunology 2:465-475 and in Gavin et al. (2003) J. Biol. Chem., 278( 40) :38220-8 and in Kalled et al. (2005) Curr. Dir. Autoimmum., 8:208-242.
- a “BAFF molecule” refers to a molecule substantially identical to: a BAFF polypeptide or a nucleic acid molecule encoding a BAFF polypeptide.
- BAFF molecule also refers to isoforms, amino acid fragments, nonredundant subsequences, analogs, or variants of the BAFF polypeptide and nucleic acids encoding them.
- BAFF antagonist generally refers to any compound that directly down modulates the biological activity of BAFF.
- a BAFF antagonist may, for example, bind to and neutralize the activity of BAFF; decrease BAFF expression levels; affect stability of BAFF; affect proteolytic cleavage of the membrane-bound form of BAFF into the soluble form. Interfere with the binding of BAFF to one or more receptors; interfere with intracellular signaling of one or more BAFF receptors.
- BAFF antagonists may be proteinaceous (e.g., antibodies, receptor fusion proteins, peptides, peptibodies, dominant negative BAFF mutants) or non-proteinaceous molecules (e.g., small organic molecules ( ⁇ 500 Da), siRNA, and aptamers). Methods for assessing neutralizing biological activity of BAFF antagonists include these described in the art.
- BAFF antagonists include polypeptides composing a BAFF-binding portion of a BAFF receptor or a BAFF-binding variant thereof (e.g., WO 01/12812, WO02/24909, WO 00/40716, WO 03/024991), anti-BAFF antibodies (e.g., WO 03/33658), BAFF-binding peptibodies (e.g., WO 02/092620), anti-BAFF-R antibodies (e.g., WO 02/24900) and BAFF-binding peptides (e.g., WO 02/16412).
- polypeptides composing a BAFF-binding portion of a BAFF receptor or a BAFF-binding variant thereof e.g., WO 01/12812, WO02/24909, WO 00/40716, WO 03/024991
- anti-BAFF antibodies e.g., WO 03/33658
- BAFF-binding peptibodies
- the BAFF antagonist is selected from the group consisting of BCMA-Fc (e.g., WO 01/12812) BAFF-R-Fc (e.g., WO 02/24909), TACI-Ig (e.g., WO 00/40716), an anti-BAFF antibody (e.g., WO 03/33659), an anti-BAFF-R antibody (e.g., WO 02/24900), a BAFF-binding peptibodies (e.g., WO 02/092020), a dominant negative BAFF (e.g., WO 04/081043).
- anti-BAFF antibodies and an anti-BAFF receptor antibodies are human, humanized, chimerized or otherwise enhanced for treatment in humans.
- BAFF-R refers to a protein that comprises at least a portion of wild-type or mutant receptor for BAFF, other than BCMA or TACI, that is capable of binding to BAFF. It has been determined that the BAFF-binding domain of human BAFF-R contains amino acids 27 to 32 of SEQ ID NO:21. BAFF-R is further defined in PCT Publication WO 02/24909 and U.S. patent application Ser. Nos. 10/380,703 and 60/458,707, and specifically includes, but is not limited to, human BAFF-R (SEQ ID NO:21, Accession No.
- BAFF-R also refers to naturally occurring variants, e.g., the splice variant containing an alanine at amino acid 47 of SEQ ID NO:21 corresponding to amino acid 67 of SEQ ID NO:22, as well as BAFF-binding variants of BAFF-R, e.g., BAFF-R variants having decreased aggregation (e.g., WO 02/24909).
- BAFF-R-Fc and “BAFF-R-Ig” refer to a fusion protein comprising BAFF-R and antibody constant region sequences, such as, for example, an Fc portion.
- ants-BAFF-R antibody and “antibody directed against BAFF-R” refer to any antibody that specifically binds to at least one epitope of BAFF-R.
- BAFF-R molecule refers to a molecule substantially identical to: a BAFF-R polypeptide or a nucleic acid molecule encoding an BAFF-R polypeptide.
- BAFF-R molecule also refers to isoforms, fragments, nonredundant subsequences, analogs, and variants of the BAFF-R polypeptide and nucleic acids encoding them.
- BAFF-specific antagonist refers to a compound that: (1) has the ability to counteract the effect(s) of BAFF in vivo or in vitro, e.g., by competitive blockage of BAFF binding to one or more BAFF receptors, and (2) under physiologic conditions preferentially forms a relatively stable complex with BAFF but not with other ligands of the TNF family, such as, e.g., APRIL.
- the binding is considered specific when the affinity constant K a for BAFF is higher than 10 6 M ⁇ 1 , preferably higher than 10 8 M ⁇ 1 , while the affinity for another TNF family ligands is lower than 10 6 M ⁇ 1 , preferably lower than 10 5 M ⁇ 1 .
- affinity constant K a of a BAFF-specific antagonist for at least one isoform of BAFF is preferably greater than 10 6 M ⁇ 1 , 10 7 M ⁇ 1 , 10 8 M ⁇ 1 , 10 9 M ⁇ 1 , 10 10 M ⁇ 1 , 10 11 M ⁇ 1 , or 10 12 M ⁇ 1 .
- the BAFF-specific antagonist is an anti-BAFF antibody (e.g., belimumab and BAFF-bidding antibodies described in WO02/02641 and WO 03/5979) or a BAFF-finding peptide-Fc fusion protein (e.g., BAFF-binding fusion proteins described in WO 02/24909).
- an anti-BAFF antibody e.g., belimumab and BAFF-bidding antibodies described in WO02/02641 and WO 03/5979
- a BAFF-finding peptide-Fc fusion protein e.g., BAFF-binding fusion proteins described in WO 02/24909.
- detecting refers to monitoring a substance from a biological sample relative to a control, qualitatively or quantitatively.
- the particular technique used for detection is not critical for practice of the invention.
- “detecting” may include: observing or measuring the amounts of a polypeptide or mRNA in a sample of a mammal, including monitoring a change in the levels of the polypeptide or amount bound to a target; a change in biological function/activity of a TACI, BCMA, BAFF-R, BAFF, and/or APRIL polypeptides (e.g., ligands or receptor binding by using, for example, in vitro intracellular signaling assays (such as NF- ⁇ B activation), tumor cell proliferation, B cell proliferation, or survival assays, etc.) and other methods known in the art (e.g., by counting B-cells, observing B-cell markers, etc.).
- Detecting may also include detecting wild type TACI, BCMA, BAFF-R, BAFF, and APRIL levels (e.g., mRNA or polypeptide levels). “Detecting” may also include quantifying a change (increase or decrease) of any value when compared to a control (e.g., percentage change and fold change).
- FIG-1 refers to a protein initially described by its induction in B cells upon IL-4 treatment (Proc. Natl. Acad. Sci. U.S.A., 94 (6), 2507-2512 (1997); Biochem. Biophys. Acta, 1576 (1-2), 70-80 (2002)).
- FIG-1 also known as Interleukin-4 induced gene-1 or Il4I1
- FIG-1 has been described as a leukocyte L-amino acid oxidase (Mason et al. (2004) J. Immunol., 173(7)-4561-7).
- Examples of nucleic acid sequences encoding FIG-1 include SEQ ID NO:3 and SEQ ID NO:8.
- FIG-1 Examples of amino acid sequences of FIG-1 include SEQ ID NO:13 and SEQ ID NO:18.
- the term “FIG-1 molecule” refers to a molecule substantially identical to: a FIG-1 polypeptide or a nucleic acid molecule encoding a FIG-1 polypeptide.
- the term “FIG-1 molecule” also refers to isoforms, fragments, nonredundant subsequences, analogs, and variants of the FIG-1 polypeptide and nucleic acids encoding them.
- H2-M ⁇ refers to a ⁇ -chain of a mammalian heterodimeric MHC class II-like molecule, which molecule catalyzes the release of class II-associated invariant chain-derived peptides (CLIP) born newly synthesized class II histocompatibility molecules, freeing the peptide-binding sites for acquisition, of antigenic peptides (Alfonso et al. (2000) Annu. Rev. Immunol., 18:113-142). In mice, the H2-M ⁇ -chain region is duplicated, with H2-M ⁇ 2 being the major form in lymphoid organs (Walter (2001) J. Biol. Chem., 276:11086-11091).
- H2-M ⁇ refers to the mouse orthologue named H2-M ⁇ 2.
- H2-M ⁇ refers to the human orthologue known as HLA-DMB.
- nucleic acid sequences encoding H2-M ⁇ include SEQ ID NO:2 (murine) and SEQ ID NO:7 (human).
- amino acid sequences of H2-M ⁇ include SEQ ID NO:12 (murine) and SEQ ID NO: 17 (human).
- H2-M ⁇ molecule refers to a molecule substantially identical to: a H2-M ⁇ polypeptide or a nucleic acid molecule encoding a H2-M ⁇ polypeptide.
- H2-M ⁇ molecule also refers isoforms, fragments, nonredundant subsequences, analogs, and variants of the H2-M ⁇ polypeptide and nucleic acid encoding them.
- CD23 refers to a protein expressed on B cells, follicular dendritic cells, and some T cells (Richards et al. (1991) Crit. Rev. Immunol., 11:65-86). CD23 has been described as a low affinity IgE receptor. Examples of nucleic acid sequences encoding CD23 include SEQ ID NO:5 and SEQ ID NO:10. Examples of amino acid sequences of CD23 include SEQ ID NO:15 (murine) and SEQ ID NO:20 (human).
- CD23 molecule refers to a molecule substantially identical to: a CD23 polypeptide or a nucleic acid molecule encoding a CD23 polypeptide.
- CD23 molecule also refers to isoforms, fragments, nonredundant subsequences, analogs, and variants of the CD23 polypeptide (e.g., the cleavage product known as p52) and nucleic acids encoding them.
- immunologic disorder refers to disorders and conditions in which an immune response is aberrant.
- the aberrant response can be due to (a) abnormal proliferation, maturation, survival, differentiation, or function of immune cells such as, for example, T and/or B cells.
- immunologic disorders include, but are not limited to, hyperproliferative immune disorders, autoimmune disorders, B cell disorders including plasma cell disorders, B cell lymphoproliferative disorders such as B cell neoplasias and B cell hyperplasias, antibody-mediated pathologies, transplant rejection, and allergies.
- the immunologic disorder is characterized by elevated BAFF levels compared to a control.
- autoimmune diseases include autoimmune rheumatologic disorders (e.g., rheumatoid arthritis, Sjogren's syndrome, scleroderma, lupus such as systemic lupus erythematosus (SLE) and lupus nephritis, polymyositis/dermatomyositis, cryoglobulinemia, anti-phospholipid antibody syndrome, psoriatic arthritis, ankylosing spondylitis), autoimmune gastrointestinal and liver disorders (e.g.
- inflammatory bowel diseases e.g., ulcerative colitis and Crohn's disease
- autoimmune gastritis and pernicious anemia e.g., ulcerative colitis and Crohn's disease
- autoimmune hepatitis e.g., primary biliary cirrhosis, primary sclerosing cholangitis, celiac disease
- vasculitis ANCA-associated vasculitis, Churg-Strauss vasculitis, Wegener's granulomatosis, and polyarteritis
- autoimmune neurological disorders e.g., multiple sclerosis, opsoclonus myoclonus syndrome, myasthenia gravis, neuromyelitis optica, Parkinson's disease, Alzheimer's disease, autoimmune polyneuropathies, Guillian-Barre syndrome
- autoimmune dermatologic disorders psoriasis, urticaria, pemphigus vulgaris, bullous pemphigold, cutaneous lupus erythemato
- hyperproliferative immune disorders include non-Hodgkin's lymphoma (NHL), chronic lymphocytic leukemia (CLL), acute lymphocytic leukemia (ALL), mantle cell lymphoma, marginal zone related tumors, follicular lymphoma (FL), large cell lymphoma such as diffuse large B-cell lymphoma, Burkitt's lymphoma, plasma cell disorders such as multiple myeloma.
- NHL non-Hodgkin's lymphoma
- CLL chronic lymphocytic leukemia
- ALL acute lymphocytic leukemia
- mantle cell lymphoma marginal zone related tumors
- FL follicular lymphoma
- large cell lymphoma such as diffuse large B-cell lymphoma
- Burkitt's lymphoma Burkitt's lymphoma
- plasma cell disorders such as multiple myeloma.
- antibody mediated pathologies include ITP, myasthenia gravis, autoimmune hemolytic anemia (erythrocyte autoantibodies), Hashimoto's thyroiditis (thyroid autoantibodies), myasthenia gravis (acetylcholine receptor autoantibodies).
- Grave's disease characterized by diffuse goiter and hyperthyroidism (thyrotropin receptor autoantibodies) and Goodpasture's syndrome comprising anti-GBM autoantibodies.
- compositions and methods of the present invention include but are not limited to disorders described in PCT Publication WO 02/24909 and U.S. patent application Ser. Nos. 09/911,777; 10/380,703; 10/045,574; and 60/458,707.
- nonredundant subsequence refers to a subsequence which is unique to the sequence in which it occurs.
- a nonredundant subsequence is at least, for example, 10, 15, 20, 30, 40, 50, 70, 100, 200, 300, 400, 500, 1000, or 1500 nucleotides long,
- NF- ⁇ B2 refers to an intracellular cell signaling polypeptide that can be cleaved to form the p52 subunit of the NF- ⁇ B transcription factor.
- nucleic acid sequences encoding NF- ⁇ B2 include SEQ ID NO:4 (murine) and SEQ ID NO:9 (human).
- amino acid sequences of NF- ⁇ B2 include SEQ ID NO:14 (murine) and SEQ ID NO:19 (human).
- the human p52 subunit can be described for example by residues 1-454 of SEQ ID NO:19.
- NF- ⁇ B2 molecule refers to a molecule substantially identical to: a NF- ⁇ B2 polypeptide or a nucleic acid molecule encoding a NF- ⁇ B2 polypeptide.
- NF- ⁇ B2 molecule also refers to isoforms, fragments, nonredundant subsequences, analogs, and variants of the NF- ⁇ B2 polypeptide (e.g., the cleavage product known as p52) and nucleic acids encoding them.
- OBF-1 refers to a protein that is involved in transcription. OBF-1 can be recruited to octamer binding motifs located at the 3′ IgH enhancer. The importance of OBF-1 for the expression of class switched Igs has been described (Kim et al. (1996) Nature, 383: 542-547).
- nucleic acid sequences encoding OBF-1 include SEQ ID NO:1 (murine) and SEQ ID NO:6 (human).
- amino acid sequences of OBF-1 include SEQ ID ID:11 (murine) and SEQ ID NO:16 (human).
- OBF-1 molecule refers to a molecule substantially identical to: an OBF-1 polypeptide or a nucleic acid molecule encoding an OBF-1 polypeptide; as well as isoforms, fragments, nonredundant subsequences, analogs, and variants of the OBF-1 polypeptide and nucleic acids encoding them.
- substantially identical means that a relevant amino acid sequence is at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% identical to a given sequence.
- sequences may be variants derived from various species, or they may be derived from the given sequence by truncation, deletion, amino acid substitution or addition.
- Percent identity between two amino acid sequences may be determined by standard alignment algorithms such as, for example, Basic Local Alignment Tool (BLAST) described in Altschul et al. (1990) J. Mol. Biol., 215:400-410, the algorithm of Needleman et al. (1970) J. Mol.
- BLAST Basic Local Alignment Tool
- the present invention is based, at least in part, on the identification of genes that are regulated by BAFF.
- DNA microarray chips were used to compare gene expression profiles of splenic cells obtained from BAFF-deficient and wildtype mice which were treated with soluble BAFF and BAFF-R Fc fusion protein (BAFF-R:Fc), respectively.
- a number of BAFF-responsive genes were identified (see Table 2). Five of these genes were substantially unregulated in the BAFF-treated mice while being substantially downregulated in the BAFF-R:Fc-treated mice. The five genes are: NF- ⁇ B2, CD23, H2-M ⁇ 2 (the beta chain of H2-DM), Fig-1, and OBF-1.
- the invention provides methods and compositions for: monitoring the activity of a BAFF antagonist in a mammal; monitoring BAFF activity in a mammal; identifying a mammal to be treated with a BAFF antagonist; treating diseases and disorders and related uses.
- the invention provides a method for monitoring efficacy of a BAFF antagonist in a mammal.
- the method includes the steps of administering the BAFF antagonist to the mammal and detecting one or more molecules selected from the group consisting of Fig-1 molecule, OBF-1 molecule, and H2-M ⁇ molecule in a biological sample of the treated mammal, wherein the level of expression, relative to a control of at least one of the defected molecules indicate efficacy of the BAFF antagonists in the mammal.
- the methods includes the steps of administering the BAFF antagonist to the mammal and detecting at the transcriptional level one or both molecules selected from the group consisting of NF- ⁇ B2 molecule and CD23 molecule in a biological sample of the treated mammal, wherein the level of expression, relative to a control, of at least one of the detected molecules indicates efficacy of the BAFF antagonist in the mammal.
- the invention provides a method for monitoring BAFF activity in a mammal.
- the method includes the step of detecting in a biological sample of the mammal one or more molecules selected from the group consisting of H2-M ⁇ molecule, Fig-1 molecule, OBF-1 molecule, wherein elevated expression, relative to a control, of at least one of the defected molecules indicates elevated BAFF activity in the mammal.
- the method includes the step of detecting at the transcriptional level in a biological sample of the mammal one or both molecules selected from the group consisting of NF- ⁇ B2 molecule and CD23 molecule, wherein elevated expression, relative to a control, of at least one of the detected molecules indicates elevated BAFF activity in the mammal.
- the invention provides a method of monitoring efficacy of a BAFF antagonist in a mammal comprising:
- the antibody chain whose expression level is being detected may be a light chain (e.g., a kappa light chain) and/or a heavy chain (e.g., of the IgG2a or IgG2b isotype).
- a light chain e.g., a kappa light chain
- a heavy chain e.g., of the IgG2a or IgG2b isotype.
- me kappa chain encoded by a gene responsive to OBF-1 may be encoded by a V ⁇ gene selected from the group consisting of V ⁇ 2, V ⁇ 4/5, V ⁇ 8, V ⁇ 19/18, and V ⁇ 21, in mouse.
- OBF-1-responsive genes in other species can be identified using routine methods.
- the change in the expression level of an immunoglobulin chain can be detected at the mRNA level or at the protein level.
- the expression levels can be detected using, e.g., fluorescent cytometry (FACS).
- FACS fluorescent cytometry
- the expression levels are assessed using a biological sample derived from the blood of the mammal, however, other types of biological samples can be used.
- the invention provides a method of identifying a mammal to be treated with a BAFF antagonist.
- the method includes the steps of providing a sample from a mammal and detecting one or more molecules selected from she group consisting of Fig-1 molecule, OBF-1 molecule, and H2-M ⁇ molecule in a biological sample of the mammal, wherein elevated expression, relative to a control, of at least one of the detected molecules indicates that the mammal should be treated with the BAFF antagonist.
- the method includes the steps of providing a biological sample from a mammal and detecting at the transcriptional level in a biological sample of the mammal one or both molecules selected from the group consisting of NF- ⁇ B2 molecule and CD23 molecule, wherein elevated expression, relative to a control, of at least one of the detected molecules indicates that the mammal should be treated with the BAFF antagonist.
- Each one of the above methods may further include detecting at the transcriptional and/or translational level(s) in the sample NF- ⁇ B2 molecule, CD23 molecule, and/or another BAFF- and/or BAFF-R-responsive molecule, e.g., as listed in Table 2.
- the methods may further comprise detecting BAFF molecule and/or BAFF-f molecule in the sample.
- a mammal could be, for example, a primate (e.g., a human), a rodent (e.g., a rat or a mouse), or a mammal of another species.
- the mammal may be one that suffers from an immunological disorder (e.g., autoimmune disease including, but not limited to, rheumatoid arthritis, lupus, and Sjogren's disease) and/or a B cell disorder (e.g., a B cell lymphoma or leukemia including, but not limited to, non-Hodgkin's lymphoma, (NHL), chronic lymphocytic leukemia (CLL), acute lymphocytic leukemia (ALL), and follicular lymphoma (FL)).
- a mammal is one that was heated with a BAFF antagonist, e.g., as described herein.
- a mammal is evaluated to be treated with such an antagonist.
- a mammal “in need” of treatment can include, but are not limited, to, mammals that have immunologic disorders, mammals that have had immunologic disorders, mammals with symptoms of immunologic disorders and have elevated levels of any one of the molecules selected from the group consisting of BAFF molecule, NF- ⁇ B2 molecule, CD23 molecule, H2-M ⁇ molecule, Fig-1 molecule, and OBF-1 molecule.
- biological samples of a animal include synovial tissue and fluid (e.g., useful for rheumatoid arthritis), tissues (e.g., salivary gland and/or labial tissue (e.g., useful for Sjogren's disease), blood, plasma, peripheral blood monocytes (PBMC), biopsies, saliva, urine, cerebrospinal fluid, milk, excretions, secretions, swabs, fecal samples, aspirates, or imaging of a portion of a mammal, etc.
- synovial tissue and fluid e.g., useful for rheumatoid arthritis
- tissues e.g., salivary gland and/or labial tissue (e.g., useful for Sjogren's disease)
- blood plasma
- peripheral blood monocytes PBMC
- biopsies saliva, urine, cerebrospinal fluid, milk
- excretions secretions
- secretions secretions
- swabs fecal samples
- aspirates or imaging
- kits for patients treated or to be treated for an immunologic disorder e.g., autoimmune disease or B cell disorder
- a BAFF antagonist or a BAFF-R antagonist e.g., a BAFF-R antagonist.
- a kit for patients to be treated for an autoimmune disease or B cell disorder comprises reagents for defecting at the transcriptional and/or translational level(s) the one or more molecules selected from the group consisting of H2-M ⁇ molecule, Fig-1 molecule, and OBF-1 molecule.
- kits for patients to be treated for an autoimmune disease or B cell disorder comprises reagents for detecting at the transcriptional (and optionally, reagents for detecting at the translational level) one or both molecules selected from the group consisting of NF- ⁇ B2 molecule and CD23 molecule.
- the kits may include detection means, such oligonucleotides, antibodies, and/or other detection agents directed to H2-M ⁇ molecule, Fig-1 molecule, and/or OBF-1 molecule. Examples of such oligonucleotides include non-redundant subsequences of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:6, SEQ ID NO:7, and SEQ ID NO:8.
- Kits this invention may include printed material having instructions for detecting one or molecule selected from the group consisting of H2-M ⁇ , Fig-1, OBF-1, or other molecules described herein or instructions reciting a method of this invention.
- RNA expression levels at the transcriptional (RNA) or at the translational (protein) level, can be determined using conventional methods. Expression levels are usually scaled and/or normalized per total amount of RNA or protein in the sample, which is typically a housekeeping gene such actin or GAPDH. RNA expression or levels may be determined by, e.g., in situ hybridization, quantitative PCR (e.g., TaqManTM PCR or RT-PCR), Northern blotting, cDNA or oligonucleotide-based microarrays or any other method for determining RNA expression or levels, e.g., as described in Sambrook et al.
- quantitative PCR e.g., TaqManTM PCR or RT-PCR
- Northern blotting e.g., as described in Sambrook et al.
- Protein expression or levels may be determined, e.g., by using Western blotting, immunohistochemistry (IHC), ELISA, enzymatic activity assays, fluorescence-activated cell sorting (FACS), imaging techniques or any other method for determining protein expression or levels, e.g., as described in Current Protocols in Molecular Biology (Ausubel et al. (eds.) New York: John Wiley and Sons, 1998).
- comparative controls include, e.g., bodily fluid or tissue from normal patients, non-malignant tissue and pre-treatment or post-treatment samples.
- BAFF polypeptide levels in sera or spinal fluid from mammals with immunologic disorders are compared to sera or epical fluid from normal mammals.
- BAFF mRNA levels in neoplasia are compared to BAFF mRNA levels from normal human monocytes.
- the H2-M ⁇ molecules, Fig-1 molecules, OBF-1 molecule or any other responsive molecule described herein are compared before and after treatment with the BAFF antagonist.
- OBF-1 molecule may be as set out in SEQ ID NO:1 or SEQ ID NO:6, or a non-redundant subsequence of either sequence;
- H2-M ⁇ molecule may be as set out in SEQ ID NO:2 (H2-M ⁇ 2) or SEQ ID NO:7, or a non-redundant subsequence of either sequence;
- Fig-1 molecule may be as set out in SEQ ID NO:3 or SEQ ID NO:8, or a non-redundant subsequence of either sequence;
- OBF-1 molecule may be as set out in SEQ ID NO:11 or SEQ ID NO:16;
- NF- ⁇ B molecule may be as set out in SEQ ID NO:4 or SEQ ID NO:9, or a non-redundant subsequence of either sequence;
- CD23 molecule may be as set out in SEQ ID NO:5 or SEQ ID NO:10, or a non-redundant subsequence
- OBF-1 molecule may be as set out in SEQ ID NO:11 or 16; H2-M ⁇ molecule be set out in SEQ ID NO:12 (H2-M ⁇ 2) or SEQ ID NO:17, Fig-1 molecule may be as set out in SEQ ID NO:13 or SEQ ID NO:18; NF- ⁇ B molecule may be as set out in SEQ ID NO:14 or SEQ ID NO:19; CD23 molecule may be as set out in SEQ ID NO:15 or SEQ ID NO:20.
- the methods of the invention include detecting of sequences substantially identical to sequences specified in Table 1, including othrologues from other species. Such sequences can be found in publicly available databases such as GenBankTM.
- BAFF antagonists used in the methods of the present invention include (but are not limited to) antibodies directed against BAFF, antibodies directed against one or more isoforms of at least one BAFF receptor, soluble forms of BAFF receptors, and dominant negative forms of soluble BAFF (e.g., as described by Steed et al. (2003) Science, 801; 1895-1898 and U.S. Patent Appln. Pub. 2004/0170602).
- BAFF receptors include BAFF-R, BCMA, and TACI.
- the BAFF antagonist is BAFF-specific (e.g., BAFF-R), while in certain other embodiments the BAFF antagonist may also bind TNF family ligands other than BAFF (e.g., BCMA and TACI which also bind to APRIL).
- the BAFF antagonist is an antibody that blocks BAFF binding to its receptor. Antibodies directed to BAFF and to BAFF receptors have been previously described. Producing such antibodies is well within the skill of a person skilled in the art (see, e.g., Antibody Engineering, ed. Borrebaeck, 2nd ed., Oxford University Press, 1995).
- antibodies for use in the methods of the invention include those described in PCT Publication WO 99/12964 and U.S. patent application Ser. No. 00/911,777), the anti-BAFF antibody LymphoStat-BTM (Human Genome Sciences, Rockville, Md.), the anti-BAFF-R antibody clones 2.1 and 9.1 (WO 02/24909 at p. 96) and human and humanized versions thereof.
- the antibody of the invention may specifically bind, besides BAFF or BAFF-R, another protein that is substantially identical to BAFF or BAFF-R, respectively.
- antibodies are directed against BCMA and/or TACI.
- humanized forms and derivatives of nonhuman antibodies derived from non-human species e.g., mouse.
- Soluble forms of BAFF receptor fusion proteins may comprise a BAFF-binding domain of BAFF-R, BCMA, and/or TACI.
- a BAFF-binding domain is located within the extracellular domain (ECD), i.e., the portion of the protein normally present on the exterior of a cell expressing the protein.
- ECD extracellular domain
- the soluble BAFF-R is a disulfide-linked peptide having the sequence CHWDLLRHWVC (SEQ ID NO:25) (Kayagaki et al. (2002) Immunity, 10:515-524), or a polypeptide comprising this sequence.
- the soluble BAFF-R is a polypeptide comprising amino acids 27 to 32 or 18 to 43 of SEQ ID NO:21.
- a soluble form of a BAFF receptor comprises a BAFF-binding domain of a BAFF receptor fused to a constant region of an immunoglobulin, i.e., as in BAFF-R-Fc.
- BAFF-R-Fc comprises residues 3 to 73 of SEQ ID NO:21 fused to the Fc portion of IgG.
- BAFF-R-Fc comprises SEQ ID NO:26 (human) or SEQ ID NO:24 (murine).
- BAFF-R is a human BAFF-R having a C-terminal deletion starting from amino acid 51 of SEQ ID NO:21, which results in an altered O-linked glycosylation pattern (e.g., ⁇ BAFF-R described in U.S. Patent Application No. 60/458,707).
- soluble BAFF-R comprises ⁇ BAFF-R which lacks at least the sequence of SEQ ID NO:6 (corresponding to amino adds 51-57 of SEQ ID NO:21).
- the BAFF-binding domain of BAFF-R comprises amino acids (aa) 8 to aa 50, aa 13 to aa 50, or aa 13 to aa 43, or aa 18 to aa 43 of SEQ ID NO:21.
- the BAFF-binding domain is identical or substantially identical to aa 2 to aa 63 of SEQ ID NO:21 or to aa 2 to aa 62 of SEQ ID NO:23, including sequences that have been truncated or mutated so long as such sequences retain the ability to bind BAFF.
- BAFF-R is a murine sequence as set out from aa 2 to aa 66 of SEQ ID NO:23.
- BAFF-R comprises at least 20, 25, 30, 35, 40, 45, or 50 contiguous amino acids of SEQ ID NO:21.
- the BAFF-binding domain of BAFF-R may be mutated as described in WO 02/24909. For example, certain amino acids in the native BAFF-R sequence can substituted with corresponding amino acids from a BAFF-R polypeptide of another species, e.g., the BAFF-R binding domain may comprise the one or more of the following mutations: V21N, P22Q, A23T, L28P, L28A, and L28S (the numbering is per SEQ ID NO:21).
- compositions used in the methods of the invention comprise BCMA derivatives such as soluble forms of BCMA or antibodies against BCMA or against BCMA ligands (e.g., APRIL and/or BAFF).
- BCMA is described in Laabi el al. (1992) EMBO J., 11(11)3897-3904; U.S. Pat. No. 6,475,978; and Accession No. S43486).
- soluble forms of BCMA used in the methods of the invention comprise (a) a first amino acid sequence derived from the ligand-binding domain of BCMA and (b) a second amino acid sequence derived from the constant region of an immunoglobulin.
- the first amino acid sequence is derived from all or a portion of the BCMA extracellular domain and is capable of binding a BCMA ligand specifically.
- the amino acid sequence of a ligand-binding domain of human BCMA is set out in SEQ ID NO:27 amino acid 1 to about amino acid 50.
- the extracellular domain comprises amino acids 8-41 of SEQ ID NO:27.
- compositions used in the methods of the invention comprise TACI derivatives such as soluble forms of TACI or antibodies against TACI or against TACI ligands (e.g., APRIL and/or BAFF).
- TACI is described in von Bulow et al. (1997) Science, 278:108-141; Gross et al. (2000) Nature, 404:995-999; Marsters et al. (2000) Curr. Biol., 10:785-788; and Yan et al. (2000) Nature Immunol., 1:37-41; U.S. Pat. No. 6,316,222; and Accession No. O14836.
- soluble forms of TACI used in the methods of the invention comprise (a) a first amino acid sequence derived from the ligand-binding sequence of TACI and (b) a second amino acid sequence derived from the constant region of an immunoglobulin.
- the first amino acid sequence is derived from all or a portion of the TACI extracellular domain or a ligand-binding variant of TACI and is capable of binding a TACI ligand specifically.
- An example of a ligand-binding domain of human TACI is set out in SEQ ID NO:28 amino acid 1 to about amino acid 166.
- an extracellular sequence that can bind a TACI ligand is amino acids 1-100 of SEQ ID NO:28.
- the constant region of an immunoglobulin comprises any one of C H 1, C H 2, or C H 3 constant regions, or the entire Fc portion (that includes C H 2, or C H 3), with or without a hinge region.
- the second amino acid sequence is derived from the Fc portion of an IgG.
- the Fc portion is derived from IgG 1 , IgG 4 , or another IgG isotype.
- the constant region of an immunoglobulin comprises a sequence from aa 95 to aa 321 of SEQ ID NO:23, or aa 88 to aa 316 of SEQ ID NO:24.
- the second amino acid sequence may comprise the Fc portion of human IgG 1 , wherein the Fc is modified to minimize the effector function.
- modifications include changing specific amino acid residues that might alter an effector function such as Fc receptor binding (Lund et al. (1991) J. Immun., 147:2657-2662 and Morgan et al. (1995) Immunology, 88:319-324), or changing the species from which the constant region is derived.
- Immunoglobulins may have mutations in the C H 2 region of the heavy chain that reduce effector function, i.e., Fc receptor binding and complement activation.
- immunoglobulins may have mutations such as those described in U.S. Pat. Nos. 5,624,821 and 5,648,260.
- such mutations may be made at amino acid residues corresponding to amino acids 234 and 237 in the full-length sequence of IgG 1 or IgG 2 .
- Antibodies and immunoglobulin-receptor fusion proteins may also have mutations that stabilize the disulfide bond between the two heavy chains of an immunoglobulin, such as mutations in the hinge region of IgG 4 , as disclosed in Angal el at. (1993) Mol. Immunol., 30:105-108.
- a BAFF-binding domain is fused at the C-terminus or the N-terminus, with or without a linker sequence, to the C-terminus or the N-terminus of the constant region of an immunoglobulin.
- the exact length and sequence of the linker and its orientation relative to the linked sequences may vary.
- the linker may, for example, comprise one or more Gly-Ser.
- the linker may be 2, 10, 20, 30, or more amino acid long and is selected based on properties desired such as solubility, length and steric separation, immunogenicity, etc. It will be understood by one of ordinary skill in the art that certain amino acids in a sequence of any protein may be substituted for other amino adds without adversely affecting the activity of the protein. It is thus contemplated that various changes may be made in the amino acid sequences of BAFF receptor of the invention, or DNA sequences encoding therefore, as provided, without appreciable loss of their biological activity or utility.
- derivatives and analogs of BAFF receptors are also within the scope of the present invention.
- the derivatives or analogs should be functionally active, i.e., capable of exhibiting one or more activities associated with a ligand-binding domain of the wild-type BAFF-R.
- Derivatives or analogs that retain this binding ability, or inhibit biological activity of BAFF can be produced and tested by procedures known in the art and/or as described in the Examples. Methods of producing such derivatives and analogs include recombinant and synthetic methods (see, e.g., Maniatis (1990) Molecular Cloning, A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., and Bodansky et al. (1995) The Practice of Peptide Syntheses, 2nd ed., Spring Verlag, Berlin, Germany).
- a TACI-targeting construct was derived from bacterial artificial chromosome containing mouse 129SvJ genomic DMA (Genome Systems, St. Louis, Mo.). Bacterial recombinational cloning was used to insert a tailless human CD2 reporter at the initiating ATG, and a loxP flanked neomycin selection marker. The final construct lacks the first 578 nucleotides of genomic DNA encoding the first 90 residues of TACI.
- This construct was used to target the TACI locus of E14Tg2a embryonic stem cells, and correctly targeted cells were injected info C57BL/6 (Taconic, Germantown, N.Y.) blastocysts to generate chimeric mice. Germline transmission of the targeted allele was achieved by crossing chimeras to C57BL/6 mice. Generation of BAFF-, BCMA-, and BAFF-R-deficient mice was described previously (Schiemann (2001) Science, 293:2111-2114; Shulga-Morskaya et al. (2004) J. Immunol., 173:2331-2341). Mice deficient in all three BAFF receptors were obtained by crossing single mutant mice. Mutant mice and corresponding controls were of a C57BL/6-129 mixed genetic background, BAFF-deficient mice were backcrossed to C57BL/6 mice for 6 generations.
- BAFF-deficient mice were analyzed 6, 12, or 48 hours post i.p. injection of 50 ⁇ g BAFF (0.5 mg/ml). Wildtype mice were analyzed 3 or 7 days after i.p. injection of 200 ⁇ g BAFF-R:Fc (2 mg/ml). PBS or normal human IgG (Jackson Immunoresearch) were used as controls.
- RNA prepared from spleen homogenized in TRIzolTM reagent (Invitrogen Life Technologies, Carlsbad, Calif.) was further purified using an RNeasyTM Mini column (QIAGEN, Valencia, Calif.) according to the manufacturer's protocol. Sample labeling, hybridization, and staining were carried out according to the Eukaryotic Target Preparation protocol in the AffymetrixTM Technical Manual (701021 rev 1) for GeneChipTM Expression Analysis (Affymetrix, Santa Clara, Calif).
- RNA was used in a 20 ⁇ L first strand reaction with 200 U SuperscriptTM II (Invitrogen, Carlsbad, Calif.) and 0.5 ⁇ g (dT)-T7 primer (SEQ ID NO:29) first strand buffer (Invitrogen) at 42° C. for 1 hour.
- Second strand synthesis was carried out by the addition of 40 U E. coli DNA polymerase, 2 U E. coli RNase H, 10 U E. coli DNA ligase in second strand buffer (Invitrogen) followed by incubation at 16° C. for 2 hrs.
- the second strand synthesis reaction was purified using the GeneChipTM Sample Cleanup Module according to the manufacturer's protocol.
- the purified cDNA was amplified using a BioArrayTM high yield RNA transcription labeling kit (Enzo Life Sciences, Farmingdale, N.Y.) according to the manufacturers protocol to produce 70-120 ⁇ g of biotin-labeled cRNA (complementary RNA).
- Mouse Genome U74Av2 GeneChipTM probe arrays were pre-hybridized in a GeneChipTM Hybridization Oven 640 (Affymetrix) according to the manufacturer's protocol. 15 ⁇ g of labeled cRNA were fragmented in 30 ⁇ L fragmentation buffer 100 mM KOAc, 30 mM MgOAc at 95° C. for 35 min.
- the fragmented labeled cRNA was resuspended in 300 ⁇ L 1 ⁇ hybridization buffer containing 100 mM MES, 1 M [Na + ], 20 mM EDTA, 0.01% TweenTM 20, 0.5 mg/mL acetylated BSA, 0.1 mg/mL herring sperm DNA, control oligo B2, and control transcripts bioB 1.5 pM, bioC 5 pM, bioD 25 pM, and cre 100 pM, and hybridized to GeneChipTM probe arrays according to the manufacturer's protocol (Affymetrix).
- the hybridized GeneChipTM Microarrays were washed and stained using streptavidin-phycoerythrin (Molecular Probes, Eugene, Oreg.) and amplified with biotinylated anti-streptavidin antibody (Vector Laboratories, Burlingame, Calif.; Sigma, St. Louis, Mo.) on GeneChipTM Fluidics Station 400 (Affymetrix) using an antibody amplification protocol.
- the GeneChipTM probe arrays were scanned using GeneArrayTM Scanner (Hewlett Packard, Corvallis, Oreg.). BAFF-regulated gene expression patterns were analyzed using the ResolverTM data analysis tools.
- Spleens were minced through a nylon mesh (Cell Strainer; BD Falcon, Bedford, Mass.) to obtain single cell suspensions in Dulbecco's modified Eagle's medium (DMEM), 5% fetal calf serum (FCS), and 2 mM L-glutamine.
- DMEM Dulbecco's modified Eagle's medium
- FCS 5% fetal calf serum
- 2 mM L-glutamine 2 mM L-glutamine.
- erythrocytes were lysed by incubating them in a lysis buffer (140 mM NH 4 Cl, 17 mM Tris-HCl, pH 7.65) for 3 min on ice.
- Cells were surface-stained with combinations of FITC, PE, Cy-Chrome (Cyc), peridinine chlorophyll protein (PerCP), and/or allophycocyanin (APC)-conjugated monoclonal antibodies for 15 min on ice. Staining with biotinylated monoclonal antibodies was followed by a secondary staining with streptavidin-PerCP (BD Pharmingen, San Diego, Calif.). Stained cells were acquired on a FACSCaliburTM (BD Pharmingen) and data were analyzed using FlowJoTM software (TreeStar, Ashland, Oreg.).
- FITC Cy-Chrome
- PerCP peridinine chlorophyll protein
- API allophycocyanin
- H2-DM detection For intracellular H2-DM detection, following the staining with labeled antibodies to cell surface antigens, cells were washed in PBS and fixed in a BD Cytofix/Cytoperm solution (BD Pharmingen) for 20 min at room temperature (RT). After washing with BD Perm/Wash buffer (BD Pharmingen), cells were stained for 20 min at RT with an antibody to mouse H2-DM (clone 2E5A or isotype control rat IgG1 antibody; BD Pharmingen) in BD Perm/Wash Buffer (BD Pharmingen), washed, and then stained with anti-rat IgG1 (BD Pharmingen). Monoclonal antibodies to MHCII, B220, IgG2 were purchased from BD Pharmingen.
- B cells were purified from splenic cell suspensions by negative selection using anti-CD43 magnetic beads (MACS; Miltenyi Biotec, Auburn, Calif.) according to the manufacturers instructions. B cell purity ranged from ⁇ 70% for BAFF-deficient mice to ⁇ 97% for wildtype mice.
- Protein extracts were prepared from purified splenic B cells using the Cytoplasmic Extraction Kit (Pierce, Rockport, Ill.) following the manufacturer's protocol. A total of 10 ⁇ g of extracted protein was resolved in each lane of a 10-20% DS-PAGE gel under reducing conditions, blotted onto a nitrocellulose membrane, and probed with rabbit anti-OBF-1 polyclonal antibodies (sc-955, Santa Cruz Biotechnology, Santa Cruz, Calif.), followed by goat-anti-rabbit antibodies conjugated with horse radish peroxidase and developed using SuperSignal West PicoTM Luminol/Enhancer Solution (Pierce). The chemiluminescent images were collected by Fujifilm LAS 1000 and processed using software Fujifilm ImageGuageTM 4.0.
- Total splenic DNA was used as a template in a two-round PCR approach as previously described (Novobrantseva et al., (1999) J. Exp. Med., 189:75-88).
- This approach amplifies the rearranged DNA and, thus, allows analysis of the rearranged V ⁇ genes in B Cells. Briefly, the first round of PCR was performed with a mixture of degenerate primers VK1, VK2 recognizing most V ⁇ genes at the framework region 3 and JK5E (Novobrantseva, supra) for 30 cycles of 2 min at 94° C., 1 min at 54° C. and 1.5 min at 72° C.
- the second round was performed using 1 ⁇ l of the first round PCR product as a template in a semi-nested approach with VR1, VK2, and JK2 primers (Novobrantseva, supra) for 30 cycles of 2 min at 95° C., 1 min at 60° C., and 1.5 min at 72° C.
- PCR products were cloned into a plasmic vector and sequenced from a standard vector specific primer.
- V ⁇ gene sequences were analyzed for V ⁇ gene family usage using the DNAPLOT web based program available at ⁇ http://www.dnapolot.de>. Only productive V ⁇ J ⁇ joints were analyzed.
- the Affymetrix 12k GeneChipTM Microarray 65 genes were found to be transcriptionally regulated with a minimum of a 1.5-fold change and p ⁇ 0.05 compared to the control samples ( FIG. 1 and Table 2). Among these genes, 14 were upregulated at 6 hours following BAFF treatment; 32 were upregulated at 12 hours after BAFF treatment; 35 were then downregulated 2 days after BAFF-R:Fc treatment. Among the genes upregulated at 6 hours after BAFF treatment, 7 remained up-regulated at 12 hours after the treatment ( FIG. 1 and Table 2). Furthermore, at the 12-hour time point, 5 of the 7 genes were downregulated in wildtype mice 2 days following treatment with BAFF-R:Fc (Table 2).
- mice deficient in NF- ⁇ B2 molecule are phenotypically similar to BAFF-deficient animals. Specifically, both types of mice exhibit a strong reduction in the number of mature B-cells demonstrating that NF-k ⁇ B2 activation by BAFF plays a critical sale in B cell survival. Nonetheless, more careful examination showed that as compared to wild type mice, BAFF-deficient mice and NF- ⁇ B2-deficient mice have about 20% and 50% of total B cell numbers, respectively, indicating that some of BAFF-mediated pro-survival signal is independent of NF- ⁇ B2. Furthermore, while BAFF-deficient mice display more than 10-fold reduction in basal levels of immunoglobulin.
- NF- ⁇ B2-deficient mice have normal serum Ig levels (Caamano et al. (1998) J. Exp. Med., 187:185-196; Franzoso et al. (1998) J. Exp. Med., 7:47-159; and Schiemann et al. (2001) Science, 293:2111-2114).
- the ability to mount an antigen-specific antibody response was severely compromised in BAFF-deficient, but not NF- ⁇ B2-deficient, mice (Caamano, supra; Franzoso, supra; and Schiemann, supra) indicating that BAFF mediates its effect on antibody production through a NF- ⁇ B2 independently pathway.
- FIG. 2A shows that BAFF-R:Fc treatment led to an approximately 15% decrease in H2-DM expression at 2 days and a 30% decrease at 7 days. Conversely, BAFF-treatment resulted in a 70% increase in H2-DM expression. Interestingly, level of H2-DM expression in B cells from BAFF-deficient mice was much lower than in wildtype mice ( FIG.
- H2-DM expression is tightly regulated by BAFF-mediated signals.
- a previous report showed that an elevated systemic level of BAFF can lead to increased MHC Class II expression on the surface of B cells (Mackay et al. (1999) J. Exp. Med., 190:1697-1710).
- the data presented here shows that splenic B cells from wildtype mice treated with BAFF-R:Fc have reduced cell surface MHC Class II expression levels ( FIG. 2B ). Therefore, BAFF upregulates intracellular H2-DM in addition to cell surface MHC Class II molecules.
- Vh186.2/Jh2 clone X1AC1701 immunoglobulin heavy chain + variable region (Vh186.2/Jh2) mRNA, partial cds Vpreb3 pre-B lymphocyte gene 3 + Zfp46 zinc finger protein 46 +
- OBF-1-deficient mice exhibit a drastically reduced level of class switched immunoglobulins (Ig) compared to wildtype mice Casellas et al. (2002) Cell, 110:575-585; Nielsen (1996) Eur. J. Immunol. 26:3214-3218; and Schubart et al. (2001) Nat. Immunol., 2:69-74). Similar deficiency in class switched Igs expression was also observed in BAFF-deficient mice (Schiemann et al. (2001) Science, 293; 2111-2114). The hypothesis was that, by inducing OBF-1 expression, BAFF stimulation of B cells likely leads to elevated levels of class switched Ig.
- Ig immunoglobulins
- BAFF plays an important role in maintenance of normal levels of class switched Igs expression as well as survival of class switched Ig-bearing B cells.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Urology & Nephrology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pathology (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Oncology (AREA)
- Hospice & Palliative Care (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Rehabilitation Therapy (AREA)
- Rheumatology (AREA)
- Toxicology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
BAFF plays a central role in acquired immunity. The disclosure identifies BAFF responsive genes that are substantially upregulated by administration of BAFF and substantially downregulated by treatment with a BAFF antagonist. Specific genes are NF-κB2, CD23, H2-Mβ (the beta chain of H2-DM), Fig-1, and OBF-1. The disclosure provides methods and compositions for monitoring the activity of a BAFF antagonist in a mammal; monitoring BAFF activity in a mammal; identifying a mammal to be treated with a BAFF antagonist; and related uses. Such methods include detecting one or more molecules selected from the group consisting of Fig-1 molecule, OBF-1 molecule, and H2-Mβ molecule in a biological sample of the mammal, and optionally further detecting NF-κB2 molecule and/or CD23 molecule in the biological sample.
Description
- This application is a continuation application under 37 C.F.R. §1.53(b) of pending prior U.S. application Ser. No. 12/083,814, filed Apr. 11, 2008, entitled METHODS FOR USE WITH BAFF ANTAGONISTS, which is the National Stage entry of PCT/US2006/039803, filed Oct. 12, 2006, and claims the benefit of U.S. Provisional Application No. 60/726,406, filed Oct. 13, 2005, all of which are incorporated by reference.
- The invention is in the fields of immunology and pharmacology. The invention generally relates to diagnosis and treatment of immunologic disorders and, particularly, disorders that are amendable to treatment with antagonists of BAFF (B cell activating factor of the TNF family).
- B cells play a central role in acquired immunity. These cells possess the unique ability to mount a rapid and directed antibody response against foreign antigens, and to act as antigen-presenting cells. To maintain B cell homeostasis and a self-tolerant state, it is important to have a continuous pool of B cell precursors that will mature and migrate to peripheral organs, as well as maintain a process of negative selection to eliminate autoreactive B cells. Dysregulation in the B cell developmental process could lead to a block in B cell development, and thus immune deficiency, or conversely, to an escape and expansion of self-reactive B cells leading to autoimmunity.
- Generation of high affinity, somatically hypermutated autoantibodies is one of the hallmarks of autoimmune conditions. The autoantibodies can cause severe tissue damage (e.g., as in lupus nephritis) or loss of blood components (e.g., as in immune thrombocytopenia purpura). The prevailing treatment strategies for autoimmune disorders employ global immunosuppressants that have harmful side effects with long-term use.
- Recent discovery of the B cell survival and maturation factor BAFF (also known as TALL-1, THANK, BLyS, zTNF4, and TNFSF13B, and sometimes referred to as neutrokine α, NTN2, Kay, MARCH, TL5, TNFL1, and “63954”) provided a unique opportunity for developing targeted intervention strategies for autoreactive B cell function. Elucidation of the role of BAFF in acquired immunity has been rapid since its first description as a B cell growth factor. BAFF (SEQ ID NO:30) (Accession No. AAD25356) is described in, e.g., Schneider et al (1999) J. Exp. Med., 189:1697-1710; PCT Publication WO 99/12964 and U.S. patent application Ser. No. 09/911,777 (issued as U.S. Pat. No. 6,869,605); and U.S. Pat. Nos. 6,623,941 and 6,689,579. BAFF has been implicated in costimulation of B cells (Moore et al. (1999) Science, 285:260-263; Schneider et al. (1999) J. Exp. Med., 189:1747-1756; Mukhopadhyay et al. (1999) J. Biol. Chem., 274:15978-15981); increased B cell proliferation (Moore et al. (1999) Science, 285:260-263); and increased survival of normally deleted B cells (Khare et al. (2000) Proc. Natl. Acad. Sci., 97:3370-3375; Gross et al. (2000) Nature, 404:995-999; Mackay et al. (1999) J. Exp. Med., 190:1697-1710). Studies have indicated that higher than normal levels of BAFF may contribute to the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE) and rheumatoid arthritis. For a review, see, e.g., Mackay et al. (2002) Nature Reviews: Immunology, 2:465-475; Kalled et al. (2003) Expert Opin. Ther. Targets, 7(1):115-23.
- Three cognate receptors for BAFF have been identified: (1) B cell maturation antigen (BCMA; Accession No. S43486; Gross et al. (2000) Nature, 404:995-999; PCT Publication WO 01/12812; U.S. patent application Ser. No. 10/077,137); transmembrane activator and cyclophilin ligand interactor (TACI; Accession No. AAP57629; Gross et al., supra); and more recently, BAFF-R (also called BR3; Accession No. AF373846; Thompson et al. (2001) Science, 293:2108-2111). BAFF-R is the only one of the three receptors that is specific for BAFF (Thompson et al., supra). BCMA and TACI bind not only to BAFF but also to another TNF family ligand, APRIL (Yu et al. (2000) Nat. Immunol., 1:252-256; Wu et al. (2000) J. Biol. Chem., 275:35478-35485; Rennert et al. (2000) J. Exp. Med., 192:1677-1684; PCT Publication WO 01/24811; U.S. patent application Ser. No. 10/115,192).
- Soluble forms of BAFF receptors have been made by fusing their extra-cellular domains to the Fc portion of immunoglobulin. Treatment of normal mice with such a soluble form of TACI or BCMA (TACI-Fc or BCMA-Fc) leads to reduced B cell numbers and a lack of humoral response (Shu et al. (1999) J. Leukoc. Biol., 65:680-683; Yan et al. (2000) Nat. Immunol., 1:37-41; Xia et al. (2000) J. Exp. Med., 192:137-143; Wang et al. (2001) Nat. Immunol., 2:632-637; Yu et al. (2000) Nat. Immunol., 1:252-256). For example, in a mouse model for rheumatoid arthritis, an autoimmune disease that involves both B and T cell components, TACI-Fc substantially inhibits inflammation and slows disease progression (Wang et al. (2001) Nat. Immunol., 2(7):632-637). These effects are thought to be attributed to BAFF sequestration because BAFF-deficient mice have a phenotype similar to that of TACI-Fc- or BCMA-Fc-treated mice (almost complete loss of mature B cells and a severely compromised humoral response) (Schiemann et al. (2001) Science, 293:2111-2114; Gross et al. (2001) Immunity, 15:289-302). More recently, BAFF-specific agents, including BAFF-R-Fc and BAFF antibodies, have been developed for treatment of autoimmune and other disorders (see, e.g., U.S. patent application Ser. Nos. 09/911,777; 10/380,703; 10/045,574; and 60/458,707); Kalled et al. (2003) Expert Opin. Ther. Targets, 7(1):115-23).
- Thus, while therapeutic strategies employing BAFF-specific agents already exist, and new drugs targeting the BAFF signaling pathway are being developed, there is a need to provide methods for evaluating and monitoring efficacy of such agents, for selecting optimal responders to such treatments, and to providing improved dosing/timing regions for those therapeutics.
- The present invention is based, at least in part, on the identification of genes that are regulated by BAFF. In the experiments conducted in connection with the invention, DNA microarray chips were used to compare gene expression profiles of splenic cells obtained from BAFF-deficient and wildtype mice which were treated with soluble BAFF and BAFF-R Fc fusion protein (BAFF-R:Fc), respectively. A number of BAFF-responsive genes were identified (see Table 2). Five of these genes were substantially upregulated in the BAFF-treated mice while being substantially downregulated in the BAFF-R:Fc-treated mice. The five genes are: NF-κB2, CD23, H2-Mβ2 (a beta chain of H2-DM), Fig-1, and OBF-1. Although the expression of cell surface CD23 and activation of NF-κB2 have been previously reported to be regulated by BAFF, the transcriptional regulation of all five genes, as well as BAFF regulation of H2-Mβ2, Fig-1, and OBF-1 at the protein level, have not been reported previously.
- Accordingly, the invention provides methods, compositions and kits for monitoring the activity of a BAFF antagonist in a mammal; monitoring BAFF activity in a mammal; identifying a mammal to be treated with a BAFF antagonist; treating and preventing disorders, including optimizing amounts and scheduling of administration or readministration of therapeutics such as BAFF antagonists, as well as related uses.
- In one aspect, the invention provides a method for monitoring efficacy of a BAFF antagonist in a mammal in some embodiments, the method includes the steps of administering the BAFF antagonist to the mammal and detecting one or more molecules selected from the group consisting of Fig-1 molecule, OBF-1 molecule, and H2-Mβ molecule in a biological sample of the treated mammal wherein the level of expression, relative to a control, of at least one of the detected molecules indicates efficacy of the BAFF antagonist in the mammal. In other embodiment, the methods includes the steps of administering the BAFF antagonist to the mammal end detecting at the transcriptional level one or both molecules selected from the group consisting of NF-κB2 molecule and CD23 molecule in a biological sample of the treated mammal, wherein the level of expression, relative to a control of at least one of the detected molecules indicates efficacy of the BAFF antagonist in the mammal.
- In another aspect, the invention provides a method for monitoring BAFF activity in a mammal. In some embodiments, the method includes the step of detecting in a biological sample of the mammal one or more molecules selected from the group consisting of H2-Mβ molecule, Fig-1 molecule, OBF-1 molecule, wherein elevated expression, relative to a control, of at least one of the detected molecules indicates elevated BAFF activity in the mammal. In other embodiments, the method includes the step of detecting at the transcriptional level in a biological sample of the mammal one or both molecules selected from the group consisting of NF-κB2 molecule and CD23 molecule, wherein elevated expression, relative to a control, of at least one of the detected molecules indicates elevated BAFF activity in the mammal.
- In yet another aspect, the invention provides a method of identifying a mammal to be bested with a BAFF antagonist. In some embodiments, the method includes the steps of providing a biological sample from a mammal and detecting one or more molecules selected from the group consisting of Fig-1 molecule, OBF-1 molecule, and H2-Mβ molecule in a biological the sample, wherein elevated expression, relative to a control, of at least one of the detected molecules indicates that the mammal should be treated with the BAFF antagonist. In other embodiments, the method includes the steps of providing a biological sample from a mammal and detecting at the transcriptional level in a biological sample of the mammal one or both molecules selected from the group consisting of NF-κB2 molecule and CD23 molecule, wherein elevated expression, relative to a control, of at least one of the detected molecules indicates that the mammal should be treated with the BAFF antagonist.
- Each one of the above methods may further include an additional step of detecting, in the biological sample, NF-κB2 molecule, CD23 molecule, and/or another BAFF- and/or BAFF-R-responsive molecule, e.g., as listed in Table 2, at the transcriptional and/or translational level(s). The methods may further comprise detecting BAFF molecule and/or BAFF-R molecule in the sample.
- The invention provides methods for treating or preventing an immunologic disorder in a mammal comprising the steps of administering a BAFF antagonist to a mammal in need thereof and detecting a molecule selected from the group consisting of a H2-Mβ molecule, a Fig-1 molecule, and an OBF-1 molecule in a biological sample of the mammal. According to one further embodiment, the mammal is administered another dose of a BAFF antagonist if detection of the molecule indicates that the molecule is elevated relative to a control. According to further embodiments, the stops of detecting a molecule selected from the group consisting of a H2-Mβ molecule, a Fig-1 molecule, and an OBF-1 molecule in a biological sample of the mammal and administering additional doses of a BAFF antagonist if levels of the molecule rise relative to a control are repeated as necessary to treat or prevent the immunologic disorder. According to a further embodiment, the BAFF molecules in the mammal to be treated are detected before, during and/or after treatment with the BAFF antagonist to monitor BAFF molecule levels. According to one embodiment, the mammal having the immunologic disorder has elevated BAFF molecule levels relative to a control.
- According to one embodiment the immunologic disorder is selected from the group consisting of an autoimmune disorder, a hyperproliferative immune disorder, such as B cell neoplasias and B cell hyperplasias, an antibody-mediated pathology and transplant rejection. According to another embodiment, autoimmune disorder is selected from the group consisting of autoimmune rheumatologic disorders, autoimmune gastrointestinal and liver disorders, vasculitis, autoimmune neurological disorders, autoimmune dermatologic disorders, autoimmune endocrine disorders, autoimmune thyroid disease, autoimmune renal disorders, and autoimmune hematologic disorders. According to a further embodiment, the immunologic disorder is selected from the group consisting of rheumatoid arthritis, asthma, psoriasis, psoriatic arthritis, inflammatory bowel disease including ulcerative colitis and Crohn's Disease, pemphigus vulgaris, ANCA-associated vasculitis, lupus including lupus nephritis and systemic lupus erythematosus (SLE), multiple sclerosis, Sjogren's syndrome, Graves' disease, insulin-dependent diabetes mellitus (IDDM), type I diabetes, pernicious anemia, thyroiditis, glomerulnephritis, rejection, B cell hyperproliferative disorders, Wegener's granulomatosis, transplant rejection, graft-versus-host disease (GVHD), idiopathic thrombocytopenic purpura (ITP) and myasthenia gravis.
- According to another embodiment, the hyperproliferative immune disorder is selected from the group consisting of non-Hodgkin's lymphoma (NHL), chronic lymphocytic leukemia (CLL), acute lymphocytic leukemia (ALL), mantle cell lymphoma, marginal zone related tumors, follicular lymphoma (FL), large cell lymphoma such as diffuse large B-cell lymphoma, Burkitt's lymphoma, plasma cell disorders such as multiple myeloma.
- In one embodiment, the BAFF antagonist is selected from the group consisting of an anti-BAFF antibody, an antibody against one or more BAFF receptors, a dominant negative BAFF, a soluble BAFF receptor (e.g., BAFF-R, BCMA, and TACI) and other proteins that bind BAFF or BAFF receptors and inhibit BAFF signaling (e.g., immunoadhesions comprising BAFF-binding polypeptides or BAFF receptor-binding polypeptides fused to the Fc region of an IgG). According to another embodiment, the BAFF antagonist inhibits the interaction between BAFF and a BAFF receptor. According to a further embodiment, the BAFF antagonist inhibits the interaction between BAFF and BAFF-R. According to one embodiment, the BAFF antagonist is selected from the group consisting of BCMA-Fc, BAFF-R-Fc, TACI-Ig, belimumab, an anti-BAFF-R antibody, a BAFF-binding peptibody and a dominant negative BAFF.
- Diagnostic/monitoring methods and kits for patients treated or to be treated for an immunological disorder and/or for identifying patients treated or to be treated with a BAFF antagonist are also provided. In some embodiments, a kit comprises reagents for detecting at the transcription of one or both molecules selected from the group consisting of NF-κB2 molecule and CD23 molecule. In another embodiment, a kit comprises reagents for detecting one or more molecules selected from the group consisting of H2-Mβ molecule, Fig-1 molecule, and OBF-1 molecule. A kit for patients to be treated for an immunological disorder comprising reagents for detecting at the transcription of one or both molecules selected from the group consisting of NF-κB2 molecule and CD23 molecule. The kids may further comprise a reagent for detecting a BAFF molecule, printed material having information for monitoring the efficacy of treatment of a mammal with a BAFF antagonist, and/or instructions for detecting a BAFF molecule.
- Additional aspects of the invention will be set forth in part in the following description, and in part will be understood from the description, or may be learned by practice of the invention. The foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed.
-
FIG. 1 . Identification of BAFF-regulated genes. cDNA was generated from splenic RNA of BAFF-deficient mice 6 hours or 12 hours post i.p. treatment with soluble BAFF and from C57BL/6mice 2 days after i.p. treatment with BAFF-R:Fc. The cDNA was analyzed on the Affymetrix chip U74Av2. A total of 14, 32, and 35 distinct genes, each with a significant change (p≦0.05), were identified in the 6 and 12 hr BAFF treated, and the BAFF-R:Fc treated, mice, respectively. Among these, 5 genes were upregulated in BAFF treated, and concomitantly down-regulated in the BAFF-R:Fc treated, mice. -
FIGS. 2A and 2B . Regulation of H2-DM and MHC Class II by BAFF signaling. FIG. 2A—Single cell suspensions were prepared from spleens from C57BL/6 mice injected i.p. with BAFF-R:Fc (or normal IgG) 2 or 7 days prior to staining, or from BAFF-deficient mice i.p. injected with soluble BAFF (or PBS) 2 days prior to staining. Intracellular staining of CD19+ B cells for H2-DM was performed. Mean fluorescent intensity (MFI) of the staining is shown for groups of 3 mice. Error bars show standard deviations. All treatment groups are different from the appropriate controls with the p<0.03. FIG. 2B—Single cell suspensions were prepared from spleens taken from C57BL/6 mice injected i.p. with BAFF-R:Fc either 2 or 7 days earlier. Splenocytes from C57BL/6 mice injected i.p. with normalhuman IgG 7 days prior were used as a control. Cells were stained with antibodies to B220 and MHC class II. MHC class II expression is shown after gating on B220+ cells. An isotype control antibody was used to assess the background staining (shaded profile). -
FIG. 3 . BAFF-R mediates BAFF-induced OBF-1 protein expression. Cell extracts were prepared from purified splenic B cells isolated from BAFF-deficient mice injected i.p. with BAFF 24 hours and from wildtype mice injected i.p. with BAFF-R:Fc 3 days prior to analysis. -
FIG. 4 . Cell surface expression of IgG2a/b and survival of IgG2a/b+ B-cells depend on endogenous BAFF signaling. Splenocytes were isolated from C57BL/6 mice injected i.p. with either BAFF-R: 2 or 7 days earlier or from mice treated with normalFc human IgG 7 days earlier. Cells from the lymphocyte gate are shown. Percent of B200+ cells in the respective population is depicted in the upper panel. The percentage of IgG2a/b+ cells and MFI of IgG2a/b staining on these cells are shown next to IgG2a/b+ B200+ gate in the lower panel. -
FIGS. 5A and 5B . Skewed Vκ repertoire under BAFF deficient conditions. Vκ family usage (percent of total sequences from each group) in productive joints derived from splenic B cells in C57BL6 mice treated with BAFF-R:Fc orPBS 7 days prior to analysis (FIG. 5A ), as well as in BAFF-deficient mice supplemented with BAFF orPBS 2 days prior to analysis (FIG. 5B ). Total genomic DMA was prepared from the spleens (pooled from 3 mice per group) of mice treated as indicated and amplified using PCR with mixture of universal VK1, VK2 primers as forward primers in conjunction with a Jκ2 specific primer as a reverse primer. VκJκ amplified products were analyzed to determine productive VκJκ2 rearrangements. The absolute number of sequences obtained for each set is shown above the corresponding bar. -
-
TABLE 1 SEQ ID NOs: 1-20 Nucleic acid sequence Amino acid sequence Gene Murine Human Murine Human OBF-1 SEQ ID SEQ ID SEQ ID SEQ ID NO: 1 NO: 6 NO: 11 NO: 16 H2-Mβ* SEQ ID SEQ ID SEQ ID SEQ ID NO: 2 NO: 7 NO: 12 NO: 17 FIG.-1 SEQ ID SEQ ID SEQ ID SEQ ID NO: 3 NO: 8 NO: 13 NO: 18 NF-κB2 SEQ ID SEQ ID SEQ ID SEQ ID NO: 4 NO: 9 NO: 14 NO: 19 CD23 SEQ ID SEQ ID SEQ ID SEQ ID NO: 5 NO: 10 NO: 15 NO: 20 *The murine orthologue is referred to as “H2-Bβ2”; the human orthologue is referred to as “HLA-DMB”;, H2-Mβ refers to H2-Nβ2, HLA-DMB, or an orthologue from another species. - *The murine orthologue is referred to as “H2-MBβ”; the human orthologue is referred to as “HLA-DMB”; H2-Mβ refers to H2-Mβ2, HLA-DMB, or an orthologue from another species.
- SEQ ID NO:21 is an amino acid sequence of human BAFF-R (GenBank™ Accession No. AF373846). Special features noted in the Sequence Listing for this sequence:
residue 1—none or any amino acid;residue 2—methionine, none, or any amino acid;residue 21—valine (wild type), asparagine, or another amino acid; residue 28—leucine (wild type), proline, or another amino add;residue 47—none, any amino acid, or alanine. - SEQ ID NO:22 is an amino acid sequence of human BAFF-R-Fc fusion protein, which includes a signal sequence (amino acids 1-22) and a human IgG1 Fc portion (amino acids 95-321). Special features noted in the Sequence Listing for this sequence: residue 41—valine (wild type), asperagine, or another amino acid;
residue 48—leucine (wild type), proline, or another amino acid; residue 67—none, any amino acid, or alanine. - SEQ ID NO:23 is an amino acid sequence of murine BAFF-R (GenBank™ Accession No. Q96RJ3).
- SEQ ID NO:24 is an amino acid sequence of murine BAFF-R-Fc fusion protein, which includes a signal sequence (amino acids 1-22) and a murine IgG1 Fc portion (amino acids 88-316).
- SEQ I NO:25 is an amino acid sequence of a BAFF-binding peptide derived from BAFF-R.
- SEQ ID NO:26 is an amino acid sequence of one embodiment of human BAFF-R-Fc fusion protein, which includes no signal sequence and a truncated version of the BAFF receptor (amino acids 1-71) and a human IgG1 Fc portion (amino acids 73-298). Special features noted in the Sequence Listing for this sequence; residues 1-10—none, RRGPRSLRGR, or other amino acids; residues 6-10—none, SLRGR, or other amino acids;
residue 21—valine (wild type), asparagine, or another amino acid;residue 26—leucine (wild type), proline, or another amino acid; residue 45—none, any amino acid, or alanine; residue 72 (linker)—none or any amino acid, e.g., valine. - SEQ ID NO:27 is an amino acid sequence of human BCMA.
- SEQ ID NO:28 is an amino acid sequence of human TACI.
- SEQ ID NO:29 is a (dT)-T7 primer used for Affymetrix™ analysis.
- In order that the present invention may be more readily understood, certain terms are first defined. Additional definitions are set forth throughout the detailed description.
- The term “antibody” refers to an immunoglobulin or a part thereof, and encompasses any polypeptide comprising an antigen-binding site regardless of the source, method of production, and other characteristics. The term includes but is not limited to polyclonal, monoclonal, monospecific, polyspecific, non-specific, humanized, single-chain, chimeric, synthetic, recombinant, hybrid, mutated, and CDR-grafted antibodies. The term “antigen-binding domain” refers to the part of an antibody molecule that comprises the area specifically binding to or complementary to a part or all of an antigen. Where an antigen is large, an antibody may only bind to a particular part of the antigen. The “epitope,” or “antigenic determinant” is a portion of an antigen molecule that is responsible for specific interactions with the antigen-binding domain of an antibody. An antigen-binding domain may be provided by one or more antibody variable domains (e.g., a so-called Fd antibody fragment consisting of a VH domain). An antigen-binding domain comprises an antibody light chain variable region (VL) and an antibody heavy chain variable region (VH). The terms “anti-BAFF antibody” and “antibody directed against BAFF” refer so any antibody that specifically binds to at least one epitope of BAFF.
- The term “BAFF” refers to B cell-activating factor of the TNF family, characterized by its role as a B cell survival factor. A summary of BAFF's characteristics is provided in Mackay et al. (2002) Nature Reviews: Immunology 2:465-475 and in Gavin et al. (2003) J. Biol. Chem., 278(40):38220-8 and in Kalled et al. (2005) Curr. Dir. Autoimmum., 8:208-242. A “BAFF molecule” refers to a molecule substantially identical to: a BAFF polypeptide or a nucleic acid molecule encoding a BAFF polypeptide. The term “BAFF molecule” also refers to isoforms, amino acid fragments, nonredundant subsequences, analogs, or variants of the BAFF polypeptide and nucleic acids encoding them.
- The term “BAFF antagonist” generally refers to any compound that directly down modulates the biological activity of BAFF. A molecule “directly down modulates” the biological activity of BAFF by interacting with a BAFF polypeptide, BAFF gene, a BAFF transcript, or a BAFF receptor. A BAFF antagonist may, for example, bind to and neutralize the activity of BAFF; decrease BAFF expression levels; affect stability of BAFF; affect proteolytic cleavage of the membrane-bound form of BAFF into the soluble form. Interfere with the binding of BAFF to one or more receptors; interfere with intracellular signaling of one or more BAFF receptors. BAFF antagonists may be proteinaceous (e.g., antibodies, receptor fusion proteins, peptides, peptibodies, dominant negative BAFF mutants) or non-proteinaceous molecules (e.g., small organic molecules (≦500 Da), siRNA, and aptamers). Methods for assessing neutralizing biological activity of BAFF antagonists include these described in the art. Examples of BAFF antagonists include polypeptides composing a BAFF-binding portion of a BAFF receptor or a BAFF-binding variant thereof (e.g., WO 01/12812, WO02/24909, WO 00/40716, WO 03/024991), anti-BAFF antibodies (e.g., WO 03/33658), BAFF-binding peptibodies (e.g., WO 02/092620), anti-BAFF-R antibodies (e.g., WO 02/24900) and BAFF-binding peptides (e.g., WO 02/16412). According to one embodiment, the BAFF antagonist is selected from the group consisting of BCMA-Fc (e.g., WO 01/12812) BAFF-R-Fc (e.g., WO 02/24909), TACI-Ig (e.g., WO 00/40716), an anti-BAFF antibody (e.g., WO 03/33659), an anti-BAFF-R antibody (e.g., WO 02/24900), a BAFF-binding peptibodies (e.g., WO 02/092020), a dominant negative BAFF (e.g., WO 04/081043). According a further embodiment, anti-BAFF antibodies and an anti-BAFF receptor antibodies are human, humanized, chimerized or otherwise enhanced for treatment in humans.
- The term “BAFF-R” refers to a protein that comprises at least a portion of wild-type or mutant receptor for BAFF, other than BCMA or TACI, that is capable of binding to BAFF. It has been determined that the BAFF-binding domain of human BAFF-R contains amino acids 27 to 32 of SEQ ID NO:21. BAFF-R is further defined in PCT Publication WO 02/24909 and U.S. patent application Ser. Nos. 10/380,703 and 60/458,707, and specifically includes, but is not limited to, human BAFF-R (SEQ ID NO:21, Accession No. AAD25356;
amino acid 47 of SEQ ID NO:21 is not present in some isoforms) and murine BAFF-R (SEQ ID NO:23; Accession No Q96RJ3). The term “BAFF-R” also refers to naturally occurring variants, e.g., the splice variant containing an alanine atamino acid 47 of SEQ ID NO:21 corresponding to amino acid 67 of SEQ ID NO:22, as well as BAFF-binding variants of BAFF-R, e.g., BAFF-R variants having decreased aggregation (e.g., WO 02/24909). - The terms “BAFF-R-Fc” and “BAFF-R-Ig” refer to a fusion protein comprising BAFF-R and antibody constant region sequences, such as, for example, an Fc portion. The terms “ants-BAFF-R antibody” and “antibody directed against BAFF-R” refer to any antibody that specifically binds to at least one epitope of BAFF-R. The term “BAFF-R molecule” refers to a molecule substantially identical to: a BAFF-R polypeptide or a nucleic acid molecule encoding an BAFF-R polypeptide. The term “BAFF-R molecule” also refers to isoforms, fragments, nonredundant subsequences, analogs, and variants of the BAFF-R polypeptide and nucleic acids encoding them.
- The term “BAFF-specific antagonist” refers to a compound that: (1) has the ability to counteract the effect(s) of BAFF in vivo or in vitro, e.g., by competitive blockage of BAFF binding to one or more BAFF receptors, and (2) under physiologic conditions preferentially forms a relatively stable complex with BAFF but not with other ligands of the TNF family, such as, e.g., APRIL. Typically, the binding is considered specific when the affinity constant Ka for BAFF is higher than 106 M−1, preferably higher than 108 M−1, while the affinity for another TNF family ligands is lower than 106 M−1, preferably lower than 105 M−1. A skilled artisan recognizes that under certain conditions a low affinity but high avidity binding may also be specific even though Ks of the interaction may be relatively low, in some embodiments, affinity constant Ka of a BAFF-specific antagonist for at least one isoform of BAFF is preferably greater than 106 M−1, 107 M−1, 108 M−1, 109 M−1, 1010 M−1, 1011 M−1, or 1012 M−1. According to one embodiment, the BAFF-specific antagonist is an anti-BAFF antibody (e.g., belimumab and BAFF-bidding antibodies described in WO02/02641 and WO 03/5979) or a BAFF-finding peptide-Fc fusion protein (e.g., BAFF-binding fusion proteins described in WO 02/24909).
- The term “detecting” and its cognates, when used in reference to the methods of the invention, refers to monitoring a substance from a biological sample relative to a control, qualitatively or quantitatively. In general, the particular technique used for detection is not critical for practice of the invention. For example, “detecting” may include: observing or measuring the amounts of a polypeptide or mRNA in a sample of a mammal, including monitoring a change in the levels of the polypeptide or amount bound to a target; a change in biological function/activity of a TACI, BCMA, BAFF-R, BAFF, and/or APRIL polypeptides (e.g., ligands or receptor binding by using, for example, in vitro intracellular signaling assays (such as NF-κB activation), tumor cell proliferation, B cell proliferation, or survival assays, etc.) and other methods known in the art (e.g., by counting B-cells, observing B-cell markers, etc.). “Detecting” may also include detecting wild type TACI, BCMA, BAFF-R, BAFF, and APRIL levels (e.g., mRNA or polypeptide levels). “Detecting” may also include quantifying a change (increase or decrease) of any value when compared to a control (e.g., percentage change and fold change).
- The term “FIG-1” refers to a protein initially described by its induction in B cells upon IL-4 treatment (Proc. Natl. Acad. Sci. U.S.A., 94 (6), 2507-2512 (1997); Biochem. Biophys. Acta, 1576 (1-2), 70-80 (2002)). FIG-1, also known as Interleukin-4 induced gene-1 or Il4I1, has been described as a leukocyte L-amino acid oxidase (Mason et al. (2004) J. Immunol., 173(7)-4561-7). Examples of nucleic acid sequences encoding FIG-1 include SEQ ID NO:3 and SEQ ID NO:8. Examples of amino acid sequences of FIG-1 include SEQ ID NO:13 and SEQ ID NO:18. The term “FIG-1 molecule” refers to a molecule substantially identical to: a FIG-1 polypeptide or a nucleic acid molecule encoding a FIG-1 polypeptide. The term “FIG-1 molecule” also refers to isoforms, fragments, nonredundant subsequences, analogs, and variants of the FIG-1 polypeptide and nucleic acids encoding them.
- The term “H2-Mβ” refers to a β-chain of a mammalian heterodimeric MHC class II-like molecule, which molecule catalyzes the release of class II-associated invariant chain-derived peptides (CLIP) born newly synthesized class II histocompatibility molecules, freeing the peptide-binding sites for acquisition, of antigenic peptides (Alfonso et al. (2000) Annu. Rev. Immunol., 18:113-142). In mice, the H2-Mβ-chain region is duplicated, with H2-Mβ2 being the major form in lymphoid organs (Walter (2001) J. Biol. Chem., 276:11086-11091). According to one embodiment, “H2-Mβ” refers to the mouse orthologue named H2-Mβ2. According to another embodiment, “H2-Mβ” refers to the human orthologue known as HLA-DMB. Examples of nucleic acid sequences encoding H2-Mβ include SEQ ID NO:2 (murine) and SEQ ID NO:7 (human). Examples of amino acid sequences of H2-Mβ include SEQ ID NO:12 (murine) and SEQ ID NO: 17 (human). The term “H2-Mβ molecule” refers to a molecule substantially identical to: a H2-Mβ polypeptide or a nucleic acid molecule encoding a H2-Mβ polypeptide. The term “H2-Mβ molecule” also refers isoforms, fragments, nonredundant subsequences, analogs, and variants of the H2-Mβ polypeptide and nucleic acid encoding them.
- The term “CD23” refers to a protein expressed on B cells, follicular dendritic cells, and some T cells (Richards et al. (1991) Crit. Rev. Immunol., 11:65-86). CD23 has been described as a low affinity IgE receptor. Examples of nucleic acid sequences encoding CD23 include SEQ ID NO:5 and SEQ ID NO:10. Examples of amino acid sequences of CD23 include SEQ ID NO:15 (murine) and SEQ ID NO:20 (human). The term “CD23 molecule” refers to a molecule substantially identical to: a CD23 polypeptide or a nucleic acid molecule encoding a CD23 polypeptide. The term “CD23 molecule” also refers to isoforms, fragments, nonredundant subsequences, analogs, and variants of the CD23 polypeptide (e.g., the cleavage product known as p52) and nucleic acids encoding them.
- The term “immunologic disorder” refers to disorders and conditions in which an immune response is aberrant. The aberrant response can be due to (a) abnormal proliferation, maturation, survival, differentiation, or function of immune cells such as, for example, T and/or B cells. Examples of immunologic disorders include, but are not limited to, hyperproliferative immune disorders, autoimmune disorders, B cell disorders including plasma cell disorders, B cell lymphoproliferative disorders such as B cell neoplasias and B cell hyperplasias, antibody-mediated pathologies, transplant rejection, and allergies. According to one embodiment, the immunologic disorder is characterized by elevated BAFF levels compared to a control.
- Examples of autoimmune diseases include autoimmune rheumatologic disorders (e.g., rheumatoid arthritis, Sjogren's syndrome, scleroderma, lupus such as systemic lupus erythematosus (SLE) and lupus nephritis, polymyositis/dermatomyositis, cryoglobulinemia, anti-phospholipid antibody syndrome, psoriatic arthritis, ankylosing spondylitis), autoimmune gastrointestinal and liver disorders (e.g. inflammatory bowel diseases (e.g., ulcerative colitis and Crohn's disease), autoimmune gastritis and pernicious anemia, autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis, celiac disease), vasculitis (ANCA-associated vasculitis, Churg-Strauss vasculitis, Wegener's granulomatosis, and polyarteritis), autoimmune neurological disorders (e.g., multiple sclerosis, opsoclonus myoclonus syndrome, myasthenia gravis, neuromyelitis optica, Parkinson's disease, Alzheimer's disease, autoimmune polyneuropathies, Guillian-Barre syndrome), autoimmune dermatologic disorders (psoriasis, urticaria, pemphigus vulgaris, bullous pemphigold, cutaneous lupus erythematosus), autoimmune endocrine disorders (e.g., diabetic-related autoimmune diseases, insulin-dependent diabetes mellitus (IDDM), Addison's disease, autoimmune thyroid disease (e.g., Graves' disease, thyroiditis such as Hashimoto's thyroiditis), renal disorders (e.g., glomerulonephritis, Goodpasture's syndrome, Berger's disease), and hematologic disorders (e.g., thrombocytopenic purpura, thrombotic thrombocytopenic purpura, post-transfusion purpura, autoimmune hemolytic anemia).
- Examples of hyperproliferative immune disorders include non-Hodgkin's lymphoma (NHL), chronic lymphocytic leukemia (CLL), acute lymphocytic leukemia (ALL), mantle cell lymphoma, marginal zone related tumors, follicular lymphoma (FL), large cell lymphoma such as diffuse large B-cell lymphoma, Burkitt's lymphoma, plasma cell disorders such as multiple myeloma.
- Examples of antibody mediated pathologies include ITP, myasthenia gravis, autoimmune hemolytic anemia (erythrocyte autoantibodies), Hashimoto's thyroiditis (thyroid autoantibodies), myasthenia gravis (acetylcholine receptor autoantibodies). Grave's disease characterized by diffuse goiter and hyperthyroidism (thyrotropin receptor autoantibodies) and Goodpasture's syndrome comprising anti-GBM autoantibodies.
- Other disorders that can be treated using the compositions and methods of the present invention include but are not limited to disorders described in PCT Publication WO 02/24909 and U.S. patent application Ser. Nos. 09/911,777; 10/380,703; 10/045,574; and 60/458,707.
- It should be understood that particular diseases may fall under more than one category described above.
- The term “nonredundant subsequence” refers to a subsequence which is unique to the sequence in which it occurs. In some embodiments, a nonredundant subsequence is at least, for example, 10, 15, 20, 30, 40, 50, 70, 100, 200, 300, 400, 500, 1000, or 1500 nucleotides long,
- The term “NF-κB2” refers to an intracellular cell signaling polypeptide that can be cleaved to form the p52 subunit of the NF-κB transcription factor. Examples of nucleic acid sequences encoding NF-κB2 include SEQ ID NO:4 (murine) and SEQ ID NO:9 (human). Examples of amino acid sequences of NF-κB2 include SEQ ID NO:14 (murine) and SEQ ID NO:19 (human). The human p52 subunit can be described for example by residues 1-454 of SEQ ID NO:19. The term “NF-κB2 molecule” refers to a molecule substantially identical to: a NF-κB2 polypeptide or a nucleic acid molecule encoding a NF-κB2 polypeptide. The term “NF-κB2 molecule” also refers to isoforms, fragments, nonredundant subsequences, analogs, and variants of the NF-κB2 polypeptide (e.g., the cleavage product known as p52) and nucleic acids encoding them.
- The term “OBF-1” refers to a protein that is involved in transcription. OBF-1 can be recruited to octamer binding motifs located at the 3′ IgH enhancer. The importance of OBF-1 for the expression of class switched Igs has been described (Kim et al. (1996) Nature, 383: 542-547). Examples of nucleic acid sequences encoding OBF-1 include SEQ ID NO:1 (murine) and SEQ ID NO:6 (human). Examples of amino acid sequences of OBF-1 include SEQ ID ID:11 (murine) and SEQ ID NO:16 (human). The term “OBF-1 molecule” refers to a molecule substantially identical to: an OBF-1 polypeptide or a nucleic acid molecule encoding an OBF-1 polypeptide; as well as isoforms, fragments, nonredundant subsequences, analogs, and variants of the OBF-1 polypeptide and nucleic acids encoding them.
- The phrase “substantially identical” means that a relevant amino acid sequence is at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% identical to a given sequence. By way of example, such sequences may be variants derived from various species, or they may be derived from the given sequence by truncation, deletion, amino acid substitution or addition. Percent identity between two amino acid sequences may be determined by standard alignment algorithms such as, for example, Basic Local Alignment Tool (BLAST) described in Altschul et al. (1990) J. Mol. Biol., 215:400-410, the algorithm of Needleman et al. (1970) J. Mol. Biol., 48:444-453, or the algorithm of Meyers et al. (1988) Comput. Appl. Biosci., 4:11-17. Such algorithms are incorporated info the BLASTN, BLASTP, and “
BLAST 2 Sequences” programs (see www.ncbi.nlm.nih.gov/BLAST). When utilizing such programs, the default parameters can be used. For example, for nucleotide sequences the following settings can be used for “BLAST 2 Sequences”: program BLASTN, reward formatch 2, penalty for mismatch −2, open gap and 5 and 2 respectively, gap x_dropoff 50, expect 10,extension gap penalties word size 11, filter ON. For amino acid sequences the following settings can be used for “BLAST 2 Sequences”: program BLASTP, matrix BLOSUM62, open gap and 11 and 1 respectively, gap x_dropoff 50, expect 10,extension gap penalties word size 3, filter ON. - The present invention is based, at least in part, on the identification of genes that are regulated by BAFF. In the experiments conducted in connection with the invention, DNA microarray chips were used to compare gene expression profiles of splenic cells obtained from BAFF-deficient and wildtype mice which were treated with soluble BAFF and BAFF-R Fc fusion protein (BAFF-R:Fc), respectively. A number of BAFF-responsive genes were identified (see Table 2). Five of these genes were substantially unregulated in the BAFF-treated mice while being substantially downregulated in the BAFF-R:Fc-treated mice. The five genes are: NF-κB2, CD23, H2-Mβ2 (the beta chain of H2-DM), Fig-1, and OBF-1. Although the expression of cell surface CD23 and activation of NF-κB2 nave been previously reported to be regulated by BAFF, the transcriptional regulation of all five genes, as well as BAFF regulation of H2-Mβ2, Fig-1, and OBF-1 at the protein level, have not been reported previously.
- The invention provides methods and compositions for: monitoring the activity of a BAFF antagonist in a mammal; monitoring BAFF activity in a mammal; identifying a mammal to be treated with a BAFF antagonist; treating diseases and disorders and related uses.
- In one aspect, the invention provides a method for monitoring efficacy of a BAFF antagonist in a mammal. In some embodiments, the method includes the steps of administering the BAFF antagonist to the mammal and detecting one or more molecules selected from the group consisting of Fig-1 molecule, OBF-1 molecule, and H2-Mβ molecule in a biological sample of the treated mammal, wherein the level of expression, relative to a control of at least one of the defected molecules indicate efficacy of the BAFF antagonists in the mammal.
- In other embodiments, the methods includes the steps of administering the BAFF antagonist to the mammal and detecting at the transcriptional level one or both molecules selected from the group consisting of NF-κB2 molecule and CD23 molecule in a biological sample of the treated mammal, wherein the level of expression, relative to a control, of at least one of the detected molecules indicates efficacy of the BAFF antagonist in the mammal.
- In another aspect, the invention provides a method for monitoring BAFF activity in a mammal. In some embodiments, the method includes the step of detecting in a biological sample of the mammal one or more molecules selected from the group consisting of H2-Mβ molecule, Fig-1 molecule, OBF-1 molecule, wherein elevated expression, relative to a control, of at least one of the defected molecules indicates elevated BAFF activity in the mammal. In other embodiments, the method includes the step of detecting at the transcriptional level in a biological sample of the mammal one or both molecules selected from the group consisting of NF-κB2 molecule and CD23 molecule, wherein elevated expression, relative to a control, of at least one of the detected molecules indicates elevated BAFF activity in the mammal.
- In another embodiment the invention provides a method for monitoring efficacy of a BAFF antagonist in a mammal that includes the steps of:
- (a) administering the BAFF antagonist to the mammal and
- (b) detecting a change in expression level of one or more immunoglobulin charts expressed in the mammal and encoded by a subset of genes responsive to OBF-1. A decrease in the expression level following the administering of the BAFF antagonist indicates that the BAFF antagonist is effective.
- In another related embodiment, the invention provides a method of monitoring efficacy of a BAFF antagonist in a mammal comprising:
- (a) administering the BAFF antagonist to the mammal and
- (b) detecting a change in expression level of one or more immunoglobulin chains expressed in the mammal and encoded by a subset of genes non-responsive to OBF-1. An increase in said expression level following the administering of the BAFF antagonist indicates that the BAFF antagonist is effective.
- In the methods tor monitoring efficacy of BAFF antagonists involving detection of immunoglubin chains, the antibody chain whose expression level is being detected may be a light chain (e.g., a kappa light chain) and/or a heavy chain (e.g., of the IgG2a or IgG2b isotype). For instance, as shown in the Examples, me kappa chain encoded by a gene responsive to OBF-1 may be encoded by a Vκ gene selected from the group consisting of Vκ2, Vκ4/5, Vκ8, Vκ19/18, and Vκ21, in mouse. OBF-1-responsive genes in other species can be identified using routine methods. As with other methods of the invention, the change in the expression level of an immunoglobulin chain can be detected at the mRNA level or at the protein level. The expression levels can be detected using, e.g., fluorescent cytometry (FACS). In preferred embodiments, the expression levels are assessed using a biological sample derived from the blood of the mammal, however, other types of biological samples can be used.
- In yet another aspect, the invention provides a method of identifying a mammal to be treated with a BAFF antagonist. The method includes the steps of providing a sample from a mammal and detecting one or more molecules selected from she group consisting of Fig-1 molecule, OBF-1 molecule, and H2-Mβ molecule in a biological sample of the mammal, wherein elevated expression, relative to a control, of at least one of the detected molecules indicates that the mammal should be treated with the BAFF antagonist. In other embodiments, the method includes the steps of providing a biological sample from a mammal and detecting at the transcriptional level in a biological sample of the mammal one or both molecules selected from the group consisting of NF-κB2 molecule and CD23 molecule, wherein elevated expression, relative to a control, of at least one of the detected molecules indicates that the mammal should be treated with the BAFF antagonist.
- Each one of the above methods may further include detecting at the transcriptional and/or translational level(s) in the sample NF-κB2 molecule, CD23 molecule, and/or another BAFF- and/or BAFF-R-responsive molecule, e.g., as listed in Table 2. The methods may further comprise detecting BAFF molecule and/or BAFF-f molecule in the sample.
- A mammal could be, for example, a primate (e.g., a human), a rodent (e.g., a rat or a mouse), or a mammal of another species. In each one of the above methods, the mammal may be one that suffers from an immunological disorder (e.g., autoimmune disease including, but not limited to, rheumatoid arthritis, lupus, and Sjogren's disease) and/or a B cell disorder (e.g., a B cell lymphoma or leukemia including, but not limited to, non-Hodgkin's lymphoma, (NHL), chronic lymphocytic leukemia (CLL), acute lymphocytic leukemia (ALL), and follicular lymphoma (FL)). In some embodiments, a mammal is one that was heated with a BAFF antagonist, e.g., as described herein. In other embodiment, a mammal is evaluated to be treated with such an antagonist.
- A mammal “in need” of treatment can include, but are not limited, to, mammals that have immunologic disorders, mammals that have had immunologic disorders, mammals with symptoms of immunologic disorders and have elevated levels of any one of the molecules selected from the group consisting of BAFF molecule, NF-κB2 molecule, CD23 molecule, H2-Mβ molecule, Fig-1 molecule, and OBF-1 molecule.
- Examples of biological samples of a animal include synovial tissue and fluid (e.g., useful for rheumatoid arthritis), tissues (e.g., salivary gland and/or labial tissue (e.g., useful for Sjogren's disease), blood, plasma, peripheral blood monocytes (PBMC), biopsies, saliva, urine, cerebrospinal fluid, milk, excretions, secretions, swabs, fecal samples, aspirates, or imaging of a portion of a mammal, etc.
- Diagnostic/monitoring methods and kits for patients treated or to be treated for an immunologic disorder (e.g., autoimmune disease or B cell disorder) or for identifying patients treated or to be treated with a BAFF antagonist or a BAFF-R antagonist. In some embodiments, a kit for patients to be treated for an autoimmune disease or B cell disorder comprises reagents for defecting at the transcriptional and/or translational level(s) the one or more molecules selected from the group consisting of H2-Mβ molecule, Fig-1 molecule, and OBF-1 molecule. In related embodiments, a kit for patients to be treated for an autoimmune disease or B cell disorder comprises reagents for detecting at the transcriptional (and optionally, reagents for detecting at the translational level) one or both molecules selected from the group consisting of NF-κB2 molecule and CD23 molecule. The kits may include detection means, such oligonucleotides, antibodies, and/or other detection agents directed to H2-Mβ molecule, Fig-1 molecule, and/or OBF-1 molecule. Examples of such oligonucleotides include non-redundant subsequences of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:6, SEQ ID NO:7, and SEQ ID NO:8. Examples of antibodies are mentioned in the Examples section. Further, non-redundant subsequences derived from orthologues of H2-Mβ, Fig-1, and OBF-1, NF-κB2, or CD23 in other species may be used to probe from for the respective molecules in the same or different species. Kits this invention may include printed material having instructions for detecting one or molecule selected from the group consisting of H2-Mβ, Fig-1, OBF-1, or other molecules described herein or instructions reciting a method of this invention.
- Expression levels, at the transcriptional (RNA) or at the translational (protein) level, can be determined using conventional methods. Expression levels are usually scaled and/or normalized per total amount of RNA or protein in the sample, which is typically a housekeeping gene such actin or GAPDH. RNA expression or levels may be determined by, e.g., in situ hybridization, quantitative PCR (e.g., TaqMan™ PCR or RT-PCR), Northern blotting, cDNA or oligonucleotide-based microarrays or any other method for determining RNA expression or levels, e.g., as described in Sambrook et al. (eds.) Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, 1989), or as described in the Examples. Protein expression or levels may be determined, e.g., by using Western blotting, immunohistochemistry (IHC), ELISA, enzymatic activity assays, fluorescence-activated cell sorting (FACS), imaging techniques or any other method for determining protein expression or levels, e.g., as described in Current Protocols in Molecular Biology (Ausubel et al. (eds.) New York: John Wiley and Sons, 1998).
- Examples of comparative controls include, e.g., bodily fluid or tissue from normal patients, non-malignant tissue and pre-treatment or post-treatment samples. In one embodiment, BAFF polypeptide levels in sera or spinal fluid from mammals with immunologic disorders are compared to sera or epical fluid from normal mammals. In another embodiment, BAFF mRNA levels in neoplasia are compared to BAFF mRNA levels from normal human monocytes. In another embodiment, the H2-Mβ molecules, Fig-1 molecules, OBF-1 molecule or any other responsive molecule described herein are compared before and after treatment with the BAFF antagonist.
- In the case of defecting nucleic acids according to the methods of the invention, OBF-1 molecule may be as set out in SEQ ID NO:1 or SEQ ID NO:6, or a non-redundant subsequence of either sequence; H2-Mβ molecule may be as set out in SEQ ID NO:2 (H2-Mβ2) or SEQ ID NO:7, or a non-redundant subsequence of either sequence; Fig-1 molecule may be as set out in SEQ ID NO:3 or SEQ ID NO:8, or a non-redundant subsequence of either sequence; OBF-1 molecule may be as set out in SEQ ID NO:11 or SEQ ID NO:16; NF-κB molecule may be as set out in SEQ ID NO:4 or SEQ ID NO:9, or a non-redundant subsequence of either sequence; CD23 molecule may be as set out in SEQ ID NO:5 or SEQ ID NO:10, or a non-redundant subsequence of either sequence.
- In the case of detecting proteins according to the methods of the invention, OBF-1 molecule may be as set out in SEQ ID NO:11 or 16; H2-Mβ molecule be set out in SEQ ID NO:12 (H2-Mβ2) or SEQ ID NO:17, Fig-1 molecule may be as set out in SEQ ID NO:13 or SEQ ID NO:18; NF-κB molecule may be as set out in SEQ ID NO:14 or SEQ ID NO:19; CD23 molecule may be as set out in SEQ ID NO:15 or SEQ ID NO:20.
- The methods of the invention include detecting of sequences substantially identical to sequences specified in Table 1, including othrologues from other species. Such sequences can be found in publicly available databases such as GenBank™.
- BAFF antagonists used in the methods of the present invention, include (but are not limited to) antibodies directed against BAFF, antibodies directed against one or more isoforms of at least one BAFF receptor, soluble forms of BAFF receptors, and dominant negative forms of soluble BAFF (e.g., as described by Steed et al. (2003) Science, 801; 1895-1898 and U.S. Patent Appln. Pub. 2004/0170602).
- BAFF receptors include BAFF-R, BCMA, and TACI. In some embodiments, the BAFF antagonist is BAFF-specific (e.g., BAFF-R), while in certain other embodiments the BAFF antagonist may also bind TNF family ligands other than BAFF (e.g., BCMA and TACI which also bind to APRIL). In some embodiments, the BAFF antagonist is an antibody that blocks BAFF binding to its receptor. Antibodies directed to BAFF and to BAFF receptors have been previously described. Producing such antibodies is well within the skill of a person skilled in the art (see, e.g., Antibody Engineering, ed. Borrebaeck, 2nd ed., Oxford University Press, 1995). Examples of antibodies for use in the methods of the invention include those described in PCT Publication WO 99/12964 and U.S. patent application Ser. No. 00/911,777), the anti-BAFF antibody LymphoStat-B™ (Human Genome Sciences, Rockville, Md.), the anti-BAFF-R antibody clones 2.1 and 9.1 (WO 02/24909 at p. 96) and human and humanized versions thereof. In further embodiments, the antibody of the invention may specifically bind, besides BAFF or BAFF-R, another protein that is substantially identical to BAFF or BAFF-R, respectively. In yet further embodiments, antibodies are directed against BCMA and/or TACI. Also contemplated for use in humans are humanized forms and derivatives of nonhuman antibodies derived from non-human species, e.g., mouse.
- Soluble forms of BAFF receptor fusion proteins may comprise a BAFF-binding domain of BAFF-R, BCMA, and/or TACI. A BAFF-binding domain is located within the extracellular domain (ECD), i.e., the portion of the protein normally present on the exterior of a cell expressing the protein. In some embodiments, the soluble BAFF-R is a disulfide-linked peptide having the sequence CHWDLLRHWVC (SEQ ID NO:25) (Kayagaki et al. (2002) Immunity, 10:515-524), or a polypeptide comprising this sequence. In yet other embodiments, the soluble BAFF-R is a polypeptide comprising amino acids 27 to 32 or 18 to 43 of SEQ ID NO:21.
- In certain embodiments, a soluble form of a BAFF receptor comprises a BAFF-binding domain of a BAFF receptor fused to a constant region of an immunoglobulin, i.e., as in BAFF-R-Fc. In some embodiments, BAFF-R-Fc comprises
residues 3 to 73 of SEQ ID NO:21 fused to the Fc portion of IgG. In illustrative embodiments, BAFF-R-Fc comprises SEQ ID NO:26 (human) or SEQ ID NO:24 (murine). In some embodiments, BAFF-R is a human BAFF-R having a C-terminal deletion starting from amino acid 51 of SEQ ID NO:21, which results in an altered O-linked glycosylation pattern (e.g., ΔBAFF-R described in U.S. Patent Application No. 60/458,707). In some embodiments, soluble BAFF-R comprises ΔBAFF-R which lacks at least the sequence of SEQ ID NO:6 (corresponding to amino adds 51-57 of SEQ ID NO:21). - The BAFF-binding domain of BAFF-R comprises amino acids (aa) 8 to aa 50,
aa 13 to aa 50, oraa 13 to aa 43, oraa 18 to aa 43 of SEQ ID NO:21. In certain embodiments, the BAFF-binding domain is identical or substantially identical toaa 2 to aa 63 of SEQ ID NO:21 or toaa 2 to aa 62 of SEQ ID NO:23, including sequences that have been truncated or mutated so long as such sequences retain the ability to bind BAFF. In illustrative embodiments, BAFF-R is a murine sequence as set out fromaa 2 to aa 66 of SEQ ID NO:23. In other embodiments, BAFF-R comprises at least 20, 25, 30, 35, 40, 45, or 50 contiguous amino acids of SEQ ID NO:21. Additionally, in some embodiments, the BAFF-binding domain of BAFF-R may be mutated as described in WO 02/24909. For example, certain amino acids in the native BAFF-R sequence can substituted with corresponding amino acids from a BAFF-R polypeptide of another species, e.g., the BAFF-R binding domain may comprise the one or more of the following mutations: V21N, P22Q, A23T, L28P, L28A, and L28S (the numbering is per SEQ ID NO:21). - In certain embodiments, the compositions used in the methods of the invention comprise BCMA derivatives such as soluble forms of BCMA or antibodies against BCMA or against BCMA ligands (e.g., APRIL and/or BAFF). For example, BCMA is described in Laabi el al. (1992) EMBO J., 11(11)3897-3904; U.S. Pat. No. 6,475,978; and Accession No. S43486).
- In some embodiments, soluble forms of BCMA used in the methods of the invention comprise (a) a first amino acid sequence derived from the ligand-binding domain of BCMA and (b) a second amino acid sequence derived from the constant region of an immunoglobulin. The first amino acid sequence is derived from all or a portion of the BCMA extracellular domain and is capable of binding a BCMA ligand specifically. The amino acid sequence of a ligand-binding domain of human BCMA is set out in SEQ ID NO:27
amino acid 1 to about amino acid 50. In a particular embodiment, the extracellular domain comprises amino acids 8-41 of SEQ ID NO:27. - In certain embodiments, the compositions used in the methods of the invention comprise TACI derivatives such as soluble forms of TACI or antibodies against TACI or against TACI ligands (e.g., APRIL and/or BAFF). For example, TACI is described in von Bulow et al. (1997) Science, 278:108-141; Gross et al. (2000) Nature, 404:995-999; Marsters et al. (2000) Curr. Biol., 10:785-788; and Yan et al. (2000) Nature Immunol., 1:37-41; U.S. Pat. No. 6,316,222; and Accession No. O14836.
- In some embodiments, soluble forms of TACI used in the methods of the invention comprise (a) a first amino acid sequence derived from the ligand-binding sequence of TACI and (b) a second amino acid sequence derived from the constant region of an immunoglobulin. The first amino acid sequence is derived from all or a portion of the TACI extracellular domain or a ligand-binding variant of TACI and is capable of binding a TACI ligand specifically. An example of a ligand-binding domain of human TACI is set out in SEQ ID NO:28
amino acid 1 to about amino acid 166. In a particular embodiment, an extracellular sequence that can bind a TACI ligand is amino acids 1-100 of SEQ ID NO:28. - In certain embodiments, the constant region of an immunoglobulin comprises any one of
C H1,C H2, orC H3 constant regions, or the entire Fc portion (that includesC H2, or CH3), with or without a hinge region. In some embodiments, the second amino acid sequence is derived from the Fc portion of an IgG. In related embodiments, the Fc portion is derived from IgG1, IgG4, or another IgG isotype. In illustrative embodiments, the constant region of an immunoglobulin comprises a sequence from aa 95 to aa 321 of SEQ ID NO:23, or aa 88 to aa 316 of SEQ ID NO:24. The second amino acid sequence may comprise the Fc portion of human IgG1, wherein the Fc is modified to minimize the effector function. Such modifications include changing specific amino acid residues that might alter an effector function such as Fc receptor binding (Lund et al. (1991) J. Immun., 147:2657-2662 and Morgan et al. (1995) Immunology, 88:319-324), or changing the species from which the constant region is derived. Immunoglobulins may have mutations in theC H2 region of the heavy chain that reduce effector function, i.e., Fc receptor binding and complement activation. For example, immunoglobulins may have mutations such as those described in U.S. Pat. Nos. 5,624,821 and 5,648,260. In the IgG1 or IgG2 heavy chain, for example, such mutations may be made at amino acid residues corresponding to amino acids 234 and 237 in the full-length sequence of IgG1 or IgG2. Antibodies and immunoglobulin-receptor fusion proteins may also have mutations that stabilize the disulfide bond between the two heavy chains of an immunoglobulin, such as mutations in the hinge region of IgG4, as disclosed in Angal el at. (1993) Mol. Immunol., 30:105-108. - In certain embodiments, a BAFF-binding domain is fused at the C-terminus or the N-terminus, with or without a linker sequence, to the C-terminus or the N-terminus of the constant region of an immunoglobulin. The exact length and sequence of the linker and its orientation relative to the linked sequences may vary. The linker may, for example, comprise one or more Gly-Ser. The linker may be 2, 10, 20, 30, or more amino acid long and is selected based on properties desired such as solubility, length and steric separation, immunogenicity, etc. It will be understood by one of ordinary skill in the art that certain amino acids in a sequence of any protein may be substituted for other amino adds without adversely affecting the activity of the protein. It is thus contemplated that various changes may be made in the amino acid sequences of BAFF receptor of the invention, or DNA sequences encoding therefore, as provided, without appreciable loss of their biological activity or utility.
- The use of derivatives and analogs of BAFF receptors are also within the scope of the present invention. The derivatives or analogs should be functionally active, i.e., capable of exhibiting one or more activities associated with a ligand-binding domain of the wild-type BAFF-R. Derivatives or analogs that retain this binding ability, or inhibit biological activity of BAFF can be produced and tested by procedures known in the art and/or as described in the Examples. Methods of producing such derivatives and analogs include recombinant and synthetic methods (see, e.g., Maniatis (1990) Molecular Cloning, A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., and Bodansky et al. (1995) The Practice of Peptide Syntheses, 2nd ed., Spring Verlag, Berlin, Germany).
- The following examples provide illustrative embodiments of the invention. One of skill in the art will recognize the numerous modifications and variations that may be performed without altering the spirit or scope of the present invention. Such modifications and variations are encompassed within the scope of the invention. The examples do not in any way limit the invention.
- All studies were performed following guidelines of the Biogen Idec Institutional Animal Care and Use Committee (IACUC) with 8-18 week-old mice housed under specific pathogen free conditions. A TACI-targeting construct was derived from bacterial artificial chromosome containing mouse 129SvJ genomic DMA (Genome Systems, St. Louis, Mo.). Bacterial recombinational cloning was used to insert a tailless human CD2 reporter at the initiating ATG, and a loxP flanked neomycin selection marker. The final construct lacks the first 578 nucleotides of genomic DNA encoding the first 90 residues of TACI. This construct was used to target the TACI locus of E14Tg2a embryonic stem cells, and correctly targeted cells were injected info C57BL/6 (Taconic, Germantown, N.Y.) blastocysts to generate chimeric mice. Germline transmission of the targeted allele was achieved by crossing chimeras to C57BL/6 mice. Generation of BAFF-, BCMA-, and BAFF-R-deficient mice was described previously (Schiemann (2001) Science, 293:2111-2114; Shulga-Morskaya et al. (2004) J. Immunol., 173:2331-2341). Mice deficient in all three BAFF receptors were obtained by crossing single mutant mice. Mutant mice and corresponding controls were of a C57BL/6-129 mixed genetic background, BAFF-deficient mice were backcrossed to C57BL/6 mice for 6 generations.
- Recombinant soluble human BAFF and BAFF-R:Fc, each cross-reacting to murine BAFF-R or murine BAFF, respectively, were purified as previously described (Karpusas (2002) J. Mol. Biol., 315; 1145-1154; and Pelletier (2003) J. Biol. Chem., 278:33127-33133). BAFF-deficient mice were analyzed 6, 12, or 48 hours post i.p. injection of 50 μg BAFF (0.5 mg/ml). Wildtype mice were analyzed 3 or 7 days after i.p. injection of 200 μg BAFF-R:Fc (2 mg/ml). PBS or normal human IgG (Jackson Immunoresearch) were used as controls.
- Total RNA prepared from spleen homogenized in TRIzol™ reagent (Invitrogen Life Technologies, Carlsbad, Calif.) was further purified using an RNeasy™ Mini column (QIAGEN, Valencia, Calif.) according to the manufacturer's protocol. Sample labeling, hybridization, and staining were carried out according to the Eukaryotic Target Preparation protocol in the Affymetrix™ Technical Manual (701021 rev 1) for GeneChip™ Expression Analysis (Affymetrix, Santa Clara, Calif). In brief, 5 μg of purified total RNA was used in a 20 μL first strand reaction with 200 U Superscript™ II (Invitrogen, Carlsbad, Calif.) and 0.5 μg (dT)-T7 primer (SEQ ID NO:29) first strand buffer (Invitrogen) at 42° C. for 1 hour. Second strand synthesis was carried out by the addition of 40 U E. coli DNA polymerase, 2 U E. coli RNase H, 10 U E. coli DNA ligase in second strand buffer (Invitrogen) followed by incubation at 16° C. for 2 hrs. The second strand synthesis reaction was purified using the GeneChip™ Sample Cleanup Module according to the manufacturer's protocol. The purified cDNA was amplified using a BioArray™ high yield RNA transcription labeling kit (Enzo Life Sciences, Farmingdale, N.Y.) according to the manufacturers protocol to produce 70-120 μg of biotin-labeled cRNA (complementary RNA). Mouse Genome U74Av2 GeneChip™ probe arrays were pre-hybridized in a GeneChip™ Hybridization Oven 640 (Affymetrix) according to the manufacturer's protocol. 15 μg of labeled cRNA were fragmented in 30
μL fragmentation buffer 100 mM KOAc, 30 mM MgOAc at 95° C. for 35 min. The fragmented labeled cRNA was resuspended in 300μL 1× hybridization buffer containing 100 mM MES, 1 M [Na+], 20 mM EDTA, 0.01% Tween™ 20, 0.5 mg/mL acetylated BSA, 0.1 mg/mL herring sperm DNA, control oligo B2, and control transcripts bioB 1.5 pM,bioC 5 pM, bioD 25 pM, andcre 100 pM, and hybridized to GeneChip™ probe arrays according to the manufacturer's protocol (Affymetrix). The hybridized GeneChip™ Microarrays were washed and stained using streptavidin-phycoerythrin (Molecular Probes, Eugene, Oreg.) and amplified with biotinylated anti-streptavidin antibody (Vector Laboratories, Burlingame, Calif.; Sigma, St. Louis, Mo.) on GeneChip™ Fluidics Station 400 (Affymetrix) using an antibody amplification protocol. The GeneChip™ probe arrays were scanned using GeneArray™ Scanner (Hewlett Packard, Corvallis, Oreg.). BAFF-regulated gene expression patterns were analyzed using the Resolver™ data analysis tools. After combining the biological replicates (n=3 for each treatment group), fold changes in gene expression between treated and untreated groups were calculated using the ANOVA ratio analysis in Resolver™. A statistically significant difference in gene expression between two different groups was defined by a p value of less than 0.05. Genes with an absolute fold change of 1.5 or higher were selected. All genes were then filtered through a presence/absence test (p<0.1) to ensure they were detectable in as least one of the two sample groups. - Spleens were minced through a nylon mesh (Cell Strainer; BD Falcon, Bedford, Mass.) to obtain single cell suspensions in Dulbecco's modified Eagle's medium (DMEM), 5% fetal calf serum (FCS), and 2 mM L-glutamine. In some experiments, erythrocytes were lysed by incubating them in a lysis buffer (140 mM NH4Cl, 17 mM Tris-HCl, pH 7.65) for 3 min on ice. Cells were surface-stained with combinations of FITC, PE, Cy-Chrome (Cyc), peridinine chlorophyll protein (PerCP), and/or allophycocyanin (APC)-conjugated monoclonal antibodies for 15 min on ice. Staining with biotinylated monoclonal antibodies was followed by a secondary staining with streptavidin-PerCP (BD Pharmingen, San Diego, Calif.). Stained cells were acquired on a FACSCalibur™ (BD Pharmingen) and data were analyzed using FlowJo™ software (TreeStar, Ashland, Oreg.).
- For intracellular H2-DM detection, following the staining with labeled antibodies to cell surface antigens, cells were washed in PBS and fixed in a BD Cytofix/Cytoperm solution (BD Pharmingen) for 20 min at room temperature (RT). After washing with BD Perm/Wash buffer (BD Pharmingen), cells were stained for 20 min at RT with an antibody to mouse H2-DM (clone 2E5A or isotype control rat IgG1 antibody; BD Pharmingen) in BD Perm/Wash Buffer (BD Pharmingen), washed, and then stained with anti-rat IgG1 (BD Pharmingen). Monoclonal antibodies to MHCII, B220, IgG2 were purchased from BD Pharmingen.
- B cells were purified from splenic cell suspensions by negative selection using anti-CD43 magnetic beads (MACS; Miltenyi Biotec, Auburn, Calif.) according to the manufacturers instructions. B cell purity ranged from −70% for BAFF-deficient mice to ˜97% for wildtype mice.
- Protein extracts were prepared from purified splenic B cells using the Cytoplasmic Extraction Kit (Pierce, Rockport, Ill.) following the manufacturer's protocol. A total of 10 μg of extracted protein was resolved in each lane of a 10-20% DS-PAGE gel under reducing conditions, blotted onto a nitrocellulose membrane, and probed with rabbit anti-OBF-1 polyclonal antibodies (sc-955, Santa Cruz Biotechnology, Santa Cruz, Calif.), followed by goat-anti-rabbit antibodies conjugated with horse radish peroxidase and developed using SuperSignal West Pico™ Luminol/Enhancer Solution (Pierce). The chemiluminescent images were collected by Fujifilm LAS 1000 and processed using software Fujifilm ImageGuage™ 4.0.
- Total splenic DNA was used as a template in a two-round PCR approach as previously described (Novobrantseva et al., (1999) J. Exp. Med., 189:75-88). This approach amplifies the rearranged DNA and, thus, allows analysis of the rearranged Vκ genes in B Cells. Briefly, the first round of PCR was performed with a mixture of degenerate primers VK1, VK2 recognizing most Vκ genes at the
framework region 3 and JK5E (Novobrantseva, supra) for 30 cycles of 2 min at 94° C., 1 min at 54° C. and 1.5 min at 72° C. The second round was performed using 1 μl of the first round PCR product as a template in a semi-nested approach with VR1, VK2, and JK2 primers (Novobrantseva, supra) for 30 cycles of 2 min at 95° C., 1 min at 60° C., and 1.5 min at 72° C. PCR products were cloned into a plasmic vector and sequenced from a standard vector specific primer. Vκ gene sequences were analyzed for Vκ gene family usage using the DNAPLOT web based program available at <http://www.dnapolot.de>. Only productive VκJκ joints were analyzed. - In order to detect changes in gene expression triggered by BAFF or BAFF-R:Fc in pre-existing B cell population rather than in newly generated populations, it was first determined at what time points BAFF or BAFF-R:Fc treatment does not yet affect total splenic B cell counts. Twenty four hours following the administration of BAFF to BAFF-deficient mice, the number of spleen cells increased by approximately 20%. Thus, spleens were harvested at 8 and 12 hours following treatment when no change in the number of spleen cells was yet detected. BAFF-deficient mice treated with PBS were used as controls. Treatment of wildtype mice with BAFF-R:Fc led to a 40% reduction in B cells number at 3 days, while at 2 days, there was less than a 10% reduction (data not shown). Thus, transcripts were analyzed 2 days following BAFF-R:Fc treatment. Wildtype mice treated with normal human IgG were used as controls.
- Using the Affymetrix 12k GeneChip™ Microarray, 65 genes were found to be transcriptionally regulated with a minimum of a 1.5-fold change and p≦0.05 compared to the control samples (
FIG. 1 and Table 2). Among these genes, 14 were upregulated at 6 hours following BAFF treatment; 32 were upregulated at 12 hours after BAFF treatment; 35 were then downregulated 2 days after BAFF-R:Fc treatment. Among the genes upregulated at 6 hours after BAFF treatment, 7 remained up-regulated at 12 hours after the treatment (FIG. 1 and Table 2). Furthermore, at the 12-hour time point, 5 of the 7 genes were downregulated inwildtype mice 2 days following treatment with BAFF-R:Fc (Table 2). B cells have been previously reported to express all of these 5 genes, with NF-κB2 and CD23 reported to be regulated by BAFF stimulation (Claudio et al. (2002) Nat. Immunol., 3: 958-965; Gorelik et al. (2004) J. Immunol., 172:762-766; Kayagaki et al. (2002) Immunity, 17:515-524; and Mackay et al. (1999) J. Exp. Med., 190:1697-1710). H2-Mβ, Fig-1, and OBF-1, on the other hand, have not been previously reported as responsive to BAFF. - There was no detectable increase in transcription levels of anti-apoptotic molecules bcl-2, bcl-xL, blk, and A1 previously implicated as mediators of the pro-survival effect of BAFF (Amanna et al. (2001) J. Immunol., 167:6069-6072; Do et al. (2000) J. Exp. Med., 192:953-964; Hatada et al. (2003) J. Immunol., 171: 761-768). Other studies (Lesley et al. (2004) Immunity, 20: 441-453; Zamegar et el. (2004) Proc. Natl. Acad. Sci. USA, 101:8108-8113) also did not detect any changes in these genes after BAFF treatment suggesting that either these genes do not mediate BAFFs survival effects or that they are regulated at a post-transcriptional level. Alternatively, these results can be explained by differences in experimental systems.
- Mice deficient in NF-κB2 molecule are phenotypically similar to BAFF-deficient animals. Specifically, both types of mice exhibit a strong reduction in the number of mature B-cells demonstrating that NF-kκB2 activation by BAFF plays a critical sale in B cell survival. Nonetheless, more careful examination showed that as compared to wild type mice, BAFF-deficient mice and NF-κB2-deficient mice have about 20% and 50% of total B cell numbers, respectively, indicating that some of BAFF-mediated pro-survival signal is independent of NF-κB2. Furthermore, while BAFF-deficient mice display more than 10-fold reduction in basal levels of immunoglobulin. NF-κB2-deficient mice have normal serum Ig levels (Caamano et al. (1998) J. Exp. Med., 187:185-196; Franzoso et al. (1998) J. Exp. Med., 7:47-159; and Schiemann et al. (2001) Science, 293:2111-2114). Similarly, the ability to mount an antigen-specific antibody response was severely compromised in BAFF-deficient, but not NF-κB2-deficient, mice (Caamano, supra; Franzoso, supra; and Schiemann, supra) indicating that BAFF mediates its effect on antibody production through a NF-κB2 independently pathway.
- It has been reported that BAFF BAFF activation of NF-κB2 requires both BAFF-R and NIK, but not the NF-κB essential modulator (NEMO) (Claudio et al. (2002) Nat. Immunol., 3:958-965; and Kayagaki et al. (2002) Immunity, 17:515-524). This non-canonical NF-κB2 pathway is required for B cell survival and maturation and its activation by BAFF is mediated through BAFF-R, but not TACI or BCMA (Claudio, supra). Table 2 shows that 6 hours after BAFF treatment the transcription of NF-κB2 was unregulated 1.74-fold and remained steadily upregulated (1.62-fold) at 12 hours after the treatment. Conversely, blocking BAFF by BAFF-R:Fc resulted in NF-κB2 being downregulated 1.82-fold at 2 days (Table 2). Thus, transcription of NF-κB2 is closely regulated by BAFF. Together with previous reports (Claudio, supra; and Kayagaki, supra), the transcript profiling results shown in Table 2 indicates that BAFF regulates not only the post-translational processing of p100 to p52 but also the de novo synthesis of the p100 transcript.
- To determine if transcriptional angulation of H2-CD23 surface expression on B cells from both wildtype and BAFF-deficient mice and that BAFF-R:Fc treatment promptly downregulated its expression shortly after BAFF-R:Fc treatment when no B cell loss was detected (Gorelik et al. (2004) J. Immunol. 172:762-766). However, the response time-line for this gene remained unknown. It is demonstrated here that CD23 transcription is induced as early as 6 hours after BAFF treatment and reduced 2 days after BAFF-R:Fc treatment (Table 2). Therefore, the data suggests that BAFF directly regulates CD23, on both mRNA and protein levels.
- To determine if transcriptional regulation of H2-Mβ induced by BAFF leads to changes in the expression of H2-DM protein, splenic B cells were isolated from wildtype mice at 2 or 7 days following treatment with BAFF-R:Fc, or at 2 days from BAFF-deficient mice treated with soluble BAFF, and stained to detect the intracellular level of H2-DM.
FIG. 2A shows that BAFF-R:Fc treatment led to an approximately 15% decrease in H2-DM expression at 2 days and a 30% decrease at 7 days. Conversely, BAFF-treatment resulted in a 70% increase in H2-DM expression. Interestingly, level of H2-DM expression in B cells from BAFF-deficient mice was much lower than in wildtype mice (FIG. 2A ) suggesting that H2-DM expression is tightly regulated by BAFF-mediated signals. Although it is not clear if the regulation of H2-DM directly impacts cell surface MHC class II expression levels, a previous report showed that an elevated systemic level of BAFF can lead to increased MHC Class II expression on the surface of B cells (Mackay et al. (1999) J. Exp. Med., 190:1697-1710). Consistent with this observation, the data presented here shows that splenic B cells from wildtype mice treated with BAFF-R:Fc have reduced cell surface MHC Class II expression levels (FIG. 2B ). Therefore, BAFF upregulates intracellular H2-DM in addition to cell surface MHC Class II molecules. -
TABLE 2 Primary BAFF BAFF Sequence Name Sequence Description (6 hrs) (12 hrs) BAFF-R:Fc 96214 mRNA for erythroid differentiation regulator, partial + 100362_f_at germline immunoglobulin V(H)II gene H8 + 100376_f_at clone BHS2.19 immunoglobulin heavy chain + variable region precursor gene, partial cds 100682_f_at immunoglobulin heavy and light chain variable + region mRNA, complete cds 100910_at surfeit locus surfeit 3 gene,exon 8, andsurfeit 1+ and 2 genes, complete cds 102154_f_at Ig active kappa-chain V-region (V139-J1) mRNA + from anti-DNP specific hybridoma TF5-139 103545_at 10 days embryo whole body cDNA, RIKEN full- + length enriched library, clone: 2610019E17 product: unknown EST, full insert sequence 103556_at angiopoietin-like 2 104078_g_at ESTs, weakly similar to autoimmunogenic + cancer/testis antigen NY-ESO-1 [H. sapiens] 160799_at Gag . . . env [provirus] [Mus musculus, MrV, Evi-2, + murine AIDS virus-related provirus, genomic mutant, 3 genes, 4765 nt] 93657_at Ets transcription factor Spi-B, partial cds + 93904_f_at clone N1.1.b immunogiobulin heavy chain VDJ + region gene, partial cds 93927_f_at clone BPS3.23 germline Ig variable region heavy + chain precursor gene, partial cds. 94290_at RIKEN cDNA 110012J22 gene + 95313_at ESTs, highly similiar to thrr_mouse thrombin + receptor precursor 96214_at mRNA for erythroid differentation regulator, partial + 96538_at ESTs, moderately similar to y050_human + hypothetical protein kiaa0050 [H. sapiens] 96973_f_at germline immunoglobulin V(H)II gene H18 + 97008_f_at clone CPS1.13 germline Ig variable region heavy + chain precursor pseudogene, partial sequence 97412_at RIKEN cDNA 3300001G02 gene + 97563_t_at immunoglobulin heavy chain gene, CDR3 region, + partial cds 97574_f_at clone BPS3.19 immunoglobulin heavy chain + variable region precursor, gene, partial cds 97576_f_at clone BPS5.16 immunoglobulin heavy chain + variable region precursor, gene, partial cds 99159_at ESTs, highly similar to cypm_rat peptidyl-prolyl cis- + trans isomerase, mitochondrsial precursor [R. norvegicus] Araf raf-related oncogene + Bir1 Burkitt lymphoma receptor 1 + + C4 complement component 4 (within H-2S) + Cd81 CD 81 antigen + Cr2 complement receptor 2 + Csng casein gamma + Cyp1b1 cytochrome P450, 1b1, benzanthracene inducible + D12Wsu28e DNA segment, Chr 12, Wayne State University 28, + expressed D14E1d813e DNA segment, Chr 14, ERATO Doi 813, expressed + + D17H6S56E-5 DNA segment, Chr 17, human D6S56E 5 + D1Lub1 DNA segment Chr 1, Lubeck 1 + D2Ertd198e DNA segment, Chr 2, ERATO Doi 198, expressed + envelope Mouse endogenous murine leukemia virus modified + protein polytropic provirus DNA, complex cds Fcer2a Fc receptor, IgE, low affinity II, alpha polypeptide + + + Fig1 interleukin-four induced gene 1 + + + G6pd2 glucose-6-phosphate dehydrogenase 2 + gag protein Gag . . . env (provirus) [Mus musculus, MrV, Evi-2, + murine AIDS virus-related provirus, genomic mutant, 3 genes, 4765 nt] Gpx3 glutathione peroxidase 3 + Grpel2 GrpE-like 2, mitochondrial + H2-DMb2 histocompatibility 2, class II, locus Mb2 + + + Hey1 hairy/enhancer-of-split related with VRPW motif 1 + ier3 Immediate early response 3 + IgG Mus domesticus IgG variable region + Igh immunoglobulin heavy chain V-DSP2.7-JH2 region : + (Igh) gene, partial cds Igh-3 immunoglobulin heavy chain 3 (serum IgG2b) + + IgK-V20 immunoglobulin kappa chain variable 20 (V20 + + family) Igk-V28 immunoglobulin kappa chain variable 28 (V28) + LOC56304 recombinant antineuraminidase single chain Ig VH + and VL domains LOC59032 hypothetical protein from clone MNCb-1932, similar + to Homo sapiens FLJ20644 Ly6d lymphocyte antigen 6 complex, locus D + + Lyl1 lymphoblastomic leukemia + MDABG2-4 mRNA for single chain antibody ScFv, complete cds + Nfkb2 nuclear factor of kappa light polypeptide gene + + + enhancer in B-cells 2, p49/p100 Pcdh13 protocadherin 13 + Pou2af1 POU domain, class 2, associating factor 1 + + + Rnac-pending RNA cyclase homolog + Tm4sf2 transmembrane 4 superfamily member 2 + + Tnfrsf5 TNF receptor superfamily member 5 + + VH gene immunoglobulin heavy chain variable gene from a + product transferrin activated hybridoma cell line. Vh186.2/Jh2 clone X1AC1701 immunoglobulin heavy chain + variable region (Vh186.2/Jh2) mRNA, partial cds Vpreb3 pre-B lymphocyte gene 3+ Zfp46 zinc finger protein 46 + - To investigate if BAFF-induced transcription of OBF-1 leads to an increase of this co-activator at the protein level, Western blotting was performed on protein extracts from splenic B cells isolated from BAFF-deficient mice treated with soluble BAFF (24 post-treatment) or wildtype mice treated with BAFF-R:Fc (3 days post-treatment). OBF-1 was not detected in B cells from BAFF-deficient mice and only became detectable after BAFF treatment (
FIG. 3A ,lanes 1 and 2). Conversely, OBF-1 was readily detected in B cells of wildtype mice and was reduced after BAFF-R:Fc treatment (FIG. 3A ,lanes 3 and 4). The data snows that BAFF regulates the expression of OBF-1 at both transcriptional and translational levels. - OBF-1-deficient mice exhibit a drastically reduced level of class switched immunoglobulins (Ig) compared to wildtype mice Casellas et al. (2002) Cell, 110:575-585; Nielsen (1996) Eur. J. Immunol. 26:3214-3218; and Schubart et al. (2001) Nat. Immunol., 2:69-74). Similar deficiency in class switched Igs expression was also observed in BAFF-deficient mice (Schiemann et al. (2001) Science, 293; 2111-2114). The hypothesis was that, by inducing OBF-1 expression, BAFF stimulation of B cells likely leads to elevated levels of class switched Ig. Consistent with this hypothesis, the gene profiling results showed that 16 out of 32 genes up-regulated at 12 hours after BAFF-treatment were IgH genes (Table 2). The increased level of IgH transcripts was not yet apparent at 6 hours after BAFF-treatment when increased expression of OBF-1 was observed. This is consistent with the up-regulation of Ig genes being secondary to up-regulation of OBF-1 induced by BAFF.
- In order to determine the role of BAFF in the expression of class switched Igs, we examined the expression of IgG2a/b on B cells after BAFF-R:Fc treatment. As judged from the MFI values, BAFF neutralization for as short as 2 days reduced B cell surface IgG2a/b expression by 1.7-fold (
FIG. 4 ) with no apparent loss of B cells in spleen. BAFF-R:Fc treatment for 7 days resulted in a 7-fold reduction in the total number of IgG2a/b+ B cells (FIG. 4 and data not shown) without further reduction in the surface levels of IgG2a/b on these cells. Thus, BAFF plays an important role in maintenance of normal levels of class switched Igs expression as well as survival of class switched Ig-bearing B cells. - Since OBF-1 also regulates expression of a selected subset of Vκ genes (Casellas et al. (2002) Cell, 110:575-585), we next analyzed changes in Vκ gene repertoires in wildtype mice treated with BAFF-R:Fc or in BAFF-deficient mice treated with BAFF. Here a longer treatment regime than that used in the transcript profiling study was employed as any change in Vκ usage may be secondary to the OBF-1 modulation that occurred earlier. Treatment of wildtype mice with BAFF-R:Fc for 7 days led to the reduced usage of Vκ2, Vκ4/5, Vκ8, and Vκ21 genes (
FIG. 5A ), and treatment of BAFF-deficient mice with BAFF for 2 days led to the increased usage of Vκ2, Vκ4/5, Vκ8, Vκ19/28 and Vκ24/25 (FIG. 5B ). Such non-identical, yet similar, changes in Vκ repertoire are likely due to the fact that BAFF blockade and supplementation will have different effects on different B cell populations. Specifically, BAFF blockade in wildtype mice results in loss of the large mature B cell pool, while BAFF BAFF supplementation to BAFF-deficient mice leads to a marked increase in the generation of B cell populations spanning all developmental stages, including B cells carrying Vκ chains that still have not undergone positive or negative selection. Furthermore, changes in the Vκ repertoire caused by BAFF manipulations are similar to those reported for OBF deficient mice (Casellas, supra). The fact that BAFF and OBF-1 have similar effects on the Vκ repertoire strongly suggests that BAFF controls Vκ repertoire selection through regulation of OBF-1 expression. - The embodiments within the specification provide an illustration of embodiments of the invention and should not be construed to limit the scope of the invention. The skilled artisan readily recognizes that many other embodiments are encompassed by the invention. All publications, patents, and sequences from public sequences databases (referred to by their accession numbers) cited in this disclosure are incorporated by reference in their entirety. To the extent the material incorporated by reference contradicts or is inconsistent with this specification, the specification will supersede any such material. The citation of any references herein is not an admission that such references are prior art to the present invention.
Claims (23)
1-2. (canceled)
3. A method for monitoring efficacy of a BAFF antagonist in a mammal comprising the steps of administering the BAFF antagonist to the mammal and detecting at the transcriptional and/or translational level one or both molecules selected from the group consisting of NF-κB2 molecule and CD23 molecule in a biological sample of the treated mammal, wherein the level of expression, relative to a control, of at least one of the detected molecules indicates efficacy of the BAFF antagonist in the mammal.
4. The method of claim 3 , further comprising the step of detecting at the transcriptional and/or translational level(s) one or more molecules selected from the group consisting of Fig-1 molecule, OBF-1 molecule, and H2-Mβ molecule in a biological sample of the treated mammal, wherein the level of expression, relative to a control, of at least one of the detected molecules indicates efficacy of the BAFF antagonist in the mammal.
5. A method for monitoring BAFF activity in a mammal, comprising the step of detecting at the transcriptional and/or translational level(s) in a biological sample of the mammal one or more molecules selected from the group consisting of H2-Mβ molecule, Fig-1 molecule, OBF-1 molecule, wherein elevated expression, relative to a control, of at least one of the detected molecules indicates elevated BAFF activity.
6. The method according to claim 5 , wherein the method further comprises the step of detecting at the transcriptional and/or translational level(s) one or more molecules selected from the group consisting of NF-κB2 molecule and CD23 molecule in a biological sample of the mammal.
7. A method for monitoring BAFF activity in a mammal, comprising the step of detecting at the transcriptional level in a biological sample of the mammal one or both molecules selected from the group consisting of NF-κB2 molecule and CD23 molecule, wherein elevated expression, relative to a control, of at least one of the detected molecules indicates elevated BAFF activity in the mammal.
8. The method of claim 7 , further comprising the step of detecting at the transcriptional and/or translational level(s) in a biological sample one or more molecules selected from the group consisting of H2-Mβ molecule, Fig-1 molecule, OBF-1 molecule, wherein elevated expression, relative to a control, of at least one of the detected molecules indicates elevated BAFF activity.
9. A method of identifying a mammal treated or to be treated with a BAFF antagonist, comprising the step of providing a sample from a mammal and detecting one at the transcriptional and/or translational level(s) or more molecules selected from the group consisting of Fig-1 molecule, OBF-1 molecule, and H2-Mβ molecule in the sample of the mammal, wherein elevated expression, relative to a control, of at least one of the detected molecules indicates that the mammal should be treated with the BAFF antagonist.
10. A method of identifying a mammal treated or to be treated with a BAFF antagonist, comprising the steps of providing a biological sample from a mammal and detecting at the transcriptional level in a biological sample of the mammal one or both molecules selected from the group consisting of NF-κB2 molecule and CD23 molecule, wherein elevated expression, relative to a control, of at least one of the detected molecules indicates that the mammal should be treated with the BAFF antagonist.
11. The method of claim 10 , further comprising detecting one at the transcriptional and/or translational level(s) or more molecules selected from the group consisting of Fig-1 molecule, OBF-1 molecule, and H2-Mβ molecule in the sample of the mammal, wherein elevated expression, relative to a control, of at least one of the detected molecules indicates that the mammal should be treated with the BAFF antagonist.
12. The method according to claim 3 , wherein the mammal is suffering from an autoimmune disease.
13. The method according to claim 12 , wherein the autoimmune disease is selected from the group consisting of autoimmune disease is rheumatoid arthritis, lupus, and Sjogren's disease.
14. The method according to claim 3 , wherein the mammal is suffering from a hyperproliferative immune disorder.
15. The method according to claim 14 , wherein the hyperproliferative immune disorder is a B cell hyperproliferative disorder.
16. The method according to claim 15 , wherein the hyperproliferative disorder is selected from the group consisting of NHL, CLL, ALL, FL, and multiple myeloma.
17. The method according to claim 3 , further comprising the step of detecting BAFF molecule in the biological sample.
18. The method according to claim 3 , further comprising the step of detecting BR3 molecules in the biological sample.
19. The method according to claim 3 , wherein the mammal is human.
20. The method according to claim 3 , wherein the OBF-1 molecule is selected from:
(a) a polypeptide comprising a sequence selected from SEQ ID NO:11 and SEQ ID NO:16; and
(b) an mRNA comprising a nucleotide sequence encoding an amino acid sequence selected from SEQ ID NO:11 and SEQ ID NO:16.
21-25. (canceled)
26. The method according to claim 3 , wherein the BAFF antagonist is selected from the group consisting of anti-BAFF antibody, antibody against one or more BAFF receptors, dominant negative BAFF, and a soluble BAFF receptor.
27. The method according to claim 26 , wherein the BAFF antagonist comprises a sequence selected from the group consisting of:
(a) amino acids 1-73 of SEQ ID NO:21;
(b) SEQ ID NO:22;
(c) SEQ ID NO:26;
(d) SEQ ID NO:24;
(e) SEQ ID NO:25;
(f) amino acids 8-41 of SEQ ID NO:27; and
(g) amino acids 1-100 of SEQ ID NO:28.
28-56. (canceled)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/086,352 US20140213470A1 (en) | 2005-10-13 | 2013-11-21 | Methods for use with baff antagonists |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US72640605P | 2005-10-13 | 2005-10-13 | |
| PCT/US2006/039803 WO2007047335A2 (en) | 2005-10-13 | 2006-10-12 | Methods for use with baff antagonists |
| US8361410A | 2010-08-27 | 2010-08-27 | |
| US14/086,352 US20140213470A1 (en) | 2005-10-13 | 2013-11-21 | Methods for use with baff antagonists |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2006/039803 Division WO2007047335A2 (en) | 2005-10-13 | 2006-10-12 | Methods for use with baff antagonists |
| US12/083,614 Division US8617545B2 (en) | 2005-10-13 | 2006-10-12 | Methods for use with BAFF antagonists |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20140213470A1 true US20140213470A1 (en) | 2014-07-31 |
Family
ID=37877009
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/083,614 Active 2029-05-14 US8617545B2 (en) | 2005-10-13 | 2006-10-12 | Methods for use with BAFF antagonists |
| US14/086,352 Abandoned US20140213470A1 (en) | 2005-10-13 | 2013-11-21 | Methods for use with baff antagonists |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/083,614 Active 2029-05-14 US8617545B2 (en) | 2005-10-13 | 2006-10-12 | Methods for use with BAFF antagonists |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US8617545B2 (en) |
| WO (1) | WO2007047335A2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9840543B2 (en) | 2014-01-31 | 2017-12-12 | Boehringer Ingelheim International Gmbh | Anti-BAFF antibodies |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007047335A2 (en) * | 2005-10-13 | 2007-04-26 | Biogen Idec Ma Inc. | Methods for use with baff antagonists |
| NZ616308A (en) * | 2011-04-08 | 2016-03-31 | Biogen Ma Inc | Biomarkers predictive of therapeutic responsiveness to ifnβ and uses thereof |
| EP3191186B1 (en) * | 2014-09-10 | 2021-01-27 | Georgetown University | Compositions and methods of using interleukin-4 induced gene 1 (il4i1) |
| US12247060B2 (en) | 2018-01-09 | 2025-03-11 | Marengo Therapeutics, Inc. | Calreticulin binding constructs and engineered T cells for the treatment of diseases |
| WO2020010250A2 (en) | 2018-07-03 | 2020-01-09 | Elstar Therapeutics, Inc. | Anti-tcr antibody molecules and uses thereof |
| SG11202109061YA (en) | 2019-02-21 | 2021-09-29 | Marengo Therapeutics Inc | Multifunctional molecules that bind to t cell related cancer cells and uses thereof |
| AU2020224681A1 (en) | 2019-02-21 | 2021-09-16 | Marengo Therapeutics, Inc. | Antibody molecules that bind to NKp30 and uses thereof |
| ES2827148B2 (en) * | 2019-11-19 | 2021-10-19 | Instituto Nac De Investigacion Y Tecnologia Agraria Y Alimentaria Inia | Coding plasmid for the B cell activating factor receptor (BAFF-R) and its uses in the treatment and prevention of inflammatory diseases in fish |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8617545B2 (en) * | 2005-10-13 | 2013-12-31 | Biogen Idec Ma Inc. | Methods for use with BAFF antagonists |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6632028B1 (en) * | 2000-08-25 | 2003-10-14 | Vtr Optoelectronics, Inc. | Apparatus and method for aligning an optical fiber with an optical device |
| NZ543174A (en) * | 2003-03-28 | 2008-09-26 | Biogen Idec Inc | Truncated BAFF receptors |
-
2006
- 2006-10-12 WO PCT/US2006/039803 patent/WO2007047335A2/en active Application Filing
- 2006-10-12 US US12/083,614 patent/US8617545B2/en active Active
-
2013
- 2013-11-21 US US14/086,352 patent/US20140213470A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8617545B2 (en) * | 2005-10-13 | 2013-12-31 | Biogen Idec Ma Inc. | Methods for use with BAFF antagonists |
Non-Patent Citations (1)
| Title |
|---|
| Claudio et al., BAFF-induced NEMO-independent processing of NF-B2 in maturing B cells. Nature Immunology 3:958-965, 2002. * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9840543B2 (en) | 2014-01-31 | 2017-12-12 | Boehringer Ingelheim International Gmbh | Anti-BAFF antibodies |
| US10377804B2 (en) | 2014-01-31 | 2019-08-13 | Boehringer Ingelheim International Gmbh | Anti-BAFF antibodies |
| US11370818B2 (en) | 2014-01-31 | 2022-06-28 | Boehringer Ingelheim International Gmbh | Anti-BAFF antibodies |
Also Published As
| Publication number | Publication date |
|---|---|
| US8617545B2 (en) | 2013-12-31 |
| US20100330066A1 (en) | 2010-12-30 |
| WO2007047335A3 (en) | 2007-10-04 |
| WO2007047335A2 (en) | 2007-04-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20140213470A1 (en) | Methods for use with baff antagonists | |
| Wurbel et al. | The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double‐and single‐positive thymocytes expressing the TECK receptor CCR9 | |
| Kaji et al. | Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory | |
| EP3802922B1 (en) | Novel immune checkpoint inhibitors | |
| JP2023529026A (en) | Methods for modulating MHC-I expression and immunotherapeutic uses thereof - Patents.com | |
| US20120213768A1 (en) | Diagnostic and Therapeutic Uses for B Cell Maturation Antigen | |
| US11740242B2 (en) | Modulating biomarkers to increase tumor immunity and improve the efficacy of cancer immunotherapy | |
| US12109266B2 (en) | Modulating gabarap to modulate immunogenic cell death | |
| JP2022552153A (en) | Anti-KIR3DL3 Antibodies and Their Use | |
| US20210032334A1 (en) | Methods for treating cancer using combinations of anti-btnl2 and immune checkpoint blockade agents | |
| US20090214517A1 (en) | Compositions and methods of use for modulators of nectin 4, semaphorin 4b, igsf9, and kiaa0152 in treating disease | |
| Köchl et al. | Critical role of WNK1 in MYC-dependent early mouse thymocyte development | |
| US20220289854A1 (en) | Methods for treating cancer using combinations of anti-cx3cr1 and immune checkpoint blockade agents | |
| US11761963B2 (en) | Biomarker signature for predicting tumor response to anti-CD200 therapy | |
| WO2022258049A1 (en) | Genetically modified non-human animal with human or chimeric pvrig | |
| US20100028867A1 (en) | LRRTM1 Compositions and Methods of Their Use for the Diagnosis and Treatment of Cancer | |
| KR20080068039A (en) | T cell adhesion molecule and antibody thereto | |
| EP2880052A1 (en) | Tif1-gamma for treating and diagnosing inflammatory diseases | |
| US20190212330A1 (en) | Compositions, kits, and methods for the diagnosis, prognosis, and monitoring of immune disorders using galectin-1 | |
| EP4378533A1 (en) | Patient selection and therapy monitoring for autoimmune disorders | |
| US20040053282A1 (en) | Method of examining allergic disease | |
| Paul | Autoimmune reactions | |
| De Silva | The alternative NF-kB pathway in mature B cell development | |
| Van Tok et al. | The transcriptional co-activator Bob1 is associated with pathologic B cell responses in autoimmune tissue inflammation | |
| EP1498493A1 (en) | Method of examining allergic disease |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: BIOGEN MA INC., MASSACHUSETTS Free format text: CHANGE OF NAME;ASSIGNOR:BIOGEN IDEC MA INC.;REEL/FRAME:035571/0926 Effective date: 20150323 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |