[go: up one dir, main page]

US20140260085A1 - Columnar structural component and method of forming - Google Patents

Columnar structural component and method of forming Download PDF

Info

Publication number
US20140260085A1
US20140260085A1 US13/804,904 US201313804904A US2014260085A1 US 20140260085 A1 US20140260085 A1 US 20140260085A1 US 201313804904 A US201313804904 A US 201313804904A US 2014260085 A1 US2014260085 A1 US 2014260085A1
Authority
US
United States
Prior art keywords
recesses
sandwich panel
bonding material
outer layer
inner corner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/804,904
Inventor
Ulrich SCHWARTAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MILLPORT ASSOCIATES SA
Original Assignee
MILLPORT ASSOCIATES SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MILLPORT ASSOCIATES SA filed Critical MILLPORT ASSOCIATES SA
Priority to US13/804,904 priority Critical patent/US20140260085A1/en
Publication of US20140260085A1 publication Critical patent/US20140260085A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/36Columns; Pillars; Struts of materials not covered by groups E04C3/32 or E04C3/34; of a combination of two or more materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49616Structural member making
    • Y10T29/49623Static structure, e.g., a building component
    • Y10T29/49631Columnar member

Definitions

  • the present invention relates generally to building construction, and more particularly, to a columnar structural component and method of forming a columnar structural component from a composite sandwich panel.
  • Prefabricated or preassembled components can streamline production and reduce both the time and the cost of building construction.
  • Prefabricated buildings are made from conventional materials that may be scarce or expensive to obtain. Thus, there exists a need for alternative materials and techniques for constructing buildings that use advanced material technologies to increase the speed of construction and to reduce or to lower ownership costs.
  • the present invention provides an alternative to conventional construction materials and techniques.
  • Buildings such as houses, commercial buildings, warehouses, or other structures can be constructed by composite sandwich panels (also referred to as “sandwich panels” or “composite panels” or “panels”), which have an insulative core and one or more outer layers.
  • the buildings can be constructed by gluing several sandwich panels together, and usually traditional fasteners, such as screws, rivets, nails, etc., are not needed for such connections.
  • composite sandwich panels offer a greater strength-to-weight ratio than traditional materials that are used by the building industry.
  • the composite sandwich panels are generally as strong as, or stronger than, traditional materials including wood-based and steel-based structural insulation panels, while being lighter in weight. Because they weigh less than traditional building materials, the handling and transport of composite sandwich panels is generally less expensive.
  • the composite sandwich panels also can be used to produce light-weight structures, such as floating houses, mobile homes, or travel trailers, etc.
  • Sandwich panels generally are more elastic or flexible than conventional materials such as wood, concrete, steel or brick and, therefore, monolithic (e.g., unitary or single unit structure) buildings made from sandwich panels generally are more durable than buildings made from conventional materials.
  • sandwich panels also may be non-flammable, waterproof, very strong and durable, and in some cases able to resist hurricane-force winds (up to 300 Kph (kilometers per hour) or more).
  • the sandwich panels also may be resistant to the detrimental effects of algae, fungicides, water, and osmosis.
  • buildings constructed from sandwich panels may be better able to withstand earthquakes, floods, tornadoes, hurricanes, fires and other natural disasters than buildings constructed from conventional materials.
  • Sandwich panel structures may be less expensive to build than structures built from conventional materials because of reduced material costs and alternative construction techniques.
  • the ownership and maintenance costs for sandwich panel structures also may be less over the long term because sandwich panel structures may last longer and degrade at a slower rate than buildings made from conventional materials. Structures built from sandwich panels therefore may require less maintenance and upkeep than structures built from conventional building materials, which may reduce the overall ownership costs for end users.
  • the insulative core of the sandwich panels also may reduce the amount of energy needed to heat and/or cool the building, which may reduce the overall costs to operate the building.
  • the insulative core also may reduce or eliminate the need for additional insulation in the building, as may be necessary to insulate structures built from conventional building materials. Sandwich panel structures therefore may be less expensive to build and operate than buildings constructed from conventional building materials.
  • Standard sandwich panels generally are planar building elements. In some cases, it may be desirable to impart or to form a curve or a round corner in the sandwich panel for aesthetic and/or functional purposes. For example, it may be desirable to incorporate one or more columnar structural components (also referred to as a “columns”) with round corners in a monolithic structure.
  • the columnar structural components may have one or more curved or rounded corners or surfaces.
  • the terms “round,” “rounded,” “curve,” and “curved” are used interchangeably to describe objects or surfaces that are non-linear or non-planar in shape. Such objects may be circular in shape, or may have another non-linear or non-planar shape.
  • a method for forming a columnar structural element from a sandwich panel includes forming a number of sets of recesses in the sandwich panel, and bending the sandwich panel at each set of recesses to form a columnar structural element.
  • the forming of the sets of recesses includes forming a number of substantially continuous channels between a first end of the sandwich panel and a second end of the sandwich panel.
  • the bending includes bending the sandwich panel at the first set of recesses to form a first round corner, and bending the sandwich panel at the second set of recesses to form a second round corner.
  • the forming a number of sets of recesses further comprises forming a third set of recesses and a fourth set of recesses, and wherein the bending includes bending the sandwich panel at the third set of recesses to form a third round corner, and bending the sandwich panel at the fourth set of recesses to form a fourth round corner.
  • the bending of the sandwich panel at least partially bounds an area.
  • the method further includes connecting at least one support member to the sandwich panel, wherein the support member is at least partially contained by the bounded area.
  • the connecting at least one support member to the sandwich panel includes applying bonding material.
  • the bending the sandwich panel forms a corner at each set of recesses, and wherein the method further comprises applying bonding material to at least one of the corners.
  • the applying bonding material includes applying bonding material at a first inner corner formed in an area of a first set of recesses and applying bonding material at a second inner corner formed at an area of a second set of recesses.
  • the method further includes securing the sandwich panel in the bent position for a period of time to allow the bonding material to cure.
  • the forming a number of sets of recesses includes forming recesses having a triangular cross-section.
  • adjacent surfaces of the recesses are angled such that the bending results in a 90-degree angle between a plane of the panel to one side of a set of recesses and a plane of the other side of the set of recesses.
  • the method further includes connecting a first edge of the sandwich panel to a second edge of the sandwich panel.
  • a structural component includes a sandwich panel bent to bound at least part of an area, and a support member disposed inside the bounded area and connected to the sandwich panel to form a columnar structural component, the sandwich panel and the support member cooperative to form a columnar structural component.
  • the sandwich panel includes a number of sets of recesses, wherein each set of recesses includes a number of substantially continuous channels between a first end of the sandwich panel and a second end of the sandwich panel.
  • the sandwich panel includes a round corner in the area of each of the sets of recesses.
  • each round corner includes a corresponding inner corner and bonding material applied to at least a portion of each inner corner.
  • the sandwich panel includes four sets of recesses corresponding to a first, second, third and fourth round corner of the sandwich panel.
  • the sandwich panel further comprises a first edge and a second edge, and wherein the sandwich panel is bent such that the first edge and the second edge are connected to each other.
  • a method for forming a column from a sandwich panel includes bending the sandwich panel at the area of a first set of recesses and a second set of recesses to partially bound an area with the sandwich panel, connecting a support member to the sandwich panel, the support member at least partially within the bounded area, and bending the sandwich panel at a third set of recesses and the fourth set of recesses to enclose the support member in the bounded area
  • the method further includes connecting a number of support members at least partially contained within the bounded area.
  • FIG. 1 is an environmental view of an exemplary monolithic structure built from composite materials.
  • FIG. 2 is an isometric view of an exemplary columnar structural component made from a sandwich panel.
  • FIG. 3A is a schematic top end view of a sandwich panel.
  • FIG. 3B is a schematic top end view of a sandwich panel with a number of sets of recesses.
  • FIG. 3C is a front elevation view of the sandwich panel of FIG. 3B .
  • FIG. 4A is a schematic top end view of a sandwich panel bent to form a first and second round corner.
  • FIG. 4B is a side elevation view of the sandwich panel of FIG. 4A looking generally in the direction of the arrows 4 B- 4 B.
  • FIG. 5A is a schematic top end view of the sandwich panel of FIG. 4A with a support member.
  • FIG. 5B is a side elevation view of the sandwich panel of FIG. 5A looking generally in the direction of the arrows 5 B- 5 B.
  • FIG. 6A is a schematic top end of the sandwich panel formed into a columnar structural component.
  • FIG. 6B is a side elevation view of the sandwich panel of FIG. 6A looking generally in the direction of the arrows 6 B- 6 B.
  • FIG. 7 is an isometric view of an exemplary sandwich panel.
  • the structures described herein are built with composite materials, such as composite sandwich panels.
  • the sandwich panels may be formed from synthetic or natural materials and may provide a light-weight and potentially less expensive alternative to conventional raw materials, e.g., wood, concrete, metal, etc.
  • the sandwich panels may be connected or joined together with a high-strength bonding material, such as epoxy or glue. The result is a strong and durable monolithic structure, as is described further below.
  • an exemplary monolithic structure 10 for example, a house, is built from a number of sandwich panels that are connected together with bonding material.
  • a front wall 10 f of the house 10 is formed by connecting together sandwich panels 11 - 16 with bonding material.
  • a side wall 10 s of the house 10 is formed by connecting together sandwich panels 20 - 23 with bonding material.
  • a top portion 10 t of the house 10 is supported by a bottom portion 10 b of the house 10 .
  • the bottom portion 10 b may include a number of columnar structural components or columns 25 formed from composite sandwich panels, as is described in more detail below.
  • the house 10 also includes a roof 26 connected to the walls 10 f , 10 s and a number of prefabricated openings 27 , for example, for installing doors or windows, etc.
  • a roof 26 connected to the walls 10 f , 10 s and a number of prefabricated openings 27 , for example, for installing doors or windows, etc.
  • the house 10 may include a number of other walls, e.g., another side wall, a rear wall, internal walls, etc.
  • the columns 25 may be spaced throughout the house 10 .
  • the columns 25 may be located along the edges or exterior of the house and/or may be located in the middle of the house 10 , etc.
  • the columns 25 may be used to support a ceiling or floor portion 28 of the house 10 or another portion of the house 10 .
  • an exemplary columnar structural component 25 (or column) is formed from a sandwich panel 30 .
  • the column 25 has four corners 31 a - 34 a that are generally curved or smooth as compared to sharp right angle corners. The number of corners may be more or fewer than the four corners illustrated.
  • a sandwich panel 30 is bent to form the respective corners to provide a column having a longitudinal axis or extent.
  • Columnar structures have strength characteristics; sandwich panels 30 have strength characteristics; some exemplary strength characteristics are described below.
  • a column formed of a sandwich panel e.g. a sandwich panel that is integrated and is bent to form the column, may have strength characteristics of both columnar shape and sandwich panel construction.
  • the sandwich panel 30 is formed into a number of round corners 31 a - 34 a by cutting or forming one or more sets of recesses 31 b - 34 b along a length L of the sandwich panel 30 .
  • the recesses 31 b - 34 b provide stress relief and/or otherwise facilitate bending the panel in a controlled manner to achieve a desired shape, bend, corner, etc., and, for example, tending to avoid damage to the sandwich panel as it is bent or folded.
  • the sandwich panel 30 is bent in the area of the recesses 31 b - 34 b to form the round corners 31 a - 34 a and corresponding inner corners 31 c - 34 c .
  • the bent sandwich panel 30 partially contains or bounds an area 35 .
  • bound means to partially or completely surround, enclose, or encompass an area or volume, and the terms “area” and “volume” are used interchangeably to mean a “space” or “region.”
  • one or more support members may be disposed within the area 35 and connected to the sandwich panel 30 between the inner corners 31 c - 34 c .
  • the area 35 is closed by connecting a first edge 36 of the sandwich panel 30 to a second edge 37 of the sandwich panel 30 , thereby forming the column 25 with round corners.
  • the sandwich panel 30 includes a first outer layer 41 and a second outer layer 42 separated from the first outer layer 41 by a panel core 43 .
  • the first outer layer 41 , the second outer layer 42 and the panel core 43 are substantially planar.
  • the sandwich panel 30 also includes a first edge 36 and a second edge 37 . Additional details of an exemplary sandwich panel are provided below with respect to FIG. 7 .
  • FIGS. 3B-3C The preparation of the sandwich panel 30 is shown in FIGS. 3B-3C .
  • One or more sets of recesses 31 b - 34 b are formed in the sandwich panel 30 .
  • the sets of recesses 31 b - 34 b are formed in the second outer layer 42 and the panel core 43 .
  • Each set of recesses 31 b - 34 b includes one or more continuous or substantially continuous channel that extends from a first end 44 of the sandwich panel 30 to a second end 45 of the sandwich panel, e.g., along the length L, of the sandwich panel 30 .
  • each set of recesses 31 b - 34 b is illustrated as including three substantially continuous channels extending between the ends 44 , 45 .
  • the sets of recesses 31 b - 34 b may include more or fewer than three channels, as may be desired.
  • the sets of recesses 31 b - 34 b may have any desired shape. As illustrated in FIG. 3B , the sets of recesses 31 b - 34 b may have a generally triangular shape or cross-section. A triangular shape may be desirable for sandwich panels that are to be bent at an angle and/or have a small radius to form a round corner (e.g., the round corners 31 a - 34 a ), as shown in FIG. 2 .
  • the triangular shape may be an isosceles triangle having an angle ⁇ (theta). In one embodiment, the angle ⁇ (theta) may be about 10-30 degrees.
  • the recesses 32 b , 33 b may be a different shape and the angle ⁇ (theta), as well of the depth of the recesses 32 b , 33 b , may be selected to achieve a desired radius of the round corners or to form a round corner having a different size or shape, as will be appreciated by one of skill in the art. It will be appreciated that the recesses may have a shape of a rectangle, square, arc or another shape, and that all of the recesses may not be identically shaped.
  • the sets of recesses 31 b - 34 b may be formed in the sandwich panel 30 during manufacture of the sandwich panel 30 and/or on-site during the building construction process. During the manufacturing process, the sandwich panel may be molded to include the sets of recesses 31 b - 34 b . Alternatively, after the sandwich panel is constructed, a tool (e.g., a saw) may be applied to the sandwich panel to cut or to form the desired number, size and shape of the recesses 31 b - 34 b in the sandwich panel 30 .
  • a tool e.g., a saw
  • the sets of recesses 31 b - 34 b are spaced apart from one another based upon the desired shape of the column 25 .
  • four sets of recesses 31 b - 34 b are formed in the sandwich panel 30 .
  • the sets of recesses 31 b - 34 b may be spaced from one another a distance W 1 .
  • the first set of recesses 31 b is spaced from the second set of recesses 32 b a distance W 1 .
  • the second set of recesses 32 b is spaced from the third set of recesses 33 b a distance W 1
  • the third set of recesses 33 b is spaced from the fourth set of recesses 34 b a distance W 1 .
  • the first set of recesses 31 b may be spaced from the edge 36 of the sandwich panel 30 a distance W 2 , which may be about half of the distance W 1 .
  • the fourth set of recesses 34 b may be spaced from the second edge 37 a distance W 2 .
  • the distance between the first round corner 31 a and the fourth round corner 34 a is about the same as the distance W 1 between the other sets of recesses, e.g., the distance W 1 between the first set of recesses 31 b and the second set of recesses 32 b.
  • the distances W 1 and W 2 and the number of sets of recesses may be may be selected to obtain the desired dimensions of the column and/or to form a column having different shapes, for example, a circular, triangular, rectangular, pentagonal or another polygonal shape, etc.
  • the round corners 31 a - 34 a may be formed to have any desired angle and/or curvature to form different shape columns.
  • the round corners 31 a - 34 a may form an obtuse angle, an acute angle, or a right angle.
  • the number, size and/or shape of the recesses are selected based at least on a desired radius of the round corners. In another embodiment, the size and shape of the recesses is selected based at least on a thickness of the sandwich panel.
  • the column 25 may be formed from the sandwich panel 30 by bending the sandwich panel 30 .
  • the sandwich panel 30 may be bent such that the outer layer 41 bends to form a first round corner 31 a and a second round corner 32 a .
  • the sandwich panel 30 is bent by applying a force to the outer layer 41 .
  • the first round corner 31 a may be formed by applying a force F to the outer layer 41 near the first edge 36 of the sandwich panel 30 , such that the force F causes the sandwich panel 30 to bend in the area of the set of recesses 31 b .
  • the second round corner 32 a is formed in the same or in a similar manner by applying a force to the outer layer 41 to bend the sandwich panel 30 at the second set of recesses 32 b .
  • the first round corner 31 a and the second round corner 32 a may be formed at the same time or may be formed consecutively, for example, one after the other.
  • the other corners of the column may be formed by bending the sandwich panel in the same or in a similar manner. It will be appreciated that the sandwich panel 30 may be bent or formed in another manner, as will be appreciated by one of skill in the art.
  • the bending of the sandwich panel 30 compresses the channels of each set of recesses 31 b , 32 b and generally eliminates most or all of the air or space in the channels.
  • the flexibility of the outer layer 41 allows the outer layer 41 to flex or to bend at the area of the set of recesses 31 b , 32 b to form the first round corner 31 a and the second round corner 32 a.
  • the round corners 31 a , 32 a each include an opposing side that forms corresponding inner corners 31 c , 32 c .
  • the first round corner 31 a has an opposing an inner corner 31 c .
  • the inner corner 31 c includes a portion of the second outer layer 42 and a portion of the set of recesses 31 b .
  • the second round corner 32 a includes a similarly shaped inner corner 32 c that includes a portion of the second outer layer 42 and a portion of the set of recesses 32 b .
  • Bonding material 50 may be applied to the first inner corner 31 c .
  • the bonding material 50 spans across the inner corner 31 c from the second outer layer 42 on one side of the inner corner 31 c to the outer layer 42 on the other side of the inner corner 31 c .
  • the bonding material 50 therefore, bonds to the second outer layer 42 to maintain the bent configuration of the sandwich panel 30 and to seal the inner corner 31 c .
  • the sandwich panel is bent to create a corner that is about 90-degrees.
  • the sandwich panel 30 may be bent to any desired angle.
  • adjacent surfaces of the recesses are angled such that the bending of the sandwich panel results in a 90-degree angle between a plane of the panel to one side of the set of recesses and a plane of the other side of the recesses.
  • the sandwich panel may be bent to form an obtuse or acute angle.
  • Bonding material 51 may be applied to the second inner corner 32 c in the same or in a similar manner.
  • the bonding material 50 , 51 which is described in more detail below, may be of sufficient strength to permanently fix or hold the round corners 31 a , 32 a in the outer layer 41 of the sandwich panel 30 .
  • the sandwich panel 30 with first round corner 31 a and second round corner 32 a at least partially bounds the area 35 .
  • the area 35 is defined by a portion of the second outer layer 42 that extends between the first edge 36 and the first inner corner 31 c , a portion to the second outer layer 42 that extends between the first inner corner 31 c and the second inner corner 32 c , and a portion of the second outer layer 42 that extends between the second inner corner 32 c and the third set of recesses 33 c.
  • a support member 52 such as one or more horizontal ribs or struts, may be placed in the area 35 of the column 25 to strengthen, stiffen and reinforce the column 25 .
  • the support members 52 may be generally rectangular in shape and may generally maintain the shape of the column 25 and may facilitate the formation of the column 25 .
  • the support member 52 is connected to the sandwich panel.
  • the support member 52 may be connected to the sandwich panel 30 with bonding material between the support member and the second outer layer 42 of the sandwich panel 30 .
  • the bonding material may be spread or applied between the edges of the support member and the second outer layer 42 .
  • the bonding material may be applied between a number of edges of the support member 52 and the second outer layer 42 .
  • the bonding material is applied along at least one edge of the support member, for example, the edge of the support member 52 between the first inner corner 31 c and the second inner corner 32 c .
  • Bonding material also may be applied to connect the support member 52 to the second outer layer 42 between the second inner corner 32 c and the third inner corner 33 c (formed when the sandwich panel 30 is bent at the recesses 33 b to form the third round corner 33 a , as described below with respect to FIG. 6A ).
  • the bonding material that connects the support member 52 to the second outer layer 42 also may include a portion of the bonding material 50 , 51 applied at the inner corners 31 c , 32 c .
  • the support member 52 may be pressed into or partially embedded into the bonding material 50 , 51 at the inner corners 31 c , 32 c .
  • the support member 52 may be in direct contact with the second outer layer 42 of the sandwich panel and/or the bonding material 50 , 51 may overlap a portion of the surface of the support member 52 .
  • the column 25 may include a number of support members 52 spaced along the length L of the column.
  • Each of the support members 52 may be connected to the second outer layer 42 with bonding material as described above.
  • the support member 52 may be a sandwich panel similar to the sandwich panel 30 but of smaller size or may be cut from a larger sandwich panel. An exemplary sandwich panel is described in more detail below with respect to FIG. 7 .
  • the third round corner 33 a and fourth round corner 34 a are formed in the same or similar manner as the first round corner 31 a and the second round corner 32 a .
  • the third round corner 33 a includes an opposing side that forms a third inner corner 33 c .
  • Bonding material 53 may be applied to the third inner corner 33 c to hold or to maintain the shape of the third round corner 33 a .
  • the fourth round corner 34 a includes an opposing side that forms a fourth inner corner 34 c .
  • Bonding material 54 may be applied to the fourth inner corner 34 c to hold or to maintain the shape of the fourth round corner 34 a.
  • the bonding material 53 , 54 may only be spread along a portion of the inner corners 33 c , 34 c.
  • the bonding material 53 , 54 may be pre-applied to each the set of recesses 33 b , 34 b prior to bending the sandwich panel 30 to form the third round corner 33 a and the fourth round corner 34 a .
  • the channel(s) in the third set of recesses 33 b may be partially filled with bonding material.
  • the bonding material may be squeezed or forced out of the channels when the sandwich panel 30 is bent to form the third round corner 33 a .
  • the excreted bonding material may extend along the length L of the column 25 and may span across the inner corner 33 c to hold the shape of the third round corner 33 a .
  • Additional bonding material may be applied on or to the second outer layer 42 near the third set of recesses 33 b .
  • Bonding material may be applied to the fourth set of recesses 34 c using the same technique. It also will be appreciated that the same technique may be used to apply the bonding material to the first inner corner 31 c , second inner corner 32 c , or any other inner corners of the sandwich panel.
  • bonding material may be applied to the edges of the support member 52 prior to bending the sandwich panel 30 to form the third round corner 33 a and the fourth round corner 34 a .
  • the second outer layer 42 may be pressed into contact with the support member when the third and fourth round corners 33 a , 34 a are formed, thereby adhering or connecting the support member 52 to the second outer layer 42 between the third inner corner 33 c and the fourth inner corner 34 c .
  • the support member 52 may be connected to other areas of the area 35 in a similar manner. It will be appreciated that while illustrates as having one or more support members, the area 35 of the column 25 may be empty or hollow.
  • the column 25 is closed by connecting the first edge 36 to the second edge 37 .
  • the edges 36 , 37 may be connected together when the sandwich panel 30 is bent to form the fourth round corner 34 a .
  • the edges 36 , 37 may be connected with bonding material spread or applied between the edges 36 , 37 and/or along the length L of the column between or at the edges 36 , 37 . It will be appreciated that the distances W 1 , W 2 may be selected so that the edges 36 , 37 are aligned with one another when the column 25 is fully formed.
  • the sandwich panel 30 may be necessary to hold or maintain the sandwich panel 30 in the configuration of FIG. 6A for a period of time to allow the bonding material to cure or to harden.
  • One or more clamps may be used to maintain the configuration of the sandwich panel 30 . Once the bonding material cures or hardens, the sandwich panel 30 is generally permanently maintained in the configuration of FIG. 6A .
  • the sandwich panel 70 has two outer layers 72 , 74 separated by a core 76 , for example, corresponds respective to outer layers 41 and 42 and core 43 of sandwich panel 30 described above.
  • the outer layers 72 , 74 of the sandwich panel 70 are made from a composite material that includes a matrix material and a filler or reinforcement material.
  • Exemplary matrix materials include a resin or mixture of resins, e.g., epoxy resin, polyester resin, vinyl ester resin, natural (or non oil-based) resin or phenolic resin, etc.
  • Exemplary filler or reinforcement materials include fiberglass, glass fabric, carbon fiber, or aramid fiber, etc.
  • Other filler or reinforcement materials include, for example, one or more natural fibers, such as, jute, coco, hemp, or elephant grass, balsa wood, or bamboo.
  • the outer layers 72 , 74 may be relatively thin with respect to the panel core 76 .
  • the outer layers 72 , 74 may be several millimeters thick and may, for example, be between about 1 mm (millimeter)-12 mm (millimeters) thick; however, it will be appreciated that the outer layers can be thinner than 1 mm (millimeter) or thicker than 12 mm (millimeters) as may be desired. In one embodiment, the outer layers are about 1-3 mm (millimeters) thick.
  • outer layers 72 , 74 may be made thicker by layering several layers of reinforcement material on top of one another.
  • the thickness of the reinforcement material also may be varied to obtain thicker outer layers 72 , 74 with a single layer of reinforcement material.
  • different reinforcement materials may be thicker than others and may be selected based upon the desired thickness of the outer layers.
  • the panel core 76 separates the outer layers 72 , 74 of the sandwich panel 70 .
  • the panel core 76 may be formed from a light-weight, insulative material, for example, polyurethane, expanded polystyrene, polystyrene hard foam, Styrofoam® material, phenol foam, a natural foam, for example, foams made from cellulose materials, such as a cellulosic corn-based foam, or a combination of several different materials.
  • Other exemplary panel core materials include honeycomb that can be made of polypropylene, non-flammable impregnated paper or other composite materials.
  • the panel core 76 may be any desired thickness and may be, for example, 30 mm (millimeters)-100 mm (millimeters) thick; however, it will be appreciated that the core can be thinner than 30 mm (millimeters) or thicker than 100 mm (millimeters) as may be desired. In one embodiment, the core is approximately 40 mm (millimeters) thick.
  • the outer layers 72 , 74 are adhered to the core 76 with the matrix materials, such as the resin mixture. Once cured, the outer layers 72 , 74 of the sandwich panel 70 are firmly adhered to both sides of the panel core 76 , forming a rigid building element.
  • the resin mixture also may include additional agents, such as, for example, flame retardants, mold suppressants, curing agents, hardeners, etc. Coatings may be applied to the outer layers 72 , 74 , such as, for example, finish coats, paint, ultraviolet (UV) protection, water protection, etc.
  • the panel core 76 may provide good thermal insulation properties and structural properties.
  • the outer layers 72 , 74 may add to those properties of the core and also may protect the panel core 76 from damage.
  • the outer layers 72 , 74 also may provide rigidity and support to the sandwich panel 70 .
  • the sandwich panels may be any shape and size.
  • the sandwich panels are rectangular in shape and may be several meters, or more, in height and width.
  • the sandwich panels also may be other shapes and sizes.
  • the combination of the panel core 76 and outer layers 72 , 74 create sandwich panels with high ultimate strength, which is the maximum stress the panels can withstand, and high tensile strength, which is the maximum amount of tensile stress that the panels can withstand before failure.
  • the compressive strength of the panels is such that the panels may be used as both load bearing and non-load bearing walls.
  • the panels have a load capacity of at least 50 tons per square meter in the vertical direction (indicated by arrows V in FIG. 7 ) and 2 tons per square meter in the horizontal direction (indicated by arrows H in FIG. 7 ).
  • the sandwich panels may have other strength characteristics as will be appreciated in the art.
  • Internal stiffeners may be integrated into the panel core 76 to increase the overall stiffness of the sandwich panel 70 .
  • the stiffeners are made from materials having the same thermal expansion properties as the materials used to construct the panel, such that the stiffeners expand and contract with the rest of the panel when the panel is heated or cooled.
  • the stiffeners may be made from the same material used to construct the outer layers of the panel.
  • the stiffeners may be made from composite materials and may be placed perpendicular to the top and bottom of the panels and spaced, for example, at distances of about 15 cm (centimeters), 25 cm, 50 cm, or 100 cm.
  • the stiffeners may be placed at different angles, such as a 45-degree angle with respect to the top and bottom of the panel, or at another angle, as may be desired.
  • the bonding material used to connect the various components and elements of the house 10 may be any suitable bonding material such as epoxy, epoxy resin, glue, cement, adhesive, adhering material or another bonding material (these terms may be used interchangeably and equivalently herein).
  • the bonding material is more flexible or bendable than the sandwich panels, and may, for example, be four or five times more flexible than the panels. The flexibility of the bonding material, therefore, reduces the likelihood than the joints of the monolithic structure will break or split, and also transmits loads from one panel to another, across the joint.
  • the bonding material may include filling components, such as, fiberglass or a fiberglass and resin mixture, and may, for example, be microfiber and Aerosil® material.
  • the sandwich panels may be customized by cutting and removing a portion of the panel, e.g., portions 27 ( FIG. 1 ), to form openings for windows or doors.
  • the openings 27 may be cut to any desired size to accommodate the installation of any size window or door. It will be appreciated that the panel can be customized in any manner desired to meet the specifications of an architectural or design plan.
  • the sandwich panels also may be cut in other designs to accommodate other roof, wall, etc. arrangements. It also will be appreciated that while the windows, door and roof are described as being cut from a solid sandwich panel, the openings may be molded or otherwise formed in the panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Panels For Use In Building Construction (AREA)

Abstract

A columnar structural component and method of forming a columnar structural element from a sandwich panel includes forming a number of sets of recesses in the sandwich panel and bending the sandwich panel at each set of recesses to form a columnar structural element. The columnar structural component includes a number of support members at least partially disposed within an area bounded formed with the sandwich panel is bent in the areas of the sets of recesses.

Description

    TECHNICAL FIELD OF THE INVENTION
  • The present invention relates generally to building construction, and more particularly, to a columnar structural component and method of forming a columnar structural component from a composite sandwich panel.
  • DESCRIPTION OF THE RELATED ART
  • There is an increasing global demand for lower cost buildings such as houses, warehouses and office space. The demand for lower cost buildings is particularly strong in developing countries where economic resources may be limited and natural resources and raw materials may be scarce. For example, in areas of the Middle East or Africa, conventional building materials such as cement, brick, wood or steel may not be readily available or, if available, may be very expensive. In some areas of the world, poverty may make it too costly for people to build houses or other buildings with conventional materials.
  • The demand for lower cost housing also is high in areas afflicted by war or by natural disasters, such as hurricanes, tornadoes, floods, and the like. These devastating events often lead to widespread destruction of large numbers of buildings and houses, especially when they occur in densely populated regions. The rebuilding of areas affected by these events can cause substantial strain on the supply chain for raw materials, making them difficult or even impossible to obtain. Furthermore, natural disasters often recur and affect the same areas. If a destroyed building is rebuilt using the same conventional materials, it stands to reason that the building may be destroyed or damaged again during a similar event.
  • It is generally desirable to increase speed of construction and to minimize construction costs. Prefabricated or preassembled components can streamline production and reduce both the time and the cost of building construction. Prefabricated buildings, however, are made from conventional materials that may be scarce or expensive to obtain. Thus, there exists a need for alternative materials and techniques for constructing buildings that use advanced material technologies to increase the speed of construction and to reduce or to lower ownership costs.
  • SUMMARY
  • The present invention provides an alternative to conventional construction materials and techniques. Buildings, such as houses, commercial buildings, warehouses, or other structures can be constructed by composite sandwich panels (also referred to as “sandwich panels” or “composite panels” or “panels”), which have an insulative core and one or more outer layers. The buildings can be constructed by gluing several sandwich panels together, and usually traditional fasteners, such as screws, rivets, nails, etc., are not needed for such connections. Generally, composite sandwich panels offer a greater strength-to-weight ratio than traditional materials that are used by the building industry. The composite sandwich panels are generally as strong as, or stronger than, traditional materials including wood-based and steel-based structural insulation panels, while being lighter in weight. Because they weigh less than traditional building materials, the handling and transport of composite sandwich panels is generally less expensive. The composite sandwich panels also can be used to produce light-weight structures, such as floating houses, mobile homes, or travel trailers, etc.
  • Sandwich panels generally are more elastic or flexible than conventional materials such as wood, concrete, steel or brick and, therefore, monolithic (e.g., unitary or single unit structure) buildings made from sandwich panels generally are more durable than buildings made from conventional materials. For example, sandwich panels also may be non-flammable, waterproof, very strong and durable, and in some cases able to resist hurricane-force winds (up to 300 Kph (kilometers per hour) or more). The sandwich panels also may be resistant to the detrimental effects of algae, fungicides, water, and osmosis. As a result, buildings constructed from sandwich panels may be better able to withstand earthquakes, floods, tornadoes, hurricanes, fires and other natural disasters than buildings constructed from conventional materials.
  • Sandwich panel structures may be less expensive to build than structures built from conventional materials because of reduced material costs and alternative construction techniques. The ownership and maintenance costs for sandwich panel structures also may be less over the long term because sandwich panel structures may last longer and degrade at a slower rate than buildings made from conventional materials. Structures built from sandwich panels therefore may require less maintenance and upkeep than structures built from conventional building materials, which may reduce the overall ownership costs for end users.
  • The insulative core of the sandwich panels also may reduce the amount of energy needed to heat and/or cool the building, which may reduce the overall costs to operate the building. The insulative core also may reduce or eliminate the need for additional insulation in the building, as may be necessary to insulate structures built from conventional building materials. Sandwich panel structures therefore may be less expensive to build and operate than buildings constructed from conventional building materials.
  • Standard sandwich panels generally are planar building elements. In some cases, it may be desirable to impart or to form a curve or a round corner in the sandwich panel for aesthetic and/or functional purposes. For example, it may be desirable to incorporate one or more columnar structural components (also referred to as a “columns”) with round corners in a monolithic structure. The columnar structural components may have one or more curved or rounded corners or surfaces. The terms “round,” “rounded,” “curve,” and “curved” are used interchangeably to describe objects or surfaces that are non-linear or non-planar in shape. Such objects may be circular in shape, or may have another non-linear or non-planar shape.
  • According to one aspect of the invention, a method for forming a columnar structural element from a sandwich panel includes forming a number of sets of recesses in the sandwich panel, and bending the sandwich panel at each set of recesses to form a columnar structural element.
  • According to another aspect, the forming of the sets of recesses includes forming a number of substantially continuous channels between a first end of the sandwich panel and a second end of the sandwich panel.
  • According to another aspect, the bending includes bending the sandwich panel at the first set of recesses to form a first round corner, and bending the sandwich panel at the second set of recesses to form a second round corner.
  • According to another aspect, the forming a number of sets of recesses further comprises forming a third set of recesses and a fourth set of recesses, and wherein the bending includes bending the sandwich panel at the third set of recesses to form a third round corner, and bending the sandwich panel at the fourth set of recesses to form a fourth round corner.
  • According to another aspect, the bending of the sandwich panel at least partially bounds an area.
  • According to another aspect, the method further includes connecting at least one support member to the sandwich panel, wherein the support member is at least partially contained by the bounded area.
  • According to another aspect, the connecting at least one support member to the sandwich panel includes applying bonding material.
  • According to another aspect, the bending the sandwich panel forms a corner at each set of recesses, and wherein the method further comprises applying bonding material to at least one of the corners.
  • According to another aspect, the applying bonding material includes applying bonding material at a first inner corner formed in an area of a first set of recesses and applying bonding material at a second inner corner formed at an area of a second set of recesses.
  • According to another aspect, the method further includes securing the sandwich panel in the bent position for a period of time to allow the bonding material to cure.
  • According to another aspect, the forming a number of sets of recesses includes forming recesses having a triangular cross-section.
  • According to another aspect, adjacent surfaces of the recesses are angled such that the bending results in a 90-degree angle between a plane of the panel to one side of a set of recesses and a plane of the other side of the set of recesses.
  • According to another aspect, the method further includes connecting a first edge of the sandwich panel to a second edge of the sandwich panel.
  • According to another aspect of the invention, a structural component includes a sandwich panel bent to bound at least part of an area, and a support member disposed inside the bounded area and connected to the sandwich panel to form a columnar structural component, the sandwich panel and the support member cooperative to form a columnar structural component.
  • According to another aspect, the sandwich panel includes a number of sets of recesses, wherein each set of recesses includes a number of substantially continuous channels between a first end of the sandwich panel and a second end of the sandwich panel.
  • According to another aspect, the sandwich panel includes a round corner in the area of each of the sets of recesses.
  • According to another aspect, each round corner includes a corresponding inner corner and bonding material applied to at least a portion of each inner corner.
  • According to another aspect, the sandwich panel includes four sets of recesses corresponding to a first, second, third and fourth round corner of the sandwich panel.
  • According to another aspect, the sandwich panel further comprises a first edge and a second edge, and wherein the sandwich panel is bent such that the first edge and the second edge are connected to each other.
  • According to another aspect of the invention, a method for forming a column from a sandwich panel includes bending the sandwich panel at the area of a first set of recesses and a second set of recesses to partially bound an area with the sandwich panel, connecting a support member to the sandwich panel, the support member at least partially within the bounded area, and bending the sandwich panel at a third set of recesses and the fourth set of recesses to enclose the support member in the bounded area
  • According to another aspect, the method further includes connecting a number of support members at least partially contained within the bounded area.
  • These and further features of the present invention will be apparent with reference to the following description and attached drawings. In the description and drawings, particular embodiments of the invention have been disclosed in detail as being indicative of some of the ways in which the principles of the invention may be employed, but it is understood that the invention is not limited correspondingly in scope. Rather, the invention includes all changes, modifications and equivalents coming within the spirit and terms of the claims appended hereto.
  • It should be emphasized that the term “comprises/comprising” when used in this specification is taken to specify the presence of stated features, integers, steps or components but does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.
  • Features that are described and/or illustrated with respect to one embodiment may be used in the same way or in a similar way in one or more other embodiments and/or in combination with, or instead of, the features of the other embodiments.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an environmental view of an exemplary monolithic structure built from composite materials.
  • FIG. 2 is an isometric view of an exemplary columnar structural component made from a sandwich panel.
  • FIG. 3A is a schematic top end view of a sandwich panel.
  • FIG. 3B is a schematic top end view of a sandwich panel with a number of sets of recesses.
  • FIG. 3C is a front elevation view of the sandwich panel of FIG. 3B.
  • FIG. 4A is a schematic top end view of a sandwich panel bent to form a first and second round corner.
  • FIG. 4B is a side elevation view of the sandwich panel of FIG. 4A looking generally in the direction of the arrows 4B-4B.
  • FIG. 5A is a schematic top end view of the sandwich panel of FIG. 4A with a support member.
  • FIG. 5B is a side elevation view of the sandwich panel of FIG. 5A looking generally in the direction of the arrows 5B-5B.
  • FIG. 6A is a schematic top end of the sandwich panel formed into a columnar structural component.
  • FIG. 6B is a side elevation view of the sandwich panel of FIG. 6A looking generally in the direction of the arrows 6B-6B.
  • FIG. 7 is an isometric view of an exemplary sandwich panel.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • In the detailed description that follows, like components have been given the same reference numerals regardless of whether they are shown in different embodiments of the invention. To illustrate the present invention in a clear and concise manner, the drawings may not necessarily be to scale and certain features may be shown in somewhat schematic form. Certain terminology is used herein to describe the different embodiments of the invention. Such terminology is used for convenience when referring to the figures. For example, “upward,” “downward,” “above,” “below,” “left,” or “right” merely describe directions in the configurations shown in the figures. Similarly, the terms “interior” and exterior” or “inner” and “outer” may be used for convenience to describe the orientation of the components in the figures. The components can be oriented in any direction and the terminology should therefore be interpreted to include such variations. The dimensions provided herein are exemplary in nature and are not intended to be limiting in scope. Furthermore, while described primarily with respect to house construction, it will be appreciated that the concepts described herein are equally applicable to the construction of any type of structure or building, such as a warehouse, commercial building, factory, apartment building, etc.
  • The structures described herein are built with composite materials, such as composite sandwich panels. The sandwich panels may be formed from synthetic or natural materials and may provide a light-weight and potentially less expensive alternative to conventional raw materials, e.g., wood, concrete, metal, etc. The sandwich panels may be connected or joined together with a high-strength bonding material, such as epoxy or glue. The result is a strong and durable monolithic structure, as is described further below.
  • Referring to FIG. 1, an exemplary monolithic structure 10, for example, a house, is built from a number of sandwich panels that are connected together with bonding material. A front wall 10 f of the house 10 is formed by connecting together sandwich panels 11-16 with bonding material. A side wall 10 s of the house 10 is formed by connecting together sandwich panels 20-23 with bonding material. A top portion 10 t of the house 10 is supported by a bottom portion 10 b of the house 10. To support the top portion 10 t of the house 10, the bottom portion 10 b may include a number of columnar structural components or columns 25 formed from composite sandwich panels, as is described in more detail below. The house 10 also includes a roof 26 connected to the walls 10 f, 10 s and a number of prefabricated openings 27, for example, for installing doors or windows, etc. Although not shown in FIG. 1, it will be appreciated that the house 10 may include a number of other walls, e.g., another side wall, a rear wall, internal walls, etc.
  • As shown in FIG. 1, the columns 25 may be spaced throughout the house 10. For example, the columns 25 may be located along the edges or exterior of the house and/or may be located in the middle of the house 10, etc. The columns 25 may be used to support a ceiling or floor portion 28 of the house 10 or another portion of the house 10.
  • Referring to FIG. 2, an exemplary columnar structural component 25 (or column) is formed from a sandwich panel 30. The column 25 has four corners 31 a-34 a that are generally curved or smooth as compared to sharp right angle corners. The number of corners may be more or fewer than the four corners illustrated. To make a column 25 a sandwich panel 30 is bent to form the respective corners to provide a column having a longitudinal axis or extent. Columnar structures have strength characteristics; sandwich panels 30 have strength characteristics; some exemplary strength characteristics are described below. A column formed of a sandwich panel, e.g. a sandwich panel that is integrated and is bent to form the column, may have strength characteristics of both columnar shape and sandwich panel construction.
  • As described in more detail below, the sandwich panel 30 is formed into a number of round corners 31 a-34 a by cutting or forming one or more sets of recesses 31 b-34 b along a length L of the sandwich panel 30. The recesses 31 b-34 b provide stress relief and/or otherwise facilitate bending the panel in a controlled manner to achieve a desired shape, bend, corner, etc., and, for example, tending to avoid damage to the sandwich panel as it is bent or folded.
  • The sandwich panel 30 is bent in the area of the recesses 31 b-34 b to form the round corners 31 a-34 a and corresponding inner corners 31 c-34 c. The bent sandwich panel 30 partially contains or bounds an area 35. As used herein, the term “bound” means to partially or completely surround, enclose, or encompass an area or volume, and the terms “area” and “volume” are used interchangeably to mean a “space” or “region.” As described below, one or more support members may be disposed within the area 35 and connected to the sandwich panel 30 between the inner corners 31 c-34 c. The area 35 is closed by connecting a first edge 36 of the sandwich panel 30 to a second edge 37 of the sandwich panel 30, thereby forming the column 25 with round corners.
  • Referring to FIGS. 3A-6B, a column 25 and an exemplary method of forming the column 25 from a planar sandwich panel 30 are illustrated. As shown in FIG. 3A, the sandwich panel 30 includes a first outer layer 41 and a second outer layer 42 separated from the first outer layer 41 by a panel core 43. The first outer layer 41, the second outer layer 42 and the panel core 43 are substantially planar. The sandwich panel 30 also includes a first edge 36 and a second edge 37. Additional details of an exemplary sandwich panel are provided below with respect to FIG. 7.
  • The preparation of the sandwich panel 30 is shown in FIGS. 3B-3C. One or more sets of recesses 31 b-34 b are formed in the sandwich panel 30. The sets of recesses 31 b-34 b are formed in the second outer layer 42 and the panel core 43. Each set of recesses 31 b-34 b includes one or more continuous or substantially continuous channel that extends from a first end 44 of the sandwich panel 30 to a second end 45 of the sandwich panel, e.g., along the length L, of the sandwich panel 30. In FIGS. 3B-3C, each set of recesses 31 b-34 b is illustrated as including three substantially continuous channels extending between the ends 44, 45. As will be appreciated, the sets of recesses 31 b-34 b may include more or fewer than three channels, as may be desired.
  • The sets of recesses 31 b-34 b may have any desired shape. As illustrated in FIG. 3B, the sets of recesses 31 b-34 b may have a generally triangular shape or cross-section. A triangular shape may be desirable for sandwich panels that are to be bent at an angle and/or have a small radius to form a round corner (e.g., the round corners 31 a-34 a), as shown in FIG. 2. The triangular shape may be an isosceles triangle having an angle θ (theta). In one embodiment, the angle θ (theta) may be about 10-30 degrees. The recesses 32 b, 33 b may be a different shape and the angle θ (theta), as well of the depth of the recesses 32 b, 33 b, may be selected to achieve a desired radius of the round corners or to form a round corner having a different size or shape, as will be appreciated by one of skill in the art. It will be appreciated that the recesses may have a shape of a rectangle, square, arc or another shape, and that all of the recesses may not be identically shaped.
  • The sets of recesses 31 b-34 b may be formed in the sandwich panel 30 during manufacture of the sandwich panel 30 and/or on-site during the building construction process. During the manufacturing process, the sandwich panel may be molded to include the sets of recesses 31 b-34 b. Alternatively, after the sandwich panel is constructed, a tool (e.g., a saw) may be applied to the sandwich panel to cut or to form the desired number, size and shape of the recesses 31 b-34 b in the sandwich panel 30.
  • The sets of recesses 31 b-34 b are spaced apart from one another based upon the desired shape of the column 25. To form a generally square-shape or rectangular-shape column with round corners (e.g., as shown in FIG. 2), four sets of recesses 31 b-34 b are formed in the sandwich panel 30. The sets of recesses 31 b-34 b may be spaced from one another a distance W1. For example, as shown in FIG. 3C, the first set of recesses 31 b is spaced from the second set of recesses 32 b a distance W1. The second set of recesses 32 b is spaced from the third set of recesses 33 b a distance W1, and the third set of recesses 33 b is spaced from the fourth set of recesses 34 b a distance W1.
  • The first set of recesses 31 b may be spaced from the edge 36 of the sandwich panel 30 a distance W2, which may be about half of the distance W1. The fourth set of recesses 34 b may be spaced from the second edge 37 a distance W2. Thus, when the first edge 36 is connected to the second edge 37, the distance between the first round corner 31 a and the fourth round corner 34 a is about the same as the distance W1 between the other sets of recesses, e.g., the distance W1 between the first set of recesses 31 b and the second set of recesses 32 b.
  • It will be appreciated that the distances W1 and W2 and the number of sets of recesses may be may be selected to obtain the desired dimensions of the column and/or to form a column having different shapes, for example, a circular, triangular, rectangular, pentagonal or another polygonal shape, etc. It will be appreciated that although described as a rectangular column having round corners of about 90-degrees, the round corners 31 a-34 a may be formed to have any desired angle and/or curvature to form different shape columns. For example, the round corners 31 a-34 a may form an obtuse angle, an acute angle, or a right angle.
  • In one embodiment, the number, size and/or shape of the recesses are selected based at least on a desired radius of the round corners. In another embodiment, the size and shape of the recesses is selected based at least on a thickness of the sandwich panel.
  • FIGS. 4A and 4B, the column 25 may be formed from the sandwich panel 30 by bending the sandwich panel 30. The sandwich panel 30 may be bent such that the outer layer 41 bends to form a first round corner 31 a and a second round corner 32 a. In one embodiment, the sandwich panel 30 is bent by applying a force to the outer layer 41. For example, referring briefly back to FIG. 3B, the first round corner 31 a may be formed by applying a force F to the outer layer 41 near the first edge 36 of the sandwich panel 30, such that the force F causes the sandwich panel 30 to bend in the area of the set of recesses 31 b. The second round corner 32 a is formed in the same or in a similar manner by applying a force to the outer layer 41 to bend the sandwich panel 30 at the second set of recesses 32 b. The first round corner 31 a and the second round corner 32 a may be formed at the same time or may be formed consecutively, for example, one after the other. The other corners of the column may be formed by bending the sandwich panel in the same or in a similar manner. It will be appreciated that the sandwich panel 30 may be bent or formed in another manner, as will be appreciated by one of skill in the art.
  • As shown in FIG. 4A, the bending of the sandwich panel 30 compresses the channels of each set of recesses 31 b, 32 b and generally eliminates most or all of the air or space in the channels. The flexibility of the outer layer 41 allows the outer layer 41 to flex or to bend at the area of the set of recesses 31 b, 32 b to form the first round corner 31 a and the second round corner 32 a.
  • Continuing to refer to FIG. 4A, the round corners 31 a, 32 a each include an opposing side that forms corresponding inner corners 31 c, 32 c. For example, the first round corner 31 a has an opposing an inner corner 31 c. The inner corner 31 c includes a portion of the second outer layer 42 and a portion of the set of recesses 31 b. The second round corner 32 a includes a similarly shaped inner corner 32 c that includes a portion of the second outer layer 42 and a portion of the set of recesses 32 b. Bonding material 50 may be applied to the first inner corner 31 c. The bonding material 50 spans across the inner corner 31 c from the second outer layer 42 on one side of the inner corner 31 c to the outer layer 42 on the other side of the inner corner 31 c. The bonding material 50, therefore, bonds to the second outer layer 42 to maintain the bent configuration of the sandwich panel 30 and to seal the inner corner 31 c. As shown in FIG. 4A, the sandwich panel is bent to create a corner that is about 90-degrees. As described above, the sandwich panel 30 may be bent to any desired angle. In one embodiment, adjacent surfaces of the recesses are angled such that the bending of the sandwich panel results in a 90-degree angle between a plane of the panel to one side of the set of recesses and a plane of the other side of the recesses. Alternatively, the sandwich panel may be bent to form an obtuse or acute angle.
  • Bonding material 51 may be applied to the second inner corner 32 c in the same or in a similar manner. The bonding material 50, 51, which is described in more detail below, may be of sufficient strength to permanently fix or hold the round corners 31 a, 32 a in the outer layer 41 of the sandwich panel 30.
  • The sandwich panel 30 with first round corner 31 a and second round corner 32 a at least partially bounds the area 35. The area 35 is defined by a portion of the second outer layer 42 that extends between the first edge 36 and the first inner corner 31 c, a portion to the second outer layer 42 that extends between the first inner corner 31 c and the second inner corner 32 c, and a portion of the second outer layer 42 that extends between the second inner corner 32 c and the third set of recesses 33 c.
  • Referring to FIGS. 5A and 5B, a support member 52, such as one or more horizontal ribs or struts, may be placed in the area 35 of the column 25 to strengthen, stiffen and reinforce the column 25. The support members 52 may be generally rectangular in shape and may generally maintain the shape of the column 25 and may facilitate the formation of the column 25.
  • The support member 52 is connected to the sandwich panel. The support member 52 may be connected to the sandwich panel 30 with bonding material between the support member and the second outer layer 42 of the sandwich panel 30. The bonding material may be spread or applied between the edges of the support member and the second outer layer 42. The bonding material may be applied between a number of edges of the support member 52 and the second outer layer 42. In one embodiment, the bonding material is applied along at least one edge of the support member, for example, the edge of the support member 52 between the first inner corner 31 c and the second inner corner 32 c. Bonding material also may be applied to connect the support member 52 to the second outer layer 42 between the second inner corner 32 c and the third inner corner 33 c (formed when the sandwich panel 30 is bent at the recesses 33 b to form the third round corner 33 a, as described below with respect to FIG. 6A).
  • The bonding material that connects the support member 52 to the second outer layer 42 also may include a portion of the bonding material 50, 51 applied at the inner corners 31 c, 32 c. The support member 52 may be pressed into or partially embedded into the bonding material 50, 51 at the inner corners 31 c, 32 c. The support member 52 may be in direct contact with the second outer layer 42 of the sandwich panel and/or the bonding material 50, 51 may overlap a portion of the surface of the support member 52.
  • As shown in FIG. 5B, the column 25 may include a number of support members 52 spaced along the length L of the column. Each of the support members 52 may be connected to the second outer layer 42 with bonding material as described above. The support member 52 may be a sandwich panel similar to the sandwich panel 30 but of smaller size or may be cut from a larger sandwich panel. An exemplary sandwich panel is described in more detail below with respect to FIG. 7.
  • Referring to FIGS. 6A and 6B, the third round corner 33 a and fourth round corner 34 a are formed in the same or similar manner as the first round corner 31 a and the second round corner 32 a. The third round corner 33 a includes an opposing side that forms a third inner corner 33 c. Bonding material 53 may be applied to the third inner corner 33 c to hold or to maintain the shape of the third round corner 33 a. The fourth round corner 34 a includes an opposing side that forms a fourth inner corner 34 c. Bonding material 54 may be applied to the fourth inner corner 34 c to hold or to maintain the shape of the fourth round corner 34 a.
  • Due to the bending of the sandwich panel 30 to form the column 25 and the shape of the support members 52, it may not be possible to apply the bonding material 53, 54 along the entire length L of the third and fourth inner corners 33 c, 34 c. For example, access to the inner corners 33 c, 34 c may be partially or completely restricted by bending the sandwich panel 30 to form the third round corner 33 a and fourth round corner 34 a. The support members 52 also may cover a portion of the corners 33 c, 34 c, and may make it difficult to apply bonding material 53, 54. Thus, the bonding material 53, 54 may only be spread along a portion of the inner corners 33 c, 34 c.
  • To increase or maximize application of bonding material along the length of the third and fourth inner corners 33 c, 34 c, the bonding material 53, 54 may be pre-applied to each the set of recesses 33 b, 34 b prior to bending the sandwich panel 30 to form the third round corner 33 a and the fourth round corner 34 a. For example, the channel(s) in the third set of recesses 33 b may be partially filled with bonding material. The bonding material may be squeezed or forced out of the channels when the sandwich panel 30 is bent to form the third round corner 33 a. The excreted bonding material may extend along the length L of the column 25 and may span across the inner corner 33 c to hold the shape of the third round corner 33 a. Additional bonding material may be applied on or to the second outer layer 42 near the third set of recesses 33 b. Bonding material may be applied to the fourth set of recesses 34 c using the same technique. It also will be appreciated that the same technique may be used to apply the bonding material to the first inner corner 31 c, second inner corner 32 c, or any other inner corners of the sandwich panel.
  • To connect the support member 52 to the second outer layer 42 between the third inner corner 33 c and the fourth inner corner 34 c and between the fourth inner corner 34 c and the second edge 37, bonding material may be applied to the edges of the support member 52 prior to bending the sandwich panel 30 to form the third round corner 33 a and the fourth round corner 34 a. The second outer layer 42 may be pressed into contact with the support member when the third and fourth round corners 33 a, 34 a are formed, thereby adhering or connecting the support member 52 to the second outer layer 42 between the third inner corner 33 c and the fourth inner corner 34 c. The support member 52 may be connected to other areas of the area 35 in a similar manner. It will be appreciated that while illustrates as having one or more support members, the area 35 of the column 25 may be empty or hollow.
  • As shown in FIGS. 6A and 6B, the column 25 is closed by connecting the first edge 36 to the second edge 37. The edges 36, 37 may be connected together when the sandwich panel 30 is bent to form the fourth round corner 34 a. The edges 36, 37 may be connected with bonding material spread or applied between the edges 36, 37 and/or along the length L of the column between or at the edges 36, 37. It will be appreciated that the distances W1, W2 may be selected so that the edges 36, 37 are aligned with one another when the column 25 is fully formed.
  • It may be necessary to hold or maintain the sandwich panel 30 in the configuration of FIG. 6A for a period of time to allow the bonding material to cure or to harden. One or more clamps may be used to maintain the configuration of the sandwich panel 30. Once the bonding material cures or hardens, the sandwich panel 30 is generally permanently maintained in the configuration of FIG. 6A.
  • Referring to FIG. 7, an exemplary sandwich panel 70 is illustrated. The sandwich panel has two outer layers 72, 74 separated by a core 76, for example, corresponds respective to outer layers 41 and 42 and core 43 of sandwich panel 30 described above. The outer layers 72, 74 of the sandwich panel 70 are made from a composite material that includes a matrix material and a filler or reinforcement material. Exemplary matrix materials include a resin or mixture of resins, e.g., epoxy resin, polyester resin, vinyl ester resin, natural (or non oil-based) resin or phenolic resin, etc. Exemplary filler or reinforcement materials include fiberglass, glass fabric, carbon fiber, or aramid fiber, etc. Other filler or reinforcement materials include, for example, one or more natural fibers, such as, jute, coco, hemp, or elephant grass, balsa wood, or bamboo.
  • The outer layers 72, 74 (also referred to as laminates) may be relatively thin with respect to the panel core 76. The outer layers 72, 74 may be several millimeters thick and may, for example, be between about 1 mm (millimeter)-12 mm (millimeters) thick; however, it will be appreciated that the outer layers can be thinner than 1 mm (millimeter) or thicker than 12 mm (millimeters) as may be desired. In one embodiment, the outer layers are about 1-3 mm (millimeters) thick.
  • It will be appreciated that the outer layers 72, 74 may be made thicker by layering several layers of reinforcement material on top of one another. The thickness of the reinforcement material also may be varied to obtain thicker outer layers 72, 74 with a single layer of reinforcement material. Further, different reinforcement materials may be thicker than others and may be selected based upon the desired thickness of the outer layers.
  • The panel core 76 separates the outer layers 72, 74 of the sandwich panel 70. The panel core 76 may be formed from a light-weight, insulative material, for example, polyurethane, expanded polystyrene, polystyrene hard foam, Styrofoam® material, phenol foam, a natural foam, for example, foams made from cellulose materials, such as a cellulosic corn-based foam, or a combination of several different materials. Other exemplary panel core materials include honeycomb that can be made of polypropylene, non-flammable impregnated paper or other composite materials. It will be appreciated that these materials insulate the interior of the structure and also reduce the sound or noise transmitted through the panels, e.g., from one outer surface to the other or from an exterior to an interior of a building structure, etc. The panel core 76 may be any desired thickness and may be, for example, 30 mm (millimeters)-100 mm (millimeters) thick; however, it will be appreciated that the core can be thinner than 30 mm (millimeters) or thicker than 100 mm (millimeters) as may be desired. In one embodiment, the core is approximately 40 mm (millimeters) thick.
  • The outer layers 72, 74 are adhered to the core 76 with the matrix materials, such as the resin mixture. Once cured, the outer layers 72, 74 of the sandwich panel 70 are firmly adhered to both sides of the panel core 76, forming a rigid building element. It will be appreciated that the resin mixture also may include additional agents, such as, for example, flame retardants, mold suppressants, curing agents, hardeners, etc. Coatings may be applied to the outer layers 72, 74, such as, for example, finish coats, paint, ultraviolet (UV) protection, water protection, etc.
  • The panel core 76 may provide good thermal insulation properties and structural properties. The outer layers 72, 74 may add to those properties of the core and also may protect the panel core 76 from damage. The outer layers 72, 74 also may provide rigidity and support to the sandwich panel 70.
  • The sandwich panels may be any shape and size. In one embodiment, the sandwich panels are rectangular in shape and may be several meters, or more, in height and width. The sandwich panels also may be other shapes and sizes. The combination of the panel core 76 and outer layers 72, 74 create sandwich panels with high ultimate strength, which is the maximum stress the panels can withstand, and high tensile strength, which is the maximum amount of tensile stress that the panels can withstand before failure. The compressive strength of the panels is such that the panels may be used as both load bearing and non-load bearing walls. In one embodiment, the panels have a load capacity of at least 50 tons per square meter in the vertical direction (indicated by arrows V in FIG. 7) and 2 tons per square meter in the horizontal direction (indicated by arrows H in FIG. 7). The sandwich panels may have other strength characteristics as will be appreciated in the art.
  • Internal stiffeners may be integrated into the panel core 76 to increase the overall stiffness of the sandwich panel 70. In one embodiment, the stiffeners are made from materials having the same thermal expansion properties as the materials used to construct the panel, such that the stiffeners expand and contract with the rest of the panel when the panel is heated or cooled.
  • The stiffeners may be made from the same material used to construct the outer layers of the panel. The stiffeners may be made from composite materials and may be placed perpendicular to the top and bottom of the panels and spaced, for example, at distances of about 15 cm (centimeters), 25 cm, 50 cm, or 100 cm. Alternatively, the stiffeners may be placed at different angles, such as a 45-degree angle with respect to the top and bottom of the panel, or at another angle, as may be desired.
  • The bonding material used to connect the various components and elements of the house 10 may be any suitable bonding material such as epoxy, epoxy resin, glue, cement, adhesive, adhering material or another bonding material (these terms may be used interchangeably and equivalently herein). In one embodiment, the bonding material is more flexible or bendable than the sandwich panels, and may, for example, be four or five times more flexible than the panels. The flexibility of the bonding material, therefore, reduces the likelihood than the joints of the monolithic structure will break or split, and also transmits loads from one panel to another, across the joint. The bonding material may include filling components, such as, fiberglass or a fiberglass and resin mixture, and may, for example, be microfiber and Aerosil® material.
  • The sandwich panels may be customized by cutting and removing a portion of the panel, e.g., portions 27 (FIG. 1), to form openings for windows or doors. The openings 27 may be cut to any desired size to accommodate the installation of any size window or door. It will be appreciated that the panel can be customized in any manner desired to meet the specifications of an architectural or design plan. The sandwich panels also may be cut in other designs to accommodate other roof, wall, etc. arrangements. It also will be appreciated that while the windows, door and roof are described as being cut from a solid sandwich panel, the openings may be molded or otherwise formed in the panel.
  • Although the invention has been shown and described with respect to a certain preferred embodiment or embodiments, it is obvious that equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings.

Claims (21)

1. A method for forming a columnar structural element from a sandwich panel having first outer layer and a second outer layer separated from one another by a core, the second outer layer having a surface facing in a direction opposite the core, comprising:
forming a number of sets of recesses in the sandwich panel;
bending the sandwich panel at each set of recesses to form a columnar structural element such that the second outer layer forms at least a first inner corner at a first set of recesses and a second inner corner at a second set of recesses; and
applying bonding material across the first inner corner such that the bonding material contacts the surface of the second layer facing in a direction opposite the core on opposing sides of the first set of recesses.
2. The method of claim 1, wherein the forming of the sets of recesses includes forming a number of substantially continuous channels between a first end of the sandwich panel and a second end of the sandwich panel.
3. The method of claim 1, wherein the forming a number of sets of recesses comprises forming a first set of recesses and a second set of recesses, and wherein the bending includes bending the sandwich panel at the first set of recesses to form a first round corner, and bending the sandwich panel at the second set of recesses to form a second round corner.
4. The method of claim 3, wherein the forming a number of sets of recesses further comprises forming a third set of recesses and a fourth set of recesses, and wherein the bending includes bending the sandwich panel at the third set of recesses to form a third round corner, and bending the sandwich panel at the fourth set of recesses to form a fourth round corner.
5. The method of claim 1, wherein the bending of the sandwich panel at least partially bounds an area.
6. The method of claim 5, further comprising connecting at least one support member to the sandwich panel, wherein the support member is at least partially contained by the bounded area.
7. The method of claim 6, wherein connecting at least one support member to the sandwich panel includes applying bonding material.
8. The method of claim 1, wherein bending the sandwich panel forms a corner at each set of recesses, and wherein the method further comprises applying bonding material to at least one of the corners.
9. The method of claim 8, wherein the applying bonding material includes applying bonding material at a first inner corner formed in an area of a first set of recesses and applying bonding material at a second inner corner formed at an area of a second set of recesses.
10. The method of claim 1, further comprising securing the sandwich panel in the bent position for a period of time to allow the bonding material to cure.
11. The method of claim 10, wherein the forming a number of sets of recesses includes forming recesses having a triangular cross-section.
12. The method of claim 1, wherein adjacent surfaces of the recesses are angled such that the bending results in a 90-degree angle between a plane of the panel to one side of a set of recesses and a plane of the other side of the set of recesses.
13. The method of claim 1, further comprising connecting a first edge of the sandwich panel to a second edge of the sandwich panel.
14. A structural component comprising:
a sandwich panel having first outer layer and a second outer layer separated from one another by a core, the second outer layer having a surface facing in a direction opposite the core, and wherein the sandwich panel is bent to bound at least part of an area such that the second outer layer forms at least a first inner corner at a first set of recesses and a second inner corner at a second set of recesses;
a support member disposed inside the bounded area and connected to the sandwich panel to form a columnar structural component, the sandwich panel and the support member cooperative to form a columnar structural component having at least a first inner corner and a second inner corner formed by the second outer layer; and
bonding material applied across the first inner corner such that the bonding material contacts the surface of the second layer facing in a direction opposite the core on opposing sides of the first set of recesses.
15. The structural component of claim 14, wherein the sandwich panel includes a number of sets of recesses, wherein each set of recesses includes a number of substantially continuous channels between a first end of the sandwich panel and a second end of the sandwich panel.
16. The structural component of claim 14, wherein the sandwich panel includes a round corner in the area of each of the sets of recesses.
17. The structural component of claim 16, wherein each round corner includes a corresponding inner corner and bonding material applied to at least a portion of each inner corner.
18. The structural component of claim 15, wherein the sandwich panel includes four sets of recesses corresponding to a first, second, third and fourth round corner of the sandwich panel.
19. The structural component of claim 15, wherein the sandwich panel further comprises a first edge and a second edge, and wherein the sandwich panel is bent such that the first edge and the second edge are connected to each other.
20. A method for forming a column from a sandwich panel having first outer layer and a second outer layer separated from one another by a core, the second outer layer having a surface facing in a direction opposite the core, comprising:
bending the sandwich panel at the area of a first set of recesses and a second set of recesses to partially bound an area with the sandwich panel such that the second outer layer forms at least a first inner corner at the first set of recesses and a second inner corner at the second set of recesses;
applying bonding material across the first inner corner such that the bonding material contacts the surface of the second outer layer facing in a direction opposite the core on opposing sides of the first set of recesses;
connecting a support member to the sandwich panel, the support member at least partially within the bounded area; and
bending the sandwich panel at a third set of recesses and the fourth set of recesses to enclose the support member in the bounded area.
21. (canceled)
US13/804,904 2013-03-14 2013-03-14 Columnar structural component and method of forming Abandoned US20140260085A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/804,904 US20140260085A1 (en) 2013-03-14 2013-03-14 Columnar structural component and method of forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/804,904 US20140260085A1 (en) 2013-03-14 2013-03-14 Columnar structural component and method of forming

Publications (1)

Publication Number Publication Date
US20140260085A1 true US20140260085A1 (en) 2014-09-18

Family

ID=51520964

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/804,904 Abandoned US20140260085A1 (en) 2013-03-14 2013-03-14 Columnar structural component and method of forming

Country Status (1)

Country Link
US (1) US20140260085A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160208510A1 (en) * 2014-06-18 2016-07-21 Power Composites, Llc Composite Structural Support Arm
US20240110372A1 (en) * 2022-10-03 2024-04-04 Austin Decowski Building and construction apparatus and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160208510A1 (en) * 2014-06-18 2016-07-21 Power Composites, Llc Composite Structural Support Arm
US9546498B2 (en) * 2014-06-18 2017-01-17 Power Composites, Llc Composite structural support arm
US20170096831A1 (en) * 2014-06-18 2017-04-06 Power Composites, Llc Composite Structural Support Arm
US9790704B2 (en) * 2014-06-18 2017-10-17 Power Composites, Llc Composite structural support arm
US20240110372A1 (en) * 2022-10-03 2024-04-04 Austin Decowski Building and construction apparatus and method

Similar Documents

Publication Publication Date Title
US8782991B2 (en) Building roof structure having a round corner
US20090255213A1 (en) Sandwich panel with closed edge and methods of fabricating
US20090255204A1 (en) Straight joint for sandwich panels and method of fabricating same
US20100050549A1 (en) Joint of parallel sandwich panels
US12129648B2 (en) Wall assembly
JP6281713B2 (en) Method for constructing highly insulated building and building constructed by the method
WO2008005307A2 (en) Panel structure
WO2012051531A2 (en) Non-planar composite structural panel
US20100050542A1 (en) System and method of forming at least a portion of a reinforced roof structure from sandwich panels
US20090320387A1 (en) Sandwich panel ground anchor and ground preparation for sandwich panel structures
US20090313926A1 (en) Connection for sandwich panel and foundation
CN111630234A (en) Panel for building structures having a predetermined curvature and method of manufacturing the panel
WO2019217385A1 (en) Foam wall structures with high shear strength and methods for the manufacture thereof
US20090307995A1 (en) Roof construction joints made of sandwich panels
KR101173688B1 (en) Modular unit system with floor heating plate
US20090282777A1 (en) Angle joint for sandwich panels and method of fabricating same
US20140272311A1 (en) Composite sandwich panels and method of forming round corners in composite sandwich panels
US20140260085A1 (en) Columnar structural component and method of forming
KR101281849B1 (en) Modular unit with connector and floor heating plate
US8875475B2 (en) Multiple panel beams and methods
US20140260039A1 (en) Ceiling support construction and methods
US20140260053A1 (en) Columnar structural component and method of forming
KR101375028B1 (en) the insulation complex panel with structural wood and the construct method of wall therewith
KR101281843B1 (en) Modular unit with connector and floor heating plate
US20140260081A1 (en) Multiple panel column and methods

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION