US20170350935A1 - Electrical branch circuit deterioration test system - Google Patents
Electrical branch circuit deterioration test system Download PDFInfo
- Publication number
- US20170350935A1 US20170350935A1 US15/169,844 US201615169844A US2017350935A1 US 20170350935 A1 US20170350935 A1 US 20170350935A1 US 201615169844 A US201615169844 A US 201615169844A US 2017350935 A1 US2017350935 A1 US 2017350935A1
- Authority
- US
- United States
- Prior art keywords
- circuit
- current
- voltage
- microcontroller
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2832—Specific tests of electronic circuits not provided for elsewhere
- G01R31/2836—Fault-finding or characterising
- G01R31/2849—Environmental or reliability testing, e.g. burn-in or validation tests
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/04—Measuring peak values or amplitude or envelope of AC or of pulses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/175—Indicating the instants of passage of current or voltage through a given value, e.g. passage through zero
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/25—Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
- G01R19/2503—Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques for measuring voltage only, e.g. digital volt meters (DVM's)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/66—Testing of connections, e.g. of plugs or non-disconnectable joints
Definitions
- the present invention relates generally to electrical systems, and in particular to a system and method for testing building electrical systems.
- Residential and commercial buildings often include complex electrical wiring systems that include several branch circuits. These wiring systems may, over time, develop loose connections and/or deteriorated junctions. At these deteriorated junctions, heat may be produced which may form an oxide when a copper wire heats and cools. Copper oxide has semiconductor characteristics and may behave as a p-n junction possessing a forward conducting voltage and a reverse breakdown voltage. When line currents pass through the deteriorated junction, the built up oxide causes further heating and cooling, which in turn, generates further oxide buildup. It is desirable to detect these deteriorated junctions early and effectively so as to facilitate repair of the junction prior to it evolving into a more serious electrical issue.
- a system for detecting deteriorated junctions within an electrical circuit includes a voltage channel circuit, a load circuit, and a microcontroller.
- the voltage channel circuit is connectable to the electrical circuit and includes a multiplier circuit, a peak detector circuit, and a filter circuit.
- the multiplier circuit is configured to square a channel voltage indicative of the line voltage of the electrical circuit.
- the peak detector circuit is configured to detect a peak voltage of the channel voltage based on an output of the multiplier circuit.
- the filter circuit is configured to provide a direct current (DC) output voltage based on the output of the multiplier circuit.
- the load circuit is connectable to the voltage channel and includes a plurality of resistors and a plurality of switches.
- the microcontroller is configured to control the plurality of switches to enable current to flow through the plurality of resistors to measure the channel voltage of the electrical circuit, and wherein the microcontroller is configured to detect a deteriorated junction based upon a comparative shift of the output of the peak detector circuit and/or the DC output voltage.
- a method of testing for deteriorated junctions within an electrical circuit includes connecting, by a microcontroller, a first set of resistors across a line voltage of the electrical circuit to draw a first current; outputting, by a peak detector circuit, a peak voltage of the line voltage based on the draw of the first current; connecting, by the microcontroller, a second set of resistors across the line voltage to draw a second current greater than the first current; outputting, by a first filter circuit, a direct current (DC) output voltage based on the line voltage and the draw of the second current; and detecting, by the microcontroller, a deteriorated junction of the electrical circuit based on the peak voltage and the DC output voltage.
- DC direct current
- FIG. 1 is a block diagram illustrating an electrical system that includes a plug-in test device for detecting deteriorated junctions.
- FIG. 2 is a block diagram illustrating a plug-in test device for detecting deteriorated junctions in a branch circuit of an electrical system.
- FIGS. 3A and 3B are a block diagram and circuit schematic, respectively, of a voltage channel utilized to detect deteriorated junctions in a branch circuit of an electrical system.
- FIGS. 4A and 4B are a block diagram and circuit schematic, respectively, of a current channel utilized to detect deteriorated junctions in a branch circuit of an electrical system.
- FIG. 5 is a flowchart illustrating a method of detecting deteriorated junctions in electrical circuits utilizing a plug-in test device.
- a system and method for detecting deteriorated junctions in electrical circuits.
- the system includes a plug-in device that attaches to electrical branch circuits, for example, through outlets and/or other receptacles.
- the plug-in device includes circuits configured to perform, for example, two test protocols.
- the first test protocol includes detection of a peak voltage.
- the peak voltage is detected, for example, by squaring the sinusoidal channel voltage on the branch circuit under test.
- the detected peak voltage may be provided to a microcontroller for further processing. If the peak voltage indicates a significant voltage alteration from the circuit breaker panel to the test device, a deteriorated junction may be indicated.
- the second test protocol includes monitoring direct current (DC) and low frequency components of the channel voltage on the branch circuit under test over an extended time period of three minutes, for example, while also monitoring the current in the branch circuit for random disturbances.
- This second test protocol allows the branch circuit to heat up, causing a deteriorated junction to act as a modulating entity. This modulation may be detected by monitoring the DC and low frequency components of the channel voltage on the branch circuit under test. The deteriorated junction may also produce random disturbances in the current on the branch circuit under test.
- the current channel compares or correlates a voltage indicative of the line current to a reference voltage indicative of the undisturbed line current to detect random disturbances in line current. In this way, deteriorated junctions may be detected by both a peak voltage and low frequency components of a heated circuit using the voltage channel and by random disturbances in line current using the current channel.
- FIG. 1 is a block diagram illustrating electrical circuit 10 that includes plug-in test device 12 for detecting deteriorated junctions.
- Circuit 10 includes circuit breaker panel 14 and branch circuits 16 a - 16 n .
- Each branch circuit 16 a - 16 n includes any number of outlets 18 .
- Plug-in test device 12 may connect to, for example, any of outlets 18 .
- plug-in test device 12 may be configured to attach to other end-points of a branch circuit 16 a - 16 n such as, for example, plugged into receptacles or attached to switches.
- Circuit breaker panel 14 may be utilized to control, through individual circuit breakers, the distribution of mains power 20 to each respective branch circuit 16 a - 16 n.
- FIG. 2 is a block diagram illustrating plug-in test device 12 for detecting deteriorated junction 30 in any of branch circuits 16 a - 16 n .
- Test device 12 may be connected to outlet 18 and is configured to monitor lines 32 a and 32 b of the respective branch circuit 16 a - 16 n to detect, for example, deteriorated junction 30 .
- Deteriorated junction 30 may be, for example, any junction in the respective branch circuit 16 a - 16 n that has become loose, corroded, oxidized, or deteriorated in any other way.
- Test device 12 includes voltage channel 34 , first resistor circuit 38 , second resistor circuit 40 , current channel 42 , microcontroller 44 , display 46 , switches 48 a - 48 n , relay 50 , relay control switch 52 , attenuator 54 and current sensor 56 .
- Microcontroller 44 may be any circuit capable of, for example, executing software or other programmed instructions.
- First resistor circuit 38 may be a load circuit that includes resistors R 1 -R 4
- second resistor circuit 40 may be a load circuit that includes resistors R 5 -R 8 .
- Microcontroller 44 receives input from voltage channel 34 and current channel 42 , and provides output to control display 46 , switches 48 a - 48 n , and relay 50 .
- Display 46 may be any display capable of providing visual and/or audio output, such as a light-emitting diode (LED) display. Display 46 may be utilized, for example, to provide visual indications regarding a tested branch circuit 16 a - 16 n such as, but not limited to, detected arc faults, detected deteriorated junctions, successful tests, internal faults and any other desirable information.
- LED light-emitting diode
- voltage channel 34 and current channel 42 may be implemented on the same circuit board, for example.
- This circuit board may be located in a first housing, along with first resistor circuit 38 (which may be implemented on a separate circuit board, for example).
- Second resistor circuit 40 may be implemented within a second housing, apart from the first housing. This may be advantageous due to the power drawn, and thus, the heat generated by second resistor circuit 40 .
- the two housings may be connected by wiring, for example.
- Plug-in test device 12 may perform, for example, two tests for a respective branch circuit 16 a - 16 n .
- the first test may be referred to as a “cold junction test.”
- switches 48 a - 48 n are controlled by microcontroller 44 to enable current flow through respective resistors R 1 -R 4 .
- Resistors R 1 -R 4 are sized, for example, to not draw an excessive amount of current so as not to heat the respective branch circuit 16 a - 16 n .
- resistors R 1 -R 4 may be sized such that the current draw is great enough to establish a baseline peak voltage for the cold junction test.
- test device 12 may be configured to connect directly to outlets 18 . In other embodiments, test device 12 may be configured to plug into other receptacles or other portions of a respective branch circuit 16 a - 16 n.
- Switches 48 a - 48 n may be controlled, for example, in succession to enable a greater current draw over several line cycles.
- switch 48 a may be enabled for a short time period, such as several cycles of current on line 32 a , to enable a first current draw through resistor R 1 . This may be repeated for each switch 48 a - 48 n to gradually increase the current over several cycles.
- microcontroller 44 is able to determine peak voltages using voltage channel 34 for the respective branch circuit 16 a - 16 n while the circuit is at a relatively cool temperature.
- Switches 48 a - 48 n may be implemented as thyristors, for example, or as any other type of switch controllable to provide current to resistors R 1 -R 4 .
- Microcontroller 44 may utilize the determined peak voltage to detect a deteriorated junction within the respective branch circuit 16 a - 16 n .
- the maximum amplitude of the voltage coming into circuit breaker panel 14 from mains power 20 may be 170 volts. If the peak voltage detected by voltage channel 34 during the cold junction test is 150 volts, for example, microcontroller 44 may indicate a deteriorated junction for the respective branch circuit 16 a - 16 n .
- Microcontroller 44 may be configured to indicate a deteriorated junction for any selected voltage drop such as, for example, a five percent voltage drop.
- Microcontroller 44 may utilize a calibrated voltage from current channel 42 and the determined peak voltage to determine the impedance of the branch circuit 16 a - 16 n .
- Microcontroller 44 may be configured to indicate a deteriorated junction for any selected impedance shift such as, for example, a five percent shift or from an absolute impedance value, for example, of 0.5 Ohms.
- the second test may be referred to as the “extended time test.”
- second resistor circuit 40 may be utilized to draw significant current from line 32 a for an extended period of time such as, for example, several minutes.
- Resistors R 5 -R 8 may be power resistors implemented, for example, as glass fired resistors mounted on fan cooled heat sinks. In other embodiments, any other linear load capable of handling large currents may be utilized in place of resistors R 5 -R 8 .
- Switch 52 may be controlled by microcontroller 44 to control relay 50 . Relay 50 is closed during the extended time test to enable current flow to resistors R 5 -R 8 .
- Switch 52 may be implemented as a metal-oxide-semiconductor field-effect transistor (MOSFET) or any other switch controllable by microprocessor 44 .
- MOSFET metal-oxide-semiconductor field-effect transistor
- Heat is a product of deteriorated junction 30 .
- oxides may be formed on the wire. As the thickness of the oxide increases, more heat may be produced at the junction, which in turn results in even greater oxide formation.
- Copper oxides for example, have semiconductor properties and act as a resistive p-n junction.
- a p-n junction is a non-linear, rectifying device possessing a forward conducting voltage and a reverse breakdown voltage.
- deteriorated junction 30 When a line current of 60 Hz, for example, passes through deteriorated junction 30 , heating and cooling effects may occur (i.e., the circuit heats as the line voltage reaches its maximum amplitude, and cools as the line voltage passes through zero volts) and deteriorated junction 30 may amplitude modulate the line voltage as well as produce additional frequency components on lines 32 a and 32 b .
- the extended time test is utilized to detect the amplitude modulation and additional frequency components.
- Another product of a deteriorated junction may be random pulse-like disturbances in the current on lines 32 a and 32 b . These disturbances may be indicative of charge build-up and air breakdown of the junction, for example. These random disturbances in line current can generate further heat, which may exacerbate the deterioration of junction 30 .
- the extended time test is further utilized to detect these random disturbances in current on lines 32 a and 32 b using current channel 42 .
- Prior art methods of detecting deteriorated junction 30 include monitoring the line voltage on lines 32 a and 32 b solely to observe a voltage drop. For example, a device may be connected to one of outlets 18 for a short time period to detect a voltage drop from breaker panel 14 to outlet 18 . If the voltage drop is greater than a given amount, a deteriorated junction may be indicated. This method does not allow the circuit to generate any significant heat, which might prevent deteriorated junction 30 from modulating or producing any other additional frequency components. Because of this, deteriorated junctions 30 may go undetected. By heating each branch circuit 16 a - 16 n and monitoring for modulation and other frequency components, such as random disturbances in current, deteriorated junctions 30 may be detected and repaired in a sooner, more efficient manner.
- Current channel 42 may be utilized to detect random disturbances in current on the respective branch circuit 16 a - 16 n .
- Current channel 42 may generate a reference voltage indicative of the undisturbed line current that may be compared to a voltage indicative of the current on lines 32 a and 32 b .
- Load current may be sensed by current sensor 56 and provided to current channel 42 .
- Current channel 42 may condition the sensed current to generate a reference voltage indicative of the expected current on lines 32 a and 32 b in the absence of any random disturbances.
- Current channel 42 may compare the generated reference voltage to a voltage indicative of the actual sensed current on lines 32 a and 32 b to detect random disturbances in the current.
- Deteriorated junction 30 may cause the current on lines 32 a and 32 b to display random, pulse-like disturbances indicative of charge build-up and air breakdown at junction 30 . These disturbances may generate significant heat, which may cause further breakdown of deteriorated junction 30 . By detecting any random disturbances in current, current channel 42 allows plug-in device 12 to effectively detect deteriorated junction 30 .
- FIGS. 3A and 3B are a block diagram and circuit schematic, respectively, of voltage channel 34 .
- Voltage channel 34 includes differential amplifier 60 , multiplier circuit 62 , amplifier 64 , low pass filter 66 , peak detector circuit 68 , direct current (DC) processing circuit 70 and zero-cross detection circuit 72 (which receives a reference voltage input illustrated as reference circuit 71 in FIG. 3B ).
- Differential amplifier 60 may be implemented to receive and condition the signals on lines 32 a and 32 b through attenuator 54 .
- Attenuator 54 may be implemented as a transformer, for example, to adjust the voltage from lines 32 a and 32 b to a desirable voltage for voltage channel 34 .
- V L ( V P ) ⁇ ( 1 + - r ⁇ ( t ) R + r ⁇ ( t ) ) ⁇ cos ⁇ ( wt ) [ 1 ]
- the modulation frequency may be of the same order as the carrier signal and thus, the information regarding deteriorated junction 30 may be contained only within the DC and low frequency components of the line voltage.
- multiplier circuit 62 is utilized to “square” the signal received through differential amplifier 60 .
- the result may be modeled as a square of equation [1], as illustrated by equation [2]:
- n is the attenuation produced by attenuator 54 , for example.
- the 2 nd harmonic may be filtered from equation [2] (e.g., using low pass filter 66 ) and the result, illustrated in equation [3], provides DC and low frequency information about deteriorated junction 30 .
- V D ⁇ ⁇ C ⁇ ⁇ and ⁇ ⁇ Low ⁇ ⁇ Freq ( V P n ) 2 ⁇ ( 1 + - r ⁇ ( t ) R + r ⁇ ( t ) ) 2 2 [ 3 ]
- V DC and Low Freq is the output, for example, of low pass filter 66 .
- the output of low pass filter circuit 66 may be processed by DC processing circuit 70 and provided to microcontroller 44 .
- This processing may include, for example, conditioning of the signal, further filtering of unwanted components, and any other desired conditioning of the DC and low-frequency analog components provided to microcontroller 44 .
- deteriorated junction 30 acts as a modulating entity when the respective branch circuit 16 a - 16 n is heated. DC and low frequency components are produced, and are a result of line voltage amplitude modulation as the respective branch circuit 16 a - 16 n heats and cools.
- low pass filter circuit 66 and DC processing circuit 70 may be utilized during the extended time test to detect deteriorated junctions 30 while the circuit is heating up through the use of second resistor circuit 40 .
- Microprocessor 44 detects the modulations within the DC and low frequency components provided by voltage channel 34 to detect deteriorated junction 30 .
- voltage channel 34 further includes peak detection of the channel voltage, which is also processed from the output of multiplier circuit 62 , as modeled in equation [2].
- Amplifier circuit 64 receives the output of multiplier circuit 62 and provides signal conditioning. This may include, for example, amplification of the signal to provide ease of processing for peak detector circuit 68 .
- Peak detector circuit 68 may provide an output to microcontroller 44 indicative of a peak voltage seen on lines 32 a and 32 b for a given time period.
- peak detection circuit 68 may include reset line 74 from microcontroller 44 .
- This reset line may allow microcontroller 44 to “reset” the peak voltage output of peak detector circuit 68 to a baseline value, such as zero volts, in order to start tracking a new peak voltage based on switch configuration 48 a - 48 n as controlled by microcontroller 44 .
- the output of peak detector circuit 68 will be a voltage value indicative of the peak voltage on lines 32 a and 32 b during the duration of each respective switch configuration 48 a - 48 n.
- Zero-cross detection circuit 72 may be utilized to provide an indication to microcontroller 44 that the line voltage on lines 32 a and 32 b is at a zero-crossing (i.e. the voltage is passing from positive to negative or negative to positive). This may be useful for microcontroller 44 when controlling, for example, switches 48 a - 48 n and 52 of test device 12 . By switching at zero-crossing of the line voltage, the electromagnetic interference (EMI) that may be generated during that switching is reduced, providing better performance for test device 12 .
- EMI electromagnetic interference
- FIGS. 4A and 4B are a block diagram and circuit schematic, respectively, of current channel 42 .
- Current channel 42 includes input amplifier circuit 80 , square wave circuit 82 , phase locked loop (PLL) circuit 84 , low pass filter 86 , DC block and phase correction circuit 88 , absolute value circuit 90 , constant amplitude circuit 92 , DC block and absolute value circuit 94 , and signal comparison circuit 96 .
- the output of constant amplitude circuit 92 is a positive voltage reference signal that is indicative of the undisturbed line current and provided to signal comparison circuit 96 and microcontroller 44 .
- the output of DC block and absolute value circuit 94 is a positive voltage value indicative of the current on lines 32 a and 32 b and is provided to signal comparison circuit 96 and microcontroller 44 .
- the reference signal is a value that may be indicative of an expected current on lines 32 a and 32 b in the absence of any deteriorated junctions within the respective branch circuit 16 a - 16 n .
- Input amplifier circuit 80 provides a single-ended output based on the differential input from current sensor 56 .
- Square wave circuit 82 converts the input signal (i.e., the sine wave signal) into a non-sinusoidal periodic signal. This signal is provided to PLL circuit 84 .
- PLL circuit 84 may be utilized to lock onto the line frequency of the square wave signal from circuit 82 to control the phase and/or frequency of the reference signal.
- the output of PLL circuit 84 is provided to low pass filter 86 , which may be implemented to pass the line frequency while rejecting higher order harmonics of the PLL output.
- DC block and phase correction circuit 88 may be configured to filter DC components of the reference signal and correct the phase of the reference signal from low pass filter circuit 86 to match the phase of the line current. The phase may need to be corrected due to phase shifts caused by low pass filter 86 and/or other analog delay components of current channel 42 .
- Absolute value circuit 90 may be configured to provide a unidirectional signal indicative of the magnitude of the input signal. Absolute value circuit 90 may also provide zero cross-over distortion, for example, which may flatten the reference signal at zero crossings.
- the output of absolute value circuit 90 may be provided to constant amplitude circuit 92 which may be configured to provide automatic gain control, for example, to control the amplitude of the reference signal.
- amplitude circuit 92 may include a divider feedback circuit utilized to maintain a desired amplitude of the reference single when the line signal, for example, decreases unexpectedly based on random disturbances in the line current.
- the reference signal 98 output by constant amplitude circuit 92 may be conditioned and provided to signal comparison circuit 96 as a first input.
- DC block and absolute value circuit 94 may be configured to filter any DC components from amplifier circuit 80 and provide a unidirectional signal (of the same direction as the reference signal) indicative of the magnitude of the line current on lines 32 a and 32 b .
- the output of DC block and absolute value circuit 94 may be provided to signal comparison circuit 96 as a second input.
- Signal comparison circuit 96 may be configured to compare reference signal 98 to the conditioned line signal 100 .
- the conditioned line signal will be greater than the reference signal.
- signal comparison circuit 96 may be configured to provide indication to microprocessor 44 whenever the line signal falls below the reference signal. Microprocessor 44 may utilize this indication to detect deteriorated junction 30 and/or other disturbances on respective branch circuit 16 a - 16 n .
- the line signal and reference signal may also be provided directly to microprocessor 44 in order to allow microprocessor to perform further monitoring and correlation.
- FIG. 5 is a flowchart illustrating method 120 for testing branch circuits 16 a - 16 n for deteriorated junction 30 utilizing test device 12 . All steps may be performed by any combination of software or other programmed instructions implemented on microcontroller 44 , other circuit components, and a technician performing a test utilizing test device 12 .
- all cord and plug appliances may be disconnected from wall receptacles and outlets 18 of the respective branch circuit 16 a - 16 n . This ensures that the respective branch circuit 16 a - 16 n under test is sufficiently isolated from any equipment that may influence the test of the respective branch circuit 16 a - 16 n.
- the cold junction test is started by enabling thyristors 48 a - 48 n in succession, for example, to enable current to flow to first resistor circuit 38 .
- Microcontroller 44 resets peak voltage detector circuit 68 .
- peak detector circuit 68 is utilized to provide a voltage to microcontroller 44 that is indicative of the peak voltage on lines 32 a and 32 b .
- microcontroller 44 determines if a deteriorated junction 30 is present based upon the peak voltage provided by peak detector circuit 68 .
- microcontroller 44 may check to verify that the peak voltage provided by peak detector circuit 68 is no less than five percent lower, for example, than one hundred and seventy volts. If it is, method 120 may proceed to step 130 and indicate that a deteriorated junction has been detected in the respective branch circuit 16 a - 16 n under test. If no deteriorated junction is detected at step 128 , method 120 proceeds to step 132 .
- Microcontroller 44 disables current flow to first resistor circuit 38 by controlling thyristors 48 a - 48 n .
- Microcontroller 44 enables switch 52 to close relay 50 to enable current flow to second resistor circuit 40 .
- Second resistor circuit 40 draws significantly more power than first resistor circuit 38 and thus, heats up the respective branch circuit 16 a - 16 n.
- step 134 voltage channel 34 provides DC and low frequency components of the line voltage to microcontroller 44 .
- Microcontroller 44 monitors the DC and low frequency components to determine if a deteriorated junction is detected in the respective branch circuit 16 a - 16 n .
- step 136 microcontroller 44 monitors the output of current channel 42 to monitor, for example, any random disturbances in the line current apart from the utility frequency generated on lines 32 a and 32 b.
- step 138 it is determined if the DC and low frequency components provided by voltage channel 34 are indicative of a deteriorated junction. If so, method 120 proceeds to step 130 and a warning is indicated. The deteriorated junction warning may be indicated to a technician, for example, using display 46 .
- step 140 it is determined, by microcontroller 44 , if the output of current channel 42 is indicative of random disturbances in the line current. If so, method 120 proceeds to step 130 and a warning is indicated. If no modulation is detected at step 138 and no random disturbances are detected at step 140 , method 120 proceeds to step 142 .
- step 142 it is determined if the extended time test has completed. If it is not completed (e.g., the test has not been run for the full time, for example, of three minutes), method 120 returns to step 132 and continues to run the extended time test. If the test is completed, method 120 proceeds to step 144 and a successful test is indicated. Method 120 may be repeated for all outlets 18 of each respective branch circuit 16 a - 16 n.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Power Engineering (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
Description
- The present invention relates generally to electrical systems, and in particular to a system and method for testing building electrical systems.
- Residential and commercial buildings, for example, often include complex electrical wiring systems that include several branch circuits. These wiring systems may, over time, develop loose connections and/or deteriorated junctions. At these deteriorated junctions, heat may be produced which may form an oxide when a copper wire heats and cools. Copper oxide has semiconductor characteristics and may behave as a p-n junction possessing a forward conducting voltage and a reverse breakdown voltage. When line currents pass through the deteriorated junction, the built up oxide causes further heating and cooling, which in turn, generates further oxide buildup. It is desirable to detect these deteriorated junctions early and effectively so as to facilitate repair of the junction prior to it evolving into a more serious electrical issue.
- A system for detecting deteriorated junctions within an electrical circuit includes a voltage channel circuit, a load circuit, and a microcontroller. The voltage channel circuit is connectable to the electrical circuit and includes a multiplier circuit, a peak detector circuit, and a filter circuit. The multiplier circuit is configured to square a channel voltage indicative of the line voltage of the electrical circuit. The peak detector circuit is configured to detect a peak voltage of the channel voltage based on an output of the multiplier circuit. The filter circuit is configured to provide a direct current (DC) output voltage based on the output of the multiplier circuit. The load circuit is connectable to the voltage channel and includes a plurality of resistors and a plurality of switches. The microcontroller is configured to control the plurality of switches to enable current to flow through the plurality of resistors to measure the channel voltage of the electrical circuit, and wherein the microcontroller is configured to detect a deteriorated junction based upon a comparative shift of the output of the peak detector circuit and/or the DC output voltage.
- A method of testing for deteriorated junctions within an electrical circuit includes connecting, by a microcontroller, a first set of resistors across a line voltage of the electrical circuit to draw a first current; outputting, by a peak detector circuit, a peak voltage of the line voltage based on the draw of the first current; connecting, by the microcontroller, a second set of resistors across the line voltage to draw a second current greater than the first current; outputting, by a first filter circuit, a direct current (DC) output voltage based on the line voltage and the draw of the second current; and detecting, by the microcontroller, a deteriorated junction of the electrical circuit based on the peak voltage and the DC output voltage.
-
FIG. 1 is a block diagram illustrating an electrical system that includes a plug-in test device for detecting deteriorated junctions. -
FIG. 2 is a block diagram illustrating a plug-in test device for detecting deteriorated junctions in a branch circuit of an electrical system. -
FIGS. 3A and 3B are a block diagram and circuit schematic, respectively, of a voltage channel utilized to detect deteriorated junctions in a branch circuit of an electrical system. -
FIGS. 4A and 4B are a block diagram and circuit schematic, respectively, of a current channel utilized to detect deteriorated junctions in a branch circuit of an electrical system. -
FIG. 5 is a flowchart illustrating a method of detecting deteriorated junctions in electrical circuits utilizing a plug-in test device. - A system and method is disclosed herein for detecting deteriorated junctions in electrical circuits. The system includes a plug-in device that attaches to electrical branch circuits, for example, through outlets and/or other receptacles. The plug-in device includes circuits configured to perform, for example, two test protocols. The first test protocol includes detection of a peak voltage. The peak voltage is detected, for example, by squaring the sinusoidal channel voltage on the branch circuit under test. The detected peak voltage may be provided to a microcontroller for further processing. If the peak voltage indicates a significant voltage alteration from the circuit breaker panel to the test device, a deteriorated junction may be indicated.
- The second test protocol includes monitoring direct current (DC) and low frequency components of the channel voltage on the branch circuit under test over an extended time period of three minutes, for example, while also monitoring the current in the branch circuit for random disturbances. This second test protocol allows the branch circuit to heat up, causing a deteriorated junction to act as a modulating entity. This modulation may be detected by monitoring the DC and low frequency components of the channel voltage on the branch circuit under test. The deteriorated junction may also produce random disturbances in the current on the branch circuit under test. During the second test protocol, the current channel compares or correlates a voltage indicative of the line current to a reference voltage indicative of the undisturbed line current to detect random disturbances in line current. In this way, deteriorated junctions may be detected by both a peak voltage and low frequency components of a heated circuit using the voltage channel and by random disturbances in line current using the current channel.
-
FIG. 1 is a block diagram illustratingelectrical circuit 10 that includes plug-intest device 12 for detecting deteriorated junctions.Circuit 10 includescircuit breaker panel 14 and branch circuits 16 a-16 n. Each branch circuit 16 a-16 n includes any number ofoutlets 18. Plug-intest device 12 may connect to, for example, any ofoutlets 18. In other embodiments, plug-intest device 12 may be configured to attach to other end-points of a branch circuit 16 a-16 n such as, for example, plugged into receptacles or attached to switches.Circuit breaker panel 14 may be utilized to control, through individual circuit breakers, the distribution ofmains power 20 to each respective branch circuit 16 a-16 n. - With continued reference to
FIG. 1 ,FIG. 2 is a block diagram illustrating plug-intest device 12 for detecting deterioratedjunction 30 in any of branch circuits 16 a-16 n.Test device 12 may be connected tooutlet 18 and is configured to monitorlines junction 30. Deterioratedjunction 30 may be, for example, any junction in the respective branch circuit 16 a-16 n that has become loose, corroded, oxidized, or deteriorated in any other way. -
Test device 12 includesvoltage channel 34,first resistor circuit 38,second resistor circuit 40,current channel 42,microcontroller 44,display 46, switches 48 a-48 n,relay 50,relay control switch 52,attenuator 54 andcurrent sensor 56.Microcontroller 44 may be any circuit capable of, for example, executing software or other programmed instructions.First resistor circuit 38 may be a load circuit that includes resistors R1-R4, andsecond resistor circuit 40 may be a load circuit that includes resistors R5-R8.Microcontroller 44 receives input fromvoltage channel 34 andcurrent channel 42, and provides output tocontrol display 46, switches 48 a-48 n, andrelay 50.Display 46 may be any display capable of providing visual and/or audio output, such as a light-emitting diode (LED) display.Display 46 may be utilized, for example, to provide visual indications regarding a tested branch circuit 16 a-16 n such as, but not limited to, detected arc faults, detected deteriorated junctions, successful tests, internal faults and any other desirable information. - In an embodiment,
voltage channel 34 andcurrent channel 42 may be implemented on the same circuit board, for example. This circuit board may be located in a first housing, along with first resistor circuit 38 (which may be implemented on a separate circuit board, for example).Second resistor circuit 40 may be implemented within a second housing, apart from the first housing. This may be advantageous due to the power drawn, and thus, the heat generated bysecond resistor circuit 40. The two housings may be connected by wiring, for example. - Plug-in
test device 12 may perform, for example, two tests for a respective branch circuit 16 a-16 n. The first test may be referred to as a “cold junction test.” During the cold junction test, switches 48 a-48 n are controlled bymicrocontroller 44 to enable current flow through respective resistors R1-R4. Resistors R1-R4 are sized, for example, to not draw an excessive amount of current so as not to heat the respective branch circuit 16 a-16 n. However, resistors R1-R4 may be sized such that the current draw is great enough to establish a baseline peak voltage for the cold junction test. - Upon beginning the cold junction test, all cord and plug appliances may be disconnected from wall receptacles and
outlets 18 of the respective branch circuit 16 a-16 n. This ensures that the respective branch circuit 16 a-16 n is sufficiently isolated from any equipment that may influence the test of the respective branch circuit 16 a-16 n. This test may be performed, for example, for eachoutlet 18 of the respective branch circuit 16 a-16 n.Test device 12 may be configured to connect directly tooutlets 18. In other embodiments,test device 12 may be configured to plug into other receptacles or other portions of a respective branch circuit 16 a-16 n. - Switches 48 a-48 n may be controlled, for example, in succession to enable a greater current draw over several line cycles. For example, switch 48 a may be enabled for a short time period, such as several cycles of current on
line 32 a, to enable a first current draw through resistor R1. This may be repeated for each switch 48 a-48 n to gradually increase the current over several cycles. By drawing current through resistors R1-R4 for a short time,microcontroller 44 is able to determine peak voltages usingvoltage channel 34 for the respective branch circuit 16 a-16 n while the circuit is at a relatively cool temperature. Switches 48 a-48 n may be implemented as thyristors, for example, or as any other type of switch controllable to provide current to resistors R1-R4. -
Microcontroller 44 may utilize the determined peak voltage to detect a deteriorated junction within the respective branch circuit 16 a-16 n. For example, the maximum amplitude of the voltage coming intocircuit breaker panel 14 frommains power 20 may be 170 volts. If the peak voltage detected byvoltage channel 34 during the cold junction test is 150 volts, for example,microcontroller 44 may indicate a deteriorated junction for the respective branch circuit 16 a-16 n.Microcontroller 44 may be configured to indicate a deteriorated junction for any selected voltage drop such as, for example, a five percent voltage drop.Microcontroller 44 may utilize a calibrated voltage fromcurrent channel 42 and the determined peak voltage to determine the impedance of the branch circuit 16 a-16 n.Microcontroller 44 may be configured to indicate a deteriorated junction for any selected impedance shift such as, for example, a five percent shift or from an absolute impedance value, for example, of 0.5 Ohms. - The second test may be referred to as the “extended time test.” In the extended time test,
second resistor circuit 40 may be utilized to draw significant current fromline 32 a for an extended period of time such as, for example, several minutes. Resistors R5-R8 may be power resistors implemented, for example, as glass fired resistors mounted on fan cooled heat sinks. In other embodiments, any other linear load capable of handling large currents may be utilized in place of resistors R5-R8.Switch 52 may be controlled bymicrocontroller 44 to controlrelay 50.Relay 50 is closed during the extended time test to enable current flow to resistors R5-R8.Switch 52 may be implemented as a metal-oxide-semiconductor field-effect transistor (MOSFET) or any other switch controllable bymicroprocessor 44. - Heat is a product of deteriorated
junction 30. When a copper wire, for example, heats and cools, oxides may be formed on the wire. As the thickness of the oxide increases, more heat may be produced at the junction, which in turn results in even greater oxide formation. Copper oxides, for example, have semiconductor properties and act as a resistive p-n junction. A p-n junction is a non-linear, rectifying device possessing a forward conducting voltage and a reverse breakdown voltage. When a line current of 60 Hz, for example, passes through deterioratedjunction 30, heating and cooling effects may occur (i.e., the circuit heats as the line voltage reaches its maximum amplitude, and cools as the line voltage passes through zero volts) and deterioratedjunction 30 may amplitude modulate the line voltage as well as produce additional frequency components onlines - Another product of a deteriorated junction may be random pulse-like disturbances in the current on
lines junction 30. The extended time test is further utilized to detect these random disturbances in current onlines current channel 42. - Prior art methods of detecting deteriorated
junction 30 include monitoring the line voltage onlines outlets 18 for a short time period to detect a voltage drop frombreaker panel 14 tooutlet 18. If the voltage drop is greater than a given amount, a deteriorated junction may be indicated. This method does not allow the circuit to generate any significant heat, which might prevent deterioratedjunction 30 from modulating or producing any other additional frequency components. Because of this, deterioratedjunctions 30 may go undetected. By heating each branch circuit 16 a-16 n and monitoring for modulation and other frequency components, such as random disturbances in current, deterioratedjunctions 30 may be detected and repaired in a sooner, more efficient manner. -
Current channel 42 may be utilized to detect random disturbances in current on the respective branch circuit 16 a-16 n.Current channel 42 may generate a reference voltage indicative of the undisturbed line current that may be compared to a voltage indicative of the current onlines current sensor 56 and provided tocurrent channel 42.Current channel 42 may condition the sensed current to generate a reference voltage indicative of the expected current onlines Current channel 42 may compare the generated reference voltage to a voltage indicative of the actual sensed current onlines Deteriorated junction 30 may cause the current onlines junction 30. These disturbances may generate significant heat, which may cause further breakdown of deterioratedjunction 30. By detecting any random disturbances in current,current channel 42 allows plug-indevice 12 to effectively detect deterioratedjunction 30. - With continued reference to
FIGS. 1 and 2 ,FIGS. 3A and 3B are a block diagram and circuit schematic, respectively, ofvoltage channel 34.Voltage channel 34 includesdifferential amplifier 60,multiplier circuit 62,amplifier 64,low pass filter 66,peak detector circuit 68, direct current (DC)processing circuit 70 and zero-cross detection circuit 72 (which receives a reference voltage input illustrated asreference circuit 71 inFIG. 3B ).Differential amplifier 60 may be implemented to receive and condition the signals onlines attenuator 54.Attenuator 54 may be implemented as a transformer, for example, to adjust the voltage fromlines voltage channel 34. - A simple model of the line voltage in the presence of a heat-induced modulating deteriorated junction is illustrated by equation [1]:
-
- where:
-
- VL is the line voltage;
- t is time;
- Vp is the peak line voltage (e.g., one hundred seventy volts);
-
- is the modulating mechanism (i.e. deteriorated junction 30); and
-
- For amplitude modulation, direct current (DC) and low frequency components are not considered to provide useful information and are traditionally discarded. However, in the case of a deteriorated junction, the modulation frequency may be of the same order as the carrier signal and thus, the information regarding deteriorated
junction 30 may be contained only within the DC and low frequency components of the line voltage. - To process this information,
multiplier circuit 62 is utilized to “square” the signal received throughdifferential amplifier 60. When squaring the signal, the result may be modeled as a square of equation [1], as illustrated by equation [2]: -
- where n is the attenuation produced by
attenuator 54, for example. - The 2nd harmonic may be filtered from equation [2] (e.g., using low pass filter 66) and the result, illustrated in equation [3], provides DC and low frequency information about deteriorated
junction 30. -
- Where VDC and Low Freq is the output, for example, of
low pass filter 66. - The output of low
pass filter circuit 66, as modeled by equation [3], may be processed byDC processing circuit 70 and provided tomicrocontroller 44. This processing may include, for example, conditioning of the signal, further filtering of unwanted components, and any other desired conditioning of the DC and low-frequency analog components provided tomicrocontroller 44. - As described above, deteriorated
junction 30 acts as a modulating entity when the respective branch circuit 16 a-16 n is heated. DC and low frequency components are produced, and are a result of line voltage amplitude modulation as the respective branch circuit 16 a-16 n heats and cools. Thus, lowpass filter circuit 66 andDC processing circuit 70 may be utilized during the extended time test to detect deterioratedjunctions 30 while the circuit is heating up through the use ofsecond resistor circuit 40.Microprocessor 44 detects the modulations within the DC and low frequency components provided byvoltage channel 34 to detect deterioratedjunction 30. - For the cold junction test,
voltage channel 34 further includes peak detection of the channel voltage, which is also processed from the output ofmultiplier circuit 62, as modeled in equation [2].Amplifier circuit 64 receives the output ofmultiplier circuit 62 and provides signal conditioning. This may include, for example, amplification of the signal to provide ease of processing forpeak detector circuit 68.Peak detector circuit 68 may provide an output tomicrocontroller 44 indicative of a peak voltage seen onlines - As illustrated in
FIG. 3B ,peak detection circuit 68 may includereset line 74 frommicrocontroller 44. This reset line may allowmicrocontroller 44 to “reset” the peak voltage output ofpeak detector circuit 68 to a baseline value, such as zero volts, in order to start tracking a new peak voltage based on switch configuration 48 a-48 n as controlled bymicrocontroller 44. This way, the output ofpeak detector circuit 68 will be a voltage value indicative of the peak voltage onlines - Zero-
cross detection circuit 72 may be utilized to provide an indication tomicrocontroller 44 that the line voltage onlines microcontroller 44 when controlling, for example, switches 48 a-48 n and 52 oftest device 12. By switching at zero-crossing of the line voltage, the electromagnetic interference (EMI) that may be generated during that switching is reduced, providing better performance fortest device 12. - With continued reference to
FIGS. 1-3B ,FIGS. 4A and 4B are a block diagram and circuit schematic, respectively, ofcurrent channel 42.Current channel 42 includesinput amplifier circuit 80,square wave circuit 82, phase locked loop (PLL)circuit 84,low pass filter 86, DC block andphase correction circuit 88,absolute value circuit 90,constant amplitude circuit 92, DC block andabsolute value circuit 94, and signalcomparison circuit 96. The output ofconstant amplitude circuit 92 is a positive voltage reference signal that is indicative of the undisturbed line current and provided to signalcomparison circuit 96 andmicrocontroller 44. The output of DC block andabsolute value circuit 94 is a positive voltage value indicative of the current onlines comparison circuit 96 andmicrocontroller 44. - The reference signal is a value that may be indicative of an expected current on
lines Input amplifier circuit 80 provides a single-ended output based on the differential input fromcurrent sensor 56.Square wave circuit 82 converts the input signal (i.e., the sine wave signal) into a non-sinusoidal periodic signal. This signal is provided toPLL circuit 84.PLL circuit 84 may be utilized to lock onto the line frequency of the square wave signal fromcircuit 82 to control the phase and/or frequency of the reference signal. The output ofPLL circuit 84 is provided tolow pass filter 86, which may be implemented to pass the line frequency while rejecting higher order harmonics of the PLL output. DC block andphase correction circuit 88 may be configured to filter DC components of the reference signal and correct the phase of the reference signal from lowpass filter circuit 86 to match the phase of the line current. The phase may need to be corrected due to phase shifts caused bylow pass filter 86 and/or other analog delay components ofcurrent channel 42.Absolute value circuit 90 may be configured to provide a unidirectional signal indicative of the magnitude of the input signal.Absolute value circuit 90 may also provide zero cross-over distortion, for example, which may flatten the reference signal at zero crossings. The output ofabsolute value circuit 90 may be provided toconstant amplitude circuit 92 which may be configured to provide automatic gain control, for example, to control the amplitude of the reference signal. For example,amplitude circuit 92 may include a divider feedback circuit utilized to maintain a desired amplitude of the reference single when the line signal, for example, decreases unexpectedly based on random disturbances in the line current. Thereference signal 98 output byconstant amplitude circuit 92 may be conditioned and provided to signalcomparison circuit 96 as a first input. - DC block and
absolute value circuit 94 may be configured to filter any DC components fromamplifier circuit 80 and provide a unidirectional signal (of the same direction as the reference signal) indicative of the magnitude of the line current onlines absolute value circuit 94 may be provided to signalcomparison circuit 96 as a second input. -
Signal comparison circuit 96 may be configured to comparereference signal 98 to the conditionedline signal 100. During normal operation of the respective branch circuit 16 a-16 n, the conditioned line signal will be greater than the reference signal. In the event of random disturbances in the line current of the respective branch circuit 16 a-16 n, the line signal will decrease toward zero, while the reference signal does not. Therefore, signalcomparison circuit 96 may be configured to provide indication tomicroprocessor 44 whenever the line signal falls below the reference signal.Microprocessor 44 may utilize this indication to detect deterioratedjunction 30 and/or other disturbances on respective branch circuit 16 a-16 n. The line signal and reference signal may also be provided directly tomicroprocessor 44 in order to allow microprocessor to perform further monitoring and correlation. - With continued reference to
FIGS. 1-4B ,FIG. 5 is aflowchart illustrating method 120 for testing branch circuits 16 a-16 n for deterioratedjunction 30 utilizingtest device 12. All steps may be performed by any combination of software or other programmed instructions implemented onmicrocontroller 44, other circuit components, and a technician performing a test utilizingtest device 12. - At step 122, all cord and plug appliances may be disconnected from wall receptacles and
outlets 18 of the respective branch circuit 16 a-16 n. This ensures that the respective branch circuit 16 a-16 n under test is sufficiently isolated from any equipment that may influence the test of the respective branch circuit 16 a-16 n. - At step 124, the cold junction test is started by enabling thyristors 48 a-48 n in succession, for example, to enable current to flow to
first resistor circuit 38.Microcontroller 44 resets peakvoltage detector circuit 68. Atstep 126,peak detector circuit 68 is utilized to provide a voltage tomicrocontroller 44 that is indicative of the peak voltage onlines step 128,microcontroller 44 determines if a deterioratedjunction 30 is present based upon the peak voltage provided bypeak detector circuit 68. For example, if the peak voltage from the utility company onmains power input 20 is 170 volts,microcontroller 44 may check to verify that the peak voltage provided bypeak detector circuit 68 is no less than five percent lower, for example, than one hundred and seventy volts. If it is,method 120 may proceed to step 130 and indicate that a deteriorated junction has been detected in the respective branch circuit 16 a-16 n under test. If no deteriorated junction is detected atstep 128,method 120 proceeds to step 132. - At
step 132, the “cold junction test” is over and the “extended time test” begins.Microcontroller 44 disables current flow tofirst resistor circuit 38 by controlling thyristors 48 a-48 n.Microcontroller 44 enablesswitch 52 to closerelay 50 to enable current flow tosecond resistor circuit 40.Second resistor circuit 40 draws significantly more power thanfirst resistor circuit 38 and thus, heats up the respective branch circuit 16 a-16 n. - At
step 134,voltage channel 34 provides DC and low frequency components of the line voltage tomicrocontroller 44.Microcontroller 44 monitors the DC and low frequency components to determine if a deteriorated junction is detected in the respective branch circuit 16 a-16 n. Simultaneously to step 134, atstep 136,microcontroller 44 monitors the output ofcurrent channel 42 to monitor, for example, any random disturbances in the line current apart from the utility frequency generated onlines - At
step 138, it is determined if the DC and low frequency components provided byvoltage channel 34 are indicative of a deteriorated junction. If so,method 120 proceeds to step 130 and a warning is indicated. The deteriorated junction warning may be indicated to a technician, for example, usingdisplay 46. Atstep 140, it is determined, bymicrocontroller 44, if the output ofcurrent channel 42 is indicative of random disturbances in the line current. If so,method 120 proceeds to step 130 and a warning is indicated. If no modulation is detected atstep 138 and no random disturbances are detected atstep 140,method 120 proceeds to step 142. - At
step 142, it is determined if the extended time test has completed. If it is not completed (e.g., the test has not been run for the full time, for example, of three minutes),method 120 returns to step 132 and continues to run the extended time test. If the test is completed,method 120 proceeds to step 144 and a successful test is indicated.Method 120 may be repeated for alloutlets 18 of each respective branch circuit 16 a-16 n. - While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/169,844 US9835675B1 (en) | 2016-06-01 | 2016-06-01 | Electrical branch circuit deterioration test system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/169,844 US9835675B1 (en) | 2016-06-01 | 2016-06-01 | Electrical branch circuit deterioration test system |
Publications (2)
Publication Number | Publication Date |
---|---|
US9835675B1 US9835675B1 (en) | 2017-12-05 |
US20170350935A1 true US20170350935A1 (en) | 2017-12-07 |
Family
ID=60451838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/169,844 Expired - Fee Related US9835675B1 (en) | 2016-06-01 | 2016-06-01 | Electrical branch circuit deterioration test system |
Country Status (1)
Country | Link |
---|---|
US (1) | US9835675B1 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6466023B2 (en) * | 1998-12-28 | 2002-10-15 | General Electric Company | Method of determining contact wear in a trip unit |
US8665666B2 (en) * | 2010-10-18 | 2014-03-04 | Eaton Corporation | Acoustic apparatus and acoustic sensor apparatus including a fastener |
US9057752B2 (en) * | 2012-09-11 | 2015-06-16 | Eaton Corporation | Method and apparatus for detecting a loose electrical connection in photovoltaic system |
US9797941B2 (en) * | 2014-12-29 | 2017-10-24 | Eaton Corporation | Arc fault detection system and method and circuit interrupter employing same |
-
2016
- 2016-06-01 US US15/169,844 patent/US9835675B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US9835675B1 (en) | 2017-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Artale et al. | Arc fault detection method based on CZT low-frequency harmonic current analysis | |
US11349432B2 (en) | Arc detection and prevention in a power generation system | |
US8692557B2 (en) | Ground monitor | |
US8368337B2 (en) | HVAC equipment phase and voltage monitor and control | |
US8908338B2 (en) | Methods and apparatus for multi-frequency ground fault circuit interrupt grounded neutral fault detection | |
US10345347B2 (en) | Device and method for fault current detection | |
US7697248B2 (en) | Electrical arc fault circuit interrupter apparatus and method | |
KR101152278B1 (en) | Arc simulated generator | |
EP0707367B1 (en) | Ground fault detecting apparatus and method for detecting ground fault of field circuit and exciting circuit by detecting ground fault current flowing from ground to neutral point of exciting circuit | |
EP1898225A1 (en) | System and method for detecting leak current | |
EP3772147B1 (en) | Power interruption method and device based on phase measurement and arc detection of power level | |
KR101671638B1 (en) | Apparatus for displaying and warning between ground and electric power lines | |
Cazacu et al. | Derating of power distribution transformers serving nonlinear industrial loads | |
JP2018121434A (en) | Arc failure detector | |
Darmawardana et al. | Impact of high frequency emissions (2–150 kHz) on lifetime degradation of electrolytic capacitors in grid connected equipment | |
US9835675B1 (en) | Electrical branch circuit deterioration test system | |
JP5578573B2 (en) | DC circuit insulation resistance measuring device, capacitance measuring device, insulation resistance measuring method and capacitance measuring method | |
JP6420957B2 (en) | Test apparatus and method | |
JP2018509879A (en) | Method and energy generating facility for connecting an energy generating facility to a medium voltage grid | |
JP7270945B2 (en) | Leakage current interrupter | |
KR102377795B1 (en) | Arc detection method by detecting discontinuous section | |
JP3564211B2 (en) | Ground fault detection method and device | |
CN101241163A (en) | A flicker source identification method | |
JP3813752B2 (en) | Semiconductor device acceleration test method and apparatus | |
WO2018199917A1 (en) | Power device protection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LECTRISPECT, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GRAVES, KENNETH L.;REEL/FRAME:038759/0598 Effective date: 20160531 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: MICROENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: MICROENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20211205 |