US20160030384A1 - 2-acetylnaphtho[2,3-b]furan -4,9-dione for use on treating cancer - Google Patents
2-acetylnaphtho[2,3-b]furan -4,9-dione for use on treating cancer Download PDFInfo
- Publication number
- US20160030384A1 US20160030384A1 US14/783,184 US201414783184A US2016030384A1 US 20160030384 A1 US20160030384 A1 US 20160030384A1 US 201414783184 A US201414783184 A US 201414783184A US 2016030384 A1 US2016030384 A1 US 2016030384A1
- Authority
- US
- United States
- Prior art keywords
- compound
- polymorph
- cancer
- furan
- degrees
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 206010028980 Neoplasm Diseases 0.000 title claims description 352
- 201000011510 cancer Diseases 0.000 title claims description 235
- DPHUWDIXHNQOSY-UHFFFAOYSA-N napabucasin Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1OC(C(=O)C)=C2 DPHUWDIXHNQOSY-UHFFFAOYSA-N 0.000 title description 462
- 238000000034 method Methods 0.000 claims abstract description 201
- 239000000203 mixture Substances 0.000 claims abstract description 101
- 150000001875 compounds Chemical class 0.000 claims description 394
- 239000008194 pharmaceutical composition Substances 0.000 claims description 137
- 238000011282 treatment Methods 0.000 claims description 80
- 241000282414 Homo sapiens Species 0.000 claims description 50
- 102000015735 Beta-catenin Human genes 0.000 claims description 49
- 108060000903 Beta-catenin Proteins 0.000 claims description 48
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 claims description 37
- 239000004480 active ingredient Substances 0.000 claims description 33
- 229930012538 Paclitaxel Natural products 0.000 claims description 32
- 230000014509 gene expression Effects 0.000 claims description 32
- 229960001592 paclitaxel Drugs 0.000 claims description 32
- 210000003236 esophagogastric junction Anatomy 0.000 claims description 28
- 150000003839 salts Chemical class 0.000 claims description 28
- 239000004094 surface-active agent Substances 0.000 claims description 28
- 239000012453 solvate Substances 0.000 claims description 27
- 239000000090 biomarker Substances 0.000 claims description 25
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical group [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims description 24
- 210000001519 tissue Anatomy 0.000 claims description 24
- 102000004495 STAT3 Transcription Factor Human genes 0.000 claims description 23
- 108010017324 STAT3 Transcription Factor Proteins 0.000 claims description 23
- 230000002496 gastric effect Effects 0.000 claims description 20
- 235000019333 sodium laurylsulphate Nutrition 0.000 claims description 19
- 201000010536 head and neck cancer Diseases 0.000 claims description 18
- 208000014829 head and neck neoplasm Diseases 0.000 claims description 18
- 206010006187 Breast cancer Diseases 0.000 claims description 16
- 208000026310 Breast neoplasm Diseases 0.000 claims description 16
- 201000001441 melanoma Diseases 0.000 claims description 16
- 206010061289 metastatic neoplasm Diseases 0.000 claims description 16
- 201000009030 Carcinoma Diseases 0.000 claims description 15
- 206010052360 Colorectal adenocarcinoma Diseases 0.000 claims description 15
- 206010033128 Ovarian cancer Diseases 0.000 claims description 14
- OIQOAYVCKAHSEJ-UHFFFAOYSA-N 2-[2,3-bis(2-hydroxyethoxy)propoxy]ethanol;hexadecanoic acid;octadecanoic acid Chemical compound OCCOCC(OCCO)COCCO.CCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O OIQOAYVCKAHSEJ-UHFFFAOYSA-N 0.000 claims description 13
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 13
- 201000006972 gastroesophageal adenocarcinoma Diseases 0.000 claims description 13
- 230000001394 metastastic effect Effects 0.000 claims description 13
- 125000000400 lauroyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 12
- 208000000461 Esophageal Neoplasms Diseases 0.000 claims description 11
- 206010030155 Oesophageal carcinoma Diseases 0.000 claims description 11
- 239000003795 chemical substances by application Substances 0.000 claims description 11
- 201000004101 esophageal cancer Diseases 0.000 claims description 11
- 201000006585 gastric adenocarcinoma Diseases 0.000 claims description 11
- 230000000306 recurrent effect Effects 0.000 claims description 11
- 229940002612 prodrug Drugs 0.000 claims description 10
- 239000000651 prodrug Substances 0.000 claims description 10
- 239000003080 antimitotic agent Substances 0.000 claims description 9
- 230000000069 prophylactic effect Effects 0.000 claims description 8
- 210000003855 cell nucleus Anatomy 0.000 claims description 7
- 125000002669 linoleoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 7
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 claims description 6
- 108010012934 Albumin-Bound Paclitaxel Proteins 0.000 claims description 5
- 229940028652 abraxane Drugs 0.000 claims description 5
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 claims description 3
- MMRCWWRFYLZGAE-ZBZRSYSASA-N 533u947v6q Chemical compound O([C@]12[C@H](OC(C)=O)[C@]3(CC)C=CCN4CC[C@@]5([C@H]34)[C@H]1N(C)C1=C5C=C(C(=C1)OC)[C@]1(C(=O)OC)C3=C(C4=CC=CC=C4N3)CCN3C[C@H](C1)C[C@@](C3)(O)CC)C(=O)N(CCCl)C2=O MMRCWWRFYLZGAE-ZBZRSYSASA-N 0.000 claims description 3
- QJZRFPJCWMNVAV-HHHXNRCGSA-N N-(3-aminopropyl)-N-[(1R)-1-[7-chloro-4-oxo-3-(phenylmethyl)-2-quinazolinyl]-2-methylpropyl]-4-methylbenzamide Chemical compound NCCCN([C@H](C(C)C)C=1N(C(=O)C2=CC=C(Cl)C=C2N=1)CC=1C=CC=CC=1)C(=O)C1=CC=C(C)C=C1 QJZRFPJCWMNVAV-HHHXNRCGSA-N 0.000 claims description 3
- 208000005718 Stomach Neoplasms Diseases 0.000 claims description 3
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 claims description 3
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 claims description 3
- 206010017758 gastric cancer Diseases 0.000 claims description 3
- 229950007344 ispinesib Drugs 0.000 claims description 3
- FABUFPQFXZVHFB-CFWQTKTJSA-N ixabepilone Chemical compound C/C([C@@H]1C[C@@H]2O[C@]2(C)CCC[C@@H]([C@@H]([C@H](C)C(=O)C(C)(C)[C@H](O)CC(=O)N1)O)C)=C\C1=CSC(C)=N1 FABUFPQFXZVHFB-CFWQTKTJSA-N 0.000 claims description 3
- 229960002014 ixabepilone Drugs 0.000 claims description 3
- 229950005692 larotaxel Drugs 0.000 claims description 3
- SEFGUGYLLVNFIJ-QDRLFVHASA-N larotaxel dihydrate Chemical compound O.O.O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@@]23[C@H]1[C@@]1(CO[C@@H]1C[C@@H]2C3)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 SEFGUGYLLVNFIJ-QDRLFVHASA-N 0.000 claims description 3
- ZDZOTLJHXYCWBA-BSEPLHNVSA-N molport-006-823-826 Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-BSEPLHNVSA-N 0.000 claims description 3
- BWKDAMBGCPRVPI-ZQRPHVBESA-N ortataxel Chemical compound O([C@@H]1[C@]23OC(=O)O[C@H]2[C@@H](C(=C([C@@H](OC(C)=O)C(=O)[C@]2(C)[C@@H](O)C[C@H]4OC[C@]4([C@H]21)OC(C)=O)C3(C)C)C)OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)CC(C)C)C(=O)C1=CC=CC=C1 BWKDAMBGCPRVPI-ZQRPHVBESA-N 0.000 claims description 3
- 229950001094 ortataxel Drugs 0.000 claims description 3
- 230000002018 overexpression Effects 0.000 claims description 3
- 108700027936 paclitaxel poliglumex Proteins 0.000 claims description 3
- 125000003696 stearoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 3
- 201000011549 stomach cancer Diseases 0.000 claims description 3
- 229960001278 teniposide Drugs 0.000 claims description 3
- MODVSQKJJIBWPZ-VLLPJHQWSA-N tesetaxel Chemical compound O([C@H]1[C@@H]2[C@]3(OC(C)=O)CO[C@@H]3CC[C@@]2(C)[C@H]2[C@@H](C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C(=CC=CN=4)F)C[C@]1(O)C3(C)C)O[C@H](O2)CN(C)C)C(=O)C1=CC=CC=C1 MODVSQKJJIBWPZ-VLLPJHQWSA-N 0.000 claims description 3
- 229950009016 tesetaxel Drugs 0.000 claims description 3
- AHXICHPPXIGCBN-GPWPDEGDSA-N uqc681jjiv Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](OC(C)=O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C(C)(C)C)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)OC)C(=O)C1=CC=CC=C1 AHXICHPPXIGCBN-GPWPDEGDSA-N 0.000 claims description 3
- 229960003048 vinblastine Drugs 0.000 claims description 3
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 claims description 3
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 claims description 3
- 229960004528 vincristine Drugs 0.000 claims description 3
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 claims description 3
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 claims description 3
- 229960004355 vindesine Drugs 0.000 claims description 3
- 229950005839 vinzolidine Drugs 0.000 claims description 3
- ZPUHVPYXSITYDI-HEUWMMRCSA-N xyotax Chemical compound OC(=O)[C@@H](N)CCC(O)=O.O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 ZPUHVPYXSITYDI-HEUWMMRCSA-N 0.000 claims description 3
- 208000036764 Adenocarcinoma of the esophagus Diseases 0.000 claims 2
- 206010030137 Oesophageal adenocarcinoma Diseases 0.000 claims 2
- 208000028653 esophageal adenocarcinoma Diseases 0.000 claims 2
- 201000007492 gastroesophageal junction adenocarcinoma Diseases 0.000 claims 1
- 230000004960 subcellular localization Effects 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 385
- MFMVRILBADIIJO-UHFFFAOYSA-N benzo[e][1]benzofuran Chemical class C1=CC=C2C(C=CO3)=C3C=CC2=C1 MFMVRILBADIIJO-UHFFFAOYSA-N 0.000 abstract description 36
- 238000002441 X-ray diffraction Methods 0.000 description 207
- 210000004027 cell Anatomy 0.000 description 123
- 229940125904 compound 1 Drugs 0.000 description 112
- -1 elixir Substances 0.000 description 76
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 71
- 210000000130 stem cell Anatomy 0.000 description 67
- 238000009826 distribution Methods 0.000 description 57
- 239000003814 drug Substances 0.000 description 56
- 229940079593 drug Drugs 0.000 description 52
- 239000000047 product Substances 0.000 description 47
- 230000008569 process Effects 0.000 description 46
- 230000000259 anti-tumor effect Effects 0.000 description 43
- 208000035269 cancer or benign tumor Diseases 0.000 description 39
- 206010009944 Colon cancer Diseases 0.000 description 38
- 239000007787 solid Substances 0.000 description 37
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 36
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 31
- 241001465754 Metazoa Species 0.000 description 31
- 230000000694 effects Effects 0.000 description 31
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 30
- 125000000623 heterocyclic group Chemical group 0.000 description 30
- 239000002775 capsule Substances 0.000 description 29
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 29
- SAXKEWRSGLPYPB-UHFFFAOYSA-N 2-(1-hydroxyethyl)benzo[f][1]benzofuran-4,9-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1OC(C(O)C)=C2 SAXKEWRSGLPYPB-UHFFFAOYSA-N 0.000 description 28
- CSFWPUWCSPOLJW-UHFFFAOYSA-N lawsone Chemical compound C1=CC=C2C(=O)C(O)=CC(=O)C2=C1 CSFWPUWCSPOLJW-UHFFFAOYSA-N 0.000 description 28
- 238000009472 formulation Methods 0.000 description 27
- 239000002904 solvent Substances 0.000 description 27
- 210000004369 blood Anatomy 0.000 description 25
- 239000008280 blood Substances 0.000 description 25
- 210000005170 neoplastic cell Anatomy 0.000 description 25
- 231100000419 toxicity Toxicity 0.000 description 25
- 230000001988 toxicity Effects 0.000 description 25
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 24
- 229910052739 hydrogen Inorganic materials 0.000 description 24
- 238000004128 high performance liquid chromatography Methods 0.000 description 23
- 239000001257 hydrogen Substances 0.000 description 23
- 230000001186 cumulative effect Effects 0.000 description 21
- 201000010099 disease Diseases 0.000 description 21
- 238000000338 in vitro Methods 0.000 description 20
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 20
- 230000004083 survival effect Effects 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 19
- 150000002431 hydrogen Chemical class 0.000 description 19
- 238000001727 in vivo Methods 0.000 description 19
- 239000000243 solution Substances 0.000 description 19
- 208000009956 adenocarcinoma Diseases 0.000 description 18
- 125000000392 cycloalkenyl group Chemical group 0.000 description 18
- 230000002401 inhibitory effect Effects 0.000 description 18
- 238000003801 milling Methods 0.000 description 18
- 230000037361 pathway Effects 0.000 description 18
- 238000002360 preparation method Methods 0.000 description 18
- 239000000523 sample Substances 0.000 description 18
- 239000003981 vehicle Substances 0.000 description 18
- 230000002411 adverse Effects 0.000 description 17
- 208000029742 colonic neoplasm Diseases 0.000 description 17
- 239000012535 impurity Substances 0.000 description 17
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 17
- 238000002512 chemotherapy Methods 0.000 description 16
- 238000002425 crystallisation Methods 0.000 description 16
- 230000008025 crystallization Effects 0.000 description 16
- 239000011541 reaction mixture Substances 0.000 description 16
- RVIUPSHRLLQFOH-UHFFFAOYSA-N 2-acetyl-7-chlorobenzo[f][1]benzofuran-4,9-dione Chemical compound O=C1C2=CC(Cl)=CC=C2C(=O)C2=C1OC(C(=O)C)=C2 RVIUPSHRLLQFOH-UHFFFAOYSA-N 0.000 description 15
- RPCXZIRGAHYOKZ-UHFFFAOYSA-N 2-acetyl-7-fluorobenzo[f][1]benzofuran-4,9-dione Chemical compound O=C1C2=CC(F)=CC=C2C(=O)C2=C1OC(C(=O)C)=C2 RPCXZIRGAHYOKZ-UHFFFAOYSA-N 0.000 description 15
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 15
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 15
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 15
- 241000124008 Mammalia Species 0.000 description 15
- 241000699670 Mus sp. Species 0.000 description 15
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 15
- 239000002552 dosage form Substances 0.000 description 15
- 229910052731 fluorine Inorganic materials 0.000 description 15
- 239000011737 fluorine Substances 0.000 description 15
- 230000012010 growth Effects 0.000 description 15
- 239000002002 slurry Substances 0.000 description 15
- QORFLTDEUGKOSZ-UHFFFAOYSA-N 2-ethylbenzo[f][1]benzofuran-4,9-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1OC(CC)=C2 QORFLTDEUGKOSZ-UHFFFAOYSA-N 0.000 description 14
- QMKMOPXRLXYBLI-UHFFFAOYSA-N benzo[f][1]benzofuran-4,9-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1OC=C2 QMKMOPXRLXYBLI-UHFFFAOYSA-N 0.000 description 14
- 230000004044 response Effects 0.000 description 14
- 238000002560 therapeutic procedure Methods 0.000 description 14
- 125000000217 alkyl group Chemical group 0.000 description 13
- 125000003118 aryl group Chemical group 0.000 description 13
- 229910052794 bromium Inorganic materials 0.000 description 13
- 201000010897 colon adenocarcinoma Diseases 0.000 description 13
- 230000002829 reductive effect Effects 0.000 description 13
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 12
- 239000013078 crystal Substances 0.000 description 12
- 125000000753 cycloalkyl group Chemical group 0.000 description 12
- 230000003902 lesion Effects 0.000 description 12
- 239000000546 pharmaceutical excipient Substances 0.000 description 12
- 125000000547 substituted alkyl group Chemical group 0.000 description 12
- 125000003107 substituted aryl group Chemical group 0.000 description 12
- 125000005346 substituted cycloalkyl group Chemical group 0.000 description 12
- 239000003826 tablet Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- XFJYHILCBBEPTC-UHFFFAOYSA-N 1-(4,9-dioxo-3a,9a-dihydrobenzo[f][1]benzofuran-2-yl)ethenyl dihydrogen phosphate Chemical compound C1=CC=C2C(=O)C3C=C(C(=C)OP(O)(=O)O)OC3C(=O)C2=C1 XFJYHILCBBEPTC-UHFFFAOYSA-N 0.000 description 11
- SKUFZJDSGCDXDR-UHFFFAOYSA-N 1-(4,9-dioxo-3a,9a-dihydrobenzo[f][1]benzofuran-2-yl)ethenyl dimethyl phosphate Chemical compound C1=CC=C2C(=O)C3C=C(C(=C)OP(=O)(OC)OC)OC3C(=O)C2=C1 SKUFZJDSGCDXDR-UHFFFAOYSA-N 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 206010027476 Metastases Diseases 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000011262 co‐therapy Methods 0.000 description 11
- 230000007423 decrease Effects 0.000 description 11
- 239000000706 filtrate Substances 0.000 description 11
- 230000001976 improved effect Effects 0.000 description 11
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical group O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 11
- 238000001959 radiotherapy Methods 0.000 description 11
- 238000010992 reflux Methods 0.000 description 11
- 239000000725 suspension Substances 0.000 description 11
- 230000000381 tumorigenic effect Effects 0.000 description 11
- 208000005243 Chondrosarcoma Diseases 0.000 description 10
- 206010012735 Diarrhoea Diseases 0.000 description 10
- 125000003342 alkenyl group Chemical group 0.000 description 10
- 125000000304 alkynyl group Chemical group 0.000 description 10
- 230000001093 anti-cancer Effects 0.000 description 10
- 230000006872 improvement Effects 0.000 description 10
- 230000009401 metastasis Effects 0.000 description 10
- 210000004881 tumor cell Anatomy 0.000 description 10
- 238000005481 NMR spectroscopy Methods 0.000 description 9
- 206010038019 Rectal adenocarcinoma Diseases 0.000 description 9
- 239000003085 diluting agent Substances 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 238000000227 grinding Methods 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 210000002381 plasma Anatomy 0.000 description 9
- 201000001281 rectum adenocarcinoma Diseases 0.000 description 9
- 125000005017 substituted alkenyl group Chemical group 0.000 description 9
- 125000004426 substituted alkynyl group Chemical group 0.000 description 9
- 208000024891 symptom Diseases 0.000 description 9
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 description 9
- 238000005160 1H NMR spectroscopy Methods 0.000 description 8
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 8
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 8
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 8
- 239000000460 chlorine Substances 0.000 description 8
- 208000035475 disorder Diseases 0.000 description 8
- 238000003364 immunohistochemistry Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000006187 pill Substances 0.000 description 8
- 231100000588 tumorigenic Toxicity 0.000 description 8
- JPXSZZLSOYKPTA-UHFFFAOYSA-N 2,3-dihydrobenzo[f][1]benzofuran-4,9-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1OCC2 JPXSZZLSOYKPTA-UHFFFAOYSA-N 0.000 description 7
- AGHIQBRPBAHPMV-UHFFFAOYSA-N 3-bromobut-3-en-2-one Chemical compound CC(=O)C(Br)=C AGHIQBRPBAHPMV-UHFFFAOYSA-N 0.000 description 7
- 208000005623 Carcinogenesis Diseases 0.000 description 7
- 206010028813 Nausea Diseases 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 7
- FUSUHKVFWTUUBE-UHFFFAOYSA-N buten-2-one Chemical compound CC(=O)C=C FUSUHKVFWTUUBE-UHFFFAOYSA-N 0.000 description 7
- 230000036952 cancer formation Effects 0.000 description 7
- 231100000504 carcinogenesis Toxicity 0.000 description 7
- MPVDXIMFBOLMNW-UHFFFAOYSA-N chembl1615565 Chemical compound OC1=CC=C2C=C(S(O)(=O)=O)C=C(S(O)(=O)=O)C2=C1N=NC1=CC=CC=C1 MPVDXIMFBOLMNW-UHFFFAOYSA-N 0.000 description 7
- 229910052801 chlorine Inorganic materials 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 125000004093 cyano group Chemical group *C#N 0.000 description 7
- 229940000406 drug candidate Drugs 0.000 description 7
- 229910052736 halogen Inorganic materials 0.000 description 7
- 150000002367 halogens Chemical class 0.000 description 7
- 229910052740 iodine Inorganic materials 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 210000004379 membrane Anatomy 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 230000004060 metabolic process Effects 0.000 description 7
- 235000013336 milk Nutrition 0.000 description 7
- 239000008267 milk Substances 0.000 description 7
- 210000004080 milk Anatomy 0.000 description 7
- 230000008693 nausea Effects 0.000 description 7
- 230000035699 permeability Effects 0.000 description 7
- 229920000136 polysorbate Polymers 0.000 description 7
- 238000007920 subcutaneous administration Methods 0.000 description 7
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 7
- ALOLHIXWHIWOHM-UHFFFAOYSA-N 2-acetyl-2,3,4,9-tetrahydronaphtho[2,3-b]furan-4,9-dione Natural products O=C1C2=CC=CC=C2C(=O)C2=C1OC(C(=O)C)C2 ALOLHIXWHIWOHM-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 230000030833 cell death Effects 0.000 description 6
- 235000013305 food Nutrition 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 238000010902 jet-milling Methods 0.000 description 6
- 230000002147 killing effect Effects 0.000 description 6
- 238000002372 labelling Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000036470 plasma concentration Effects 0.000 description 6
- 230000003389 potentiating effect Effects 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 230000008685 targeting Effects 0.000 description 6
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 6
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 6
- 210000002700 urine Anatomy 0.000 description 6
- 230000003442 weekly effect Effects 0.000 description 6
- 102100022595 Broad substrate specificity ATP-binding cassette transporter ABCG2 Human genes 0.000 description 5
- 0 CC.[3*]C(=O)C1=CC2=C(O1)C(=O)C1=CC=CC=C1C2=O Chemical compound CC.[3*]C(=O)C1=CC2=C(O1)C(=O)C1=CC=CC=C1C2=O 0.000 description 5
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 5
- 101150099493 STAT3 gene Proteins 0.000 description 5
- 230000037396 body weight Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000012043 crude product Substances 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000000543 intermediate Substances 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- CITHEXJVPOWHKC-UUWRZZSWSA-N 1,2-di-O-myristoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCC CITHEXJVPOWHKC-UUWRZZSWSA-N 0.000 description 4
- KMYUEVBVPJZOKD-UHFFFAOYSA-N 1-bromobut-3-en-2-one Chemical compound BrCC(=O)C=C KMYUEVBVPJZOKD-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 206010047700 Vomiting Diseases 0.000 description 4
- 230000001594 aberrant effect Effects 0.000 description 4
- 239000013543 active substance Substances 0.000 description 4
- 230000006399 behavior Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 210000000170 cell membrane Anatomy 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- 230000000973 chemotherapeutic effect Effects 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 229940127089 cytotoxic agent Drugs 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 229960003724 dimyristoylphosphatidylcholine Drugs 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 125000005456 glyceride group Chemical group 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 230000004807 localization Effects 0.000 description 4
- 231100000682 maximum tolerated dose Toxicity 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 4
- 229920000053 polysorbate 80 Polymers 0.000 description 4
- 238000000634 powder X-ray diffraction Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 208000016691 refractory malignant neoplasm Diseases 0.000 description 4
- 150000004671 saturated fatty acids Chemical class 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000008673 vomiting Effects 0.000 description 4
- 208000003174 Brain Neoplasms Diseases 0.000 description 3
- 108010090306 Member 2 Subfamily G ATP Binding Cassette Transporter Proteins 0.000 description 3
- 108700020796 Oncogene Proteins 0.000 description 3
- 229920001214 Polysorbate 60 Polymers 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 206010038111 Recurrent cancer Diseases 0.000 description 3
- 206010070308 Refractory cancer Diseases 0.000 description 3
- 206010039491 Sarcoma Diseases 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 238000007563 acoustic spectroscopy Methods 0.000 description 3
- 208000022531 anorexia Diseases 0.000 description 3
- 230000000118 anti-neoplastic effect Effects 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 238000000498 ball milling Methods 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000007894 caplet Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000003610 charcoal Substances 0.000 description 3
- 239000012829 chemotherapy agent Substances 0.000 description 3
- 238000011254 conventional chemotherapy Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000011018 current good manufacturing practice Methods 0.000 description 3
- 230000034994 death Effects 0.000 description 3
- 206010061428 decreased appetite Diseases 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 238000005315 distribution function Methods 0.000 description 3
- 238000001647 drug administration Methods 0.000 description 3
- 238000000635 electron micrograph Methods 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229940074046 glyceryl laurate Drugs 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 210000000936 intestine Anatomy 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 208000032839 leukemia Diseases 0.000 description 3
- 239000007937 lozenge Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 230000036210 malignancy Effects 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- 239000007764 o/w emulsion Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000006186 oral dosage form Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 239000008363 phosphate buffer Substances 0.000 description 3
- 229950008882 polysorbate Drugs 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- ARIWANIATODDMH-UHFFFAOYSA-N rac-1-monolauroylglycerol Chemical compound CCCCCCCCCCCC(=O)OCC(O)CO ARIWANIATODDMH-UHFFFAOYSA-N 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000002271 resection Methods 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 238000005029 sieve analysis Methods 0.000 description 3
- 238000007873 sieving Methods 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 239000006188 syrup Substances 0.000 description 3
- 235000020357 syrup Nutrition 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 125000003944 tolyl group Chemical group 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 231100000402 unacceptable toxicity Toxicity 0.000 description 3
- 239000007762 w/o emulsion Substances 0.000 description 3
- 238000001238 wet grinding Methods 0.000 description 3
- 238000012447 xenograft mouse model Methods 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- QTEYOHOQLZFKFU-UHFFFAOYSA-N 1,2,3,4,5,7,8,9-octahydropyrido[1,2-c][1,3]diazepine Chemical compound C1CCNCN2CCCC=C21 QTEYOHOQLZFKFU-UHFFFAOYSA-N 0.000 description 2
- NBFNRWYMOPMUDP-UHFFFAOYSA-N 1-(4,9-dihydroxybenzo[f][1]benzofuran-2-yl)ethanone Chemical compound C1=CC=C2C(O)=C(OC(C(=O)C)=C3)C3=C(O)C2=C1 NBFNRWYMOPMUDP-UHFFFAOYSA-N 0.000 description 2
- PRDFBSVERLRRMY-UHFFFAOYSA-N 2'-(4-ethoxyphenyl)-5-(4-methylpiperazin-1-yl)-2,5'-bibenzimidazole Chemical compound C1=CC(OCC)=CC=C1C1=NC2=CC=C(C=3NC4=CC(=CC=C4N=3)N3CCN(C)CC3)C=C2N1 PRDFBSVERLRRMY-UHFFFAOYSA-N 0.000 description 2
- BURNKQWNXIGWNV-UHFFFAOYSA-N 2,6-diacetylbenzo[f][1]benzofuran-4,9-dione Chemical compound O=C1C2=CC=C(C(C)=O)C=C2C(=O)C2=C1OC(C(=O)C)=C2 BURNKQWNXIGWNV-UHFFFAOYSA-N 0.000 description 2
- BYWHACZSGKDRSQ-UHFFFAOYSA-N 3-acetylbenzo[f][1]benzofuran-4,9-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C(C(=O)C)=CO2 BYWHACZSGKDRSQ-UHFFFAOYSA-N 0.000 description 2
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 2
- 208000004998 Abdominal Pain Diseases 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- HOBLSFZVVPFZAL-UHFFFAOYSA-N CC.CC(=O)C1=CC2=C(O1)C(=O)C1=CC=CC=C1C2=O Chemical compound CC.CC(=O)C1=CC2=C(O1)C(=O)C1=CC=CC=C1C2=O HOBLSFZVVPFZAL-UHFFFAOYSA-N 0.000 description 2
- 102100032912 CD44 antigen Human genes 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 241000700199 Cavia porcellus Species 0.000 description 2
- 208000002881 Colic Diseases 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 206010066476 Haematological malignancy Diseases 0.000 description 2
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 2
- 101000823298 Homo sapiens Broad substrate specificity ATP-binding cassette transporter ABCG2 Proteins 0.000 description 2
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 2
- 241000699660 Mus musculus Species 0.000 description 2
- 208000007101 Muscle Cramp Diseases 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 2
- 241000009328 Perro Species 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 229930182558 Sterol Natural products 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 2
- 238000009098 adjuvant therapy Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 238000011319 anticancer therapy Methods 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- ZLNMFKYGGBXDJX-UHFFFAOYSA-N benzo[f][1]benzofuran-4,9-diol Chemical compound C1=CC=C2C(O)=C(C=CO3)C3=C(O)C2=C1 ZLNMFKYGGBXDJX-UHFFFAOYSA-N 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- 230000031709 bromination Effects 0.000 description 2
- 238000005893 bromination reaction Methods 0.000 description 2
- 239000003560 cancer drug Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 239000013058 crude material Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 239000000104 diagnostic biomarker Substances 0.000 description 2
- 230000001079 digestive effect Effects 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 208000002173 dizziness Diseases 0.000 description 2
- 231100000371 dose-limiting toxicity Toxicity 0.000 description 2
- 238000009837 dry grinding Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 206010016256 fatigue Diseases 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 208000037824 growth disorder Diseases 0.000 description 2
- 239000007902 hard capsule Substances 0.000 description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 2
- 238000001794 hormone therapy Methods 0.000 description 2
- 238000011221 initial treatment Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 239000006193 liquid solution Substances 0.000 description 2
- 239000006194 liquid suspension Substances 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 208000037819 metastatic cancer Diseases 0.000 description 2
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- 239000008108 microcrystalline cellulose Substances 0.000 description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000036457 multidrug resistance Effects 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 238000011580 nude mouse model Methods 0.000 description 2
- 235000021231 nutrient uptake Nutrition 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 229940126701 oral medication Drugs 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 210000004789 organ system Anatomy 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 238000010951 particle size reduction Methods 0.000 description 2
- 150000008105 phosphatidylcholines Chemical class 0.000 description 2
- 239000008389 polyethoxylated castor oil Substances 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 210000002307 prostate Anatomy 0.000 description 2
- 239000012925 reference material Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000003362 replicative effect Effects 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 210000001646 side-population cell Anatomy 0.000 description 2
- 231100000161 signs of toxicity Toxicity 0.000 description 2
- 238000009097 single-agent therapy Methods 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 239000012265 solid product Substances 0.000 description 2
- 235000003702 sterols Nutrition 0.000 description 2
- 150000003432 sterols Chemical class 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 230000003319 supportive effect Effects 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 239000012085 test solution Substances 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 210000005102 tumor initiating cell Anatomy 0.000 description 2
- 230000002485 urinary effect Effects 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- AVFZOVWCLRSYKC-UHFFFAOYSA-N 1-methylpyrrolidine Chemical compound CN1CCCC1 AVFZOVWCLRSYKC-UHFFFAOYSA-N 0.000 description 1
- PAPXBFSPPQIXMG-UHFFFAOYSA-N 2,3-diacetylbenzo[f][1]benzofuran-4,9-dione Chemical compound C(C)(=O)C=1C2=C(OC=1C(C)=O)C(C1=CC=CC=C1C2=O)=O PAPXBFSPPQIXMG-UHFFFAOYSA-N 0.000 description 1
- GYJHMCZCUSPKNU-UHFFFAOYSA-N 2,7-diacetylbenzo[f][1]benzofuran-4,9-dione Chemical compound O=C1C2=CC(C(C)=O)=CC=C2C(=O)C2=C1OC(C(=O)C)=C2 GYJHMCZCUSPKNU-UHFFFAOYSA-N 0.000 description 1
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 1
- GHHURQMJLARIDK-UHFFFAOYSA-N 2-hydroxypropyl octanoate Chemical compound CCCCCCCC(=O)OCC(C)O GHHURQMJLARIDK-UHFFFAOYSA-N 0.000 description 1
- DRSZTATWOSZRAK-UHFFFAOYSA-N 3,4-dibromobutan-2-one Chemical compound CC(=O)C(Br)CBr DRSZTATWOSZRAK-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 108010006533 ATP-Binding Cassette Transporters Proteins 0.000 description 1
- 102000005416 ATP-Binding Cassette Transporters Human genes 0.000 description 1
- 102100021501 ATP-binding cassette sub-family B member 5 Human genes 0.000 description 1
- 201000004384 Alopecia Diseases 0.000 description 1
- JIXOWAXGILXNLY-UHFFFAOYSA-N C=C(C)C1=CC2=C(O1)C(=O)C1=CC=CC=C1C2=O Chemical compound C=C(C)C1=CC2=C(O1)C(=O)C1=CC=CC=C1C2=O JIXOWAXGILXNLY-UHFFFAOYSA-N 0.000 description 1
- 101150041968 CDC13 gene Proteins 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- PTHCMJGKKRQCBF-UHFFFAOYSA-N Cellulose, microcrystalline Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC)C(CO)O1 PTHCMJGKKRQCBF-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 206010055114 Colon cancer metastatic Diseases 0.000 description 1
- 206010052358 Colorectal cancer metastatic Diseases 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 230000033616 DNA repair Effects 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 206010013710 Drug interaction Diseases 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 238000010268 HPLC based assay Methods 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- 101000677872 Homo sapiens ATP-binding cassette sub-family B member 5 Proteins 0.000 description 1
- 101000916173 Homo sapiens Catenin beta-1 Proteins 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 101000826376 Homo sapiens Signal transducer and activator of transcription 2 Proteins 0.000 description 1
- 208000029663 Hypophosphatemia Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 108090000301 Membrane transport proteins Proteins 0.000 description 1
- 102000003939 Membrane transport proteins Human genes 0.000 description 1
- 206010059282 Metastases to central nervous system Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- AHVYPIQETPWLSZ-UHFFFAOYSA-N N-methyl-pyrrolidine Natural products CN1CC=CC1 AHVYPIQETPWLSZ-UHFFFAOYSA-N 0.000 description 1
- 208000002454 Nasopharyngeal Carcinoma Diseases 0.000 description 1
- 206010061306 Nasopharyngeal cancer Diseases 0.000 description 1
- 206010028817 Nausea and vomiting symptoms Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 1
- 229920002685 Polyoxyl 35CastorOil Polymers 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 241001632427 Radiola Species 0.000 description 1
- 229940124639 Selective inhibitor Drugs 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 208000000102 Squamous Cell Carcinoma of Head and Neck Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 240000001949 Taraxacum officinale Species 0.000 description 1
- 235000005187 Taraxacum officinale ssp. officinale Nutrition 0.000 description 1
- 229940123237 Taxane Drugs 0.000 description 1
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 1
- 239000004904 UV filter Substances 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 208000005946 Xerostomia Diseases 0.000 description 1
- GOPYZMJAIPBUGX-UHFFFAOYSA-N [O-2].[O-2].[Mn+4] Chemical class [O-2].[O-2].[Mn+4] GOPYZMJAIPBUGX-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 210000004504 adult stem cell Anatomy 0.000 description 1
- 208000037844 advanced solid tumor Diseases 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940124650 anti-cancer therapies Drugs 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000002001 anti-metastasis Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 238000011394 anticancer treatment Methods 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000036983 biotransformation Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 201000008275 breast carcinoma Diseases 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000007963 capsule composition Substances 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000003822 cell turnover Effects 0.000 description 1
- 229960005395 cetuximab Drugs 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011443 conventional therapy Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 238000007256 debromination reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 230000036267 drug metabolism Effects 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 206010013781 dry mouth Diseases 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 201000006549 dyspepsia Diseases 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 210000001842 enterocyte Anatomy 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 206010016766 flatulence Diseases 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000009246 food effect Effects 0.000 description 1
- 235000021471 food effect Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000012631 food intake Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 210000005095 gastrointestinal system Anatomy 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 208000024963 hair loss Diseases 0.000 description 1
- 230000003676 hair loss Effects 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 201000003911 head and neck carcinoma Diseases 0.000 description 1
- 201000000459 head and neck squamous cell carcinoma Diseases 0.000 description 1
- 208000024798 heartburn Diseases 0.000 description 1
- 230000011132 hemopoiesis Effects 0.000 description 1
- IIRDTKBZINWQAW-UHFFFAOYSA-N hexaethylene glycol Chemical compound OCCOCCOCCOCCOCCOCCO IIRDTKBZINWQAW-UHFFFAOYSA-N 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 102000051840 human STAT2 Human genes 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 230000005917 in vivo anti-tumor Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 229940030980 inova Drugs 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 210000001630 jejunum Anatomy 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000009061 membrane transport Effects 0.000 description 1
- 230000006996 mental state Effects 0.000 description 1
- 230000037323 metabolic rate Effects 0.000 description 1
- 229940071648 metered dose inhaler Drugs 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 229940041676 mucosal spray Drugs 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 201000011216 nasopharynx carcinoma Diseases 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 238000002663 nebulization Methods 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 210000000441 neoplastic stem cell Anatomy 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 125000002811 oleoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000003305 oral gavage Methods 0.000 description 1
- 229960003552 other antineoplastic agent in atc Drugs 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- QUANRIQJNFHVEU-UHFFFAOYSA-N oxirane;propane-1,2,3-triol Chemical compound C1CO1.OCC(O)CO QUANRIQJNFHVEU-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 229960001972 panitumumab Drugs 0.000 description 1
- 238000003921 particle size analysis Methods 0.000 description 1
- JLFNLZLINWHATN-UHFFFAOYSA-N pentaethylene glycol Chemical compound OCCOCCOCCOCCOCCO JLFNLZLINWHATN-UHFFFAOYSA-N 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 238000009520 phase I clinical trial Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229940068918 polyethylene glycol 400 Drugs 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 239000000092 prognostic biomarker Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000541 pulsatile effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000003340 retarding agent Substances 0.000 description 1
- 102220043159 rs587780996 Human genes 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 210000001988 somatic stem cell Anatomy 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000011255 standard chemotherapy Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000011301 standard therapy Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000001839 systemic circulation Effects 0.000 description 1
- 238000012385 systemic delivery Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- DKPFODGZWDEEBT-QFIAKTPHSA-N taxane Chemical class C([C@]1(C)CCC[C@@H](C)[C@H]1C1)C[C@H]2[C@H](C)CC[C@@H]1C2(C)C DKPFODGZWDEEBT-QFIAKTPHSA-N 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 229960001722 verapamil Drugs 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 238000005550 wet granulation Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/34—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
- A61K31/343—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide condensed with a carbocyclic ring, e.g. coumaran, bufuralol, befunolol, clobenfurol, amiodarone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/337—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/14—Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4841—Filling excipients; Inactive ingredients
- A61K9/4858—Organic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Definitions
- the invention provides naphthofuran compounds, polymorphs of naphthofuran compounds, naphthofuran compounds in particle form, purified compositions that contain one or more naphthofuran compounds, purified compositions that contain one or more naphthofuran compounds in particle form, and methods of using these naphthofuran compounds, polymorphs, purified compositions and/or particle forms to treat subjects in need thereof.
- Chemotherapeutic agents cause damage to non-cancerous as well as cancerous cells.
- the therapeutic index of such compounds can be quite low.
- a dose of a chemotherapy drug that is effective to kill cancer cells will also kill normal cells, especially those normal cells (such as epithelial cells) which undergo frequent cell division.
- normal cells are affected by the therapy, side effects such as hair loss, suppression of hematopoiesis, and nausea can occur.
- cancer stem cells also called tumor initiating cells or cancer stem-like cells
- CSCs are inherently resistant to conventional therapies. Therefore, a targeted agent with activity against cancer stem cells holds a great promise for cancer patients (J Clin Oncol. 2008 Jun. 10; 26(17)). Therefore, while conventional chemotherapies can kill the bulk of cancer cells, they leave behind cancer stem cells. Cancer stem cells can grow faster after reduction of non-stem regular cancer cells by chemotherapy, which is considered to be the mechanism for quick relapse after chemotherapies.
- the present invention provides new methods of formulating and using these naphthofuran compounds (including those in particle form), polymorphs, and purified compositions in a variety of indications, including, for example, treating, delaying the progression of, preventing a relapse of, or alleviating a symptom of a cell proliferation disorder.
- the naphthofuran compounds (including those in particle form), polymorphs, and purified compositions are useful in treating, delaying the progression of, preventing a relapse of, alleviating a symptom of, or otherwise ameliorating a cancer.
- the cancer is selected from the group consisting of esophageal cancer, gastroesophageal junction cancer, gastroesophageal adenocarcinoma, chondrosarcoma, colorectal cancer, colon adenocarcinoma, rectal adenocarcinoma, colorectal adenocarcinoma, breast cancer, ovarian cancer, head and neck cancer, melanoma, gastric adenocarcinoma, and adrenocorticoid carcinoma.
- the cancer is esophageal cancer.
- the cancer is gastroesophageal junction cancer.
- the cancer is gastroesophageal adenocarcinoma. In some embodiments, the cancer is refractory. In some embodiments, the cancer is recurrent. In some embodiments, the cancer is metastatic. In some embodiments, the cancer is associated with overexpression of STAT3.
- a method according to the invention of treating, delaying the progression of, preventing a relapse of, inhibiting the recurrence of, the metastasis of, alleviating a symptom of, and/or otherwise ameliorating a cancer (or neoplasm) in a human, mammal, or animal subject can include administering a therapeutically effective amount of the compound, product and/or pharmaceutical composition, so that anti-neoplastic activity occurs.
- the anti-neoplastic activity can be anticancer activity.
- the anti-neoplastic activity can include slowing the volume growth of the neoplasm, stopping the volume growth of the neoplasm, or decreasing the volume of the neoplasm.
- the neoplasm can include a solid tumor, a malignancy, a metastatic cell, a cancer stem cell.
- the neoplasm can include a carcinoma, a sarcoma, an adenocarcinoma, a lymphoma, or a hematological malignancy.
- the neoplasm can be refractory to treatment by chemotherapy, radiotherapy, and/or hormone therapy.
- the compound, product and/or pharmaceutical composition can be administered to prevent relapse of the neoplasm.
- the compound, product and/or pharmaceutical composition can be administered as an adjuvant therapy to surgical resection.
- the compound, product and/or pharmaceutical composition can be administered, for example, orally and/or intravenously.
- the pharmaceutical composition comprises a Compound of the Invention in conjunction with at least the following: (i) a surfactant comprising sodium lauryl sulfate (SLS) or sodium dodecyl sulfate (SDS); (ii) Gelucire (lauroyl polyoxylglycerides); and Labrafil (linoleoyl polyoxylglycerides).
- SLS lauryl sulfate
- SDS sodium dodecyl sulfate
- Gelucire lauroyl polyoxylglycerides
- Labrafil labrafil
- treating a cancer may include delaying the progression of, preventing a relapse of, inhibiting the recurrent of, the metastatic of, alleviating a symptom of, and/or otherwise ameliorating a cancer (or neoplasm).
- the pharmaceutical composition comprises a Compound of the Invention in conjunction with at least the following: (i) a surfactant comprising sodium lauryl sulfate (SLS) or sodium dodecyl sulfate (SDS); (ii) Gelucire (lauroyl polyoxylglycerides); and (iii) Labrafil (linoleoyl polyoxylglycerides).
- a surfactant comprising sodium lauryl sulfate (SLS) or sodium dodecyl sulfate (SDS)
- SLS lauryl sulfate
- SDS sodium dodecyl sulfate
- Gelucire laauroyl polyoxylglycerides
- Labrafil labrafil
- the pharmaceutical composition includes, by weight, about 27.18% in the active ingredient, about 0.27% in the surfactant, about 14.51% in Gelucire, and about 58.04% in Labrafil. In some embodiments, the pharmaceutical composition includes about 125 mg of the active ingredient, about 1.2 mg of the surfactant, about 66.8 mg of Gelucire, and about 267 mg of Labrafil. In some embodiments, the pharmaceutical composition includes about 80 mg of the active ingredient, about 0.8 mg of the surfactant, about 42.7 mg of Gelucire, and about 170.9 mg of Labrafil. In some embodiments, the pharmaceutical composition is housed in a capsule. In some embodiments, the capsule is of size 1 or smaller.
- a method according to the invention also includes treating, delaying the progression of, preventing a relapse of, alleviating a symptom of, or otherwise ameliorating a disease or disorder in a human, mammal, or animal subject afflicted with that disease or disorder.
- the disease or disorder is any of the cancers (or neoplasms) described herein.
- the cancer is selected from the group consisting of esophageal cancer, gastroesophageal junction cancer, gastroesophageal adenocarcinoma, chondrosarcoma, colorectal cancer, colon adenocarcinoma, rectal adenocarcinoma, colorectal adenocarcinoma, breast cancer, ovarian cancer, head and neck cancer, melanoma, gastric adenocarcinoma, and adrenocorticoid carcinoma.
- the methods also include the step of detecting a level of phosphorylated STAT3 (p-STAT3) in a patient tissue, where the level of p-STAT3 is used as a biomarker for patient selection.
- a tissue phosphorylated STAT3 level is above a benchmark level (more than 10% tumor cells with medium level of p-STAT3).
- the cancer is associated with ⁇ f-catenin localization in cell nucleus as opposed to in cell membrane.
- the method includes the step of detecting a locus of ⁇ -catenin expression in a patient's tissue, where the locus of such ⁇ -catenin expression is used as a biomarker for patient selection.
- significant ⁇ -catenin expression is detected in cell nucleus.
- the medium to strong expression of ⁇ -catenin is detected in 20% or more tumor cells.
- Administration of the compounds, products and/or pharmaceutical compositions to a patient suffering from a disease or disorder is considered successful if any of a variety of laboratory or clinical results is achieved. For example, administration is considered successful one or more of the symptoms associated with the disease or disorder is alleviated, reduced, inhibited or does not progress to a further, i.e., worse, state. Administration is considered successful if the disorder, e.g., a cancer or neoplasm, enters remission or does not progress to a further, i.e., worse, state.
- the disorder e.g., a cancer or neoplasm
- the compounds, products and/or pharmaceutical compositions described herein are administered in combination with any of a variety of known therapeutics, including for example, chemotherapeutic and other anti-neoplastic agents, anti-inflammatory compounds and/or immunosuppressive compounds.
- the compounds, products and/or pharmaceutical compositions described herein are useful in conjunction with any of a variety of known treatments including, by way of non-limiting example, surgical treatments and methods, radiation therapy, chemotherapy and/or hormone or other endocrine-related treatment.
- compositions described herein and the second therapy can be administered sequentially or concurrently.
- the compounds, products and/or pharmaceutical compositions described herein and the second therapy can be administered to a subject, preferably a human subject, in the same pharmaceutical composition.
- the compounds, products and/or pharmaceutical compositions described herein and the second therapy can be administered concurrently, separately or sequentially to a subject in separate pharmaceutical compositions.
- the compounds, products and/or pharmaceutical compositions described herein and the second therapy may be administered to a subject by the same or different routes of administration.
- the compounds, products and/or pharmaceutical compositions described herein may be administered to a subject firstly, and then the second therapy may be administered to a subject.
- the second therapy may be administered to a subject firstly, and then the compounds, products and/or pharmaceutical compositions described herein may be administered to a subject.
- the co-therapies of the invention comprise an effective amount of the compounds, products and/or pharmaceutical compositions described herein and an effective amount of at least one other therapy (e.g., prophylactic or therapeutic agent) that has a different mechanism of action than the compounds, products and/or pharmaceutical compositions described herein.
- the co-therapies of the present invention improve the prophylactic or therapeutic effect of the compounds, products and/or pharmaceutical compositions described herein and of the second therapy by functioning together to have an additive or synergistic effect.
- the co-therapies of the present invention reduce the side effects associated with the second therapy (e.g., prophylactic or therapeutic agents).
- the disease or disorder can be treated by administering the compound, product and/or pharmaceutical composition as follows.
- the blood molar concentration of the compound can be at least an effective concentration and less than a harmful concentration for a first continuous time period that is at least as long as an effective time period and shorter than a harmful time period.
- the blood molar concentration can be less than the effective concentration after the first continuous time period.
- the effective concentration can be about 0.1 ⁇ M, about 0.2 ⁇ M, about 0.5 ⁇ M, about 1 ⁇ M, about 2 ⁇ M, about 3 ⁇ M, about 4 ⁇ M, about 5 ⁇ M, about 6 ⁇ M, about 10 ⁇ M, or another concentration determined to be effective by one of skill in the art.
- the harmful concentration can be about 1 ⁇ M, about 3 ⁇ M, about 10 ⁇ M, about 15 ⁇ M, about 30 ⁇ M, about 100 ⁇ M, or another concentration determined to be harmful by one of skill in the art.
- the effective time period can be about 1 hour, 2 hour, about 4 hours, about 6 hours, about 8 hours, about 10 hours, about 12 hours, about 24 hours, or another time period determined to be effective by one of skill in the art.
- the harmful time period can be about 12 hours, about 24 hours, about 48 hours, about 72 hours, about 144 hours, or another time period determined to be harmful by one of skill in the art.
- the therapeutically effective amount of the compound, product and/or pharmaceutical composition is selected to produce a blood concentration greater than the IC 50 of cells of the tumor and less than the IC 50 of normal cells. In some embodiments, the therapeutically effective amount is selected to produce a blood concentration sufficiently high to kill cells of the tumor and less than the IC 50 of normal cells.
- the compound, product and/or pharmaceutical composition is administered orally in a dosage form, for example, a tablet, pill, capsule (hard or soft), caplet, powder, granule, suspension, solution, gel, cachet, troche, lozenge, syrup, elixir, emulsion, oil-in-water emulsion, water-in-oil emulsion, and/or a draught.
- a dosage form for example, a tablet, pill, capsule (hard or soft), caplet, powder, granule, suspension, solution, gel, cachet, troche, lozenge, syrup, elixir, emulsion, oil-in-water emulsion, water-in-oil emulsion, and/or a draught.
- the Compound of the Invention is administered to the patient at a total daily dose in a range from about 400 mg to about 1000 mg. In some embodiments, the Compound of the Invention is administered to the patient at a total daily dose in a range from about 800 mg to about 1000 mg, preferably administered in two daily doses, for example, at about 480 mg BID.
- the interval between administrations can range from about 4 hours to about 16 hours, e.g., about 12 hours.
- dose modifications of the Compound of the Invention may occur such that the total daily dose is reduced down to 400 to 800 mg total daily. In some embodiments, further dose modification may occur such that the total daily dose is reduced down to a range of 50 mg to 400 mg total daily.
- the Compound of the Invention can also be taken once daily. In some embodiments when taken once daily, the interval between administrations can be 18 to 30 hours (e.g., around 24 hours). In some embodiments, the Compound of the Invention can also be taken three times daily for a total dose of around 240 to 1000 mg. When taken as three times daily, the time between administrations can be about 4 hours to 8 hours.
- the naphthofuran Compound of the Invention is used in combination with an antimitotic agent, especially those proven to be effective chemotherapy agents, or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof.
- antimitotic agents that may be useful as a co-therapy with the Compound of the Invention include and are not limited to: paclitaxel (Abraxane/Taxol), docetaxel (taxotere), BMS-275183, xyotax, tocosal, vinorlebine, vincristine, vinblastine, vindesine, vinzolidine, etoposide (VP-16), teniposide (VM-26), ixabepilone, larotaxel, ortataxel, tesetaxel, and ispinesib.
- the second agent used with the Compound of the Invention in a co-therapy is paclitaxel (Abraxane/Taxol), or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof.
- the paclitaxel is administered to the subject at a total weekly dose in a range from about 40 mg/m 2 to about 100 mg/m 2 .
- the paclitaxel is administered to the subject at a total weekly dose of about 80 mg/m 2 .
- the paclitaxel is administered to the subject through IV.
- the paclitaxel is dosed once a week for three of every four weeks, i.e., 3 weeks on, 1 week off.
- the Compound of the Invention may be administered to a subject firstly, and then the paclitaxel may be administered to the subject.
- the paclitaxel may be administered to the subject firstly, and then the Compound of the Invention may be administered to a subject. In such case, some interval between the administration of the Compound of the Invention and the paclitaxel may be included.
- the present invention refers to a method of curative or prophylactic cancer treatment by administering the paclitaxel to a subject, the method comprising the steps of administering to a subject in need of a curative or prophylactic cancer treatment a dosage of the compound of the invention and a dosage of paclitaxel; wherein the first dosage is administered before or after administering the paclitaxel to the subject.
- the invention provides a curative or prophylactic cancer treatment in, preferably, a human subject, the method comprising administering to a subject in need thereof a therapeutically effective amount of a naphthofuran compound, referred to herein as “Compound 1,” and having the structure shown below, or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof
- the compound is administered to the subject at a total daily dose in a range of from about 80 mg to about 2000 mg. In some embodiments, the compound is administered to the subject at a total daily dose selected from the group consisting of about 80 mg, about 160 mg, about 320 mg, about 480 mg, about 640 mg, about 800 mg, and about 960 mg. In some embodiments, the compound is administered to the subject at a total daily dose of about 960 mg.
- the compound is administered twice a day (BID). In some embodiments, the compound is administered to the subject at a dose in a range of from about 80 mg BID to about 480 mg BID. In some embodiments, the compound is administered to the subject at a dose selected from the group consisting of about 80 mg BID, about 160 mg BID, about 320 mg BID, about 400 mg BID, and about 480 mg BID. In some embodiments, the compound is administered to the subject at a dose of about 480 mg BID.
- the compound is administered BID where the timing between administrations of the compound is in the range from about 4 hours between administrations to about 16 hours between administrations. In some embodiments, the compound is administered BID where the timing between administrations of the compound is at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 9 hours, at least 10 hours, at least 11 hours, at least 12 hours, at least 13 hours, at least 14 hours, at least 15 hours and/or at least 16 hours. In some embodiments, the compound is administered to the subject at a dose in a range of from about 80 mg BID to about 480 mg BID where the timing between administrations of the compound is in the range from about 4 hours between administrations to about 16 hours between administrations.
- the compound is administered BID where the timing between administrations of the compound is at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 9 hours, at least 10 hours, at least 11 hours, at least 12 hours, at least 13 hours, at least 14 hours, at least 15 hours and/or at least 16 hours.
- the compound is administered to the subject at a dose selected from the group consisting of about 80 mg BID, about 160 mg BID, about 320 mg BID, about 400 mg BID, and about 480 mg BID, where the timing between administrations of the compound is in the range from about 4 hours between administrations to about 16 hours between administrations.
- the compound is administered BID where the timing between administrations of the compound is at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 9 hours, at least 10 hours, at least 11 hours, at least 12 hours, at least 13 hours, at least 14 hours, at least 15 hours and/or at least 16 hours.
- the compound is administered to the subject at a dose of about 480 mg BID where the timing between administrations of the compound is about 12 hours between administrations.
- the compound is administered to the subject at a dose of about 80 mg BID where the timing between administrations of the compound is about 12 hours between administrations.
- the compound is administered to the subject at a dose of about 400 mg BID where the timing between administrations of the compound is about 12 hours between administrations. In some embodiments, the compound is administered to the subject at a dose of about 320 mg BID where the timing between administrations of the compound is about 12 hours between administrations. In some embodiments, the compound is administered BID where the timing between administrations of the compound is at least 4 hours, at least about 5 hours, at least about 6 hours, at least about 7 hours, at least about 8 hours, at least about 9 hours, at least about 10 hours, at least about 11 hours, at least about 12 hours, at least about 13 hours, at least about 14 hours, at least about 15 hours and/or at least about 16 hours.
- the compound is administered to the subject at a dose of about 80 mg BID, about 160 mg BID, about 320 mg BID, about 400 mg BID, and about 480 mg BID where the timing between administrations of the compound is more at least 5 hours, preferably, in the range from about 5 hours between administrations to about 15 hours between administrations.
- the Compound of the Invention is administered as a tablet or capsule.
- the tablet or capsule comprises a dose of about 80 mgs.
- the Compound of the Invention is administered orally in conjunction with fluid on an empty stomach.
- the fluid is milk or water.
- the naphthofuran compound is a polymorph of the compound shown below, referred to herein as “Compound 1,”
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth WO 2011/116398 and WO 2011/116399, the contents of each of which are hereby incorporated by reference in their entireties.
- X-ray powder diffraction analysis shown in FIG. 1 of WO 2011/116398 and WO 2011/116399 was performed using a Philips PW1800 diffractometer using Cu radiation at 40 KV/30 mA over the range of 5° to 70° with a step size of 0.03° and a counting time of 3 hours.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in WO 2011/116398 and WO 2011/116399.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in WO 2011/116398 and WO 2011/116399.
- X-ray powder diffraction analysis shown in FIGS. 2 and 3 of WO 2011/116398 and WO 2011/116399 was performed using a Bruker D8 Advance diffractometer.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.4, 11.9, 14.1, 14.5, 17.3, 21.0, 22.2, 24.0, 26.0, and 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.9, 14.1, 14.5, 17.3, 22.2, and/or 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 10.2 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 11.9 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.5 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 17.3 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 22.2 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2 ⁇ , a peak at least at about 11.9 degrees 2 ⁇ , a peak at least at about 14.1 degrees 2 ⁇ , a peak at least at about 14.5 degrees 2 ⁇ , a peak at least at about 17.3 degrees 2 ⁇ , a peak at least at about 22.2 degrees 2 ⁇ , and a peak at least at about 28.1 degrees 2 ⁇ and any combinations thereof.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 11.4, 12.3, 15.0, 23.0, 23.3, 24.1, 24.6, 25.0, 26.1, 27.0, and 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 12.3, 15, 23.0, 23.3, 24.6 and/or 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 7.5 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 9.9 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 12.3 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 15 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23.3 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 24.6 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 7.5 degrees 2 ⁇ , a peak at least at about 9.9 degrees 2 ⁇ , a peak at least at about 15 degrees 2 ⁇ , a peak at least at about 12.3 degrees 2 ⁇ , a peak at least at about 23.0 degrees 2 ⁇ , a peak at least at about 23.3 degrees 2 ⁇ , a peak at least at about 24.6 degrees 2 ⁇ and a peak at least at about 28.4 degrees 2 ⁇ and any combinations thereof.
- the present invention also provides naphthofuran compounds in particle form.
- the naphthofuran compound in particle form is a particle of a compound of Formula I shown below, which is active, i.e., has an efficacy and/or an antitumor activity in vivo.
- the efficacious particle or particles have a defined requirement for particle size, for example, has a diameter of less than or equal to about 200 ⁇ m, about 150 ⁇ m, about 100 ⁇ m, about 40 ⁇ m, or about 20 ⁇ m, about 10 ⁇ m, about 5 ⁇ m, about 4 ⁇ m, about 3 ⁇ m, about 2 ⁇ m, about 1 ⁇ m, about 0.5 ⁇ m, or about 0.2 ⁇ m.
- the particle or particles that are larger than the defined particle size are either inactive or less active.
- the compound is in a pharmaceutical composition comprising a population of particles of the compound, and wherein a fraction of the cumulative total of the particles have a diameter in the range of 0.2 ⁇ m to 20 ⁇ m.
- the compound is in a pharmaceutical composition comprising a population of particles of the compound, and wherein 50% of the cumulative total of the particles (D50) have a diameter in the range from about 0.5 to about 5 ⁇ m.
- the compound is in a pharmaceutical composition comprising a population of particles of the compound, and wherein 50% of the cumulative total of the particles (D50) have a diameter of about 2 ⁇ m.
- the naphthofuran compound in particle form is a particle of a compound according to Formula I or a salt or solvate thereof,
- each (R 1 ) is independently selected from the group consisting of hydrogen, halogen, fluorine, cyano, nitro, CF 3 , OCF 3 , alkyl, methyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heterocycle, substituted heterocycle, aryl, substituted aryl, OR a , SR a , and NH 2 ; wherein n is 4; wherein R 3 is selected from the group consisting of hydrogen, halogen, fluorine, cyano, CF 3 , OCF 3 , alkyl, methyl, substituted alkyl, halogen-substituted alkyl, hydroxyl-substituted alkyl,
- each (R 1 ) is independently selected from the group consisting of hydrogen, methyl, F (fluorine), Cl, Br, I, OH, and NH 2 ;
- R 3 is selected from the group consisting of methyl and C(R 8 ) 3 , and each (R 8 ) is independently selected from the group consisting of hydrogen, methyl, F (fluorine), Cl, Br, I, OH, and NH 2 .
- at most two of(R 1 ) and (R 8 ) are F (fluorine) with the remainder being hydrogen.
- R 3 is methyl.
- the compound is selected from the group consisting of 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, an enantiomer, diastereomer, tautomer, and a salt or solvate thereof.
- the naphthofuran compound in particle form is a particle of Compound 1.
- the naphthofuran compound in particle form is a particle of a polymorph of Compound 1.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 1 of WO 2011/116398 and WO 2011/116399.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 3 of WO 2011/116398 and WO 2011/116399.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.4, 11.9, 14.1, 14.5, 17.3, 21.0, 22.2, 24.0, 26.0, and 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.9, 14.1, 14.5, 17.3, 22.2, and/or 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 10.2 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 11.9 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.5 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 17.3 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 22.2 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2 ⁇ , a peak at least at about 11.9 degrees 2 ⁇ , a peak at least at about 14.1 degrees 2 ⁇ , a peak at least at about 14.5 degrees 2 ⁇ , a peak at least at about 17.3 degrees 2 ⁇ , a peak at least at about 22.2 degrees 2 ⁇ , and a peak at least at about 28.1 degrees 2 ⁇ and any combinations thereof.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 11.4, 12.3, 15.0, 23.0, 23.3, 24.1, 24.6, 25.0, 26.1, 27.0, and 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 12.3, 15, 23.0, 23.3, 24.6 and/or 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 7.5 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 9.9 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 12.3 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 15 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23.3 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 24.6 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 7.5 degrees 2 ⁇ , a peak at least at about 9.9 degrees 2 ⁇ , a peak at least at about 15 degrees 2 ⁇ , a peak at least at about 12.3 degrees 2 ⁇ , a peak at least at about 23.0 degrees 2 ⁇ , a peak at least at about 23.3 degrees 2 ⁇ , a peak at least at about 24.6 degrees 2 ⁇ and a peak at least at about 28.4 degrees 2 ⁇ and any combinations thereof.
- the particle has a diameter of less than or equal to about 160 ⁇ m, about 150 ⁇ m, about 120 ⁇ m, about 100 ⁇ m, about 50 ⁇ m, about 40 ⁇ m, or about 20 ⁇ m. In a further embodiment, the particle has a diameter of less than or equal to about 10 ⁇ m, about 5 ⁇ m, about 4 ⁇ m, about 3 ⁇ m, about 2 ⁇ m, about 1 ⁇ m, about 0.5 ⁇ m, about 0.2 ⁇ m, or about 0.1 ⁇ m.
- the compound is in a pharmaceutical composition comprising a population of particles of the compound, and wherein a fraction of the cumulative total of the particles have a diameter in the range of 0.2 ⁇ m to 20 ⁇ m.
- the compound is in a pharmaceutical composition comprising a population of particles of the compound, and wherein 50% of the cumulative total of the particles (D50) have a diameter in the range from about 0.5 to about 5 ⁇ m.
- the compound is in a pharmaceutical composition comprising a population of particles of the compound, and wherein 50% of the cumulative total of the particles (D50) have a diameter of about 2 ⁇ m.
- the present invention provides a particle or particles of a naphthofuran compound, for example, a compound of Formula I, which are active, i.e., have an efficacy and/or an antitumor activity.
- the active particle or particles have certain size, for example, has a diameter of less than or equal to about 200 ⁇ m, about 150 ⁇ m, about 100 ⁇ m, about 40 ⁇ m, or about 20 ⁇ m, about 10 ⁇ m, about 5 ⁇ m, about 4 ⁇ m, about 3 ⁇ m, about 2 ⁇ m, about 1 ⁇ m, about 0.5 ⁇ m, about 0.2 ⁇ m, or about 0.1 ⁇ m.
- the particle or particles that are larger than the certain size are either inactive or less active than the particles described herein.
- a pharmaceutical composition includes particles of a compound, for example, a naphthofuran, according to Formula I or a salt or solvate thereof.
- a pharmaceutical composition includes particles of Compound 1.
- a pharmaceutical composition includes particles of a polymorph of Compound 1.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 1 of WO 2011/116398 and WO 2011/116399.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 2 of WO 2011/116398 and WO 2011/116399. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 3 of WO 2011/116398 and WO 2011/116399.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.4, 11.9, 14.1, 14.5, 17.3, 21.0, 22.2, 24.0, 26.0, and 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.9, 14.1, 14.5, 17.3, 22.2, and/or 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 10.2 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 11.9 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.5 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 17.3 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 22.2 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2 ⁇ , a peak at least at about 11.9 degrees 2 ⁇ , a peak at least at about 14.1 degrees 2 ⁇ , a peak at least at about 14.5 degrees 2 ⁇ , a peak at least at about 17.3 degrees 2 ⁇ , a peak at least at about 22.2 degrees 2 ⁇ , and a peak at least at about 28.1 degrees 2 ⁇ and any combinations thereof.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 11.4, 12.3, 15.0, 23.0, 23.3, 24.1, 24.6, 25.0, 26.1, 27.0, and 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 12.3, 15, 23.0, 23.3, 24.6 and/or 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 7.5 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 9.9 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 12.3 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 15 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23.3 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 24.6 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 7.5 degrees 2 ⁇ , a peak at least at about 9.9 degrees 2 ⁇ , a peak at least at about 15 degrees 2 ⁇ , a peak at least at about 12.3 degrees 2 ⁇ , a peak at least at about 23.0 degrees 2 ⁇ , a peak at least at about 23.3 degrees 2 ⁇ , a peak at least at about 24.6 degrees 2 ⁇ and a peak at least at about 28.4 degrees 2 ⁇ and any combinations thereof.
- a fraction of the cumulative total of the particles can have a diameter of less than or equal to about 200 ⁇ m.
- a fraction of a set of particles can be at least about 1%, at least about 5%, at least about 10%, at least about 20%, or at least about 30% of the total number of particles in the set.
- the fraction is a substantial fraction.
- a “substantial fraction” of a set of particles can be at least about 99%, at least about 95%, at least about 90%, at least about 85%, at least about 80%, at least about 75%, at least about 70%, at least about 60%, or at least about 50% of the total number of particles in the set.
- Each (R 1 ) can be independently selected from the group consisting of hydrogen, halogen, fluorine, cyano, nitro, CF 3 , OCF 3 , alkyl, methyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heterocycle, substituted heterocycle, aryl, substituted aryl, OR a , SR a , and NH 2 .
- n can be a positive integer; for example, n can be 4.
- R 3 can be selected from the group consisting of hydrogen, halogen, fluorine, cyano, CF 3 , OCF 3 , alkyl, methyl, substituted alkyl, halogen-substituted alkyl, hydroxyl-substituted alkyl, amine-substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heterocycle, substituted heterocycle, aryl, substituted aryl, OR a , SR a , and NR b R c .
- the R a can be independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heterocycle, substituted heterocycle, aryl, and substituted aryl.
- R b and R c can be independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocycle, substituted heterocycle, aryl, and substituted aryl, or R b and R c together with the N to which they are bonded form a heterocycle or substituted heterocycle.
- each (R 1 ) can be independently selected from the group consisting of hydrogen, methyl, F (fluorine), Cl, Br, I, OH, and NH 2 .
- R 3 can be selected from the group consisting of methyl and C(R 8 ) 3 .
- Each (R 8 ) can be independently selected from the group consisting of hydrogen, methyl, F (fluorine), Cl, Br, I, OH, and NH 2 .
- at most two of (R 1 ) and R 8 can be F (fluorine) with the remainder being hydrogen.
- a compound according to Formula I is selected from the group consisting of 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, and 2-ethyl-naphtho[2,3-b]furan-4,9-dione.
- a compound according to Formula I is Compound 1.
- a compound according to Formula I is a polymorph of Compound 1.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 1 of WO 2011/116398 and WO 2011/116399.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 3 of WO 2011/116398 and WO 2011/116399.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.4, 11.9, 14.1, 14.5, 17.3, 21.0, 22.2, 24.0, 26.0, and 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.9, 14.1, 14.5, 17.3, 22.2, and/or 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 10.2 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 11.9 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.5 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 17.3 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 22.2 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2 ⁇ , a peak at least at about 11.9 degrees 2 ⁇ , a peak at least at about 14.1 degrees 2 ⁇ , a peak at least at about 14.5 degrees 2 ⁇ , a peak at least at about 17.3 degrees 2 ⁇ , a peak at least at about 22.2 degrees 2 ⁇ , and a peak at least at about 28.1 degrees 2 ⁇ and any combinations thereof.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 11.4, 12.3, 15.0, 23.0, 23.3, 24.1, 24.6, 25.0, 26.1, 27.0, and 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 12.3, 15, 23.0, 23.3, 24.6 and/or 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 7.5 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 9.9 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 12.3 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 15 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23.3 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 24.6 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 7.5 degrees 2 ⁇ , a peak at least at about 9.9 degrees 2 ⁇ , a peak at least at about 15 degrees 2 ⁇ , a peak at least at about 12.3 degrees 2 ⁇ , a peak at least at about 23.0 degrees 2 ⁇ , a peak at least at about 23.3 degrees 2 ⁇ , a peak at least at about 24.6 degrees 2 ⁇ and a peak at least at about 28.4 degrees 2 ⁇ and any combinations thereof.
- the pharmaceutical composition can have at least about 90% of the cumulative total of particles having a particle size of less than or equal to about 160 ⁇ m, 100 ⁇ m, 40 ⁇ m, 20 ⁇ m, 10 ⁇ m, 5 ⁇ m, 3 ⁇ m, or 2 ⁇ m.
- the pharmaceutical composition can have at least about 50% of the cumulative total of particles having a particle size of less than or equal to about 160 ⁇ m, 100 ⁇ m, 40 ⁇ m, 20 ⁇ m, 10 ⁇ m, 5 ⁇ m, 3 ⁇ m, 2 ⁇ m, 1 ⁇ m, or 0.5 ⁇ m.
- the pharmaceutical composition can have at least about 10% of the cumulative total of the particles having a particle size of less than or equal to about 160 ⁇ m, 100 ⁇ m, 40 ⁇ m, 20 ⁇ m, 5 ⁇ m, 2 ⁇ m, 1 ⁇ m, 0.5 ⁇ m, or 0.1 ⁇ m.
- the particles can have a median diameter of, for example, less than or equal to about 160 ⁇ m, 40 ⁇ m, 20 ⁇ m, 10 ⁇ m, 5 ⁇ m, 4 ⁇ m 3 ⁇ m, 2 ⁇ m, 1 ⁇ m, 0.5 ⁇ m, 0.3 ⁇ m, or 0.2 ⁇ m.
- the particles can have a median diameter of from about 0.2 ⁇ m to about 50 ⁇ m, or a median diameter of from about 0.5 ⁇ m to about 30 ⁇ m.
- the pharmaceutical composition can have the cumulative total of particles having a ratio of mean diameter over median diameter of at most about 2 ⁇ m.
- the pharmaceutical invention can have particles that include the compound in a crystalline state, in at least two different polymorph states.
- the pharmaceutical composition includes a compound of Formula I or a polymorph thereof in particle form, where the particle or particles are less than 20 micron, 10 micron, 5 micron, 2 micron, 1 micron or 0.5 micron.
- the present invention provides a substantially pure compound of Formula II,
- each R 1 is independently H, Cl, or F; and n is 0, 1, 2, 3, or 4.
- the compound of Formula II is in particle form.
- the substantially pure compound is Compound 1.
- Compound 1 is in particle form.
- the substantially pure compound is selected from the group consisting of 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, phosphoric acid mono-[1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl]ester, phosphoric acid 1-(4,9-dioxo-3a,4,9,9a-t-tetra
- the substantially pure compound is a polymorph of Compound 1.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 1 of WO 2011/116398 and WO 2011/116399.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 2 of WO 2011/116398 and WO 2011/116399.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 3 of WO 2011/116398 and WO 2011/116399.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.4, 11.9, 14.1, 14.5, 17.3, 21.0, 22.2. 24.0, 26.0, and 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.9, 14.1, 14.5, 17.3, 22.2, and/or 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 10.2 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 11.9 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.5 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 17.3 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 22.2 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2 ⁇ , a peak at least at about 11.9 degrees 2 ⁇ , a peak at least at about 14.1 degrees 2 ⁇ , a peak at least at about 14.5 degrees 2 ⁇ , a peak at least at about 17.3 degrees 2 ⁇ , a peak at least at about 22.2 degrees 2 ⁇ , and a peak at least at about 28.1 degrees 2 ⁇ and any combinations thereof.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 11.4, 12.3, 15.0, 23.0, 23.3, 24.1, 24.6, 25.0, 26.1, 27.0, and 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 12.3, 15, 23.0, 23.3, 24.6 and/or 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 7.5 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 9.9 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 12.3 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 15 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23.3 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 24.6 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 7.5 degrees 2 ⁇ , a peak at least at about 9.9 degrees 2 ⁇ , a peak at least at about 15 degrees 2 ⁇ , a peak at least at about 12.3 degrees 2 ⁇ , a peak at least at about 23.0 degrees 2 ⁇ , a peak at least at about 23.3 degrees 2 ⁇ , a peak at least at about 24.6 degrees 2 ⁇ and a peak at least at about 28.4 degrees 2 ⁇ and any combinations thereof.
- the polymorph of Compound 1 is in particle form.
- the compound, product and or pharmaceutical composition has a purity of at least about 80%, about 85%, about 90%, about 95%, or about 99%. In some embodiments, the compound, product and or pharmaceutical composition has a purity of at least about 95.5%, about 96%, about 96.5%, about 97%, about 97.5%, about 98%, about 98.5%, about 99%, or about 99.5%. In some embodiments, the compound, product and or pharmaceutical composition has a purity of at least about 99.1%, about 99.2%, about 99.3%, about 99.4%, about 99.5%, about 99.6%, about 99.7%, about 99.8%, or about 99.9%.
- the compound, product and/or pharmaceutical composition has impurities of at most about 10%, about 5%, about 1%, about 0.15%, or about 0.5%. In some embodiments, the compound, product and or pharmaceutical composition contains, for each single impurity, at most about 0.5%, about 0.2%, about 0.15%, or about 0.1%.
- the impurities are one or more from the group consisting of 2-acetyl-2,3-dihydronaphtho[2,3-b]furan-4,9-dione, 2,6-Diacetyl-naphtho[2,3-b]furan-4,9-dione, 2.7 Diacetyl-naphtho[2,3-b]furan-4,9-dione, 3-Acetyl-naphtho[2,3-b]furan-4,9-dione, Naphtho[2,3-b]furan-4,9-dione, Naphtho[2,3-b]furan-4,9-dione, Naphtho[2,3-b]furan-4,9-diol, and 1-(4,9-Dihydroxy-naphtho[2,3-b]furan-2-yl)-ethanone.
- the impurities include a residual solvent.
- the solvent is selected from the group consisting of ethyl acetate (EtOAc), toluene, Ethanol, methanol, chloroform, and CH 2 Cl 2 /hexane.
- the purity is determined with HPLC (High Performance Liquid Chromatography). In some embodiments, the purity is determined with NMR (Nuclear Magnetic Resonance). In a further embodiment, the purity is determined with both HPLC and NMR.
- the invention also provides a polymorph of Compound 1 in a particle form, where the compound is in a highly purified form, product and/or pharmaceutical composition.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 1 of WO 2011/!116398 and WO 2011/116399.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 2 of WO 2011/116398 and WO 2011/116399. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 3 of WO 2011/116398 and WO 2011/116399.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.4, 11.9, 14.1, 14.5, 17.3, 21.0, 22.2, 24.0, 26.0, and 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.9, 14.1, 14.5, 17.3, 22.2, and/or 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 10.2 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 11.9 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.5 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 17.3 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 22.2 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2 ⁇ , a peak at least at about 11.9 degrees 2 ⁇ , a peak at least at about 14.1 degrees 2 ⁇ , a peak at least at about 14.5 degrees 2 ⁇ , a peak at least at about 17.3 degrees 2 ⁇ , a peak at least at about 22.2 degrees 2 ⁇ , and a peak at least at about 28.1 degrees 2 ⁇ and any combinations thereof.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 11.4, 12.3, 15.0, 23.0, 23.3, 24.1, 24.6, 25.0, 26.1, 27.0, and 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 12.3, 15, 23.0, 23.3, 24.6 and/or 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 7.5 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 9.9 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 12.3 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 15 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23.3 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 24.6 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 7.5 degrees 2 ⁇ , a peak at least at about 9.9 degrees 2 ⁇ , a peak at least at about 15 degrees 2 ⁇ , a peak at least at about 12.3 degrees 2 ⁇ , a peak at least at about 23.0 degrees 2 ⁇ , a peak at least at about 23.3 degrees 2 ⁇ , a peak at least at about 24.6 degrees 2 ⁇ and a peak at least at about 28.4 degrees 2 ⁇ and any combinations thereof.
- the polymorph of Compound 1 is in a particle form.
- the polymorph of Compound 1 is in a particle form, where the particle has a diameter of less than or equal to about 160 ⁇ m, about 150 ⁇ m, about 120 ⁇ m, about 100 ⁇ m, about 50 ⁇ m, about 40 ⁇ m, or about 20 ⁇ m.
- the polymorph of Compound 1 in particle form is in a population of particles, where the population of particles have a D 50 (i.e., the median point of the particle size distribution that divides the distribution in two equal parts) of less than or equal to about 160 ⁇ m, about 150 ⁇ m, about 120 ⁇ m, about 100 ⁇ m, about 50 ⁇ m, about 40 ⁇ m, or about 20 ⁇ m.
- D 50 i.e., the median point of the particle size distribution that divides the distribution in two equal parts
- the polymorph of Compound 1 is in a particle form, where the particle has a diameter of less than or equal to about 10 ⁇ m, about 5 ⁇ m, about 4 ⁇ m, about 3 ⁇ m, about 2 ⁇ m, about 1 ⁇ m, about 0.5 ⁇ m, about 0.2 ⁇ m, or about 0.1 ⁇ m.
- the polymorph of Compound 1 in particle form is in a population of particles, where the population of particles have a D 50 of less than or equal to about 10 ⁇ m, about 5 ⁇ m, about 4 rpm, about 3 ⁇ m, about 2 ⁇ m, about 1 ⁇ m, about 0.5 ⁇ m, or about 0.2 ⁇ m.
- the present invention provides a particle or a population of particles of a polymorph of Compound 1, which are active, i.e., have an efficacy and/or an antitumor activity.
- the active particle or particles have certain size, for example, has a diameter or D 50 of less than or equal to about 200 ⁇ m, about 150 ⁇ m, about 100 ⁇ m, about 40 ⁇ m, or about 20 ⁇ m, about 10 ⁇ m, about 5 ⁇ m, about 4 ⁇ m, about 3 ⁇ m, about 2 ⁇ m, about 1 ⁇ m, about 0.5 ⁇ m, or about 0.2 ⁇ m.
- the particle or particles that are larger than the certain size are either inactive or less active than the particles described herein.
- a fraction of the cumulative total of the particles of a polymorph of Compound 1 can have a diameter or D 50 of less than or equal to about 200 ⁇ m.
- a fraction of a set of particles can be at least about 1%, at least about 5%, at least about 10%, at least about 20%, or at least about 30% of the total number of particles in the set.
- the fraction is a substantial fraction.
- a “substantial fraction” of a set of particles can be at least about 99%, at least about 95%, at least about 90%, at least about 85%, at least about 80%, at least about 75%, at least about 70%, at least about 60%, or at least about 50% of the total number of particles in the set.
- the population of particles of a polymorph of Compound 1 can have at least about 90% of the cumulative total of particles having a particle size of less than or equal to about 160 ⁇ m, 100 ⁇ m, 40 ⁇ m, 20 ⁇ m, 10 ⁇ m, 5 ⁇ m, 3 ⁇ m, or 2 ⁇ m, 1 ⁇ m or 0.5 ⁇ m.
- the population of particles of a polymorph of Compound 1 can have at least about 50% of the cumulative total of particles having a particle size of less than or equal to about 160 ⁇ m, 100 ⁇ m, 40 ⁇ m, 20 ⁇ m, 10 ⁇ m, 5 ⁇ m, 3 ⁇ m, 2 ⁇ m, 1 ⁇ m, or 0.5 ⁇ m.
- the population of particles of a polymorph of Compound 1 can have at least about 10% of the cumulative total of the particles having a particle size of less than or equal to about 160 ⁇ m, 100 ⁇ m, 40 ⁇ m, 20 ⁇ m, 5 ⁇ m, 2 ⁇ m, 1 ⁇ m, 0.5 ⁇ m, or 0.1 ⁇ m.
- the particles can have a median diameter of, for example, less than or equal to about 160 ⁇ m, 40 ⁇ m, 20 ⁇ m, 10 ⁇ m, 5 ⁇ m, 4 ⁇ m, 3 ⁇ m, 2 ⁇ m, 1 ⁇ m, 0.5 ⁇ m or 0.2 ⁇ m.
- the particles can have a median diameter of from about 0.002 ⁇ m to about 50 ⁇ m, or a median diameter of from about 0.2 ⁇ m to about 30 ⁇ m.
- the population of particles of a polymorph of Compound 1 can have the cumulative total of particles having a ratio of mean diameter over median diameter of at most about 2.
- the population of particles of a polymorph of Compound 1 can have particles that include the compound in a crystalline state, in at least two different polymorph states.
- the polymorph of Compound 1 is in a particle form, where the particle has a diameter of less than or equal to about 20 micron, 10 micron, 5 micron, or 2 3 micron, 2 micron, 1 micron, 0.5 micron, 0.2 micron, or 0.1 micron.
- the polymorph of Compound 1 in particle form is in a population of particles, where the population of particles have a D 50 of less than or equal to about 20 micron, 10 micron, 5 micron, 4 micron, 5 micron, 3 micron, 2 micron, 1 micron, 0.5 micron or 0.2 micron.
- the present invention also provides a pharmaceutical composition, which includes a therapeutically effective amount of the substantially pure naphthofuran compound and a pharmaceutically acceptable carrier, excipient, or diluent.
- the excipient can include, for example, a glycerol ester of a fatty acid, a glycerol ester of a saturated fatty acid, a glycerol ester of a saturated fatty acid having from 8 to 18 carbons, glyceryl laurate, polyethylene glycol, cellulose, microcrystalline cellulose, carboxymethylcellulose, a phosphatidylcholine, a lipid, a sterol, cholesterol, a surfactant, a polysorbate, and/or a polyoxyethylene sorbitan alkylate.
- an item of manufacture can include a container containing a therapeutically effective amount of the pharmaceutical composition and a pharmaceutically acceptable excipient.
- a method for producing a compound, product and/or pharmaceutical composition according to some embodiments of the invention can include milling the compound to form the particles.
- the compound can be ball milled, roll milled, jet milled, wet milled, ultrasonically milled, ground, or treated with a combination of these and/or other milling procedures.
- the temperature of the compound can be reduced, for example, reduced to a cryogenic temperature, and milled. Such reduction in temperature can render the compound more brittle and more amenable to particle size reduction by milling.
- a method for producing a compound, product and/or pharmaceutical composition according to some embodiments of the invention can include crystallization.
- the particle size distribution (PSD) obtained during crystallization is influenced by a combination of various mechanisms that occur during crystallization, such as nucleation, growth, aggregation, attrition, breakage, etc.
- an extra processing step such as dry milling can be included.
- a composition for reducing or inhibiting the replication or spread of neoplastic cells includes a set of particles selected by the following method.
- a compound according to Formula I or a salt or solvate thereof can be provided.
- Compound 1 or a salt or solvate thereof can be provided.
- a polymorph of Compound 1 can be provided.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 1 of WO 2011/116398 and WO 2011/116399.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 2 of WO 2011/116398 and WO 2011/116399. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 3 of WO 2011/116398 and WO 2011/116399.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.4, 11.9, 14.1, 14.5, 17.3, 21.0, 22.2, 24.0, 26.0, and 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.9, 14.1, 14.5, 17.3, 22.2, and/or 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 10.2 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 11.9 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.5 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 17.3 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 22.2 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2 ⁇ , a peak at least at about 11.9 degrees 2 ⁇ , a peak at least at about 14.1 degrees 2 ⁇ , a peak at least at about 14.5 degrees 2 ⁇ , a peak at least at about 17.3 degrees 2 ⁇ , a peak at least at about 22.2 degrees 2 ⁇ , and a peak at least at about 28.1 degrees 2 ⁇ and any combinations thereof.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 11.4, 12.3, 15.0, 23.0, 23.3, 24.1, 24.6, 25.0, 26.1, 27.0, and 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 12.3, 15, 23.0, 23.3, 24.6 and/or 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 7.5 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 9.9 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 12.3 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 15 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23.3 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 24.6 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 7.5 degrees 2 ⁇ , a peak at least at about 9.9 degrees 2 ⁇ , a peak at least at about 15 degrees 2 ⁇ , a peak at least at about 12.3 degrees 2 ⁇ , a peak at least at about 23.0 degrees 2 ⁇ , a peak at least at about 23.3 degrees 2 ⁇ , a peak at least at about 24.6 degrees 2 ⁇ and a peak at least at about 28.4 degrees 2 ⁇ and any combinations thereof.
- At least one set of particles including the compound can be prepared.
- the particle size distribution of each at least one set of particles can be determined.
- At least one set of particles can be administered to neoplastic cells and to normal cells at a predetermined concentration and for a predetermined period of time. The effect of the particles on the metabolism and/or division of the neoplastic cells and the normal cells can be observed.
- An effectivity rating can be assigned to each set of particles based on the effect of the particles on the neoplastic cells.
- a toxicity rating can be assigned to each set of particles based on the effect of the particles on the normal cells.
- the effectivity rating and/or the toxicity rating of the at least one set of particles having a first particle size distribution can be compared with the effectivity rating and/or the toxicity rating of at least one other set of particles having a particle size distribution different than the first particle size distribution.
- the set of particles having an effectivity rating greater than, a toxicity rating less than, and/or a weighted effectivity rating and toxicity rating sum greater than the at least one other set of particles can be selected as an optimum set.
- the particle size distribution of the optimum set of particles can be identified as an optimum particle size distribution.
- the optimum set of particles can be included in the composition.
- the effectivity rating can be proportional to antitumor activity.
- the effectivity rating can be based on inhibition of metabolism and/or division of the neoplastic cells.
- the toxicity rating can be inversely proportional to tolerability.
- the toxicity rating can be based on inhibition of metabolism and/or division of normal cells.
- the at least one set of particles can be administered to the neoplastic cells and to the normal cells in vitro.
- the effectivity rating can be the IC 50 of the neoplastic cells.
- the toxicity rating can be the IC 50 of the normal cells.
- the at least one set of particles can be administered to the neoplastic cells and to the normal cells in vivo in a test animal.
- the test animal can be, for example, a mammal, primate, mouse, rat, guinea pig, rabbit, or dog.
- the effectivity rating can be the decrease in volume of the neoplastic cells, and the toxicity rating can be the decrease in mass of the test animal.
- preparing the one set of particles including the compound can include isolating particles of a predetermined particle size distribution by dissolving and dispersing the compound, dissolving and dispersing the compound with a microfluidic technique, dissolving and dispersing the compound with cavitation or nebulization, milling the compound, ball milling the compound, roll milling the compound, jet milling the compound, wet milling the compound, ultrasonically milling the compound, grinding the compound, and/or sieving the compound.
- the particles can be suspended in a pharmaceutically acceptable excipient.
- Determining the particle size distribution can include using a technique selected from the group consisting of sieve analysis, optical microscopic counting, electron micrograph counting, electroresistance counting, sedimentation time, laser diffraction, acoustic spectroscopy, and combinations.
- a method of treating a neoplasm or other cell proliferation disorder can include administering to a human, mammal, or animal afflicted with a neoplasm a therapeutically effective amount of a composition including an optimum set of particles of the composition having an optimum particle size and distribution.
- the present invention provides a process of preparing a naphthofuran compound.
- the process includes reacting a naphthodihydrofurane compound or a mixture including the naphthodihydrofurane compound with an oxidizing agent in a first solvent.
- the mixture further includes a naphthofuran compound.
- the naphthofuran compound is selected from the group consisting of 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, phosphoric acid mono-[1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl]ester, phosphoric acid 1-(4,9-dioxo-3a,4,9,
- the oxidizing agent is manganese dioxide.
- the first solvent is toluene.
- the process further includes filtering the oxidization product through a pad of activated carbon.
- the process further includes crystallizing the naphthofuran compound by evaporating the first solvent.
- the process further includes re-crystallizing the naphthofuran compound with a second solvent.
- the second solvent is ethyl acetate.
- the process further includes slurrying the naphthofuran compound with a second solvent, heating the slurry, and cooling the slurry.
- the present invention provides a process of preparing a substantially pure naphthofuran compound.
- the process includes crystallizing a naphthofuran compound with a first solvent, and re-crystallizing the naphthofuran compound with a second solvent.
- the present invention provides another process of preparing a substantially pure naphthofuran compound.
- the process includes crystallizing a naphthofuran compound with a first solvent, slurrying the crystalline naphthofuran compound with a second solvent, heating the slurry, and cooling the slurry.
- the naphthofuran compound selected from the group consisting of 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, phosphoric acid mono-[1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl]ester, phosphoric acid 1-(4,9-dioxo-3a,4,9,9
- the present invention provides a naphthofuran compound prepared by any one of the above processes.
- the naphthofuran compound is selected from the group consisting of 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, phosphoric acid mono-[1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl]est
- the naphthofuran compound has a purity of at least about 80%, about 85% or about 90%, about 95%, or about 99%. In some embodiments, the naphthofuran compound has impurities of at most about 10%, about 5%, about 2%, or about 1%, about 0.5%, about 0.2%, about 0.15%, or about 0.1%.
- the invention provides methods for preparing particles of Compound 1, including particles of a polymorph of Compound 1, particles of highly pure forms of Compound 1 and particles of highly pure forms of a polymorph of Compound 1.
- particles having a desired median particle size for example, about 20 microns, are produced by milling crystals of Compound 1, including crystals of a purified form of Compound 1, crystals of a polymorph of Compound 1 and/or crystals of a purified form of a polymorph of Compound 1.
- the crystals are milled using a jet milling method where the venturi pressure is about 40, the mill pressure is about 100, and the feed rate is approximately 1304 g/hour.
- the invention also provides kits and/or methods for treating a specific, selected patient population suitable for therapeutic administration of a compound of the disclosure by detecting the level of expression of one or more biomarkers associated with cancer stemness.
- a biomarker is deemed to be associated with cancer stemness when its expression is elevated in patient or sample from a patient suffering from a cancer known to have cancer stem cells and/or known to have aberrant Stat3 pathway activities as compared a baseline, control or normal level of expression of the same marker, e.g., the level in a patient that is not suffering from a cancer known to have cancer stem cells and/or known to have aberrant Stat3 pathway activities.
- the biomarker associated with cancer stemness is phosphorylated STAT3 (p-STAT3). In some embodiments, the biomarker associated with cancer stemness is ⁇ -catenin. In some embodiments, the biomarker associated with cancer stemness is NANOG. In some embodiments, a combination of biomarkers associated with cancer stemness is used, where the combination is selected from the group consisting of two or more of p-STAT3, ⁇ -catenin, and NANOG. In some embodiments, a combination of biomarkers associated with cancer stemness is used, where the combination is selected from the group consisting of three of p-STAT3, ⁇ -catenin, and NANOG.
- the level of expression of one or more cancer stemness markers is detected in a patient or a sample from a patient, and where the patient or sample has an elevated level of one or more cancer stemness markers as compared to a control level of expression, the patient is then administered a therapeutically effective amount of a compound of the disclosure.
- the method is an in vivo method. In some embodiments of these methods, the method is an in situ method. In some embodiments of these methods, the method is an ex vivo method. In some embodiments of these methods, the method is an in vitro method.
- the invention also provides kits and/or methods for of identifying or otherwise refining, e.g., stratifying, a patient population suitable for therapeutic administration of a compound of the disclosure by detecting the level of expression of one or more biomarkers associated with cancer stemness.
- a biomarker is deemed to be associated with cancer stemness when its expression is elevated in patient or sample from a patient suffering from a cancer known to have cancer stem cells and/or known to have aberrant Stat3 pathway activities as compared a baseline, control or normal level of expression of the same marker, e.g., the level in a patient that is not suffering from a cancer known to have cancer stem cells and/or known to have aberrant Stat3 pathway activities.
- the biomarker associated with cancer stemness is phosphorylated STAT3 (p-STAT3). In some embodiments, the biomarker associated with cancer stemness is j-catenin. In some embodiments, the biomarker associated with cancer stemness is NANOG. In some embodiments, a combination of biomarkers associated with cancer stemness is used, where the combination is selected from the group consisting of two or more of p-STAT3, ⁇ -catenin, and NANOG. In some embodiments, a combination of biomarkers associated with cancer stemness is used, where the combination is p-STAT3, ⁇ -catenin, and NANOG.
- the level of expression of one or more cancer stemness markers is detected in a patient or a sample from a patient, and where the patient or sample has an elevated level of one or more cancer stemness markers as compared to a control level of expression, the patient is then administered a therapeutically effective amount of a compound of the disclosure.
- the method is an in vivo method. In some embodiments of these methods, the method is an in situ method. In some embodiments of these methods, the method is an ex vivo method. In some embodiments of these methods, the method is an in vitro method.
- FIG. 1 is a graph that compares the pharmacokinetics of BID dosing versus QD dosing in patients, where the patients were dosed at 500 mg during each dose. Medication was administered with a four-hour interval in between the two doses during the same day for the 500 mg BID regimen.
- FIG. 2 is a graph that compares the pharmacokinetics of two different formulations of the Compound of the Invention. The two formulations result in different sizes of the capsule.
- FIG. 3A consists of photographic images of tumor tissue samples from CRC patients visualized through immunohistochemistry using antibodies against phosphorylated STAT3 and DAPI (lower row).
- FIG. 3B is a chart showing a trend towards improvement in survival for patients with high p-STAT3 (compared with patients having low or negative p-STAT3).
- FIG. 4A consists of photographic images of tumor tissue samples from CRC patients visualized through immunohistochemistry using antibodies against ⁇ -catenin and DAPI (lower row).
- FIG. 4B is a chart showing a trend towards improvement in survival for patients with nuclear ⁇ -catenin localization (compared with patients having p-catenin localized to the cell membrane).
- FIG. 5 shows CD44 high cells growth being blocked by a Compound of the Invention.
- CD44 high cells were isolated by FACS (FaDu) and were cultured in the absence of attachment and serum for 5 days to form primary spheres. Primary spheres were then dissociated in Accumax (eBioscience, San Diego, Calif.) to single cells, and were cultured as above for 72 hours before the addition of the indicated concentrations of therapeutic agents. After five days of treatment, representative sphere images were captured.
- FIG. 6 shows an in vivo study of nude mice with xenografted human colon cancer tumor tissues where a Compound of the Invention was shown to be effective in reducing or clearing p-STAT3 and ⁇ -catenin levels.
- Formaldehyde-fixed tumors from mice treated daily for 15 days with oral gavage of the Co pound of the Invention or Vehicle (Control) were sectioned and analyzed by immunofluorescence staining using antibodies specific for human-STAT2 and ⁇ -catenin.
- FIG. 7 shows that in a mice study, a Compound of the Invention targeted cancer stem cells.
- Xenograft bearing mice were administered with either vehicle, gemcitabine (120 mg/kg (MIA PaCa-2)), carboplatin (30 mg/kg (FaDu)), or 20 mg/kg of a Compound of the Invention by ip.
- gemcitabine 120 mg/kg (MIA PaCa-2)
- carboplatin (30 mg/kg (FaDu)
- 20 mg/kg of a Compound of the Invention by ip.
- tumors were collected after seven or 14 days of treatment, for PaCa-2 and FaDu cells, respectively.
- Single cell suspensions were obtained following animal sacrifice, and sterile removal of tumors.
- Live cells were then counted and used to measure their ability to form spheres when cultured in cancer stem cell media (DMEM/F12, B27 Neurobasal supplement, 20 ng/mL EGF, 10 ng/mL FGF, 4 ng/mL insulin, and 0.4% BSA). Fresh media was added every three days, and sphere formation was determined after 10-14 days in cultures. Spheres with >50 cells were scored.
- cancer stem cell media DMEM/F12, B27 Neurobasal supplement, 20 ng/mL EGF, 10 ng/mL FGF, 4 ng/mL insulin, and 0.4% BSA. Fresh media was added every three days, and sphere formation was determined after 10-14 days in cultures. Spheres with >50 cells were scored.
- FIGS. 8A , 8 B, and 8 C are a series of graphs depicting that in human clinical studies, a Compound of the Invention was found to be effective in CRC patients.
- FIG. 8A depicts the relationship between Progression Free Survival (PFS) and exposure of a Compound of the Invention in colorectal cancer (CRC) patients. In CRC patients, a statistically significant difference was seen in PFS between those with Compound of the Invention plasma concentrations above 2.0 uM for greater than 4 hours and those who did not reach that level of exposure.
- FIG. 8B depicts the overall survival (OS) in evaluable CRC patients.
- OS overall survival
- FIG. 8C depicts PFS in evaluable CRC patients.
- PFS of evaluable CRC patients treated with a Compound of the Invention defined as ⁇ 4 weeks of Compound of the Invention, 80% compliance
- compared historical controls Open-Label Phase III Trial of Panitumumab Plus Best Supportive Care Compared with Best Supportive Care Alone in Patients with Chemotherapy-Refractory Metastatic Colorectal Cancer, 2007, J. Clin. One. 25: 1658-1665].
- a “substantial fraction” of a set of particles can be at least about 99%, at least about 95%, at least about 90%, at least about 85%, at least about 80%, at least about 75%, at least about 70%, at least about 60%, or at least about 50% of the total number of particles in the set.
- the anti-cancer stem cell activity of a composition can be determined in vitro or in vivo.
- antitumor activity of a composition can be determined in vitro by administering the compound and measuring the self-renewal and survival of cancer stem cells,
- the antitumor activity of a compound can be assessed in vitro by comparing the behavior of tumor cells to which the compound has been administered with the behavior of tumor cells to which the compound has not been administered (a control).
- antitumor activity of a composition can be determined in vivo by measuring, in an animal to which the compound has been administered, the change in volume of a tumor, by applying a metastatic model, and/or by applying an orthotopic model.
- the antitumor activity of a compound can be assessed in vivo by comparing an animal to which the compound has been administered to an animal to which the compound has not been administered (a control).
- the tolerability of a composition can be determined in vitro or in vivo.
- tolerability of a composition can be determined in vitro by administering the compound and measuring the division rate of normal cells, by measuring the nutrient uptake of normal cells, by measuring indicators of metabolic rate of normal cells other than nutrient uptake, by measuring the growth of normal cells, and/or by measuring another indicator of the vitality of normal cells.
- the tolerability of a compound can be assessed in vitro by comparing the behavior of normal cells to which the compound has been administered with the behavior of normal cells to which the compound has not been administered (a control).
- tolerability of a composition can be determined in vivo by measuring, in an animal to which the compound has been administered, body weight or food intake or making clinical observations, such as hair retention or loss, activity, and/or responsiveness to stimuli.
- the tolerability of a compound can be assessed in vivo by comparing an animal to which the compound has been administered to an animal to which the compound has not been administered (a control).
- a compound, product and/or pharmaceutical composition can be assigned an effectivity rating and/or a toxicity rating.
- the effectivity rating can be proportional to antitumor activity or can be a monotonically increasing function with respect to antitumor activity.
- the toxicity rating can be inversely proportional to tolerability or can be a monotonically decreasing function with respect to tolerability.
- a naphthofuran compound has been reported to lack in vivo antitumor activity. See, M. M. Rao and D. G. I. guitarist, J. Natural Products, 45(5) (1982) 600-604. Furthermore, the compound has been reported to be equally toxic to cancer cells and normal cells.
- bioavailability of a drug is defined as the relative amount of drug from an administered dosage form which enters the systemic circulation and the rate at which the drug appears in the blood stream. Bioavailability is governed by at least three factors: (i) absorption which controls bioavailability, followed by (ii) its tissue re-distribution and (iii) elimination (metabolic degradation plus renal and other mechanisms).
- “Absolute bioavailability” is estimated by taking into consideration tissue re-distribution and biotransformation (i.e., elimination) which can be estimated in turn via intravenous administration of the drug.
- HPLC high performance liquid chromatography
- pharmaceutically acceptable refers to physiologically tolerable materials, which do not typically produce an allergic or other untoward reaction, such as gastric upset, dizziness and the like, when administered to a mammal
- mammal refers to a class of higher vertebrates including man and all other animals that nourish their young with milk secreted by mammary glands and have the skin usually more or less covered with hair
- “treating” is intended to encompass relieving, alleviating, or eliminating at least one symptom of a disease(s) in a mammal.
- treatment is intended to encompass administration of compounds according to the invention prophylactically to prevent or suppress an undesired condition, and therapeutically to eliminate or reduce the extent or symptoms of the condition. Treatment also includes preventing the relapse of an undesired condition, delaying the progression of an undesired condition, and preventing or delaying the onset of an undesired condition. Treatment according to the invention is given to a human or other mammal having a disease or condition creating a need of such treatment. Treatment also includes application of the compound to cells or organs in vitro. Treatment may be by systemic or local administration.
- An effective amount is the amount of active ingredient administered in a single dose or multiple doses necessary to achieve the desired pharmacological effect.
- a skilled practitioner can determine an effective dose for an individual patient or to treat an individual condition by routine experimentation and titration well known to the skilled clinician.
- unexpected clinical responses from a patient population to a pharmaceutical formulation or composition may dictate unforeseen changes or adjustment to an aspect of the treatment such as the dosage, intervals in between drug administrations, and/or ways of drug administration.
- the actual dose and schedule may vary depending on whether the compositions are administered in combination with other drugs, or depending on inter-individual differences in pharmacokinetics, drug disposition, and metabolism.
- amounts may vary for in vitro applications. Where disclosed herein, dose ranges, unless stated otherwise, do not necessarily preclude use of a higher or lower dose of a component, as might be warranted in a particular application.
- compositions which are suitable for administration to humans. It will be understood by the skilled artisan, based on this disclosure, that such compositions are generally suitable for administration to any mammal or other animal. Preparation of compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and perform such modifications with routine experimentation based on pharmaceutical compositions for administration to humans.
- a naphthofuran compound of Formula I such as 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, was practically insoluble in water and a broad panel of solvents tested, including DMSO (dimethyl sulfoxide), N-methylpyrrolidine, DMA (dimethylacetamide), ethanol, PEG400 (polyethylene glycol 400), propylene glycol, Cremophor EL (polyethoxylated castor oil), Labra
- the naphthofuran compound may be soluble in a range of polar organic solvents, such as certain halocarbons, e.g., chlorocarbons, like methylene chloride, esters, ethyl acetate, carboxylic acids, like acetic acid, ketones, like acetone, and alcohols, like methanol.
- halocarbons e.g., chlorocarbons, like methylene chloride, esters, ethyl acetate, carboxylic acids, like acetic acid, ketones, like acetone, and alcohols, like methanol.
- the naphthofuran compound was found to be soluble in methylene chloride and ethyl acetate.
- Some other compounds that may exhibit an improvement in their pharmacokinetic profile and efficacy with a decrease in particle size of the form in which they are administered to an animal, a mammal, or a human, as observed for the compound tested in examples, include those presented as Formula I, and salts and solvates thereof.
- the notation (R 1 ) n indicates that an (R 1 ) substituent is independently substituted at each available position along the benzene ring.
- the four R 1 substituents may all be the same, or they may each be different from any other.
- each (R 1 ) can be independently selected from the group consisting of hydrogen, halogen, fluorine, cyano, nitro, CF 3 , OCF 3 , alkyl, methyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heterocycle, substituted heterocycle, aryl, substituted aryl, OR a , SR a , and NH 2 .
- Alkyl can include moieties having, for example, from 1 to 8 carbon atoms connected by single bonds
- alkenyl can include moieties having, for example, from 2 to 8 carbon atoms connected by one or more double bonds
- alkynyl can include moieties having, for example, from 2 to 8 carbon atoms connected by one or more triple bonds.
- Substituents can include moieties such as hydrogen, halogen, cyano, nitro, aryl, OR a , SR a , and NH 2 .
- each (R 1 ) can be independently selected from the group consisting of hydrogen, methyl, F (fluorine), Cl (chlorine), Br (bromine), I (iodine).
- R 3 can be selected from the group consisting of hydrogen, halogen, fluorine, cyano, CF 3 , OCF 3 , alkyl, methyl, substituted alkyl, halogen-substituted alkyl, hydroxyl-substituted alkyl, amine-substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heterocycle, substituted heterocycle, aryl, substituted aryl, OR a , SR a , and NR b R c .
- R 3 can be selected from the group consisting of methyl and C(R 8 ) 3 .
- Each (R 8 ) can be independently selected from the group consisting of hydrogen, methyl, F (fluorine), Cl, Br, I, OH, and NH 2 .
- at most two of the independently selected (R 1 ) substituents and the (R 8 ) substituents can be selected to be F (fluorine), with the remainder being selected to be hydrogen.
- the compound of Formula I is selected from the group consisting of 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, an enantiomer, diastereomer, tautomer, and a salt or solvate thereof.
- each (R 1 ) can be selected to be hydrogen and R 3 can be selected to be methyl, so that the compound of Formula I is 2-acetylnaphtho[2,3-b]furan-4,9-dione.
- each R a can be independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heterocycle, substituted heterocycle, aryl, and substituted aryl.
- each R b and R c can be independently selected from the group consisting of, hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocycle, substituted heterocycle, aryl, and substituted aryl.
- an R b and R c together with the N to which they are bonded can form a heterocycle or substituted heterocycle.
- Naphthofuran compounds of the invention include polymorphs.
- the polymorph is a polymorph of a compound according to Formula I.
- the polymorph is a polymorph of Compound 1.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 1 of WO 2011/116398 and WO 2011/116399. This polymorph is referred to herein as “Crystal Form 1,” “Form 1,” or “XRPD1” and these terms are used interchangeably.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 2 of WO 2011/116398 and WO 2011/116399.
- This polymorph is referred to herein as “Crystal Form 2,” “Form 2,” or “XRPD2” and these terms are used interchangeably.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 3 of WO 2011/116398 and WO 2011/116399.
- This polymorph is referred to herein as “Crystal Form 3,” “Form 3,” or “XRPD3” and these terms are used interchangeably.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.4, 11.9, 14.1, 14.5, 17.3, 21.0, 22.2, 24.0, 26.0, and 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.9, 14.1, 14.5, 17.3, 22.2, and/or 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 10.2 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 11.9 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.5 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 17.3 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 22.2 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.1 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2 ⁇ , a peak at least at about 11.9 degrees 2 ⁇ , a peak at least at about 14.1 degrees 2 ⁇ , a peak at least at about 14.5 degrees 2 ⁇ , a peak at least at about 17.3 degrees 2 ⁇ , a peak at least at about 22.2 degrees 2 ⁇ , and a peak at least at about 28.1 degrees 2 ⁇ and any combinations thereof.
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 11.4, 12.3, 15.0, 23.0, 23.3, 24.1, 24.6, 25.0, 26.1, 27.0, and 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 12.3, 15, 23.0, 23.3, 24.6 and/or 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 7.5 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 9.9 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 12.3 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 15 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23.3 degrees 2 ⁇ . In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 24.6 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.4 degrees 2 ⁇ .
- the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 7.5 degrees 2 ⁇ , a peak at least at about 9.9 degrees 2 ⁇ , a peak at least at about 15 degrees 2 ⁇ , a peak at least at about 12.3 degrees 2 ⁇ , a peak at least at about 23.0 degrees 2 ⁇ , a peak at least at about 23.3 degrees 2 ⁇ , a peak at least at about 24.6 degrees 2 ⁇ and a peak at least at about 28.4 degrees 2 ⁇ and any combinations thereof.
- Crystal Form 1 has been detected in a variety of solvents and conditions, but has been shown to have low anti-tumor activity (FIG. 8 of WO 2011/116398 and WO 2011/116399).
- FIG. 8 of WO 2011/116398 and WO 2011/116399 immunosuppressed mice with established subcutaneous FaDu human head and neck cancer were given indicated amount of hand grounded Compound 1 with Crystal Form 1, or vehicle control orally (po).
- Compound 1 was formulated in GELUCIRETM. All regimens were administered daily (qd). Tumor sizes were evaluated periodically during treatment.
- Crystal Form 2 was obtained surprisingly in the presence of an impurity, and this polymorph has been shown to exhibit potent anti-tumor activity (FIG. 9 of WO 2011/116398 and WO 2011/116399).
- FIG. 9 of WO 2011/116398 and WO 2011/116399 immunosuppressed mice with established subcutaneous FaDu human head and neck cancer were given 100 mg/kg of micronized Compound 1 produced with the synthetic process described in FIGS. 5A and 5B of WO 2011/116398 and WO 2011/116399 (first crop), or vehicle control orally (po).
- Compound 1 was formulated in GELUCIRETM. All regimens were administered daily (qd). Tumor sizes were evaluated periodically during treatment.
- Form 2 has been successfully manufactured by a current good manufacturing practice (cGMP) process and received approval from the FDA and Health Canada to be used in clinical trials.
- Form 2 has shown desirable pharmacokinetics (FIG. 11 of WO 2011/116398 and WO 2011/116399), safety, and strong signs of anti-tumor activity in cancer patients.
- Crystal Form 3 has been shown to share a similar, but different, X-ray powder diffraction (XRPD) pattern as Form 1, and displayed very different crystalline habit than Form 1 (FIGS. 7A and B of WO 2011/116398 and WO 2011/116399).
- Form 3 can only be generated from Form 1 using a specially designed slurry process described herein.
- Form 3 has been shown to exhibit potent antitumor activities (FIG. 10 of WO 2011/116398 and WO 2011/116399).
- FIG. 10 of WO 2011/116398 and WO 2011/116399 immunosuppressed mice with established subcutaneous FaDu human head and neck cancer were given 200 mg/kg of Compound 1 with hand grounded Crystal Form 1 or Form 3, or vehicle control orally (po).
- Compound 1 was formulated in gelucire. All regimens were administered daily (qd). Tumor sizes were evaluated periodically during treatment. This polymorph has been successfully manufactured by a cGMP process and received approval from FDA and Health Canada to be used in clinical trials. Form 3 has also shown desirable pharmacokinetics (FIG. 12 of WO 2011/116398 and WO 2011/116399), safety, and strong signs of anti-tumor activity in cancer patients.
- FIGS. 5A-5B of WO 2011/116398 and WO 2011/116399 The synthetic process for preparing Crystal Form 2 is shown in FIGS. 5A-5B of WO 2011/116398 and WO 2011/116399. Briefly, charged 3-butene-2-one (451.2 grams) is added to a 2 liter 3 neck round bottom flask equipped with a mechanical stirrer, thermometer, and addition funnel. To the addition funnel is added bromine (936.0 grams). After the contents in the flask have cooled to ⁇ 5° C., the bromine is dropped into the flask with vigorous stirring and maintaining temperature at ⁇ 5° C. over 30 minutes. The mixture is stirred for an additional 15 minutes at ⁇ 5° C., and then is split into 4 equal portions.
- the rinsed solid is stored and pooled together from other batches.
- the combined crude product (28.73 kg) is loaded along with ethyl acetate (811.7 kg) into a 500 gallon vessel equipped with a mechanical stirrer, thermometer, and a condenser. Under nitrogen atmosphere, the mixture is heated to reflux (72° C.) for 2 hours, and then filtered with a 10 micron cartridge filter containing an active carbon layer to remove insolubles.
- Fresh hot ethyl acetate (10 kg) is used to rinse the vessel, transfer line and filter.
- the combined filtrate is cooled to 0-5° C. and held at this temperature for 2 hours, and then is filtered with 20 inch Buchner filter.
- the filtered solid product is rinsed with 0-5° C.
- Step 1 3-Butene-2-one (methyl vinyl ketone, MVK) is brominated using bromine. No additional solvent is used.
- the intermediate 3,4-dibromobutan-2-one is dissolved in tetrahydrofuran (THF) and reacted with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) to form a second intermediate, 3-bromo-3-buten-2-one.
- DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
- HNQ 2-hydroxy-1,4-naphthoquinone
- Step 2 Residual amounts of the 2-acetyl-2,3-dihydronaphtho[2,3-b]furan-4,9-dione that accompany the desired 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione (Compound 1) are oxidized to Compound 1 with activated manganese dioxide in toluene.
- Step 3 The solids are slurried in ethyl acetate (25 mL/g purified Compound 1) at 75° C.-80° C. for about 5 hr, collected by filtration, and dried.
- Compound 1 produced with this method is Crystal Form 3.
- Compound 1 produced with this method without the slurry process yielded Crystal Form 1.
- compositions that contain particles of Compound 1, e.g., microparticles have a D 50 equal to or below 20 microns and equal to or above 0.2 microns and possesses surprisingly potent anti-tumor activity without increase in cytotoxicity to normal cells.
- FIG. 15 of WO 2011/116398 and WO 2011/116399 The anti-tumor activity of particles of Compound 1 with different particle size ranges is illustrated in FIG. 15 of WO 2011/116398 and WO 2011/116399, and the pharmacokinetic data for particles of Compound 1 with different particle size ranges is illustrated in FIGS. 16-18 of WO 2011/116398 and WO 2011/116399.
- FIG. 15 of WO 2011/116398 and WO 2011/116399 immunosuppressed mice with established subcutaneous FaDu human head and neck cancer were given indicated amount of Compound 1 with indicated particle size, or vehicle control orally (po). All regimens were administered daily (qd). Tumor size was evaluated periodically.
- Administering the naphthofuran compound in the form of particles having defined particle size was found to enhance plasma drug concentration in vivo.
- size and “diameter” will be used interchangeably to describe particles. It is to be understood that the use of the term “diameter” does not necessarily imply that a particle has a perfectly or approximately spherical form. For example, “diameter” can be used as an approximation of the size of a particle, for example, the diameter of a sphere of equivalent volume to a non-spherical particle.
- the administration of the naphthofuran compound particles of a defined particle size distribution, e.g., as small particles, in a pharmaceutical composition was found to result in selective antitumor activity.
- the compound administered as particles having a median particle size of 20 m i.e., microns, these terms are used interchangeable herein
- the particles of 150 ⁇ m showed no efficacy.
- the naphthofuran compound can be equally toxic to tumor cells and normal cells if the exposure is not carried out under defined conditions as described in WO 2009/036099 and WO 2009/036101.
- the administration of the naphthofuran compound particles of a further reduced size, in a pharmaceutical composition was found to result in a significantly improved antitumor activity but almost an unaltered pharmacokinetic profile, i.e., unaltered bioavailability.
- the compound administered as particles having a median particle size of 2 ⁇ m showed dramatically enhanced efficacy in mouse xenograft models.
- the particles of 2 ⁇ m showed significantly improved efficacy but very similar pharmacokinetic profile.
- such an improved efficacy is independent of pharmacokinetic profile, i.e., bioavailability.
- improved efficacy is usually associated with increased drug oral bioavailability.
- the present invention provides a particle or particles of a naphthofuran compound, for example, a compound of Formula I, which are active, i.e., have an efficacy or a selective antitumor activity.
- the active particle or particles have a defined particle size, for example, has a diameter of less than or equal to about 200 ⁇ m, about 150 ⁇ m, about 100 ⁇ m, about 40 ⁇ m, or about 20 ⁇ m, about 10 ⁇ m, about 5 ⁇ m, about 4 ⁇ m, about 3 ⁇ m, about 2 ⁇ m, about 1 ⁇ m, about 0.5 ⁇ m, about 0.2 ⁇ m, or about 0.1 ⁇ m.
- the particle or particles that are larger than the defined particle size are either inactive or less active than the particles described herein.
- the administration of the naphthofuran compound or another Compound according to Formula I in the form of smaller particles can result in an improvement in its selective antitumor activity.
- the use of particles of a compound according to Formula I having a defined particle size distribution in dosing can allow for the establishment of desired selective antitumor activity.
- the use of the naphthofuran compound particles having a defined particle size distribution for example, being smaller particles, can result in a higher blood concentration for a shorter period of time, and a selective antitumor activity, although relative weak. Further reduced particle size of the compound can lead to significantly improved efficacy with unaltered blood plasma concentration of the compound.
- neoplasm can be used to describe cells which exhibit an abnormal pattern of growth. Such a neoplasm can include tumors, both benign and malignant, e.g., solid tumors, as well as other cell growth disorders, such as leukemia, that have no defined shape and are not confined to a specific region of a human or animal body. Thus, “neoplasm” includes both cancerous and non-cancerous neoplastic cells and tissues.
- tumor and cancer are to be understood as referring to the broader class of all neoplasms, including those that are not confined to a specific region of a human or animal body.
- solid tumor is to be understood as not including cell growth disorders, such as leukemia, that have no defined shape and are not confined to a specific region of a human or animal body.
- a neoplasm can exhibit none, one, or more than one of the following characteristics: solid form (a solid tumor), malignancy, metastasis, or Stat 3 pathway activity.
- a neoplasm can, for example, include a cancer stem cell.
- a neoplasm can be, for example, a carcinoma, sarcoma, adenocarcinoma, lymphoma, or a hematological malignancy.
- Absorption has been defined as the process by which a drug is taken from the site of administration to the site of measurement within the body. See, M. Rowland, T. N. Tozer (1995) Clinical pharmacokinetics: Concepts and applications. Lippincott Williams & Wilkins. Oral drug absorption is often referred to as drug transfer across the apical membrane of the enterocyte, because the apical membrane is considered to be the rate limiting step for permeation of the membrane. See, U. Fagerholm & H. Lennernäs (1995) Experimental estimation of the effective unstirred water layer thickness in the human jejunum, and its importance in oral drug absorption, Eur J Pharm Sci 3: 247-253; M. B. Lande, J. M.
- the rate of absorption is dependent on the permeability of the drug, surface area of the membrane, and the concentration gradient over the membrane.
- the concentration gradient is the driving force for passive diffusion, the most common mechanism for drug membrane transport.
- the drug is mainly absorbed by intestine. Human intestine is about 5-8 meters long and has a total surface area of almost 200 square meters while mouse intestine is only about 10-20 cm long. Therefore, one can predict that a drug with a larger particle size may have a higher or same absorption rate in human as a drug with a smaller particle size does in mouse, despite the permeability of the drug with a larger particle size being lower than that of the drug with a smaller particle size.
- a distribution of particle sizes of a compound according to Formula I having a median diameter of less than or equal to about 200 ⁇ m, 150 ⁇ m, 100 ⁇ m, 80 ⁇ m, 60 ⁇ m, 40 ⁇ m, 20 ⁇ m, 10 ⁇ m, 5 ⁇ m, 4 ⁇ m, 3 ⁇ m, 2 ⁇ m, 1 ⁇ m, 0.5 ⁇ m or 0.2 ⁇ m can be predicted to result in a selective antitumor activity when administered in a pharmaceutical formulation, e.g., for the treatment of a cancer or tumor.
- the distribution of particle sizes can be such that the particles have a median diameter of from about 0.02 ⁇ m to about 5 ⁇ m, or from about 0.2 ⁇ m to about 4 ⁇ m.
- the distribution of particle sizes can be such that the particles have a median diameter of less than or equal to about 5 ⁇ m, a ratio of mean diameter over median diameter of at most about 2, and a ratio of mode diameter over median diameter of at least about 0.25.
- particle can refer to an aggregate of a compound of Formula I.
- mean can refer to the sum of the sizes of all particles divided by the total number of particles.
- median can refer to, e.g., a diameter of which one-half of the particles have a greater diameter and one-half of the particles have a lesser diameter.
- mode can indicate the most frequently-occurring particle size value.
- cumulative total can refer to all particles.
- the selective antitumor activity achieved by administration of the naphthofuran compound particles may depend not only on the size distribution of the particles, e.g., the volumes of particles or diameters representative of those volumes, but also on the shape and distribution of shapes of the particles.
- a set of particles having a needle-like shape may result in a different pharmacokinetic profile than a set of particles having a spherical shape.
- the sphericity, ⁇ of a particle can be defined as
- V p is the volume of the particle and A p is the surface area of the particle.
- a tetrahedron has a sphericity of about 0.671
- a cube has a sphericity of about 0.806
- an octahedron has a sphericity of about 0.846
- a dodecahedron has a sphericity of about 0.910
- an icosahedron has a sphericity of about 0.939.
- a particle that is nearly spherical may be expected to dissolve more slowly than a particle of the same volume that is less nearly spherical.
- the mean sphericity of a set of spheres can be defined as
- ⁇ m ⁇ 1 / 3 ⁇ ( 6 ⁇ ⁇ ⁇ V P ) 2 / 3 ⁇ A P ,
- particles of a compound according to Formula I administered may have a mean sphericity of at least about 0.8, or a mean sphericity of at least about 0.9.
- the size, size distribution, shape, shape distribution, and factors such as surface roughness or irregularity of the particles can affect the mean specific surface area of the set of Compound 1 particles administered in a pharmaceutical formulation.
- the mean specific surface area can be defined as ⁇ A p / ⁇ m p , where ⁇ A p is the total surface area of the particles and ⁇ m p is the total mass of the particles. The greater the mean specific surface area of the particles, the faster the expected dissolution of the particles.
- the particles of a compound according to Formula I in a pharmaceutical formulation can include the naphthofuran compound in a crystalline state across different particles or within the same particle.
- the crystalline state may include one or more polymorphs, across different particles or within the same particle.
- the dissolution rate of the particles can be effected by the state of matter in the compound particles, for example, whether crystalline, of a first polymorph, or a second polymorph.
- One or more of a range of techniques can be applied to determine the size and/or size distribution of particles of a compound according to Formula I in a pharmaceutical formulation. For example, sieve analysis, optical microscopic counting, electron micrograph counting, electroresistance counting, sedimentation time, laser diffraction, and/or acoustic spectroscopy can be applied. Some or all of these techniques or variations thereof can be applied to determine the shape, shape distribution, and/or specific area of the naphthofuran compound particles in a pharmaceutical formulation.
- a BET isotherm and/or air permeability specific surface technique can be applied to determine the specific area of particles of a compound according to Formula I in a pharmaceutical formulation.
- WO 2009/036099 and WO 2009/036101 disclose a process for the preparation of a naphthofuran compound of Formula II as follows.
- one of the impurities is 2,3-dihydronaphtho[2,3-b]furan-4,9-dione (4-5).
- the present invention provides an improved process for the preparation of naphthofuran.
- the improved process minimizes the impurities, and thereby produces substantially pure naphthofuran.
- substantially pure refers to a preparation including at least about 80% or more, measured as % area HPLC, of the compound of the present invention.
- the naphthofuran is naphtho[2,3-b]furan-4,9-dione and its related compounds (4-6).
- the process of the present invention includes one or more of the methods shown in the working examples provided herein. In some embodiments, the process includes one or more of the methods shown in Examples 1, 2 and/or 5 provided herein.
- the process of the present invention includes oxidizing the crude product of coupling of 3-bromo-3-buten-2-one (4-3) and 2-hydroxy-1,4-naphthoquinone (4-4) with an oxidizing agent in a first solvent.
- the oxidizing agent is manganese dioxide (MnO 2 ).
- the crude product is isolated before it is oxidized.
- the first solvent is toluene or chloroform.
- the process of the present invention further includes treating the aged oxidation mixture with charcoal to get rid of certain impurities.
- the aged oxidation mixture is filtered with a pad of activated carbon.
- the mixture is filtered at around 100° C.
- the process of the present invention further includes crystallizing the product from the filtrate.
- the product is crystallized by concentrating the filtrate with evaporation, and cooling down.
- the process of the present invention further includes re-crystallizing the product with a second solvent.
- the second solvent is ethyl acetate.
- the process of the present invention further includes slurrying in a second solvent the product crystallized from the first solvent, heating the slurry, and cooling the slurry.
- the second solvent is ethyl acetate.
- the product is slurried and heated only to partial dissolution.
- the volume of the second solvent used to slurry the product is about 1/10, 1/5, 1/4, 1/3, 1/2, or 2/3 of the volume for the complete dissolution of the product in the heated condition.
- the present invention also provides a naphthofuran compound prepared by the process of the present invention.
- the naphthofuran compound is selected from the group consisting of 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, phosphoric acid mono-[1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl]
- the naphthofuran compound is prepared by the process including reacting the isolated crude product of the coupling of 2-hydroxy-1,4-naphthoquinone (4-4) and 3-Bromo-3-buten-2-one (4-3) with manganese dioxide in the presence of toluene.
- the process further includes filtering the aged reaction mixture with a pad of activated carbon.
- the present invention provides substantially pure naphthofuran compounds.
- the present invention provides a substantially pure compound selected from the group consisting of 2-(1-hydroxyethyl)-naphtho[2.3 b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2.3 b]furan-4,9-dione, phosphoric acid mono-[1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl]ester, phosphoric acid 1-(4,9-dioxo-3a,4,9,9a
- the present invention provides a substantially pure compound of Formula II,
- each R 1 is independently H, CI, or F; and n is 0, 1, 2, 3, or 4.
- substantially pure refers to a purity of at least about 80%. In some embodiments, the purity of a compound of the present invention has a purity of at least about 85%, about 90%, about 95%, or about 99%. In a further embodiment, the purity of a compound of the present invention has a purity of at least about 99.5%, or about 99.8%. In an even further embodiment, the purity of a compound of the present invention has a purity of at least about 99.85%, about 99.90%, about 99.94%, about 99.95%, or about 99.99%.
- the compound of the present invention is selected from the group consisting of 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, phosphoric acid mono-[1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl]ester, phosphoric acid 1-(4,9-dioxo-3a,4,9,9a
- the typical impurities that may be present in a compound of the present invention include one or more selected from the group consisting of by-product, isomer, intermediate, and solvent.
- the impurities that may be present in a compound of the present invention is at most about 10%, about 8%, about 5%, about 2%, or about 1% relative to the compound of Formula II.
- the impurities that may be present in a compound of the present invention is at most about 0.5%, about 0.2%, about 0.15%, or about 0.1% relative to the compound of Formula II.
- the impurities that may be present in a compound of the present invention is at most about 0.05%, about 0.02%, or about 0.01% relative to the compound of Formula II.
- the substantially pure compound of Formula II have at most about 500, 200, 100, 50, 20, 10, 5, 2, 1, 0.5, 0.2, 0.15, 0.1, or 0 parts per million (p.p.m.) of residual by-product or by-products relative to the compound of Formula II.
- the impurities include one or more by-products selected from the group consisting of 2-acetyl-2,3-dihydronaphtho[2.3 b]furan-4,9-dione, 2,6-Diacetyl-naphtho[2,3-b]furan-4,9-dione, 2,7-Diacetyl-naphtho[2,3-b]furan-4,9-dione, 3-Acetyl-naphtho[2,3-b]furan-4,9-dione, Naphtho[2,3-b]furan-4,9-dione, Naphtho[2,3-b]furan-4,9-dione, Naphtho[2,3-b]furan-4,9-dione, Naphtho[2,3-b]furan-4,9-diol, and 1-(4,9-Dihydroxy-naphtho[2,3-b]furan-2-yl)
- the impurities include manganese (Mn).
- the purity of a compound of the present invention may be determined with various devices.
- the purity is determined with HPLC (High Performance Liquid Chromatography).
- the purity is determined with NMR (Nuclear Magnetic Resonance).
- the purity is determined with HPLC and NMR.
- mice died during the treatment in the second experiment (lower panel) (1 on day 14 and 2 on day 21), and their body weights were, therefore, not included in the plot after their death.
- immunosuppressed mice with established subcutaneous FaDu human head and neck cancer (upper panel) or MDA-231 human breast cancer (lower panel) were given indicated amount of Compound 1, or vehicle control orally (po).
- Compound 1 was formulated in GELUCIRETM. All regimens were administered daily (qd). Body weights were evaluated periodically during treatment. Each point represents the mean ⁇ SEM of eight tumors. Compound 1 with higher purity was well-tolerated and showed no signs of toxicity.
- mice remained healthy throughout the treatment in both experiments.
- the dose of Compound 1 was escalated from 20 mg to 2000 mg/day, and a maximum tolerated dose (MTD) not reached. No dose-limiting toxicity was observed. Patients tolerated Compound 1 very well without drug-induced adverse effects, which is in sharp contrast to cancer chemotherapeutics.
- the clinical safety profile of the substantially pure compositions of Compound 1 is among the best for oncology drugs in history.
- excipients or enhancers were found to enhance the oral bioavailability of particles of a compound according to Formula I of a given particle size distribution in a pharmaceutical formulation.
- the addition of the pharmaceutically compatible excipient GELUCIRETM 44/14 can increase the bioavailability of Compound 1 having a median particle size of less than or equal to about 20 microns.
- excipients examples include surfactants, such as TWEEN 80TM or TWEEN 20TM (a polysorbate, i.e., a polyoxyethylene sorbitan monolaurate) or certain lipids, such as phosphatidylcholines, e.g., dimyristoylphosphatidylcholine (DMPC).
- surfactants include compounds that are amphiphilic and contain both hydrophobic and hydrophilic groups.
- excipients can include, for example, a glycerol ester of a fatty acid, a glycerol ester of a saturated fatty acid, a glycerol ester of a saturated fatty acid having from 8 to 18 carbons, glyceryl laurate, polyethylene glycol, a polyoxyethylene sorbitan alkylate, cellulose or cellulose derivatives, such as microcrystalline cellulose and carboxymethyl cellulose (CMC), as well as lipids, such as sterols, e.g., cholesterol.
- Other excipients can include antioxidants, such as Vitamin E.
- Other excipients and additional components can be included in a pharmaceutical formulation according to the present invention, as will be appreciated by one of skill in the art.
- active agents for example, other active agents, standard vehicles, carriers, liquid carriers, saline, aqueous solutions, diluents, surface active agents, dispersing agents, inert diluents, granulating and disintegrating agents, binding agents, lubricating agents, glidants, discharging agents, sweetening agents, flavoring agents, coloring agents, preservatives, physiologically degradable compositions such as gelatin, aqueous vehicles and solvents, oily vehicles and solvents, suspending agents, dispersing or wetting agents, suspending agents, emulsifying agents, demulcents, buffers, salts, thickening agents, gelatins, fillers, emulsifying agents, antioxidants, antibiotics, antifungal agents, stabilizing agents, water, glycols, oils, alcohols, crystallization retarding agents (e.g., to retard crystallization of a sugar), starches, sugars, sucrose, surface active agents, agents to increase the solubility of any other ingredient, such
- the compound according to Formula I of the present invention may be formulated into “pharmaceutical compositions”.
- Embodiments according to the present invention include various dosage forms including a compound, which can be useful, for example, for treating a patient.
- oral dosage forms can include a tablet, pill, capsule (hard or soft), caplet, powder, granule, suspension (e.g., in an aqueous or oily vehicle), solution (e.g., in an aqueous or oily vehicle), gel, cachet, troche, lozenge, syrup, elixir, emulsion, draught, oil-in-water emulsion, or a water-in-oil emulsion.
- Solid oral dosage forms may be sugar coated or enteric coated by standard techniques.
- nasal and other mucosal spray formulations e.g. inhalable forms
- nasal and other mucosal spray formulations can include purified aqueous solutions of the active compounds with preservative agents and isotonic agents.
- Such formulations are preferably adjusted to a pH and isotonic state compatible with the nasal or other mucous membranes.
- they can be in the form of finely divided solid powders suspended in a gas carrier, of an inhalant, or of an aerosol.
- Such formulations may be delivered by any suitable means or method, e.g., by nebulizer, atomizer, metered dose inhaler, or the like.
- a pharmaceutical composition according to the present invention may be administered topically, for example, in the form of an ointment, cream, or suppository.
- a pharmaceutical composition according to the present invention may be administered by injecting an injectant.
- a dosage form according to the present invention can have, for example, a solid, semi-solid, liquid, or gaseous form.
- Suitable dosage forms include but are not limited to oral, rectal, sub-lingual, mucosal, nasal, ophthalmic, subcutaneous, intramuscular, intravenous, parenteral, transdermal, spinal, intrathecal, intra-articular, intra-arterial, sub-arachinoid, bronchial, lymphatic, and intra-uterile administration, and other dosage forms for systemic delivery of active ingredients.
- An active ingredient for example, a compound according to Formula I may be contained in a formulation that provides quick release, sustained release, delayed release, or any other release profile known to one skilled in the art after administration to a subject (patient).
- the mode of administration and dosage form selected for a given treatment is closely related to the therapeutic amounts of the compounds or compositions which are desirable and efficacious for the given treatment application as well as factors such as the mental state and physical condition of the subject (patient).
- a pharmaceutical composition of the invention may be prepared, packaged, or sold in bulk, as a single unit dose, as a plurality of single unit doses, or in a multi-dose form.
- a “unit dose” is a discrete amount of the pharmaceutical composition including a predetermined amount of the active ingredient.
- the amount of the active ingredient in each unit dose is generally equal to the total amount of the active ingredient that would be administered or a convenient fraction of a total dosage amount such as, for example, one-half or one-third of such a dosage.
- a formulation of a pharmaceutical composition of the invention suitable for oral administration may be in the form of a discrete solid dosage unit. Each solid dosage unit contains a predetermined amount of the active ingredient, for example a unit dose or fraction thereof.
- an “oily” liquid is one which includes a carbon or silicon based liquid that is less polar than water.
- the active agent preferably is utilized together with one or more pharmaceutically acceptable carrier(s) therefore and optionally any other therapeutic ingredients.
- the carrier(s) must be pharmaceutically acceptable in the sense of being compatible with the other ingredients of the formulation and not unduly deleterious to the recipient thereof.
- the compositions of the present invention can be provided in unit dosage form, wherein each dosage unit, e.g., a teaspoon, tablet, capsule, solution, or suppository, contains a predetermined amount of the active drug or prodrug, alone or in appropriate combination with other pharmaceutically active agents.
- unit dosage form refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined quantity of the composition of the present invention, alone or in combination with other active agents, calculated in an amount sufficient to produce the desired effect.
- Dosage forms of the present pharmaceutical composition can be prepared by techniques known in the art and contain a therapeutically effective amount of an active compound or ingredient. Any technique known or hereafter developed may be used for the preparation of pharmaceutical compositions or formulations according to the invention. In general, preparation includes bringing the active ingredient into association with a carrier or one or more other additional components, and then, if necessary or desirable, shaping or packaging the product into a desired single- or multi-dose unit. Powdered and granular formulations according to the invention may be prepared using known methods or methods to be developed. Such formulations may be administered directly to a subject, or used, for example, to form tablets, fill capsules, or prepare an aqueous or oily suspension or solution by addition of an aqueous or oily vehicle thereto.
- a tablet may be made by compression or molding, or by wet granulation, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared by compressing, in a suitable device, the active ingredient in a free-flowing form such as a powder or granular preparation.
- Molded tablets may be made by molding, in a suitable device, a mixture of the active ingredient, a pharmaceutically acceptable carrier, and at least sufficient liquid to moisten the mixture. Tablets may be non-coated, or they may be coated using methods known in the art or methods to be developed.
- Coated tablets may be formulated for delayed disintegration in the gastrointestinal tract of a subject, for example, by use of an enteric coating, thereby providing sustained release and absorption of the active ingredient.
- Tablets may further include ingredients to provide a pharmaceutically elegant and palatable preparation.
- Hard capsules including the active ingredient may be made using a physiologically degradable composition, such as gelatin. Such hard capsules include the active ingredient.
- Soft gelatin capsules including the active ingredient may be made using a physiologically degradable composition, such as gelatin. Such soft capsules include the active ingredient, which may be mixed with water or an oil medium.
- Liquid formulations of a pharmaceutical composition of the invention that are suitable for administration may be prepared, packaged, and sold either in liquid form or in the form of a dry product intended for reconstitution with water or another suitable vehicle prior to use.
- Liquid suspensions in which the active ingredient is dispersed in an aqueous or oily vehicle, and liquid solutions, in which the active ingredient is dissolved in an aqueous or oily vehicle, may be prepared using conventional methods or methods to be developed.
- Liquid suspension of the active ingredient may be in an aqueous or oily vehicle.
- Liquid solutions of the active ingredient may be in an aqueous or oily vehicle.
- an active ingredient e.g., a naphthofuran
- a pharmaceutical carrier may take a wide variety of forms depending on the form of preparation desired for administration. In preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed.
- an item of manufacture includes a container containing a therapeutically effective amount of a pharmaceutical composition including a compound according to Formula I.
- the container can include a pharmaceutically acceptable excipient.
- the container can include printed labeling instructions.
- the printed labeling can indicate the dosage and frequency with which the pharmaceutical composition should be administered, and whether the composition should be administered with food or within a defined period of time before or after ingestion of food.
- the composition can be contained in any suitable container capable of holding and dispensing the dosage form that will not significantly interact with the composition.
- the labeling instructions can be consistent with the methods of treatment described herein.
- the labeling can be associated with the container by a means that maintains a physical proximity of the two.
- the container and the labeling may both be contained in a packaging material such as a box or plastic shrink wrap or may be associated with the instructions being bonded to the container such as with glue that does not obscure the labeling instructions or other bonding or holding means.
- a pharmaceutical composition includes (a) a therapeutically effective amount of an active ingredient that is a Compound of the Invention, e.g., a compound according to Formula I, b) polyoxylglycerides of which hydrophilic-lipophilic balance (HLB) is more than 10, and (c) polyoxylglycerides of which HLB is less than 10. More preferably, a pharmaceutical composition further comprising (d) a surfactant.
- a Compound of the Invention e.g., a compound according to Formula I
- HLB hydrophilic-lipophilic balance
- a pharmaceutical composition further comprising (d) a surfactant.
- Preferable examples of the polyoxylglycerides of which HLB is more than 10 include the one of which HLB is between 10 and 17, more preferably the one of which HLB is between 12 and 15. Further preferable examples include the one that is solid or semi-solid at 25 degrees Celsius, preferably the one of which melting point is more than 30 degrees Celsius, more preferably the one of which melting point is between 33-64 degrees Celsius, even more preferably the one of which melting point is between 40-55 degree Celsius.
- lauroyl polyoxylglycerides examples include lauroyl polyoxylglycerides, more specifically lauroyl polyoxyl-32 glycerides, such as GelucireTM 44/14, and stearoyl polyoxylglycerides, more specifically stearoyl polyoxyl-32 glycerides, such as GelucireTM 50/13 are preferred. More preferable specific examples include lauroyl polyoxylglycerides, more specifically lauroyl polyoxyl-32 glycerides, such as GelucireTM 44/14.
- Preferable examples of the polyoxylglycerides of which HLB is less than 10 include the one of which HLB is between 2 and 8, more preferably the one of which HLB is between 3 and 7.
- Specific examples include linolcoyl polyoxylglycerides, such as LabrafilTM M2125CS, leoyl polyoxylglycerides, such as LabrafilTM M1944CS, and lauroyl polyoxyl-6 glycerides, such as LabrafilTM M2130CS. More preferable specific examples include linoleoyl polyoxylglycerides, and oleoyl polyoxylglycerides.
- a surfactant examples include sodium lauryl sulfate (SLS) or sodium dodecyl sulfate (SDS), polyoxyethylene sorbitan fatty acid esters (a polysorbate, preferably polyoxyethylene sorbitan monooleate (TWEEN 80TM) or polyoxyethylene sorbitan monolaurate (TWEEN 20TM)), certain lipids, such as phosphatidylcholines, e.g., dimyristoylphosphatidylcholine (DMPC).
- surfactants include compounds that are amphiphilic and contain both hydrophobic and hydrophilic groups.
- Preferable surfactant is sodium lauryl sulfate (SLS) or sodium dodecyl sulfate (SDS).
- the active ingredient may be included in the range from 5% to 50% for a weight of formulation.
- the surfactant may be included in the range from 0.05% to 5% for a weight of formulation.
- the polyoxylglycerides of which HLB is more than 10 may be included in the range from 5% to 80% for a weight of formulation.
- the polyoxylglycerides of which HLB is less than 10 may be included in the range from 5% to 80% for a weight of formulation.
- the ratios between the polyoxylglycerides of which HLB is more than 10 and the polyoxylglycerides of which HLB is less than 10 is from about 90/10 to about 10/90.
- the ratio is from about 80/20 to about 20/80, more preferably, is from about 40/60 to about 80/20.
- the composition may consist of, by weight, about 27.18% in the active ingredient, about 0.27% in the surfactant, about 14.51% in the polyoxylglycerides of which HLB is more than 10, and about 58.04% in the polyoxylglycerides of which HLB is less than 10.
- a 125 mg capsule embodiment may consist of 125 mg of the active ingredient, about 1.2 mg of the surfactant, about 66.8 mg of the polyoxylglycerides of which HLB is more than 10, and about 267 mg of the polyoxylglycerides of which HLB is less than 10.
- An 80 mg capsule embodiment may consist of about 80 mg of the active ingredient, about 0.8 mg of the surfactant, about 42.7 mg of the polyoxylglycerides of which HLB is more than 10, and about 170.9 mg of the polyoxylglycerides of which HLB is less than 10.
- Embodiments of the invention include items of manufacture where any of the above pharmaceutical compositions is housed in a capsule, e.g., a LIcap capsule.
- the capsule is preferable of size 1 or smaller, e.g., size 2.
- a milling or grinding process can be used to reduce the size of particles of an active ingredient or compound according to Formula I.
- a milling or grinding process can be suitable for producing particles having a median size of 200 ⁇ m, 150 ⁇ m, 100 ⁇ m, 40 ⁇ m, 20 m, 5 ⁇ m, 2 ⁇ m or greater or lesser size.
- Such a milling or grinding process can include, for example, ball milling, roll milling, jet milling, wet milling, ultrasonic milling, grinding, and combinations.
- the process can reduce particle size by impacting particles with a hard surface, or by subjecting the particles to high pressure, e.g., squeezing a particle between two surfaces.
- a stream of gas entrains particles and accelerates them to high velocities.
- the particles then impact other particles and walls and fracture into smaller particles.
- particles are combined with a liquid, and the resultant slurry is passed through a high shear mixer to fracture the particles.
- particles for example, in ultrasonic milling, particles, for example, in a slurry, are exposed to ultrasonic radiation. Cavitation induced by the ultrasound can fracture the particles into particles of smaller size.
- the temperature can be lowered to a cryogenic temperature, e.g., by exposing the particles to or immersing the particles in a cryogenic fluid, such as liquid nitrogen.
- a cryogenic temperature e.g., by exposing the particles to or immersing the particles in a cryogenic fluid, such as liquid nitrogen.
- a selection process such as sieving, can be used to narrow the range of particle sizes.
- Crystallization is the main separation and purification step for the manufacturing of drug substances. Crystallization can also be utilized to control particle size.
- PSD particle size distribution
- the particle size distribution (PSD) obtained during crystallization is influenced by a combination of various mechanisms that occur during crystallization, such as nucleation, growth, aggregation, attrition, breakage, etc. Control of PSD during crystallization is critical to achieving the desired product properties. When the particle size cannot be consistently controlled during crystallization to meet the desired specifications, an extra processing step such as dry milling can be included.
- a method according to the present invention for treating, delaying the progression of, preventing a relapse of, alleviating a symptom of, or otherwise ameliorating a human, mammal, or animal subject afflicted with a neoplasm includes administering a therapeutically effective amount of a pharmaceutical composition including particles of a predetermined size distribution, for example, a compound according to Formula I such as Compound 1, a pure compound, a pure product and/or a pure pharmaceutical composition, so that the volume growth of the neoplasm is slowed, the volume growth of the neoplasm is stopped, the neoplasm decreases in volume, and/or a cancerous neoplasm is killed.
- a pharmaceutical composition including particles of a predetermined size distribution for example, a compound according to Formula I such as Compound 1, a pure compound, a pure product and/or a pure pharmaceutical composition
- neoplasms that may be amenable to treatment by this method include solid tumors, malignant tumors, cancers, refractory cancers, recurrent cancers, metastatic tumors, neoplasms including cancer stem cells, neoplasms in which the STAT3 pathway is implicated, carcinomas, and sarcomas.
- the cancers that may be amenable to treatment by administration of particles of a compound according to Formula I are selected from the group consisting of esophageal cancer, gastroesophageal junction cancer, gastroesophageal adenocarcinoma, chondrosarcoma, colorectal cancer, colon adenocarcinoma, rectal adenocarcinoma, colorectal adenocarcinoma, breast cancer, ovarian cancer, head and neck cancer, melanoma, gastric adenocarcinoma, and adrenocorticoid carcinoma.
- the STAT3 pathway may be implicated in these cancers.
- the CSC pathway may be implicated in these cancers.
- a therapeutically effective amount of the Compound of the Invention or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof is administered to a patient or subject diagnosed of a cancer, wherein the cancer is gastroesophageal junction cancer, an esophageal cancer, or gastroesophageal adenocarcinoma.
- an antimitotic agent such as paclitaxel is administered as a second/combinatorial agent for co-therapy.
- the Compound of the Invention is administered to the subject in two daily doses totaling in a range from about 160 mg to about 1000 mg, preferably BID with an interval between administrations of the Compound in the range from about 4 hours to about 16 hours, more preferably of about 12 hours.
- the optional co-agent paclitaxel can be administered to the subject at a total weekly dose in a range from about 40 mg/m 2 to about 100 mg/m 2 , e.g., at about 80 mg/m 2 .
- CSCs cancer stem cells
- the CSC model of tumorigenesis would explain why tens or hundreds of thousands of tumor cells need to be injected into an experimental animal in order to establish a tumor transplant.
- the frequency of these cells is less than 1 in 10,000.
- Bonnet, D. and J. E. Dick Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hemnatopoietic cell . Nat Med, 1997. 3(7): p. 730-7).
- cancer cell lines are selected from a sub-population of cancer cells that are specifically adapted to grow in tissue culture, the biological and functional properties of cancer cell lines can undergo dramatic changes. Therefore, not all cancer cell lines contain CSCs.
- Cancer stem cells share many similar traits with normal stem cells.
- CSCs have self-renewal capacity, namely, the ability to give rise to additional tumorigenic cancer stem cells, typically at a slower rate than other dividing tumor cells, as opposed to a limited number of divisions.
- CSCs also have the ability to differentiate into multiple cell types, which would explain histological evidence that not only many tumors contain multiple cell types native to the host organ, but also that heterogeneity is commonly retained in tumor metastases.
- CSCs have been demonstrated to be fundamentally responsible for tumorigenesis, cancer metastasis, and cancer reoccurrence.
- CSCs are also called tumor initiating cells, cancer stem-like cells, stem-like cancer cells, highly tumorigenic cells, tumor stem cells, solid tumor stem cells, or super malignant cells.
- cancer stem cells have fundamental implications for future cancer treatments and therapies. These implications are manifested in disease identification, selective drug targeting, prevention of cancer metastasis and recurrence, and development of new strategies in fighting cancer.
- cancer stem cells appear to be resistant to radiotherapy (XRT) and also refractory to chemotherapeutic and targeted drugs.
- XRT radiotherapy
- conventional chemotherapies and radiotherapies kill differentiated or differentiating cells, which form the bulk of the tumor that are unable to generate new highly tumorigenic cancer stem cells.
- the population of cancer stem cells that gave rise to the differentiated and differentiating cells could remain untouched and cause a relapse of the disease.
- a further danger for conventional anti-cancer therapy is the possibility that chemotherapeutic treatment leaves only chemotherapy-resistant cancer stem cells, and the ensuing recurrent tumor will likely also be resistant to chemotherapy.
- anti-cancer therapies include strategies against CSCs (see FIG. 18 of WO 2011/116398 and WO 2011/116399). This is akin to eliminating the roots in order to prevent dandelions from regrowth even if the weed's ground level mass has been cut. (Jones, R. J., W. H. Matsui, and B. D. Smith, Cancer stem cells: are we missing the target ?J Natl Cancer Inst, 2004. 96(8): p. 583-5).
- cancer stem cells By selectively targeting cancer stem cells, it becomes possible to treat patients with aggressive, non-resectable tumors and refractory or recurrent cancers, as well as preventing the tumor metastasis and recurrence.
- Development of specific therapies targeting cancer stem cells may improve survival and the quality of life of cancer patients, especially for sufferers of metastatic cancers.
- the key to unlocking this untapped potential is the identification and validation of pathways that are selectively important for cancer stem cell self-renewal and survival.
- Unfortunately though multiple pathways underlying tumorigenesis in cancer or self-renewal in embryonic and adult stem cells have been elucidated in the past, very few pathways have been identified and validated for cancer stem cell self-renewal and survival.
- CSCs are resistant to many chemotherapeutic agents, it is not surprising that CSCs almost ubiquitously overexpress drug efflux pumps such as ABCG2 (BCRP-1) (Ho, M. M., et al., Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res, 2007. 67(10): p. 4827-33; Wang, J., et al., Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res, 2007. 67(8): p. 3716-24; Haraguchi, N., et al., Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells, 2006. 24(3): p.
- ABCG2 BCRP-1
- This technique takes advantage of differential ABC transporter-dependent efflux of fluorescent dyes such as Hoechst 33342 to define and isolate a cell population enriched in CSCs (Doyle, L. A. and D. D. Ross, Multidrug resistance mediated by the breast cancer resistance protein BCRP ( ABCG 2). Oncogene, 2003. 22(47): p. 7340-58; Goodell, M. A., et al., Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo . J Exp Med, 1996. 183(4): p. 1797-806). Specifically, the SP is revealed by blocking drug efflux with verapamil, at which point the dyes can no longer be pumped out of the SP.
- fluorescent dyes such as Hoechst 33342
- CSCs cancer stem cells
- Methods of isolating these cells include but not limited to identification by their ability of efflux Hoechst 33342, identification by the surface markers these cells express, such as CD133, CD44, CD166, and others, and enrichment by their tumorigenic property.
- the mounting evidence linking cancer stem cells to tumorigenesis unravel enormous therapeutic opportunity of targeting cancer stem cells.
- the present invention also provides related methods (e.g., manufacturing and drug candidate screening), materials, compositions and kits.
- the method can prevent the CSCs from self-renewal, such that it is no longer able to replenish its numbers by dividing into tumorigenic CSC cells. Or, the method can induce cell death in CSCs, or in both CSCs and heterogeneous cancer cells.
- Cancers that are good candidates for such treatment include cancer(s) selected from the group consisting of esophageal cancer, gastroesophageal junction cancer, gastroesophageal adenocarcinoma, chondrosarcoma, colorectal cancer, colon adenocarcinoma, rectal adenocarcinoma, colorectal adenocarcinoma, breast cancer, ovarian cancer, head and neck cancer, melanoma, gastric adenocarcinoma, and adrenocorticoid carcinoma.
- cancer(s) selected from the group consisting of esophageal cancer, gastroesophageal junction cancer, gastroesophageal adenocarcinoma, chondrosarcoma, colorectal cancer, colon adenocarcinoma, rectal adenocarcinoma, colorectal adenocarcinoma, breast cancer, ovarian cancer, head and neck cancer, melanom
- any methods of the invention directed to inhibiting CSCs, or both CSCs and heterogeneous cancer cells can be practiced to treat cancer that is metastatic, refractory to a chemotherapy or radiotherapy, or has relapsed in the subject after an initial treatment.
- the cancer stem cell inhibitor according to the present invention is: a compound of Formula 1, Compound 1, a polymorph of Compound 1, a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 1 of WO 2011/116398 and WO 2011/116399, a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG.
- a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2 ⁇ , a peak at least at about 11.9 degrees 2 ⁇ , a peak at least at about 14.1 degrees 2 ⁇ , a peak at least at about 14.5 degrees 2 ⁇ , a peak at least at about 17.3 degrees 2 ⁇ , a peak at least at about 22.2 degrees 2 ⁇ , and a peak at least at about 28.1 degrees 2 ⁇ and any combinations thereof, a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG.
- a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2 ⁇ , a peak at least at about 11.9 degrees 2 ⁇ , a peak at least at about 14.1 degrees 2 ⁇ , a peak at least at about 14.5 degrees 2 ⁇ , a peak at least at about 17.3 degrees 2 ⁇ , a peak at least at about 22.2 degrees 2 ⁇ , and a peak at least at about 28.1 degrees 2 ⁇ and any combinations thereof, a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG.
- a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2 ⁇ , a peak at least at about 11.9 degrees 2 ⁇ , a peak at least at about 14.1 degrees 2 ⁇ , a peak at least at about 14.5 degrees 2 ⁇ , a peak at least at about 17.3 degrees 2 ⁇ , a peak at least at about 22.2 degrees 2 ⁇ , and a peak at least at about 28.1 degrees 2 ⁇ and any combinations thereof, a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG.
- the present invention provides a method of identifying a drug candidate capable of inhibiting a cancer stem cell.
- the drug candidate is capable of inducing cell death in CSC or at least inhibiting its self-renewal.
- the drug candidate is capable of inducing cell death in CSC or at least inhibiting its self-renewal, and inducing cell death in heterogeneous cancer cells.
- Various phases in the pathway can be targeted for screening the drug candidate.
- the Compound of the Invention can be used to formulate a pharmaceutical composition to treat or prevent disorders or conditions.
- the cancer is selected from the group consisting of esophageal cancer, gastroesophageal junction cancer, gastroesophageal adenocarcinoma, chondrosarcoma, colorectal cancer, colon adenocarcinoma, rectal adenocarcinoma, colorectal adenocarcinoma, breast cancer, ovarian cancer, head and neck cancer, melanoma, gastric adenocarcinoma, and adrenocorticoid carcinoma.
- the present invention provides a method of inhibiting cancer stem cells where an effective amount of the Compound of the Invention is administered to the cells.
- Cancers known to have CSCs are good candidates for such treatments, and include but are not limited to: cancer(s) selected from the group consisting of esophageal cancer, gastroesophageal junction cancer, gastroesophageal adenocarcinoma, chondrosarcoma, colorectal cancer, colon adenocarcinoma, rectal adenocarcinoma, colorectal adenocarcinoma, breast cancer, ovarian cancer, head and neck cancer, melanoma, gastric adenocarcinoma, and adrenocorticoid carcinoma.
- any methods of the invention directed to inhibiting CSCs can be practiced to treat cancer that is metastatic, refractory to a chemotherapy or radiotherapy, or has relapsed in the subject after an initial treatment.
- the cancer being treated is selected from the following group: esophageal cancer, gastroesophageal junction cancer, gastroesophageal adenocarcinoma, chondrosarcoma, colorectal cancer, colon adenocarcinoma, rectal adenocarcinoma, colorectal adenocarcinoma, breast cancer, ovarian cancer, head and neck cancer, melanoma, gastric adenocarcinoma, and adrenocorticoid carcinoma.
- the cancer may implicate malfunction of the STAT3, Nanog and/or ⁇ -catenin pathway.
- the present invention provides a method of treating cancer in a subject, where a therapeutically effective amount of a pharmaceutical composition including the Compound of the Invention is administered to the subject.
- the cancer may be metastatic, refractory or recurrent.
- the subject may be a mammal, e.g., a human being.
- Treatment by administration of particles of, for example, a compound according to Formula I to a subject (patient) suffering from a neoplasm may be indicated for the following conditions.
- the neoplasm may be refractory to treatment by chemotherapy, radiotherapy, or hormone therapy.
- the neoplasm may not be amenable to surgical resection.
- the neoplasm may have relapsed in the subject (patient).
- Cancer stem cells have been implicated in the relapse of neoplasms; killing the cancer stem cells or inhibiting their self-renewal by a method according to the present invention may prevent the neoplasm from regenerating itself.
- Treatment by administration of particles of naphthofuran may slow or stop the volume growth of a neoplasm or decrease the volume of a neoplasm by, for example, inducing the death of, inhibiting the growth and/or division of, and/or selectively killing neoplastic cells.
- a treatment according to the present invention may induce cell death of a cell of the neoplasm.
- the treatment may act to inhibit the STAT3, Nanog and/or ⁇ -catenin pathway of a neoplastic cell.
- Treatment by administration of particles of, for example, a Compound of the Invention to a subject (patient) suffering from a neoplasm may be used to prevent relapse of a neoplasm and/or as an adjuvant therapy to surgical resection.
- a pharmaceutical composition including particles of, for example, a Compound of the Invention may be administered orally, as this is a convenient form of treatment.
- the pharmaceutical composition may be administered orally no more than four times per day.
- the pharmaceutical composition can be administered intravenously or intraperitoneally.
- the present invention provides ways to screen patients for recommendation of cancer treatments that involve the Compound of the Invention.
- Our data indicates a direct correlation between the level of p-STAT3 in tumor tissues before treatment and the chance of survival or treatment success with the Compound of the Invention.
- the present invention provides a method of treating cancer in a selected patient population or screening potential cancer patients for treatment, the method comprising the steps of: measuring a level of phosphorylated STAT3 (p-STAT3) in a biological sample (e.g., tumor tissue before treatment) obtained from a patient candidate diagnosed of a cancer (e.g., colorectal adenocarcinoma); confirming that the patient candidate's p-STAT3 level is above a benchmark level; and administering to the patient candidate a therapeutically effective amount of the Compound of the Invention or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof.
- the benchmark level may differ for different demographic sectors, and can be determined by one skilled artisan through routine experimentation.
- the present invention provides a method of treating cancer in a selected patient population or screening potential cancer patients for treatment, the method comprising the steps of: detecting a locus of ⁇ -catenin expression in a biological sample (e.g., tumor tissue before treatment) obtained from a patient candidate diagnosed of a cancer; confirming that significant ⁇ -catenin expression is detected in cell nucleus in the sample from the patient candidate; and administering to the patient candidate a therapeutically effective amount of the Compound of the Invention or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof.
- a biological sample e.g., tumor tissue before treatment
- confirming that significant ⁇ -catenin expression is detected in cell nucleus in the sample from the patient candidate
- administering to the patient candidate a therapeutically effective amount of the Compound of the Invention or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof.
- the level at which nuclear expression for ⁇ -catenin is considered clinically significant here may differ for different demographic
- the level of expression of one or more cancer stemness markers is detected in a patient or a sample from a patient, and where the patient or sample has an elevated level of one or more cancer stemness markers as compared to a control level of expression, the patient is then administered a therapeutically effective amount of a compound of the disclosure.
- the method is an in vivo method.
- the method is an in situ method.
- the method is an ex vivo method.
- the method is an in vitro method.
- the methods provided herein use one or more well-known cancer stemness marker(s), such as, for example, the expression of p-STAT3 and/or other cancer stem cell related proteins such as ⁇ -catenin and NANOG. All these proteins can be easily detected using any of a variety of art-recognized techniques.
- the cancer stemness marker is detected with immunohistochemistry with antibodies.
- the cell lines with nuclear ⁇ -Catenin show a lower IC 50 for the Compound of the Invention.
- inhibition of STAT3 by the Compound of the Invention reduced ⁇ -catenin protein levels both in vitro within cancer cell lines and in human CRC xenograft mouse models.
- STAT3 activation is involved in nuclear ⁇ -catenin regulation.
- ⁇ -catenin status is a biomarker for predicting responsiveness of CRC patients to the Compound of the Invention.
- the cancer may be one of the following: esophageal cancer, gastroesophageal junction cancer, gastroesophageal adenocarcinoma, chondrosarcoma, colorectal cancer, colon adenocarcinoma, rectal adenocarcinoma, colorectal adenocarcinoma, breast cancer, ovarian cancer, head and neck cancer, melanoma, gastric adenocarcinoma, and adrenocorticoid carcinoma.
- the cancer may be refractory, recurrent or metastatic.
- the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention can be a total daily dose in the range from about 20 mg to about 2000 mg, from about 100 mg to about 1500 mg, from about 160 mg to about 1400 mg, or from about 180 mg to about 1200 mg.
- the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is a total daily dose in the range of from about 200 mg to about 1500 mg, or from about 360 mg to 1200 mg.
- the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is a total daily dose in the range of from about 400 mg to about 1000 mg. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is a total daily dose of about 1000 mg.
- Intervals between each dose can vary or stay constant, depending on factors such as pharmacokinetics of the composition, drug metabolism with or without intake of fluid or food, tolerability and other drug adherence factors (e.g., convenience).
- a preferred interval maintains an effective level of the pharmaceutical composition in the body while causing minimal adverse side effects.
- the interval between each dose ranges from about 4 hours to about 24 hours. In some embodiments, the interval between each dose ranges from about 8 hours to about 14 hours. In some embodiments, the interval between each dose ranges from about 10 hours to about 13 hours, or, is about 12 hours. Accordingly in those embodiments, the compound is administered to the subject about twice daily, for example, on average over the duration of a regimen.
- the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is a total daily dose in a range of from about 160 mg to about 960 mg or about 1000 mg. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is a total daily dose selected from the group consisting of about 160 mg, about 320 mg, about 640 mg, about 800 mg, and about 960 mg. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a total daily dose of about 960 mg.
- the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered BID. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose in a range of from about 80 mg BID to about 480 mg BID. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose selected from the group consisting of about 80 mg BID, about 160 mg BID, about 320 mg BID, about 400 mg BID, and about 480 mg BID. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose of about 480 mg BID.
- the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered BID where the timing between administrations of the compound is in the range from about 4 hours between administrations to about 16 hours between administrations. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered BID where the timing between administrations of the compound is at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 9 hours, at least 10 hours, at least 11 hours, at least 12 hours, at least 13 hours, at least 14 hours, at least 15 and/or at least 16 hours.
- the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose in a range of from about 80 mg BID to about 480 mg BID where the timing between administrations of the compound is in the range from about 4 hours between administrations to about 16 hours between administrations.
- the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered BID where the timing between administrations of the compound is at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 9 hours, at least 10 hours, at least 11 hours, at least 12 hours, at least 13 hours, at least 14 hours, at least 15 and/or at least 16 hours.
- the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose selected from the group consisting of about 80 mg, about 160 mg, about 320 mg BID, about 400 mg BID, and about 480 mg BID, where the timing between administrations of the compound is in the range from about 4 hours between administrations to about 16 hours between administrations.
- the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered BID where the timing between administrations of the compound is at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 9 hours, at least 10 hours, at least 11 hours, at least 12 hours, at least 13 hours, at least 14 hours, at least 15 and/or at least 16 hours.
- the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose of about 480 mg BID where the timing between administrations of the compound is in the range from about 4 hours between administrations to about 16 hours between administrations. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose of about 80 mg BID where the timing between administrations of the compound is in the range from about 4 hours between administrations to about 16 hours between administrations.
- the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose of about 400 mg BID where the timing between administrations of the compound is in the range from about 4 hours between administrations to about 16 hours between administrations. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose of about 320 mg BID where the timing between administrations of the compound is in the range from about 4 hours between administrations to about 16 hours between administrations.
- the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered BID where the timing between administrations of the compound is at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 9 hours, at least 10 hours, at least 11 hours, at least 12 hours, at least 13 hours, at least 14 hours, at least 15 and/or at least 16 hours.
- the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose of about 480 mg BID where the timing between administrations of the compound is about 12 hours between administrations. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose of about 80 mg BID where the timing between administrations of the compound about 12 hours between administrations.
- the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose of about 400 mg BID where the timing between administrations of the compound is about 12 hours between administrations. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose of about 320 mg BID where the timing between administrations of the compound is about 12 hours between administrations.
- a Compound of the Invention or a pharmaceutical composition thereof can be administered through any one of or through a combination of routes, for example, orally, intravenously, or intraperitoneally.
- a Compound of the Invention can be administered orally.
- a Compound of the Invention can be administered orally in a formulation that includes lauroyl polyoxylglycerides (e.g. Gelucire) and Tween 80, or a formulation that includes lauroyl polyoxylglycerides (e.g. Gelucire), linoleoyl polyoxylglycerides (e.g. Labrafil), and a surfactant such as sodium lauryl sulfate (SLS) or sodium dodecyl sulfate (SDS).
- a Compound of the Invention can be administered in a dose to achieve a blood concentration in a subject, e.g., a patient, of compound in the range of from at least about 0.002 ⁇ M to about 30 M for a time of at least 2 hours to no more than 24 hours.
- a Compound of the Invention can be administered in a dose to achieve a blood concentration in a subject of compound in the range of from at least about 0.2 M to about 1 ⁇ M for a time of at least 2 hours to no more than 24 hours, equals to or above about 0.2 ⁇ M, 0.5 ⁇ M, 1.0 ⁇ M, 1.5 ⁇ M, 2.0 ⁇ M, 2.5 ⁇ M, 3.0 ⁇ M 4.0 ⁇ M, 5.0 ⁇ M, 6.0 ⁇ M, 7.0 ⁇ M, 8.0 ⁇ M, 9.0 ⁇ M, 10.0 ⁇ M, 15.0 ⁇ M for at least 2 hours and less than 24 hours.
- a Compound of the Invention can be administered in a dose to achieve a blood concentration in a subject of compound equals to or above about 1.0 ⁇ M, 1.5 ⁇ M, 2.0 ⁇ M, 3.0 ⁇ M, 5.0 ⁇ M, 10.0 ⁇ M, 15.0 ⁇ M for at least 2 hours and less than 24 hours.
- a Compound of the Invention can be administered in a dose to achieve a blood concentration in a subject of compound equals to or above about 2.0 ⁇ M, 3.0 ⁇ M, 5.0 ⁇ M, 10.0 ⁇ M for at least 2 hours and less than 24 hours.
- a Compound of the Invention can be administered in a dose to achieve a blood concentration in a subject of compound equals to or above about 3.0 ⁇ M, or 5.0 ⁇ M for at least 2 hours and less than 24 hours.
- a Compound of the Invention can be administered in a dose to achieve a blood concentration in a subject, e.g., a patient, of compound in the range of from at least about 0.002 ⁇ M ⁇ h to about 300 ⁇ M ⁇ h in 24 hours.
- a Compound of the Invention can be administered in a dose to achieve area under the curve in 24 hours (AUC24) in a subject equals to or above about 0.2 ⁇ M, 0.5 ⁇ M, 1.0 ⁇ M, 1.5 ⁇ M, 2.0 ⁇ M, 2.5 ⁇ M, 3.0 ⁇ M 4.0 ⁇ M, 5.0 ⁇ M, 6.0 ⁇ M, 7.0 ⁇ M, 8.0 ⁇ M, 9.0 ⁇ M, 10.0 ⁇ M, 15.0 ⁇ M for at least 2 hours and less than 24 hours.
- a Compound of the Invention can be administered in a dose to achieve a blood concentration in a subject of compound equals to or above about 1.0 ⁇ M, 1.5 ⁇ M, 2.0 ⁇ M, 3.0 ⁇ M, 5.0 ⁇ M, 10.0 ⁇ M, 15.0 ⁇ M for at least 2 hours and less than 24 hours.
- a Compound of the Invention can be administered in a dose to achieve a blood concentration in a subject of compound equals to or above about 2.0 ⁇ M, 3.0 ⁇ M, 5.0 ⁇ M, 10.0 ⁇ M for at least 2 hours and less than 24 hours.
- a Compound of the Invention can be administered in a dose to achieve a blood concentration in a subject of compound equals to or above about 3.0 ⁇ M, or 5.0 ⁇ M for at least 2 hours and less than 24 hours.
- a Compound of the Invention can be administered in a dose to achieve area under the curve in 24 hours (AUCO 0-24 hr ) in a subject equals to or above about 2 ⁇ M*hr, 10 ⁇ M*hr, 20 ⁇ M*hr, 30 ⁇ M*hr, 40 ⁇ M*hr, 50 ⁇ M*hr, 60 ⁇ M*hr, 70 ⁇ M*hr, 80 ⁇ M*hr, 90 ⁇ M*hr, 100 ⁇ M*hr, 125 ⁇ M*hr, 150 ⁇ M*hr, 200 ⁇ M*hr, 250 ⁇ M*hr, 300 ⁇ M*hr, 400 ⁇ M*hr, and 500 ⁇ M*hr,
- doses of the pharmaceutical composition may be administered as a continuous or pulsatile infusion.
- the duration of a treatment may be decades, years, months, weeks, or days, as long as the benefits persist. The foregoing ranges are provided only as guidelines and are subject to optimization.
- cells of the neoplasm are selectively killed by administering the pharmaceutical composition, so that the blood molar concentration of the compound is at least an effective concentration and less than a harmful concentration for a first continuous time period that is at least as long as an effective time period and shorter than a harmful time period.
- the blood molar concentration can be less than the effective concentration after the first continuous time period.
- the effective concentration can be a concentration sufficiently high, so that neoplastic cells, e.g., cancer cells, are killed.
- the effective time period can be sufficiently long, so that neoplastic cells, e.g., cancer cells, are killed.
- the harmful concentration can be a concentration at which normal cells are damaged or killed.
- the harmful time period can be a time period sufficiently long for normal cells to be damaged or killed.
- the effective concentration can be equal to or above about 0.02 ⁇ M, about 0.05 ⁇ M, about 0.1 ⁇ M, about 0.2 ⁇ M, about 0.5 ⁇ M, about 1 ⁇ M, about 3 ⁇ M, about 10 ⁇ M or about 20 ⁇ M.
- the non-harmful concentration can be equal to or below about 3 ⁇ M, about 10 ⁇ M, about 14 ⁇ M, about 30 ⁇ M, or about 100 ⁇ M.
- the effective time period can be equal to or above about 2 hour, about 4 hours, about 6 hours, about 12 hours, about 24 hours, or about 48 hours.
- drug concentration of Compound 1 has to be substantially cleared from blood within about 12 hours, about 24 hours. “Substantially clearance from blood” means blood drug concentration decrease by at least about 50%, at least about 60%, at least about 80%, at least about 90%.
- an effective concentration can be a concentration that exceeds the IC 50 of cancer cells when the compound is administered for some time period.
- an effective time period can be a time period over which cancer cells are selectively inhibited or killed when the compound is administered at least at the effective concentration.
- a harmful concentration can be a concentration that exceeds the IC 50 of normal cells when the compound is administered for any time period.
- a harmful time period can be a time period over which normal as well as cancer cells are inhibited or killed when the compound is administered at the effective concentration.
- One of skill in the art can administer the pharmaceutical composition by selecting dosage amount and frequency so as to achieve a herein described “selective pharmacokinetic profile” (SPP) deemed necessary for selective killing neoplastic cells, such as cancer cells, and sparing normal cells.
- SPP selective pharmacokinetic profile
- Such consideration of the SPP can also guide the design of the pharmaceutical composition, for example, the particle size distribution and distribution of shapes of the particles.
- the pharmaceutical composition is administered orally in a dosage form such as a tablet, pill, capsule (hard or soft), caplet, powder, granule, suspension, solution, gel, cachet, troche, lozenge, syrup, elixir, emulsion, oil-in-water emulsion, water-in-oil emulsion, or draught.
- a dosage form such as a tablet, pill, capsule (hard or soft), caplet, powder, granule, suspension, solution, gel, cachet, troche, lozenge, syrup, elixir, emulsion, oil-in-water emulsion, water-in-oil emulsion, or draught.
- an optimum particle size distribution of a compound according to Formula I, Compound 1, a polymorph of Compound 1, and/or a substantially pure form of Compound 1 for treating a human, mammal, or animal afflicted with a neoplasm can be determined as follows.
- At least one set of particles including the compound can be prepared.
- the particle size of a sample of solid compound can be reduced by, for example, dissolving the compound and nebulizing the solution, dissolving the compound and sonicating the solution, ball milling the solid compound, roll milling the solid compound, grinding the solid compound, and/or sieving the solid compound.
- the particle size distribution of the at least one set of particles can be determined by a method or combination of methods known to one of skill in the art.
- the particle size distribution can be determined using a technique such as sieve analysis, optical microscopic counting, electron micrograph counting, electroresistance counting, sedimentation time, laser diffraction, acoustic spectroscopy, another technique, or a combination of techniques.
- the at least one set of particles can be administered to neoplastic cells and to normal cells at a predetermined concentration and for a predetermined period of time. The effect of the particles on the metabolism, division, and/or other indicator of the vitality of the neoplastic cells and the normal cells can be observed.
- the observed effect of the particles on the neoplastic cells can be used to assign an effectivity rating to each set of particles. For example, a set of particles that inhibits the metabolism and/or division of the neoplastic cells, damages or kills the neoplastic cells, or otherwise exhibits high antitumor activity can be assigned a high effectivity rating.
- the observed effect of the particles on the normal cells can be used to assign a toxicity rating to each set of particles. For example, a set of particles that inhibits the metabolism and/or division of the normal cells or damages or kills the normal cells or where the normal cells otherwise exhibit a low tolerability of the set of particles can be assigned a high toxicity rating.
- the set of particles can be administered to neoplastic cells and normal cells in vitro.
- the effectivity rating can be equal to, proportional to, or a monotonically increasing function of the IC 50 of the neoplastic cells.
- the toxicity rating can be equal to, proportional to, or a monotonically increasing function of the IC 50 of the normal cells.
- the set of particles can be administered to neoplastic cells and normal cells in vivo in a test animal.
- the test animal can be a mammal, primate, mouse, rat, guinea pig, rabbit, or dog.
- the effectivity rating can be equal to, proportional to, or a monotonically increasing function of the decrease in volume of the neoplastic cells following administration of the set of particles.
- the toxicity rating can be equal to, proportional to, or a monotonically increasing function of the decrease in mass of the test animal following administration of the set of particles.
- the set of particles can be administered to a human in a clinical study.
- a method of treating a neoplasm can include administering a therapeutically effective amount of a set of particles of the compound according to Formula I, Compound 1, a polymorph of Compound 1, and/or a substantially pure form of Compound 1 to a human, mammal, or animal afflicted with the neoplasm.
- the particles Prior to administration of the particles of the compound, the compound according to Formula I, Compound 1, a polymorph of Compound 1, and/or a substantially pure form of Compound 1 to an animal or a human or to cells in vitro, the particles can be suspended in a pharmaceutically acceptable excipient.
- the effectivity rating and/or the toxicity rating of each set of particles having a first particle size distribution can be compared with the effectivity rating and/or the toxicity rating of another set or sets of particles having a particle size distribution different than the first particle size distribution.
- a set of particles of a compound that has a high effectivity rating and a low toxicity rating can be effective in inhibiting or killing neoplastic, e.g., cancer, cells, but spare normal cells.
- One of skill in the art can select as an optimum set the set of particles having an effectivity rating greater than, a toxicity rating less than, and/or a weighted effectivity rating and toxicity rating sum greater than the at least one other set of particles (for example, the effectivity rating can be weighted with a positive coefficient and the toxicity rating can be weighted with a negative coefficient).
- One of skill the art can also use another criteria to select the optimum set of particles, for example, particles having a sum of the weighted effectivity rating and the weighted ratio of the effectivity rating over the toxicity rating.
- the particle size distribution of the optimum set of particles can be considered an optimum particle size distribution for the compound tested.
- the optimum particle size distribution may be different for one compound, e.g., Compound 1, than for another compound, e.g., a compound according to Formula I that is not Compound 1.
- the optimum particle size distribution for a given compound may differ when determined by administration to cells in vitro, to a small test animal, and to a large test animal.
- the optimum particle size distribution determined by administration of a given compound to an organism in vitro or in vivo may represent a rational starting point for optimizing the particle size distribution for another compound or for administration to another organism.
- An optimum set of particles of the compound according to Formula I, Compound 1, a polymorph of Compound 1, and/or a substantially pure form of Compound 1 can be included in the composition for reducing or inhibiting the replication or spread of neoplastic cells.
- the rinsed solid is stored and pooled together from other batches.
- the combined crude product (28.73 kg) is loaded along with ethyl acetate (811.7 kg) into a 500 gallon vessel equipped with a mechanical stirrer, thermometer, and a condenser. Under nitrogen atmosphere, the mixture is heated to reflux (72° C.) for 2 hours, and then filtered with a 10 micron cartridge filter containing an active carbon layer to remove insolubles.
- Fresh hot ethyl acetate (10 kg) is used to rinse the vessel, transfer line and filter.
- the combined filtrate is cooled to 0-5° C. and held at this temperature for 2 hours, and then is filtered with 20 inch Buchner filter.
- the filtered solid product is rinsed with 0-5° C. ethyl acetate (5.7 kg), and dried under vacuum at 40° C. to a constant weight.
- the remaining filtrate is reduced in volume by 63% by evaporation, and the crystallization process was repeated again to generate a second crop of product which was also dried under the same condition as the first crop of product.
- the wet solids were transferred back to the 200 L reactor, stirred in 1% aqueous acetic acid (26 L) for ⁇ 1 hour, filtered and then washed on the filter funnel with water (10 L).
- the collected solids were transferred back to the 200 L reactor and heated in ethanol (17.5 L; 4.3 ml/g HNQ) to a gentle reflux (77.4° C.).
- the resulting suspension was cooled to 4.2° C. and filtered.
- the reaction mixture was then filtered hot through a preheated pad of Celite (1530 g, bottom layer), activated charcoal (2230 g, middle layer), and Celite (932 g, top layer). The yellow-orange filtrate was collected.
- the crystals were dried at 50° C. under vacuum for an additional 46-65 hours to reduce the amount of residual toluene in the material.
- the Compound 1 (5816 g) was charged to a 200 L reaction vessel. Ethyl acetate (145 L, 25 mL/g) was added, and the solution was heated to reflux over 2 hours 26 minutes. Reflux was maintained for 5 hours 30 minutes, and the mixture was then cooled and maintained overnight to 17° C.
- Compound 1 crystals were milled and passed through a 160 micron ( ⁇ m) sieve (Sieve #100, 150 ⁇ m opening) to generate the crystals of approximately 160 microns or less.
- Compound 1 crystals were milled (The Retsch Ultra centrifugal Mill ZM 200; Single pass, at 18,000 rpm using 0.25 mm screen) to a median particle size of about 20 micron.
- Table 3 presents the resultant distribution of particle sizes (Malvern 2000 with the Hydro 2000S wet accessory).
- the columns present the maximum size of particles in the cumulative percent total presented in the subscript at the header of the column.
- the column D 90 presents the size for which 90% of the particles have an equal or lesser size.
- the column D 50 represents the median size ⁇ half of the particles have a greater size, and half of the particles have an equal or lesser size.
- Particle size analysis was performed using a dry particle method (Sympatec Helos/KF Particle Size Analyzer).
- This HPLC method is to assess purity of naphthofuran, e.g., 2-acetylnaphtho[2,3-b]furan-4,9-dione (Compound 1), and its reaction completion by HPLC. All components will be expressed in area percent of the total peaks within the chromatogram.
- naphthofuran e.g., 2-acetylnaphtho[2,3-b]furan-4,9-dione
- Mobile Phase A will be used as the diluent for all sample and standard preparations.
- Test Solutions will be prepared by weighing 10 mg of sample in a 20 mL scintillation vial and diluting with 10 mL of DMSO.
- This solution is prepared by transferring 1 mL into a 100 mL volumetric flask and diluting with diluent solution.
- the system is suitable for use if the following criteria are met.
- Area ⁇ ⁇ % Area ⁇ ⁇ counts ⁇ ⁇ of ⁇ ⁇ peak Total ⁇ ⁇ area ⁇ ⁇ of ⁇ ⁇ all ⁇ ⁇ peaks ⁇ 100
- Bromine (0.95 equiv) is added to methyl vinyl ketone (MVK, 1.0 equiv) at ⁇ 20 to ⁇ 15° C. via an addition funnel while maintaining the reaction temperature below 0° C.
- the reaction mixture is then stirred at ⁇ 10 to 0° C. for an additional 2 to 3 hours, followed by addition of Tetrahydrofuran (6 vol) and cooling of the reaction mixture to ⁇ 20 to ⁇ 10° C.
- Triethylamine (1.1 equiv) is then added with vigorous stirring while maintaining the reaction temperature below 0° C.
- the resulting slurry is stirred at ⁇ 15 to ⁇ 5° C. for a minimum of 10 hours, then warmed to ⁇ 5 to 5° C. and filtered.
- the filtrate is then analyzed via in-process 1 H NMR to determine the amount (wt. %) of intermediate bromomethyl vinyl ketone (BrMVK) present, and held at ⁇ 25 to ⁇ 10° C. until further use.
- Tetrahydrofuran (3.15 vol) in a clean reaction vessel is charged with 2-Hydroxy-1,4-Naphthoquinone (1.0 equiv relative to the calculated amount of BrMVK from in-process 1 H NMR).
- the resulting orange slurry is stirred briefly, then 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, 1.1 equiv) is added while maintaining a temperature at, or below, 45° C.
- DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene
- the reaction mixture is then stirred at 40 to 45° C. for a minimum of 1 hour, heated to 50 to 55° C. and the BrMVK solution added via an addition funnel while maintaining the reaction temperature at 50 to 60° C.
- the reaction mixture is then stirred at 50 to 55° C.
- Compound 2-acetylnaphtho[2,3-b]furan-4,9-dione was chosen to enter Phase I clinical trial after receiving IND approval from US FDA and Health Canada, which was a dose escalation study in adult patients with advanced cancer who had failed standard therapies. Each cycle consists of twice-daily oral administration of the compound for 4 weeks. Cycles were repeated every 4 weeks (28 days) until progression of disease, unacceptable toxicity, or another discontinuation criterion is met. The dose escalation trial was conducted as open label and multicenter trial. A modified Simon accelerated titration scheme was used for dose escalation.
- the primary objective of the trial was to determine the safety, tolerability, and recommended phase II dose (RP2D).
- the secondary objectives of the trial were to determine the pharmacokinetic profile of the compound, pharmacodynamics of the compound, and preliminary antitumor activity of the compound.
- the inclusion criteria included histologically or cytologically confirmed solid tumor that is metastatic, unresectable, or recurrent; ⁇ 18 years of age; Measurable disease by RECIST; and Kamofsky ⁇ 70%.
- the exclusion criteria included chemotherapy, radiotherapy, immunotherapy or investigational agent within 4 weeks of first dose; surgery within 4 weeks of first dose; and known brain metastases.
- the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention can be a total daily dose in the range of from about 160 mg to about 1000 mg, e.g., at about 960 mg.
- the clinical study faced a challenge of pill burden suffered by the patients.
- higher strength capsules were designed in a new formulation (DP2A).
- a preferred interval between administrations of the drug turned out to be a period ranging from about 8 hours to about 14 hours, more preferably, from about 10 hours to about 13 hours.
- a Compound of the Invention or a related composition and form is administered, on average over a period, twice daily at an interval of about 12 hours between doses where each does is about 480-500 mg BID.
- a dosing regimen about or above 20 mg of Compound 1 was administered once daily to human subjects.
- This dosing regimen referred to herein as 20 mg QD, has shown therapeutically active levels in patients, but the drug is rapidly cleared from the blood in humans. However, as the drug cleared from blood stream into the urine through kidney, it showed signs of particularly potent antitumor activity in a kidney with colon cancer lesions due to very high concentration of the drug in urine. In general, this dosing regimen has shown good tolerability in humans.
- Compound 1 was administered with a fluid, e.g., a milk or water, with empty stomach which improves pharmacokinetical exposure (Table 12). Counterintuitively, milk helped patients with gastrointestinal adverse effects.
- a fluid e.g., a milk or water
- Compound 1 was administered with food which delayed the Tmax (Table 13).
- the pill burden issue was addressed through a new drug formulation (DP2A).
- the new formulation replaces a large portion of the surfactant GELUCIRETM 44/14 used in the DPI formulation with another surfactant Labrafil, and reduces the capsule dimension from a size 00 to a size 1 or size 2, which is a significant reduction.
- the new formulation was able to maintain similar bioavailability ( FIG. 2 ). Components of the two formulations are summarized below (Table 14):
- DP1 Compound of the Invention
- DP2A was evaluated in 24 patients. No significant difference in plasma exposure between DP1 and DP2A, and no significant food effect were observed.
- DP2A-4 h the Compound DP2A 500 mg twice daily 4 h apart
- DP2A-12 h the Compound DP2A 500 mg bid 12 h apart
- DP2A-4 h was associated with higher frequency of gastrointestinal (GI) adverse events (AE) than observed in the prior study described above, including diarrhea, abdominal cramps, nausea/vomiting, anorexia, and fatigue.
- GI gastrointestinal
- DP2A-12 h had fewer GI AE and was selected for the extension study.
- 15 patients receiving DP2A-12 h 8 CRC patients enrolled, disease control was observed in 67% evaluable for response (4/6), with progression free survival and overall survival at 17 weeks and 39 weeks, respectively.
- the recommended dosing regimen for the Compound in pivotal trials was determined to be about 500 mg bid q12 h. Signs of anticancer activity were observed in patients with CRC and ovarian cancer.
- the Compound of the Invention was used in combination with an antimitotic agent, especially those proven to be effective chemotherapy agents, to successfully treat patients.
- antimitotic agents that may be useful in a co-therapy with the Compound of the Invention include and are not limited to: paclitaxel (Abraxane/Taxol), docetaxel (taxotere), BMS-275183, xyotax, tocosal, vinorlebine, vincristine, vinblastine, vindesine, vinzolidine, etoposide (VP-16), teniposide (VM-26), ixabepilone, larotaxel, ortataxel, tesetaxel, and ispinesib.
- a Phase Ib study was designed to evaluate the combined use of the Compound of the Invention with paclitaxel in patients with advanced malignancies.
- the studies were designed as a Phase Ib dose-escalation study to determine safety, tolerability, RP2D, and preliminary anti-cancer activity of the Compound of the Invention when used in conjunction with weekly paclitaxel.
- the Compound was administered in 3 escalating dose cohorts (200 mg BID, 400 mg BID, 500 mg BID) in combination with paclitaxel (80 mg/m2 weekly; 3 of every 4 weeks) until progression of disease, unacceptable toxicity, or other discontinuation criteria was met.
- Phase II study is on-going which extends from the phase Ib study and is continuing to enroll patients with Gastric/GEJ adenocarcinoma.
- CRC patient's archival tumor tissue samples were analyzed through immunohistochemistry (IHC) using labeled antibodies against phosphorylated STAT3 (p-STAT3).
- IHC immunohistochemistry
- p-STAT3 phosphorylated STAT3
- FIG. 3A the Compound of the Invention was very effective in inhibiting p-STAT3 expression. Even with dosage as low as 100 QD (single daily dosage), there was almost no longer any detectable p-STAT3 in the patient tissue after treatment.
- p-STAT3 The direct correlation between the p-STAT3 level and OS of CRC patient receiving treatment with the Compound of the Invention makes p-STAT3 a promising diagnostic biomarker that can be used to predict treatment effectiveness. Accordingly, p-STAT3 level can be used to screen patient pools for treatment with the Compound of the Invention.
- CRC patient's archival tumor tissue samples were analyzed through immunohistochemistry (IHC) using labeled antibodies against ⁇ -catenin.
- IHC immunohistochemistry
- the Compound of the Invention was effective in removing or preventing the accumulation of ⁇ -catenin in cell nucleus in tumor tissues.
- the overall survival (OS) is much more optimistic in those found to have previously shown high levels of nuclear ⁇ -catenin prior to treatment. For instance, close to 40% of the patients with high nuclear ⁇ -catenin levels before treatment survived longer than 100 weeks whereas none of those with high levels of membranous ⁇ -catenin survived beyond 25 weeks. This further confirms that the Compound of the Invention disrupts or somehow modulates the ⁇ -catenin function, and that the ⁇ -catenin pathway is implicated in colorectal cancers.
- nuclear ⁇ -catenin level The direct correlation between the nuclear ⁇ -catenin level and OS of CRC patient receiving treatment with the Compound of the Invention makes nuclear ⁇ -catenin level a promising diagnostic biomarker that can be used to predict treatment effectiveness. Accordingly, nuclear ⁇ -catenin level can be used to screen patient pools for treatment with the Compound of the Invention.
- CD44 high cells were isolated by FACS (FaDu) and their growth was blocked by a Compound of the Invention ( FIG. 5 ).
- mice study also showed that a Compound of the Invention targets cancer stem cells ( FIG. 7 ).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Application No. 61/810,117, filed Apr. 9, 2013; U.S. Provisional Application No. 61/830,068, filed Jun. 1, 2013; U.S. Provisional Application No. 61/932,179, filed Jan. 27, 2014; and U.S. Provisional Application No. 61/938,386, filed Feb. 11, 2014. The contents of each of which are hereby incorporated by reference in their entirety.
- The invention provides naphthofuran compounds, polymorphs of naphthofuran compounds, naphthofuran compounds in particle form, purified compositions that contain one or more naphthofuran compounds, purified compositions that contain one or more naphthofuran compounds in particle form, and methods of using these naphthofuran compounds, polymorphs, purified compositions and/or particle forms to treat subjects in need thereof.
- Cancer fatalities in the United States alone number in the hundreds of thousands each year. Despite advances in the treatment of certain forms of cancer through surgery, radiotherapy, and chemotherapy, many types of cancer are essentially incurable. Even when an effective treatment is available for a particular cancer, the side effects of such treatment can be severe and result in a significant decrease in quality of life.
- Most conventional chemotherapy agents have toxicity and limited efficacy, particularly for patients with advanced solid tumors. Chemotherapeutic agents cause damage to non-cancerous as well as cancerous cells. The therapeutic index of such compounds (a measure of the ability of the therapy to discriminate between cancerous and normal cells) can be quite low. Frequently, a dose of a chemotherapy drug that is effective to kill cancer cells will also kill normal cells, especially those normal cells (such as epithelial cells) which undergo frequent cell division. When normal cells are affected by the therapy, side effects such as hair loss, suppression of hematopoiesis, and nausea can occur. Depending on the general health of a patient, such side effects can preclude the administration of chemotherapy, or, at least, be extremely unpleasant and uncomfortable for the patient and severely decrease quality of the remaining life of cancer patients. Even for cancer patients who respond to chemotherapy with tumor regression, such tumor response often is not accompanied by prolongation of progression-free survival (PFS) or prolongation of overall survival (OS). As a matter of fact, cancer often quickly progress and form more metastasis after initial response to chemotherapy. Such recurrent cancers become highly resistant or refractory to chemotherapeutics. Such rapid recurrence and refractoriness, after chemotherapy, are considered to be caused by cancer stem cells.
- Recent studies have uncovered the presence of cancer stem cells (CSC, also called tumor initiating cells or cancer stem-like cells) which have self-renewal capability and are considered to be fundamentally responsible for malignant growth, relapse and metastasis. Importantly, CSCs are inherently resistant to conventional therapies. Therefore, a targeted agent with activity against cancer stem cells holds a great promise for cancer patients (J Clin Oncol. 2008 Jun. 10; 26(17)). Therefore, while conventional chemotherapies can kill the bulk of cancer cells, they leave behind cancer stem cells. Cancer stem cells can grow faster after reduction of non-stem regular cancer cells by chemotherapy, which is considered to be the mechanism for quick relapse after chemotherapies.
- Accordingly, there exists a need for discovering compounds and pharmaceutical compositions for selectively targeting cancer cells, for targeting cancer stem cells, and methods of preparing these compounds, pharmaceutical compositions for clinical applications, and methods of administering the same to those in need thereof.
- The references cited herein are not admitted to be prior art to the claimed invention.
- In co-owned PCT applications published as WO 2009/036099, WO 2009/036101, and WO 2011/116399, all of which the entire contents are incorporated herein by reference, disclosure has been made of novel naphthofuran compounds, polymorphs of naphthofuran compounds, purified compositions that contain one or more naphthofuran compounds, and naphthofuran compounds in particle form. These naphthofuran compounds (including those in particle form), polymorphs, and purified compositions are selective inhibitors of cancer stem cells and STAT3. WO 2009/036099 and WO 2009/036101 disclose that the naphthofuran compounds target cancer stem cells. They also inhibit non-stem cancer cells through inhibiting STAT3. Those compounds are capable of killing many different types of cancer cells, without causing damage to normal cells under certain exposure conditions. The compounds can therefore be used for cancer treatment, especially for the treatment and prevention of refractory, recurrent, metastatic cancers, or STAT3-expressing cancers. The publications also describe the processes for preparing naphthofuran compounds, derivatives, and intermediates thereof, and the pharmaceutical composition of relevant compounds.
- The present invention provides new methods of formulating and using these naphthofuran compounds (including those in particle form), polymorphs, and purified compositions in a variety of indications, including, for example, treating, delaying the progression of, preventing a relapse of, or alleviating a symptom of a cell proliferation disorder. For example, the naphthofuran compounds (including those in particle form), polymorphs, and purified compositions are useful in treating, delaying the progression of, preventing a relapse of, alleviating a symptom of, or otherwise ameliorating a cancer. In some embodiments, the cancer is selected from the group consisting of esophageal cancer, gastroesophageal junction cancer, gastroesophageal adenocarcinoma, chondrosarcoma, colorectal cancer, colon adenocarcinoma, rectal adenocarcinoma, colorectal adenocarcinoma, breast cancer, ovarian cancer, head and neck cancer, melanoma, gastric adenocarcinoma, and adrenocorticoid carcinoma. In some embodiments, the cancer is esophageal cancer. In some embodiments, the cancer is gastroesophageal junction cancer. In some embodiments, the cancer is gastroesophageal adenocarcinoma. In some embodiments, the cancer is refractory. In some embodiments, the cancer is recurrent. In some embodiments, the cancer is metastatic. In some embodiments, the cancer is associated with overexpression of STAT3.
- A method according to the invention of treating, delaying the progression of, preventing a relapse of, inhibiting the recurrence of, the metastasis of, alleviating a symptom of, and/or otherwise ameliorating a cancer (or neoplasm) in a human, mammal, or animal subject can include administering a therapeutically effective amount of the compound, product and/or pharmaceutical composition, so that anti-neoplastic activity occurs. For example, the anti-neoplastic activity can be anticancer activity. For example, the anti-neoplastic activity can include slowing the volume growth of the neoplasm, stopping the volume growth of the neoplasm, or decreasing the volume of the neoplasm. The neoplasm can include a solid tumor, a malignancy, a metastatic cell, a cancer stem cell. The neoplasm can include a carcinoma, a sarcoma, an adenocarcinoma, a lymphoma, or a hematological malignancy. The neoplasm can be refractory to treatment by chemotherapy, radiotherapy, and/or hormone therapy. The compound, product and/or pharmaceutical composition can be administered to prevent relapse of the neoplasm. The compound, product and/or pharmaceutical composition can be administered as an adjuvant therapy to surgical resection. The compound, product and/or pharmaceutical composition can be administered, for example, orally and/or intravenously. In some embodiments, the pharmaceutical composition comprises a Compound of the Invention in conjunction with at least the following: (i) a surfactant comprising sodium lauryl sulfate (SLS) or sodium dodecyl sulfate (SDS); (ii) Gelucire (lauroyl polyoxylglycerides); and Labrafil (linoleoyl polyoxylglycerides).
- In this specification, the term “treating a cancer” may include delaying the progression of, preventing a relapse of, inhibiting the recurrent of, the metastatic of, alleviating a symptom of, and/or otherwise ameliorating a cancer (or neoplasm).
- In some embodiments, the pharmaceutical composition comprises a Compound of the Invention in conjunction with at least the following: (i) a surfactant comprising sodium lauryl sulfate (SLS) or sodium dodecyl sulfate (SDS); (ii) Gelucire (lauroyl polyoxylglycerides); and (iii) Labrafil (linoleoyl polyoxylglycerides).
- In some embodiments, the pharmaceutical composition includes, by weight, about 27.18% in the active ingredient, about 0.27% in the surfactant, about 14.51% in Gelucire, and about 58.04% in Labrafil. In some embodiments, the pharmaceutical composition includes about 125 mg of the active ingredient, about 1.2 mg of the surfactant, about 66.8 mg of Gelucire, and about 267 mg of Labrafil. In some embodiments, the pharmaceutical composition includes about 80 mg of the active ingredient, about 0.8 mg of the surfactant, about 42.7 mg of Gelucire, and about 170.9 mg of Labrafil. In some embodiments, the pharmaceutical composition is housed in a capsule. In some embodiments, the capsule is of
size 1 or smaller. - A method according to the invention also includes treating, delaying the progression of, preventing a relapse of, alleviating a symptom of, or otherwise ameliorating a disease or disorder in a human, mammal, or animal subject afflicted with that disease or disorder. In some embodiments, the disease or disorder is any of the cancers (or neoplasms) described herein. In some embodiments, the cancer is selected from the group consisting of esophageal cancer, gastroesophageal junction cancer, gastroesophageal adenocarcinoma, chondrosarcoma, colorectal cancer, colon adenocarcinoma, rectal adenocarcinoma, colorectal adenocarcinoma, breast cancer, ovarian cancer, head and neck cancer, melanoma, gastric adenocarcinoma, and adrenocorticoid carcinoma.
- In some embodiments, the methods also include the step of detecting a level of phosphorylated STAT3 (p-STAT3) in a patient tissue, where the level of p-STAT3 is used as a biomarker for patient selection. In some embodiments, a tissue phosphorylated STAT3 level is above a benchmark level (more than 10% tumor cells with medium level of p-STAT3). In some embodiments, the cancer is associated with βf-catenin localization in cell nucleus as opposed to in cell membrane. In some embodiments, the method includes the step of detecting a locus of β-catenin expression in a patient's tissue, where the locus of such β-catenin expression is used as a biomarker for patient selection. In some embodiments, significant β-catenin expression is detected in cell nucleus. In some embodiments, the medium to strong expression of β-catenin is detected in 20% or more tumor cells.
- Administration of the compounds, products and/or pharmaceutical compositions to a patient suffering from a disease or disorder is considered successful if any of a variety of laboratory or clinical results is achieved. For example, administration is considered successful one or more of the symptoms associated with the disease or disorder is alleviated, reduced, inhibited or does not progress to a further, i.e., worse, state. Administration is considered successful if the disorder, e.g., a cancer or neoplasm, enters remission or does not progress to a further, i.e., worse, state.
- In some embodiments, the compounds, products and/or pharmaceutical compositions described herein are administered in combination with any of a variety of known therapeutics, including for example, chemotherapeutic and other anti-neoplastic agents, anti-inflammatory compounds and/or immunosuppressive compounds. In some embodiments, the compounds, products and/or pharmaceutical compositions described herein are useful in conjunction with any of a variety of known treatments including, by way of non-limiting example, surgical treatments and methods, radiation therapy, chemotherapy and/or hormone or other endocrine-related treatment.
- These “co-therapies” can be administered sequentially or concurrently. The compounds, products and/or pharmaceutical compositions described herein and the second therapy can be administered to a subject, preferably a human subject, in the same pharmaceutical composition. Alternatively, the compounds, products and/or pharmaceutical compositions described herein and the second therapy can be administered concurrently, separately or sequentially to a subject in separate pharmaceutical compositions. The compounds, products and/or pharmaceutical compositions described herein and the second therapy may be administered to a subject by the same or different routes of administration. The compounds, products and/or pharmaceutical compositions described herein may be administered to a subject firstly, and then the second therapy may be administered to a subject. The second therapy may be administered to a subject firstly, and then the compounds, products and/or pharmaceutical compositions described herein may be administered to a subject. In some embodiments, the co-therapies of the invention comprise an effective amount of the compounds, products and/or pharmaceutical compositions described herein and an effective amount of at least one other therapy (e.g., prophylactic or therapeutic agent) that has a different mechanism of action than the compounds, products and/or pharmaceutical compositions described herein. In some embodiments, the co-therapies of the present invention improve the prophylactic or therapeutic effect of the compounds, products and/or pharmaceutical compositions described herein and of the second therapy by functioning together to have an additive or synergistic effect. In certain embodiments, the co-therapies of the present invention reduce the side effects associated with the second therapy (e.g., prophylactic or therapeutic agents).
- In some embodiments, the disease or disorder can be treated by administering the compound, product and/or pharmaceutical composition as follows. The blood molar concentration of the compound can be at least an effective concentration and less than a harmful concentration for a first continuous time period that is at least as long as an effective time period and shorter than a harmful time period. The blood molar concentration can be less than the effective concentration after the first continuous time period. For example, the effective concentration can be about 0.1 μM, about 0.2 μM, about 0.5 μM, about 1 μM, about 2 μM, about 3 μM, about 4 μM, about 5 μM, about 6 μM, about 10 μM, or another concentration determined to be effective by one of skill in the art. For example, the harmful concentration can be about 1 μM, about 3 μM, about 10 μM, about 15 μM, about 30 μM, about 100 μM, or another concentration determined to be harmful by one of skill in the art. For example, the effective time period can be about 1 hour, 2 hour, about 4 hours, about 6 hours, about 8 hours, about 10 hours, about 12 hours, about 24 hours, or another time period determined to be effective by one of skill in the art. For example, the harmful time period can be about 12 hours, about 24 hours, about 48 hours, about 72 hours, about 144 hours, or another time period determined to be harmful by one of skill in the art.
- In some embodiments, the therapeutically effective amount of the compound, product and/or pharmaceutical composition is selected to produce a blood concentration greater than the IC50 of cells of the tumor and less than the IC50 of normal cells. In some embodiments, the therapeutically effective amount is selected to produce a blood concentration sufficiently high to kill cells of the tumor and less than the IC50 of normal cells.
- In some embodiments, the compound, product and/or pharmaceutical composition is administered orally in a dosage form, for example, a tablet, pill, capsule (hard or soft), caplet, powder, granule, suspension, solution, gel, cachet, troche, lozenge, syrup, elixir, emulsion, oil-in-water emulsion, water-in-oil emulsion, and/or a draught.
- In various embodiments of the co-therapy, the Compound of the Invention is administered to the patient at a total daily dose in a range from about 400 mg to about 1000 mg. In some embodiments, the Compound of the Invention is administered to the patient at a total daily dose in a range from about 800 mg to about 1000 mg, preferably administered in two daily doses, for example, at about 480 mg BID. The interval between administrations can range from about 4 hours to about 16 hours, e.g., about 12 hours.
- In some embodiments, dose modifications of the Compound of the Invention may occur such that the total daily dose is reduced down to 400 to 800 mg total daily. In some embodiments, further dose modification may occur such that the total daily dose is reduced down to a range of 50 mg to 400 mg total daily. In some embodiments, the Compound of the Invention can also be taken once daily. In some embodiments when taken once daily, the interval between administrations can be 18 to 30 hours (e.g., around 24 hours). In some embodiments, the Compound of the Invention can also be taken three times daily for a total dose of around 240 to 1000 mg. When taken as three times daily, the time between administrations can be about 4 hours to 8 hours.
- In one feature of the invention, the naphthofuran Compound of the Invention is used in combination with an antimitotic agent, especially those proven to be effective chemotherapy agents, or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof. Examples of antimitotic agents that may be useful as a co-therapy with the Compound of the Invention include and are not limited to: paclitaxel (Abraxane/Taxol), docetaxel (taxotere), BMS-275183, xyotax, tocosal, vinorlebine, vincristine, vinblastine, vindesine, vinzolidine, etoposide (VP-16), teniposide (VM-26), ixabepilone, larotaxel, ortataxel, tesetaxel, and ispinesib.
- In some embodiments, the second agent used with the Compound of the Invention in a co-therapy is paclitaxel (Abraxane/Taxol), or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof. In some embodiments, the paclitaxel is administered to the subject at a total weekly dose in a range from about 40 mg/m2 to about 100 mg/m2. In some embodiments, the paclitaxel is administered to the subject at a total weekly dose of about 80 mg/m2. In some embodiments, the paclitaxel is administered to the subject through IV. In some embodiments, the paclitaxel is dosed once a week for three of every four weeks, i.e., 3 weeks on, 1 week off.
- In some embodiment, the Compound of the Invention may be administered to a subject firstly, and then the paclitaxel may be administered to the subject. The paclitaxel may be administered to the subject firstly, and then the Compound of the Invention may be administered to a subject. In such case, some interval between the administration of the Compound of the Invention and the paclitaxel may be included. In some embodiments, the present invention refers to a method of curative or prophylactic cancer treatment by administering the paclitaxel to a subject, the method comprising the steps of administering to a subject in need of a curative or prophylactic cancer treatment a dosage of the compound of the invention and a dosage of paclitaxel; wherein the first dosage is administered before or after administering the paclitaxel to the subject.
- In an aspect, the invention provides a curative or prophylactic cancer treatment in, preferably, a human subject, the method comprising administering to a subject in need thereof a therapeutically effective amount of a naphthofuran compound, referred to herein as “
Compound 1,” and having the structure shown below, or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof - In some embodiments, the compound is administered to the subject at a total daily dose in a range of from about 80 mg to about 2000 mg. In some embodiments, the compound is administered to the subject at a total daily dose selected from the group consisting of about 80 mg, about 160 mg, about 320 mg, about 480 mg, about 640 mg, about 800 mg, and about 960 mg. In some embodiments, the compound is administered to the subject at a total daily dose of about 960 mg.
- In some embodiments, the compound is administered twice a day (BID). In some embodiments, the compound is administered to the subject at a dose in a range of from about 80 mg BID to about 480 mg BID. In some embodiments, the compound is administered to the subject at a dose selected from the group consisting of about 80 mg BID, about 160 mg BID, about 320 mg BID, about 400 mg BID, and about 480 mg BID. In some embodiments, the compound is administered to the subject at a dose of about 480 mg BID.
- In some embodiments, the compound is administered BID where the timing between administrations of the compound is in the range from about 4 hours between administrations to about 16 hours between administrations. In some embodiments, the compound is administered BID where the timing between administrations of the compound is at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 9 hours, at least 10 hours, at least 11 hours, at least 12 hours, at least 13 hours, at least 14 hours, at least 15 hours and/or at least 16 hours. In some embodiments, the compound is administered to the subject at a dose in a range of from about 80 mg BID to about 480 mg BID where the timing between administrations of the compound is in the range from about 4 hours between administrations to about 16 hours between administrations. In some embodiments, the compound is administered BID where the timing between administrations of the compound is at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 9 hours, at least 10 hours, at least 11 hours, at least 12 hours, at least 13 hours, at least 14 hours, at least 15 hours and/or at least 16 hours. In some embodiments, the compound is administered to the subject at a dose selected from the group consisting of about 80 mg BID, about 160 mg BID, about 320 mg BID, about 400 mg BID, and about 480 mg BID, where the timing between administrations of the compound is in the range from about 4 hours between administrations to about 16 hours between administrations. In some embodiments, the compound is administered BID where the timing between administrations of the compound is at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 9 hours, at least 10 hours, at least 11 hours, at least 12 hours, at least 13 hours, at least 14 hours, at least 15 hours and/or at least 16 hours. In some embodiments, the compound is administered to the subject at a dose of about 480 mg BID where the timing between administrations of the compound is about 12 hours between administrations. In some embodiments, the compound is administered to the subject at a dose of about 80 mg BID where the timing between administrations of the compound is about 12 hours between administrations. In some embodiments, the compound is administered to the subject at a dose of about 400 mg BID where the timing between administrations of the compound is about 12 hours between administrations. In some embodiments, the compound is administered to the subject at a dose of about 320 mg BID where the timing between administrations of the compound is about 12 hours between administrations. In some embodiments, the compound is administered BID where the timing between administrations of the compound is at least 4 hours, at least about 5 hours, at least about 6 hours, at least about 7 hours, at least about 8 hours, at least about 9 hours, at least about 10 hours, at least about 11 hours, at least about 12 hours, at least about 13 hours, at least about 14 hours, at least about 15 hours and/or at least about 16 hours. In some embodiments, the compound is administered to the subject at a dose of about 80 mg BID, about 160 mg BID, about 320 mg BID, about 400 mg BID, and about 480 mg BID where the timing between administrations of the compound is more at least 5 hours, preferably, in the range from about 5 hours between administrations to about 15 hours between administrations.
- In some embodiments, the Compound of the Invention is administered as a tablet or capsule. In some embodiments, the tablet or capsule comprises a dose of about 80 mgs.
- In some embodiments, the Compound of the Invention is administered orally in conjunction with fluid on an empty stomach. In some embodiments, the fluid is milk or water.
- In some embodiments, the naphthofuran compound is a polymorph of the compound shown below, referred to herein as “
Compound 1,” - For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth WO 2011/116398 and WO 2011/116399, the contents of each of which are hereby incorporated by reference in their entireties. X-ray powder diffraction analysis shown in FIG. 1 of WO 2011/116398 and WO 2011/116399 was performed using a Philips PW1800 diffractometer using Cu radiation at 40 KV/30 mA over the range of 5° to 70° with a step size of 0.03° and a counting time of 3 hours. Analysis was performed from 2-45° 2-theta using the following conditions: divergence slit: 0.6 mm, anti-scatter slit: 0.6 mm, receiving slit: 0.1 mm, detector slit: 0.6 mm, step size: 0.02°, step time: 5 seconds. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in WO 2011/116398 and WO 2011/116399. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in WO 2011/116398 and WO 2011/116399. X-ray powder diffraction analysis shown in FIGS. 2 and 3 of WO 2011/116398 and WO 2011/116399 was performed using a Bruker D8 Advance diffractometer. Analysis was performed from 2-45° 2-theta using the following conditions: divergence slit: 0.6 mm, anti-scatter slit: 0.6 mm, receiving slit: 0.1 mm, detector slit: 0.6 mm, step size: 0.02°, step time: 5 seconds.
- For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.4, 11.9, 14.1, 14.5, 17.3, 21.0, 22.2, 24.0, 26.0, and 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.9, 14.1, 14.5, 17.3, 22.2, and/or 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 10.2 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 11.9 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.5 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 17.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 22.2 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2θ, a peak at least at about 11.9 degrees 2θ, a peak at least at about 14.1 degrees 2θ, a peak at least at about 14.5 degrees 2θ, a peak at least at about 17.3 degrees 2θ, a peak at least at about 22.2 degrees 2θ, and a peak at least at about 28.1 degrees 2θ and any combinations thereof.
- For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 11.4, 12.3, 15.0, 23.0, 23.3, 24.1, 24.6, 25.0, 26.1, 27.0, and 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 12.3, 15, 23.0, 23.3, 24.6 and/or 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 7.5 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 9.9 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 12.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 15 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 24.6 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 7.5 degrees 2θ, a peak at least at about 9.9 degrees 2θ, a peak at least at about 15 degrees 2θ, a peak at least at about 12.3 degrees 2θ, a peak at least at about 23.0 degrees 2θ, a peak at least at about 23.3 degrees 2θ, a peak at least at about 24.6 degrees 2θ and a peak at least at about 28.4 degrees 2θ and any combinations thereof.
- The present invention also provides naphthofuran compounds in particle form. For example, the naphthofuran compound in particle form is a particle of a compound of Formula I shown below, which is active, i.e., has an efficacy and/or an antitumor activity in vivo. The efficacious particle or particles have a defined requirement for particle size, for example, has a diameter of less than or equal to about 200 μm, about 150 μm, about 100 μm, about 40 μm, or about 20 μm, about 10 μm, about 5 μm, about 4 μm, about 3 μm, about 2 μm, about 1 μm, about 0.5 μm, or about 0.2 μm. The particle or particles that are larger than the defined particle size are either inactive or less active.
- In some embodiments, the compound is in a pharmaceutical composition comprising a population of particles of the compound, and wherein a fraction of the cumulative total of the particles have a diameter in the range of 0.2 μm to 20 μm.
- In some embodiments, the compound is in a pharmaceutical composition comprising a population of particles of the compound, and wherein 50% of the cumulative total of the particles (D50) have a diameter in the range from about 0.5 to about 5 μm.
- In some embodiments, the compound is in a pharmaceutical composition comprising a population of particles of the compound, and wherein 50% of the cumulative total of the particles (D50) have a diameter of about 2 μm.
- In some embodiments, the naphthofuran compound in particle form is a particle of a compound according to Formula I or a salt or solvate thereof,
- wherein the particle has a diameter of less than or equal to about 200 μm; wherein each (R1) is independently selected from the group consisting of hydrogen, halogen, fluorine, cyano, nitro, CF3, OCF3, alkyl, methyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heterocycle, substituted heterocycle, aryl, substituted aryl, ORa, SRa, and NH2; wherein n is 4; wherein R3 is selected from the group consisting of hydrogen, halogen, fluorine, cyano, CF3, OCF3, alkyl, methyl, substituted alkyl, halogen-substituted alkyl, hydroxyl-substituted alkyl, amine-substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heterocycle, substituted heterocycle, aryl, substituted aryl, ORa, SRa, and NRbRc; wherein R3 is/are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heterocycle, substituted heterocycle, aryl, and substituted aryl; and wherein Rb and Rc are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocycle, substituted heterocycle, aryl, and substituted aryl, or Rb and Rc together with the N to which they are bonded form a heterocycle or substituted heterocycle.
- In some embodiments, each (R1) is independently selected from the group consisting of hydrogen, methyl, F (fluorine), Cl, Br, I, OH, and NH2; R3 is selected from the group consisting of methyl and C(R8)3, and each (R8) is independently selected from the group consisting of hydrogen, methyl, F (fluorine), Cl, Br, I, OH, and NH2. In some embodiments, at most two of(R1) and (R8) are F (fluorine) with the remainder being hydrogen. In some embodiments, R3 is methyl. In a further embodiment, the compound is selected from the group consisting of 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, an enantiomer, diastereomer, tautomer, and a salt or solvate thereof.
- In some embodiments, the naphthofuran compound in particle form is a particle of
Compound 1. - In some embodiments, the naphthofuran compound in particle form is a particle of a polymorph of
Compound 1. For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 1 of WO 2011/116398 and WO 2011/116399. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 2 of WO 2011/116398 and WO 2011/116399. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 3 of WO 2011/116398 and WO 2011/116399. - For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.4, 11.9, 14.1, 14.5, 17.3, 21.0, 22.2, 24.0, 26.0, and 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.9, 14.1, 14.5, 17.3, 22.2, and/or 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 10.2 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 11.9 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.5 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 17.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 22.2 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2θ, a peak at least at about 11.9 degrees 2θ, a peak at least at about 14.1 degrees 2θ, a peak at least at about 14.5 degrees 2θ, a peak at least at about 17.3 degrees 2θ, a peak at least at about 22.2 degrees 2θ, and a peak at least at about 28.1 degrees 2θ and any combinations thereof.
- For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 11.4, 12.3, 15.0, 23.0, 23.3, 24.1, 24.6, 25.0, 26.1, 27.0, and 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 12.3, 15, 23.0, 23.3, 24.6 and/or 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 7.5 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 9.9 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 12.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 15 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 24.6 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 7.5 degrees 2θ, a peak at least at about 9.9 degrees 2θ, a peak at least at about 15 degrees 2θ, a peak at least at about 12.3 degrees 2θ, a peak at least at about 23.0 degrees 2θ, a peak at least at about 23.3 degrees 2θ, a peak at least at about 24.6 degrees 2θ and a peak at least at about 28.4 degrees 2θ and any combinations thereof.
- In some embodiments, the particle has a diameter of less than or equal to about 160 μm, about 150 μm, about 120 μm, about 100 μm, about 50 μm, about 40 μm, or about 20 μm. In a further embodiment, the particle has a diameter of less than or equal to about 10 μm, about 5 μm, about 4 μm, about 3 μm, about 2 μm, about 1 μm, about 0.5 μm, about 0.2 μm, or about 0.1 μm.
- In some embodiments, the compound is in a pharmaceutical composition comprising a population of particles of the compound, and wherein a fraction of the cumulative total of the particles have a diameter in the range of 0.2 μm to 20 μm.
- In some embodiments, the compound is in a pharmaceutical composition comprising a population of particles of the compound, and wherein 50% of the cumulative total of the particles (D50) have a diameter in the range from about 0.5 to about 5 μm.
- In some embodiments, the compound is in a pharmaceutical composition comprising a population of particles of the compound, and wherein 50% of the cumulative total of the particles (D50) have a diameter of about 2 μm.
- The present invention provides a particle or particles of a naphthofuran compound, for example, a compound of Formula I, which are active, i.e., have an efficacy and/or an antitumor activity. The active particle or particles have certain size, for example, has a diameter of less than or equal to about 200 μm, about 150 μm, about 100 μm, about 40 μm, or about 20 μm, about 10 μm, about 5 μm, about 4 μm, about 3 μm, about 2 μm, about 1 μm, about 0.5 μm, about 0.2 μm, or about 0.1 μm. The particle or particles that are larger than the certain size are either inactive or less active than the particles described herein.
- In some embodiments according to the invention, a pharmaceutical composition includes particles of a compound, for example, a naphthofuran, according to Formula I or a salt or solvate thereof. For example, in some embodiments, a pharmaceutical composition includes particles of
Compound 1. For example, in some embodiments, a pharmaceutical composition includes particles of a polymorph ofCompound 1. For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 1 of WO 2011/116398 and WO 2011/116399. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 2 of WO 2011/116398 and WO 2011/116399. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 3 of WO 2011/116398 and WO 2011/116399. - For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.4, 11.9, 14.1, 14.5, 17.3, 21.0, 22.2, 24.0, 26.0, and 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.9, 14.1, 14.5, 17.3, 22.2, and/or 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 10.2 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 11.9 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.5 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 17.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 22.2 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2θ, a peak at least at about 11.9 degrees 2θ, a peak at least at about 14.1 degrees 2θ, a peak at least at about 14.5 degrees 2θ, a peak at least at about 17.3 degrees 2θ, a peak at least at about 22.2 degrees 2θ, and a peak at least at about 28.1 degrees 2θ and any combinations thereof.
- For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 11.4, 12.3, 15.0, 23.0, 23.3, 24.1, 24.6, 25.0, 26.1, 27.0, and 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 12.3, 15, 23.0, 23.3, 24.6 and/or 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 7.5 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 9.9 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 12.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 15 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 24.6 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 7.5 degrees 2θ, a peak at least at about 9.9 degrees 2θ, a peak at least at about 15 degrees 2θ, a peak at least at about 12.3 degrees 2θ, a peak at least at about 23.0 degrees 2θ, a peak at least at about 23.3 degrees 2θ, a peak at least at about 24.6 degrees 2θ and a peak at least at about 28.4 degrees 2θ and any combinations thereof.
- A fraction of the cumulative total of the particles can have a diameter of less than or equal to about 200 μm. In some embodiments, a fraction of a set of particles can be at least about 1%, at least about 5%, at least about 10%, at least about 20%, or at least about 30% of the total number of particles in the set. In some embodiments, the fraction is a substantial fraction. For example, a “substantial fraction” of a set of particles can be at least about 99%, at least about 95%, at least about 90%, at least about 85%, at least about 80%, at least about 75%, at least about 70%, at least about 60%, or at least about 50% of the total number of particles in the set. Each (R1) can be independently selected from the group consisting of hydrogen, halogen, fluorine, cyano, nitro, CF3, OCF3, alkyl, methyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heterocycle, substituted heterocycle, aryl, substituted aryl, ORa, SRa, and NH2. n can be a positive integer; for example, n can be 4. R3 can be selected from the group consisting of hydrogen, halogen, fluorine, cyano, CF3, OCF3, alkyl, methyl, substituted alkyl, halogen-substituted alkyl, hydroxyl-substituted alkyl, amine-substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heterocycle, substituted heterocycle, aryl, substituted aryl, ORa, SRa, and NRbRc. The Ra can be independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heterocycle, substituted heterocycle, aryl, and substituted aryl. Rb and Rc can be independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocycle, substituted heterocycle, aryl, and substituted aryl, or Rb and Rc together with the N to which they are bonded form a heterocycle or substituted heterocycle.
- In some embodiments according to the invention, each (R1) can be independently selected from the group consisting of hydrogen, methyl, F (fluorine), Cl, Br, I, OH, and NH2. R3 can be selected from the group consisting of methyl and C(R8)3. Each (R8) can be independently selected from the group consisting of hydrogen, methyl, F (fluorine), Cl, Br, I, OH, and NH2. In some embodiments, at most two of (R1) and R8 can be F (fluorine) with the remainder being hydrogen.
- In some embodiments according to the invention, a compound according to Formula I is selected from the group consisting of 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, and 2-ethyl-naphtho[2,3-b]furan-4,9-dione. In some embodiments, a compound according to Formula I is
Compound 1. In some embodiments, a compound according to Formula I is a polymorph ofCompound 1. For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 1 of WO 2011/116398 and WO 2011/116399. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 2 of WO 2011/116398 and WO 2011/116399. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 3 of WO 2011/116398 and WO 2011/116399. - For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.4, 11.9, 14.1, 14.5, 17.3, 21.0, 22.2, 24.0, 26.0, and 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.9, 14.1, 14.5, 17.3, 22.2, and/or 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 10.2 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 11.9 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.5 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 17.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 22.2 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2θ, a peak at least at about 11.9 degrees 2θ, a peak at least at about 14.1 degrees 2θ, a peak at least at about 14.5 degrees 2θ, a peak at least at about 17.3 degrees 2θ, a peak at least at about 22.2 degrees 2θ, and a peak at least at about 28.1 degrees 2θ and any combinations thereof.
- For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 11.4, 12.3, 15.0, 23.0, 23.3, 24.1, 24.6, 25.0, 26.1, 27.0, and 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 12.3, 15, 23.0, 23.3, 24.6 and/or 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 7.5 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 9.9 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 12.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 15 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 24.6 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 7.5 degrees 2θ, a peak at least at about 9.9 degrees 2θ, a peak at least at about 15 degrees 2θ, a peak at least at about 12.3 degrees 2θ, a peak at least at about 23.0 degrees 2θ, a peak at least at about 23.3 degrees 2θ, a peak at least at about 24.6 degrees 2θ and a peak at least at about 28.4 degrees 2θ and any combinations thereof.
- For example, the pharmaceutical composition can have at least about 90% of the cumulative total of particles having a particle size of less than or equal to about 160 μm, 100 μm, 40 μm, 20 μm, 10 μm, 5 μm, 3 μm, or 2 μm. For example, the pharmaceutical composition can have at least about 50% of the cumulative total of particles having a particle size of less than or equal to about 160 μm, 100 μm, 40 μm, 20 μm, 10 μm, 5 μm, 3 μm, 2 μm, 1 μm, or 0.5 μm. For example, the pharmaceutical composition can have at least about 10% of the cumulative total of the particles having a particle size of less than or equal to about 160 μm, 100 μm, 40 μm, 20 μm, 5 μm, 2 μm, 1 μm, 0.5 μm, or 0.1 μm. In the pharmaceutical composition, the particles can have a median diameter of, for example, less than or equal to about 160 μm, 40 μm, 20 μm, 10 μm, 5 μm, 4
μm 3 μm, 2 μm, 1 μm, 0.5 μm, 0.3 μm, or 0.2 μm. For example, the particles can have a median diameter of from about 0.2 μm to about 50 μm, or a median diameter of from about 0.5 μm to about 30 μm. For example, the pharmaceutical composition can have the cumulative total of particles having a ratio of mean diameter over median diameter of at most about 2 μm. The pharmaceutical invention can have particles that include the compound in a crystalline state, in at least two different polymorph states. - In some embodiments, the pharmaceutical composition includes a compound of Formula I or a polymorph thereof in particle form, where the particle or particles are less than 20 micron, 10 micron, 5 micron, 2 micron, 1 micron or 0.5 micron.
- The present invention provides a substantially pure compound of Formula II,
- wherein each R1 is independently H, Cl, or F; and n is 0, 1, 2, 3, or 4. In some embodiments, the compound of Formula II is in particle form.
- In some embodiments, the substantially pure compound is
Compound 1. In some embodiments,Compound 1 is in particle form. - In some embodiments, the substantially pure compound is selected from the group consisting of 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, phosphoric acid mono-[1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl]ester, phosphoric acid 1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl ester dimethyl ester, an enantiomer, diastereomer, tautomer, and a salt or solvate thereof.
- In some embodiments, the substantially pure compound is a polymorph of
Compound 1. For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 1 of WO 2011/116398 and WO 2011/116399. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 2 of WO 2011/116398 and WO 2011/116399. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 3 of WO 2011/116398 and WO 2011/116399. - For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.4, 11.9, 14.1, 14.5, 17.3, 21.0, 22.2. 24.0, 26.0, and 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.9, 14.1, 14.5, 17.3, 22.2, and/or 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 10.2 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 11.9 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.5 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 17.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 22.2 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2θ, a peak at least at about 11.9 degrees 2θ, a peak at least at about 14.1 degrees 2θ, a peak at least at about 14.5 degrees 2θ, a peak at least at about 17.3 degrees 2θ, a peak at least at about 22.2 degrees 2θ, and a peak at least at about 28.1 degrees 2θ and any combinations thereof.
- For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 11.4, 12.3, 15.0, 23.0, 23.3, 24.1, 24.6, 25.0, 26.1, 27.0, and 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 12.3, 15, 23.0, 23.3, 24.6 and/or 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 7.5 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 9.9 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 12.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 15 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 24.6 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 7.5 degrees 2θ, a peak at least at about 9.9 degrees 2θ, a peak at least at about 15 degrees 2θ, a peak at least at about 12.3 degrees 2θ, a peak at least at about 23.0 degrees 2θ, a peak at least at about 23.3 degrees 2θ, a peak at least at about 24.6 degrees 2θ and a peak at least at about 28.4 degrees 2θ and any combinations thereof.
- In some embodiments, the polymorph of
Compound 1 is in particle form. - In some embodiments, the compound, product and or pharmaceutical composition has a purity of at least about 80%, about 85%, about 90%, about 95%, or about 99%. In some embodiments, the compound, product and or pharmaceutical composition has a purity of at least about 95.5%, about 96%, about 96.5%, about 97%, about 97.5%, about 98%, about 98.5%, about 99%, or about 99.5%. In some embodiments, the compound, product and or pharmaceutical composition has a purity of at least about 99.1%, about 99.2%, about 99.3%, about 99.4%, about 99.5%, about 99.6%, about 99.7%, about 99.8%, or about 99.9%.
- In some embodiments, the compound, product and/or pharmaceutical composition has impurities of at most about 10%, about 5%, about 1%, about 0.15%, or about 0.5%. In some embodiments, the compound, product and or pharmaceutical composition contains, for each single impurity, at most about 0.5%, about 0.2%, about 0.15%, or about 0.1%. In a further embodiment, the impurities are one or more from the group consisting of 2-acetyl-2,3-dihydronaphtho[2,3-b]furan-4,9-dione, 2,6-Diacetyl-naphtho[2,3-b]furan-4,9-dione, 2.7 Diacetyl-naphtho[2,3-b]furan-4,9-dione, 3-Acetyl-naphtho[2,3-b]furan-4,9-dione, Naphtho[2,3-b]furan-4,9-dione, Naphtho[2,3-b]furan-4,9-dione, Naphtho[2,3-b]furan-4,9-diol, and 1-(4,9-Dihydroxy-naphtho[2,3-b]furan-2-yl)-ethanone.
- In some embodiments, the impurities include a residual solvent. In some embodiments, the solvent is selected from the group consisting of ethyl acetate (EtOAc), toluene, Ethanol, methanol, chloroform, and CH2Cl2/hexane.
- In some embodiments, the purity is determined with HPLC (High Performance Liquid Chromatography). In some embodiments, the purity is determined with NMR (Nuclear Magnetic Resonance). In a further embodiment, the purity is determined with both HPLC and NMR.
- The invention also provides a polymorph of
Compound 1 in a particle form, where the compound is in a highly purified form, product and/or pharmaceutical composition. For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 1 of WO 2011/!116398 and WO 2011/116399. - In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 2 of WO 2011/116398 and WO 2011/116399. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 3 of WO 2011/116398 and WO 2011/116399.
- For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.4, 11.9, 14.1, 14.5, 17.3, 21.0, 22.2, 24.0, 26.0, and 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.9, 14.1, 14.5, 17.3, 22.2, and/or 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 10.2 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 11.9 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.5 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 17.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 22.2 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2θ, a peak at least at about 11.9 degrees 2θ, a peak at least at about 14.1 degrees 2θ, a peak at least at about 14.5 degrees 2θ, a peak at least at about 17.3 degrees 2θ, a peak at least at about 22.2 degrees 2θ, and a peak at least at about 28.1 degrees 2θ and any combinations thereof.
- For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 11.4, 12.3, 15.0, 23.0, 23.3, 24.1, 24.6, 25.0, 26.1, 27.0, and 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 12.3, 15, 23.0, 23.3, 24.6 and/or 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 7.5 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 9.9 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 12.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 15 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 24.6 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 7.5 degrees 2θ, a peak at least at about 9.9 degrees 2θ, a peak at least at about 15 degrees 2θ, a peak at least at about 12.3 degrees 2θ, a peak at least at about 23.0 degrees 2θ, a peak at least at about 23.3 degrees 2θ, a peak at least at about 24.6 degrees 2θ and a peak at least at about 28.4 degrees 2θ and any combinations thereof.
- The polymorph of
Compound 1 is in a particle form. In some embodiments, the polymorph ofCompound 1 is in a particle form, where the particle has a diameter of less than or equal to about 160 μm, about 150 μm, about 120 μm, about 100 μm, about 50 μm, about 40 μm, or about 20 μm. In some embodiments, the polymorph ofCompound 1 in particle form is in a population of particles, where the population of particles have a D50 (i.e., the median point of the particle size distribution that divides the distribution in two equal parts) of less than or equal to about 160 μm, about 150 μm, about 120 μm, about 100 μm, about 50 μm, about 40 μm, or about 20 μm. In some embodiments, the polymorph ofCompound 1 is in a particle form, where the particle has a diameter of less than or equal to about 10 μm, about 5 μm, about 4 μm, about 3 μm, about 2 μm, about 1 μm, about 0.5 μm, about 0.2 μm, or about 0.1 μm. In some embodiments, the polymorph ofCompound 1 in particle form is in a population of particles, where the population of particles have a D50 of less than or equal to about 10 μm, about 5 μm, about 4 rpm, about 3 μm, about 2 μm, about 1 μm, about 0.5 μm, or about 0.2 μm. - The present invention provides a particle or a population of particles of a polymorph of
Compound 1, which are active, i.e., have an efficacy and/or an antitumor activity. The active particle or particles have certain size, for example, has a diameter or D50 of less than or equal to about 200 μm, about 150 μm, about 100 μm, about 40 μm, or about 20 μm, about 10 μm, about 5 μm, about 4 μm, about 3 μm, about 2 μm, about 1 μm, about 0.5 μm, or about 0.2 μm. The particle or particles that are larger than the certain size are either inactive or less active than the particles described herein. - A fraction of the cumulative total of the particles of a polymorph of
Compound 1 can have a diameter or D50 of less than or equal to about 200 μm. In some embodiments, a fraction of a set of particles can be at least about 1%, at least about 5%, at least about 10%, at least about 20%, or at least about 30% of the total number of particles in the set. In some embodiments, the fraction is a substantial fraction. For example, a “substantial fraction” of a set of particles can be at least about 99%, at least about 95%, at least about 90%, at least about 85%, at least about 80%, at least about 75%, at least about 70%, at least about 60%, or at least about 50% of the total number of particles in the set. - In some embodiments, the population of particles of a polymorph of
Compound 1 can have at least about 90% of the cumulative total of particles having a particle size of less than or equal to about 160 μm, 100 μm, 40 μm, 20 μm, 10 μm, 5 μm, 3 μm, or 2 μm, 1 μm or 0.5 μm. For example, the population of particles of a polymorph ofCompound 1 can have at least about 50% of the cumulative total of particles having a particle size of less than or equal to about 160 μm, 100 μm, 40 μm, 20 μm, 10 μm, 5 μm, 3 μm, 2 μm, 1 μm, or 0.5 μm. For example, the population of particles of a polymorph ofCompound 1 can have at least about 10% of the cumulative total of the particles having a particle size of less than or equal to about 160 μm, 100 μm, 40 μm, 20 μm, 5 μm, 2 μm, 1 μm, 0.5 μm, or 0.1 μm. In the population of particles of a polymorph ofCompound 1, the particles can have a median diameter of, for example, less than or equal to about 160 μm, 40 μm, 20 μm, 10 μm, 5 μm, 4 μm, 3 μm, 2 μm, 1 μm, 0.5 μm or 0.2 μm. For example, the particles can have a median diameter of from about 0.002 μm to about 50 μm, or a median diameter of from about 0.2 μm to about 30 μm. For example, the population of particles of a polymorph ofCompound 1 can have the cumulative total of particles having a ratio of mean diameter over median diameter of at most about 2. The population of particles of a polymorph ofCompound 1 can have particles that include the compound in a crystalline state, in at least two different polymorph states. - In some embodiments, the polymorph of
Compound 1 is in a particle form, where the particle has a diameter of less than or equal to about 20 micron, 10 micron, 5 micron, or 2 3 micron, 2 micron, 1 micron, 0.5 micron, 0.2 micron, or 0.1 micron. In some embodiments, the polymorph ofCompound 1 in particle form is in a population of particles, where the population of particles have a D50 of less than or equal to about 20 micron, 10 micron, 5 micron, 4 micron, 5 micron, 3 micron, 2 micron, 1 micron, 0.5 micron or 0.2 micron. - The present invention also provides a pharmaceutical composition, which includes a therapeutically effective amount of the substantially pure naphthofuran compound and a pharmaceutically acceptable carrier, excipient, or diluent. The excipient can include, for example, a glycerol ester of a fatty acid, a glycerol ester of a saturated fatty acid, a glycerol ester of a saturated fatty acid having from 8 to 18 carbons, glyceryl laurate, polyethylene glycol, cellulose, microcrystalline cellulose, carboxymethylcellulose, a phosphatidylcholine, a lipid, a sterol, cholesterol, a surfactant, a polysorbate, and/or a polyoxyethylene sorbitan alkylate.
- In some embodiments according to the invention, an item of manufacture can include a container containing a therapeutically effective amount of the pharmaceutical composition and a pharmaceutically acceptable excipient.
- A method for producing a compound, product and/or pharmaceutical composition according to some embodiments of the invention can include milling the compound to form the particles. For example, the compound can be ball milled, roll milled, jet milled, wet milled, ultrasonically milled, ground, or treated with a combination of these and/or other milling procedures. The temperature of the compound can be reduced, for example, reduced to a cryogenic temperature, and milled. Such reduction in temperature can render the compound more brittle and more amenable to particle size reduction by milling.
- A method for producing a compound, product and/or pharmaceutical composition according to some embodiments of the invention can include crystallization. The particle size distribution (PSD) obtained during crystallization is influenced by a combination of various mechanisms that occur during crystallization, such as nucleation, growth, aggregation, attrition, breakage, etc. When the particle size cannot be consistently controlled during crystallization to meet the desired specifications, an extra processing step such as dry milling can be included.
- In some embodiments according to the present invention, a composition for reducing or inhibiting the replication or spread of neoplastic cells includes a set of particles selected by the following method. A compound according to Formula I or a salt or solvate thereof can be provided.
- In some embodiments,
Compound 1 or a salt or solvate thereof can be provided. In some embodiments, a polymorph ofCompound 1 can be provided. For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 1 of WO 2011/116398 and WO 2011/116399. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 2 of WO 2011/116398 and WO 2011/116399. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 3 of WO 2011/116398 and WO 2011/116399. - For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.4, 11.9, 14.1, 14.5, 17.3, 21.0, 22.2, 24.0, 26.0, and 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.9, 14.1, 14.5, 17.3, 22.2, and/or 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 10.2 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 11.9 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.5 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 17.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 22.2 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2θ, a peak at least at about 11.9 degrees 2θ, a peak at least at about 14.1 degrees 2θ, a peak at least at about 14.5 degrees 2θ, a peak at least at about 17.3 degrees 2θ, a peak at least at about 22.2 degrees 2θ, and a peak at least at about 28.1 degrees 2θ and any combinations thereof.
- For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 11.4, 12.3, 15.0, 23.0, 23.3, 24.1, 24.6, 25.0, 26.1, 27.0, and 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 12.3, 15, 23.0, 23.3, 24.6 and/or 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 7.5 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 9.9 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 12.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 15 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 24.6 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 7.5 degrees 2θ, a peak at least at about 9.9 degrees 2θ, a peak at least at about 15 degrees 2θ, a peak at least at about 12.3 degrees 2θ, a peak at least at about 23.0 degrees 2θ, a peak at least at about 23.3 degrees 2θ, a peak at least at about 24.6 degrees 2θ and a peak at least at about 28.4 degrees 2θ and any combinations thereof.
- At least one set of particles including the compound can be prepared. The particle size distribution of each at least one set of particles can be determined. At least one set of particles can be administered to neoplastic cells and to normal cells at a predetermined concentration and for a predetermined period of time. The effect of the particles on the metabolism and/or division of the neoplastic cells and the normal cells can be observed. An effectivity rating can be assigned to each set of particles based on the effect of the particles on the neoplastic cells. A toxicity rating can be assigned to each set of particles based on the effect of the particles on the normal cells. The effectivity rating and/or the toxicity rating of the at least one set of particles having a first particle size distribution can be compared with the effectivity rating and/or the toxicity rating of at least one other set of particles having a particle size distribution different than the first particle size distribution. The set of particles having an effectivity rating greater than, a toxicity rating less than, and/or a weighted effectivity rating and toxicity rating sum greater than the at least one other set of particles can be selected as an optimum set. For example, the particle size distribution of the optimum set of particles can be identified as an optimum particle size distribution. For example, the optimum set of particles can be included in the composition. For example, the effectivity rating can be proportional to antitumor activity. For example, the effectivity rating can be based on inhibition of metabolism and/or division of the neoplastic cells. For example, the toxicity rating can be inversely proportional to tolerability. For example, the toxicity rating can be based on inhibition of metabolism and/or division of normal cells. For example, the at least one set of particles can be administered to the neoplastic cells and to the normal cells in vitro. For example, the effectivity rating can be the IC50 of the neoplastic cells. For example, the toxicity rating can be the IC50 of the normal cells. For example, the at least one set of particles can be administered to the neoplastic cells and to the normal cells in vivo in a test animal. The test animal can be, for example, a mammal, primate, mouse, rat, guinea pig, rabbit, or dog. The effectivity rating can be the decrease in volume of the neoplastic cells, and the toxicity rating can be the decrease in mass of the test animal.
- In some embodiments, preparing the one set of particles including the compound can include isolating particles of a predetermined particle size distribution by dissolving and dispersing the compound, dissolving and dispersing the compound with a microfluidic technique, dissolving and dispersing the compound with cavitation or nebulization, milling the compound, ball milling the compound, roll milling the compound, jet milling the compound, wet milling the compound, ultrasonically milling the compound, grinding the compound, and/or sieving the compound. The particles can be suspended in a pharmaceutically acceptable excipient. Determining the particle size distribution can include using a technique selected from the group consisting of sieve analysis, optical microscopic counting, electron micrograph counting, electroresistance counting, sedimentation time, laser diffraction, acoustic spectroscopy, and combinations.
- A method of treating a neoplasm or other cell proliferation disorder can include administering to a human, mammal, or animal afflicted with a neoplasm a therapeutically effective amount of a composition including an optimum set of particles of the composition having an optimum particle size and distribution.
- The present invention provides a process of preparing a naphthofuran compound. The process includes reacting a naphthodihydrofurane compound or a mixture including the naphthodihydrofurane compound with an oxidizing agent in a first solvent. In some embodiments, the mixture further includes a naphthofuran compound. In some embodiments, the naphthofuran compound is selected from the group consisting of 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, phosphoric acid mono-[1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl]ester, phosphoric acid 1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl ester dimethyl ester, an enantiomer, diastereomer, tautomer, and a salt or solvate thereof. In some embodiments, the oxidizing agent is manganese dioxide. In some embodiments, the first solvent is toluene. In some embodiments, the process further includes filtering the oxidization product through a pad of activated carbon. In some embodiments, the process further includes crystallizing the naphthofuran compound by evaporating the first solvent. In some embodiments, the process further includes re-crystallizing the naphthofuran compound with a second solvent. In some embodiments, the second solvent is ethyl acetate. In some embodiments, the process further includes slurrying the naphthofuran compound with a second solvent, heating the slurry, and cooling the slurry.
- The present invention provides a process of preparing a substantially pure naphthofuran compound. The process includes crystallizing a naphthofuran compound with a first solvent, and re-crystallizing the naphthofuran compound with a second solvent. The present invention provides another process of preparing a substantially pure naphthofuran compound. The process includes crystallizing a naphthofuran compound with a first solvent, slurrying the crystalline naphthofuran compound with a second solvent, heating the slurry, and cooling the slurry. In some embodiments, the naphthofuran compound selected from the group consisting of 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, phosphoric acid mono-[1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl]ester, phosphoric acid 1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl ester dimethyl ester, an enantiomer, diastereomer, tautomer, and a salt or solvate thereof. In some embodiments, the first solvent is toluene. In some embodiments, the second solvent is ethyl acetate.
- The present invention provides a naphthofuran compound prepared by any one of the above processes. In some embodiments, the naphthofuran compound is selected from the group consisting of 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, phosphoric acid mono-[1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl]ester, phosphoric acid 1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl ester dimethyl ester, an enantiomer, diastereomer, tautomer, and a salt or solvate thereof. In some embodiments, the naphthofuran compound has a purity of at least about 80%, about 85% or about 90%, about 95%, or about 99%. In some embodiments, the naphthofuran compound has impurities of at most about 10%, about 5%, about 2%, or about 1%, about 0.5%, about 0.2%, about 0.15%, or about 0.1%.
- The invention provides methods for preparing particles of
Compound 1, including particles of a polymorph ofCompound 1, particles of highly pure forms ofCompound 1 and particles of highly pure forms of a polymorph ofCompound 1. In some embodiments, particles having a desired median particle size, for example, about 20 microns, are produced by milling crystals ofCompound 1, including crystals of a purified form ofCompound 1, crystals of a polymorph ofCompound 1 and/or crystals of a purified form of a polymorph ofCompound 1. For example, the crystals are milled using a jet milling method where the venturi pressure is about 40, the mill pressure is about 100, and the feed rate is approximately 1304 g/hour. - The invention also provides kits and/or methods for treating a specific, selected patient population suitable for therapeutic administration of a compound of the disclosure by detecting the level of expression of one or more biomarkers associated with cancer stemness. A biomarker is deemed to be associated with cancer stemness when its expression is elevated in patient or sample from a patient suffering from a cancer known to have cancer stem cells and/or known to have aberrant Stat3 pathway activities as compared a baseline, control or normal level of expression of the same marker, e.g., the level in a patient that is not suffering from a cancer known to have cancer stem cells and/or known to have aberrant Stat3 pathway activities.
- In some embodiments, the biomarker associated with cancer stemness is phosphorylated STAT3 (p-STAT3). In some embodiments, the biomarker associated with cancer stemness is β-catenin. In some embodiments, the biomarker associated with cancer stemness is NANOG. In some embodiments, a combination of biomarkers associated with cancer stemness is used, where the combination is selected from the group consisting of two or more of p-STAT3, β-catenin, and NANOG. In some embodiments, a combination of biomarkers associated with cancer stemness is used, where the combination is selected from the group consisting of three of p-STAT3, β-catenin, and NANOG.
- In the methods and/or kits of the disclosure, the level of expression of one or more cancer stemness markers is detected in a patient or a sample from a patient, and where the patient or sample has an elevated level of one or more cancer stemness markers as compared to a control level of expression, the patient is then administered a therapeutically effective amount of a compound of the disclosure.
- In some embodiments of these methods, the method is an in vivo method. In some embodiments of these methods, the method is an in situ method. In some embodiments of these methods, the method is an ex vivo method. In some embodiments of these methods, the method is an in vitro method.
- The invention also provides kits and/or methods for of identifying or otherwise refining, e.g., stratifying, a patient population suitable for therapeutic administration of a compound of the disclosure by detecting the level of expression of one or more biomarkers associated with cancer stemness. A biomarker is deemed to be associated with cancer stemness when its expression is elevated in patient or sample from a patient suffering from a cancer known to have cancer stem cells and/or known to have aberrant Stat3 pathway activities as compared a baseline, control or normal level of expression of the same marker, e.g., the level in a patient that is not suffering from a cancer known to have cancer stem cells and/or known to have aberrant Stat3 pathway activities.
- In some embodiments, the biomarker associated with cancer stemness is phosphorylated STAT3 (p-STAT3). In some embodiments, the biomarker associated with cancer stemness is j-catenin. In some embodiments, the biomarker associated with cancer stemness is NANOG. In some embodiments, a combination of biomarkers associated with cancer stemness is used, where the combination is selected from the group consisting of two or more of p-STAT3, β-catenin, and NANOG. In some embodiments, a combination of biomarkers associated with cancer stemness is used, where the combination is p-STAT3, β-catenin, and NANOG.
- In the methods and/or kits of the disclosure, the level of expression of one or more cancer stemness markers is detected in a patient or a sample from a patient, and where the patient or sample has an elevated level of one or more cancer stemness markers as compared to a control level of expression, the patient is then administered a therapeutically effective amount of a compound of the disclosure.
- In some embodiments of these methods, the method is an in vivo method. In some embodiments of these methods, the method is an in situ method. In some embodiments of these methods, the method is an ex vivo method. In some embodiments of these methods, the method is an in vitro method.
-
FIG. 1 is a graph that compares the pharmacokinetics of BID dosing versus QD dosing in patients, where the patients were dosed at 500 mg during each dose. Medication was administered with a four-hour interval in between the two doses during the same day for the 500 mg BID regimen. -
FIG. 2 is a graph that compares the pharmacokinetics of two different formulations of the Compound of the Invention. The two formulations result in different sizes of the capsule. -
FIG. 3A consists of photographic images of tumor tissue samples from CRC patients visualized through immunohistochemistry using antibodies against phosphorylated STAT3 and DAPI (lower row). -
FIG. 3B is a chart showing a trend towards improvement in survival for patients with high p-STAT3 (compared with patients having low or negative p-STAT3). -
FIG. 4A consists of photographic images of tumor tissue samples from CRC patients visualized through immunohistochemistry using antibodies against β-catenin and DAPI (lower row). -
FIG. 4B is a chart showing a trend towards improvement in survival for patients with nuclear β-catenin localization (compared with patients having p-catenin localized to the cell membrane). -
FIG. 5 shows CD44high cells growth being blocked by a Compound of the Invention. CD44high cells were isolated by FACS (FaDu) and were cultured in the absence of attachment and serum for 5 days to form primary spheres. Primary spheres were then dissociated in Accumax (eBioscience, San Diego, Calif.) to single cells, and were cultured as above for 72 hours before the addition of the indicated concentrations of therapeutic agents. After five days of treatment, representative sphere images were captured. -
FIG. 6 shows an in vivo study of nude mice with xenografted human colon cancer tumor tissues where a Compound of the Invention was shown to be effective in reducing or clearing p-STAT3 and β-catenin levels. Formaldehyde-fixed tumors from mice treated daily for 15 days with oral gavage of the Co pound of the Invention or Vehicle (Control) were sectioned and analyzed by immunofluorescence staining using antibodies specific for human-STAT2 and β-catenin. -
FIG. 7 shows that in a mice study, a Compound of the Invention targeted cancer stem cells. Xenograft bearing mice were administered with either vehicle, gemcitabine (120 mg/kg (MIA PaCa-2)), carboplatin (30 mg/kg (FaDu)), or 20 mg/kg of a Compound of the Invention by ip. Following sacrifice, tumors were collected after seven or 14 days of treatment, for PaCa-2 and FaDu cells, respectively. Single cell suspensions were obtained following animal sacrifice, and sterile removal of tumors. Live cells were then counted and used to measure their ability to form spheres when cultured in cancer stem cell media (DMEM/F12, B27 Neurobasal supplement, 20 ng/mL EGF, 10 ng/mL FGF, 4 ng/mL insulin, and 0.4% BSA). Fresh media was added every three days, and sphere formation was determined after 10-14 days in cultures. Spheres with >50 cells were scored. -
FIGS. 8A , 8B, and 8C are a series of graphs depicting that in human clinical studies, a Compound of the Invention was found to be effective in CRC patients.FIG. 8A depicts the relationship between Progression Free Survival (PFS) and exposure of a Compound of the Invention in colorectal cancer (CRC) patients. In CRC patients, a statistically significant difference was seen in PFS between those with Compound of the Invention plasma concentrations above 2.0 uM for greater than 4 hours and those who did not reach that level of exposure.FIG. 8B depicts the overall survival (OS) in evaluable CRC patients. OS of evaluable CRC patients treated with a Compound of the Invention (defined as ≧4 weeks of Compound of the Invention, 80% compliance) compared with historical controls [Cetuximab for the treatment of colorectal cancer, 2007, N. Engl. J. Med. 357 2040-2048].FIG. 8C depicts PFS in evaluable CRC patients. PFS of evaluable CRC patients treated with a Compound of the Invention (defined as ≧4 weeks of Compound of the Invention, 80% compliance) compared historical controls (Open-Label Phase III Trial of Panitumumab Plus Best Supportive Care Compared with Best Supportive Care Alone in Patients with Chemotherapy-Refractory Metastatic Colorectal Cancer, 2007, J. Clin. One. 25: 1658-1665]. - Embodiments of the invention are discussed in detail below. In describing embodiments, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected. A person skilled in the relevant art will recognize that other equivalent components can be employed and other methods developed without parting from the spirit and scope of the invention. All references cited herein are incorporated by reference as if each had been individually incorporated.
- In this text, a “substantial fraction” of a set of particles can be at least about 99%, at least about 95%, at least about 90%, at least about 85%, at least about 80%, at least about 75%, at least about 70%, at least about 60%, or at least about 50% of the total number of particles in the set.
- The anti-cancer stem cell activity of a composition can be determined in vitro or in vivo. For example, antitumor activity of a composition can be determined in vitro by administering the compound and measuring the self-renewal and survival of cancer stem cells, For example, the antitumor activity of a compound can be assessed in vitro by comparing the behavior of tumor cells to which the compound has been administered with the behavior of tumor cells to which the compound has not been administered (a control). For example, antitumor activity of a composition can be determined in vivo by measuring, in an animal to which the compound has been administered, the change in volume of a tumor, by applying a metastatic model, and/or by applying an orthotopic model. For example, the antitumor activity of a compound can be assessed in vivo by comparing an animal to which the compound has been administered to an animal to which the compound has not been administered (a control).
- The tolerability of a composition can be determined in vitro or in vivo. For example, tolerability of a composition can be determined in vitro by administering the compound and measuring the division rate of normal cells, by measuring the nutrient uptake of normal cells, by measuring indicators of metabolic rate of normal cells other than nutrient uptake, by measuring the growth of normal cells, and/or by measuring another indicator of the vitality of normal cells. For example, the tolerability of a compound can be assessed in vitro by comparing the behavior of normal cells to which the compound has been administered with the behavior of normal cells to which the compound has not been administered (a control). For example, tolerability of a composition can be determined in vivo by measuring, in an animal to which the compound has been administered, body weight or food intake or making clinical observations, such as hair retention or loss, activity, and/or responsiveness to stimuli. For example, the tolerability of a compound can be assessed in vivo by comparing an animal to which the compound has been administered to an animal to which the compound has not been administered (a control).
- A compound, product and/or pharmaceutical composition can be assigned an effectivity rating and/or a toxicity rating. For example, the effectivity rating can be proportional to antitumor activity or can be a monotonically increasing function with respect to antitumor activity. For example, the toxicity rating can be inversely proportional to tolerability or can be a monotonically decreasing function with respect to tolerability. A naphthofuran compound has been reported to lack in vivo antitumor activity. See, M. M. Rao and D. G. I. Kingston, J. Natural Products, 45(5) (1982) 600-604. Furthermore, the compound has been reported to be equally toxic to cancer cells and normal cells. That is, the compound was reported as killing both cancer cells and normal cells equally, concluding the compound has no potential for cancer treatment. See, K. Hirai K. et al., Cancer Detection and Prevention, 23(6) (1999) 539-550; Takano A. et al., Anticancer Research 29:455-464, 2009.
- However, experimental studies reported herein indicate that when the compound is administered as particles having an appropriate particle size distribution to achieve a certain pharmacokinetic exposure as described in this publication, the compound does have selective antitumor activity.
- For the purposes of the present invention, “bioavailability” of a drug is defined as the relative amount of drug from an administered dosage form which enters the systemic circulation and the rate at which the drug appears in the blood stream. Bioavailability is governed by at least three factors: (i) absorption which controls bioavailability, followed by (ii) its tissue re-distribution and (iii) elimination (metabolic degradation plus renal and other mechanisms).
- “Absolute bioavailability” is estimated by taking into consideration tissue re-distribution and biotransformation (i.e., elimination) which can be estimated in turn via intravenous administration of the drug. Unless otherwise indicated, “HPLC” refers to high performance liquid chromatography; “pharmaceutically acceptable” refers to physiologically tolerable materials, which do not typically produce an allergic or other untoward reaction, such as gastric upset, dizziness and the like, when administered to a mammal; “mammal” refers to a class of higher vertebrates including man and all other animals that nourish their young with milk secreted by mammary glands and have the skin usually more or less covered with hair; and “treating” is intended to encompass relieving, alleviating, or eliminating at least one symptom of a disease(s) in a mammal.
- The term “treatment”, as used herein, is intended to encompass administration of compounds according to the invention prophylactically to prevent or suppress an undesired condition, and therapeutically to eliminate or reduce the extent or symptoms of the condition. Treatment also includes preventing the relapse of an undesired condition, delaying the progression of an undesired condition, and preventing or delaying the onset of an undesired condition. Treatment according to the invention is given to a human or other mammal having a disease or condition creating a need of such treatment. Treatment also includes application of the compound to cells or organs in vitro. Treatment may be by systemic or local administration.
- An effective amount is the amount of active ingredient administered in a single dose or multiple doses necessary to achieve the desired pharmacological effect. A skilled practitioner can determine an effective dose for an individual patient or to treat an individual condition by routine experimentation and titration well known to the skilled clinician. However, unexpected clinical responses from a patient population to a pharmaceutical formulation or composition may dictate unforeseen changes or adjustment to an aspect of the treatment such as the dosage, intervals in between drug administrations, and/or ways of drug administration. The actual dose and schedule may vary depending on whether the compositions are administered in combination with other drugs, or depending on inter-individual differences in pharmacokinetics, drug disposition, and metabolism. Similarly, amounts may vary for in vitro applications. Where disclosed herein, dose ranges, unless stated otherwise, do not necessarily preclude use of a higher or lower dose of a component, as might be warranted in a particular application.
- The descriptions of pharmaceutical compositions provided herein include pharmaceutical compositions which are suitable for administration to humans. It will be understood by the skilled artisan, based on this disclosure, that such compositions are generally suitable for administration to any mammal or other animal. Preparation of compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and perform such modifications with routine experimentation based on pharmaceutical compositions for administration to humans.
- A naphthofuran compound of Formula I, such as 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, was practically insoluble in water and a broad panel of solvents tested, including DMSO (dimethyl sulfoxide), N-methylpyrrolidine, DMA (dimethylacetamide), ethanol, PEG400 (polyethylene glycol 400), propylene glycol, Cremophor EL (polyethoxylated castor oil), Labrasol (Caprylocaproyl Macrogolglycerides (Polyoxylglycerides)), Labrafil M (vegetable oil PEG-6 (polyethylene glycol) ester), and Capryol (propylene glycol caprylate). The naphthofuran compound may be soluble in a range of polar organic solvents, such as certain halocarbons, e.g., chlorocarbons, like methylene chloride, esters, ethyl acetate, carboxylic acids, like acetic acid, ketones, like acetone, and alcohols, like methanol. The naphthofuran compound was found to be soluble in methylene chloride and ethyl acetate.
- The experimental studies described herein, which found that selective antitumor activity was achieved by administering the active compound of a pharmaceutical composition in the form of small particles to achieve a certain pharmacokinetic exposure for selective anticancer activity, focused on a naphthofuran compound. Given the presently discussed observations made with the compound, other naphthofurans, for example, naphthofurans, may similarly exhibit an advantageous modification of their pharmacokinetic profiles to the achievement of a certain pharmacokinetic exposure to achieve selective anti-cancer activity when administered in the form of particles of small diameter. The pharmacokinetic profile of other naphthofurans administered as one or more different particle size distributions can be experimentally determined.
- Some other compounds that may exhibit an improvement in their pharmacokinetic profile and efficacy with a decrease in particle size of the form in which they are administered to an animal, a mammal, or a human, as observed for the compound tested in examples, include those presented as Formula I, and salts and solvates thereof.
- In Formula I, the notation (R1)n indicates that an (R1) substituent is independently substituted at each available position along the benzene ring. For example, with n equal to 4, the four R1 substituents may all be the same, or they may each be different from any other. For example, each (R1) can be independently selected from the group consisting of hydrogen, halogen, fluorine, cyano, nitro, CF3, OCF3, alkyl, methyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heterocycle, substituted heterocycle, aryl, substituted aryl, ORa, SRa, and NH2. Alkyl can include moieties having, for example, from 1 to 8 carbon atoms connected by single bonds, alkenyl can include moieties having, for example, from 2 to 8 carbon atoms connected by one or more double bonds, and alkynyl can include moieties having, for example, from 2 to 8 carbon atoms connected by one or more triple bonds. Substituents can include moieties such as hydrogen, halogen, cyano, nitro, aryl, ORa, SRa, and NH2. For example, each (R1) can be independently selected from the group consisting of hydrogen, methyl, F (fluorine), Cl (chlorine), Br (bromine), I (iodine). OH (hydroxyl), and NH2 (amine). For example, R3 can be selected from the group consisting of hydrogen, halogen, fluorine, cyano, CF3, OCF3, alkyl, methyl, substituted alkyl, halogen-substituted alkyl, hydroxyl-substituted alkyl, amine-substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heterocycle, substituted heterocycle, aryl, substituted aryl, ORa, SRa, and NRbRc. For example, R3 can be selected from the group consisting of methyl and C(R8)3. Each (R8) can be independently selected from the group consisting of hydrogen, methyl, F (fluorine), Cl, Br, I, OH, and NH2. For example, at most two of the independently selected (R1) substituents and the (R8) substituents can be selected to be F (fluorine), with the remainder being selected to be hydrogen.
- In some embodiments, the compound of Formula I is selected from the group consisting of 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, an enantiomer, diastereomer, tautomer, and a salt or solvate thereof. For example, each (R1) can be selected to be hydrogen and R3 can be selected to be methyl, so that the compound of Formula I is 2-acetylnaphtho[2,3-b]furan-4,9-dione. For example, each Ra can be independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heterocycle, substituted heterocycle, aryl, and substituted aryl. For example, each Rb and Rc can be independently selected from the group consisting of, hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocycle, substituted heterocycle, aryl, and substituted aryl. Alternatively, an Rb and Rc together with the N to which they are bonded can form a heterocycle or substituted heterocycle.
- Naphthofuran compounds of the invention include polymorphs. In some embodiments, the polymorph is a polymorph of a compound according to Formula I. In some embodiments, the polymorph is a polymorph of
Compound 1. For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 1 of WO 2011/116398 and WO 2011/116399. This polymorph is referred to herein as “Crystal Form 1,” “Form 1,” or “XRPD1” and these terms are used interchangeably. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 2 of WO 2011/116398 and WO 2011/116399. This polymorph is referred to herein as “Crystal Form 2,” “Form 2,” or “XRPD2” and these terms are used interchangeably. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 3 of WO 2011/116398 and WO 2011/116399. This polymorph is referred to herein as “Crystal Form 3,” “Form 3,” or “XRPD3” and these terms are used interchangeably. - For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.4, 11.9, 14.1, 14.5, 17.3, 21.0, 22.2, 24.0, 26.0, and 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 10.2, 11.9, 14.1, 14.5, 17.3, 22.2, and/or 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 10.2 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 11.9 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 14.5 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 17.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 22.2 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.1 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2θ, a peak at least at about 11.9 degrees 2θ, a peak at least at about 14.1 degrees 2θ, a peak at least at about 14.5 degrees 2θ, a peak at least at about 17.3 degrees 2θ, a peak at least at about 22.2 degrees 2θ, and a peak at least at about 28.1 degrees 2θ and any combinations thereof.
- For example, in some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 11.4, 12.3, 15.0, 23.0, 23.3, 24.1, 24.6, 25.0, 26.1, 27.0, and 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including one or more peaks at least at about 7.5, 9.9, 12.3, 15, 23.0, 23.3, 24.6 and/or 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 7.5 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 9.9 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 12.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 15 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 23.3 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 24.6 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including a peak at least at about 28.4 degrees 2θ. In some embodiments, the polymorph is a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 7.5 degrees 2θ, a peak at least at about 9.9 degrees 2θ, a peak at least at about 15 degrees 2θ, a peak at least at about 12.3 degrees 2θ, a peak at least at about 23.0 degrees 2θ, a peak at least at about 23.3 degrees 2θ, a peak at least at about 24.6 degrees 2θ and a peak at least at about 28.4 degrees 2θ and any combinations thereof.
-
Crystal Form 1 has been detected in a variety of solvents and conditions, but has been shown to have low anti-tumor activity (FIG. 8 of WO 2011/116398 and WO 2011/116399). In the studies shown in FIG. 8 of WO 2011/116398 and WO 2011/116399, immunosuppressed mice with established subcutaneous FaDu human head and neck cancer were given indicated amount of hand groundedCompound 1 withCrystal Form 1, or vehicle control orally (po).Compound 1 was formulated in GELUCIRE™. All regimens were administered daily (qd). Tumor sizes were evaluated periodically during treatment. -
Crystal Form 2 was obtained surprisingly in the presence of an impurity, and this polymorph has been shown to exhibit potent anti-tumor activity (FIG. 9 of WO 2011/116398 and WO 2011/116399). In the study shown in FIG. 9 of WO 2011/116398 and WO 2011/116399, immunosuppressed mice with established subcutaneous FaDu human head and neck cancer were given 100 mg/kg ofmicronized Compound 1 produced with the synthetic process described in FIGS. 5A and 5B of WO 2011/116398 and WO 2011/116399 (first crop), or vehicle control orally (po).Compound 1 was formulated in GELUCIRE™. All regimens were administered daily (qd). Tumor sizes were evaluated periodically during treatment.Form 2 has been successfully manufactured by a current good manufacturing practice (cGMP) process and received approval from the FDA and Health Canada to be used in clinical trials.Form 2 has shown desirable pharmacokinetics (FIG. 11 of WO 2011/116398 and WO 2011/116399), safety, and strong signs of anti-tumor activity in cancer patients. -
Crystal Form 3 has been shown to share a similar, but different, X-ray powder diffraction (XRPD) pattern asForm 1, and displayed very different crystalline habit than Form 1 (FIGS. 7A and B of WO 2011/116398 and WO 2011/116399).Form 3 can only be generated fromForm 1 using a specially designed slurry process described herein.Form 3 has been shown to exhibit potent antitumor activities (FIG. 10 of WO 2011/116398 and WO 2011/116399). In the study shown in FIG. 10 of WO 2011/116398 and WO 2011/116399, immunosuppressed mice with established subcutaneous FaDu human head and neck cancer were given 200 mg/kg ofCompound 1 with hand groundedCrystal Form 1 orForm 3, or vehicle control orally (po).Compound 1 was formulated in gelucire. All regimens were administered daily (qd). Tumor sizes were evaluated periodically during treatment. This polymorph has been successfully manufactured by a cGMP process and received approval from FDA and Health Canada to be used in clinical trials.Form 3 has also shown desirable pharmacokinetics (FIG. 12 of WO 2011/116398 and WO 2011/116399), safety, and strong signs of anti-tumor activity in cancer patients. - The synthetic process for preparing
Crystal Form 2 is shown in FIGS. 5A-5B of WO 2011/116398 and WO 2011/116399. Briefly, charged 3-butene-2-one (451.2 grams) is added to a 2liter 3 neck round bottom flask equipped with a mechanical stirrer, thermometer, and addition funnel. To the addition funnel is added bromine (936.0 grams). After the contents in the flask have cooled to −5° C., the bromine is dropped into the flask with vigorous stirring and maintaining temperature at −5° C. over 30 minutes. The mixture is stirred for an additional 15 minutes at −5° C., and then is split into 4 equal portions. Each portion of the mixture along with tetrahydrofuran (2133.6 grams) is loaded into a 22liter 4 neck round bottom flask equipped with a mechanical stirrer, thermometer, and addition funnel. Charged DBU (1,3-Diazabicyclo[5.4.0]undec-7-ene, 222.9 grams) is added to the addition funnel. The DBU is dropped into the flask with vigorous stirring and maintaining temperature at 0° C.-5° C. over 30 minutes. The mixture is stirred for an additional 15 min at 0° C.-5° C. 2-hydroxy-1,4-naphthoquinone (231 grams) is then added into the flask. Additional DBU (246.0 grams) is charged into the addition funnel and then dropped into the mixture in the flask at such a rate that the temperature of the reaction mixture does not exceed 40° C. After the addition of DBU is complete, the resulting mixture is stirred overnight at room temperature, and a sample of the reaction mixture is taken for HPLC analysis. To the reaction mixture, water (10.8 liters) is charged, and the resulting mixture is cooled to 0° C.-3° C. for at least 30 minutes, and then filtered via vacuum filter. The filtered solid is rinsed with 5% aqueous sodium bicarbonate (3 liters), water (3 liters), 1% aqueous acetic acid (3 liters) and ethanol twice (2×1 liter) successively. The rinsed solid is stored and pooled together from other batches. The combined crude product (28.73 kg) is loaded along with ethyl acetate (811.7 kg) into a 500 gallon vessel equipped with a mechanical stirrer, thermometer, and a condenser. Under nitrogen atmosphere, the mixture is heated to reflux (72° C.) for 2 hours, and then filtered with a 10 micron cartridge filter containing an active carbon layer to remove insolubles. Fresh hot ethyl acetate (10 kg) is used to rinse the vessel, transfer line and filter. The combined filtrate is cooled to 0-5° C. and held at this temperature for 2 hours, and then is filtered with 20 inch Buchner filter. The filtered solid product is rinsed with 0-5° C. ethyl acetate (5.7 kg), and dried under vacuum at 40° C. to a constant weight. The remaining filtrate is reduced in volume by 63% by evaporation, and the crystallization process is repeated again to generate a second crop of product which was also dried under the same condition as the first crop of product. Both crops obtained areCrystal Form 2. The first crop produced (0.5 kg) had a 99.5% purity by HPLC (˜95% by NMR). The second crop produced (1.09 kg) had a 98.9% purity by HPLC (˜90% by NMR). - The synthetic process for preparing
Crystal Form 3 is shown in FIGS. 6A-6D of WO 2011/116398 and WO 2011/116399. The steps are outlined briefly herein. Step 1: 3-Butene-2-one (methyl vinyl ketone, MVK) is brominated using bromine. No additional solvent is used. The intermediate 3,4-dibromobutan-2-one is dissolved in tetrahydrofuran (THF) and reacted with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) to form a second intermediate, 3-bromo-3-buten-2-one. Once this reaction is complete, 2-hydroxy-1,4-naphthoquinone (HNQ) is added. A second portion of DBU is added, and the mixture is exposed to air. The reaction is quenched with water and the solids are collected by filtration. These solids are washed with aqueous sodium bicarbonate, aqueous acetic acid, water, and ethanol. The product is isolated by slurrying in ethanol and collecting the solids. Step 2: Residual amounts of the 2-acetyl-2,3-dihydronaphtho[2,3-b]furan-4,9-dione that accompany the desired 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione (Compound 1) are oxidized toCompound 1 with activated manganese dioxide in toluene. The mixture is filtered through a cake of charcoal and Celite. The filtrate is concentrated to precipitate the product, which is filtered and dried. Step 3: The solids are slurried in ethyl acetate (25 mL/g purified Compound 1) at 75° C.-80° C. for about 5 hr, collected by filtration, and dried.Compound 1 produced with this method isCrystal Form 3.Compound 1 produced with this method without the slurry process yieldedCrystal Form 1. - Prior to the instant invention, no microparticles of
Compound 1 had been created and/or evaluated. Previous studies had shownCompound 1 to be equally toxic to normal and cancer cells, and no antitumor activity was observed in animal model. The studies presented herein demonstrate that particle size reduction ofCompound 1 not only improved bioavailability, but also led to increased selective anti-tumor activity without signs of toxicity. This is unexpected since improvement on bioavailability would increase exposure toCompound 1 equally by cancer cells and normal cells. The mechanism for the selective enhancement of anticancer activity without enhancement of toxicity to normal cells was not known. In these studies, the improvement in bioavailability ofCompound 1 appeared to be maximized when the D50 (i.e., the median point of the particle size distribution that divides the distribution in two equal parts) is about 20 μm. However, further studies were conducted where the D50 value was about 2 μm. Microparticles ofCompound 1 having a D50 of 2 microns had surprisingly enhanced anti-tumor activity, even though there is no improvement in pharmacokinetic exposure as compared to particles with a D50 of 20 microns. In additional studies, nanoparticles ofCompound 1 having a D50 of about 100 nanometers (D50=110.4 nanometers) were created, but surprisingly, a reduction of anti-tumor activity was observed with this particle size ofCompound 1. Accordingly, in a preferred embodiment, compositions that contain particles ofCompound 1, e.g., microparticles, have a D50 equal to or below 20 microns and equal to or above 0.2 microns and possesses surprisingly potent anti-tumor activity without increase in cytotoxicity to normal cells. - The anti-tumor activity of particles of
Compound 1 with different particle size ranges is illustrated in FIG. 15 of WO 2011/116398 and WO 2011/116399, and the pharmacokinetic data for particles ofCompound 1 with different particle size ranges is illustrated in FIGS. 16-18 of WO 2011/116398 and WO 2011/116399. In the study shown in FIG. 15 of WO 2011/116398 and WO 2011/116399, immunosuppressed mice with established subcutaneous FaDu human head and neck cancer were given indicated amount ofCompound 1 with indicated particle size, or vehicle control orally (po). All regimens were administered daily (qd). Tumor size was evaluated periodically. - Administering the naphthofuran compound in the form of particles having defined particle size, e.g., a reduced particle size, was found to enhance plasma drug concentration in vivo. Herein, unless otherwise noted, the terms “size” and “diameter” will be used interchangeably to describe particles. It is to be understood that the use of the term “diameter” does not necessarily imply that a particle has a perfectly or approximately spherical form. For example, “diameter” can be used as an approximation of the size of a particle, for example, the diameter of a sphere of equivalent volume to a non-spherical particle.
- In a surprising result, the administration of the naphthofuran compound particles of a defined particle size distribution, e.g., as small particles, in a pharmaceutical composition was found to result in selective antitumor activity. For example, the compound administered as particles having a median particle size of 20 m (i.e., microns, these terms are used interchangeable herein) showed efficacy (selective antitumor activity), although relative weak, in mouse xenograft models. In comparison, the particles of 150 μm (microns) showed no efficacy. The discovery that the administration of the naphthofuran compound in the form of smaller particles can result in selective antitumor activity is surprising, and cannot be explained on the basis of an improvement in solubility or bioavailability alone. That is, in general, improved solubility is associated with increased drug oral bioavailability, which can enhance toxicity to normal cells as well as antitumor activity. As discussed above, the naphthofuran compound can be equally toxic to tumor cells and normal cells if the exposure is not carried out under defined conditions as described in WO 2009/036099 and WO 2009/036101.
- In a further surprising result, the administration of the naphthofuran compound particles of a further reduced size, in a pharmaceutical composition was found to result in a significantly improved antitumor activity but almost an unaltered pharmacokinetic profile, i.e., unaltered bioavailability. For example, the compound administered as particles having a median particle size of 2 μm (microns) showed dramatically enhanced efficacy in mouse xenograft models. In comparison with the particles of 20 μm, the particles of 2 μm showed significantly improved efficacy but very similar pharmacokinetic profile. In other words, such an improved efficacy is independent of pharmacokinetic profile, i.e., bioavailability. The result is very surprising, because for such a compound with poor solubility, improved efficacy is usually associated with increased drug oral bioavailability.
- The observed improvement in the selective antitumor activity is therefore surprising and unexpected. The present invention provides a particle or particles of a naphthofuran compound, for example, a compound of Formula I, which are active, i.e., have an efficacy or a selective antitumor activity. The active particle or particles have a defined particle size, for example, has a diameter of less than or equal to about 200 μm, about 150 μm, about 100 μm, about 40 μm, or about 20 μm, about 10 μm, about 5 μm, about 4 μm, about 3 μm, about 2 μm, about 1 μm, about 0.5 μm, about 0.2 μm, or about 0.1 μm. The particle or particles that are larger than the defined particle size are either inactive or less active than the particles described herein.
- Thus, the administration of the naphthofuran compound or another Compound according to Formula I in the form of smaller particles can result in an improvement in its selective antitumor activity. The use of particles of a compound according to Formula I having a defined particle size distribution in dosing can allow for the establishment of desired selective antitumor activity. For example, the use of the naphthofuran compound particles having a defined particle size distribution, for example, being smaller particles, can result in a higher blood concentration for a shorter period of time, and a selective antitumor activity, although relative weak. Further reduced particle size of the compound can lead to significantly improved efficacy with unaltered blood plasma concentration of the compound.
- Herein, unless otherwise indicated, the term “blood plasma concentration”, “blood molar concentration”, and “blood concentration” are used interchangeably. The term “neoplasm” can be used to describe cells which exhibit an abnormal pattern of growth. Such a neoplasm can include tumors, both benign and malignant, e.g., solid tumors, as well as other cell growth disorders, such as leukemia, that have no defined shape and are not confined to a specific region of a human or animal body. Thus, “neoplasm” includes both cancerous and non-cancerous neoplastic cells and tissues. Herein, unless otherwise stated, made clear, or referring to a specific study or experiment, the terms “tumor” and “cancer” are to be understood as referring to the broader class of all neoplasms, including those that are not confined to a specific region of a human or animal body. However, the more limited term “solid tumor” is to be understood as not including cell growth disorders, such as leukemia, that have no defined shape and are not confined to a specific region of a human or animal body.
- A neoplasm can exhibit none, one, or more than one of the following characteristics: solid form (a solid tumor), malignancy, metastasis, or
Stat 3 pathway activity. A neoplasm can, for example, include a cancer stem cell. A neoplasm can be, for example, a carcinoma, sarcoma, adenocarcinoma, lymphoma, or a hematological malignancy. - Absorption has been defined as the process by which a drug is taken from the site of administration to the site of measurement within the body. See, M. Rowland, T. N. Tozer (1995) Clinical pharmacokinetics: Concepts and applications. Lippincott Williams & Wilkins. Oral drug absorption is often referred to as drug transfer across the apical membrane of the enterocyte, because the apical membrane is considered to be the rate limiting step for permeation of the membrane. See, U. Fagerholm & H. Lennernäs (1995) Experimental estimation of the effective unstirred water layer thickness in the human jejunum, and its importance in oral drug absorption, Eur J Pharm Sci 3: 247-253; M. B. Lande, J. M. Donovan & M. L. Zeidel (1995) The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons, J Gen Physiol 106: 67-84. Permeability is a general term describing how readily the drug is transferred through a membrane. The specific permeability characteristics of a drug are dependent on its physico-chemical properties, including lipophilicity, charge, size, and polar surface area. See, Rowland & Tozer 1995; C. A. Lipinski, F. Lombardo, B. W. Dominy & P. J. Feeney (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv Drug Deliv Rev 46: 3-26. The rate of absorption is dependent on the permeability of the drug, surface area of the membrane, and the concentration gradient over the membrane. The concentration gradient is the driving force for passive diffusion, the most common mechanism for drug membrane transport. For oral administration, the drug is mainly absorbed by intestine. Human intestine is about 5-8 meters long and has a total surface area of almost 200 square meters while mouse intestine is only about 10-20 cm long. Therefore, one can predict that a drug with a larger particle size may have a higher or same absorption rate in human as a drug with a smaller particle size does in mouse, despite the permeability of the drug with a larger particle size being lower than that of the drug with a smaller particle size.
- For example, a distribution of particle sizes of a compound according to Formula I, having a median diameter of less than or equal to about 200 μm, 150 μm, 100 μm, 80 μm, 60 μm, 40 μm, 20 μm, 10 μm, 5 μm, 4 μm, 3 μm, 2 μm, 1 μm, 0.5 μm or 0.2 μm can be predicted to result in a selective antitumor activity when administered in a pharmaceutical formulation, e.g., for the treatment of a cancer or tumor. For example, the distribution of particle sizes can be such that the particles have a median diameter of from about 0.02 μm to about 5 μm, or from about 0.2 μm to about 4 μm. For example, the distribution of particle sizes can be such that the particles have a median diameter of less than or equal to about 5 μm, a ratio of mean diameter over median diameter of at most about 2, and a ratio of mode diameter over median diameter of at least about 0.25.
- The term “particle” can refer to an aggregate of a compound of Formula I. The term “mean” can refer to the sum of the sizes of all particles divided by the total number of particles. The term “median” can refer to, e.g., a diameter of which one-half of the particles have a greater diameter and one-half of the particles have a lesser diameter. The term “mode” can indicate the most frequently-occurring particle size value. The term “cumulative total” can refer to all particles.
- The selective antitumor activity achieved by administration of the naphthofuran compound particles may depend not only on the size distribution of the particles, e.g., the volumes of particles or diameters representative of those volumes, but also on the shape and distribution of shapes of the particles. For example, a set of particles having a needle-like shape may result in a different pharmacokinetic profile than a set of particles having a spherical shape. Thus, it may be desirable to measure the shape and shape distribution of the particles to be administered and/or use a process that produces particles with predetermined shape and shape distribution, for example, a nearly uniform shape, e.g., the particles being approximations of spheres. For example, the sphericity, Ψ, of a particle can be defined as
-
- where Vp is the volume of the particle and Ap is the surface area of the particle. A sphere has a sphericity of Ψ=1, and the closer the sphericity of a particle is to unity, the more closely the shape of the particle approximates a sphere. By way of comparison, a tetrahedron has a sphericity of about 0.671, a cube has a sphericity of about 0.806, an octahedron has a sphericity of about 0.846, a dodecahedron has a sphericity of about 0.910, and an icosahedron has a sphericity of about 0.939. Because the form of a sphere minimizes surface area for a given volume, a particle that is nearly spherical may be expected to dissolve more slowly than a particle of the same volume that is less nearly spherical. The mean sphericity of a set of spheres can be defined as
-
- where ΣVp is the total volume of all the particles and EA, is the total surface area of all the particles. For example, particles of a compound according to Formula I administered may have a mean sphericity of at least about 0.8, or a mean sphericity of at least about 0.9.
- The size, size distribution, shape, shape distribution, and factors such as surface roughness or irregularity of the particles can affect the mean specific surface area of the set of
Compound 1 particles administered in a pharmaceutical formulation. The mean specific surface area can be defined as ΣAp/Σmp, where ΣAp is the total surface area of the particles and Σmp is the total mass of the particles. The greater the mean specific surface area of the particles, the faster the expected dissolution of the particles. - The particles of a compound according to Formula I in a pharmaceutical formulation can include the naphthofuran compound in a crystalline state across different particles or within the same particle. The crystalline state may include one or more polymorphs, across different particles or within the same particle. As will be appreciated by one of skill in the art, it is expected that the dissolution rate of the particles can be effected by the state of matter in the compound particles, for example, whether crystalline, of a first polymorph, or a second polymorph.
- One or more of a range of techniques can be applied to determine the size and/or size distribution of particles of a compound according to Formula I in a pharmaceutical formulation. For example, sieve analysis, optical microscopic counting, electron micrograph counting, electroresistance counting, sedimentation time, laser diffraction, and/or acoustic spectroscopy can be applied. Some or all of these techniques or variations thereof can be applied to determine the shape, shape distribution, and/or specific area of the naphthofuran compound particles in a pharmaceutical formulation. A BET isotherm and/or air permeability specific surface technique can be applied to determine the specific area of particles of a compound according to Formula I in a pharmaceutical formulation.
- WO 2009/036099 and WO 2009/036101 disclose a process for the preparation of a naphthofuran compound of Formula II as follows.
- In this process, 3-bromo-3-buten-2-one (4-3) is reacted with 2-hydroxy-1,4-naphthoquinone (4-4) in an open air container, resulting in 2,3-dihydronaphtho[2,3-b]furan-4,9-dione (4-5). 2,3-dihydronaphtho[2,3-b]furan-4,9-dione (4-5) is oxidized by oxygen from open air to become naphtho[2,3-b]furan-4,9-dione (4-6). With naphtho[2,3-b]furan-4,9-dione produced by this process. However, during further development of the compound, it was determined that this process still generated significant various impurities which hinders the potential clinical applications of these compounds. In some embodiments, one of the impurities is 2,3-dihydronaphtho[2,3-b]furan-4,9-dione (4-5).
- In one aspect, the present invention provides an improved process for the preparation of naphthofuran. The improved process minimizes the impurities, and thereby produces substantially pure naphthofuran. As used herein the term “substantially pure” refers to a preparation including at least about 80% or more, measured as % area HPLC, of the compound of the present invention. In some embodiments, the naphthofuran is naphtho[2,3-b]furan-4,9-dione and its related compounds (4-6).
- In some embodiments, the process of the present invention includes one or more of the methods shown in the working examples provided herein. In some embodiments, the process includes one or more of the methods shown in Examples 1, 2 and/or 5 provided herein.
- In some embodiments, the process of the present invention includes oxidizing the crude product of coupling of 3-bromo-3-buten-2-one (4-3) and 2-hydroxy-1,4-naphthoquinone (4-4) with an oxidizing agent in a first solvent. In a further embodiment, the oxidizing agent is manganese dioxide (MnO2). In an even further embodiment, the crude product is isolated before it is oxidized. In some embodiments, the first solvent is toluene or chloroform.
- In some embodiments, the process of the present invention further includes treating the aged oxidation mixture with charcoal to get rid of certain impurities. In a further embodiment, the aged oxidation mixture is filtered with a pad of activated carbon. In an even further embodiment, the mixture is filtered at around 100° C.
- In some embodiments, the process of the present invention further includes crystallizing the product from the filtrate. In a further embodiment, the product is crystallized by concentrating the filtrate with evaporation, and cooling down.
- In some embodiments, the process of the present invention further includes re-crystallizing the product with a second solvent. In a further embodiment, the second solvent is ethyl acetate.
- In an alternative embodiment, the process of the present invention further includes slurrying in a second solvent the product crystallized from the first solvent, heating the slurry, and cooling the slurry. In a further embodiment, the second solvent is ethyl acetate. In some embodiments, the product is slurried and heated only to partial dissolution.
- In a further embodiment, the volume of the second solvent used to slurry the product is about 1/10, 1/5, 1/4, 1/3, 1/2, or 2/3 of the volume for the complete dissolution of the product in the heated condition.
- The present invention also provides a naphthofuran compound prepared by the process of the present invention. In some embodiments, the naphthofuran compound is selected from the group consisting of 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, phosphoric acid mono-[1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl]ester, phosphoric acid 1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl ester dimethyl ester, an enantiomer, diastereomer, tautomer, and a salt or solvate thereof. In a further embodiment, the naphthofuran compound is prepared by the process including reacting the isolated crude product of the coupling of 2-hydroxy-1,4-naphthoquinone (4-4) and 3-Bromo-3-buten-2-one (4-3) with manganese dioxide in the presence of toluene. In an even further embodiment, the process further includes filtering the aged reaction mixture with a pad of activated carbon.
- In another aspect, the present invention provides substantially pure naphthofuran compounds.
- In some embodiments, the present invention provides a substantially pure compound selected from the group consisting of 2-(1-hydroxyethyl)-naphtho[2.3 b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2.3 b]furan-4,9-dione, phosphoric acid mono-[1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl]ester, phosphoric acid 1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl ester dimethyl ester, an enantiomer, diastereomer, tautomer, and a salt or solvate thereof.
- In some embodiments, the present invention provides a substantially pure compound of Formula II,
- wherein each R1 is independently H, CI, or F; and n is 0, 1, 2, 3, or 4.
- As used herein, “substantially pure” refers to a purity of at least about 80%. In some embodiments, the purity of a compound of the present invention has a purity of at least about 85%, about 90%, about 95%, or about 99%. In a further embodiment, the purity of a compound of the present invention has a purity of at least about 99.5%, or about 99.8%. In an even further embodiment, the purity of a compound of the present invention has a purity of at least about 99.85%, about 99.90%, about 99.94%, about 99.95%, or about 99.99%. In some embodiments, the compound of the present invention is selected from the group consisting of 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, phosphoric acid mono-[1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl]ester, phosphoric acid 1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl ester dimethyl ester, an enantiomer, diastereomer, tautomer, and a salt or solvate thereof. In some embodiments, the compound of the present invention is a polymorph. In some embodiments, the compound of the present invention is a polymorph of a compound according to Formula I. In some embodiments, the compound of the present invention is a polymorph of
Compound 1. - The typical impurities that may be present in a compound of the present invention include one or more selected from the group consisting of by-product, isomer, intermediate, and solvent. In some embodiments, the impurities that may be present in a compound of the present invention is at most about 10%, about 8%, about 5%, about 2%, or about 1% relative to the compound of Formula II. In a further embodiment, the impurities that may be present in a compound of the present invention is at most about 0.5%, about 0.2%, about 0.15%, or about 0.1% relative to the compound of Formula II. In an even further embodiment, the impurities that may be present in a compound of the present invention is at most about 0.05%, about 0.02%, or about 0.01% relative to the compound of Formula II. In some embodiments, the substantially pure compound of Formula II have at most about 500, 200, 100, 50, 20, 10, 5, 2, 1, 0.5, 0.2, 0.15, 0.1, or 0 parts per million (p.p.m.) of residual by-product or by-products relative to the compound of Formula II.
- In some embodiments, the impurities include one or more by-products selected from the group consisting of 2-acetyl-2,3-dihydronaphtho[2.3 b]furan-4,9-dione, 2,6-Diacetyl-naphtho[2,3-b]furan-4,9-dione, 2,7-Diacetyl-naphtho[2,3-b]furan-4,9-dione, 3-Acetyl-naphtho[2,3-b]furan-4,9-dione, Naphtho[2,3-b]furan-4,9-dione, Naphtho[2,3-b]furan-4,9-dione, Naphtho[2,3-b]furan-4,9-diol, and 1-(4,9-Dihydroxy-naphtho[2,3-b]furan-2-yl)-ethanone.
- In some embodiments, the impurities include manganese (Mn).
- The purity of a compound of the present invention may be determined with various devices. In some embodiments, the purity is determined with HPLC (High Performance Liquid Chromatography). In some embodiments, the purity is determined with NMR (Nuclear Magnetic Resonance). In a further embodiment, the purity is determined with HPLC and NMR.
- These highly pure
compositions containing Compound 1 exhibit a significantly improved safety profile in animal experiments compared to less pure compositions that containCompound 1. No signs of any adverse effects of highlypure Compound 1 have been observed in mice. In addition, these highly purecompositions containing Compound 1 have been tested in patients and have demonstrated exceptional safety. For example, FIG. 13 of WO 2011/116398 and WO 2011/116399 illustrates the toxicity observed with a composition with about 90% purity forCompound 1, while FIG. 14 of WO 2011/116398 and WO 2011/116399 illustrates that the highly pure compositions having about 95% or greater purity forCompound 1 are safe and effective. In the study shown in FIG. 13 of WO 2011/116398 and WO 2011/116399, immunosuppressed mice with established subcutaneous FaDu human head and neck cancer (upper panel) or MDA-231 human breast cancer (lower panel) were given indicated amount ofCompound 1, or vehicle control orally (po).Compound 1 was formulated in GELUCIRE™. All regimens were administered daily (qd). Body weights were evaluated periodically during treatment. Each point represents the mean±SEM of eight tumors. Significant toxicity was observed with about 90%pure Compound 1. A total of 4 mice died during the treatment in the first experiment (upper panel) (one onday 16, 2 onday 19, and 1 on day 23), and their body weights were, therefore, not included in the plot after their death. A total of 3 mice died during the treatment in the second experiment (lower panel) (1 on 14 and 2 on day 21), and their body weights were, therefore, not included in the plot after their death. In the study shown in FIG. 14 of WO 2011/116398 and WO 2011/116399, immunosuppressed mice with established subcutaneous FaDu human head and neck cancer (upper panel) or MDA-231 human breast cancer (lower panel) were given indicated amount ofday Compound 1, or vehicle control orally (po).Compound 1 was formulated in GELUCIRE™. All regimens were administered daily (qd). Body weights were evaluated periodically during treatment. Each point represents the mean±SEM of eight tumors.Compound 1 with higher purity was well-tolerated and showed no signs of toxicity. All mice remained healthy throughout the treatment in both experiments. In a Phase I study, the dose ofCompound 1 was escalated from 20 mg to 2000 mg/day, and a maximum tolerated dose (MTD) not reached. No dose-limiting toxicity was observed. Patients toleratedCompound 1 very well without drug-induced adverse effects, which is in sharp contrast to cancer chemotherapeutics. The clinical safety profile of the substantially pure compositions ofCompound 1 is among the best for oncology drugs in history. - Certain excipients or enhancers were found to enhance the oral bioavailability of particles of a compound according to Formula I of a given particle size distribution in a pharmaceutical formulation. For example, the addition of the pharmaceutically compatible excipient GELUCIRE™ 44/14 (a polyethylene glycol glyceryl laurate produced by Gattefossé) can increase the bioavailability of
Compound 1 having a median particle size of less than or equal to about 20 microns. Examples of other excipients that can be used to enhance or control oral bioavailability include surfactants, such asTWEEN 80™ orTWEEN 20™ (a polysorbate, i.e., a polyoxyethylene sorbitan monolaurate) or certain lipids, such as phosphatidylcholines, e.g., dimyristoylphosphatidylcholine (DMPC). Surfactants include compounds that are amphiphilic and contain both hydrophobic and hydrophilic groups. Other excipients can include, for example, a glycerol ester of a fatty acid, a glycerol ester of a saturated fatty acid, a glycerol ester of a saturated fatty acid having from 8 to 18 carbons, glyceryl laurate, polyethylene glycol, a polyoxyethylene sorbitan alkylate, cellulose or cellulose derivatives, such as microcrystalline cellulose and carboxymethyl cellulose (CMC), as well as lipids, such as sterols, e.g., cholesterol. Other excipients can include antioxidants, such as Vitamin E. Other excipients and additional components can be included in a pharmaceutical formulation according to the present invention, as will be appreciated by one of skill in the art. For example, other active agents, standard vehicles, carriers, liquid carriers, saline, aqueous solutions, diluents, surface active agents, dispersing agents, inert diluents, granulating and disintegrating agents, binding agents, lubricating agents, glidants, discharging agents, sweetening agents, flavoring agents, coloring agents, preservatives, physiologically degradable compositions such as gelatin, aqueous vehicles and solvents, oily vehicles and solvents, suspending agents, dispersing or wetting agents, suspending agents, emulsifying agents, demulcents, buffers, salts, thickening agents, gelatins, fillers, emulsifying agents, antioxidants, antibiotics, antifungal agents, stabilizing agents, water, glycols, oils, alcohols, crystallization retarding agents (e.g., to retard crystallization of a sugar), starches, sugars, sucrose, surface active agents, agents to increase the solubility of any other ingredient, such as a polyhydroxy alcohol, for example glycerol or sorbitol, pharmaceutically acceptable polymeric or hydrophobic materials, and other components can be included. The appropriate additional agent or agents to add will depend on the dosage form (e.g., injectable solution, capsule, or pill), as will be appreciated by one skilled in the art. - The compound according to Formula I of the present invention may be formulated into “pharmaceutical compositions”. Embodiments according to the present invention include various dosage forms including a compound, which can be useful, for example, for treating a patient. For example, oral dosage forms can include a tablet, pill, capsule (hard or soft), caplet, powder, granule, suspension (e.g., in an aqueous or oily vehicle), solution (e.g., in an aqueous or oily vehicle), gel, cachet, troche, lozenge, syrup, elixir, emulsion, draught, oil-in-water emulsion, or a water-in-oil emulsion. Because of their ease in administration, tablets and capsules may represent a preferred oral dosage. Solid oral dosage forms may be sugar coated or enteric coated by standard techniques. For example, nasal and other mucosal spray formulations (e.g. inhalable forms) can include purified aqueous solutions of the active compounds with preservative agents and isotonic agents. Such formulations are preferably adjusted to a pH and isotonic state compatible with the nasal or other mucous membranes. Alternatively, they can be in the form of finely divided solid powders suspended in a gas carrier, of an inhalant, or of an aerosol. Such formulations may be delivered by any suitable means or method, e.g., by nebulizer, atomizer, metered dose inhaler, or the like. For example, a pharmaceutical composition according to the present invention may be administered topically, for example, in the form of an ointment, cream, or suppository. For example, a pharmaceutical composition according to the present invention may be administered by injecting an injectant. Thus, a dosage form according to the present invention can have, for example, a solid, semi-solid, liquid, or gaseous form. Suitable dosage forms include but are not limited to oral, rectal, sub-lingual, mucosal, nasal, ophthalmic, subcutaneous, intramuscular, intravenous, parenteral, transdermal, spinal, intrathecal, intra-articular, intra-arterial, sub-arachinoid, bronchial, lymphatic, and intra-uterile administration, and other dosage forms for systemic delivery of active ingredients. An active ingredient, for example, a compound according to Formula I may be contained in a formulation that provides quick release, sustained release, delayed release, or any other release profile known to one skilled in the art after administration to a subject (patient). The mode of administration and dosage form selected for a given treatment is closely related to the therapeutic amounts of the compounds or compositions which are desirable and efficacious for the given treatment application as well as factors such as the mental state and physical condition of the subject (patient).
- A pharmaceutical composition of the invention may be prepared, packaged, or sold in bulk, as a single unit dose, as a plurality of single unit doses, or in a multi-dose form. As used herein, a “unit dose” is a discrete amount of the pharmaceutical composition including a predetermined amount of the active ingredient. The amount of the active ingredient in each unit dose is generally equal to the total amount of the active ingredient that would be administered or a convenient fraction of a total dosage amount such as, for example, one-half or one-third of such a dosage. A formulation of a pharmaceutical composition of the invention suitable for oral administration may be in the form of a discrete solid dosage unit. Each solid dosage unit contains a predetermined amount of the active ingredient, for example a unit dose or fraction thereof. As used herein, an “oily” liquid is one which includes a carbon or silicon based liquid that is less polar than water. In such pharmaceutical dosage forms, the active agent preferably is utilized together with one or more pharmaceutically acceptable carrier(s) therefore and optionally any other therapeutic ingredients. The carrier(s) must be pharmaceutically acceptable in the sense of being compatible with the other ingredients of the formulation and not unduly deleterious to the recipient thereof. The compositions of the present invention can be provided in unit dosage form, wherein each dosage unit, e.g., a teaspoon, tablet, capsule, solution, or suppository, contains a predetermined amount of the active drug or prodrug, alone or in appropriate combination with other pharmaceutically active agents. The term “unit dosage form” refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined quantity of the composition of the present invention, alone or in combination with other active agents, calculated in an amount sufficient to produce the desired effect.
- Dosage forms of the present pharmaceutical composition can be prepared by techniques known in the art and contain a therapeutically effective amount of an active compound or ingredient. Any technique known or hereafter developed may be used for the preparation of pharmaceutical compositions or formulations according to the invention. In general, preparation includes bringing the active ingredient into association with a carrier or one or more other additional components, and then, if necessary or desirable, shaping or packaging the product into a desired single- or multi-dose unit. Powdered and granular formulations according to the invention may be prepared using known methods or methods to be developed. Such formulations may be administered directly to a subject, or used, for example, to form tablets, fill capsules, or prepare an aqueous or oily suspension or solution by addition of an aqueous or oily vehicle thereto. A tablet may be made by compression or molding, or by wet granulation, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing, in a suitable device, the active ingredient in a free-flowing form such as a powder or granular preparation. Molded tablets may be made by molding, in a suitable device, a mixture of the active ingredient, a pharmaceutically acceptable carrier, and at least sufficient liquid to moisten the mixture. Tablets may be non-coated, or they may be coated using methods known in the art or methods to be developed. Coated tablets may be formulated for delayed disintegration in the gastrointestinal tract of a subject, for example, by use of an enteric coating, thereby providing sustained release and absorption of the active ingredient. Tablets may further include ingredients to provide a pharmaceutically elegant and palatable preparation. Hard capsules including the active ingredient may be made using a physiologically degradable composition, such as gelatin. Such hard capsules include the active ingredient. Soft gelatin capsules including the active ingredient may be made using a physiologically degradable composition, such as gelatin. Such soft capsules include the active ingredient, which may be mixed with water or an oil medium. Liquid formulations of a pharmaceutical composition of the invention that are suitable for administration may be prepared, packaged, and sold either in liquid form or in the form of a dry product intended for reconstitution with water or another suitable vehicle prior to use. Liquid suspensions, in which the active ingredient is dispersed in an aqueous or oily vehicle, and liquid solutions, in which the active ingredient is dissolved in an aqueous or oily vehicle, may be prepared using conventional methods or methods to be developed. Liquid suspension of the active ingredient may be in an aqueous or oily vehicle. Liquid solutions of the active ingredient may be in an aqueous or oily vehicle. To prepare such pharmaceutical dosage forms, an active ingredient, e.g., a naphthofuran, can be intimately admixed with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques. The carrier may take a wide variety of forms depending on the form of preparation desired for administration. In preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed.
- In some embodiments according to the present invention, an item of manufacture includes a container containing a therapeutically effective amount of a pharmaceutical composition including a compound according to Formula I. The container can include a pharmaceutically acceptable excipient. The container can include printed labeling instructions. For example, the printed labeling can indicate the dosage and frequency with which the pharmaceutical composition should be administered, and whether the composition should be administered with food or within a defined period of time before or after ingestion of food. The composition can be contained in any suitable container capable of holding and dispensing the dosage form that will not significantly interact with the composition. The labeling instructions can be consistent with the methods of treatment described herein. The labeling can be associated with the container by a means that maintains a physical proximity of the two. By way of non-limiting example, the container and the labeling may both be contained in a packaging material such as a box or plastic shrink wrap or may be associated with the instructions being bonded to the container such as with glue that does not obscure the labeling instructions or other bonding or holding means.
- In some embodiments of the invention, a pharmaceutical composition includes (a) a therapeutically effective amount of an active ingredient that is a Compound of the Invention, e.g., a compound according to Formula I, b) polyoxylglycerides of which hydrophilic-lipophilic balance (HLB) is more than 10, and (c) polyoxylglycerides of which HLB is less than 10. More preferably, a pharmaceutical composition further comprising (d) a surfactant.
- Preferable examples of the polyoxylglycerides of which HLB is more than 10 include the one of which HLB is between 10 and 17, more preferably the one of which HLB is between 12 and 15. Further preferable examples include the one that is solid or semi-solid at 25 degrees Celsius, preferably the one of which melting point is more than 30 degrees Celsius, more preferably the one of which melting point is between 33-64 degrees Celsius, even more preferably the one of which melting point is between 40-55 degree Celsius. Specific example includes lauroyl polyoxylglycerides, more specifically lauroyl polyoxyl-32 glycerides, such as Gelucire™ 44/14, and stearoyl polyoxylglycerides, more specifically stearoyl polyoxyl-32 glycerides, such as
Gelucire™ 50/13 are preferred. More preferable specific examples include lauroyl polyoxylglycerides, more specifically lauroyl polyoxyl-32 glycerides, such as Gelucire™ 44/14. - Preferable examples of the polyoxylglycerides of which HLB is less than 10 include the one of which HLB is between 2 and 8, more preferably the one of which HLB is between 3 and 7. Specific examples include linolcoyl polyoxylglycerides, such as Labrafil™ M2125CS, leoyl polyoxylglycerides, such as Labrafil™ M1944CS, and lauroyl polyoxyl-6 glycerides, such as Labrafil™ M2130CS. More preferable specific examples include linoleoyl polyoxylglycerides, and oleoyl polyoxylglycerides.
- Examples of a surfactant includes sodium lauryl sulfate (SLS) or sodium dodecyl sulfate (SDS), polyoxyethylene sorbitan fatty acid esters (a polysorbate, preferably polyoxyethylene sorbitan monooleate (
TWEEN 80™) or polyoxyethylene sorbitan monolaurate (TWEEN 20™)), certain lipids, such as phosphatidylcholines, e.g., dimyristoylphosphatidylcholine (DMPC). Surfactants include compounds that are amphiphilic and contain both hydrophobic and hydrophilic groups. Preferable surfactant is sodium lauryl sulfate (SLS) or sodium dodecyl sulfate (SDS). - The active ingredient may be included in the range from 5% to 50% for a weight of formulation. The surfactant may be included in the range from 0.05% to 5% for a weight of formulation. The polyoxylglycerides of which HLB is more than 10 may be included in the range from 5% to 80% for a weight of formulation. The polyoxylglycerides of which HLB is less than 10 may be included in the range from 5% to 80% for a weight of formulation. The ratios between the polyoxylglycerides of which HLB is more than 10 and the polyoxylglycerides of which HLB is less than 10 is from about 90/10 to about 10/90. Preferably, the ratio is from about 80/20 to about 20/80, more preferably, is from about 40/60 to about 80/20. The composition may consist of, by weight, about 27.18% in the active ingredient, about 0.27% in the surfactant, about 14.51% in the polyoxylglycerides of which HLB is more than 10, and about 58.04% in the polyoxylglycerides of which HLB is less than 10. A 125 mg capsule embodiment may consist of 125 mg of the active ingredient, about 1.2 mg of the surfactant, about 66.8 mg of the polyoxylglycerides of which HLB is more than 10, and about 267 mg of the polyoxylglycerides of which HLB is less than 10. An 80 mg capsule embodiment may consist of about 80 mg of the active ingredient, about 0.8 mg of the surfactant, about 42.7 mg of the polyoxylglycerides of which HLB is more than 10, and about 170.9 mg of the polyoxylglycerides of which HLB is less than 10. Embodiments of the invention include items of manufacture where any of the above pharmaceutical compositions is housed in a capsule, e.g., a LIcap capsule. The capsule is preferable of
size 1 or smaller, e.g.,size 2. - In a method according to the present invention, a milling or grinding process can be used to reduce the size of particles of an active ingredient or compound according to Formula I. For example, a milling or grinding process can be suitable for producing particles having a median size of 200 μm, 150 μm, 100 μm, 40 μm, 20 m, 5 μm, 2 μm or greater or lesser size. Such a milling or grinding process can include, for example, ball milling, roll milling, jet milling, wet milling, ultrasonic milling, grinding, and combinations. For example, the process can reduce particle size by impacting particles with a hard surface, or by subjecting the particles to high pressure, e.g., squeezing a particle between two surfaces. For example, in jet milling, a stream of gas entrains particles and accelerates them to high velocities. The particles then impact other particles and walls and fracture into smaller particles. For example, in wet milling, particles are combined with a liquid, and the resultant slurry is passed through a high shear mixer to fracture the particles. For example, in ultrasonic milling, particles, for example, in a slurry, are exposed to ultrasonic radiation. Cavitation induced by the ultrasound can fracture the particles into particles of smaller size.
- It can be advantageous to lower the temperature of the particles prior to subjecting them to the milling or grinding operation. For example, the temperature can be lowered to a cryogenic temperature, e.g., by exposing the particles to or immersing the particles in a cryogenic fluid, such as liquid nitrogen. Such lowering of the temperature can render the particles more brittle and more susceptible to having their size reduced in the milling or grinding operation. Subsequent to the milling or grinding process, a selection process, such as sieving, can be used to narrow the range of particle sizes.
- Crystallization is the main separation and purification step for the manufacturing of drug substances. Crystallization can also be utilized to control particle size. The particle size distribution (PSD) obtained during crystallization is influenced by a combination of various mechanisms that occur during crystallization, such as nucleation, growth, aggregation, attrition, breakage, etc. Control of PSD during crystallization is critical to achieving the desired product properties. When the particle size cannot be consistently controlled during crystallization to meet the desired specifications, an extra processing step such as dry milling can be included. (Braat, et al Crystallization: Particle Size Control, Encyclopedia of Pharmaceutical Technology: Third Edition, Published on 2 Oct. 2006)
- A method according to the present invention for treating, delaying the progression of, preventing a relapse of, alleviating a symptom of, or otherwise ameliorating a human, mammal, or animal subject afflicted with a neoplasm includes administering a therapeutically effective amount of a pharmaceutical composition including particles of a predetermined size distribution, for example, a compound according to Formula I such as
Compound 1, a pure compound, a pure product and/or a pure pharmaceutical composition, so that the volume growth of the neoplasm is slowed, the volume growth of the neoplasm is stopped, the neoplasm decreases in volume, and/or a cancerous neoplasm is killed. A few examples of types of neoplasms that may be amenable to treatment by this method include solid tumors, malignant tumors, cancers, refractory cancers, recurrent cancers, metastatic tumors, neoplasms including cancer stem cells, neoplasms in which the STAT3 pathway is implicated, carcinomas, and sarcomas. In some embodiments, the cancers that may be amenable to treatment by administration of particles of a compound according to Formula I are selected from the group consisting of esophageal cancer, gastroesophageal junction cancer, gastroesophageal adenocarcinoma, chondrosarcoma, colorectal cancer, colon adenocarcinoma, rectal adenocarcinoma, colorectal adenocarcinoma, breast cancer, ovarian cancer, head and neck cancer, melanoma, gastric adenocarcinoma, and adrenocorticoid carcinoma. The STAT3 pathway may be implicated in these cancers. The CSC pathway may be implicated in these cancers. - In embodiments of the invention, a therapeutically effective amount of the Compound of the Invention or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof is administered to a patient or subject diagnosed of a cancer, wherein the cancer is gastroesophageal junction cancer, an esophageal cancer, or gastroesophageal adenocarcinoma. Optionally, an antimitotic agent such as paclitaxel is administered as a second/combinatorial agent for co-therapy. In one feature, the Compound of the Invention is administered to the subject in two daily doses totaling in a range from about 160 mg to about 1000 mg, preferably BID with an interval between administrations of the Compound in the range from about 4 hours to about 16 hours, more preferably of about 12 hours. The optional co-agent paclitaxel can be administered to the subject at a total weekly dose in a range from about 40 mg/m2 to about 100 mg/m2, e.g., at about 80 mg/m2.
- Cancer Stem Cells
- In recent years, a new model of tumorigenesis has gained wide acceptance, where it is hypothesized that only a small fraction of the entire tumor mass are responsible for the tumorigenic activities within the tumor, whereas the old or clonal genetic model posits that all the mutated tumor cells contribute equally to such tumorigenic activities. This small fraction of tumorigenic cells, according to the new model, is transformed cells with stem-cell-like qualities and is called “cancer stem cells” (CSCs). Bonnet and Dick first demonstrated, in vivo, the presence of CSCs in acute myeloid leukemia (AML) during the 1990s. Their data showed that only a small subpopulation of human AML cells had the ability to transfer AML when transplanted into immunodeficient mice while other AML cells were incapable of inducing leukemia. Later, these CSCs were shown to have the same cellular markers, CD34+/CD38−, as primitive hematopoietic stem cells. (Bonnet, D., Normal and leukaemic stem cells. Br J Haematol, 2005. 130(4): p. 469-79). Since then, researchers have found CSCs conclusively in various types of tumors including those of the brain, breast, skin, prostate, colorectal cancer, and so on.
- The CSC model of tumorigenesis would explain why tens or hundreds of thousands of tumor cells need to be injected into an experimental animal in order to establish a tumor transplant. In human AML, the frequency of these cells is less than 1 in 10,000. (Bonnet, D. and J. E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hemnatopoietic cell. Nat Med, 1997. 3(7): p. 730-7). Even though rare within a given tumor cell population, there is mounting evidence that such cells exist in almost all tumor types. However, as cancer cell lines are selected from a sub-population of cancer cells that are specifically adapted to grow in tissue culture, the biological and functional properties of cancer cell lines can undergo dramatic changes. Therefore, not all cancer cell lines contain CSCs.
- Cancer stem cells share many similar traits with normal stem cells. For example, CSCs have self-renewal capacity, namely, the ability to give rise to additional tumorigenic cancer stem cells, typically at a slower rate than other dividing tumor cells, as opposed to a limited number of divisions. CSCs also have the ability to differentiate into multiple cell types, which would explain histological evidence that not only many tumors contain multiple cell types native to the host organ, but also that heterogeneity is commonly retained in tumor metastases. CSCs have been demonstrated to be fundamentally responsible for tumorigenesis, cancer metastasis, and cancer reoccurrence. CSCs are also called tumor initiating cells, cancer stem-like cells, stem-like cancer cells, highly tumorigenic cells, tumor stem cells, solid tumor stem cells, or super malignant cells.
- The existence of cancer stem cells has fundamental implications for future cancer treatments and therapies. These implications are manifested in disease identification, selective drug targeting, prevention of cancer metastasis and recurrence, and development of new strategies in fighting cancer.
- The efficacy of current cancer treatments is, in the initial stages of testing, often measured by the size of the tumor shrinkage, i.e., the amount of tumor mass that is killed off. As CSCs would form a very small proportion of the tumor and have markedly different biologic characteristics than their more differentiated progenies, the measurement of tumor mass may not necessarily select for drugs that act specifically on the stem cells. In fact, cancer stem cells appear to be resistant to radiotherapy (XRT) and also refractory to chemotherapeutic and targeted drugs. (Hambardzumyan, D., M. Squatrito, and E. C. Holland. Radiation resistance and stem-like cells in brain tumors. Cancer Cell, 2006. 10(6): p. 454-6; Baumann, M., M. Krause, and R. Hill, Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer, 2008. 8(7): p. 545-54; Ailles, L. E. and I. L. Weissman, Cancer stem cells in solid tumors. Curr Opin Biotechnol, 2007. 18(5): p. 460-6). Normal somatic stem cells are naturally resistant to chemotherapeutic agents—they have various pumps (such as MDR) that pump out drugs, and DNA repair proteins. Further, they also have a slow rate of cell turnover while chemotherapeutic agents target rapidly replicating cells. Cancer stem cells, being the mutated counterparts of normal stem cells, may also have similar mechanisms that allow them to survive drug therapies and radiation treatment. In other words, conventional chemotherapies and radiotherapies kill differentiated or differentiating cells, which form the bulk of the tumor that are unable to generate new highly tumorigenic cancer stem cells. The population of cancer stem cells that gave rise to the differentiated and differentiating cells, on the other hand, could remain untouched and cause a relapse of the disease. A further danger for conventional anti-cancer therapy is the possibility that chemotherapeutic treatment leaves only chemotherapy-resistant cancer stem cells, and the ensuing recurrent tumor will likely also be resistant to chemotherapy.
- Since the surviving cancer stem cells can repopulate the tumor and cause relapse, it is imperative that anti-cancer therapies include strategies against CSCs (see FIG. 18 of WO 2011/116398 and WO 2011/116399). This is akin to eliminating the roots in order to prevent dandelions from regrowth even if the weed's ground level mass has been cut. (Jones, R. J., W. H. Matsui, and B. D. Smith, Cancer stem cells: are we missing the target?J Natl Cancer Inst, 2004. 96(8): p. 583-5). By selectively targeting cancer stem cells, it becomes possible to treat patients with aggressive, non-resectable tumors and refractory or recurrent cancers, as well as preventing the tumor metastasis and recurrence. Development of specific therapies targeting cancer stem cells may improve survival and the quality of life of cancer patients, especially for sufferers of metastatic cancers. The key to unlocking this untapped potential is the identification and validation of pathways that are selectively important for cancer stem cell self-renewal and survival. Unfortunately, though multiple pathways underlying tumorigenesis in cancer or self-renewal in embryonic and adult stem cells have been elucidated in the past, very few pathways have been identified and validated for cancer stem cell self-renewal and survival.
- There has also been a lot of research into the identification and isolation of cancer stem cells. Methods used mainly exploit the ability of CSCs to efflux drugs, or are based on the expression of surface markers associated with cancer stem cells.
- For example, since CSCs are resistant to many chemotherapeutic agents, it is not surprising that CSCs almost ubiquitously overexpress drug efflux pumps such as ABCG2 (BCRP-1) (Ho, M. M., et al., Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res, 2007. 67(10): p. 4827-33; Wang, J., et al., Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res, 2007. 67(8): p. 3716-24; Haraguchi, N., et al., Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells, 2006. 24(3): p. 506-13; Doyle, L. A. and D. D. Ross, Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene, 2003. 22(47): p. 7340-58; Alvi, A. J., et al., Functional and molecular characterisation of mammary side population cells. Breast Cancer Res, 2003. 5(1): p. R1-8), and other ATP binding cassette (ABC) superfamily members (Frank, N. Y., et al., ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res, 2005. 65(10): p. 4320-33; Schatton, T., et al., Identification of cells initiating human melanomas. Nature, 2008. 451(7176): p. 345-9). Accordingly, the side population (SP) technique, originally used to enrich hematopoietic and leukemic stem cells, was also employed to identify and isolate CSCs. (Kondo, T., T. Setoguchi, and T. Taga, Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA, 2004. 101(3): p. 781-6). This technique, first described by Goodell et al., takes advantage of differential ABC transporter-dependent efflux of fluorescent dyes such as Hoechst 33342 to define and isolate a cell population enriched in CSCs (Doyle, L. A. and D. D. Ross, Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene, 2003. 22(47): p. 7340-58; Goodell, M. A., et al., Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med, 1996. 183(4): p. 1797-806). Specifically, the SP is revealed by blocking drug efflux with verapamil, at which point the dyes can no longer be pumped out of the SP.
- Researchers have also focused on finding specific markers that distinguish cancer stem cells from the bulk of the tumor. Most commonly expressed surface markers by the cancer stem cells include CD44, CD133, and CD166. (Collins, A. T., et al., Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res, 2005. 65(23): p. 10946-51; Li, C., et al., Identification of pancreatic cancer stem cells. Cancer Res. 2007. 67(3): p. 1030-7; Ma, S., et al., Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology, 2007. 132(7): p. 2542-56; Prince, M. E., et al., Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA, 2007. 104(3): p. 973-8; Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. Nature, 2007. 445(7123): p. 111-5; Singh, S. K., et al., Identification of a cancer stem cell in human brain tumors. Cancer Res, 2003. 63(18): p. 5821-8; Dalerba, P., et al., Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA, 2007. 104(24): p. 10158-63). Sorting tumor cells based primarily upon the differential expression of these surface marker(s) have accounted for the majority of the highly tumorigenic CSCs described to date. Therefore, these surface markers are well validated for identification and isolation of cancer stem cells from the cancer cell lines and from the bulk of tumor tissues.
- Recent studies have uncovered the presence of cancer stem cells (CSCs) with an exclusive ability to regenerate tumors. These CSCs exist in almost all tumor types and are functionally linked with continued malignant growth, cancer metastasis, recurrence, and cancer drug resistance. CSCs and their more differentiated progenies appear to have markedly different biologic characteristics. Conventional cancer drug screenings depend on measurement of the amount of tumor mass, therefore, they may not necessarily select for drugs that act specifically on the CSCs. In fact, CSCs have been demonstrated to resistant to standard chemotherapies and radiotherapy, and to becoming enriched after standard anti-cancer treatments, which result in cancer refractory and recurrence. Methods of isolating these cells include but not limited to identification by their ability of efflux Hoechst 33342, identification by the surface markers these cells express, such as CD133, CD44, CD166, and others, and enrichment by their tumorigenic property. The mounting evidence linking cancer stem cells to tumorigenesis unravel enormous therapeutic opportunity of targeting cancer stem cells.
- The data provided herein, combined with recent breakthroughs in CSC research, allows the present invention to provide an array of methods directed at inhibiting CSCs, methods directed at inhibiting both CSCs and heterogeneous cancer cells, and methods of treating cancers that have CSCs in specific or cancers in general. The present invention also provides related methods (e.g., manufacturing and drug candidate screening), materials, compositions and kits. The method can prevent the CSCs from self-renewal, such that it is no longer able to replenish its numbers by dividing into tumorigenic CSC cells. Or, the method can induce cell death in CSCs, or in both CSCs and heterogeneous cancer cells.
- This method can be used to treat a subject's cancer. Cancers that are good candidates for such treatment include cancer(s) selected from the group consisting of esophageal cancer, gastroesophageal junction cancer, gastroesophageal adenocarcinoma, chondrosarcoma, colorectal cancer, colon adenocarcinoma, rectal adenocarcinoma, colorectal adenocarcinoma, breast cancer, ovarian cancer, head and neck cancer, melanoma, gastric adenocarcinoma, and adrenocorticoid carcinoma.
- Further, as CSCs have been demonstrated to be fundamentally responsible for tumorigenesis, cancer metastasis and cancer reoccurrence, any methods of the invention directed to inhibiting CSCs, or both CSCs and heterogeneous cancer cells, can be practiced to treat cancer that is metastatic, refractory to a chemotherapy or radiotherapy, or has relapsed in the subject after an initial treatment.
- In some embodiments, the cancer stem cell inhibitor according to the present invention is: a compound of Formula 1, Compound 1, a polymorph of Compound 1, a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 1 of WO 2011/116398 and WO 2011/116399, a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 2 of WO 2011/116398 and WO 2011/116399, a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2θ, a peak at least at about 11.9 degrees 2θ, a peak at least at about 14.1 degrees 2θ, a peak at least at about 14.5 degrees 2θ, a peak at least at about 17.3 degrees 2θ, a peak at least at about 22.2 degrees 2θ, and a peak at least at about 28.1 degrees 2θ and any combinations thereof, a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 3 of WO 2011/116398 and WO 2011/116399, a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 7.5 degrees 2θ, a peak at least at about 9.9 degrees 2θ, a peak at least at about 12.3 degrees 2θ, a peak at least at about 15 degrees 2θ, a peak at least at about 23 degrees 2θ, a peak at least at about 23.3 degrees 2θ, a peak at least at about 24.6 degrees 2θ, and a peak at least at about 28.4 degrees 2θ and any combinations thereof, 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, phosphoric acid mono-[1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl]ester, phosphoric acid 1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl ester dimethyl ester, an enantiomer, diastereomer, tautomer, and a salt or solvate thereof; a polymorph of a compound of Formula 1, Compound 1, a polymorph of Compound 1, a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 1 of WO 2011/116398 and WO 2011/116399, a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 2 of WO 2011/116398 and WO 2011/116399, a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2θ, a peak at least at about 11.9 degrees 2θ, a peak at least at about 14.1 degrees 2θ, a peak at least at about 14.5 degrees 2θ, a peak at least at about 17.3 degrees 2θ, a peak at least at about 22.2 degrees 2θ, and a peak at least at about 28.1 degrees 2θ and any combinations thereof, a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 3 of WO 2011/116398 and WO 2011/116399, a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 7.5 degrees 2θ, a peak at least at about 9.9 degrees 2θ, a peak at least at about 12.3 degrees 2θ, a peak at least at about 15 degrees 2θ, a peak at least at about 23 degrees 2θ, a peak at least at about 23.3 degrees 2θ, a peak at least at about 24.6 degrees 2θ, and a peak at least at about 28.4 degrees 2θ and any combinations thereof, 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, phosphoric acid mono-[1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl]ester, phosphoric acid 1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl ester dimethyl ester, an enantiomer, diastereomer, tautomer, and a salt or solvate thereof; or a substantially pure form of a compound of Formula 1, Compound 1, a polymorph of Compound 1, a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 1 of WO 2011/116398 and WO 2011/116399, a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 2 of WO 2011/116398 and WO 2011/116399, a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 10.2 degrees 2θ, a peak at least at about 11.9 degrees 2θ, a peak at least at about 14.1 degrees 2θ, a peak at least at about 14.5 degrees 2θ, a peak at least at about 17.3 degrees 2θ, a peak at least at about 22.2 degrees 2θ, and a peak at least at about 28.1 degrees 2θ and any combinations thereof, a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern substantially similar to that set forth in FIG. 3 of WO 2011/116398 and WO 2011/116399, a polymorph of 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione characterized by an X-ray diffraction pattern including two or more peaks from a peak at least at about 7.5 degrees 2θ, a peak at least at about 9.9 degrees 2θ, a peak at least at about 12.3 degrees 2θ, a peak at least at about 15 degrees 2θ, a peak at least at about 23 degrees 2θ, a peak at least at about 23.3 degrees 2θ, a peak at least at about 24.6 degrees 2θ, and a peak at least at about 28.4 degrees 2θ and any combinations thereof, 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, phosphoric acid mono-[1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl]ester, phosphoric acid 1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl ester dimethyl ester, an enantiomer, diastereomer, tautomer, and a salt or solvate thereof; a particle form of 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-chloro-naphtho[2,3-b]furan-4,9-dione, 2-acetyl-7-fluoro-naphtho[2,3-b]furan-4,9-dione, 2-acetylnaphtho[2,3-b]furan-4,9-dione, 2-ethyl-naphtho[2,3-b]furan-4,9-dione, phosphoric acid mono-[1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl]ester, phosphoric acid 1-(4,9-dioxo-3a,4,9,9a-tetrahydro-naphtho[2,3-b]furan-2-yl)-vinyl ester dimethyl ester, an enantiomer, diastereomer, tautomer, and a salt or solvate thereof (also referred to herein as the “Compound of the Invention”).
- The present invention provides a method of identifying a drug candidate capable of inhibiting a cancer stem cell. In some embodiments, the drug candidate is capable of inducing cell death in CSC or at least inhibiting its self-renewal. In a further embodiment, the drug candidate is capable of inducing cell death in CSC or at least inhibiting its self-renewal, and inducing cell death in heterogeneous cancer cells. Various phases in the pathway can be targeted for screening the drug candidate.
- Accordingly, in another aspect, the Compound of the Invention can be used to formulate a pharmaceutical composition to treat or prevent disorders or conditions. In some embodiments, the cancer is selected from the group consisting of esophageal cancer, gastroesophageal junction cancer, gastroesophageal adenocarcinoma, chondrosarcoma, colorectal cancer, colon adenocarcinoma, rectal adenocarcinoma, colorectal adenocarcinoma, breast cancer, ovarian cancer, head and neck cancer, melanoma, gastric adenocarcinoma, and adrenocorticoid carcinoma.
- Accordingly, in an aspect, the present invention provides a method of inhibiting cancer stem cells where an effective amount of the Compound of the Invention is administered to the cells. Cancers known to have CSCs are good candidates for such treatments, and include but are not limited to: cancer(s) selected from the group consisting of esophageal cancer, gastroesophageal junction cancer, gastroesophageal adenocarcinoma, chondrosarcoma, colorectal cancer, colon adenocarcinoma, rectal adenocarcinoma, colorectal adenocarcinoma, breast cancer, ovarian cancer, head and neck cancer, melanoma, gastric adenocarcinoma, and adrenocorticoid carcinoma.
- Further, as CSCs have been demonstrated to be fundamentally responsible for tumorigenesis, cancer metastasis and cancer reoccurrence, any methods of the invention directed to inhibiting CSCs can be practiced to treat cancer that is metastatic, refractory to a chemotherapy or radiotherapy, or has relapsed in the subject after an initial treatment.
- In some embodiments of the method, the cancer being treated is selected from the following group: esophageal cancer, gastroesophageal junction cancer, gastroesophageal adenocarcinoma, chondrosarcoma, colorectal cancer, colon adenocarcinoma, rectal adenocarcinoma, colorectal adenocarcinoma, breast cancer, ovarian cancer, head and neck cancer, melanoma, gastric adenocarcinoma, and adrenocorticoid carcinoma. The cancer may implicate malfunction of the STAT3, Nanog and/or β-catenin pathway.
- In an aspect, the present invention provides a method of treating cancer in a subject, where a therapeutically effective amount of a pharmaceutical composition including the Compound of the Invention is administered to the subject. The cancer may be metastatic, refractory or recurrent. The subject may be a mammal, e.g., a human being.
- Treatment by administration of particles of, for example, a compound according to Formula I to a subject (patient) suffering from a neoplasm may be indicated for the following conditions. The neoplasm may be refractory to treatment by chemotherapy, radiotherapy, or hormone therapy. The neoplasm may not be amenable to surgical resection. The neoplasm may have relapsed in the subject (patient). Cancer stem cells have been implicated in the relapse of neoplasms; killing the cancer stem cells or inhibiting their self-renewal by a method according to the present invention may prevent the neoplasm from regenerating itself. Treatment by administration of particles of naphthofuran may slow or stop the volume growth of a neoplasm or decrease the volume of a neoplasm by, for example, inducing the death of, inhibiting the growth and/or division of, and/or selectively killing neoplastic cells. For example, a treatment according to the present invention may induce cell death of a cell of the neoplasm. For example, the treatment may act to inhibit the STAT3, Nanog and/or β-catenin pathway of a neoplastic cell.
- Treatment by administration of particles of, for example, a Compound of the Invention to a subject (patient) suffering from a neoplasm may be used to prevent relapse of a neoplasm and/or as an adjuvant therapy to surgical resection.
- A pharmaceutical composition including particles of, for example, a Compound of the Invention may be administered orally, as this is a convenient form of treatment. For example, the pharmaceutical composition may be administered orally no more than four times per day. Alternatively, the pharmaceutical composition can be administered intravenously or intraperitoneally.
- Based on the discovery that phosphorylated STAT3 (p-STAT3) positivity and β-catenin expression in cellular nucleus can both, individually or in combination, serve as predictive biomarkers for higher likelihood of treatment efficacy using the Compound of the Invention (see Examples 9 and 10), the present invention provides ways to screen patients for recommendation of cancer treatments that involve the Compound of the Invention. Our data indicates a direct correlation between the level of p-STAT3 in tumor tissues before treatment and the chance of survival or treatment success with the Compound of the Invention. In other words, the higher the level of p-STAT3 found in a cancer patient before treatment, at least in colorectal cancer (CRC) patients, the higher overall survival (OS) is once treatment using the Compound of the Invention and related compositions (
FIG. 3B ). Accordingly, the present invention provides a method of treating cancer in a selected patient population or screening potential cancer patients for treatment, the method comprising the steps of: measuring a level of phosphorylated STAT3 (p-STAT3) in a biological sample (e.g., tumor tissue before treatment) obtained from a patient candidate diagnosed of a cancer (e.g., colorectal adenocarcinoma); confirming that the patient candidate's p-STAT3 level is above a benchmark level; and administering to the patient candidate a therapeutically effective amount of the Compound of the Invention or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof. The benchmark level may differ for different demographic sectors, and can be determined by one skilled artisan through routine experimentation. - Similarly, because our data indicates a direct correlation between the level of expression or localization of β-catenin, an oncogene closely linked to STAT3, in the cell nucleus and the chance of survival or treatment success with the Compound of the Invention. In other words, the higher the expression level of β-catenin in cancer cell nucleus as opposed to the cell membrane in a cancer patient, at least in CRC patients, the higher overall survival (OS) is (
FIG. 4B ). Accordingly, the present invention provides a method of treating cancer in a selected patient population or screening potential cancer patients for treatment, the method comprising the steps of: detecting a locus of β-catenin expression in a biological sample (e.g., tumor tissue before treatment) obtained from a patient candidate diagnosed of a cancer; confirming that significant β-catenin expression is detected in cell nucleus in the sample from the patient candidate; and administering to the patient candidate a therapeutically effective amount of the Compound of the Invention or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof. The level at which nuclear expression for β-catenin is considered clinically significant here may differ for different demographic sectors, and can be determined by one skilled artisan through routine experimentation. - The invention provides kits and/or for of identifying or otherwise refining, e.g., stratifying, a patient population suitable for therapeutic administration of a compound of the disclosure by detecting the level of expression of one or more biomarkers associated with cancer stemness. In the methods and/or kits of the disclosure, the level of expression of one or more cancer stemness markers is detected in a patient or a sample from a patient, and where the patient or sample has an elevated level of one or more cancer stemness markers as compared to a control level of expression, the patient is then administered a therapeutically effective amount of a compound of the disclosure. In some embodiments of these methods, the method is an in vivo method. In some embodiments of these methods, the method is an in situ method. In some embodiments of these methods, the method is an ex vivo method. In some embodiments of these methods, the method is an in vitro method.
- Understanding the clinical relevance of the cancer stemness markers and identifying their predictive response to the Compound of the Invention is used herein to assist clinical development by selecting patients that will most likely to derive clinical benefit. In some embodiments, the methods provided herein use one or more well-known cancer stemness marker(s), such as, for example, the expression of p-STAT3 and/or other cancer stem cell related proteins such as β-catenin and NANOG. All these proteins can be easily detected using any of a variety of art-recognized techniques. In some embodiments, the cancer stemness marker is detected with immunohistochemistry with antibodies. Using the archival tissue samples collected from the phase I trial with the Compound of the Invention, the patient response to the Compound of the Invention was analyzed based on biomarker status. An analysis of CRC patients treated with the Compound of the Invention demonstrated a trend of increased survival for patients with high level of p-STAT3 or NANOG as compared with patients having low or negative levels of p-STAT3 or NANOG. A significant improvement in survival was detected for patients with nuclear β-Catenin localization compared with patients having β-catenin localized to the cell membrane, HR=0.043, p value <0.001. As further evidence, in an in vitro study screening a panel of cancer cells, the cell lines with nuclear β-Catenin show a lower IC50 for the Compound of the Invention. Additionally, inhibition of STAT3 by the Compound of the Invention reduced β-catenin protein levels both in vitro within cancer cell lines and in human CRC xenograft mouse models. Thus, STAT3 activation is involved in nuclear β-catenin regulation. In addition, β-catenin status is a biomarker for predicting responsiveness of CRC patients to the Compound of the Invention.
- In various embodiments of the above treatment methods, the cancer may be one of the following: esophageal cancer, gastroesophageal junction cancer, gastroesophageal adenocarcinoma, chondrosarcoma, colorectal cancer, colon adenocarcinoma, rectal adenocarcinoma, colorectal adenocarcinoma, breast cancer, ovarian cancer, head and neck cancer, melanoma, gastric adenocarcinoma, and adrenocorticoid carcinoma. The cancer may be refractory, recurrent or metastatic.
- In a method according to the present invention, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention can be a total daily dose in the range from about 20 mg to about 2000 mg, from about 100 mg to about 1500 mg, from about 160 mg to about 1400 mg, or from about 180 mg to about 1200 mg. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is a total daily dose in the range of from about 200 mg to about 1500 mg, or from about 360 mg to 1200 mg. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is a total daily dose in the range of from about 400 mg to about 1000 mg. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is a total daily dose of about 1000 mg.
- Intervals between each dose can vary or stay constant, depending on factors such as pharmacokinetics of the composition, drug metabolism with or without intake of fluid or food, tolerability and other drug adherence factors (e.g., convenience). A preferred interval maintains an effective level of the pharmaceutical composition in the body while causing minimal adverse side effects. In some embodiments, the interval between each dose ranges from about 4 hours to about 24 hours. In some embodiments, the interval between each dose ranges from about 8 hours to about 14 hours. In some embodiments, the interval between each dose ranges from about 10 hours to about 13 hours, or, is about 12 hours. Accordingly in those embodiments, the compound is administered to the subject about twice daily, for example, on average over the duration of a regimen.
- In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is a total daily dose in a range of from about 160 mg to about 960 mg or about 1000 mg. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is a total daily dose selected from the group consisting of about 160 mg, about 320 mg, about 640 mg, about 800 mg, and about 960 mg. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a total daily dose of about 960 mg.
- In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered BID. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose in a range of from about 80 mg BID to about 480 mg BID. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose selected from the group consisting of about 80 mg BID, about 160 mg BID, about 320 mg BID, about 400 mg BID, and about 480 mg BID. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose of about 480 mg BID.
- In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered BID where the timing between administrations of the compound is in the range from about 4 hours between administrations to about 16 hours between administrations. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered BID where the timing between administrations of the compound is at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 9 hours, at least 10 hours, at least 11 hours, at least 12 hours, at least 13 hours, at least 14 hours, at least 15 and/or at least 16 hours. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose in a range of from about 80 mg BID to about 480 mg BID where the timing between administrations of the compound is in the range from about 4 hours between administrations to about 16 hours between administrations. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered BID where the timing between administrations of the compound is at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 9 hours, at least 10 hours, at least 11 hours, at least 12 hours, at least 13 hours, at least 14 hours, at least 15 and/or at least 16 hours. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose selected from the group consisting of about 80 mg, about 160 mg, about 320 mg BID, about 400 mg BID, and about 480 mg BID, where the timing between administrations of the compound is in the range from about 4 hours between administrations to about 16 hours between administrations. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered BID where the timing between administrations of the compound is at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 9 hours, at least 10 hours, at least 11 hours, at least 12 hours, at least 13 hours, at least 14 hours, at least 15 and/or at least 16 hours. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose of about 480 mg BID where the timing between administrations of the compound is in the range from about 4 hours between administrations to about 16 hours between administrations. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose of about 80 mg BID where the timing between administrations of the compound is in the range from about 4 hours between administrations to about 16 hours between administrations. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose of about 400 mg BID where the timing between administrations of the compound is in the range from about 4 hours between administrations to about 16 hours between administrations. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose of about 320 mg BID where the timing between administrations of the compound is in the range from about 4 hours between administrations to about 16 hours between administrations. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered BID where the timing between administrations of the compound is at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 9 hours, at least 10 hours, at least 11 hours, at least 12 hours, at least 13 hours, at least 14 hours, at least 15 and/or at least 16 hours.
- In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose of about 480 mg BID where the timing between administrations of the compound is about 12 hours between administrations. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose of about 80 mg BID where the timing between administrations of the compound about 12 hours between administrations. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose of about 400 mg BID where the timing between administrations of the compound is about 12 hours between administrations. In some embodiments, the therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention is administered to the subject at a dose of about 320 mg BID where the timing between administrations of the compound is about 12 hours between administrations.
- A Compound of the Invention or a pharmaceutical composition thereof can be administered through any one of or through a combination of routes, for example, orally, intravenously, or intraperitoneally. For example, in some embodiments, a Compound of the Invention can be administered orally. In some embodiments, a Compound of the Invention can be administered orally in a formulation that includes lauroyl polyoxylglycerides (e.g. Gelucire) and
Tween 80, or a formulation that includes lauroyl polyoxylglycerides (e.g. Gelucire), linoleoyl polyoxylglycerides (e.g. Labrafil), and a surfactant such as sodium lauryl sulfate (SLS) or sodium dodecyl sulfate (SDS). - A Compound of the Invention can be administered in a dose to achieve a blood concentration in a subject, e.g., a patient, of compound in the range of from at least about 0.002 μM to about 30 M for a time of at least 2 hours to no more than 24 hours. In some embodiments, a Compound of the Invention can be administered in a dose to achieve a blood concentration in a subject of compound in the range of from at least about 0.2 M to about 1 μM for a time of at least 2 hours to no more than 24 hours, equals to or above about 0.2 μM, 0.5 μM, 1.0 μM, 1.5 μM, 2.0 μM, 2.5 μM, 3.0 μM 4.0 μM, 5.0 μM, 6.0 μM, 7.0 μM, 8.0 μM, 9.0 μM, 10.0 μM, 15.0 μM for at least 2 hours and less than 24 hours. In some embodiments, a Compound of the Invention can be administered in a dose to achieve a blood concentration in a subject of compound equals to or above about 1.0 μM, 1.5 μM, 2.0 μM, 3.0 μM, 5.0 μM, 10.0 μM, 15.0 μM for at least 2 hours and less than 24 hours. In some embodiments, a Compound of the Invention can be administered in a dose to achieve a blood concentration in a subject of compound equals to or above about 2.0 μM, 3.0 μM, 5.0 μM, 10.0 μM for at least 2 hours and less than 24 hours. In some embodiments, a Compound of the Invention can be administered in a dose to achieve a blood concentration in a subject of compound equals to or above about 3.0 μM, or 5.0 μM for at least 2 hours and less than 24 hours.
- A Compound of the Invention can be administered in a dose to achieve a blood concentration in a subject, e.g., a patient, of compound in the range of from at least about 0.002 μM·h to about 300 μM·h in 24 hours. In some embodiments, a Compound of the Invention can be administered in a dose to achieve area under the curve in 24 hours (AUC24) in a subject equals to or above about 0.2 μM, 0.5 μM, 1.0 μM, 1.5 μM, 2.0 μM, 2.5 μM, 3.0 μM 4.0 μM, 5.0 μM, 6.0 μM, 7.0 μM, 8.0 μM, 9.0 μM, 10.0 μM, 15.0 μM for at least 2 hours and less than 24 hours. In some embodiments, a Compound of the Invention can be administered in a dose to achieve a blood concentration in a subject of compound equals to or above about 1.0 μM, 1.5 μM, 2.0 μM, 3.0 μM, 5.0 μM, 10.0 μM, 15.0 μM for at least 2 hours and less than 24 hours. In some embodiments, a Compound of the Invention can be administered in a dose to achieve a blood concentration in a subject of compound equals to or above about 2.0 μM, 3.0 μM, 5.0 μM, 10.0 μM for at least 2 hours and less than 24 hours. In some embodiments, a Compound of the Invention can be administered in a dose to achieve a blood concentration in a subject of compound equals to or above about 3.0 μM, or 5.0 μM for at least 2 hours and less than 24 hours. In some embodiments, a Compound of the Invention can be administered in a dose to achieve area under the curve in 24 hours (AUCO0-24 hr) in a subject equals to or above about 2 μM*hr, 10 μM*hr, 20 μM*hr, 30 μM*hr, 40 μM*hr, 50 μM*hr, 60 μM*hr, 70 μM*hr, 80 μM*hr, 90 μM*hr, 100 μM*hr, 125 μM*hr, 150 μM*hr, 200 μM*hr, 250 μM*hr, 300 μM*hr, 400 μM*hr, and 500 μM*hr.
- If the condition of the subject (patient) so requires, doses of the pharmaceutical composition may be administered as a continuous or pulsatile infusion. The duration of a treatment may be decades, years, months, weeks, or days, as long as the benefits persist. The foregoing ranges are provided only as guidelines and are subject to optimization.
- In a method according to the invention, cells of the neoplasm are selectively killed by administering the pharmaceutical composition, so that the blood molar concentration of the compound is at least an effective concentration and less than a harmful concentration for a first continuous time period that is at least as long as an effective time period and shorter than a harmful time period. The blood molar concentration can be less than the effective concentration after the first continuous time period. The effective concentration can be a concentration sufficiently high, so that neoplastic cells, e.g., cancer cells, are killed. The effective time period can be sufficiently long, so that neoplastic cells, e.g., cancer cells, are killed. The harmful concentration can be a concentration at which normal cells are damaged or killed. The harmful time period can be a time period sufficiently long for normal cells to be damaged or killed. For example, the effective concentration can be equal to or above about 0.02 μM, about 0.05 μM, about 0.1 μM, about 0.2 μM, about 0.5 μM, about 1 μM, about 3 μM, about 10 μM or about 20 μM. For example, the non-harmful concentration can be equal to or below about 3 μM, about 10 μM, about 14 μM, about 30 μM, or about 100 μM. For example, the effective time period can be equal to or above about 2 hour, about 4 hours, about 6 hours, about 12 hours, about 24 hours, or about 48 hours. For example, to achieve non-harmful exposure for normal cells, drug concentration of
Compound 1 has to be substantially cleared from blood within about 12 hours, about 24 hours. “Substantially clearance from blood” means blood drug concentration decrease by at least about 50%, at least about 60%, at least about 80%, at least about 90%. For example, an effective concentration can be a concentration that exceeds the IC50 of cancer cells when the compound is administered for some time period. For example, an effective time period can be a time period over which cancer cells are selectively inhibited or killed when the compound is administered at least at the effective concentration. For example, a harmful concentration can be a concentration that exceeds the IC50 of normal cells when the compound is administered for any time period. For example, a harmful time period can be a time period over which normal as well as cancer cells are inhibited or killed when the compound is administered at the effective concentration. - One of skill in the art can administer the pharmaceutical composition by selecting dosage amount and frequency so as to achieve a herein described “selective pharmacokinetic profile” (SPP) deemed necessary for selective killing neoplastic cells, such as cancer cells, and sparing normal cells. Such consideration of the SPP can also guide the design of the pharmaceutical composition, for example, the particle size distribution and distribution of shapes of the particles.
- In a method according to the invention, the pharmaceutical composition is administered orally in a dosage form such as a tablet, pill, capsule (hard or soft), caplet, powder, granule, suspension, solution, gel, cachet, troche, lozenge, syrup, elixir, emulsion, oil-in-water emulsion, water-in-oil emulsion, or draught.
- In a method according to the invention, an optimum particle size distribution of a compound according to Formula I,
Compound 1, a polymorph ofCompound 1, and/or a substantially pure form ofCompound 1 for treating a human, mammal, or animal afflicted with a neoplasm can be determined as follows. At least one set of particles including the compound can be prepared. In preparing the set of particles, for example, the particle size of a sample of solid compound can be reduced by, for example, dissolving the compound and nebulizing the solution, dissolving the compound and sonicating the solution, ball milling the solid compound, roll milling the solid compound, grinding the solid compound, and/or sieving the solid compound. The particle size distribution of the at least one set of particles can be determined by a method or combination of methods known to one of skill in the art. For example, the particle size distribution can be determined using a technique such as sieve analysis, optical microscopic counting, electron micrograph counting, electroresistance counting, sedimentation time, laser diffraction, acoustic spectroscopy, another technique, or a combination of techniques. The at least one set of particles can be administered to neoplastic cells and to normal cells at a predetermined concentration and for a predetermined period of time. The effect of the particles on the metabolism, division, and/or other indicator of the vitality of the neoplastic cells and the normal cells can be observed. The observed effect of the particles on the neoplastic cells can be used to assign an effectivity rating to each set of particles. For example, a set of particles that inhibits the metabolism and/or division of the neoplastic cells, damages or kills the neoplastic cells, or otherwise exhibits high antitumor activity can be assigned a high effectivity rating. The observed effect of the particles on the normal cells can be used to assign a toxicity rating to each set of particles. For example, a set of particles that inhibits the metabolism and/or division of the normal cells or damages or kills the normal cells or where the normal cells otherwise exhibit a low tolerability of the set of particles can be assigned a high toxicity rating. - For example, the set of particles can be administered to neoplastic cells and normal cells in vitro. For example, the effectivity rating can be equal to, proportional to, or a monotonically increasing function of the IC50 of the neoplastic cells. For example, the toxicity rating can be equal to, proportional to, or a monotonically increasing function of the IC50 of the normal cells.
- For example, the set of particles can be administered to neoplastic cells and normal cells in vivo in a test animal. For example, the test animal can be a mammal, primate, mouse, rat, guinea pig, rabbit, or dog. For example, the effectivity rating can be equal to, proportional to, or a monotonically increasing function of the decrease in volume of the neoplastic cells following administration of the set of particles. For example, the toxicity rating can be equal to, proportional to, or a monotonically increasing function of the decrease in mass of the test animal following administration of the set of particles. For example, the set of particles can be administered to a human in a clinical study. A method of treating a neoplasm can include administering a therapeutically effective amount of a set of particles of the compound according to Formula I,
Compound 1, a polymorph ofCompound 1, and/or a substantially pure form ofCompound 1 to a human, mammal, or animal afflicted with the neoplasm. Prior to administration of the particles of the compound, the compound according to Formula I,Compound 1, a polymorph ofCompound 1, and/or a substantially pure form ofCompound 1 to an animal or a human or to cells in vitro, the particles can be suspended in a pharmaceutically acceptable excipient. - The effectivity rating and/or the toxicity rating of each set of particles having a first particle size distribution can be compared with the effectivity rating and/or the toxicity rating of another set or sets of particles having a particle size distribution different than the first particle size distribution. A set of particles of a compound that has a high effectivity rating and a low toxicity rating can be effective in inhibiting or killing neoplastic, e.g., cancer, cells, but spare normal cells. One of skill in the art can select as an optimum set the set of particles having an effectivity rating greater than, a toxicity rating less than, and/or a weighted effectivity rating and toxicity rating sum greater than the at least one other set of particles (for example, the effectivity rating can be weighted with a positive coefficient and the toxicity rating can be weighted with a negative coefficient). One of skill the art can also use another criteria to select the optimum set of particles, for example, particles having a sum of the weighted effectivity rating and the weighted ratio of the effectivity rating over the toxicity rating. The particle size distribution of the optimum set of particles can be considered an optimum particle size distribution for the compound tested. The optimum particle size distribution may be different for one compound, e.g.,
Compound 1, than for another compound, e.g., a compound according to Formula I that is notCompound 1. The optimum particle size distribution for a given compound may differ when determined by administration to cells in vitro, to a small test animal, and to a large test animal. However, the optimum particle size distribution determined by administration of a given compound to an organism in vitro or in vivo may represent a rational starting point for optimizing the particle size distribution for another compound or for administration to another organism. - An optimum set of particles of the compound according to Formula I,
Compound 1, a polymorph ofCompound 1, and/or a substantially pure form ofCompound 1 can be included in the composition for reducing or inhibiting the replication or spread of neoplastic cells. - Examples are provided below to further illustrate different features of the present invention. The examples also illustrate useful methodology for practicing the invention. These examples do not limit the claimed invention.
- The procedure for preparation of a naphthofuran compound (2-acetylnaphtho[2.3 b]furan-4,9-dione) is summarized as follows:
- To a 2
liter 3 neck round bottom flask equipped with a mechanical stirrer, thermometer, and addition funnel is charged 3-butene-2-one (451.2 grams). To the addition funnel is added bromine (936.0 grams). After the content in the flask is cooled to −5° C., the bromine is dropped into the flask with vigorous stirring and maintaining temperature at −5° C. over 30 minutes. The mixture is stirred for an additional 15 minutes at −5° C., and then is split into 4 equal portions. - Each portion of the mixture along with tetrahydrofuran (2133.6 grams) is loaded into a 22
liter 4 neck round bottom flask equipped with a mechanical stirrer, thermometer, and addition funnel. To the addition funnel is charged DBU (1,3-Diazabicyclo[5.4.0]undec-7-ene, 222.9 grams). The DBU is dropped into the flask with vigorous stirring and maintaining temperature at 0° C.-5° C. over 30 minutes. The mixture is stirred for an additional 15 min at 0° C.-5° C. - 2-hydroxy-1,4-naphthofuran (231 grams) is then added into the flask. Additional DBU (246.0 grams) is charged into the addition funnel and then dropped into the mixture in the flask at such a rate that the temperature of the reaction mixture does not exceed 40° C. After the addition of DBU is complete, the resulting mixture is stirred overnight at room temperature, and a sample of the reaction mixture is taken for HPLC analysis.
- To the reaction mixture, water (10.8 liters) is charged, and the resulting mixture is cooled to 0° C.-3° C. for at least 30 minutes, then filtered via vacuum filter. The filtered solid is rinsed with 5% aqueous sodium bicarbonate (3 liters), water (3 liters), 1% aqueous acetic acid (3 liters) and ethanol twice (2×1 liter) successively.
- The rinsed solid is stored and pooled together from other batches. The combined crude product (28.73 kg) is loaded along with ethyl acetate (811.7 kg) into a 500 gallon vessel equipped with a mechanical stirrer, thermometer, and a condenser. Under nitrogen atmosphere, the mixture is heated to reflux (72° C.) for 2 hours, and then filtered with a 10 micron cartridge filter containing an active carbon layer to remove insolubles.
- Fresh hot ethyl acetate (10 kg) is used to rinse the vessel, transfer line and filter. The combined filtrate is cooled to 0-5° C. and held at this temperature for 2 hours, and then is filtered with 20 inch Buchner filter. The filtered solid product is rinsed with 0-5° C. ethyl acetate (5.7 kg), and dried under vacuum at 40° C. to a constant weight. The remaining filtrate is reduced in volume by 63% by evaporation, and the crystallization process was repeated again to generate a second crop of product which was also dried under the same condition as the first crop of product.
- A lot of the naphthofuran compound obtained following the procedure. The purity for the lot of the compound is 95.44 area % (HPLC).
- Another procedure for the preparation of a naphthofuran compound (2-acetylnaphtho[2,3-b]furan-4,9-dione) is summarized as follows:
- A 12 L RBF (Round Bottom Flask)(protected from light with UV filters) was charged with MVK (2,160 ml, 26.4 mol) and cooled to −9.6° C. in a dry-ice/acetone bath.
- Bromine (1,300 ml, 25.3 mol) was added slowly, over 2 hrs and 20 min, maintaining T=<−2.6° C. (Tmax). The resulting yellow mixture was stirred for additional 28 min.
- A 72 L RBF with pre-cooled THF (Tetrahydrofuran) (20 L, 5 ml/g HNQ (2-Hydroxy-1,4-naphtoquinone)) was charged with brominated product from the above and the resulting solution was cooled to −4.8° C. DBU (4,200 ml, 28.1 mol) dissolved in THF (4,200 ml) was added slowly, over 2 hrs and 20 min, maintaining T<0.3° C. (Tmax). The resulting suspension was stirred for 42 min.
- 2-Hydroxy-1,4-naphthofuran (4,003 g, 23.0 mol) was charged, in one portion, into the reaction mixture from the above, at −1.8° C. A cooling bath was added while a second portion of DBU (3,780 ml, 25.3 mol) was added over 48 minutes to bring the reaction temperature to 40° C. The cooling bath was removed and the reaction mixture was stirred over the weekend, open to the air.
- A 200 L reactor with pre-cooled water (100 L, 25 m/g HNQ) was charged with the reaction mixture from the above. The resulting suspension was cooled to 6.0° C., and then stirred at T=3±3° C. for −1 hour. The resulting suspension was then filtered, and the collected solids were transferred back to the 200 L reactor.
- After stirring in 5% NaHCO3 aqueous (26 L, 6.5 mug HNQ) for 1 hour, the suspension was filtered. The collected solids were transferred back to the 200 L reactor, stirred in water (26 L) for 1 hour, and then filtered.
- The wet solids were transferred back to the 200 L reactor, stirred in 1% aqueous acetic acid (26 L) for ˜1 hour, filtered and then washed on the filter funnel with water (10 L). The collected solids were transferred back to the 200 L reactor and heated in ethanol (17.5 L; 4.3 ml/g HNQ) to a gentle reflux (77.4° C.). The resulting suspension was cooled to 4.2° C. and filtered.
- The wet solids were transferred to a 100 L reactor and heated in ethanol (17.5 L; 4.3 ml/g HNQ) to a reflux (77.6° C.). The resulting suspension was cooled to 4.5° C. and filtered. The wet cake was de-liquored overnight. 1H NMR and HPLC samples were taken. 1H NMR:
Compound 1/NDHF (2-acetyl-2,3-dihydronaphtho[2,3-b]furan-4,9-dione) 42:58%; HPLC:Compound 1/NDHF 74:11 area %. - The solids were dried in a vacuum oven at 50° C., over 4 days, affording 2,268 g of
crude Compound 1. 1H NMR:Compound 1/NDHF 41:59%; HPLC:Compound 1/NDHF 67:11 area %. - The crude Compound 1 (2.268 kg) was slurried in toluene (77 L). MnO2 (9536 g) was added and the mixture was heated to a gentle reflux. TLC (1:1 EA:hexane) showed complete reaction after 1 hour.
- The reaction mixture was then filtered hot through a preheated pad of Celite (1530 g, bottom layer), activated charcoal (2230 g, middle layer), and Celite (932 g, top layer). The yellow-orange filtrate was collected.
- The filtrate was concentrated on the rotovap to approximately 1/10 volume. The slurry was filtered and washed with toluene. The crystals were then dried at 50° C. to give 952 g (42%) of dark yellow solid. HPLC: 99.94%. 1H NMR showed no naphthodihydrofuran.
- The crystals were dried at 50° C. under vacuum for an additional 46-65 hours to reduce the amount of residual toluene in the material.
- The Compound 1 (5816 g) was charged to a 200 L reaction vessel. Ethyl acetate (145 L, 25 mL/g) was added, and the solution was heated to reflux over 2
hours 26 minutes. Reflux was maintained for 5hours 30 minutes, and the mixture was then cooled and maintained overnight to 17° C. - The slurry was filtered on a polyethylene frit. The yellow crystals were air dried, then placed in trays in a vacuum oven for 75 hours, giving 5532 g (95.1% yield) of yellow solids. HPLC: 99.86%. 1H NMR matches the structure of
Compound 1. - A 2 L RBF was charged with crude material (10 g) and ethyl acetate (900 ml). The mixture was refluxed at ˜77° C. and then more ethyl acetate (100 ml) was added to achieve complete dissolution. The resulting clear-yellowish solution was stirred at reflux for ˜30 minutes, and then the heating was removed. The mixture was stirred overnight at room temperature.
- The resulting suspension was filtered and the collected yellow solids were rinsed on the funnel with ethyl acetate (30 ml). The wet solid was dried in vacuum oven at 40-50° C., over 4 hours, to obtain 8.53 g of yellow crystalline product (total yield ˜17%).
- 1H NMR: consistent with structure; HPLC: 99.94 area %; DSC: 228.68° C., 151 J/g.
- For example,
Compound 1 crystals were milled and passed through a 160 micron (μm) sieve ( 100, 150 μm opening) to generate the crystals of approximately 160 microns or less.Sieve # - For example,
Compound 1 crystals were milled (The Retsch Ultracentrifugal Mill ZM 200; Single pass, at 18,000 rpm using 0.25 mm screen) to a median particle size of about 20 micron. Table 3 presents the resultant distribution of particle sizes (Malvern 2000 with the Hydro 2000S wet accessory). The columns present the maximum size of particles in the cumulative percent total presented in the subscript at the header of the column. For example, the column D90 presents the size for which 90% of the particles have an equal or lesser size. The column D50 represents the median size−half of the particles have a greater size, and half of the particles have an equal or lesser size. -
TABLE 3 Particle Size Distribution of Milled Compound 1.Particle Size (microns) D90 D50 D10 Sample B 48.9 20.2 2.3 - For example,
Compound 1 crystals were micronized using a jet milling method (4″ Jet Mill, Venturi pressure=40, Mill pressure=100, Feed rate=1304 g/hour) to a median particle size of about 2 micron, as presented in Table 4. Particle size analysis was performed using a dry particle method (Sympatec Helos/KF Particle Size Analyzer). -
TABLE 4 Particle Size Distribution of Micronized Compound 1Particle Size (microns) D90 D50 D10 Sample A 4.63 2.07 0.53 - A cumulative distribution function derived from a log-normal model of particle size distribution provided a good fit to the data presented in Table 4. The cumulative distribution function was represented as
-
- where erf is the error function, d is the particle diameter variable, dmedian is the median particle size, and σ is a parameter related to the breadth of the cumulative distribution function. CDF(d) represents the fraction of particles having a size less than or equal to d. Setting dmedian to the observed median of 2.07 micron, fitting of the model yielded a value of σ=1.06. The model indicated a mean diameter of 3.6 micron and a mode diameter of 0.67 micron. The model also suggests a specific area of the particles of 2200 m2/kg, although this does not account for factors such as surface roughness.
- This HPLC method is to assess purity of naphthofuran, e.g., 2-acetylnaphtho[2,3-b]furan-4,9-dione (Compound 1), and its reaction completion by HPLC. All components will be expressed in area percent of the total peaks within the chromatogram.
-
-
TABLE 5A Apparatus HPLC system with UV detector and integration system Column Phenomenex Luna C18(2) 5-μm, 4.6-mm × 250-mm (P/N 00G-4252-E0) or equivalent pH meter calibrated the day of use Acetonitrile HPLC Grade Dimethylsulfoxide ACS Grade or better (DMSO) Phosphoric acid ACS reagent Potassium phosphate, ACS reagent dibasic Compound 1 Reference Material - Weigh 1.74 g of Potassium Phosphate, dibasic and dilute with 1 L of Purified Water (adjust weights and volumes for amount needed). Adjust the pH with Phosphoric Acid to pH 6.8.
- Prepare Mobile Phase A by mixing the 10 mM phosphate buffer and acetonitrile to a 80:20 buffer:acetonitrile ratio. Degas.
- Prepare Mobile Phase B by mixing the 10 mM phosphate buffer and acetonitrile to a 20:80 buffer:acetonitrile ratio. Degas.
- Mobile Phase A will be used as the diluent for all sample and standard preparations.
-
Compound 1 Stock Standard (Concentration≈1.0 mg/mL) - It will be prepared weighing 10 mg of
Compound 1 Reference material into a 20 mL scintillation vial; record weight ±0.01 mg. Add 10 mL of DMSO and sonicate until the solids dissolve. -
- Stock Test Samples (Concentration≈1.0 mg/mL)
- Test Solutions will be prepared by weighing 10 mg of sample in a 20 mL scintillation vial and diluting with 10 mL of DMSO.
-
- Working Test Samples (Concentration≈0.01 mg/mL)
- This solution is prepared by transferring 1 mL into a 100 mL volumetric flask and diluting with diluent solution.
-
-
-
TABLE 5B Flow Rate 0.8 mL/min. Column temp 30° C. Detector Wavelength 270 nm Injection Volume 40 μL Gradient Profile 0-5 min - 0% B to 0% B 5-19 min - 0% B to 90% B 19-24 min - 90% B to 90% B 24-29 min - 90% B to 0% B Note: 5 min equilibration time between injections at 100% A Run Time 29 min - Inject solutions in the following sequence:
- 1. Diluent blank (1×)
- 2.
Compound 1 Working Standard (5×) - 3. Test Solutions (2× each)
- 4. Working Standards (1× each)
- The system is suitable for use if the following criteria are met.
- 1. Diluent blank injection at the beginning of the sequence contains no interfering peaks with any identified impurities
- 2. The initial, 5 replicate injections of the
Compound 1 working standard have (1) % RSDpead area<3.0%; (2) % RSDretention time<3.0%; and (3) mean tailing factor <2.0. - 3. In the chromatogram for the bracketed standard, (1) retention time is 97.0-103.0% of the mean retention time from the initial suitability injections and (2) its area % is 97.0-103.0% of the initial value.
- All peaks will be reported as area % of the total peaks in the chromatogram, this will be calculated by the integration software by way of the following formula:
-
-
-
TABLE 5C NMR Apparatus Varian Inova 500 NMR Spectrometer Pulse Sequence S2pul Solvent CDC13 Temp. 25.0° C./298.1 K Relax delay 1.000 sec Pulse 45.0 degrees Acq. time 2.732 sec Width 11992.2 Hz 32 repetitions OBSERVE H1 499.7029706 MHz FT size 65536 Total time 1 min, 50 sec -
TABLE 5D TLC on silica gel eluent ethyl acetate:hexane, 1:1 visualization UV Rf401 ~0.7 RfNDHF ~0.6 - Another procedure for the preparation of
Compound 1 is summarized as follows. - Bromine (0.95 equiv) is added to methyl vinyl ketone (MVK, 1.0 equiv) at −20 to −15° C. via an addition funnel while maintaining the reaction temperature below 0° C. The reaction mixture is then stirred at −10 to 0° C. for an additional 2 to 3 hours, followed by addition of Tetrahydrofuran (6 vol) and cooling of the reaction mixture to −20 to −10° C. Triethylamine (1.1 equiv) is then added with vigorous stirring while maintaining the reaction temperature below 0° C. The resulting slurry is stirred at −15 to −5° C. for a minimum of 10 hours, then warmed to −5 to 5° C. and filtered. The filtrate is then analyzed via in-process 1H NMR to determine the amount (wt. %) of intermediate bromomethyl vinyl ketone (BrMVK) present, and held at −25 to −10° C. until further use.
- Next, Tetrahydrofuran (3.15 vol) in a clean reaction vessel is charged with 2-Hydroxy-1,4-Naphthoquinone (1.0 equiv relative to the calculated amount of BrMVK from in-process 1H NMR). The resulting orange slurry is stirred briefly, then 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, 1.1 equiv) is added while maintaining a temperature at, or below, 45° C. The reaction mixture is then stirred at 40 to 45° C. for a minimum of 1 hour, heated to 50 to 55° C. and the BrMVK solution added via an addition funnel while maintaining the reaction temperature at 50 to 60° C. The reaction mixture is then stirred at 50 to 55° C. for approximately 18 hours until less than 5% 2-Hydroxy-1,4-Naphthoquinone remains. The reaction mixture is then concentrated, co-evaporated twice with Ethanol, and recrystallized from Ethanol/Water (1:1). The solids are dried under vacuum at 35 to 45° C. The crude solids and Charcoal G-60 (100 wt %) are then suspended in Acetonitrile and heated at 70 to 75° C. for 2 hours, filtered and washed with hot Acetonitrile. The filtrate is then concentrated to 1/3 volume, cooled to 0 to 5° C., and filtered. The solids are then dried under vacuum at 45 to 50° C. These crude solids are then reslurried in Ethyl Acetate at reflux for 6 hours, cooled to room temperature, filtered, and washed with Ethyl Acetate. The material is then dried under vacuum at 45 to 50° C. and packaged for final release.
- Compound 2-acetylnaphtho[2,3-b]furan-4,9-dione was chosen to enter Phase I clinical trial after receiving IND approval from US FDA and Health Canada, which was a dose escalation study in adult patients with advanced cancer who had failed standard therapies. Each cycle consists of twice-daily oral administration of the compound for 4 weeks. Cycles were repeated every 4 weeks (28 days) until progression of disease, unacceptable toxicity, or another discontinuation criterion is met. The dose escalation trial was conducted as open label and multicenter trial. A modified Simon accelerated titration scheme was used for dose escalation.
- The primary objective of the trial was to determine the safety, tolerability, and recommended phase II dose (RP2D). The secondary objectives of the trial were to determine the pharmacokinetic profile of the compound, pharmacodynamics of the compound, and preliminary antitumor activity of the compound.
- The inclusion criteria included histologically or cytologically confirmed solid tumor that is metastatic, unresectable, or recurrent; ≧18 years of age; Measurable disease by RECIST; and Kamofsky ≧70%. The exclusion criteria included chemotherapy, radiotherapy, immunotherapy or investigational agent within 4 weeks of first dose; surgery within 4 weeks of first dose; and known brain metastases.
- The demographics and baseline disease characteristics of the patients selected under above criteria were summarized in Table 6.
-
TABLE 6 Demographics and Baseline Disease Characteristics Median Age, years (range) 58 (28-91) Gender, N(%) Male 30 (73%) Female 11 (27%) Race, N(%) Caucasian 34 (83%) Asian 4 (10%) Black 1 (2%) Other/Unknown 2 (5%) Prior Therapies ≧3 32 (78%) 2 5 (12%) 1 4 (10%) Tumor Type, N(%) Colorectal 18 (44%) Gastric/GEJ 3 (7%) NSCLC 3 (7%) Pancreatic 3 (7%) Prostate 3 (7%) Head and Neck 2 (5%) Melanoma 2 (5%) Other* 7 (17%) - Of those patients, 10 cohorts were assessed at doses ranging from 20 mg to 2000 mg/day. No dose limiting toxicity was observed. The most common adverse events were: diarrhea, nausea, and fatigue.
Grade 3 or greater events include: fatigue and diarrhea. The adverse events were summarized in Table 7. -
TABLE 7 Summary of Adverse Events Any Grade Grade 3 Adverse # # Organ System Event* Subjects % Subjects % DIGESTIVE Diarrhea 30 73.2% 2 4.9 % Vomiting 20 48.8% 0 0.0 % Nausea 20 48.8% 0 0.0% Abdominal 22 53.7% 0 0.0% cramps/ pain Anorexia 14 34.1% 0 0.0% Loose/ Soft 8 19.5% 0 0.0 % Stools Dysgusia 5 12.2% 0 0.0 % Reflux 4 9.8% 0 0.0% CONSTITUTIONAL Fatigue 18 43.9% 1 2.4 % Weakness 6 14.6% 0 0.0 % Weight loss 5 12.2% 0 0.0% URINARY Urine Color 10 24.4% 0 0.0% Change METABOLIC Dehydration 3 7.3% 0 0.0 % NEUROLOGIC Dizziness 5 12.2% 0 0.0% *observed in 10% or more of study subjects; adverse events graded using CTCAE v 3.0
In the 20 mg daily administration, surprisingly high concentration of the compound in urine of the patient was observed. Furthermore, we tested antitumor activity of the Compound of the Invention in patient urine, and found that the Compound remained potent against cancer cells. - Of the patients dosed, disease control (disease stabilization and tumor regression) was observed in 65% of patients evaluable for tumor response in a variety of tumors that had been refractory to chemotherapies, including colorectal adenocarcinoma, head and neck cancer, breast cancer, gastric cancer, ovarian cancer, chondrosarcoma, adrenocorticoid carcinoma, and melanoma. There was one complete regression of a colon cancer metastatic lesion to kidney (Patient 0001). Patients treated with
Compound 1 exhibited a dramatic lack of new metastatic tumor lesions. Out of 24 evaluable patients with advanced refractory cancers, over 80% showed no metastatic tumors. - The patients enrolled with signs of activity were summarized in Table 8.
-
TABLE 8 Summary of Subjects with Signs of Activity Total Weeks Daily on Best Response Dose (mg) Tumor Type Study (RECIST 1.1) 20 Colon adenocarcinoma 76 SD (22% regression) 80 Head and Neck carcinoma 17 SD 320 Colon adenocarcinoma 24 SD 320 Colon adenocarcinoma 12 SD 400 Gastric adenocarcinoma 19 SD 400 Ovarian carcinoma 16 SD (CA125 normalization) 400 Colon adenocarcinoma 11 SD (CEA↓ 50%) 600 Breast carcinoma 29 SD (remaining lesion (triple negative) hollowed, surgically resected; patient disease free) 800 Chondrosarcoma 13 SD 800 Adrenocorticoid carcinoma 17 SD 1000 Rectal adenocarcinoma 16 SD 1000 Colon adenocarcinoma 16 SD 1400 Melanoma 16 SD - We also found that high levels of p-STAT3 in tumor tissues prior to the treatment by immunohistochemistry using anti-p-STAT3 antibody predicts a good response of their tumor to
Compound 1. - Pharmacokinetics profile with oral bid dosing was also studied. The plasma concentration of the drug reached several folds over the efficacious concentration (in vitro IC50) as illustrated in Table 9. However, drug concentration did not maintain at high levels for long and decreased below the efficacious concentration rapidly.
-
TABLE 9 Pharmacokinetic summary for different dose levels Total Daily Dosing tmax Cmax C24 h AUC0-24 T1/2,z AUC Dose Schedule (h) (uM) (uM) (uM · h) (h) (uM · h) 20 qd 3.0 0.49 0.03 2.01 18.5 2.70 40 qd 0.5 0.50 0.03 3.44 4.5 3.62 80 qd 1.5 2.24 0.07 12.77 5.2 13.32 80 bid q4h 8.1 0.90 0.03 7.95 3.6 8.13 160 bid q4h 3.9 1.33 nd nd nd nd 320 bid q4h 3.8 2.92 0.24 33.12 5.7 38.26 400 bid q4h 7.9 3.75 0.62 40.25 6.9 48.17 600 bid q4h 3.2 2.67 0.42 27.76 9.0 37.15 800 bid q4h 4.3 3.04 0.16 26.06 4.0 27.00 1000 bid q4h 6.6 4.97 0.29 45.11 6.6 50.71 1000 bid q6h 5.7 1.36 0.33 15.84 12.7 22.90 1400 bid q4h 2.9 2.05 0.65 28.20 13.6 45.04 1500 tid q4h 7.3 3.75 0.94 46.43 8.2 59.85 2000 bid q4h 6.3 1.69 0.80 25.90 17.2 45.80 - To maintain drug plasma concentration at or above the efficacious level for a desirable duration and to further increase peak plasma concentration, we studied the pharmacokinetics of a 500 mg BID regimen (at 4 hour interval between two doses on the same day or “q4 h”), and compared it to that of a 500 mg QD regimen (
FIG. 1 ). Surprisingly, no significant difference was observed in terms of pharmacokinetics between the two dosing regimens. Previously, it was expected that with a BID regimen, drug level in patient plasma would exhibit another pronounced peak as dosing is doubled within the same day compared to a QD regimen. However, administration ofCompound 1 twice q4 h failed to sustain drug level for a desirable length of time after the first dose during the same 24-hour period. In another suitable dosing regimen, 500 mg ofCompound 1 were administered three times a day (TID) to human subjects. Rather disappointingly, the level of patient exposure toCompound 1 was not significantly improved by three times a day dosing as compared to twice daily dosing. - The therapeutically effective amount of the pharmaceutical composition including particles, polymorphs and/or purified forms of a Compound of the Invention can be a total daily dose in the range of from about 160 mg to about 1000 mg, e.g., at about 960 mg. However, to achieve effective dose levels, the clinical study faced a challenge of pill burden suffered by the patients. To overcome the pill burden issue and to solve the problem of maintaining drug concentration at or above the minimal efficacious level for a desirable duration, higher strength capsules were designed in a new formulation (DP2A).
- However, with the higher strength capsules, we observed worsening gastrointestinal adverse effects including nausea, vomiting, and diarrhea in patients. When we studied the relationship between plasma drug concentration and adverse effects in an additional Phase I clinical study, part of which is summarized in Table 10 below, to our surprise, the data indicates that the severity of gastrointestinal adverse events does not seem to correlate with plasma pharmacokinetic parameters as one would normally suspect (see Tables 10 and 11).
-
TABLE 10 Clinical Comparison of Drug Pharmacokinetics and Adverse Events observed Plasma PK parameters Patient (single 500 mg dose - fed) AE summary 0053 Higher exposure (Cmax: No significant gastrointestinal 6.61 uM; AUC0-24: issues at 500 mg bid q4h 79.64 uM*hr) 0054 Higher exposure (Cmax: No significant gastrointestinal 6.25 uM; AUC0-24: issues at 500 mg bid q4h 49.82 uM*hr) 0061 Lower exposure (Cmax: Intolerable grade 2 fatigue,1.54 uM; AUC0-24: cramping, diarrhea, and nausea 10.61 uM*hr) starting at 500 mg bid q4h and persisting at 375 mg/250 mg/ 250 mg q4h 0070 Lower exposure ( Cmax Grade 3 diarrhea at 375 mg/ 2.25 uM; AUC0-24: 250 mg/250 mg q4h 20.09) -
TABLE 11 Summary of Adverse Events in Dosing Regimens under Study q 4 h dosing (N = 17) q 12 h dosing (N = 11) Grade 1 or 2 Grade 3 Grade 1 or 2 Grade 3 Organ System Adverse Event # Subjects % # Subjects % # Subjects % # Subjects % DIGESTIVE Diarrhea 14 82.4% 4 23.5% 7 63.6% 0 0.0% Vomiting 7 41.2% 0 0.0% 1 9.1% 0 0.0% Nausea 8 47.1% 1 5.9% 2 18.2% 0 0.0% Abdominal 13 76.5% 1 5.9% 5 45.5% 0 0.0% cramps/pain Bloated abdomen 4 23.5% 0 0.0% 0 0.0% 0 0.0% Fatigue/weakness 10 58.8% 3 17.6% 4 36.4% 1 9.1% Anorexia 10 58.8% 3 17.6% 1 9.1% 0 0.0% Reflux (also 1 5.9% 0 0.0% 0 0.0% 0 0.0% heartburn) Dysgusia 1 5.9% 0 0.0% 0 0.0% 0 0.0% Xerostomia 4 23.5% 0 0.0% 2 18.2% 0 0.0% Rectal/Anal Burning 3 17.6% 0 0.0% 1 9.1% 0 0.0% Flatulence 2 11.8% 0 0.0% 2 18.2% 0 0.0% CONSTITUTIONAL Weight loss 8 47.1% 0 0.0% 0 0.0% 0 0.0% URINARY Urine Color Change 2 11.8% 0 0.0% 0 0.0% 0 0.0% METABOLIC Dehydration 1 5.9% 0 0.0% 0 0.0% 0 0.0% hypophosphatemia 1 5.9% 1 5.9% 0 0.0% 0 0.0% NEURO/PSYCH Depression 0 0.0% 0 0.0% 1 9.1% 0 0.0% - After exhausting conventional solutions, our breakthrough came from an unexpected change to the drug intake protocol. Surprisingly, we have found that the intake interval between doses in accordance with some preferred embodiments of the invention turned out to be the key factor for both prolonging drug exposure as well as decreasing gastrointestinal side effect. Even more surprising was that, instead of condensing the drug administrations by shortening the interval between each intake as one would intuitively try when the problem was rapid drop of drug concentration in the blood stream, we found that lengthening such interval actually solved the problem. For example, a preferred interval between administrations of the drug turned out to be a period ranging from about 8 hours to about 14 hours, more preferably, from about 10 hours to about 13 hours. In a particular embodiment, a Compound of the Invention or a related composition and form, is administered, on average over a period, twice daily at an interval of about 12 hours between doses where each does is about 480-500 mg BID.
- In yet another suitable dosing regimen, about or above 20 mg of
Compound 1 was administered once daily to human subjects. This dosing regimen, referred to herein as 20 mg QD, has shown therapeutically active levels in patients, but the drug is rapidly cleared from the blood in humans. However, as the drug cleared from blood stream into the urine through kidney, it showed signs of particularly potent antitumor activity in a kidney with colon cancer lesions due to very high concentration of the drug in urine. In general, this dosing regimen has shown good tolerability in humans. - In yet another suitable dosing regimen,
Compound 1 was administered with a fluid, e.g., a milk or water, with empty stomach which improves pharmacokinetical exposure (Table 12). Counterintuitively, milk helped patients with gastrointestinal adverse effects. -
TABLE 12 Effect of Milk on Compound 1 PharmacokineticsPK Parameter Fasting with Milk Fold Change Cmax (uM) 2.01 3.05 1.52 AUC0-24 hrs 20.12 31.40 1.56 Cmax (uM) 2.55 2.89 1.13 AUC0-24 hrs 20.72 32.16 1.55 - In yet another suitable dosing regimen,
Compound 1 was administered with food which delayed the Tmax (Table 13). -
TABLE 13 Taking Compound 1 with Food Causes a Delay in TmaxTmax (hr) Patient Fasting With Milk With Food 20 2 2 8 21 6 6 6 22 8 8 10 24 — 6.3 10 27 — 0.5 6 28 — 6 10 - In yet another suitable dosing regimen, the pill burden issue was addressed through a new drug formulation (DP2A). The new formulation replaces a large portion of the surfactant GELUCIRE™ 44/14 used in the DPI formulation with another surfactant Labrafil, and reduces the capsule dimension from a size 00 to a
size 1 orsize 2, which is a significant reduction. The new formulation was able to maintain similar bioavailability (FIG. 2 ). Components of the two formulations are summarized below (Table 14): -
TABLE 14 New pharmaceutical formulation (DP2A) reduces pill size 50 mg Capsule 125 mg capsule 80 mg capsule (DP1) (DP2A) (DP2A) mg/ mg/ mg/ Component Grade Function capsule % capsule % capsule % Compound of In House Active 50 8.34% 125 27.18% 80 27.18% the Invention SLS USP/NF Surfactant — 1.2 0.27% 0.8 0.27% Gelucire 44/14 USP/NF Diluent 522.5 87.08% 66.8 14.51% 42.7 14.51% (lauroyl poly- oxylglycerides) Tween 80NF Surfactant 27.5 4.58% — — (polysorbate 80) Labrafil M2125 USP/NF Diluent — 267 58.04% 170.9 58.04% CS (linoleoyl poly- oxylglycerides) White opaque In House Encapsulate 1 (size 00) 1 (size 1) — Licap capsule Gold opaque In House Encapsulate — — 1 ( size 1Licap Capsule or size 2) - Additional studies were run using an oral formulation of the Compound of the Invention, specifically a higher strength capsule formulation (DP2A). As described herein, the Compound of the Invention blocks cancer stem cell (CSC) self-renewal and induces cell death in CSC as well as non-stem cancer cells by inhibiting Stat3, β-catenin, and Nanog pathways, and has shown potent anti-tumor and anti-metastatic activities pre-clinically. In the phase I studies described above, the Compound demonstrated tolerability as well as signs of anti-cancer activity in patients with solid tumors. The studies described herein were designed as a
phase 1 extension study to evaluate a formulation designed for pivotal trials to determine pharmacokinetics (PK) in patients with advanced cancer. - On
Day 1, patients received a single 500 mg dose of an oral administration formulation of the Compound of the Invention (DP1). OnDay 4 andDay 8, a higher strength capsule designed for pivotal trials (DP2A) was given with fasting then fed conditions. DP2A was then administered daily until disease progression or unacceptable toxicity. Endpoints were safety, PK and preliminary anticancer activity. - DP2A was evaluated in 24 patients. No significant difference in plasma exposure between DP1 and DP2A, and no significant food effect were observed. Nine patients received the
Compound DP2A 500 mg twice daily 4 h apart (DP2A-4 h), and 15 patients received theCompound DP2A 500 mg bid 12 h apart (DP2A-12 h). Despite PK equivalence to the Compound DP1, DP2A-4 h was associated with higher frequency of gastrointestinal (GI) adverse events (AE) than observed in the prior study described above, including diarrhea, abdominal cramps, nausea/vomiting, anorexia, and fatigue. In contrast, DP2A-12 h had fewer GI AE and was selected for the extension study. Among 15 patients receiving DP2A-12 h, 8 CRC patients enrolled, disease control was observed in 67% evaluable for response (4/6), with progression free survival and overall survival at 17 weeks and 39 weeks, respectively. - The recommended dosing regimen for the Compound in pivotal trials was determined to be about 500 mg bid q12 h. Signs of anticancer activity were observed in patients with CRC and ovarian cancer.
- The Compound of the Invention was used in combination with an antimitotic agent, especially those proven to be effective chemotherapy agents, to successfully treat patients. Examples of antimitotic agents that may be useful in a co-therapy with the Compound of the Invention include and are not limited to: paclitaxel (Abraxane/Taxol), docetaxel (taxotere), BMS-275183, xyotax, tocosal, vinorlebine, vincristine, vinblastine, vindesine, vinzolidine, etoposide (VP-16), teniposide (VM-26), ixabepilone, larotaxel, ortataxel, tesetaxel, and ispinesib.
- A Phase Ib study was designed to evaluate the combined use of the Compound of the Invention with paclitaxel in patients with advanced malignancies. The studies were designed as a Phase Ib dose-escalation study to determine safety, tolerability, RP2D, and preliminary anti-cancer activity of the Compound of the Invention when used in conjunction with weekly paclitaxel. The Compound was administered in 3 escalating dose cohorts (200 mg BID, 400 mg BID, 500 mg BID) in combination with paclitaxel (80 mg/m2 weekly; 3 of every 4 weeks) until progression of disease, unacceptable toxicity, or other discontinuation criteria was met.
- 24 patients were enrolled in this study. The Compound of the Invention monotherapy RP2D could be given in combination with paclitaxel in full dose. Maximum tolerated dose (MTD) was not determined. No new adverse events were observed, and the safety profile was similar to that of each agent as monotherapy. The most common adverse events included
1 and 2 diarrhea, abdominal cramps, nausea, vomiting.grade Grade 3 events related to protocol therapy occurred in 4 patients and included diarrhea, dehydration, and weakness. No significant pharmacokinetic interactions were observed. Disease control (i.e., the sum of complete responses (CR)+partial responses (PR)+stable disease (SD)) was observed in 10 of 15 (67%) evaluable patients. As shown in Table 15 below, of 5 patients with refractory gastric/gastroesophageal junction (GEJ) adenocarcinoma enrolled, 2 had PR (48% and 44% regressions), 1 had SD with 25% regression, and 2 (who failed prior taxane) had prolonged SD≧24 wks. - This Phase Ib study demonstrated that the Compound of the Invention and weekly paclitaxel can be safely combined at full dose. Encouraging anti-tumor activity was observed in patients with gastric and GEJ adenocarcinoma.
-
TABLE 15 Signs of anti-tumor activity with co-therapy of the Compound of the Invention and paclitaxel Paclitaxel Patient Diagnosis Dose* Best Response 0006 Gastric 80 mg/m2 SD (25% lesion regression, Adenocarcinoma 90% decrease in CEA) 0018 GEJ Adenocarcinoma 80 mg/m2 PR (44% lesion regression) 0019 GEJ Adenocarcinoma 80 mg/m2 PR (48% lesion regression) 0021 GEJ Adenocarcinoma 80 mg/m2 SD (0% lesion growth) 0024 GEJ Adenocarcinoma 80 mg/m2 SD (5% lesion growth) *Paclitaxel was administered intravenously once a week, for three out of every four weeks - A Phase II study is on-going which extends from the phase Ib study and is continuing to enroll patients with Gastric/GEJ adenocarcinoma.
-
TABLE 16 Phase II data for Gastric/GEJ adenocarcinoma Paclitaxel Patient Diagnosis Dose Best Response 0037 GEJ Adenocarcinoma 80 mg/m2 PR (100% tumor lesion regression) 0044 GEJ Adenocarcinoma 80 mg/m2 SD (17% growth) 0046 GEJ Adenocarcinoma 80 mg/m2 PR (36% tumor lesion regression) 0047 GEJ Adenocarcinoma 80 mg/m2 SD/PR (approximately 30% regression) 0051 GEJ Adenocarcinoma 80 mg/m2 SD (measurements pending) 0054 GEJ Adenocarcinoma 80 mg/m2 SD (measurements pending) 0059 Gastric 80 mg/m2 PR/CR (100% tumor Adenocarcinoma lesion regression) - In these studies, 7 of 9 evaluable gastric/GEJ patients showed activity in response to combination therapy with the Compound of the Invention and paclitaxel.
- CRC patient's archival tumor tissue samples were analyzed through immunohistochemistry (IHC) using labeled antibodies against phosphorylated STAT3 (p-STAT3). As shown in
FIG. 3A , the Compound of the Invention was very effective in inhibiting p-STAT3 expression. Even with dosage as low as 100 QD (single daily dosage), there was almost no longer any detectable p-STAT3 in the patient tissue after treatment. And as the chart inFIG. 3B shows, for patients receiving the Compound of the Invention treatment (N=13), the overall survival (OS) is much more optimistic in those who had previously exhibited relatively high levels of p-STAT3. For instance, 40% of the patients with high p-STAT3 levels before treatment survived longer than 100 weeks whereas only 10% of those with low or no p-STAT3 levels before treatment survived beyond 100 weeks. This further confirms that the Compound of the Invention downregulates that STAT3 pathway, and that the STAT3 pathway is implicated in colorectal cancers. - The direct correlation between the p-STAT3 level and OS of CRC patient receiving treatment with the Compound of the Invention makes p-STAT3 a promising diagnostic biomarker that can be used to predict treatment effectiveness. Accordingly, p-STAT3 level can be used to screen patient pools for treatment with the Compound of the Invention.
- CRC patient's archival tumor tissue samples were analyzed through immunohistochemistry (IHC) using labeled antibodies against β-catenin. As shown in
FIG. 4A , the Compound of the Invention was effective in removing or preventing the accumulation of β-catenin in cell nucleus in tumor tissues. And as the chart inFIG. 4B shows, for patients receiving treatment with the Compound of the Invention (N=13), the overall survival (OS) is much more optimistic in those found to have previously shown high levels of nuclear β-catenin prior to treatment. For instance, close to 40% of the patients with high nuclear β-catenin levels before treatment survived longer than 100 weeks whereas none of those with high levels of membranous β-catenin survived beyond 25 weeks. This further confirms that the Compound of the Invention disrupts or somehow modulates the β-catenin function, and that the β-catenin pathway is implicated in colorectal cancers. - The direct correlation between the nuclear β-catenin level and OS of CRC patient receiving treatment with the Compound of the Invention makes nuclear β-catenin level a promising diagnostic biomarker that can be used to predict treatment effectiveness. Accordingly, nuclear β-catenin level can be used to screen patient pools for treatment with the Compound of the Invention.
- CD44high cells were isolated by FACS (FaDu) and their growth was blocked by a Compound of the Invention (
FIG. 5 ). - And in an in vivo study of nude mice with xenografted human colon cancer tumor tissues, a Compound of the Invention was also shown to be effective in reducing or clearing p-STAT3 and β-catenin levels (
FIG. 6 ). - Mice study also showed that a Compound of the Invention targets cancer stem cells (
FIG. 7 ). - In human clinical studies, a Compound of the Invention was found to be effective in CRC patients (
FIG. 8 ). - The embodiments illustrated and discussed in this specification are intended only to teach those skilled in the art the best way known to the inventors to make and use the invention. Nothing in this specification should be considered as limiting the scope of the present invention. All examples presented are representative and non-limiting. The above-described embodiments of the invention may be modified or varied, without departing from the invention, as appreciated by those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the claims and their equivalents, the invention may be practiced otherwise than as specifically described.
Claims (46)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/783,184 US20160030384A1 (en) | 2013-04-09 | 2014-04-09 | 2-acetylnaphtho[2,3-b]furan -4,9-dione for use on treating cancer |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361810117P | 2013-04-09 | 2013-04-09 | |
| US201361830068P | 2013-06-01 | 2013-06-01 | |
| US201461932179P | 2014-01-27 | 2014-01-27 | |
| US201461938386P | 2014-02-11 | 2014-02-11 | |
| US14/783,184 US20160030384A1 (en) | 2013-04-09 | 2014-04-09 | 2-acetylnaphtho[2,3-b]furan -4,9-dione for use on treating cancer |
| PCT/US2014/033566 WO2014169078A2 (en) | 2013-04-09 | 2014-04-09 | Methods for treating cancer |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2014/033566 A-371-Of-International WO2014169078A2 (en) | 2013-04-09 | 2014-04-09 | Methods for treating cancer |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US201816220636A Continuation | 2013-04-09 | 2018-12-14 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20160030384A1 true US20160030384A1 (en) | 2016-02-04 |
Family
ID=50687714
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/783,184 Abandoned US20160030384A1 (en) | 2013-04-09 | 2014-04-09 | 2-acetylnaphtho[2,3-b]furan -4,9-dione for use on treating cancer |
| US16/543,089 Expired - Fee Related US10543189B2 (en) | 2013-04-09 | 2019-08-16 | 2-acetylnaphtho[2,3-b]furan -4,9-dione for use on treating cancer |
| US16/841,807 Abandoned US20200397740A1 (en) | 2013-04-09 | 2020-04-07 | 2-acetylnaphtho[2,3-b]furan -4,9-dione for use on treating cancer |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/543,089 Expired - Fee Related US10543189B2 (en) | 2013-04-09 | 2019-08-16 | 2-acetylnaphtho[2,3-b]furan -4,9-dione for use on treating cancer |
| US16/841,807 Abandoned US20200397740A1 (en) | 2013-04-09 | 2020-04-07 | 2-acetylnaphtho[2,3-b]furan -4,9-dione for use on treating cancer |
Country Status (13)
| Country | Link |
|---|---|
| US (3) | US20160030384A1 (en) |
| EP (1) | EP2983790A2 (en) |
| JP (3) | JP6433085B2 (en) |
| KR (1) | KR20150139955A (en) |
| CN (2) | CN106211758B (en) |
| AU (1) | AU2014250940A1 (en) |
| BR (1) | BR112015025347A2 (en) |
| CA (1) | CA2908380A1 (en) |
| HK (1) | HK1220155A1 (en) |
| MX (1) | MX2015014181A (en) |
| RU (1) | RU2015147696A (en) |
| SG (2) | SG10201801205YA (en) |
| WO (1) | WO2014169078A2 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10377731B2 (en) | 2007-09-10 | 2019-08-13 | Boston Biomedical, Inc. | Compositions and methods for cancer treatment |
| WO2019232214A1 (en) * | 2018-05-31 | 2019-12-05 | Boston Biomedical, Inc. | Methods of using napabucasin |
| US10543189B2 (en) | 2013-04-09 | 2020-01-28 | Boston Biomedical, Inc. | 2-acetylnaphtho[2,3-b]furan -4,9-dione for use on treating cancer |
| US10646464B2 (en) | 2017-05-17 | 2020-05-12 | Boston Biomedical, Inc. | Methods for treating cancer |
| US11299469B2 (en) | 2016-11-29 | 2022-04-12 | Sumitomo Dainippon Pharma Oncology, Inc. | Naphthofuran derivatives, preparation, and methods of use thereof |
| US12257227B2 (en) | 2018-10-12 | 2025-03-25 | 1Globe Biomedical Co., Ltd. | Combination solution for treating chemotherapy refractory cancer |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MX2017013359A (en) * | 2015-04-17 | 2018-08-01 | Boston Biomedical Inc | Methods for treating cancer. |
| SG10201900564WA (en) * | 2015-04-17 | 2019-02-27 | Boston Biomedical Inc | Methods for treating cancer |
| HK1250943A1 (en) * | 2015-04-17 | 2019-01-18 | Boston Biomedical, Inc. | Methods for treating cancer |
| EA201792320A1 (en) * | 2015-04-27 | 2018-02-28 | Бостон Биомедикал, Инк. | A METHOD OF TREATING CANCER BY THE INHIBITOR OF WAY STAT3 AND KINASE INHIBITOR |
| US20180140572A1 (en) | 2015-06-03 | 2018-05-24 | Boston Biomedical, Inc. | Compositions comprising a cancer stemness inhibitor and an immunotherapeutic agent for use in treating cancer |
| US10329267B2 (en) | 2015-07-17 | 2019-06-25 | Sumitomo Dainippon Pharma Co., Ltd. | Method for producing 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione |
| WO2017132049A1 (en) | 2016-01-20 | 2017-08-03 | Boston Biomedical, Inc. | Methods for treating cancer |
| JP2019519573A (en) | 2016-06-28 | 2019-07-11 | ボストン バイオメディカル, インコーポレイテッド | Methods for treating cancer |
| WO2018098352A2 (en) | 2016-11-22 | 2018-05-31 | Jun Oishi | Targeting kras induced immune checkpoint expression |
| WO2018183089A1 (en) | 2017-03-30 | 2018-10-04 | Boston Biomedical, Inc. | Compositions for treating and/or preventing cancer |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060019256A1 (en) * | 2003-06-09 | 2006-01-26 | The Regents Of The University Of Michigan | Compositions and methods for treating and diagnosing cancer |
| US20100310503A1 (en) * | 2007-09-10 | 2010-12-09 | Chiang Jia Li | Novel compositions and methods for cancer treatment |
| US20130028944A1 (en) * | 2010-03-19 | 2013-01-31 | Boston Biomedical, Inc. | Novel methods for targeting cancer stem cells |
Family Cites Families (133)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2472133A (en) | 1947-03-20 | 1949-06-07 | Du Pont | Thiophanthraquinone derivatives |
| SU1049490A1 (en) | 1982-05-18 | 1983-10-23 | Ордена Трудового Красного Знамени Институт Химии Ан Мсср | (3ar,9as,9bs)-6,6,9a-trimethyltransperhydronaphth(2,2-b)-furan as scent component of perfumery composition |
| JPS6112632A (en) * | 1984-06-27 | 1986-01-21 | Eisai Co Ltd | Composition containing fat-soluble drug |
| JPS6199787A (en) | 1984-10-19 | 1986-05-17 | 株式会社日立製作所 | Band type piping support device |
| JPS63196576A (en) | 1987-02-10 | 1988-08-15 | Tetsuo Ikegawa | Furalnaphthoquinone derivative and carcinostatic agent and production thereof |
| US5846534A (en) | 1988-02-12 | 1998-12-08 | British Technology Group Limited | Antibodies to the antigen campath-1 |
| JPH04139177A (en) | 1989-12-28 | 1992-05-13 | Dainippon Ink & Chem Inc | Furalbenzoquinone derivative, its production and carcinostatic agent |
| DE69131874T2 (en) | 1990-07-10 | 2000-06-15 | Canon K.K., Tokio/Tokyo | Electrophotographic sensitive element |
| TW252136B (en) | 1992-10-08 | 1995-07-21 | Ciba Geigy | |
| JP3095175B2 (en) | 1992-11-13 | 2000-10-03 | アイデック ファーマシューティカルズ コーポレイション | Therapeutic use of chimeric and radiolabeled antibodies against human B lymphocyte restricted differentiation antigen for the treatment of B cell lymphoma |
| US5736137A (en) | 1992-11-13 | 1998-04-07 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma |
| DE4322826A1 (en) * | 1993-07-08 | 1995-01-12 | Galenik Labor Freiburg Gmbh | Pharmaceutical preparation |
| US5595721A (en) | 1993-09-16 | 1997-01-21 | Coulter Pharmaceutical, Inc. | Radioimmunotherapy of lymphoma using anti-CD20 |
| GB9603507D0 (en) | 1996-02-20 | 1996-04-17 | Isis Innovation | Antibody variants |
| JP3598168B2 (en) | 1996-03-18 | 2004-12-08 | 独立行政法人 科学技術振興機構 | Antiviral agent |
| US20020032315A1 (en) | 1997-08-06 | 2002-03-14 | Manuel Baca | Anti-vegf antibodies |
| US20020173629A1 (en) | 1997-05-05 | 2002-11-21 | Aya Jakobovits | Human monoclonal antibodies to epidermal growth factor receptor |
| US6235883B1 (en) | 1997-05-05 | 2001-05-22 | Abgenix, Inc. | Human monoclonal antibodies to epidermal growth factor receptor |
| JPH1121284A (en) | 1997-06-30 | 1999-01-26 | Kotobuki:Kk | Furanonaphthoquinone derivative and medicine containing the same |
| JPH1165141A (en) | 1997-08-11 | 1999-03-05 | Canon Inc | Electrophotographic photoreceptor, process cartridge having the electrophotographic photoreceptor, and electrophotographic apparatus |
| US6174913B1 (en) | 1998-06-05 | 2001-01-16 | The University Of North Carolina At Chapel Hill | Naphtho- and dihydrobenzo-thiophene derivatives as cytotoxic antitumor agents |
| US7109003B2 (en) | 1998-12-23 | 2006-09-19 | Abgenix, Inc. | Methods for expressing and recovering human monoclonal antibodies to CTLA-4 |
| EE05627B1 (en) | 1998-12-23 | 2013-02-15 | Pfizer Inc. | Human monoclonal antibodies to CTLA-4 |
| EP1897540A3 (en) | 1999-01-27 | 2008-07-23 | University Of South Florida | Inhibition of STAT3 signal transduction for human cancer therapy |
| JP2003525862A (en) | 1999-01-27 | 2003-09-02 | ザ ユニヴァーシティー オブ サウス フロリダ | Inhibition of STAT3 signaling for treatment of human cancer |
| EP2266537B1 (en) | 1999-04-01 | 2014-09-03 | Hana Biosciences, Inc. | Compositions for treating cancer |
| US6482943B1 (en) | 1999-04-30 | 2002-11-19 | Slil Biomedical Corporation | Quinones as disease therapies |
| MXPA02000828A (en) | 1999-08-02 | 2002-07-30 | Hoffmann La Roche | Retinoids for the treatment of emphysema. |
| WO2001014424A2 (en) | 1999-08-24 | 2001-03-01 | Medarex, Inc. | Human ctla-4 antibodies and their uses |
| US7605238B2 (en) | 1999-08-24 | 2009-10-20 | Medarex, Inc. | Human CTLA-4 antibodies and their uses |
| JP2001097860A (en) | 1999-09-29 | 2001-04-10 | Japan Science & Technology Corp | Anti-drug resistant bacteria and anti-chlamydia |
| UA75055C2 (en) | 1999-11-30 | 2006-03-15 | Пфайзер Продактс Інк. | Benzoimidazole derivatives being used as antiproliferative agent, pharmaceutical composition based thereon |
| KR20010100194A (en) | 2000-03-13 | 2001-11-14 | 박호군 | Composition and formulation for solubilization of various compounds and preparation method thereof |
| AU2001293995B2 (en) | 2000-10-09 | 2005-10-13 | Cytomx Therapeutics, Inc. | Therapeutic antibodies |
| US7090843B1 (en) | 2000-11-28 | 2006-08-15 | Seattle Genetics, Inc. | Recombinant anti-CD30 antibodies and uses thereof |
| AU2002307217A1 (en) | 2001-03-28 | 2002-10-15 | University Of South Florida | Materials and methods for treatment of cancer and identification of anti-cancer compounds |
| GB0117696D0 (en) | 2001-07-20 | 2001-09-12 | Bradford Particle Design Plc | Particle information |
| US20040092428A1 (en) | 2001-11-27 | 2004-05-13 | Hongming Chen | Oral pharmaceuticals formulation comprising paclitaxel, derivatives and methods of administration thereof |
| US20030157073A1 (en) | 2001-11-29 | 2003-08-21 | Peritt David L. | Methods for pretreating a subject with apoptotic cells |
| US7462596B2 (en) | 2002-03-15 | 2008-12-09 | Natimmune A/S | Pharmaceutical compositions comprising mannose binding lectin |
| JP2005522514A (en) | 2002-04-10 | 2005-07-28 | ジェネンテック・インコーポレーテッド | Modified anti-HER2 antibody |
| DE10161767T1 (en) | 2002-07-03 | 2018-06-07 | Honjo Tasuku | Immunopotentiating compositions containing an anti-PD-L1 antibody |
| EP2263697A3 (en) | 2002-07-15 | 2011-01-19 | Board of Regents, The University of Texas System | Duramycin peptide binding to anionic phospholipids and aminophospholipids conjugates and their use in treating viral infections |
| US20060142271A1 (en) | 2002-09-17 | 2006-06-29 | Klaus Muller | Novel lapacho compounds and methods of use thereof |
| KR100944575B1 (en) | 2002-10-17 | 2010-02-25 | 젠맵 에이/에스 | Human monoclonal antibodies against CD20 |
| TWI323662B (en) | 2002-11-15 | 2010-04-21 | Telik Inc | Combination cancer therapy with a gst-activated anticancer compound and another anticancer therapy |
| CL2003002353A1 (en) | 2002-11-15 | 2005-02-04 | Vertex Pharma | COMPOUNDS DERIVED FROM DIAMINOTRIAZOLS, INHIBITORS D ELA PROTEINA QUINASA; PHARMACEUTICAL COMPOSITION; PREPARATION PROCEDURE; AND ITS USE OF THE COMPOUND IN THE TREATMENT OF DISEASES OF ALLERGIC DISORDERS, PROLIFERATION, AUTOIMMUNES, CONDIC |
| IS6633A (en) | 2002-11-22 | 2004-05-23 | Omega Farma Ehf. | Compositions of finasteride tablets |
| BRPI0411852A (en) | 2003-06-27 | 2006-05-23 | Abgenix Inc | antibodies directed to epidermal growth factor receptor deletion mutants and their uses |
| US20050106667A1 (en) | 2003-08-01 | 2005-05-19 | Genentech, Inc | Binding polypeptides with restricted diversity sequences |
| US7758859B2 (en) | 2003-08-01 | 2010-07-20 | Genentech, Inc. | Anti-VEGF antibodies |
| US20050049207A1 (en) | 2003-09-03 | 2005-03-03 | Kaufmann Doug A. | Method of treating and preventing cancer |
| WO2005033048A2 (en) | 2003-09-29 | 2005-04-14 | The Johns Hopkins University | Wnt pathway antagonists |
| US7288638B2 (en) | 2003-10-10 | 2007-10-30 | Bristol-Myers Squibb Company | Fully human antibodies against human 4-1BB |
| CN1898267B (en) | 2003-11-01 | 2012-05-23 | 默克专利股份有限公司 | Modified anti-CD52 antibody |
| SG148215A1 (en) | 2003-12-02 | 2008-12-31 | Cleveland Clinic Foundation | Methods of protecting against radiation using flagellin |
| BRPI0416981A (en) | 2003-12-11 | 2007-02-21 | Univ Texas | compounds for treating cell proliferative diseases |
| DE10359828A1 (en) | 2003-12-12 | 2005-07-28 | Zoser B. Dr.Rer.Nat. Salama | CHP gemcitabine combination agents and their use as antitumor agents, in particular anti-metastatic agents |
| US20060030536A1 (en) | 2004-04-09 | 2006-02-09 | University Of South Florida | Combination therapies for cancer and proliferative angiopathies |
| JP2004224802A (en) | 2004-04-21 | 2004-08-12 | Japan Science & Technology Agency | Antibacterial agent |
| AU2005259221B2 (en) | 2004-07-01 | 2011-02-10 | Innate Pharma | Antibodies binding to receptors KIR2DL1, -2, 3 but not KIR2DS4 and their therapeutic use |
| KR20070043996A (en) | 2004-07-02 | 2007-04-26 | 이코스 코포레이션 | Compounds Useful for the Inhibition of CHE1 |
| US7560111B2 (en) | 2004-07-22 | 2009-07-14 | Genentech, Inc. | HER2 antibody composition |
| AR050921A1 (en) | 2004-08-18 | 2006-12-06 | Astrazeneca Ab | SELECTED FUSIONED HEREROCICLES AND USES OF THE SAME |
| JP2008519036A (en) | 2004-11-08 | 2008-06-05 | バクスター・インターナショナル・インコーポレイテッド | Nanoparticle composition of tubulin inhibitory compounds |
| CA2586605A1 (en) | 2004-11-24 | 2006-06-01 | Novartis Ag | Combinations of jak inhibitors and at least one of bcr-abl, flt-3, fak or raf kinase inhibitors |
| US7951374B2 (en) | 2004-12-14 | 2011-05-31 | University Of South Florida | Methods for inhibiting STAT3 signaling in immune cells |
| WO2006071812A2 (en) | 2004-12-23 | 2006-07-06 | H. Lee Moffitt Cancer Center And Research Institute | Platinum iv complex inhibitor |
| JP2008535785A (en) | 2005-02-25 | 2008-09-04 | ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン | Small molecule inhibitors of STAT3 and uses thereof |
| JP2006248978A (en) | 2005-03-10 | 2006-09-21 | Mebiopharm Co Ltd | New liposome preparation |
| JP2006290871A (en) | 2005-03-16 | 2006-10-26 | Taheebo Japan Kk | Compound exhibiting anti-cancer property, intermediate therefor and method for producing the same |
| US20060252073A1 (en) | 2005-04-18 | 2006-11-09 | Regents Of The University Of Michigan | Compositions and methods for the treatment of cancer |
| EP2418278A3 (en) | 2005-05-09 | 2012-07-04 | Ono Pharmaceutical Co., Ltd. | Human monoclonal antibodies to programmed death 1(PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics |
| BRPI0613361A2 (en) | 2005-07-01 | 2011-01-04 | Medarex Inc | isolated human monoclonal antibody, composition, immunoconjugate, bispecific molecule, isolated nucleic acid molecule, expression vector, host cell, transgenic mouse, method for modulating an immune response in an individual, method for inhibiting tumor cell growth in an individual, method for treating an infectious disease in a subject, a method for enhancing an immune response to an antigen in a subject, a method for treating or preventing an inflammatory disease in a subject, and a method for preparing the anti-pd-11 antibody |
| US20070009532A1 (en) | 2005-07-06 | 2007-01-11 | Branimir Sikic | Treatment of patients with cancer using a calicheamicin-antibody conjugate in combination with zosuquidar |
| UA96139C2 (en) | 2005-11-08 | 2011-10-10 | Дженентек, Інк. | Anti-neuropilin-1 (nrp1) antibody |
| AR057579A1 (en) | 2005-11-23 | 2007-12-05 | Merck & Co Inc | SPIROCICLICAL COMPOUNDS AS INHIBITORS OF ACETYLASE HISTONE (HDAC) |
| JP2007145680A (en) | 2005-11-30 | 2007-06-14 | Idemitsu Kosan Co Ltd | Hydrogen generating material and hydrogen generating method |
| WO2007074347A1 (en) | 2005-12-24 | 2007-07-05 | Biotica Technology Ltd. | 21-deoxymacbecin analogues useful as antitumor agents |
| WO2007087129A2 (en) | 2006-01-12 | 2007-08-02 | Merck & Co., Inc. | Fluorinated arylamide derivatives |
| KR20140093764A (en) | 2006-02-09 | 2014-07-28 | 산텐 세이야꾸 가부시키가이샤 | Stable formulations, and methods of their preparation and use |
| US20070243192A1 (en) | 2006-02-21 | 2007-10-18 | Regents Of The University Of Michigan | Growth hormone receptor antagonist cancer treatment |
| CA2643562A1 (en) | 2006-02-24 | 2007-08-30 | Anh Chau | 2-(phenyl or heterocyclic)-1h-phenanthro[9,10-d]imidazoles |
| US8779151B2 (en) | 2006-03-31 | 2014-07-15 | The Board Of Regents Of The University Of Texas System | Orally bioavailable caffeic acid related anticancer drugs |
| US20070238770A1 (en) | 2006-04-05 | 2007-10-11 | Bristol-Myers Squibb Company | Process for preparing novel crystalline forms of peliglitazar, novel stable forms produced therein and formulations |
| WO2008094321A2 (en) | 2006-10-04 | 2008-08-07 | Universtiy Of South Florida | Akt sensitization of cancer cells |
| WO2008077062A2 (en) | 2006-12-19 | 2008-06-26 | Board Of Regents, The University Of Texas System | Suppression of stat3 reactivation after src kinase inhibition to treat cancer |
| JP4077863B1 (en) | 2007-05-31 | 2008-04-23 | タヒボジャパン株式会社 | Process for producing optically active 2- (1-hydroxyethyl) -5-hydroxynaphtho [2,3-b] furan-4,9-dione having anticancer activity |
| PT2170959E (en) | 2007-06-18 | 2014-01-07 | Merck Sharp & Dohme | Antibodies to human programmed death receptor pd-1 |
| EP3121281B1 (en) | 2007-08-27 | 2021-03-31 | 1Globe Health Institute LLC | Compositions of asymmetric interfering rna and uses thereof |
| EP2044949A1 (en) | 2007-10-05 | 2009-04-08 | Immutep | Use of recombinant lag-3 or the derivatives thereof for eliciting monocyte immune response |
| US20100298402A1 (en) | 2007-11-06 | 2010-11-25 | Orchid Research Laboratories Limited | Stilbene derivatives as pstat3/il-6 inhibitors |
| JP2011506319A (en) * | 2007-12-06 | 2011-03-03 | デュレクト コーポレーション | Useful methods for the treatment of pain, joint inflammation symptoms, or inflammation associated with chronic diseases |
| US20100297118A1 (en) | 2007-12-27 | 2010-11-25 | Macdougall John | Therapeutic Cancer Treatments |
| WO2010014784A2 (en) | 2008-08-01 | 2010-02-04 | Bristol-Myers Squibb Company | Combination of anti-ctla4 antibody with diverse therapeutic regimens for the synergistic treatment of proliferative diseases |
| JP2012510429A (en) | 2008-08-25 | 2012-05-10 | アンプリミューン、インコーポレーテッド | PD-1 antagonist and method of use thereof |
| KR101782570B1 (en) | 2008-12-09 | 2017-09-27 | 제넨테크, 인크. | Anti-pd-l1 antibodies and their use to enhance t-cell function |
| KR20160103160A (en) | 2009-05-13 | 2016-08-31 | 젠자임 코포레이션 | Anti-human cd52 immunoglobulins |
| US8267122B2 (en) | 2009-06-30 | 2012-09-18 | Ge Aviation Systems Llc | Method and systems for bleed air supply |
| MX359551B (en) | 2009-11-24 | 2018-10-02 | Medimmune Ltd | Targeted binding agents against b7-h1. |
| JP2013512251A (en) | 2009-11-24 | 2013-04-11 | アンプリミューン、インコーポレーテッド | Simultaneous inhibition of PD-L1 / PD-L2 |
| WO2011084694A1 (en) | 2009-12-17 | 2011-07-14 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Stabilized stat3 decoy oligonucleotides and uses therefor |
| SMT201900463T1 (en) | 2010-03-04 | 2019-11-13 | Macrogenics Inc | Antibodies reactive with b7-h3, immunologically active fragments thereof and uses thereof |
| PH12012501751A1 (en) | 2010-03-04 | 2012-11-12 | Macrogenics Inc | Antibodies reactive with b7-h3, immunologically active fragments thereof and uses thereof |
| CN107311969B (en) | 2010-03-19 | 2022-01-28 | 北京强新生物科技有限公司 | Novel compounds and compositions for targeting cancer stem cells |
| KR101908208B1 (en) * | 2010-03-19 | 2018-10-15 | 보스톤 바이오메디칼, 인크. | Novel compounds and compositions for targeting cancer stem cells |
| AU2015218436B9 (en) | 2010-03-19 | 2017-03-09 | Boston Biomedical, Inc. | Novel Methods For Targeting Cancer Stem Cells |
| JP5208239B2 (en) | 2010-09-29 | 2013-06-12 | タヒボジャパン株式会社 | Novel production method of anticancer active tricyclic compounds by alkyne coupling |
| US9919017B2 (en) * | 2011-02-01 | 2018-03-20 | Kaneka Corporation | Biologically active substance-containing water-solubilizing preparation and method for producing the same |
| WO2012119265A1 (en) | 2011-03-04 | 2012-09-13 | Zhoushan Haizhongzhou Xinsheng Pharmaceuticals Co., Ltd. | NOVEL ESTERS OF 4,9-DIHYDROXY-NAPHTHO[2,3-b]FURANS FOR DISEASE THERAPIES |
| EP3398612A1 (en) | 2011-03-31 | 2018-11-07 | Merck Sharp & Dohme Corp. | Stable formulations of antibodies to human programmed death receptor pd-1 and related treatments |
| US8977803B2 (en) | 2011-11-21 | 2015-03-10 | Western Digital Technologies, Inc. | Disk drive data caching using a multi-tiered memory |
| WO2013166618A1 (en) | 2012-05-08 | 2013-11-14 | Zhoushan Haizhongzhou Xinsheng Pharmaceuticals Co., Ltd. | PRODRUGS OF 4,9-DIHYDROXY-NAPHTHO[2,3-b]FURANS FOR CIRCUMVENTING CANCER MULTIDRUG RESISTANCE |
| WO2013172918A1 (en) | 2012-05-15 | 2013-11-21 | University Of Southern California | Ksr1 gene polymorphism for use in predicting outcome and therapy selection |
| EP2850102A1 (en) | 2012-05-15 | 2015-03-25 | Bristol-Myers Squibb Company | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
| AR091649A1 (en) | 2012-07-02 | 2015-02-18 | Bristol Myers Squibb Co | OPTIMIZATION OF ANTIBODIES THAT FIX THE LYMPHOCYTE ACTIVATION GEN 3 (LAG-3) AND ITS USES |
| US20160030384A1 (en) | 2013-04-09 | 2016-02-04 | Boston Biomedical, Inc. | 2-acetylnaphtho[2,3-b]furan -4,9-dione for use on treating cancer |
| JP6199787B2 (en) | 2014-03-28 | 2017-09-20 | 京セラドキュメントソリューションズ株式会社 | Image forming apparatus |
| JP2016531151A (en) | 2013-09-13 | 2016-10-06 | バイエル ファーマ アクチエンゲゼルシャフト | Pharmaceutical composition containing refametinib |
| EP3129009A1 (en) | 2014-04-08 | 2017-02-15 | Teva Pharmaceutical Industries Ltd | Unit dosage form comprising emtricitabine, tenofovir, darunavir and ritonavir |
| ES2792851T3 (en) | 2014-06-09 | 2020-11-12 | Kyoto Pharma Ind | Naphthofuran derivatives for use as antineoplastic agents |
| JP2016016973A (en) | 2014-07-10 | 2016-02-01 | 株式会社リコー | Sheet processing device |
| WO2016030455A1 (en) | 2014-08-28 | 2016-03-03 | Medimmune Limited | Anti-b7-h1 and anti-ctla-4 antibodies for treating non-small lung cancer |
| CN106470697B (en) | 2014-09-16 | 2019-10-25 | 兴盟生物医药(苏州)有限公司 | Anti-EGFR antibodies and uses thereof |
| SG10201900564WA (en) | 2015-04-17 | 2019-02-27 | Boston Biomedical Inc | Methods for treating cancer |
| HK1250943A1 (en) | 2015-04-17 | 2019-01-18 | Boston Biomedical, Inc. | Methods for treating cancer |
| MX2017013359A (en) | 2015-04-17 | 2018-08-01 | Boston Biomedical Inc | Methods for treating cancer. |
| EA201792320A1 (en) | 2015-04-27 | 2018-02-28 | Бостон Биомедикал, Инк. | A METHOD OF TREATING CANCER BY THE INHIBITOR OF WAY STAT3 AND KINASE INHIBITOR |
| US20180140572A1 (en) | 2015-06-03 | 2018-05-24 | Boston Biomedical, Inc. | Compositions comprising a cancer stemness inhibitor and an immunotherapeutic agent for use in treating cancer |
| WO2017132049A1 (en) | 2016-01-20 | 2017-08-03 | Boston Biomedical, Inc. | Methods for treating cancer |
| US20190375723A1 (en) | 2016-11-22 | 2019-12-12 | Boston Biomedical, Inc. | New Naphtho[2,3-B]Furan Derivatives |
| WO2018183089A1 (en) | 2017-03-30 | 2018-10-04 | Boston Biomedical, Inc. | Compositions for treating and/or preventing cancer |
| CA3062656A1 (en) | 2017-05-17 | 2018-11-22 | Boston Biomedical, Inc. | Methods for treating cancer |
-
2014
- 2014-04-09 US US14/783,184 patent/US20160030384A1/en not_active Abandoned
- 2014-04-09 SG SG10201801205YA patent/SG10201801205YA/en unknown
- 2014-04-09 EP EP14723257.3A patent/EP2983790A2/en not_active Ceased
- 2014-04-09 AU AU2014250940A patent/AU2014250940A1/en not_active Abandoned
- 2014-04-09 BR BR112015025347A patent/BR112015025347A2/en not_active IP Right Cessation
- 2014-04-09 SG SG11201508358RA patent/SG11201508358RA/en unknown
- 2014-04-09 MX MX2015014181A patent/MX2015014181A/en unknown
- 2014-04-09 CN CN201480031527.9A patent/CN106211758B/en active Active
- 2014-04-09 HK HK16108303.7A patent/HK1220155A1/en unknown
- 2014-04-09 WO PCT/US2014/033566 patent/WO2014169078A2/en active Application Filing
- 2014-04-09 KR KR1020157032015A patent/KR20150139955A/en not_active Withdrawn
- 2014-04-09 RU RU2015147696A patent/RU2015147696A/en not_active Application Discontinuation
- 2014-04-09 CA CA2908380A patent/CA2908380A1/en not_active Abandoned
- 2014-04-09 JP JP2016507646A patent/JP6433085B2/en not_active Expired - Fee Related
- 2014-04-09 CN CN202110226574.0A patent/CN113491690B/en active Active
-
2018
- 2018-10-17 JP JP2018195798A patent/JP2019011369A/en not_active Withdrawn
-
2019
- 2019-08-16 US US16/543,089 patent/US10543189B2/en not_active Expired - Fee Related
-
2020
- 2020-04-07 US US16/841,807 patent/US20200397740A1/en not_active Abandoned
- 2020-08-20 JP JP2020139335A patent/JP2020186269A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060019256A1 (en) * | 2003-06-09 | 2006-01-26 | The Regents Of The University Of Michigan | Compositions and methods for treating and diagnosing cancer |
| US20100310503A1 (en) * | 2007-09-10 | 2010-12-09 | Chiang Jia Li | Novel compositions and methods for cancer treatment |
| US20130028944A1 (en) * | 2010-03-19 | 2013-01-31 | Boston Biomedical, Inc. | Novel methods for targeting cancer stem cells |
Non-Patent Citations (2)
| Title |
|---|
| Bandhavkar; Cancer Medicine, 2016, 5(4), 649-655. * |
| Kumar (International Journal of Women’s Health; 2010, 2, 411-427). * |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10377731B2 (en) | 2007-09-10 | 2019-08-13 | Boston Biomedical, Inc. | Compositions and methods for cancer treatment |
| US10543189B2 (en) | 2013-04-09 | 2020-01-28 | Boston Biomedical, Inc. | 2-acetylnaphtho[2,3-b]furan -4,9-dione for use on treating cancer |
| US11299469B2 (en) | 2016-11-29 | 2022-04-12 | Sumitomo Dainippon Pharma Oncology, Inc. | Naphthofuran derivatives, preparation, and methods of use thereof |
| US10646464B2 (en) | 2017-05-17 | 2020-05-12 | Boston Biomedical, Inc. | Methods for treating cancer |
| WO2019232214A1 (en) * | 2018-05-31 | 2019-12-05 | Boston Biomedical, Inc. | Methods of using napabucasin |
| US12257227B2 (en) | 2018-10-12 | 2025-03-25 | 1Globe Biomedical Co., Ltd. | Combination solution for treating chemotherapy refractory cancer |
Also Published As
| Publication number | Publication date |
|---|---|
| JP6433085B2 (en) | 2018-12-05 |
| MX2015014181A (en) | 2016-05-24 |
| CN113491690A (en) | 2021-10-12 |
| JP2020186269A (en) | 2020-11-19 |
| SG11201508358RA (en) | 2015-11-27 |
| CA2908380A1 (en) | 2014-10-16 |
| KR20150139955A (en) | 2015-12-14 |
| AU2014250940A1 (en) | 2015-10-22 |
| SG10201801205YA (en) | 2018-04-27 |
| CN106211758B (en) | 2021-03-23 |
| JP2019011369A (en) | 2019-01-24 |
| WO2014169078A2 (en) | 2014-10-16 |
| WO2014169078A3 (en) | 2015-03-05 |
| CN113491690B (en) | 2023-03-14 |
| US20190388382A1 (en) | 2019-12-26 |
| HK1220155A1 (en) | 2017-04-28 |
| JP2016516776A (en) | 2016-06-09 |
| EP2983790A2 (en) | 2016-02-17 |
| RU2015147696A (en) | 2017-05-12 |
| US10543189B2 (en) | 2020-01-28 |
| BR112015025347A2 (en) | 2017-07-18 |
| CN106211758A (en) | 2016-12-07 |
| US20200397740A1 (en) | 2020-12-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10543189B2 (en) | 2-acetylnaphtho[2,3-b]furan -4,9-dione for use on treating cancer | |
| US9381184B2 (en) | Compounds and compositions for targeting cancer stem cells | |
| US9730909B2 (en) | Methods for targeting cancer stem cells | |
| EP3108750B1 (en) | Novel compounds and compositions for targeting cancer stem cells | |
| AU2015218436B2 (en) | Novel Methods For Targeting Cancer Stem Cells | |
| HK1179478A (en) | Novel methods for targeting cancer stem cells | |
| HK1179478B (en) | Novel methods for targeting cancer stem cells | |
| HK1229744A1 (en) | 2-acetylnaphtho[2,3-b]furan -4,9-dione for use on treating cancer | |
| HK1179535B (en) | Novel compounds and compositions for targeting cancer stem cells | |
| HK1179535A (en) | Novel compounds and compositions for targeting cancer stem cells |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: BOSTON BIOMEDICAL, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LI, YOUZHI;REEL/FRAME:037127/0975 Effective date: 20151106 Owner name: BOSTON BIOMEDICAL, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HILTON, MATTHEW;REEL/FRAME:037128/0133 Effective date: 20151106 Owner name: BOSTON BIOMEDICAL, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEGGETT, DAVID;REEL/FRAME:037127/0877 Effective date: 20151119 Owner name: BOSTON BIOMEDICAL, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LI, WEI;REEL/FRAME:037128/0100 Effective date: 20151105 Owner name: BOSTON BIOMEDICAL, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LI, CHIANG JIA;REEL/FRAME:037128/0031 Effective date: 20151111 |
|
| AS | Assignment |
Owner name: BOSTON BIOMEDICAL, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KERSTEIN, DAVID;REEL/FRAME:037585/0947 Effective date: 20151124 |
|
| STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: BOSTON BIOMEDICAL, INC., MASSACHUSETTS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CONVEYING PARTY NAME PREVIOUSLY RECORDED AT REEL: 37128 FRAME: 133. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:HITRON, MATTHEW;REEL/FRAME:049312/0021 Effective date: 20151106 |