US20150258279A1 - Intrathecal baclofen pharmaceutical dosage forms and related delivery system - Google Patents
Intrathecal baclofen pharmaceutical dosage forms and related delivery system Download PDFInfo
- Publication number
- US20150258279A1 US20150258279A1 US14/725,714 US201514725714A US2015258279A1 US 20150258279 A1 US20150258279 A1 US 20150258279A1 US 201514725714 A US201514725714 A US 201514725714A US 2015258279 A1 US2015258279 A1 US 2015258279A1
- Authority
- US
- United States
- Prior art keywords
- baclofen
- delivery system
- drug delivery
- aqueous solution
- filled syringe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- KPYSYYIEGFHWSV-UHFFFAOYSA-N Baclofen Chemical compound OC(=O)CC(CN)C1=CC=C(Cl)C=C1 KPYSYYIEGFHWSV-UHFFFAOYSA-N 0.000 title claims abstract description 88
- 229960000794 baclofen Drugs 0.000 title claims abstract description 85
- 238000007913 intrathecal administration Methods 0.000 title claims abstract description 18
- 239000002552 dosage form Substances 0.000 title abstract 2
- 229940071643 prefilled syringe Drugs 0.000 claims description 24
- 239000007864 aqueous solution Substances 0.000 claims description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 12
- 239000011780 sodium chloride Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000012377 drug delivery Methods 0.000 claims 17
- OVRPDYOZYMCTAK-UHFFFAOYSA-N 4-(4-chlorophenyl)pyrrolidin-2-one Chemical compound C1=CC(Cl)=CC=C1C1CC(=O)NC1 OVRPDYOZYMCTAK-UHFFFAOYSA-N 0.000 claims 2
- 238000001802 infusion Methods 0.000 abstract description 11
- 238000004806 packaging method and process Methods 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 49
- 239000011521 glass Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 229940079593 drug Drugs 0.000 description 9
- 239000003814 drug Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- DKHJWWRYTONYHB-UHFFFAOYSA-N CPP Chemical compound OC(=O)C(C)OC1=CC=C(Cl)C=C1 DKHJWWRYTONYHB-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000001954 sterilising effect Effects 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000003929 acidic solution Substances 0.000 description 3
- 239000003708 ampul Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000004448 titration Methods 0.000 description 3
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 239000003637 basic solution Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000009965 odorless effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 230000001663 anti-spastic effect Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229940126534 drug product Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009775 high-speed stirring Methods 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003158 myorelaxant agent Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000021962 pH elevation Effects 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 238000002444 silanisation Methods 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/315—Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
- A61M5/31533—Dosing mechanisms, i.e. setting a dose
- A61M5/31535—Means improving security or handling thereof, e.g. blocking means, means preventing insufficient dosing, means allowing correction of overset dose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
- A61K31/197—Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0085—Brain, e.g. brain implants; Spinal cord
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/315—Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M2005/3114—Filling or refilling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M2005/3125—Details specific display means, e.g. to indicate dose setting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/60—General characteristics of the apparatus with identification means
- A61M2205/6009—General characteristics of the apparatus with identification means for matching patient with his treatment, e.g. to improve transfusion security
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/60—General characteristics of the apparatus with identification means
- A61M2205/6063—Optical identification systems
- A61M2205/6081—Colour codes
Definitions
- the present invention relates generally to a syringe vial or vial that is filled in advance with a liquid to be injected. More specifically, the present invention is directed to pre-filled syringes and vials to fill and refill infusion systems with existing and new forms of intrathecal baclofen.
- Baclofen is a skeletal muscle relaxant and antispastic agent. Baclofen is a structural analog of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), and may exert its effects by stimulation of the GABA B receptor subtype. Baclofen is the generic (USAN) name (USP Dictionary of USAN and International Drug Names 2003) for 4-amino-3-(p-chlorophenyl)butyric acid, a derivative of ⁇ -aminobutyric acid. Its structural formula is:
- Baclofen is a white to off-white, odorless or practically odorless crystalline powder, with a molecular weight of 213.66 g/mol. It is slightly soluble in water, very slightly soluble in methanol, and insoluble in chloroform. Baclofen can be administered orally, but when injected directly into the intrathecal space of a patient effective cerebrospinal fluid (CSF) concentrations are achieved with resultant plasma concentrations 100 times less than those occurring with oral administrations.
- CSF cerebrospinal fluid
- baclofen solutions having concentrations in the range of about 3 to about 8 mg/mL can be obtained by mixing the appropriate quantity of baclofen with an aqueous diluent and heating the solution to a temperature of at least about 30° C., at least about 40° C., at least about 5° C., preferably at least about 60° C., and most preferably at least about 70° C. and a temperature of less than about 90° C., less than about 95° C., less than about 100° C., less than about 121° C., or most preferably less than the temperature at which baclofen thermal degrades to a significant degree.
- the heat is applied while simultaneously subjecting the solution to intense agitation, e.g. sonication, high-speed stirring, etc.
- the temperature range of at least about 60° C. to at less than about 100° C. is most preferred.
- Dissolution temperatures of 100° C. or higher that do not boil off the aqueous solvent can be obtained by means known to those of skill in the art, such as by increasing the atmospheric pressure that the solution is subjected to during heating.
- One common means of achieving this result is by autoclaving the solution.
- Stable baclofen solutions can be produced by acidification and back titration.
- Baclofen solutions having concentrations up to about 10.0 mg/mL can be prepared by dissolving baclofen in an acidic solution, preferably one having a pH lower than the pKa 1 of baclofen.
- pH values lower than about 3.87, lower than about 3.0, lower than about 2.0, lower than about 1.5, or even lower than a pH of about 1.0 can be used advantageously.
- the baclofen solution can be back titrated to a pH of 4.0 to 8.5 without precipitation of baclofen particulates.
- the titration is carried out by adding a base to the acidic solution until the pH is adjusted to a pH in the desired range.
- a final pH of 5.0 to 7.0 is currently preferred for baclofen solutions intended for pharmaceutical uses such as intrathecal injection, but pH ranges of 4.5 to 8.0 and of 4.0 to 8.5 can also be suitable for such uses. These pH ranges are intended to be illustrative of appropriate values for uses such as intrathecal injection.
- the appropriate pH ranges for any particular pharmaceutical application will be readily apparent to those skilled in the art, and the final pH of the baclofen solution can be any pharmaceutically acceptable pH appropriate for a given use.
- baclofen solutions prepared by this method can be stored at a pH that is not appropriate for a given pharmaceutical use so long as the solution is titrated to a pharmaceutically acceptable pH prior to administration.
- stable baclofen solutions can be produced by alkalinization and back titration. That is, solutions having concentrations of baclofen of about 10.0 mg/mL or lower can be prepared by dissolving baclofen in a basic solution, preferably one having a pH higher than the pKa 2 of baclofen. For example, solutions of pH higher than about 9.62, higher than about 10.0, higher than about 11.0, higher than about 12.0, and even higher than the pH of about 13.0 can be used advantageously.
- the pH can be back titrated to a pH of about 4.0 to 8.5, or preferably can be titrated to a pH of 5.0 to 7.0, or to other pH values appropriate for pharmaceutical uses such as intrathecal injection, as discussed above.
- pharmaceutical or otherwise, or during storage prior to use the baclofen solution can be titrated to a lower pH or can be maintained for some period of time at the original basic pH.
- intrathecal baclofen is stored in ampoules.
- Typical procedure for filling infusion systems includes breaking the ampoules to open them, removing the drug from the ampoule and filtering it using a syringe with an in-line filter and needle, removing the needle from the syringe and replacing it with a catheter that includes a second in-line filter and needle.
- the needle is then inserted through the skin into the implanted pump reservoir and the fluid is dispensed and filtered, filling the infusion system reservoir with the drug.
- This process may need to be done from 1 to 4 times for a single filling, depending on the reservoir size and the ampoule configuration selected. There are multiple issues with the current process and the need to enhance safety with intrathecal drugs is paramount.
- pre-filled means containing an exact, pre-determined dose of a sterile pharmaceutical composition.
- the present invention implements a pre-filled syringe that is ready for immediate delivery to the infusion system.
- the packaging system includes a syringe with a leur-lock tip filled with intrathecal baclofen, a color coding system (label) for the various concentrations of the drug product and size of syringe, a package, a label, and instructions for use.
- the pre-filled syringe is easier to use because the practitioner does not have to draw up and filter the drug while administering the therapy to the patient.
- the syringe's label or plunger is color coded by concentration and syringe sizes, thereby reducing practitioner error and increasing safety to the recipient. Higher concentration formulations will be available to reduce the number of times the recipient must be injected with the needle.
- the pre-filled syringe also eliminates the potential of contamination of the drug with glass particles from the ampoule, bacteria and the like.
- FIG. 1 is an illustration of the pre-filled syringe according to an exemplary embodiment.
- FIG. 2 is an illustration of the pre-filled syringe as used with an infusion system.
- the barrel 14 is made of glass or plastic having two open ends.
- the pre-filled syringe 10 can have sizes of 5 milliliters, 20 milliliters, or 40 milliliters.
- One end of the barrel 14 is closed off by a plunger 11 that forces the medical liquid (not shown) to the other end of the barrel 14 when dispensing.
- a gasket 12 is attached to the plunger 11 for sealing the medical liquid in the barrel 14 .
- the gasket 12 is made of a rubbery elastic material, such as natural rubber or synthetic rubber.
- the dispensing end of the barrel 14 is dosed off by a leur-lock tip 13 .
- the leer-lock tip 13 mates with the infusion system for dispensing the medical liquid.
- the pre-filled syringe 10 is filled with a medical fluid, in particular, intrathecal baclofen.
- the solution comprises baclofen USP, Sodium Chloride, and water and is approved by the Food and Drug Administration,
- the solution is formed aseptically, is terminally sterilized as described below, and inserted into sterilized syringes.
- the dosages of intrathecal baclofen are 2.5 milligrams per 5 milliliters, 40 milligrams per 20 milliliters, 80 milligrams per 40 milliliters, 80 milligrams in 20 milliliters, or 160 milligrams in 40 milliliters.
- each pre-filled syringe 10 has a distinct color for identifying the dosages.
- the color-coded system further helps to eliminate practitioner error of injecting the wrong dose.
- the product is packaged, labeled, and sterilized.
- FIG. 2 displays the pre-filled syringe 10 as used with the pump system.
- Pump refill kits are commercially available from Medtronic® and include a catheter 23 for connecting the pre-filled syringe to the pump 21 .
- Intrathecal baclofen may be dispensed from the pre-filled syringe 10 , through the catheter 23 , into the pump 21 without the baclofen being drawn and filtered.
- the pump 21 then pumps the intrathecal baclofen through a second catheter 22 to a desired location in the body.
- the pre-filled syringe can be used with the Medtronic SynchroMed Infusion System®, the Johnson and Johnson Codman® division pumps, and InSet® technologies pumps.
- the baclofen may be stored in a vial.
- the vial can be made of glass or plastic. It may be closed off at the top by a stopper with crimp top. Flip off tops may be used for tamper proof and color coding. Color coding is done by concentration and syringe sizes, thereby reducing practitioner error and increasing safety to the recipient. Types of stopper that may be used include rubber and plastic.
- the size of the vial may be 20 milliliters or 40 milliliters. In the 20 milliliter vial, the concentration of intrathecal baclofen may be 500 micrograms per milliliter, 2000 micrograms per milliliter, or 4000 micrograms per milliliter. In the 40 milliliter vial, the concentration of baclofen may be 2000 micrograms per milliliter or 4000 micrograms per milliliter.
- the baclofen solution is aseptically inserted into vials and the vials are terminally sterilized.
- Common sterilization protocols call for heating the solution to 121.1° C. with a sterilization time (F 0 ) of about 30 minutes.
- F 0 sterilization time
- Baclofen is heat-sensitive and forms a poorly soluble degradation product, 4-(4-chloropheyl)-2-pryyolidone (4-CPP), upon exposure to heat.
- baclofen solutions sterilized by moist heat contain up to 1.4 wt % of 4-CPP, which is higher than the permissible level for the marketed product (Sigg et al., Solubility and Stability of Intrathecal Baclofen Solutions at High Concentrations: Implications for Chronic Use in the SynchroMed Infusion System, White Paper 2007, Minneapolis: Medtronic Neurological). Therefore, it is desirable to find and implement a sterilization method that utilizes less harsh conditions in order to prevent this thermal degradation from taking place, while continuing to meet sterility standards. Accordingly, vials containing baclofen solutions are steam heated at 121.1° C. for a F 0 of 7 minutes.
- Said terminally sterilized baclofen solutions contain less than 0.5 wt % of 4-CPP.
- the level of 4-CPP in said terminally sterilized baclofen solutions is less than that in previous formulations.
- Lioresal Intrathecal (Medtronic) contains 0.6 wt % of 4-CPP.
- baclofen solution Because the vials of baclofen solution are terminally sterilized, there is no need to filter the baclofen solution before use. This leads to an overall reduction in time needed to administer the baclofen solution versus the existing delivery methods which involve cracking open the ampoules and filtering the solution before administration to a patient in need, and additionally reduces the potential of practitioner error and thereby increases the safety of the recipient.
- the method of processing the vials may cause baclofen to precipitate from solution or adsorb to the surface of the glass vial. Therefore, treating the glass vials with a coating intended to deactivate the reactivity of the glass surface may prevent this unwanted precipitation. This coating typically reacts with the hydroxyl groups of the glass and forms a more stable covalent bond. Silanization is one method of deactivating the glass surface, wherein the glass surface is reacted with silanes. The hydroxyl groups of the glass attack and displace the alkoxy groups on the silane thus forming a covalent —Si—O—Si— bond, rendering the glass surface inert.
- the vial described herein is coated with a compound that deactivates the glass surface, so possible reactions between baclofen and the glass are eliminated.
- Possible vials with this coating include vials treated with SCHOTT Type I plus® coating technology.
- the vial described herein is silanized to prevent adsorption and precipitation of baclofen.
- baclofen The presence of oxygen may lead to the oxidation of baclofen.
- a blanket of nitrogen gas is laid across the vials before they are sealed to displace any oxygen present. Oxidation of the baclofen solution in syringes is minimized by the lack of head space in the syringes, which limits the presence of any gases, including oxygen, within the syringe.
- the baclofen solution is stored under a nitrogen atmosphere within the vial.
- a baclofen solutions described above were aseptically transferred to vials.
- the vials containing the solution were then steam-heated to 121.1° C. so that the F 0 for the resulting terminally sterilized solution was 7 minutes.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- Vascular Medicine (AREA)
- Anesthesiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Psychology (AREA)
- Inorganic Chemistry (AREA)
- Dermatology (AREA)
- Medical Preparation Storing Or Oral Administration Devices (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This application is a continuation-in-part application of U.S. patent application Ser. No. 12/403,190, filed Mar. 12, 2009, which claims the benefit of priority of U.S. Provisional Application No. 61/037,544, filed Mar. 18, 2008, and a continuation-in-part application of U.S. patent application Ser. No. 14/574,733, filed Dec. 18, 2014, which is a continuation of U.S. patent application Ser. No. 12/701,342 (now U.S. Pat. No. 8,969,414), filed Feb. 5, 2010, which claims the benefit of priority of U.S. Provisional Application No. 61/150,337, filed Feb. 6, 2009, the disclosure of which are hereby incorporated by reference in their entireties.
- The present invention relates generally to a syringe vial or vial that is filled in advance with a liquid to be injected. More specifically, the present invention is directed to pre-filled syringes and vials to fill and refill infusion systems with existing and new forms of intrathecal baclofen.
- Baclofen is a skeletal muscle relaxant and antispastic agent. Baclofen is a structural analog of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), and may exert its effects by stimulation of the GABAB receptor subtype. Baclofen is the generic (USAN) name (USP Dictionary of USAN and International Drug Names 2003) for 4-amino-3-(p-chlorophenyl)butyric acid, a derivative of γ-aminobutyric acid. Its structural formula is:
- Baclofen is a white to off-white, odorless or practically odorless crystalline powder, with a molecular weight of 213.66 g/mol. It is slightly soluble in water, very slightly soluble in methanol, and insoluble in chloroform. Baclofen can be administered orally, but when injected directly into the intrathecal space of a patient effective cerebrospinal fluid (CSF) concentrations are achieved with resultant plasma concentrations 100 times less than those occurring with oral administrations.
- As indicated in US patent application 2006/0009523, which is hereby incorporated by reference, baclofen solutions having concentrations in the range of about 3 to about 8 mg/mL can be obtained by mixing the appropriate quantity of baclofen with an aqueous diluent and heating the solution to a temperature of at least about 30° C., at least about 40° C., at least about 5° C., preferably at least about 60° C., and most preferably at least about 70° C. and a temperature of less than about 90° C., less than about 95° C., less than about 100° C., less than about 121° C., or most preferably less than the temperature at which baclofen thermal degrades to a significant degree. The heat is applied while simultaneously subjecting the solution to intense agitation, e.g. sonication, high-speed stirring, etc. The temperature range of at least about 60° C. to at less than about 100° C. is most preferred. Further, it is generally preferable, although not required, that the aqueous solution be heated to a temperature lower than its boiling point to prevent significant evaporation of the aqueous solvent during dissolution. Dissolution temperatures of 100° C. or higher that do not boil off the aqueous solvent can be obtained by means known to those of skill in the art, such as by increasing the atmospheric pressure that the solution is subjected to during heating. One common means of achieving this result is by autoclaving the solution.
- Stable baclofen solutions can be produced by acidification and back titration. Baclofen solutions having concentrations up to about 10.0 mg/mL can be prepared by dissolving baclofen in an acidic solution, preferably one having a pH lower than the pKa1 of baclofen. For example, pH values lower than about 3.87, lower than about 3.0, lower than about 2.0, lower than about 1.5, or even lower than a pH of about 1.0 can be used advantageously. Surprisingly, once the baclofen has been dissolved in the acidic solution, and prior to pharmaceutical administration, the baclofen solution can be back titrated to a pH of 4.0 to 8.5 without precipitation of baclofen particulates. The titration is carried out by adding a base to the acidic solution until the pH is adjusted to a pH in the desired range. A final pH of 5.0 to 7.0 is currently preferred for baclofen solutions intended for pharmaceutical uses such as intrathecal injection, but pH ranges of 4.5 to 8.0 and of 4.0 to 8.5 can also be suitable for such uses. These pH ranges are intended to be illustrative of appropriate values for uses such as intrathecal injection. The appropriate pH ranges for any particular pharmaceutical application will be readily apparent to those skilled in the art, and the final pH of the baclofen solution can be any pharmaceutically acceptable pH appropriate for a given use. In addition, baclofen solutions prepared by this method can be stored at a pH that is not appropriate for a given pharmaceutical use so long as the solution is titrated to a pharmaceutically acceptable pH prior to administration.
- Alternately, stable baclofen solutions can be produced by alkalinization and back titration. That is, solutions having concentrations of baclofen of about 10.0 mg/mL or lower can be prepared by dissolving baclofen in a basic solution, preferably one having a pH higher than the pKa2 of baclofen. For example, solutions of pH higher than about 9.62, higher than about 10.0, higher than about 11.0, higher than about 12.0, and even higher than the pH of about 13.0 can be used advantageously. Once the baclofen is dissolved in the basic solution the pH can be back titrated to a pH of about 4.0 to 8.5, or preferably can be titrated to a pH of 5.0 to 7.0, or to other pH values appropriate for pharmaceutical uses such as intrathecal injection, as discussed above. For use in other applications, pharmaceutical or otherwise, or during storage prior to use the baclofen solution can be titrated to a lower pH or can be maintained for some period of time at the original basic pH.
- Presently, intrathecal baclofen is stored in ampoules. Typical procedure for filling infusion systems includes breaking the ampoules to open them, removing the drug from the ampoule and filtering it using a syringe with an in-line filter and needle, removing the needle from the syringe and replacing it with a catheter that includes a second in-line filter and needle. The needle is then inserted through the skin into the implanted pump reservoir and the fluid is dispensed and filtered, filling the infusion system reservoir with the drug. This process may need to be done from 1 to 4 times for a single filling, depending on the reservoir size and the ampoule configuration selected. There are multiple issues with the current process and the need to enhance safety with intrathecal drugs is paramount.
- As used herein, the terms below have the meanings indicated.
- The term “pre-filled,” as used herein, means containing an exact, pre-determined dose of a sterile pharmaceutical composition.
- The present invention implements a pre-filled syringe that is ready for immediate delivery to the infusion system. The packaging system includes a syringe with a leur-lock tip filled with intrathecal baclofen, a color coding system (label) for the various concentrations of the drug product and size of syringe, a package, a label, and instructions for use.
- Since the drug in the syringe is already prepared, the process of drawing up and filtering the drug into a syringe prior to refilling the infusion system is eliminated. Eliminating this process makes filling and refilling the infusion system safer and easier. The pre-filled syringe is easier to use because the practitioner does not have to draw up and filter the drug while administering the therapy to the patient. The syringe's label or plunger is color coded by concentration and syringe sizes, thereby reducing practitioner error and increasing safety to the recipient. Higher concentration formulations will be available to reduce the number of times the recipient must be injected with the needle. The pre-filled syringe also eliminates the potential of contamination of the drug with glass particles from the ampoule, bacteria and the like.
- Further features and advantages of the invention, as well as the structure and operation of various embodiments of the invention, are described in detail below.
-
FIG. 1 is an illustration of the pre-filled syringe according to an exemplary embodiment. -
FIG. 2 is an illustration of the pre-filled syringe as used with an infusion system. - The
barrel 14 is made of glass or plastic having two open ends. Thepre-filled syringe 10 can have sizes of 5 milliliters, 20 milliliters, or 40 milliliters. One end of thebarrel 14 is closed off by aplunger 11 that forces the medical liquid (not shown) to the other end of thebarrel 14 when dispensing. Agasket 12 is attached to theplunger 11 for sealing the medical liquid in thebarrel 14. Thegasket 12 is made of a rubbery elastic material, such as natural rubber or synthetic rubber. The dispensing end of thebarrel 14 is dosed off by a leur-lock tip 13. The leer-lock tip 13 mates with the infusion system for dispensing the medical liquid. - The
pre-filled syringe 10 is filled with a medical fluid, in particular, intrathecal baclofen. The solution comprises baclofen USP, Sodium Chloride, and water and is approved by the Food and Drug Administration, The solution is formed aseptically, is terminally sterilized as described below, and inserted into sterilized syringes. The dosages of intrathecal baclofen are 2.5 milligrams per 5 milliliters, 40 milligrams per 20 milliliters, 80 milligrams per 40 milliliters, 80 milligrams in 20 milliliters, or 160 milligrams in 40 milliliters. The available high concentrations and large syringe sizes eliminate the need for multiple operations to fill the pump reservoir, thus reducing the potential of practitioner error and thereby increasing the safety of the recipient. Further, the syringes have minimal head space, which leads to a decrease in degradation of the baclofen solution via oxidation. The label orplunger 11 of eachpre-filled syringe 10 has a distinct color for identifying the dosages. The color-coded system further helps to eliminate practitioner error of injecting the wrong dose. The product is packaged, labeled, and sterilized. -
FIG. 2 displays thepre-filled syringe 10 as used with the pump system. Pump refill kits are commercially available from Medtronic® and include acatheter 23 for connecting the pre-filled syringe to thepump 21. Intrathecal baclofen may be dispensed from thepre-filled syringe 10, through thecatheter 23, into thepump 21 without the baclofen being drawn and filtered. Thepump 21 then pumps the intrathecal baclofen through asecond catheter 22 to a desired location in the body. The pre-filled syringe can be used with the Medtronic SynchroMed Infusion System®, the Johnson and Johnson Codman® division pumps, and InSet® technologies pumps. - In an alternative embodiment, the baclofen may be stored in a vial. The vial can be made of glass or plastic. It may be closed off at the top by a stopper with crimp top. Flip off tops may be used for tamper proof and color coding. Color coding is done by concentration and syringe sizes, thereby reducing practitioner error and increasing safety to the recipient. Types of stopper that may be used include rubber and plastic. The size of the vial may be 20 milliliters or 40 milliliters. In the 20 milliliter vial, the concentration of intrathecal baclofen may be 500 micrograms per milliliter, 2000 micrograms per milliliter, or 4000 micrograms per milliliter. In the 40 milliliter vial, the concentration of baclofen may be 2000 micrograms per milliliter or 4000 micrograms per milliliter.
- The baclofen solution is aseptically inserted into vials and the vials are terminally sterilized. Common sterilization protocols call for heating the solution to 121.1° C. with a sterilization time (F0) of about 30 minutes. Baclofen, however, is heat-sensitive and forms a poorly soluble degradation product, 4-(4-chloropheyl)-2-pryyolidone (4-CPP), upon exposure to heat. For example, baclofen solutions sterilized by moist heat contain up to 1.4 wt % of 4-CPP, which is higher than the permissible level for the marketed product (Sigg et al., Solubility and Stability of Intrathecal Baclofen Solutions at High Concentrations: Implications for Chronic Use in the SynchroMed Infusion System, White Paper 2007, Minneapolis: Medtronic Neurological). Therefore, it is desirable to find and implement a sterilization method that utilizes less harsh conditions in order to prevent this thermal degradation from taking place, while continuing to meet sterility standards. Accordingly, vials containing baclofen solutions are steam heated at 121.1° C. for a F0 of 7 minutes. Said terminally sterilized baclofen solutions contain less than 0.5 wt % of 4-CPP. The level of 4-CPP in said terminally sterilized baclofen solutions is less than that in previous formulations. For example, Lioresal Intrathecal (Medtronic) contains 0.6 wt % of 4-CPP.
- Because the vials of baclofen solution are terminally sterilized, there is no need to filter the baclofen solution before use. This leads to an overall reduction in time needed to administer the baclofen solution versus the existing delivery methods which involve cracking open the ampoules and filtering the solution before administration to a patient in need, and additionally reduces the potential of practitioner error and thereby increases the safety of the recipient.
- The method of processing the vials may cause baclofen to precipitate from solution or adsorb to the surface of the glass vial. Therefore, treating the glass vials with a coating intended to deactivate the reactivity of the glass surface may prevent this unwanted precipitation. This coating typically reacts with the hydroxyl groups of the glass and forms a more stable covalent bond. Silanization is one method of deactivating the glass surface, wherein the glass surface is reacted with silanes. The hydroxyl groups of the glass attack and displace the alkoxy groups on the silane thus forming a covalent —Si—O—Si— bond, rendering the glass surface inert.
- In another embodiment, the vial described herein is coated with a compound that deactivates the glass surface, so possible reactions between baclofen and the glass are eliminated. Possible vials with this coating include vials treated with SCHOTT Type I plus® coating technology.
- In a further embodiment, the vial described herein is silanized to prevent adsorption and precipitation of baclofen.
- The presence of oxygen may lead to the oxidation of baclofen. In order to reduce the chances of oxidation of the baclofen solution while in vials, a blanket of nitrogen gas is laid across the vials before they are sealed to displace any oxygen present. Oxidation of the baclofen solution in syringes is minimized by the lack of head space in the syringes, which limits the presence of any gases, including oxygen, within the syringe.
- In yet another embodiment, the baclofen solution is stored under a nitrogen atmosphere within the vial.
- From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.
- To 1 L of hot water was added 630.0 g sodium chloride, and the mixture was stirred for 10±2 minutes. To the resulting solution was added 280.0 g baclofen and 2 L hot water. The mixture was then stirred for 45 minutes. The resulting solution was diluted to 70 L with hot water and stirred for at least an additional 10 minutes.
- To 1 L of hot water is added 315.0 g sodium chloride, and the mixture is stirred for 10±2 minutes. To the resulting solution is added 140.0 g baclofen and 2 L hot water. The mixture is then stirred for 45 minutes. The resulting solution is diluted to 70 L with hot water and stirred for at least an additional 10 minutes.
- To 1 L of hot water was added 78.75 g sodium chloride, and the mixture was stirred for 10±2 minutes. To the resulting solution was added 35.0 g baclofen and 2 L hot water. The mixture was then stirred for 45 minutes. The resulting solution was diluted to 70 L with hot water and stirred for at least an additional 10 minutes.
- A baclofen solutions described above were aseptically transferred to vials. The vials containing the solution were then steam-heated to 121.1° C. so that the F0 for the resulting terminally sterilized solution was 7 minutes.
- The percent of 4-CPP found in 0.5 mg/mL and 4.0 mg/mL baclofen solutions prepared as described above is presented in the tale below.
-
Baclofen solution Percent (wt %) of 4-CPP 0.5 mg/mL (#2118-101) 0.346 0.5 mg/mL (#2118-102) 0.436 0.5 mg/mL (#2118-103) 0.39 4.0 mg/mL (#2133-101) 0.377 4.0 mg/mL (#2133-102) 0.415 4.0 mg/mL (#2137-101) 0.442
Claims (17)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/725,714 US20150258279A1 (en) | 2008-03-18 | 2015-05-29 | Intrathecal baclofen pharmaceutical dosage forms and related delivery system |
| US15/014,893 US11147926B2 (en) | 2008-03-18 | 2016-02-03 | Intrathecal baclofen pharmaceutical dosage forms and related delivery system |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US3754408P | 2008-03-18 | 2008-03-18 | |
| US15033709P | 2009-02-06 | 2009-02-06 | |
| US12/403,190 US20110269836A1 (en) | 2008-03-18 | 2009-03-12 | Intrathecal baclofen pharmaceutical dosage forms and related delivery system |
| US12/701,342 US8969414B2 (en) | 2009-02-06 | 2010-02-05 | Intrathecal baclofen pharmaceutical dosage forms with fewer degradation products |
| US14/574,733 US9474732B2 (en) | 2009-02-06 | 2014-12-18 | Intrathecal baclofen pharmaceutical dosage forms with fewer degradation products |
| US14/725,714 US20150258279A1 (en) | 2008-03-18 | 2015-05-29 | Intrathecal baclofen pharmaceutical dosage forms and related delivery system |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/403,190 Continuation-In-Part US20110269836A1 (en) | 2008-03-18 | 2009-03-12 | Intrathecal baclofen pharmaceutical dosage forms and related delivery system |
| US14/574,733 Continuation-In-Part US9474732B2 (en) | 2008-03-18 | 2014-12-18 | Intrathecal baclofen pharmaceutical dosage forms with fewer degradation products |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/014,893 Continuation US11147926B2 (en) | 2008-03-18 | 2016-02-03 | Intrathecal baclofen pharmaceutical dosage forms and related delivery system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20150258279A1 true US20150258279A1 (en) | 2015-09-17 |
Family
ID=54067817
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/725,714 Abandoned US20150258279A1 (en) | 2008-03-18 | 2015-05-29 | Intrathecal baclofen pharmaceutical dosage forms and related delivery system |
| US15/014,893 Active 2029-05-03 US11147926B2 (en) | 2008-03-18 | 2016-02-03 | Intrathecal baclofen pharmaceutical dosage forms and related delivery system |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/014,893 Active 2029-05-03 US11147926B2 (en) | 2008-03-18 | 2016-02-03 | Intrathecal baclofen pharmaceutical dosage forms and related delivery system |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US20150258279A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9474732B2 (en) | 2009-02-06 | 2016-10-25 | Mallinckrodt Llc | Intrathecal baclofen pharmaceutical dosage forms with fewer degradation products |
| US11097023B1 (en) * | 2020-07-02 | 2021-08-24 | Par Pharmaceutical, Inc. | Pre-filled syringe containing sugammadex |
| US11147926B2 (en) | 2008-03-18 | 2021-10-19 | Piramal Critical Care, Inc. | Intrathecal baclofen pharmaceutical dosage forms and related delivery system |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10195347B1 (en) | 2017-06-13 | 2019-02-05 | Jacquelyn Berkman | Auto-illuminating syringe |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060009523A1 (en) * | 2004-07-12 | 2006-01-12 | Board Of Regents, The University Of Texas System | High concentration baclofen preparations |
| US20060084925A1 (en) * | 2004-10-20 | 2006-04-20 | Ramsahoye J W M | Medical syringe with colored plunger and transparent barrel assembly |
Family Cites Families (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS63253022A (en) | 1987-04-08 | 1988-10-20 | Nitto Electric Ind Co Ltd | Baclofen topical preparation |
| FR2662354B1 (en) | 1990-05-23 | 1994-10-07 | Adir | USE OF BACLOFENE FOR OBTAINING MEDICINAL PRODUCTS FOR THE TREATMENT OF ANGINA OF CHEST. |
| US5256154A (en) | 1992-01-31 | 1993-10-26 | Sterling Winthrop, Inc. | Pre-filled plastic syringes and containers and method of terminal sterilization thereof |
| WO1996024330A1 (en) | 1995-02-10 | 1996-08-15 | Medtronic, Inc. | Method and device for administering analgesics |
| EP1202720A4 (en) | 1999-08-10 | 2004-02-25 | Uab Research Foundation | USE OF GABA AGONISTS FOR THE TREATMENT OF SPASTIC DISEASES, CONVULSIONS AND EPILEPSY |
| US6629954B1 (en) | 2000-01-31 | 2003-10-07 | Medtronic, Inc. | Drug delivery pump with isolated hydraulic metering |
| US6380176B2 (en) | 2000-03-28 | 2002-04-30 | Ajinomoto Co., Inc. | Method for inhibiting non-intentional behavior with a running neuron inhibitory substance |
| US6754536B2 (en) | 2001-01-31 | 2004-06-22 | Medtronic, Inc | Implantable medical device affixed internally within the gastrointestinal tract |
| US6632217B2 (en) | 2001-04-19 | 2003-10-14 | Microsolutions, Inc. | Implantable osmotic pump |
| US6969383B2 (en) | 2002-09-27 | 2005-11-29 | Medtronic, Inc. | Method for treating severe tinnitus |
| DE60326393D1 (en) | 2002-12-23 | 2009-04-09 | Medtronic Inc | SYSTEMS AND METHODS FOR ADJUSTING THE DENSITY OF A MEDICAL SOLUTION |
| JP2004229750A (en) | 2003-01-28 | 2004-08-19 | Nipro Corp | Prefilled syringe and production method for barrel thereof |
| CA2524538A1 (en) | 2003-05-19 | 2004-12-02 | Baxter International Inc. | Solid particles comprising an anticonvulsant or an immunosuppressive coated with one or more surface modifiers |
| US20050004219A1 (en) | 2003-07-01 | 2005-01-06 | Medtronic, Inc. | Pump systems including injectable gabapentin compositions |
| US20050090554A1 (en) | 2003-09-12 | 2005-04-28 | John Devane | Treatment of gastroparesis and nonulcer dyspepsia with GABAB agonists |
| US8083722B2 (en) | 2005-04-29 | 2011-12-27 | Warsaw Orthopedic, Inc | Instrumentation for injection of therapeutic fluid into joints |
| US20150258279A1 (en) | 2008-03-18 | 2015-09-17 | Mallinckrodt Llc | Intrathecal baclofen pharmaceutical dosage forms and related delivery system |
| US8969414B2 (en) | 2009-02-06 | 2015-03-03 | Mallinckrodt Llc | Intrathecal baclofen pharmaceutical dosage forms with fewer degradation products |
| US20110269836A1 (en) | 2008-03-18 | 2011-11-03 | Cns Therapeutics, Inc. | Intrathecal baclofen pharmaceutical dosage forms and related delivery system |
| US20100106097A1 (en) | 2008-10-29 | 2010-04-29 | Medtronic, Inc. | Drug acceptability indicator |
| ES2954743T3 (en) | 2011-07-22 | 2023-11-24 | Piramal Critical Care Inc | Intrathecal baclofen pharmaceutical formulations and related delivery system |
-
2015
- 2015-05-29 US US14/725,714 patent/US20150258279A1/en not_active Abandoned
-
2016
- 2016-02-03 US US15/014,893 patent/US11147926B2/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060009523A1 (en) * | 2004-07-12 | 2006-01-12 | Board Of Regents, The University Of Texas System | High concentration baclofen preparations |
| US20060084925A1 (en) * | 2004-10-20 | 2006-04-20 | Ramsahoye J W M | Medical syringe with colored plunger and transparent barrel assembly |
Non-Patent Citations (1)
| Title |
|---|
| Boca et al. (Pharmaceutical Technology (September 2002), pp. 62-70) * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11147926B2 (en) | 2008-03-18 | 2021-10-19 | Piramal Critical Care, Inc. | Intrathecal baclofen pharmaceutical dosage forms and related delivery system |
| US9474732B2 (en) | 2009-02-06 | 2016-10-25 | Mallinckrodt Llc | Intrathecal baclofen pharmaceutical dosage forms with fewer degradation products |
| US11097023B1 (en) * | 2020-07-02 | 2021-08-24 | Par Pharmaceutical, Inc. | Pre-filled syringe containing sugammadex |
Also Published As
| Publication number | Publication date |
|---|---|
| US20160151575A1 (en) | 2016-06-02 |
| US11147926B2 (en) | 2021-10-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN1138541C (en) | Pharmaceutically stable oxaliplatinum prepn. | |
| US11147926B2 (en) | Intrathecal baclofen pharmaceutical dosage forms and related delivery system | |
| US10420740B2 (en) | Baclofen formulations and methods for making same | |
| US9474732B2 (en) | Intrathecal baclofen pharmaceutical dosage forms with fewer degradation products | |
| CN111481501B (en) | Ketorolac tromethamine injection capable of reducing irritation and free of organic solvent | |
| KR20020093839A (en) | Esmolol Formulation | |
| US20110269836A1 (en) | Intrathecal baclofen pharmaceutical dosage forms and related delivery system | |
| EP2548594B1 (en) | Intrathecal baclofen pharmaceutical dosage forms and related delivery system | |
| KR20090064470A (en) | Packaging systems for pharmaceutical compositions and kits for intravenous administration | |
| EP2170313A2 (en) | Aqueous formulations of acetaminophen for injection | |
| EP4362912A1 (en) | Aqueous, room-temperature stable rocuronium composition | |
| CN104922060B (en) | A kind of Ibandronate composition | |
| CN116059327B (en) | A lysozyme nasal spray and preparation method thereof | |
| RU2184533C1 (en) | Method of preparing pharmaceutical composition solution based on substance of gene engineering (recombinant) human insulin | |
| JP2023535037A (en) | Suxamethonium composition and its pre-filled syringe | |
| EP1682149B1 (en) | Injectable gabapentin compositions | |
| EP3331524A1 (en) | Pharmaceutical composition comprising sumatripan for treating migraine | |
| WO2017023361A1 (en) | Pharmaceutical composition comprising sumatripan for treating migraine | |
| CN1518984A (en) | Preparation of non-intestinal tract administration Adefovir and Adefovir Dipivixi |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT, NEW YORK Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:MALLINCKRODT LLC;REEL/FRAME:039237/0147 Effective date: 20160615 Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:MALLINCKRODT LLC;REEL/FRAME:039237/0147 Effective date: 20160615 |
|
| AS | Assignment |
Owner name: MALLINCKRODT LLC, MISSOURI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FOSTER, JOHN J.;PRENTICE, THOMAS R.;STRANTZ, ANGELA A.;SIGNING DATES FROM 20151109 TO 20160927;REEL/FRAME:039867/0954 |
|
| AS | Assignment |
Owner name: PIRAMAL CRITICAL CARE LIMITED, ENGLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MALLINCKRODT LLC;REEL/FRAME:042612/0980 Effective date: 20170317 |
|
| AS | Assignment |
Owner name: STANDARD CHARTERED BANK, UNITED KINGDOM Free format text: SECURITY AGREEMENT;ASSIGNOR:PIRAMEL CRITICAL CARE LIMITED;REEL/FRAME:046181/0425 Effective date: 20180531 |
|
| AS | Assignment |
Owner name: STANDARD CHARTERED BANK, UNITED KINGDOM Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF THE ASSIGNOR, SHOULD BE PIRAMAL CRITICAL CARE LIMITED PREVIOUSLY RECORDED ON REEL 046181 FRAME 0425. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNOR:PIRAMAL CRITICAL CARE LIMITED;REEL/FRAME:047949/0237 Effective date: 20180601 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
| STCV | Information on status: appeal procedure |
Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER |
|
| AS | Assignment |
Owner name: PIRAMAL CRITICAL CARE LIMITED, UNITED KINGDOM Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:STANDARD CHARTERED BANK;REEL/FRAME:050201/0397 Effective date: 20190827 |
|
| AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT Free format text: SECURITY INTEREST;ASSIGNOR:PIRAMAL CRITICAL CARE, INC.;REEL/FRAME:050225/0138 Effective date: 20190830 Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:PIRAMAL CRITICAL CARE, INC.;REEL/FRAME:050225/0138 Effective date: 20190830 |
|
| AS | Assignment |
Owner name: PIRAMAL CRITICAL CARE, INC., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PIRAMAL CRITICAL CARE LIMITED;REEL/FRAME:050256/0158 Effective date: 20190827 |
|
| AS | Assignment |
Owner name: MALLINCKRODT LLC, COLORADO Free format text: RELEASE OF SECURITY INTEREST IN PATENT COLLATERAL RECORDED AT REEL 032480, FRAME 0001 AND REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:050610/0463 Effective date: 20190930 |
|
| STCV | Information on status: appeal procedure |
Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED |
|
| STCV | Information on status: appeal procedure |
Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS |
|
| STCV | Information on status: appeal procedure |
Free format text: BOARD OF APPEALS DECISION RENDERED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |
|
| AS | Assignment |
Owner name: PIRAMAL CRITICAL CARE, INC., PENNSYLVANIA Free format text: RELEASE OF SECURITY INTEREST RECORDED AT REEL/FRAME 050225/0138;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:061569/0097 Effective date: 20220928 |
|
| AS | Assignment |
Owner name: INO THERAPEUTICS LLC, MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: IKARIA THERAPEUTICS LLC, NEW JERSEY Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: THERAKOS, INC., MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: ST SHARED SERVICES LLC, MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: INFACARE PHARMACEUTICAL CORPORATION, MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: MALLINCKRODT PHARMA IP TRADING UNLIMITED COMPANY (F/K/A MALLINCKRODT PHARMA IP TRADING D.A.C.), IRELAND Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: MALLINCKRODT PHARMACEUTICALS IRELAND LIMITED, IRELAND Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: VTESSE LLC (F/K/A VTESSE INC.), MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: SUCAMPO PHARMA AMERICAS LLC, MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: STRATATECH CORPORATION, WISCONSIN Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: SPECGX LLC, MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: OCERA THERAPEUTICS LLC (F/K/A OCERA THERAPEUTICS, INC.), MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: MALLINCKRODT ARD IP UNLIMITED COMPANY (F/K/A MALLINCKRODT ARD IP LIMITED), IRELAND Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: MALLINCKRODT HOSPITAL PRODUCTS IP UNLIMITED COMPANY (F/K/A MALLINCKRODT HOSPITAL PRODUCTS IP LIMITED), IRELAND Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: MEH, INC., MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: IMC EXPLORATION COMPANY, MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: MALLINCKRODT US HOLDINGS LLC, MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: MALLINCKRODT VETERINARY, INC., MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: MALLINCKRODT BRAND PHARMACEUTICALS LLC (F/K/A MALLINCKRODT BRAND PHARMACEUTICALS, INC.), MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: LIEBEL-FLARSHEIM COMPANY LLC, MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: LAFAYETTE PHARMACEUTICALS LLC, MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: MALLINCKRODT LLC, MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: MALLINCKRODT ENTERPRISES LLC, MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: MALLINCKRODT ENTERPRISES HOLDINGS LLC (F/K/A MALLINCKRODT ENTERPRISES HOLDINGS, INC.), MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: CNS THERAPEUTICS, INC., MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: LUDLOW LLC (F/K/A LUDLOW CORPORATION), MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: MNK 2011 LLC (F/K/A MALLINCKRODT INC.), MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: MALLINCKRODT US POOL LLC, MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: MALLINCKRODT CARRIBEAN, INC., MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: MALLINCKRODT US HOLDINGS LLC (F/K/A MALLINCKRODT US HOLDINGS INC.), MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: MALLINCKRODT FINANCE GMBH, SWITZERLAND Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: MALLINCKRODT CB LLC, MISSOURI Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 Owner name: MALLINCKRODT INTERNATIONAL FINANCE S.A., LUXEMBOURG Free format text: RELEASE OF PATENT SECURITY INTERESTS RECORDED AT REEL 039237, FRAME 0147;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065610/0902 Effective date: 20231114 |