US20180369236A1 - Tamper-resistant pharmaceutical compositions of opioids and other drugs - Google Patents
Tamper-resistant pharmaceutical compositions of opioids and other drugs Download PDFInfo
- Publication number
- US20180369236A1 US20180369236A1 US16/017,097 US201816017097A US2018369236A1 US 20180369236 A1 US20180369236 A1 US 20180369236A1 US 201816017097 A US201816017097 A US 201816017097A US 2018369236 A1 US2018369236 A1 US 2018369236A1
- Authority
- US
- United States
- Prior art keywords
- acid
- composition
- drug
- wax
- fatty
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003814 drug Substances 0.000 title claims abstract description 214
- 229940079593 drug Drugs 0.000 title claims abstract description 213
- 239000008194 pharmaceutical composition Substances 0.000 title claims abstract description 11
- 229940005483 opioid analgesics Drugs 0.000 title abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 219
- 238000000034 method Methods 0.000 claims description 77
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 72
- 239000002245 particle Substances 0.000 claims description 61
- 150000003839 salts Chemical class 0.000 claims description 60
- 239000000194 fatty acid Substances 0.000 claims description 51
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 50
- 229930195729 fatty acid Natural products 0.000 claims description 50
- BRUQQQPBMZOVGD-XFKAJCMBSA-N Oxycodone Chemical group O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(OC)C2=C5[C@@]13CCN4C BRUQQQPBMZOVGD-XFKAJCMBSA-N 0.000 claims description 46
- 150000004665 fatty acids Chemical class 0.000 claims description 43
- 229960002085 oxycodone Drugs 0.000 claims description 42
- 239000000126 substance Substances 0.000 claims description 36
- 230000008569 process Effects 0.000 claims description 35
- -1 fatty acid salt Chemical class 0.000 claims description 31
- 239000001993 wax Substances 0.000 claims description 31
- TWJNQYPJQDRXPH-UHFFFAOYSA-N 2-cyanobenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C#N TWJNQYPJQDRXPH-UHFFFAOYSA-N 0.000 claims description 23
- 235000021360 Myristic acid Nutrition 0.000 claims description 23
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 claims description 23
- 239000004203 carnauba wax Substances 0.000 claims description 22
- 235000013869 carnauba wax Nutrition 0.000 claims description 22
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 20
- 235000021355 Stearic acid Nutrition 0.000 claims description 19
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 19
- 239000008117 stearic acid Substances 0.000 claims description 19
- 235000013871 bee wax Nutrition 0.000 claims description 18
- 239000012166 beeswax Substances 0.000 claims description 18
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 claims description 16
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 claims description 15
- 239000003925 fat Substances 0.000 claims description 12
- 235000019197 fats Nutrition 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 239000007787 solid Substances 0.000 claims description 12
- UQCNKQCJZOAFTQ-ISWURRPUSA-N Oxymorphone Chemical compound O([C@H]1C(CC[C@]23O)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O UQCNKQCJZOAFTQ-ISWURRPUSA-N 0.000 claims description 11
- 229960005118 oxymorphone Drugs 0.000 claims description 11
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 claims description 10
- 238000009987 spinning Methods 0.000 claims description 10
- 239000000014 opioid analgesic Substances 0.000 claims description 9
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 claims description 8
- 229960005181 morphine Drugs 0.000 claims description 8
- 235000021314 Palmitic acid Nutrition 0.000 claims description 7
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 claims description 7
- 239000006104 solid solution Substances 0.000 claims description 7
- OROGSEYTTFOCAN-DNJOTXNNSA-N codeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 claims description 6
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 claims description 6
- 239000007962 solid dispersion Substances 0.000 claims description 6
- 239000005639 Lauric acid Substances 0.000 claims description 5
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 claims description 5
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 claims description 4
- 238000000889 atomisation Methods 0.000 claims description 4
- WVLOADHCBXTIJK-YNHQPCIGSA-N hydromorphone Chemical compound O([C@H]1C(CC[C@H]23)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O WVLOADHCBXTIJK-YNHQPCIGSA-N 0.000 claims description 4
- 229960001410 hydromorphone Drugs 0.000 claims description 4
- 239000004200 microcrystalline wax Substances 0.000 claims description 4
- 235000019808 microcrystalline wax Nutrition 0.000 claims description 4
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 4
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 claims description 4
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 claims description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 3
- WCOXQTXVACYMLM-UHFFFAOYSA-N 2,3-bis(12-hydroxyoctadecanoyloxy)propyl 12-hydroxyoctadecanoate Chemical compound CCCCCCC(O)CCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCC(O)CCCCCC)COC(=O)CCCCCCCCCCC(O)CCCCCC WCOXQTXVACYMLM-UHFFFAOYSA-N 0.000 claims description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 3
- 239000005642 Oleic acid Substances 0.000 claims description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 3
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 claims description 3
- 239000004204 candelilla wax Substances 0.000 claims description 3
- 235000013868 candelilla wax Nutrition 0.000 claims description 3
- 229940073532 candelilla wax Drugs 0.000 claims description 3
- 229960004126 codeine Drugs 0.000 claims description 3
- IUJAMGNYPWYUPM-UHFFFAOYSA-N hentriacontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IUJAMGNYPWYUPM-UHFFFAOYSA-N 0.000 claims description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 3
- 235000021313 oleic acid Nutrition 0.000 claims description 3
- 230000036407 pain Effects 0.000 claims description 3
- 238000009472 formulation Methods 0.000 abstract description 80
- 239000000463 material Substances 0.000 abstract description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 35
- 210000001035 gastrointestinal tract Anatomy 0.000 abstract description 9
- 230000001010 compromised effect Effects 0.000 abstract description 2
- 235000002639 sodium chloride Nutrition 0.000 description 57
- 239000011324 bead Substances 0.000 description 32
- 239000013543 active substance Substances 0.000 description 26
- 239000002585 base Substances 0.000 description 26
- 239000000155 melt Substances 0.000 description 24
- 238000000576 coating method Methods 0.000 description 23
- 239000002552 dosage form Substances 0.000 description 23
- 150000001412 amines Chemical class 0.000 description 22
- 150000001875 compounds Chemical class 0.000 description 22
- 239000007921 spray Substances 0.000 description 22
- 238000004090 dissolution Methods 0.000 description 19
- 239000011248 coating agent Substances 0.000 description 18
- 239000002253 acid Substances 0.000 description 16
- 229920000642 polymer Polymers 0.000 description 16
- 238000013268 sustained release Methods 0.000 description 15
- 239000012730 sustained-release form Substances 0.000 description 15
- 239000002775 capsule Substances 0.000 description 13
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 12
- 239000012729 immediate-release (IR) formulation Substances 0.000 description 11
- 230000003993 interaction Effects 0.000 description 11
- 230000008018 melting Effects 0.000 description 11
- 238000002844 melting Methods 0.000 description 11
- 229920001223 polyethylene glycol Polymers 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 230000001055 chewing effect Effects 0.000 description 10
- 239000004094 surface-active agent Substances 0.000 description 10
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 9
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 9
- 238000005204 segregation Methods 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- 210000002784 stomach Anatomy 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 8
- 239000002202 Polyethylene glycol Substances 0.000 description 8
- 239000003963 antioxidant agent Substances 0.000 description 8
- 235000006708 antioxidants Nutrition 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 7
- 229920003134 Eudragit® polymer Polymers 0.000 description 7
- 230000002378 acidificating effect Effects 0.000 description 7
- 239000000654 additive Substances 0.000 description 7
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 7
- 238000004132 cross linking Methods 0.000 description 7
- 239000002702 enteric coating Substances 0.000 description 7
- 238000009505 enteric coating Methods 0.000 description 7
- 239000012458 free base Substances 0.000 description 7
- 238000001990 intravenous administration Methods 0.000 description 7
- 239000000314 lubricant Substances 0.000 description 7
- 235000018102 proteins Nutrition 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000008186 active pharmaceutical agent Substances 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 229920001282 polysaccharide Polymers 0.000 description 6
- 239000005017 polysaccharide Substances 0.000 description 6
- 150000004804 polysaccharides Chemical class 0.000 description 6
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 6
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000002195 soluble material Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- FTOAOBMCPZCFFF-UHFFFAOYSA-N 5,5-diethylbarbituric acid Chemical compound CCC1(CC)C(=O)NC(=O)NC1=O FTOAOBMCPZCFFF-UHFFFAOYSA-N 0.000 description 5
- 108010010803 Gelatin Proteins 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 5
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 5
- 239000005557 antagonist Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000001913 cellulose Substances 0.000 description 5
- 235000010980 cellulose Nutrition 0.000 description 5
- 229920002678 cellulose Polymers 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 239000003118 drug derivative Substances 0.000 description 5
- 239000008273 gelatin Substances 0.000 description 5
- 229920000159 gelatin Polymers 0.000 description 5
- 235000019322 gelatine Nutrition 0.000 description 5
- 235000011852 gelatine desserts Nutrition 0.000 description 5
- 238000000227 grinding Methods 0.000 description 5
- 239000002198 insoluble material Substances 0.000 description 5
- 238000003801 milling Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 231100000252 nontoxic Toxicity 0.000 description 5
- 230000003000 nontoxic effect Effects 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 229940105606 oxycontin Drugs 0.000 description 5
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 5
- 239000004014 plasticizer Substances 0.000 description 5
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 5
- 238000001694 spray drying Methods 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- 230000009747 swallowing Effects 0.000 description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 4
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- 239000001856 Ethyl cellulose Substances 0.000 description 4
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 4
- UBQYURCVBFRUQT-UHFFFAOYSA-N N-benzoyl-Ferrioxamine B Chemical compound CC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCN UBQYURCVBFRUQT-UHFFFAOYSA-N 0.000 description 4
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 4
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- VIROVYVQCGLCII-UHFFFAOYSA-N amobarbital Chemical compound CC(C)CCC1(CC)C(=O)NC(=O)NC1=O VIROVYVQCGLCII-UHFFFAOYSA-N 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- ZRIHAIZYIMGOAB-UHFFFAOYSA-N butabarbital Chemical compound CCC(C)C1(CC)C(=O)NC(=O)NC1=O ZRIHAIZYIMGOAB-UHFFFAOYSA-N 0.000 description 4
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 4
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 4
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 4
- 235000011089 carbon dioxide Nutrition 0.000 description 4
- 239000001768 carboxy methyl cellulose Substances 0.000 description 4
- 239000002738 chelating agent Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 4
- 239000000599 controlled substance Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000003628 erosive effect Effects 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 235000019325 ethyl cellulose Nutrition 0.000 description 4
- 229920001249 ethyl cellulose Polymers 0.000 description 4
- 238000013265 extended release Methods 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 239000007887 hard shell capsule Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000011859 microparticle Substances 0.000 description 4
- 150000007522 mineralic acids Chemical class 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- MUZQPDBAOYKNLO-RKXJKUSZSA-N oxycodone hydrochloride Chemical compound [H+].[Cl-].O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(OC)C2=C5[C@@]13CCN4C MUZQPDBAOYKNLO-RKXJKUSZSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229960003330 pentetic acid Drugs 0.000 description 4
- 150000002978 peroxides Chemical class 0.000 description 4
- 229920001983 poloxamer Polymers 0.000 description 4
- 229960000502 poloxamer Drugs 0.000 description 4
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 4
- 239000012798 spherical particle Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 239000000730 antalgic agent Substances 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 239000012736 aqueous medium Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229960002319 barbital Drugs 0.000 description 3
- 239000003613 bile acid Substances 0.000 description 3
- UZVHFVZFNXBMQJ-UHFFFAOYSA-N butalbital Chemical compound CC(C)CC1(CC=C)C(=O)NC(=O)NC1=O UZVHFVZFNXBMQJ-UHFFFAOYSA-N 0.000 description 3
- 229960002546 butalbital Drugs 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- XYYVYLMBEZUESM-UHFFFAOYSA-N dihydrocodeine Natural products C1C(N(CCC234)C)C2C=CC(=O)C3OC2=C4C1=CC=C2OC XYYVYLMBEZUESM-UHFFFAOYSA-N 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- 239000013020 final formulation Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000012456 homogeneous solution Substances 0.000 description 3
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 235000019359 magnesium stearate Nutrition 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229920000609 methyl cellulose Polymers 0.000 description 3
- 229960001703 methylphenobarbital Drugs 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- BXWNKGSJHAJOGX-UHFFFAOYSA-N n-hexadecyl alcohol Natural products CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 3
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229940124641 pain reliever Drugs 0.000 description 3
- 229960001412 pentobarbital Drugs 0.000 description 3
- 239000008389 polyethoxylated castor oil Substances 0.000 description 3
- 229920002545 silicone oil Polymers 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 235000015424 sodium Nutrition 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 229940083542 sodium Drugs 0.000 description 3
- 239000007909 solid dosage form Substances 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 229940032147 starch Drugs 0.000 description 3
- 150000003512 tertiary amines Chemical class 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 150000003626 triacylglycerols Chemical class 0.000 description 3
- DBGIVFWFUFKIQN-VIFPVBQESA-N (+)-Fenfluramine Chemical compound CCN[C@@H](C)CC1=CC=CC(C(F)(F)F)=C1 DBGIVFWFUFKIQN-VIFPVBQESA-N 0.000 description 2
- DBGIVFWFUFKIQN-UHFFFAOYSA-N (+-)-Fenfluramine Chemical compound CCNC(C)CC1=CC=CC(C(F)(F)F)=C1 DBGIVFWFUFKIQN-UHFFFAOYSA-N 0.000 description 2
- OOBHFESNSZDWIU-GXSJLCMTSA-N (2s,3s)-3-methyl-2-phenylmorpholine Chemical compound C[C@@H]1NCCO[C@H]1C1=CC=CC=C1 OOBHFESNSZDWIU-GXSJLCMTSA-N 0.000 description 2
- LJRDOKAZOAKLDU-UDXJMMFXSA-N (2s,3s,4r,5r,6r)-5-amino-2-(aminomethyl)-6-[(2r,3s,4r,5s)-5-[(1r,2r,3s,5r,6s)-3,5-diamino-2-[(2s,3r,4r,5s,6r)-3-amino-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-hydroxycyclohexyl]oxy-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxyoxane-3,4-diol;sulfuric ac Chemical compound OS(O)(=O)=O.N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)N)O[C@@H]1CO LJRDOKAZOAKLDU-UDXJMMFXSA-N 0.000 description 2
- DIWRORZWFLOCLC-HNNXBMFYSA-N (3s)-7-chloro-5-(2-chlorophenyl)-3-hydroxy-1,3-dihydro-1,4-benzodiazepin-2-one Chemical compound N([C@H](C(NC1=CC=C(Cl)C=C11)=O)O)=C1C1=CC=CC=C1Cl DIWRORZWFLOCLC-HNNXBMFYSA-N 0.000 description 2
- FJIKWRGCXUCUIG-HNNXBMFYSA-N (3s)-7-chloro-5-(2-chlorophenyl)-3-hydroxy-1-methyl-3h-1,4-benzodiazepin-2-one Chemical compound O=C([C@H](O)N=1)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1Cl FJIKWRGCXUCUIG-HNNXBMFYSA-N 0.000 description 2
- ALARQZQTBTVLJV-CYBMUJFWSA-N (5r)-5-ethyl-1-methyl-5-phenyl-1,3-diazinane-2,4,6-trione Chemical compound C=1C=CC=CC=1[C@]1(CC)C(=O)NC(=O)N(C)C1=O ALARQZQTBTVLJV-CYBMUJFWSA-N 0.000 description 2
- CVHZOJJKTDOEJC-UHFFFAOYSA-M 1,1-dioxo-1,2-benzothiazol-3-olate Chemical compound C1=CC=C2C([O-])=NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-M 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- VMIYHDSEFNYJSL-UHFFFAOYSA-N Bromazepam Chemical compound C12=CC(Br)=CC=C2NC(=O)CN=C1C1=CC=CC=N1 VMIYHDSEFNYJSL-UHFFFAOYSA-N 0.000 description 2
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 2
- CHBRHODLKOZEPZ-UHFFFAOYSA-N Clotiazepam Chemical compound S1C(CC)=CC2=C1N(C)C(=O)CN=C2C1=CC=CC=C1Cl CHBRHODLKOZEPZ-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- CUCHJCMWNFEYOM-UHFFFAOYSA-N Ethyl loflazepate Chemical compound C12=CC(Cl)=CC=C2NC(=O)C(C(=O)OCC)N=C1C1=CC=CC=C1F CUCHJCMWNFEYOM-UHFFFAOYSA-N 0.000 description 2
- 241001539473 Euphoria Species 0.000 description 2
- 206010015535 Euphoric mood Diseases 0.000 description 2
- JMBQKKAJIKAWKF-UHFFFAOYSA-N Glutethimide Chemical compound C=1C=CC=CC=1C1(CC)CCC(=O)NC1=O JMBQKKAJIKAWKF-UHFFFAOYSA-N 0.000 description 2
- WYCLKVQLVUQKNZ-UHFFFAOYSA-N Halazepam Chemical compound N=1CC(=O)N(CC(F)(F)F)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 WYCLKVQLVUQKNZ-UHFFFAOYSA-N 0.000 description 2
- XDKCGKQHVBOOHC-UHFFFAOYSA-N Haloxazolam Chemical compound FC1=CC=CC=C1C1(C2=CC(Br)=CC=C2NC(=O)C2)N2CCO1 XDKCGKQHVBOOHC-UHFFFAOYSA-N 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- JAQUASYNZVUNQP-USXIJHARSA-N Levorphanol Chemical compound C1C2=CC=C(O)C=C2[C@]23CCN(C)[C@H]1[C@@H]2CCCC3 JAQUASYNZVUNQP-USXIJHARSA-N 0.000 description 2
- ZPXSCAKFGYXMGA-UHFFFAOYSA-N Mazindol Chemical compound N12CCN=C2C2=CC=CC=C2C1(O)C1=CC=C(Cl)C=C1 ZPXSCAKFGYXMGA-UHFFFAOYSA-N 0.000 description 2
- YLCXGBZIZBEVPZ-UHFFFAOYSA-N Medazepam Chemical compound C12=CC(Cl)=CC=C2N(C)CCN=C1C1=CC=CC=C1 YLCXGBZIZBEVPZ-UHFFFAOYSA-N 0.000 description 2
- NZXKDOXHBHYTKP-UHFFFAOYSA-N Metohexital Chemical compound CCC#CC(C)C1(CC=C)C(=O)NC(=O)N(C)C1=O NZXKDOXHBHYTKP-UHFFFAOYSA-N 0.000 description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- DEXMFYZAHXMZNM-UHFFFAOYSA-N Narceine Chemical compound OC(=O)C1=C(OC)C(OC)=CC=C1C(=O)CC1=C(CCN(C)C)C=C(OCO2)C2=C1OC DEXMFYZAHXMZNM-UHFFFAOYSA-N 0.000 description 2
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 2
- MFOCDFTXLCYLKU-CMPLNLGQSA-N Phendimetrazine Chemical compound O1CCN(C)[C@@H](C)[C@@H]1C1=CC=CC=C1 MFOCDFTXLCYLKU-CMPLNLGQSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- PPTYJKAXVCCBDU-UHFFFAOYSA-N Rohypnol Chemical compound N=1CC(=O)N(C)C2=CC=C([N+]([O-])=O)C=C2C=1C1=CC=CC=C1F PPTYJKAXVCCBDU-UHFFFAOYSA-N 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- IOEJYZSZYUROLN-UHFFFAOYSA-M Sodium diethyldithiocarbamate Chemical compound [Na+].CCN(CC)C([S-])=S IOEJYZSZYUROLN-UHFFFAOYSA-M 0.000 description 2
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 description 2
- 239000003568 Sodium, potassium and calcium salts of fatty acids Substances 0.000 description 2
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 2
- 229920002253 Tannate Polymers 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical class OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 229930003427 Vitamin E Natural products 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 229960004538 alprazolam Drugs 0.000 description 2
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229960001301 amobarbital Drugs 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- UORJNBVJVRLXMQ-UHFFFAOYSA-N aprobarbital Chemical compound C=CCC1(C(C)C)C(=O)NC(=O)NC1=O UORJNBVJVRLXMQ-UHFFFAOYSA-N 0.000 description 2
- 229960003153 aprobarbital Drugs 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- YXKTVDFXDRQTKV-HNNXBMFYSA-N benzphetamine Chemical compound C([C@H](C)N(C)CC=1C=CC=CC=1)C1=CC=CC=C1 YXKTVDFXDRQTKV-HNNXBMFYSA-N 0.000 description 2
- 229960002837 benzphetamine Drugs 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229960002729 bromazepam Drugs 0.000 description 2
- IFKLAQQSCNILHL-QHAWAJNXSA-N butorphanol Chemical compound N1([C@@H]2CC3=CC=C(C=C3[C@@]3([C@]2(CCCC3)O)CC1)O)CC1CCC1 IFKLAQQSCNILHL-QHAWAJNXSA-N 0.000 description 2
- 229960001113 butorphanol Drugs 0.000 description 2
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 2
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 2
- 239000008116 calcium stearate Substances 0.000 description 2
- 235000013539 calcium stearate Nutrition 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- BHRQIJRLOVHRKH-UHFFFAOYSA-L calcium;2-[bis[2-[bis(carboxylatomethyl)amino]ethyl]amino]acetate;hydron Chemical compound [Ca+2].OC(=O)CN(CC(O)=O)CCN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O BHRQIJRLOVHRKH-UHFFFAOYSA-L 0.000 description 2
- 229960000926 camazepam Drugs 0.000 description 2
- PXBVEXGRHZFEOF-UHFFFAOYSA-N camazepam Chemical compound C12=CC(Cl)=CC=C2N(C)C(=O)C(OC(=O)N(C)C)N=C1C1=CC=CC=C1 PXBVEXGRHZFEOF-UHFFFAOYSA-N 0.000 description 2
- YKPUWZUDDOIDPM-SOFGYWHQSA-N capsaicin Chemical compound COC1=CC(CNC(=O)CCCC\C=C\C(C)C)=CC=C1O YKPUWZUDDOIDPM-SOFGYWHQSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 229960003609 cathine Drugs 0.000 description 2
- DLNKOYKMWOXYQA-IONNQARKSA-N cathine Chemical compound C[C@H](N)[C@@H](O)C1=CC=CC=C1 DLNKOYKMWOXYQA-IONNQARKSA-N 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000007766 cera flava Substances 0.000 description 2
- 229960000541 cetyl alcohol Drugs 0.000 description 2
- 238000010382 chemical cross-linking Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229960004782 chlordiazepoxide Drugs 0.000 description 2
- ANTSCNMPPGJYLG-UHFFFAOYSA-N chlordiazepoxide Chemical compound O=N=1CC(NC)=NC2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 ANTSCNMPPGJYLG-UHFFFAOYSA-N 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 229960001403 clobazam Drugs 0.000 description 2
- CXOXHMZGEKVPMT-UHFFFAOYSA-N clobazam Chemical compound O=C1CC(=O)N(C)C2=CC=C(Cl)C=C2N1C1=CC=CC=C1 CXOXHMZGEKVPMT-UHFFFAOYSA-N 0.000 description 2
- 229960003622 clotiazepam Drugs 0.000 description 2
- ZIXNZOBDFKSQTC-UHFFFAOYSA-N cloxazolam Chemical compound C12=CC(Cl)=CC=C2NC(=O)CN2CCOC21C1=CC=CC=C1Cl ZIXNZOBDFKSQTC-UHFFFAOYSA-N 0.000 description 2
- 229960003932 cloxazolam Drugs 0.000 description 2
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 229940125368 controlled substance Drugs 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 239000007771 core particle Substances 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 229960000958 deferoxamine Drugs 0.000 description 2
- CHIFCDOIPRCHCF-UHFFFAOYSA-N delorazepam Chemical compound C12=CC(Cl)=CC=C2NC(=O)CN=C1C1=CC=CC=C1Cl CHIFCDOIPRCHCF-UHFFFAOYSA-N 0.000 description 2
- 229950007393 delorazepam Drugs 0.000 description 2
- 238000013400 design of experiment Methods 0.000 description 2
- 229960004597 dexfenfluramine Drugs 0.000 description 2
- XLMALTXPSGQGBX-GCJKJVERSA-N dextropropoxyphene Chemical compound C([C@](OC(=O)CC)([C@H](C)CN(C)C)C=1C=CC=CC=1)C1=CC=CC=C1 XLMALTXPSGQGBX-GCJKJVERSA-N 0.000 description 2
- 229960004193 dextropropoxyphene Drugs 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229960003529 diazepam Drugs 0.000 description 2
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- XXEPPPIWZFICOJ-UHFFFAOYSA-N diethylpropion Chemical compound CCN(CC)C(C)C(=O)C1=CC=CC=C1 XXEPPPIWZFICOJ-UHFFFAOYSA-N 0.000 description 2
- 229960004890 diethylpropion Drugs 0.000 description 2
- UFIVBRCCIRTJTN-UHFFFAOYSA-N difenoxin Chemical compound C1CC(C(=O)O)(C=2C=CC=CC=2)CCN1CCC(C#N)(C=1C=CC=CC=1)C1=CC=CC=C1 UFIVBRCCIRTJTN-UHFFFAOYSA-N 0.000 description 2
- 229960005493 difenoxin Drugs 0.000 description 2
- 102000038379 digestive enzymes Human genes 0.000 description 2
- 108091007734 digestive enzymes Proteins 0.000 description 2
- 239000007884 disintegrant Substances 0.000 description 2
- DLNKOYKMWOXYQA-UHFFFAOYSA-N dl-pseudophenylpropanolamine Natural products CC(N)C(O)C1=CC=CC=C1 DLNKOYKMWOXYQA-UHFFFAOYSA-N 0.000 description 2
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 2
- 238000011143 downstream manufacturing Methods 0.000 description 2
- MJJALKDDGIKVBE-UHFFFAOYSA-N ebastine Chemical compound C1=CC(C(C)(C)C)=CC=C1C(=O)CCCN1CCC(OC(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 MJJALKDDGIKVBE-UHFFFAOYSA-N 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000007515 enzymatic degradation Effects 0.000 description 2
- 229960002336 estazolam Drugs 0.000 description 2
- CDCHDCWJMGXXRH-UHFFFAOYSA-N estazolam Chemical compound C=1C(Cl)=CC=C(N2C=NN=C2CN=2)C=1C=2C1=CC=CC=C1 CDCHDCWJMGXXRH-UHFFFAOYSA-N 0.000 description 2
- MVPICKVDHDWCJQ-UHFFFAOYSA-N ethyl 3-pyrrolidin-1-ylpropanoate Chemical compound CCOC(=O)CCN1CCCC1 MVPICKVDHDWCJQ-UHFFFAOYSA-N 0.000 description 2
- 229960004759 ethyl loflazepate Drugs 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- IKFBPFGUINLYQI-UHFFFAOYSA-N fencamfamin Chemical compound CCNC1C(C2)CCC2C1C1=CC=CC=C1 IKFBPFGUINLYQI-UHFFFAOYSA-N 0.000 description 2
- 229960001938 fencamfamin Drugs 0.000 description 2
- 229960001582 fenfluramine Drugs 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 229960004930 fludiazepam Drugs 0.000 description 2
- ROYOYTLGDLIGBX-UHFFFAOYSA-N fludiazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1F ROYOYTLGDLIGBX-UHFFFAOYSA-N 0.000 description 2
- 229960002200 flunitrazepam Drugs 0.000 description 2
- 229960003528 flurazepam Drugs 0.000 description 2
- SAADBVWGJQAEFS-UHFFFAOYSA-N flurazepam Chemical compound N=1CC(=O)N(CCN(CC)CC)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1F SAADBVWGJQAEFS-UHFFFAOYSA-N 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 2
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 2
- 229960002972 glutethimide Drugs 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 229940093915 gynecological organic acid Drugs 0.000 description 2
- 229960002158 halazepam Drugs 0.000 description 2
- 229950002502 haloxazolam Drugs 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- LLPOLZWFYMWNKH-CMKMFDCUSA-N hydrocodone Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)CC(=O)[C@@H]1OC1=C2C3=CC=C1OC LLPOLZWFYMWNKH-CMKMFDCUSA-N 0.000 description 2
- 229960000240 hydrocodone Drugs 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 description 2
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical compound OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229960004423 ketazolam Drugs 0.000 description 2
- PWAJCNITSBZRBL-UHFFFAOYSA-N ketazolam Chemical compound O1C(C)=CC(=O)N2CC(=O)N(C)C3=CC=C(Cl)C=C3C21C1=CC=CC=C1 PWAJCNITSBZRBL-UHFFFAOYSA-N 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 235000005772 leucine Nutrition 0.000 description 2
- XBMIVRRWGCYBTQ-AVRDEDQJSA-N levacetylmethadol Chemical compound C=1C=CC=CC=1C(C[C@H](C)N(C)C)([C@@H](OC(C)=O)CC)C1=CC=CC=C1 XBMIVRRWGCYBTQ-AVRDEDQJSA-N 0.000 description 2
- MKXZASYAUGDDCJ-CGTJXYLNSA-N levomethorphan Chemical compound C([C@H]12)CCC[C@@]11CCN(C)[C@@H]2CC2=CC=C(OC)C=C21 MKXZASYAUGDDCJ-CGTJXYLNSA-N 0.000 description 2
- 150000002634 lipophilic molecules Chemical class 0.000 description 2
- 229960004391 lorazepam Drugs 0.000 description 2
- 229960004033 lormetazepam Drugs 0.000 description 2
- GENAHGKEFJLNJB-QMTHXVAHSA-N lysergamide Chemical compound C1=CC(C2=C[C@H](CN([C@@H]2C2)C)C(N)=O)=C3C2=CNC3=C1 GENAHGKEFJLNJB-QMTHXVAHSA-N 0.000 description 2
- 229940037627 magnesium lauryl sulfate Drugs 0.000 description 2
- HBNDBUATLJAUQM-UHFFFAOYSA-L magnesium;dodecyl sulfate Chemical compound [Mg+2].CCCCCCCCCCCCOS([O-])(=O)=O.CCCCCCCCCCCCOS([O-])(=O)=O HBNDBUATLJAUQM-UHFFFAOYSA-L 0.000 description 2
- 229960000299 mazindol Drugs 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229960002225 medazepam Drugs 0.000 description 2
- XXVROGAVTTXONC-UHFFFAOYSA-N mefenorex Chemical compound ClCCCNC(C)CC1=CC=CC=C1 XXVROGAVTTXONC-UHFFFAOYSA-N 0.000 description 2
- 229960001468 mefenorex Drugs 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229960002683 methohexital Drugs 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- NPZXCTIHHUUEEJ-CMKMFDCUSA-N metopon Chemical compound O([C@@]1(C)C(=O)CC[C@@H]23)C4=C5[C@@]13CCN(C)[C@@H]2CC5=CC=C4O NPZXCTIHHUUEEJ-CMKMFDCUSA-N 0.000 description 2
- 229950006080 metopon Drugs 0.000 description 2
- 239000008108 microcrystalline cellulose Substances 0.000 description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- AOHAPDDBNAPPIN-UHFFFAOYSA-N myristicinic acid Natural products COC1=CC(C(O)=O)=CC2=C1OCO2 AOHAPDDBNAPPIN-UHFFFAOYSA-N 0.000 description 2
- DQCKKXVULJGBQN-XFWGSAIBSA-N naltrexone Chemical compound N1([C@@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CCC5=O)O)CC1)O)CC1CC1 DQCKKXVULJGBQN-XFWGSAIBSA-N 0.000 description 2
- 229960003086 naltrexone Drugs 0.000 description 2
- GWUSZQUVEVMBPI-UHFFFAOYSA-N nimetazepam Chemical compound N=1CC(=O)N(C)C2=CC=C([N+]([O-])=O)C=C2C=1C1=CC=CC=C1 GWUSZQUVEVMBPI-UHFFFAOYSA-N 0.000 description 2
- 229950001981 nimetazepam Drugs 0.000 description 2
- KJONHKAYOJNZEC-UHFFFAOYSA-N nitrazepam Chemical compound C12=CC([N+](=O)[O-])=CC=C2NC(=O)CN=C1C1=CC=CC=C1 KJONHKAYOJNZEC-UHFFFAOYSA-N 0.000 description 2
- 229960001454 nitrazepam Drugs 0.000 description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 229960002640 nordazepam Drugs 0.000 description 2
- AKPLHCDWDRPJGD-UHFFFAOYSA-N nordazepam Chemical compound C12=CC(Cl)=CC=C2NC(=O)CN=C1C1=CC=CC=C1 AKPLHCDWDRPJGD-UHFFFAOYSA-N 0.000 description 2
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 2
- 239000003401 opiate antagonist Substances 0.000 description 2
- 239000006186 oral dosage form Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 239000008012 organic excipient Substances 0.000 description 2
- 229960004535 oxazepam Drugs 0.000 description 2
- ADIMAYPTOBDMTL-UHFFFAOYSA-N oxazepam Chemical compound C12=CC(Cl)=CC=C2NC(=O)C(O)N=C1C1=CC=CC=C1 ADIMAYPTOBDMTL-UHFFFAOYSA-N 0.000 description 2
- VCCZBYPHZRWKFY-XIKOKIGWSA-N oxazolam Chemical compound C1([C@]23C4=CC(Cl)=CC=C4NC(=O)CN2C[C@H](O3)C)=CC=CC=C1 VCCZBYPHZRWKFY-XIKOKIGWSA-N 0.000 description 2
- 229950006124 oxazolam Drugs 0.000 description 2
- 238000010525 oxidative degradation reaction Methods 0.000 description 2
- 235000010987 pectin Nutrition 0.000 description 2
- 229920001277 pectin Polymers 0.000 description 2
- 239000001814 pectin Substances 0.000 description 2
- 229960001639 penicillamine Drugs 0.000 description 2
- 229960005301 pentazocine Drugs 0.000 description 2
- VOKSWYLNZZRQPF-GDIGMMSISA-N pentazocine Chemical compound C1C2=CC=C(O)C=C2[C@@]2(C)[C@@H](C)[C@@H]1N(CC=C(C)C)CC2 VOKSWYLNZZRQPF-GDIGMMSISA-N 0.000 description 2
- 229940009784 pentetate calcium Drugs 0.000 description 2
- 239000008180 pharmaceutical surfactant Substances 0.000 description 2
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical compound C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 2
- 229950010883 phencyclidine Drugs 0.000 description 2
- 229960000436 phendimetrazine Drugs 0.000 description 2
- 229960003209 phenmetrazine Drugs 0.000 description 2
- 235000002949 phytic acid Nutrition 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 229940068965 polysorbates Drugs 0.000 description 2
- 229940100467 polyvinyl acetate phthalate Drugs 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 239000000651 prodrug Substances 0.000 description 2
- 229940002612 prodrug Drugs 0.000 description 2
- 239000000473 propyl gallate Substances 0.000 description 2
- 235000010388 propyl gallate Nutrition 0.000 description 2
- 229940075579 propyl gallate Drugs 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 2
- 229960001860 salicylate Drugs 0.000 description 2
- KQPKPCNLIDLUMF-UHFFFAOYSA-N secobarbital Chemical compound CCCC(C)C1(CC=C)C(=O)NC(=O)NC1=O KQPKPCNLIDLUMF-UHFFFAOYSA-N 0.000 description 2
- 229960002060 secobarbital Drugs 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- 238000005549 size reduction Methods 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 2
- 239000004299 sodium benzoate Substances 0.000 description 2
- 235000010234 sodium benzoate Nutrition 0.000 description 2
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 2
- 229940083575 sodium dodecyl sulfate Drugs 0.000 description 2
- 239000004296 sodium metabisulphite Substances 0.000 description 2
- 235000010262 sodium metabisulphite Nutrition 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 229940045902 sodium stearyl fumarate Drugs 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 235000010356 sorbitol Nutrition 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229960005346 succimer Drugs 0.000 description 2
- ACTRVOBWPAIOHC-XIXRPRMCSA-N succimer Chemical compound OC(=O)[C@@H](S)[C@@H](S)C(O)=O ACTRVOBWPAIOHC-XIXRPRMCSA-N 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 235000010384 tocopherol Nutrition 0.000 description 2
- 229930003799 tocopherol Natural products 0.000 description 2
- 229960001295 tocopherol Drugs 0.000 description 2
- 239000011732 tocopherol Substances 0.000 description 2
- LLPOLZWFYMWNKH-UHFFFAOYSA-N trans-dihydrocodeinone Natural products C1C(N(CCC234)C)C2CCC(=O)C3OC2=C4C1=CC=C2OC LLPOLZWFYMWNKH-UHFFFAOYSA-N 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- HFFLGKNGCAIQMO-UHFFFAOYSA-N trichloroacetaldehyde Chemical compound ClC(Cl)(Cl)C=O HFFLGKNGCAIQMO-UHFFFAOYSA-N 0.000 description 2
- 229960001124 trientine Drugs 0.000 description 2
- 235000019165 vitamin E Nutrition 0.000 description 2
- 239000011709 vitamin E Substances 0.000 description 2
- 229940046009 vitamin E Drugs 0.000 description 2
- 238000005550 wet granulation Methods 0.000 description 2
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- DDSDPQHQLNAGLJ-YEBWQKSTSA-N (2z)-6-(2-chlorophenyl)-2-[(4-methylpiperazin-4-ium-1-yl)methylidene]-8-nitro-4h-imidazo[1,2-a][1,4]benzodiazepin-1-one;methanesulfonate Chemical compound CS(O)(=O)=O.C1CN(C)CCN1\C=C/1C(=O)N2C3=CC=C([N+]([O-])=O)C=C3C(C=3C(=CC=CC=3)Cl)=NCC2=N\1 DDSDPQHQLNAGLJ-YEBWQKSTSA-N 0.000 description 1
- GBBSUAFBMRNDJC-MRXNPFEDSA-N (5R)-zopiclone Chemical compound C1CN(C)CCN1C(=O)O[C@@H]1C2=NC=CN=C2C(=O)N1C1=CC=C(Cl)C=N1 GBBSUAFBMRNDJC-MRXNPFEDSA-N 0.000 description 1
- GOLAKLHPPDDLST-HZJYTTRNSA-N (9z,12z)-octadeca-9,12-dien-1-amine Chemical compound CCCCC\C=C/C\C=C/CCCCCCCCN GOLAKLHPPDDLST-HZJYTTRNSA-N 0.000 description 1
- TVYLLZQTGLZFBW-ZBFHGGJFSA-N (R,R)-tramadol Chemical compound COC1=CC=CC([C@]2(O)[C@H](CCCC2)CN(C)C)=C1 TVYLLZQTGLZFBW-ZBFHGGJFSA-N 0.000 description 1
- KWTSXDURSIMDCE-QMMMGPOBSA-N (S)-amphetamine Chemical compound C[C@H](N)CC1=CC=CC=C1 KWTSXDURSIMDCE-QMMMGPOBSA-N 0.000 description 1
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 1
- TZJUVVIWVWFLCD-UHFFFAOYSA-N 1,1-dioxo-2-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-1,2-benzothiazol-3-one Chemical compound O=S1(=O)C2=CC=CC=C2C(=O)N1CCCCN(CC1)CCN1C1=NC=CC=N1 TZJUVVIWVWFLCD-UHFFFAOYSA-N 0.000 description 1
- DMBUODUULYCPAK-UHFFFAOYSA-N 1,3-bis(docosanoyloxy)propan-2-yl docosanoate Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCCCCCC DMBUODUULYCPAK-UHFFFAOYSA-N 0.000 description 1
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 1
- KSQCNASWXSCJTD-UHFFFAOYSA-N 1-[4-(2-methoxyphenyl)piperazin-1-yl]-3-(3,4,5-trimethoxyphenoxy)propan-2-ol Chemical compound COC1=CC=CC=C1N1CCN(CC(O)COC=2C=C(OC)C(OC)=C(OC)C=2)CC1 KSQCNASWXSCJTD-UHFFFAOYSA-N 0.000 description 1
- OKMWKBLSFKFYGZ-UHFFFAOYSA-N 1-behenoylglycerol Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(O)CO OKMWKBLSFKFYGZ-UHFFFAOYSA-N 0.000 description 1
- QHZLMUACJMDIAE-SFHVURJKSA-N 1-hexadecanoyl-sn-glycerol Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)CO QHZLMUACJMDIAE-SFHVURJKSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- RGZGRPPQZUQUCR-UHFFFAOYSA-N 1-phenylcyclohexylamine Chemical compound C=1C=CC=CC=1C1(N)CCCCC1 RGZGRPPQZUQUCR-UHFFFAOYSA-N 0.000 description 1
- WWSAYKJWUZJLRT-UHFFFAOYSA-N 1-piperidinocyclohexanecarbonitrile Chemical compound C1CCCCN1C1(C#N)CCCCC1 WWSAYKJWUZJLRT-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- JMBYBVLCYODBJQ-HFMPRLQTSA-N 2-(1-benzofuran-4-yl)-n-methyl-n-[(5r,7s,8s)-7-pyrrolidin-1-yl-1-oxaspiro[4.5]decan-8-yl]acetamide Chemical compound C([C@@H]([C@H](C1)N2CCCC2)N(C)C(=O)CC=2C=3C=COC=3C=CC=2)C[C@]21CCCO2 JMBYBVLCYODBJQ-HFMPRLQTSA-N 0.000 description 1
- 125000005273 2-acetoxybenzoic acid group Chemical group 0.000 description 1
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 1
- DNZPLHRZXUJATK-UHFFFAOYSA-N 2-sulfanylidene-5-[[5-[2-(trifluoromethyl)phenyl]furan-2-yl]methyl]-1,3-diazinane-4,6-dione Chemical compound FC(F)(F)C1=CC=CC=C1C(O1)=CC=C1CC1C(=O)NC(=S)NC1=O DNZPLHRZXUJATK-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- CQIWKCGJYBXASZ-UHFFFAOYSA-N 5-(4-fluorophenyl)-2-(4-propylpiperazin-1-yl)-1,3-thiazol-4-one Chemical compound C1CN(CCC)CCN1C1=NC(=O)C(C=2C=CC(F)=CC=2)S1 CQIWKCGJYBXASZ-UHFFFAOYSA-N 0.000 description 1
- USSIQXCVUWKGNF-UHFFFAOYSA-N 6-(dimethylamino)-4,4-diphenylheptan-3-one Chemical compound C=1C=CC=CC=1C(CC(C)N(C)C)(C(=O)CC)C1=CC=CC=C1 USSIQXCVUWKGNF-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- FDQGNLOWMMVRQL-UHFFFAOYSA-N Allobarbital Chemical compound C=CCC1(CC=C)C(=O)NC(=O)NC1=O FDQGNLOWMMVRQL-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- KZFBHCCLJSAHBQ-UHFFFAOYSA-N Benzoylecgonine Natural products CN1C2CCC1C(C(C2)OC(=C)c3ccccc3)C(=O)O KZFBHCCLJSAHBQ-UHFFFAOYSA-N 0.000 description 1
- UMSGKTJDUHERQW-UHFFFAOYSA-N Brotizolam Chemical compound C1=2C=C(Br)SC=2N2C(C)=NN=C2CN=C1C1=CC=CC=C1Cl UMSGKTJDUHERQW-UHFFFAOYSA-N 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-OUBTZVSYSA-N Carbon-13 Chemical compound [13C] OKTJSMMVPCPJKN-OUBTZVSYSA-N 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 108091006146 Channels Proteins 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- PCLITLDOTJTVDJ-UHFFFAOYSA-N Chlormethiazole Chemical compound CC=1N=CSC=1CCCl PCLITLDOTJTVDJ-UHFFFAOYSA-N 0.000 description 1
- ZCKAMNXUHHNZLN-UHFFFAOYSA-N Chlorphentermine Chemical compound CC(C)(N)CC1=CC=C(Cl)C=C1 ZCKAMNXUHHNZLN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 102000010907 Cyclooxygenase 2 Human genes 0.000 description 1
- 108010037462 Cyclooxygenase 2 Proteins 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- MHZGKXUYDGKKIU-UHFFFAOYSA-N Decylamine Chemical compound CCCCCCCCCCN MHZGKXUYDGKKIU-UHFFFAOYSA-N 0.000 description 1
- 206010012335 Dependence Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- IJVCSMSMFSCRME-KBQPJGBKSA-N Dihydromorphine Chemical compound O([C@H]1[C@H](CC[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O IJVCSMSMFSCRME-KBQPJGBKSA-N 0.000 description 1
- OIJXLIIMXHRJJH-KNLIIKEYSA-N Diprenorphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]11CC[C@]3([C@H](C1)C(C)(C)O)OC)CN2CC1CC1 OIJXLIIMXHRJJH-KNLIIKEYSA-N 0.000 description 1
- 206010013654 Drug abuse Diseases 0.000 description 1
- PHMBVCPLDPDESM-YWIQKCBGSA-N Ecgonine Natural products C1[C@H](O)[C@@H](C(O)=O)[C@H]2CC[C@@H]1N2C PHMBVCPLDPDESM-YWIQKCBGSA-N 0.000 description 1
- 239000004593 Epoxy Chemical class 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- OGDVEMNWJVYAJL-LEPYJNQMSA-N Ethyl morphine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OCC OGDVEMNWJVYAJL-LEPYJNQMSA-N 0.000 description 1
- OGDVEMNWJVYAJL-UHFFFAOYSA-N Ethylmorphine Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OCC OGDVEMNWJVYAJL-UHFFFAOYSA-N 0.000 description 1
- VMZUTJCNQWMAGF-UHFFFAOYSA-N Etizolam Chemical compound S1C(CC)=CC2=C1N1C(C)=NN=C1CN=C2C1=CC=CC=C1Cl VMZUTJCNQWMAGF-UHFFFAOYSA-N 0.000 description 1
- 229920003139 Eudragit® L 100 Polymers 0.000 description 1
- 229920003141 Eudragit® S 100 Polymers 0.000 description 1
- OFVXPDXXVSGEPX-UHFFFAOYSA-N Flutoprazepam Chemical compound FC1=CC=CC=C1C(C1=CC(Cl)=CC=C11)=NCC(=O)N1CC1CC1 OFVXPDXXVSGEPX-UHFFFAOYSA-N 0.000 description 1
- AZKVWQKMDGGDSV-BCMRRPTOSA-N Genipin Chemical compound COC(=O)C1=CO[C@@H](O)[C@@H]2C(CO)=CC[C@H]12 AZKVWQKMDGGDSV-BCMRRPTOSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- 229940122165 Glycine receptor antagonist Drugs 0.000 description 1
- HSRJKNPTNIJEKV-UHFFFAOYSA-N Guaifenesin Chemical compound COC1=CC=CC=C1OCC(O)CO HSRJKNPTNIJEKV-UHFFFAOYSA-N 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- ZAGRKAFMISFKIO-UHFFFAOYSA-N Isolysergic acid Natural products C1=CC(C2=CC(CN(C2C2)C)C(O)=O)=C3C2=CNC3=C1 ZAGRKAFMISFKIO-UHFFFAOYSA-N 0.000 description 1
- PWWVAXIEGOYWEE-UHFFFAOYSA-N Isophenergan Chemical compound C1=CC=C2N(CC(C)N(C)C)C3=CC=CC=C3SC2=C1 PWWVAXIEGOYWEE-UHFFFAOYSA-N 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- ALFGKMXHOUSVAD-UHFFFAOYSA-N Ketobemidone Chemical compound C=1C=CC(O)=CC=1C1(C(=O)CC)CCN(C)CC1 ALFGKMXHOUSVAD-UHFFFAOYSA-N 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- LEROTMJVBFSIMP-UHFFFAOYSA-N Mebutamate Chemical compound NC(=O)OCC(C)(C(C)CC)COC(N)=O LEROTMJVBFSIMP-UHFFFAOYSA-N 0.000 description 1
- XADCESSVHJOZHK-UHFFFAOYSA-N Meperidine Chemical compound C=1C=CC=CC=1C1(C(=O)OCC)CCN(C)CC1 XADCESSVHJOZHK-UHFFFAOYSA-N 0.000 description 1
- NPPQSCRMBWNHMW-UHFFFAOYSA-N Meprobamate Chemical compound NC(=O)OCC(C)(CCC)COC(N)=O NPPQSCRMBWNHMW-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- JEYCTXHKTXCGPB-UHFFFAOYSA-N Methaqualone Chemical compound CC1=CC=CC=C1N1C(=O)C2=CC=CC=C2N=C1C JEYCTXHKTXCGPB-UHFFFAOYSA-N 0.000 description 1
- DUGOZIWVEXMGBE-UHFFFAOYSA-N Methylphenidate Chemical compound C=1C=CC=CC=1C(C(=O)OC)C1CCCCN1 DUGOZIWVEXMGBE-UHFFFAOYSA-N 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- IDBPHNDTYPBSNI-UHFFFAOYSA-N N-(1-(2-(4-Ethyl-5-oxo-2-tetrazolin-1-yl)ethyl)-4-(methoxymethyl)-4-piperidyl)propionanilide Chemical compound C1CN(CCN2C(N(CC)N=N2)=O)CCC1(COC)N(C(=O)CC)C1=CC=CC=C1 IDBPHNDTYPBSNI-UHFFFAOYSA-N 0.000 description 1
- 102000004868 N-Methyl-D-Aspartate Receptors Human genes 0.000 description 1
- 108090001041 N-Methyl-D-Aspartate Receptors Proteins 0.000 description 1
- UIQMVEYFGZJHCZ-SSTWWWIQSA-N Nalorphine Chemical compound C([C@@H](N(CC1)CC=C)[C@@H]2C=C[C@@H]3O)C4=CC=C(O)C5=C4[C@@]21[C@H]3O5 UIQMVEYFGZJHCZ-SSTWWWIQSA-N 0.000 description 1
- RGPDEAGGEXEMMM-UHFFFAOYSA-N Nefopam Chemical compound C12=CC=CC=C2CN(C)CCOC1C1=CC=CC=C1 RGPDEAGGEXEMMM-UHFFFAOYSA-N 0.000 description 1
- ONBWJWYUHXVEJS-ZTYRTETDSA-N Normorphine Chemical compound C([C@@H](NCC1)[C@@H]2C=C[C@@H]3O)C4=CC=C(O)C5=C4[C@@]21[C@H]3O5 ONBWJWYUHXVEJS-ZTYRTETDSA-N 0.000 description 1
- 229940127450 Opioid Agonists Drugs 0.000 description 1
- QHZLMUACJMDIAE-UHFFFAOYSA-N Palmitic acid monoglyceride Natural products CCCCCCCCCCCCCCCC(=O)OCC(O)CO QHZLMUACJMDIAE-UHFFFAOYSA-N 0.000 description 1
- CAMYKONBWHRPDD-UHFFFAOYSA-N Phenprobamate Chemical compound NC(=O)OCCCC1=CC=CC=C1 CAMYKONBWHRPDD-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- MWQCHHACWWAQLJ-UHFFFAOYSA-N Prazepam Chemical compound O=C1CN=C(C=2C=CC=CC=2)C2=CC(Cl)=CC=C2N1CC1CC1 MWQCHHACWWAQLJ-UHFFFAOYSA-N 0.000 description 1
- IKMPWMZBZSAONZ-UHFFFAOYSA-N Quazepam Chemical compound FC1=CC=CC=C1C1=NCC(=S)N(CC(F)(F)F)C2=CC=C(Cl)C=C12 IKMPWMZBZSAONZ-UHFFFAOYSA-N 0.000 description 1
- ZTVQQQVZCWLTDF-UHFFFAOYSA-N Remifentanil Chemical compound C1CN(CCC(=O)OC)CCC1(C(=O)OC)N(C(=O)CC)C1=CC=CC=C1 ZTVQQQVZCWLTDF-UHFFFAOYSA-N 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical class [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- SEQDDYPDSLOBDC-UHFFFAOYSA-N Temazepam Chemical compound N=1C(O)C(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 SEQDDYPDSLOBDC-UHFFFAOYSA-N 0.000 description 1
- PLZVEHJLHYMBBY-UHFFFAOYSA-N Tetradecylamine Chemical compound CCCCCCCCCCCCCCN PLZVEHJLHYMBBY-UHFFFAOYSA-N 0.000 description 1
- IUJDSEJGGMCXSG-UHFFFAOYSA-N Thiopental Chemical compound CCCC(C)C1(CC)C(=O)NC(=S)NC1=O IUJDSEJGGMCXSG-UHFFFAOYSA-N 0.000 description 1
- 108060008539 Transglutaminase Proteins 0.000 description 1
- YYQRGCZGSFRBAM-UHFFFAOYSA-N Triclofos Chemical compound OP(O)(=O)OCC(Cl)(Cl)Cl YYQRGCZGSFRBAM-UHFFFAOYSA-N 0.000 description 1
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 1
- 229920002494 Zein Polymers 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- GDSCFOSHSOWNDL-UHFFFAOYSA-N Zolasepam Chemical compound N=1CC(=O)N(C)C(N(N=C2C)C)=C2C=1C1=CC=CC=C1F GDSCFOSHSOWNDL-UHFFFAOYSA-N 0.000 description 1
- UVAZQQHAVMNMHE-BBRMVZONSA-N [(3s,4s)-1,3-dimethyl-4-phenylpiperidin-4-yl] propanoate Chemical compound C=1C=CC=CC=1[C@]1(OC(=O)CC)CCN(C)C[C@@H]1C UVAZQQHAVMNMHE-BBRMVZONSA-N 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229960001391 alfentanil Drugs 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229960000880 allobarbital Drugs 0.000 description 1
- XBMIVRRWGCYBTQ-XMSQKQJNSA-N alphacetylmethadol Chemical compound C=1C=CC=CC=1C(C[C@@H](C)N(C)C)([C@H](OC(C)=O)CC)C1=CC=CC=C1 XBMIVRRWGCYBTQ-XMSQKQJNSA-N 0.000 description 1
- 229950007385 alphacetylmethadol Drugs 0.000 description 1
- UVAZQQHAVMNMHE-XJKSGUPXSA-N alphaprodine Chemical compound C=1C=CC=CC=1[C@@]1(OC(=O)CC)CCN(C)C[C@@H]1C UVAZQQHAVMNMHE-XJKSGUPXSA-N 0.000 description 1
- 229960001349 alphaprodine Drugs 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229940025084 amphetamine Drugs 0.000 description 1
- 230000036592 analgesia Effects 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 229960002512 anileridine Drugs 0.000 description 1
- LKYQLAWMNBFNJT-UHFFFAOYSA-N anileridine Chemical compound C1CC(C(=O)OCC)(C=2C=CC=CC=2)CCN1CCC1=CC=C(N)C=C1 LKYQLAWMNBFNJT-UHFFFAOYSA-N 0.000 description 1
- VMWNQDUVQKEIOC-CYBMUJFWSA-N apomorphine Chemical compound C([C@H]1N(C)CC2)C3=CC=C(O)C(O)=C3C3=C1C2=CC=C3 VMWNQDUVQKEIOC-CYBMUJFWSA-N 0.000 description 1
- 229960004046 apomorphine Drugs 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- XBMIVRRWGCYBTQ-GCJKJVERSA-N betacetylmethadol Chemical compound C=1C=CC=CC=1C(C[C@@H](C)N(C)C)([C@@H](OC(C)=O)CC)C1=CC=CC=C1 XBMIVRRWGCYBTQ-GCJKJVERSA-N 0.000 description 1
- 229950003254 betacetylmethadol Drugs 0.000 description 1
- 229950000011 betaprodine Drugs 0.000 description 1
- FLKWNFFCSSJANB-UHFFFAOYSA-N bezitramide Chemical compound O=C1N(C(=O)CC)C2=CC=CC=C2N1C(CC1)CCN1CCC(C#N)(C=1C=CC=CC=1)C1=CC=CC=C1 FLKWNFFCSSJANB-UHFFFAOYSA-N 0.000 description 1
- 229960004611 bezitramide Drugs 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- DYODAJAEQDVYFX-UHFFFAOYSA-N brallobarbital Chemical compound BrC(=C)CC1(CC=C)C(=O)NC(=O)NC1=O DYODAJAEQDVYFX-UHFFFAOYSA-N 0.000 description 1
- 229950002261 brallobarbital Drugs 0.000 description 1
- 229960003051 brotizolam Drugs 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000008364 bulk solution Substances 0.000 description 1
- RMRJXGBAOAMLHD-IHFGGWKQSA-N buprenorphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]11CC[C@]3([C@H](C1)[C@](C)(O)C(C)(C)C)OC)CN2CC1CC1 RMRJXGBAOAMLHD-IHFGGWKQSA-N 0.000 description 1
- 229960001736 buprenorphine Drugs 0.000 description 1
- QWCRAEMEVRGPNT-UHFFFAOYSA-N buspirone Chemical compound C1C(=O)N(CCCCN2CCN(CC2)C=2N=CC=CN=2)C(=O)CC21CCCC2 QWCRAEMEVRGPNT-UHFFFAOYSA-N 0.000 description 1
- 229960002495 buspirone Drugs 0.000 description 1
- 229940015694 butabarbital Drugs 0.000 description 1
- STDBAQMTJLUMFW-UHFFFAOYSA-N butobarbital Chemical compound CCCCC1(CC)C(=O)NC(=O)NC1=O STDBAQMTJLUMFW-UHFFFAOYSA-N 0.000 description 1
- 229960003874 butobarbital Drugs 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 229940095672 calcium sulfate Drugs 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 235000017663 capsaicin Nutrition 0.000 description 1
- 229960002504 capsaicin Drugs 0.000 description 1
- IZLPZXSZLLELBJ-UHFFFAOYSA-N captodiame Chemical compound C1=CC(SCCCC)=CC=C1C(SCCN(C)C)C1=CC=CC=C1 IZLPZXSZLLELBJ-UHFFFAOYSA-N 0.000 description 1
- 229960002574 captodiame Drugs 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 229960001658 carbromal Drugs 0.000 description 1
- OPNPQXLQERQBBV-UHFFFAOYSA-N carbromal Chemical compound CCC(Br)(CC)C(=O)NC(N)=O OPNPQXLQERQBBV-UHFFFAOYSA-N 0.000 description 1
- 229950004689 carfentanil Drugs 0.000 description 1
- NWPJLRSCSQHPJV-UHFFFAOYSA-N carpipramine Chemical compound C1CN(CCCN2C3=CC=CC=C3CCC3=CC=CC=C32)CCC1(C(=O)N)N1CCCCC1 NWPJLRSCSQHPJV-UHFFFAOYSA-N 0.000 description 1
- 229960000700 carpipramine Drugs 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229940082500 cetostearyl alcohol Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- ONAOIDNSINNZOA-UHFFFAOYSA-N chloral betaine Chemical compound OC(O)C(Cl)(Cl)Cl.C[N+](C)(C)CC([O-])=O ONAOIDNSINNZOA-UHFFFAOYSA-N 0.000 description 1
- 229940118803 chloral betaine Drugs 0.000 description 1
- RNFNDJAIBTYOQL-UHFFFAOYSA-N chloral hydrate Chemical compound OC(O)C(Cl)(Cl)Cl RNFNDJAIBTYOQL-UHFFFAOYSA-N 0.000 description 1
- 229960002327 chloral hydrate Drugs 0.000 description 1
- 229960005083 chloralodol Drugs 0.000 description 1
- QVFWZNCVPCJQOP-UHFFFAOYSA-N chloralodol Chemical compound CC(O)(C)CC(C)OC(O)C(Cl)(Cl)Cl QVFWZNCVPCJQOP-UHFFFAOYSA-N 0.000 description 1
- 229950009941 chloralose Drugs 0.000 description 1
- OJYGBLRPYBAHRT-IPQSZEQASA-N chloralose Chemical compound O1[C@H](C(Cl)(Cl)Cl)O[C@@H]2[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]21 OJYGBLRPYBAHRT-IPQSZEQASA-N 0.000 description 1
- WEQAYVWKMWHEJO-UHFFFAOYSA-N chlormezanone Chemical compound O=S1(=O)CCC(=O)N(C)C1C1=CC=C(Cl)C=C1 WEQAYVWKMWHEJO-UHFFFAOYSA-N 0.000 description 1
- 229960002810 chlormezanone Drugs 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 229950007046 chlorphentermine Drugs 0.000 description 1
- 229960002753 cinolazepam Drugs 0.000 description 1
- XAXMYHMKTCNRRZ-UHFFFAOYSA-N cinolazepam Chemical compound C12=CC(Cl)=CC=C2N(CCC#N)C(=O)C(O)N=C1C1=CC=CC=C1F XAXMYHMKTCNRRZ-UHFFFAOYSA-N 0.000 description 1
- 229960004414 clomethiazole Drugs 0.000 description 1
- DGBIGWXXNGSACT-UHFFFAOYSA-N clonazepam Chemical compound C12=CC([N+](=O)[O-])=CC=C2NC(=O)CN=C1C1=CC=CC=C1Cl DGBIGWXXNGSACT-UHFFFAOYSA-N 0.000 description 1
- 229960003120 clonazepam Drugs 0.000 description 1
- 229960004362 clorazepate Drugs 0.000 description 1
- ULEUKTXFAJZAAV-UHFFFAOYSA-M clorazepate monopotassium Chemical compound [K+].C12=CC(Cl)=CC=C2NC(=O)C(C(=O)[O-])N=C1C1=CC=CC=C1 ULEUKTXFAJZAAV-UHFFFAOYSA-M 0.000 description 1
- XDDJGVMJFWAHJX-UHFFFAOYSA-N clorazepic acid Chemical compound C12=CC(Cl)=CC=C2NC(=O)C(C(=O)O)N=C1C1=CC=CC=C1 XDDJGVMJFWAHJX-UHFFFAOYSA-N 0.000 description 1
- 238000005354 coacervation Methods 0.000 description 1
- 229960003920 cocaine Drugs 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000012050 conventional carrier Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 229960000913 crospovidone Drugs 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- WTYGAUXICFETTC-UHFFFAOYSA-N cyclobarbital Chemical compound C=1CCCCC=1C1(CC)C(=O)NC(=O)NC1=O WTYGAUXICFETTC-UHFFFAOYSA-N 0.000 description 1
- 229960004138 cyclobarbital Drugs 0.000 description 1
- PHMBVCPLDPDESM-UHFFFAOYSA-N d-Pseudoekgonin Natural products C1C(O)C(C(O)=O)C2CCC1N2C PHMBVCPLDPDESM-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229940096516 dextrates Drugs 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- MKXZASYAUGDDCJ-NJAFHUGGSA-N dextromethorphan Chemical compound C([C@@H]12)CCC[C@]11CCN(C)[C@H]2CC2=CC=C(OC)C=C21 MKXZASYAUGDDCJ-NJAFHUGGSA-N 0.000 description 1
- 229960001985 dextromethorphan Drugs 0.000 description 1
- 229960003701 dextromoramide Drugs 0.000 description 1
- INUNXTSAACVKJS-OAQYLSRUSA-N dextromoramide Chemical compound C([C@@H](C)C(C(=O)N1CCCC1)(C=1C=CC=CC=1)C=1C=CC=CC=1)N1CCOCC1 INUNXTSAACVKJS-OAQYLSRUSA-N 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 229960003461 dezocine Drugs 0.000 description 1
- VTMVHDZWSFQSQP-VBNZEHGJSA-N dezocine Chemical compound C1CCCC[C@H]2CC3=CC=C(O)C=C3[C@]1(C)[C@H]2N VTMVHDZWSFQSQP-VBNZEHGJSA-N 0.000 description 1
- 229940031954 dibutyl sebacate Drugs 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- GJJRIOLBUILIGK-UHFFFAOYSA-N difebarbamate Chemical compound O=C1N(CC(COCCCC)OC(N)=O)C(=O)N(CC(COCCCC)OC(N)=O)C(=O)C1(CC)C1=CC=CC=C1 GJJRIOLBUILIGK-UHFFFAOYSA-N 0.000 description 1
- 229960000694 difebarbamate Drugs 0.000 description 1
- RBOXVHNMENFORY-DNJOTXNNSA-N dihydrocodeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC RBOXVHNMENFORY-DNJOTXNNSA-N 0.000 description 1
- 229960000920 dihydrocodeine Drugs 0.000 description 1
- HYPPXZBJBPSRLK-UHFFFAOYSA-N diphenoxylate Chemical compound C1CC(C(=O)OCC)(C=2C=CC=CC=2)CCN1CCC(C#N)(C=1C=CC=CC=1)C1=CC=CC=C1 HYPPXZBJBPSRLK-UHFFFAOYSA-N 0.000 description 1
- 229960004192 diphenoxylate Drugs 0.000 description 1
- 229950002494 diprenorphine Drugs 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 229940126534 drug product Drugs 0.000 description 1
- PHMBVCPLDPDESM-FKSUSPILSA-N ecgonine Chemical compound C1[C@H](O)[C@H](C(O)=O)[C@H]2CC[C@@H]1N2C PHMBVCPLDPDESM-FKSUSPILSA-N 0.000 description 1
- GVGYEFKIHJTNQZ-RFQIPJPRSA-N ecgonine benzoate Chemical compound O([C@@H]1[C@@H]([C@H]2CC[C@@H](C1)N2C)C(O)=O)C(=O)C1=CC=CC=C1 GVGYEFKIHJTNQZ-RFQIPJPRSA-N 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 229950010961 enadoline Drugs 0.000 description 1
- 229950010052 enciprazine Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- ZOWQTJXNFTWSCS-IAQYHMDHSA-N eptazocine Chemical compound C1N(C)CC[C@@]2(C)C3=CC(O)=CC=C3C[C@@H]1C2 ZOWQTJXNFTWSCS-IAQYHMDHSA-N 0.000 description 1
- 229950010920 eptazocine Drugs 0.000 description 1
- WGJHHMKQBWSQIY-UHFFFAOYSA-N ethoheptazine Chemical compound C=1C=CC=CC=1C1(C(=O)OCC)CCCN(C)CC1 WGJHHMKQBWSQIY-UHFFFAOYSA-N 0.000 description 1
- 229960000569 ethoheptazine Drugs 0.000 description 1
- 235000010944 ethyl methyl cellulose Nutrition 0.000 description 1
- 239000001761 ethyl methyl cellulose Substances 0.000 description 1
- 229960004578 ethylmorphine Drugs 0.000 description 1
- 229960004404 etizolam Drugs 0.000 description 1
- CAHCBJPUTCKATP-FAWZKKEFSA-N etorphine Chemical compound O([C@H]1[C@@]2(OC)C=C[C@@]34C[C@@H]2[C@](C)(O)CCC)C2=C5[C@]41CCN(C)[C@@H]3CC5=CC=C2O CAHCBJPUTCKATP-FAWZKKEFSA-N 0.000 description 1
- 229950004155 etorphine Drugs 0.000 description 1
- 230000002743 euphoric effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- QHZQILHUJDRDAI-UHFFFAOYSA-N febarbamate Chemical compound O=C1N(CC(COCCCC)OC(N)=O)C(=O)NC(=O)C1(CC)C1=CC=CC=C1 QHZQILHUJDRDAI-UHFFFAOYSA-N 0.000 description 1
- 229960005182 febarbamate Drugs 0.000 description 1
- 229960005231 fenproporex Drugs 0.000 description 1
- IQUFSXIQAFPIMR-UHFFFAOYSA-N fenproporex Chemical compound N#CCCNC(C)CC1=CC=CC=C1 IQUFSXIQAFPIMR-UHFFFAOYSA-N 0.000 description 1
- 229960002428 fentanyl Drugs 0.000 description 1
- IVLVTNPOHDFFCJ-UHFFFAOYSA-N fentanyl citrate Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C=1C=CC=CC=1N(C(=O)CC)C(CC1)CCN1CCC1=CC=CC=C1 IVLVTNPOHDFFCJ-UHFFFAOYSA-N 0.000 description 1
- 229940042721 fiorinal Drugs 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- IRYFCWPNDIUQOW-UHFFFAOYSA-N fluanisone Chemical compound COC1=CC=CC=C1N1CCN(CCCC(=O)C=2C=CC(F)=CC=2)CC1 IRYFCWPNDIUQOW-UHFFFAOYSA-N 0.000 description 1
- 229960005220 fluanisone Drugs 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229950009299 flutoprazepam Drugs 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 210000001156 gastric mucosa Anatomy 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 235000021474 generally recognized As safe (food) Nutrition 0.000 description 1
- 235000021473 generally recognized as safe (food ingredients) Nutrition 0.000 description 1
- AZKVWQKMDGGDSV-UHFFFAOYSA-N genipin Natural products COC(=O)C1=COC(O)C2C(CO)=CCC12 AZKVWQKMDGGDSV-UHFFFAOYSA-N 0.000 description 1
- QOIGKGMMAGJZNZ-UHFFFAOYSA-N gepirone Chemical compound O=C1CC(C)(C)CC(=O)N1CCCCN1CCN(C=2N=CC=CN=2)CC1 QOIGKGMMAGJZNZ-UHFFFAOYSA-N 0.000 description 1
- 229960000647 gepirone Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000021312 gluten Nutrition 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229940049654 glyceryl behenate Drugs 0.000 description 1
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- FETSQPAGYOVAQU-UHFFFAOYSA-N glyceryl palmitostearate Chemical compound OCC(O)CO.CCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O FETSQPAGYOVAQU-UHFFFAOYSA-N 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 239000002430 glycine receptor antagonist Substances 0.000 description 1
- 229960002146 guaifenesin Drugs 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 239000007902 hard capsule Substances 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 229960002456 hexobarbital Drugs 0.000 description 1
- UYXAWHWODHRRMR-UHFFFAOYSA-N hexobarbital Chemical compound O=C1N(C)C(=O)NC(=O)C1(C)C1=CCCCC1 UYXAWHWODHRRMR-UHFFFAOYSA-N 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000010514 hydrogenated cottonseed oil Substances 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- UWYVPFMHMJIBHE-OWOJBTEDSA-N hydroxymaleic acid group Chemical group O/C(/C(=O)O)=C/C(=O)O UWYVPFMHMJIBHE-OWOJBTEDSA-N 0.000 description 1
- WTJBNMUWRKPFRS-UHFFFAOYSA-N hydroxypethidine Chemical compound C=1C=CC(O)=CC=1C1(C(=O)OCC)CCN(C)CC1 WTJBNMUWRKPFRS-UHFFFAOYSA-N 0.000 description 1
- 229950008496 hydroxypethidine Drugs 0.000 description 1
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 description 1
- 229940071676 hydroxypropylcellulose Drugs 0.000 description 1
- 229920000639 hydroxypropylmethylcellulose acetate succinate Polymers 0.000 description 1
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical class Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000005414 inactive ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229950003599 ipsapirone Drugs 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- IFKPLJWIEQBPGG-UHFFFAOYSA-N isomethadone Chemical compound C=1C=CC=CC=1C(C(C)CN(C)C)(C(=O)CC)C1=CC=CC=C1 IFKPLJWIEQBPGG-UHFFFAOYSA-N 0.000 description 1
- 229950009272 isomethadone Drugs 0.000 description 1
- 238000010902 jet-milling Methods 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 229960003029 ketobemidone Drugs 0.000 description 1
- USSIQXCVUWKGNF-QGZVFWFLSA-N levomethadone Chemical compound C=1C=CC=CC=1C(C[C@@H](C)N(C)C)(C(=O)CC)C1=CC=CC=C1 USSIQXCVUWKGNF-QGZVFWFLSA-N 0.000 description 1
- 229960002710 levomethadone Drugs 0.000 description 1
- 229950004990 levomethorphan Drugs 0.000 description 1
- 229960003406 levorphanol Drugs 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- IMYHGORQCPYVBZ-NLFFAJNJSA-N lofentanil Chemical compound CCC(=O)N([C@@]1([C@@H](CN(CCC=2C=CC=CC=2)CC1)C)C(=O)OC)C1=CC=CC=C1 IMYHGORQCPYVBZ-NLFFAJNJSA-N 0.000 description 1
- 229950010274 lofentanil Drugs 0.000 description 1
- RDOIQAHITMMDAJ-UHFFFAOYSA-N loperamide Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)N(C)C)CCN(CC1)CCC1(O)C1=CC=C(Cl)C=C1 RDOIQAHITMMDAJ-UHFFFAOYSA-N 0.000 description 1
- 229960001571 loperamide Drugs 0.000 description 1
- UTEFBSAVJNEPTR-RGEXLXHISA-N loprazolam Chemical compound C1CN(C)CCN1\C=C/1C(=O)N2C3=CC=C([N+]([O-])=O)C=C3C(C=3C(=CC=CC=3)Cl)=NCC2=N\1 UTEFBSAVJNEPTR-RGEXLXHISA-N 0.000 description 1
- 229960003019 loprazolam Drugs 0.000 description 1
- 229940051313 loprazolam mesylate Drugs 0.000 description 1
- ZAGRKAFMISFKIO-QMTHXVAHSA-N lysergic acid Chemical compound C1=CC(C2=C[C@H](CN([C@@H]2C2)C)C(O)=O)=C3C2=CNC3=C1 ZAGRKAFMISFKIO-QMTHXVAHSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- FQXXSQDCDRQNQE-UHFFFAOYSA-N markiertes Thebain Natural products COC1=CC=C2C(N(CC3)C)CC4=CC=C(OC)C5=C4C23C1O5 FQXXSQDCDRQNQE-UHFFFAOYSA-N 0.000 description 1
- 229960004119 mebutamate Drugs 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000004630 mental health Effects 0.000 description 1
- ALARQZQTBTVLJV-UHFFFAOYSA-N mephobarbital Chemical compound C=1C=CC=CC=1C1(CC)C(=O)NC(=O)N(C)C1=O ALARQZQTBTVLJV-UHFFFAOYSA-N 0.000 description 1
- 229960004815 meprobamate Drugs 0.000 description 1
- 229960000365 meptazinol Drugs 0.000 description 1
- JLICHNCFTLFZJN-HNNXBMFYSA-N meptazinol Chemical compound C=1C=CC(O)=CC=1[C@@]1(CC)CCCCN(C)C1 JLICHNCFTLFZJN-HNNXBMFYSA-N 0.000 description 1
- WABYCCJHARSRBH-UHFFFAOYSA-N metaclazepam Chemical compound C12=CC(Br)=CC=C2N(C)C(COC)CN=C1C1=CC=CC=C1Cl WABYCCJHARSRBH-UHFFFAOYSA-N 0.000 description 1
- 229950007575 metaclazepam Drugs 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- YGSVZRIZCHZUHB-COLVAYQJSA-N metazocine Chemical compound C1C2=CC=C(O)C=C2[C@]2(C)CCN(C)[C@@]1([H])[C@@H]2C YGSVZRIZCHZUHB-COLVAYQJSA-N 0.000 description 1
- 229950009131 metazocine Drugs 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 229960001797 methadone Drugs 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229960001252 methamphetamine Drugs 0.000 description 1
- 229960002803 methaqualone Drugs 0.000 description 1
- VRQVVMDWGGWHTJ-CQSZACIVSA-N methotrimeprazine Chemical compound C1=CC=C2N(C[C@H](C)CN(C)C)C3=CC(OC)=CC=C3SC2=C1 VRQVVMDWGGWHTJ-CQSZACIVSA-N 0.000 description 1
- 229940042053 methotrimeprazine Drugs 0.000 description 1
- YDSDEBIZUNNPOB-JVVVGQRLSA-N methyl 1-(2-phenylethyl)-4-(n-propanoylanilino)piperidine-4-carboxylate Chemical compound C1CN(CCC=2C=CC=CC=2)CCC1(C(=O)O[11CH3])N(C(=O)CC)C1=CC=CC=C1 YDSDEBIZUNNPOB-JVVVGQRLSA-N 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 229960002238 methylpentynol Drugs 0.000 description 1
- QXLPXWSKPNOQLE-UHFFFAOYSA-N methylpentynol Chemical compound CCC(C)(O)C#C QXLPXWSKPNOQLE-UHFFFAOYSA-N 0.000 description 1
- 229960001344 methylphenidate Drugs 0.000 description 1
- 229960003793 midazolam Drugs 0.000 description 1
- DDLIGBOFAVUZHB-UHFFFAOYSA-N midazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NC=C2CN=C1C1=CC=CC=C1F DDLIGBOFAVUZHB-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 1
- 230000036651 mood Effects 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 229960002967 nabilone Drugs 0.000 description 1
- GECBBEABIDMGGL-RTBURBONSA-N nabilone Chemical compound C1C(=O)CC[C@H]2C(C)(C)OC3=CC(C(C)(C)CCCCCC)=CC(O)=C3[C@@H]21 GECBBEABIDMGGL-RTBURBONSA-N 0.000 description 1
- 229960000805 nalbuphine Drugs 0.000 description 1
- NETZHAKZCGBWSS-CEDHKZHLSA-N nalbuphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]1(O)CC[C@@H]3O)CN2CC1CCC1 NETZHAKZCGBWSS-CEDHKZHLSA-N 0.000 description 1
- 229960000938 nalorphine Drugs 0.000 description 1
- 230000003533 narcotic effect Effects 0.000 description 1
- 229960000751 nefopam Drugs 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- HNDXBGYRMHRUFN-CIVUWBIHSA-N nicomorphine Chemical compound O([C@H]1C=C[C@H]2[C@H]3CC=4C5=C(C(=CC=4)OC(=O)C=4C=NC=CC=4)O[C@@H]1[C@]52CCN3C)C(=O)C1=CC=CN=C1 HNDXBGYRMHRUFN-CIVUWBIHSA-N 0.000 description 1
- 229960004300 nicomorphine Drugs 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 229960004013 normethadone Drugs 0.000 description 1
- WCJFBSYALHQBSK-UHFFFAOYSA-N normethadone Chemical compound C=1C=CC=CC=1C(CCN(C)C)(C(=O)CC)C1=CC=CC=C1 WCJFBSYALHQBSK-UHFFFAOYSA-N 0.000 description 1
- 229950006134 normorphine Drugs 0.000 description 1
- WCDSHELZWCOTMI-UHFFFAOYSA-N norpipanone Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)CC)CCN1CCCCC1 WCDSHELZWCOTMI-UHFFFAOYSA-N 0.000 description 1
- 229950007418 norpipanone Drugs 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000003402 opiate agonist Substances 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 229960003868 paraldehyde Drugs 0.000 description 1
- SQYNKIJPMDEDEG-UHFFFAOYSA-N paraldehyde Chemical compound CC1OC(C)OC(C)O1 SQYNKIJPMDEDEG-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229960000761 pemoline Drugs 0.000 description 1
- NRNCYVBFPDDJNE-UHFFFAOYSA-N pemoline Chemical compound O1C(N)=NC(=O)C1C1=CC=CC=C1 NRNCYVBFPDDJNE-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229960000482 pethidine Drugs 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- CPJSUEIXXCENMM-UHFFFAOYSA-N phenacetin Chemical compound CCOC1=CC=C(NC(C)=O)C=C1 CPJSUEIXXCENMM-UHFFFAOYSA-N 0.000 description 1
- LOXCOAXRHYDLOW-UHFFFAOYSA-N phenadoxone Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)CC)CC(C)N1CCOCC1 LOXCOAXRHYDLOW-UHFFFAOYSA-N 0.000 description 1
- 229950004540 phenadoxone Drugs 0.000 description 1
- 229960000897 phenazocine Drugs 0.000 description 1
- ZQHYKVKNPWDQSL-KNXBSLHKSA-N phenazocine Chemical compound C([C@@]1(C)C2=CC(O)=CC=C2C[C@@H]2[C@@H]1C)CN2CCC1=CC=CC=C1 ZQHYKVKNPWDQSL-KNXBSLHKSA-N 0.000 description 1
- IUNKCJPURQMGKG-UHFFFAOYSA-N pheneridine Chemical compound C1CC(C(=O)OCC)(C=2C=CC=CC=2)CCN1CCC1=CC=CC=C1 IUNKCJPURQMGKG-UHFFFAOYSA-N 0.000 description 1
- 229950003060 pheneridine Drugs 0.000 description 1
- DDBREPKUVSBGFI-UHFFFAOYSA-N phenobarbital Chemical compound C=1C=CC=CC=1C1(CC)C(=O)NC(=O)NC1=O DDBREPKUVSBGFI-UHFFFAOYSA-N 0.000 description 1
- 229960002695 phenobarbital Drugs 0.000 description 1
- 229960002572 phenprobamate Drugs 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- PXXKIYPSXYFATG-UHFFFAOYSA-N piminodine Chemical compound C1CC(C(=O)OCC)(C=2C=CC=CC=2)CCN1CCCNC1=CC=CC=C1 PXXKIYPSXYFATG-UHFFFAOYSA-N 0.000 description 1
- 229950006445 piminodine Drugs 0.000 description 1
- 229960002034 pinazepam Drugs 0.000 description 1
- MFZOSKPPVCIFMT-UHFFFAOYSA-N pinazepam Chemical compound C12=CC(Cl)=CC=C2N(CC#C)C(=O)CN=C1C1=CC=CC=C1 MFZOSKPPVCIFMT-UHFFFAOYSA-N 0.000 description 1
- 229960000753 pipradrol Drugs 0.000 description 1
- XSWHNYGMWWVAIE-UHFFFAOYSA-N pipradrol Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(O)C1CCCCN1 XSWHNYGMWWVAIE-UHFFFAOYSA-N 0.000 description 1
- 229920001992 poloxamer 407 Polymers 0.000 description 1
- 229940044476 poloxamer 407 Drugs 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 1
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229940028868 potassium clorazepate Drugs 0.000 description 1
- 235000013966 potassium salts of fatty acid Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229920003124 powdered cellulose Polymers 0.000 description 1
- 235000019814 powdered cellulose Nutrition 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 229960004856 prazepam Drugs 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- LUKSBMJXPCFBKO-UHFFFAOYSA-N prodilidine Chemical compound C=1C=CC=CC=1C1(OC(=O)CC)CCN(C)C1C LUKSBMJXPCFBKO-UHFFFAOYSA-N 0.000 description 1
- 229950006434 prodilidine Drugs 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 229960003910 promethazine Drugs 0.000 description 1
- KTGWBBOJAGDSHN-UHFFFAOYSA-N propallylonal Chemical compound BrC(=C)CC1(C(C)C)C(=O)NC(=O)NC1=O KTGWBBOJAGDSHN-UHFFFAOYSA-N 0.000 description 1
- 229950008206 propallylonal Drugs 0.000 description 1
- XJKQCILVUHXVIQ-UHFFFAOYSA-N properidine Chemical compound C=1C=CC=CC=1C1(C(=O)OC(C)C)CCN(C)CC1 XJKQCILVUHXVIQ-UHFFFAOYSA-N 0.000 description 1
- 229950004345 properidine Drugs 0.000 description 1
- 229960002924 proxibarbal Drugs 0.000 description 1
- VNLMRPAWAMPLNZ-UHFFFAOYSA-N proxibarbal Chemical compound CC(O)CC1(CC=C)C(=O)NC(=O)NC1=O VNLMRPAWAMPLNZ-UHFFFAOYSA-N 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 229960001964 quazepam Drugs 0.000 description 1
- INUNXTSAACVKJS-UHFFFAOYSA-N racemoramide Chemical compound C1CCCN1C(=O)C(C=1C=CC=CC=1)(C=1C=CC=CC=1)C(C)CN1CCOCC1 INUNXTSAACVKJS-UHFFFAOYSA-N 0.000 description 1
- 229950011009 racemorphan Drugs 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229960003394 remifentanil Drugs 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 235000014102 seafood Nutrition 0.000 description 1
- 229950008243 secbutabarbital Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 229960004425 sibutramine Drugs 0.000 description 1
- UNAANXDKBXWMLN-UHFFFAOYSA-N sibutramine Chemical compound C=1C=C(Cl)C=CC=1C1(C(N(C)C)CC(C)C)CCC1 UNAANXDKBXWMLN-UHFFFAOYSA-N 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229960002668 sodium chloride Drugs 0.000 description 1
- 235000013875 sodium salts of fatty acid Nutrition 0.000 description 1
- 229940080313 sodium starch Drugs 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 208000011117 substance-related disease Diseases 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- GGCSSNBKKAUURC-UHFFFAOYSA-N sufentanil Chemical compound C1CN(CCC=2SC=CC=2)CCC1(COC)N(C(=O)CC)C1=CC=CC=C1 GGCSSNBKKAUURC-UHFFFAOYSA-N 0.000 description 1
- 229960004739 sufentanil Drugs 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 230000001839 systemic circulation Effects 0.000 description 1
- 239000007916 tablet composition Substances 0.000 description 1
- 229960004000 talbutal Drugs 0.000 description 1
- BJVVMKUXKQHWJK-UHFFFAOYSA-N talbutal Chemical compound CCC(C)C1(CC=C)C(=O)NC(=O)NC1=O BJVVMKUXKQHWJK-UHFFFAOYSA-N 0.000 description 1
- 229960003188 temazepam Drugs 0.000 description 1
- OULAJFUGPPVRBK-UHFFFAOYSA-N tetratriacontyl alcohol Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO OULAJFUGPPVRBK-UHFFFAOYSA-N 0.000 description 1
- IQWYAQCHYZHJOS-UHFFFAOYSA-N tetrazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CCCCC1 IQWYAQCHYZHJOS-UHFFFAOYSA-N 0.000 description 1
- 229960005214 tetrazepam Drugs 0.000 description 1
- FQXXSQDCDRQNQE-VMDGZTHMSA-N thebaine Chemical compound C([C@@H](N(CC1)C)C2=CC=C3OC)C4=CC=C(OC)C5=C4[C@@]21[C@H]3O5 FQXXSQDCDRQNQE-VMDGZTHMSA-N 0.000 description 1
- 229930003945 thebaine Natural products 0.000 description 1
- XLOMZPUITCYLMJ-UHFFFAOYSA-N thiamylal Chemical compound CCCC(C)C1(CC=C)C(=O)NC(=S)NC1=O XLOMZPUITCYLMJ-UHFFFAOYSA-N 0.000 description 1
- 229960001166 thiamylal Drugs 0.000 description 1
- 229960003279 thiopental Drugs 0.000 description 1
- 229910021654 trace metal Inorganic materials 0.000 description 1
- 229960004380 tramadol Drugs 0.000 description 1
- TVYLLZQTGLZFBW-GOEBONIOSA-N tramadol Natural products COC1=CC=CC([C@@]2(O)[C@@H](CCCC2)CN(C)C)=C1 TVYLLZQTGLZFBW-GOEBONIOSA-N 0.000 description 1
- 102000003601 transglutaminase Human genes 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 229960003386 triazolam Drugs 0.000 description 1
- JOFWLTCLBGQGBO-UHFFFAOYSA-N triazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1Cl JOFWLTCLBGQGBO-UHFFFAOYSA-N 0.000 description 1
- 229920000428 triblock copolymer Polymers 0.000 description 1
- 229960001147 triclofos Drugs 0.000 description 1
- 239000001069 triethyl citrate Substances 0.000 description 1
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 1
- 235000013769 triethyl citrate Nutrition 0.000 description 1
- UVITTYOJFDLOGI-KEYYUXOJSA-N trimeperidine Chemical compound C=1C=CC=CC=1[C@]1(OC(=O)CC)C[C@H](C)N(C)C[C@H]1C UVITTYOJFDLOGI-KEYYUXOJSA-N 0.000 description 1
- 229950009395 trimeperidine Drugs 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 229960001167 vinbarbital Drugs 0.000 description 1
- RAFOHKSPUDGZPR-VOTSOKGWSA-N vinbarbital Chemical compound CC\C=C(/C)C1(CC)C(=O)NC(=O)NC1=O RAFOHKSPUDGZPR-VOTSOKGWSA-N 0.000 description 1
- 239000003799 water insoluble solvent Substances 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- HUNXMJYCHXQEGX-UHFFFAOYSA-N zaleplon Chemical compound CCN(C(C)=O)C1=CC=CC(C=2N3N=CC(=C3N=CC=2)C#N)=C1 HUNXMJYCHXQEGX-UHFFFAOYSA-N 0.000 description 1
- 229960004010 zaleplon Drugs 0.000 description 1
- 239000005019 zein Substances 0.000 description 1
- 229940093612 zein Drugs 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- 229960001366 zolazepam Drugs 0.000 description 1
- ZAFYATHCZYHLPB-UHFFFAOYSA-N zolpidem Chemical compound N1=C2C=CC(C)=CN2C(CC(=O)N(C)C)=C1C1=CC=C(C)C=C1 ZAFYATHCZYHLPB-UHFFFAOYSA-N 0.000 description 1
- 229960001475 zolpidem Drugs 0.000 description 1
- 229960000820 zopiclone Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/485—Morphinan derivatives, e.g. morphine, codeine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/12—Carboxylic acids; Salts or anhydrides thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/44—Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1617—Organic compounds, e.g. phospholipids, fats
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1635—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1641—Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1664—Compounds of unknown constitution, e.g. material from plants or animals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1682—Processes
- A61K9/1694—Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4808—Preparations in capsules, e.g. of gelatin, of chocolate characterised by the form of the capsule or the structure of the filling; Capsules containing small tablets; Capsules with outer layer for immediate drug release
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5036—Polysaccharides, e.g. gums, alginate; Cyclodextrin
- A61K9/5042—Cellulose; Cellulose derivatives, e.g. phthalate or acetate succinate esters of hydroxypropyl methylcellulose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/58—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres
- B29C70/60—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres comprising a combination of distinct filler types incorporated in matrix material, forming one or more layers, and with or without non-filled layers
Definitions
- the present invention is generally in the field of pharmaceutical compositions, specifically compositions that are designed to reduce the potential for improper administration of drugs, such as those subject to abuse and methods of making thereof.
- Oxycodone, morphine, and other opioid analgesics are successful and therapeutically useful medications, e.g., as pain killers, when administered orally.
- they also pose a severe threat for willful abuse due to their ability to alter mood and/or cause a sense of euphoria.
- Traditional sustained release formulations of such drugs which contain a relatively large amount of drug meant to be released from the formulation over an sustained time period, are particularly attractive to abusers since the sustained release action can be destroyed by crushing or grinding the formulation. The resulting material (i.e., the crushed formulation) can no longer control the release of drug.
- abusers can then (1) snort the material, (2) swallow the material or (3) dissolve the material in water and subsequently inject it intravenously.
- the dose of drug contained in the formulation is absorbed immediately through the nasal or GI mucosa (e.g., snorting or swallowing, respectively) or is administered in a bolus to the systemic circulation (e.g., IV injection).
- These abuse methods result in the rapid bioavailability of relatively high doses of drug, giving the abuser a “high”. Since relatively simple methods (crushing, grinding, chewing and/or dissolution in water) can be used to transform such formulations into an abusable form, they provide virtually no deterrent to a potential abuser.
- Oxycodone is a controlled substance in Schedule II of the Controlled Substances Act (CSA), which is administered by the Drug Enforcement Administration (DEA). Despite the fact that Schedule II provides the maximum amount of control possible under the CSA for approved drug products, in practice it is difficult for law enforcement agencies to control the diversion or misuse of legitimate prescriptions. Although abuse, misuse, and diversion are potential problems for all opioids, including Oxycodone, opioids are a very important part of the medical armamentarium for the management of pain when used appropriately under the careful supervision of a physician.
- CSA Controlled Substances Act
- DEA Drug Enforcement Administration
- Shaw describes the incorporation of an ingestible solid which causes a rapid increase in viscosity upon concentration of an aqueous solution thereof.
- Hoffmeister describes the incorporation of a non-toxic, water gelable material in an amount sufficient to render the drug resistant to aqueous extraction.
- Bastin describes a tablet for oral administration containing two or more layers containing one or more drugs and one or more gelling agents within separate layers of the tablet.
- the resulting tablet forms a gel when combined with the volume of water necessary to dissolve the drug allegedly reducing the extractability of the drug from the tablet.
- compositions allegedly preclude abuse by injection, this approach fails to prohibit rapid dissolution of the drug once the dosage form is crushed into smaller particles or pieces.
- these formulations are vulnerable to abuse by crushing and swallowing or snorting the formulation, which are commonly reported methods of abuse.
- U.S. Pat. Nos. 6,277,384, 6,375,957 and 6,475,494 to Kaiko et al. describe oral dosage forms including a combination of an orally active opioid agonist and an orally active opioid antagonist in a ratio that, when delivered orally, is analgesically effective but that is aversive in a physically dependent subject. While such a formulation may be successful in deterring abuse, it also has the potential to produce adverse effects in legitimate patients.
- a sustained release oxycodone tablet designed to resist crushing and to gel in the presence of water, is currently available.
- a multiparticulate-in-capsule product containing morphine and a sequestered naltrexone is also commercially available; this product is designed to release naltrexone (an opioid antagonist) to counteract the euphoric effects of the opioid active ingredient when the formulation is crushed, chewed or dissolved.
- naltrexone an opioid antagonist
- It is therefore an object of the present invention to provide a pharmaceutical composition e.g., a multiparticulate composition
- a pharmaceutical composition e.g., a multiparticulate composition
- Such a formulation significantly reduces the potential for improper administration or use of drugs but, when administered as directed, is capable of delivering a therapeutically effective dose.
- Methods of making and using such a formulation are also provided.
- compositions can be used to reduce the likelihood of improper administration of drugs, especially drugs prone to abuse such as oxycodone.
- the technology is useful for a number of other drugs where sustained release oral delivery is desired, and there is potential for abuse if the drug dose is made immediately available for nasal, intravenous (IV) or oral administration.
- the drug is formulated into multiparticulates containing lipophilic or water-insoluble materials.
- the drug is modified to increase its lipophilicity prior to or during the formulation of the multiparticulates.
- the composition is formulated with one or more excipients that interact ionically with the drug to obtain a more lipopholic drug derivative.
- the composition is then formulated as multiparticulates.
- the multiparticulates are produced using a spray congealing process.
- the formulation contains lipophilic or water-insoluble materials or is made using a process which increases the lipophilicity and/or water-insolubility of the composition.
- the composition additionally contains one or more antioxidants, surfactants, or polymers.
- the abuse-deterrent composition retards the release of drug even if the physical integrity of the dosage form is compromised (for example, by chopping with a blade or crushing) and the resulting material is placed in water, snorted, or swallowed.
- the drug when administered as directed, the drug is released slowly, typically over a period of 6-24 hours, from the composition as the composition is broken down or dissolved gradually within the GI tract by a combination of surfactant action of bile acids, diffusion, mechanical erosion and, in some embodiments, enzymatic degradation.
- multiparticulates or microparticulates described herein can be made using a variety of techniques known in the art including, but not limited to, spray congealing, spray chilling, extrusion, spray drying, and bulk congealing with subsequent milling.
- beads or particles containing the active agent e.g., a fatty acid salt of the active agent
- excipients are prepared using a spray congealing process.
- the multiparticulates have a D(0.1) particle size from about 50 to about 250 ⁇ m, preferably from about 140 to about 190 ⁇ m; a D(0.5) median particle size from about 150 to about 750 ⁇ m, preferably from about 200 to about 400 ⁇ m; and a D(0.9) particle size from about 200 to about 1200 ⁇ m, preferably from about 400 to about 700 ⁇ m.
- the multiparticulates are characterized by a span (i.e., [D(0.9) ⁇ D(0.1)]/D(0.5)) less than 5, preferably less than 2, and more preferably less than 1.4.
- multiparticultes having a span of less than 1.4 are less prone to segregation during processing and/or achieve the desired pharmacokinetic profile.
- D(0.1), D(0.5) and D(0.9) are defined as the diameters where 10%, 50% or 90% w/w of the multiparticulates have a smaller diameter, respectively, when measured, e.g., using a laser diffraction technique.
- the terms “D(0.5)” and “median particle size” are used interchangeably herein.
- the multiparticulates can be any geometrical shape. In some embodiments, the multiparticulates may be irregular, oblong or spherical in shape. In a preferred embodiment, the multiparticulates are substantially round or spherical in shape (e.g., beads).
- the individual drug-containing multiparticulates are coated with one or more independent coating layers.
- At least one of the coating materials is water-insoluble and/or organic solvent-insoluble, so that in vitro dissolution of the formulation will require more than one step.
- the drug is not easily extractable from the formulations by conventional chemical means.
- the drug when administered to the gastrointestinal tract via swallowing, the drug will gradually be released from the coated multiparticulates as a consequence of diffusion, the gradual break down of the formulation via surfactant action of bile acids, mechanical erosion and, in some embodiments, enzymatic degradation.
- the particles can be coated using a variety of techniques known in the art including, but not limited to, wet granulation processes, spray coating processes, and/or coacervation processes.
- the pharmaceutical composition when administered orally, results in a desired drug release profile.
- the release profile provides a therapeutic effect for an extended period of time, typically from 6 to 24 hours, preferably from 12 to 24 hours. Additional compositions may achieve a small immediate release dose that precedes the extended release of drug.
- the compositions disclosed herein may optionally contain a drug having no appreciable abuse potential.
- FIG. 1 is a picture of a portion of a spinning disc atomizer.
- FIG. 2 is a diagram of an exemplary pressure nozzle for the preparation of multiparticulates.
- FIG. 3 is a diagram of a large scale apparatus for the production of multiparticulates, where the apparatus comprises a large scale spinning disc atomizer.
- FIG. 4 is a graph comparing a model predicted particule size in microns with the actual median particle size in microns.
- FIG. 5 is a graph showing the D(0.5) median particle size in microns as a function of disc speed (rpm) and fan setting at high feed temperature setting of 90° C., and medium feed rate (pump setting of 3.75 Hz).
- FIG. 6 is a graph showing the effect of disc speed, and air flow rate on the bead size distribution (span) at 90° C.
- compositions Disclosed herein are abuse-deterrent pharmaceutical compositions and the method of making and using the compositions.
- composition refers to the drug dosage unit for administration to a patient. “Composition” may also be used in reference solely to the active ingredient, or to a formulation containing the active ingredient.
- the currently available extended release dosage forms containing narcotic analgesics and other drugs are subject to misuse, in part, because mechanical destruction of the dosage form exposes the encapsulated drug and allows for rapid dissolution of the drug into aqueous media.
- Three properties of the dosage form that contribute to this outcome are, (1) the high water solubility of the drug salt form; (2) the lack of protection offered by the hydrophilic and/or water soluble excipients in the formulation; and (3) the ease with which the surface area of the formulation is increased by simple chewing or crushing. Susceptibility to simple methods such as chewing or crushing is particularly problematic for monolithic controlled-release dosage forms. For monolithic dosage forms, such as tablets, even splitting the unit into a few pieces (without completely crushing it) can result in a dramatic increase in the dissolution rate.
- the drug is modified to increase its lipophilicity and reduce its water solubility.
- the modified drug is homogeneously dispersed within one or more excipients that are either slowly soluble or not soluble in water. Dispersion within these materials further reduces the accessibility of the drug when crushed and exposed to an aqueous media.
- the drug may be partially or fully dispersed in the excipients on a molecular level. The intimate mixture of modified drug and excipients is subsequently formulated into multiparticulates, producing a formulation whose surface area is minimally influenced by chewing or crushing.
- tamper resistant composition “abuse-deterrent composition” or “abuse-deterrent formulation” are used interchangeably herein to refer to compositions that reduce the potential for improper administration of drugs but that deliver a therapeutically effective dose when administered as directed.
- Improper administration includes tampering with the dosage form and/or administering the drug by any route other than instructed.
- methods of tampering with the dosage form may include, but are not limited to, breaking, crushing, grinding, chewing and/or dissolving the tablet or the contents of the capsule.
- improper administration includes administering the drug by any route other than via swallowing.
- the abuse deterrent compositions preferably contain a drug modified to increase its lipophilicity.
- the drug is homogenously dispersed within multiparticulates composed of a material that is either slowly soluble in water or water insoluble.
- the compositions maintain a slow release of drug if the dosage form is chopped or crushed and the resulting material is placed in water, snorted, or swallowed since most of the drug will remain associated with or entrapped within portions of the core material of the multiparticulates.
- the drug containing multiparticulates are coated with one or more coating layers, where at least one coating is water insoluble and/or organic solvent insoluble. The components of the resulting coated multiparticulates are not mutually soluble in water or organic solvents. Therefore, extraction of the drug from the formulation cannot be carried out in one step. However, when administered as directed, the drug is slowly released from the formulation via diffusion and erosion within the environment of the gastrointestinal tract.
- Drugs that can be delivered using the compositions described herein There are many drugs which can be delivered using the compositions described herein.
- the Controlled Substances Act (CSA), Title II of the Comprehensive Drug Abuse Prevention and Control Act of 1970, places all substances that are regulated under existing federal law into one of five schedules based upon the substance's medicinal value, harmfulness, and potential for abuse or addiction.
- Drugs that are preferred include those classified as Schedule II, III, IV and V drugs.
- Drugs that are most preferable include those, like oxycodone, that are currently formulated as extended or controlled release compositions, where drug release is intended to occur over a prolonged period of time through the gastrointestinal tract, and immediate or burst release, for example, by inhalation or injection, is undesirable.
- drugs prone to abuse refer to controlled substance specified as schedule II, III, IV and V drugs.
- Other opioid analgesics that can be incorporated into the compositions described herein include morphine and hydromorphone.
- drug drug
- active agent drug
- pharmacologically active agent are used interchangeably herein to refer to a chemical compound that induces a desired pharmacological, physiological effect.
- pharmaceutically acceptable derivatives of those active agents specifically mentioned herein including, but not limited to, salts, solvates, hydrates, complexes with one or more molecules, prodrugs, active metabolites, and derivatives and analogs.
- active agent pharmaceutically active agent
- drug drug
- Examples of preferred drugs include 1-phenylcyclohexylamine, 1-piperidinocyclohexanecarbonitrile, alfentanil, alphacetylmethadol, alphaprodine, alprazolam, amobarbital, amphetamine, anileridine, apomorphine, aprobarbital, barbital, barbituric acid derivative, bemidone, benzoylecgonine, benzphetamine, betacetylmethadol, betaprodine, bezitramide, bromazepam, buprenorphine, butabarbital, butalbital, butorphanol, camazepam, cathine, chloral, chlordiazepoxide, clobazam, clonazepam, clorazepate, clotiazepam, cloxazolam, cocaine, codeine, chlorphentermine, delorazepam, dexfenfluramine, dextromor
- the following scheduled drugs may be incorporated into the composition: allobarbitone, alprazolam, amylobarbitone, aprobarbital, barbital, barbitone, benzphetamine, brallobarbital, bromazepam, brotizolam, buspirone, butalbital, butobarbitone, butorphanol, camazepam, captodiame, carbromal, carfentanil, carpipramine, cathine, chloral, chloral betaine, chloral hydrate, chloralose, chlordiazepoxide, chlorhexadol, chlormethiazole edisylate, chlormezanone, cinolazepam, clobazam, potassium clorazepate, clotiazepam, cloxazolam, cyclobarbitone, delorazepam, dexfenfluramine, diazepam, diethylpropion, dif
- compositions disclosed herein contemplates all such compounds, including cis- and trans-isomers, R- and S-enantiomers, diastereomers, (d)-isomers, (l)-isomers, the racemic mixtures thereof, compounds of different spacial conformations, and other mixtures thereof, as falling within the scope of the invention.
- Additional asymmetric carbon atoms may be present in a substituent such as an alkyl group. All such isomers, as well as mixtures thereof, are intended to be included in this invention.
- pharmaceutically acceptable salts refer to derivatives of the disclosed compounds wherein the parent compound is modified by making salts thereof.
- Pharmaceutically acceptable salts include salts of acidic (e.g., a carboxylic acid) or basic groups (e.g., a primary, secondary or tertiary amine) present in compounds disclosed herein.
- examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.
- the pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids.
- such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, lauric, capric, myristic, palmitic, stearic, oleic, linoleic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, tolunesulfonic, methanesulfonic, ethane disulfonic, oxalic, and isethionic.
- inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like
- organic acids such as
- the pharmaceutically acceptable salts of the compounds can be synthesized from the parent compound (e.g., the unprotonated base form of the compound, often referred to as the “free base” of the compound), which contains a basic or acidic moiety, by conventional chemical methods.
- such salts can be prepared by reacting the free acid or base forms of these compounds with the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, non-aqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 20th ed., Lippincott Williams & Wilkins, Baltimore, Md., 2000, p. 704, the disclosure of which is hereby incorporated by reference.
- compositions may also be prepared by reacting the free acid or base forms of compounds with an appropriate base or acid, respectively, in a melt process, optionally in the presence of other pharmaceutically acceptable excipients (e.g., waxes).
- melt process refers to a process where the free acid or base forms of the compounds are dissolved in one or more excipients that are in molten form (i.e., it is a solid at room temperature) to make a solution wherein the base or acid interacts with the free acid or base form of the compounds, respectively, to form the desired pharmaceutically acceptable salt.
- composition described herein can further include a drug having no appreciable abuse potential.
- the dissolution and/or solubility characteristics of a drug are altered. Modification of the drug to produce a more lipophilic and/or less soluble derivative serves to reduce the dissolution rate and/or solubility of the drug in aqueous media, such as water, and thus reduce the aqueous extractability of the drug. Furthermore, if the drug is made more lipophilic, it can be dissolved in a molten fatty substance and/or wax like mixture; that is, the more lipophilic form of the drug is substantially more soluble in the molten fatty substance and/or wax-like mixture, as opposed to being mostly suspended or dispersed as solid particles in the molten fatty substance and/or wax-like mixture.
- Solubilization of the drug in lipophilic excipients can enhance the abuse-deterrent properties of multiparticulates formulated from the mixture as it is more difficult to extract drug from an intimately dispersed composition. Furthermore, such a composition is capable of controlling the release of drug, even when formulated into relatively small multiparticulates.
- Microparticulate compositions in contrast to monolithic compositions, are inherently less susceptible to tampering by mechanisms such as chewing or crushing that are intended to increase the surface area and, consequently, the release rate of drug.
- lipophilic derivative and “lipophililic drug derivative”, as used herein, refer to derivatives of the drug that are less soluble or dissolve less rapidly in water than more soluble salts of the drug; the more soluble salts being selected from either base addition salts (for acidic drugs) or acid addition salts (for basic drugs), such as by the addition of inorganic acids.
- base addition salts for acidic drugs
- acid addition salts for basic drugs
- the examples of the latter include but are not limited to hydrohalics, sulfates, and nitrates.
- a “lipophilic derivative” or “lipophililic drug derivative” is formed when the drug interacts ionically with one or more organic excipients.
- Ionic interactions include, but are not limited to, interactions between ionic moieties on a drug (e.g., cationic moieties or anionic moieties) and one or more ionic components (e.g., cationic moieties or anionic moieties) contained in the one or more organic excipients.
- ionic interactions include, but are not limited to, the formation of salts.
- ionic interactions include hydrogen-bonding interactions between basic drugs and acids (e.g., a nitrogen atom on the drug and the hydrogen atom on the carboxylic acid of the fatty acid) or acidic drugs and bases (e.g., a carboxylic acid hydrogen atom and the nitrogen atom of the fatty amine).
- fatty amine includes, but is not limited to, C 5 -C 30 fatty amines including octyl amine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine, and palmitylamine.
- the drug's lipophilicity/solubility is modified by forming an ionic interaction (e.g., forming a salt) between a drug molecule and a charged lipophilic compound.
- an ionic interaction e.g., forming a salt
- the lipophilicity of the resulting salt can be manipulated by varying the lipophilicity of the counter-ion.
- lipophilic acids or amines with chain lengths between C 5 -C 30 are lipophilic counter-ion candidates.
- Some specific examples include, but are not limited to, linoleic acid, octanoic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, octyl amine, lauryl amine, stearyl amine, palmityl amine, linoleyl amine, and oleyl amine.
- an ionic interaction e.g., forming a salt
- an excipient such as a fatty acid or amine
- a melt process with or without the use of a solvent.
- one or more fatty acids or amines are heated above their melting point and the pharmaceutically active agent, in free base or acid form, is added to the molten fatty acid or amine either directly or after dissolution of the active agent in an appropriate solvent, such as ethanol or methylene chloride.
- the interaction can be such that, e.g., the fatty acid protonates a protonatable moiety on the active agent (e.g., a primary, secondary or tertiary amine) thereby placing a charge on the moiety and generating an ionized moiety (e.g., a protonated amine or ammonium moiety) on the active agent.
- a protonatable moiety e.g., a primary, secondary or tertiary amine
- an ionized moiety e.g., a protonated amine or ammonium moiety
- the interaction between the ionized moiety of the active agent and the carboxylate ion of the fatty acid can be intimate (e.g., an intimate ion pair), it can be separated by solvent or it can be separated by one or more excipient molecules.
- the fatty acids or amines are present, preferably, in an amount one to fifteen times the molar amount of the pharmaceutically active agent, more preferably, two to ten times the molar amount of the pharmaceutically active agent.
- the mass of fatty acid or amine required to dissolve the active agent is a function of the chain length of the fatty acid or amine.
- Some factors determining the amount of fatty acid or amine required to dissolve a given amount of active agent include but are not limited to base strength, acid strength, steric hindrance, and the ability of the active agent to form non-covalent interactions with the fatty acid or fatty amine (e.g., hydrogen bonding).
- salts of the pharmaceutically active agent which are contemplated by the present invention in order to alter the solubility and/or dissolution rate relative to the parent drug compound (e.g., the free acid or free base form of the compound) include, but are not limited to, pectinate, tannate, phytate, salicylate, saccharinate, acesulfamate, gallate, and terephthalate salts.
- salts of the pharmaceutically active agent include those salts where the counter-ion is polymeric in nature.
- anionic copolymers based on methacrylic acid and methyl methacrylate sold under the trade name Eudragit (e.g., Eudragit L100 and Eudragit S100), acrylic acid polymers, and crosslinked acrylic acid polymers may be used to form a salt with drug molecules.
- Naturally occurring polymers and their derivatives, for example, carboxymethylcellulose may also be used to form a salt with the drug molecules.
- the number of drug molecules reacted with the polymer to form a salt may or may not be equimolar with respect to the number of salt-forming sites on the polymer chain.
- a drug is covalently modified to increase its lipophilicity.
- a lipophilic compound can be covalently attached to a drug molecule via an ester or amide linkage. Such drug derivatives are cleaved in vivo, thus releasing the parent compound.
- the drug is made more lipophilic by eliminating or reducing the overall charge of the drug molecule.
- a water soluble salt such as hydrochloride, sulfate, or maleate
- a water soluble salt such as sodium, potassium, or the like
- a free acid such as sodium, potassium, or the like
- the drug is formulated with one or more excipients to form multiparticulates.
- multiparticulate refers to a composition containing a drug dispersed within one or more excipients.
- coated multiparticulate and coated microparticle refer to a composition containing a drug containing multiparticulate coated with one or more coating layers of material.
- Multiparticulates and coated multiparticulates have a size of from about 1 to about 3000 microns in diameter, for example, from about 10 to about 3000 microns, from about 100 to about 1000 microns, from about 500 to about 2000 microns, from about 1000 to about 3000 microns, from about 500 to about 1500 microns or from about 1 to about 1000 microns.
- the multiparticulates have a D(0.1) particle size from about 50 to about 250 ⁇ m, preferably from about 140 to about 190 ⁇ m; a D(0.5) median particle size from about 150 to about 750 ⁇ m, preferably from about 200 to about 400 ⁇ m; and a D(0.9) particle size from about 200 to about 1200 ⁇ m, preferably from about 400 to about 700 ⁇ m.
- the multiparticulates are characterized by a span (i.e., [D(0.9) ⁇ D(0.1)]/D(0.5)) less than 5, preferably less than 2, and more preferably less than 1.4.
- multiparticulates having a span of less than 1.4 are less prone to segregation during processing and/or are more likely to achieve the desired pharmacokinetic profile.
- D(0.1), D(0.5) and D(0.9) are defined as the diameters where 10%, 50% or 90% w/w of the microparticles have a smaller diameter, respectively, when measured, e.g., using a laser diffraction technique.
- the multiparticulates can be any geometrical shape. In some embodiments, the multiparticulates may be irregular, oblong or spherical in shape. In a preferred embodiment, the multiparticulates are substantially round or spherical in shape (e.g., beads).
- solid dispersion is defined as a system having small particles of drug, typically of less than 400 ⁇ m in size, more typically less than 100 ⁇ m in size, and most typically less than 10 ⁇ m in size, of one phase dispersed in another phase (the carrier phase).
- solid solution is defined as a system in a solid state wherein the drug is molecularly dispersed throughout a matrix such that the system is chemically and physically uniform or homogenous throughout.
- the multiparticulates contain a solid dispersion of drug in one or more excipients.
- the one or more excipients have a low peroxide content in order to reduce oxidation of the drug or excipients.
- the solid dispersion can be created by homogeneously dispersing the drug, in the form of fine particles, within the one or more excipients. More preferably, the solid dispersion is formed by partially dissolving the drug in molten excipient(s) or partially dissolving the drug with the excipient(s) in a mutual solvent (e.g., methylene choloride) during the formulation of the multiparticulates. In another embodiment, the multiparticulates contain a solid solution of drug and one or more excipients.
- the drug is completely solubilized in the molten excipient(s) or completely dissolved with the excipient(s) in a co-solvent (e.g., methylene chloride) during the formulation of the multiparticulates.
- a co-solvent e.g., methylene chloride
- Preferred excipients appropriate for the preparation of drug containing multiparticulates, or that are found in the final formulation either dissolve slowly in water or are insoluble in water.
- dissolves slowly in water refers to materials that are not completely dissolved in water within a period of 30 minutes. Suitable materials include fats, fatty substances, waxes, wax-like substances and mixtures thereof.
- Suitable fats and fatty substances include fatty alcohols (such as lauryl, myristyl stearyl, cetyl or cetostearyl alcohol), fatty acids and derivatives, including but not limited, to the conjugate bases of the fatty acid (i.e., the carboxylate ion), fatty acid esters, fatty acid glycerides (mono-, di- and tri-glycerides), fatty amines, and hydrogenated fats.
- fatty alcohols such as lauryl, myristyl stearyl, cetyl or cetostearyl alcohol
- fatty acids and derivatives including but not limited, to the conjugate bases of the fatty acid (i.e., the carboxylate ion), fatty acid esters, fatty acid glycerides (mono-, di- and tri-glycerides), fatty amines, and hydrogenated fats.
- Suitable waxes and wax-like materials include natural or synthetic waxes, hydrocarbons, and normal waxes. Specific examples of waxes include beeswax, glycowax, castor wax, carnauba wax, paraffins, microcrystalline wax and candelilla wax.
- a wax-like material is defined as any material which is normally solid at room temperature and has a melting point of from about 30 to 300° C.
- Certain polymers may also be used as excipients in the formulation of drug containing multiparticulates. Suitable polymers include ethylcellulose and other natural or synthetic cellulose derivatives. Polymers which are slowly soluble and form a gel in an aqueous environment, such as hydroxypropyl methylcellulose or polyethylene oxide (e.g., PEO-PPO block copolymers) may also be suitable as excipients for drug containing multiparticulates.
- these substances alter the rate of water penetration into the hydrophobic drug containing multiparticulates, thereby changing the dissolution behavior of the formulation.
- Non-limiting examples of such substances include rate-controlling (wicking) agents. Such agents may be formulated along with the fats or waxes listed above.
- rate-controlling materials include certain starch derivatives (e.g., waxy maltodextrin and drum dried corn starch), cellulose derivatives (e.g., hydroxypropylmethylcellulose, hydroxypropylcellulose, methylcellulose, and carboxymethylcellulose), polyvinyl pyrrolidone, alginic acid, and lactose or mixtures thereof.
- starch derivatives e.g., waxy maltodextrin and drum dried corn starch
- cellulose derivatives e.g., hydroxypropylmethylcellulose, hydroxypropylcellulose, methylcellulose, and carboxymethylcellulose
- polyvinyl pyrrolidone e.g., polyvinyl pyrrolidone, alginic acid, and lactose or mixtures thereof.
- a pharmaceutically acceptable surfactant for example, lecithin, sodium dodecyl sulfate, poloxamer, Cremophor (polyethoxylated castor oil), Polyoxylglycerides (e.g., polyethylene glycol fatty acid esters), sorbitan stearates, or polysorbates, or mixtures of two or more surfactants, may be added to alter the dissolution behavior of the multiparticulates.
- Other acceptable surfactants include inorganic salts of fatty acids (e.g., potassium and sodium salts of fatty acids).
- the surfactants are present in the multiparticulates, are applied to the surface to the multiparticulates, are blended with the multiparticulates or a combination thereof.
- Other inactive ingredients such as hydroxypropylmethylcellulose, poloxamer or polyvinyl pyrrolidone may also be added as needed to impart a desiable attribute such as inhibiting crystallization of one or more components of the multiparticulates.
- antioxidants may be added to the composition.
- Anti-oxidants include, but are not limited to, butylated hydroxytoluene (BHT); ascorbic acid, its salts and esters; Vitamin E, tocopherol and its salts; sulfites such as sodium metabisulphite; cysteine and its derivatives; citric acid; propyl gallate, and butylated hydroxyanisole (BHA). Chelating agents may also be needed.
- Suitable chelating agents include, but are not limited to, EDTA, a salt of EDTA, desferrioxamine B, deferoxamine, dithiocarb sodium, penicillamine, pentetate calcium, a sodium salt of pentetic acid, succimer, trientine, nitrilotriacetic acid, trans-diaminocyclohexanetetraacetic acid (DCTA), diethylenetriamine-pentaacetic acid, bis(aminoethyl)glycolether-N,N,N′,N′-tetraacetic acid, iminodiacetic acid, citric acid, tartaric acid, fumaric acid, or a salt thereof.
- DCTA trans-diaminocyclohexanetetraacetic acid
- Encapsulation or incorporation of drug into excipient(s) to produce drug containing multiparticulates can be achieved through known pharmaceutical formulation techniques.
- the one or more excipients are heated above their melting temperature and the drug is added to form a mixture where drug particles are suspended in the one or more excipients, where the drug is dissolved in the one or more excipients, or a mixture where a portion of the drug particles are suspended in the one or more excipients and another portion of the drug is dissolved in the one or more excipients.
- Multiparticulates can be subsequently formulated through several methods including, but not limited to, spray congealing, spray chilling, spray drying, extrusion, bulk congealing into capsules and bulk congealing with subsequent milling.
- one or more excipients are heated above its melting temperature, the drug is added, and the molten excipient-drug mixture is congealed to form solid, spherical particles via a spraying process using one or more nozzles, a spinning cylinder or a spinning disc.
- the molten excipient-drug mixture can be extruded and pelletized to form pellets or beads. Descriptions of these processes can be found in “Remington—The science and practice of pharmacy”, 20th Edition, Jennaro et.al., (Phila, Lippencott, Williams, and Wilkens, 2000.
- spherical or substantially spherical particles are produced.
- Spherical particles may introduce an additional barrier to deter tampering with the composition.
- Smaller, round or substantially round particles act as “ball bearings” that are more difficult to crush or grind, and if crushed, do not allow for significant enough decrease in particle size or surface areas of the particles in order to have a significant and adverse effect on release rate.
- multiparticulates include a solid solution of drug and one or more excipients.
- One approach to achieving a solid solution is to formulate a salt composed of a pharmaceutically active agent and one or more fatty acids or amines along with other waxy and/or fatty excipients.
- the salt may be formed during the formulation process itself.
- the one or more fatty acids or amines are melted and mixed with the free base or acid form of the active agent at a temperature above the melting point(s) of the fatty acid(s) or amine(s).
- One or more additional excipients including but not limited to fat, fatty substance(s), wax, wax-like substance(s), polymeric substances, or antioxidants can be included in the molten mixture.
- the molten solution is then formulated into muliparticulates via, e.g., spray congealing, spray chilling, spray drying, extrusion, bulk congealing into capsules and bulk congealing with subsequent milling.
- the molar concentration of fatty acid or amine may need to be higher than that of the drug in order to achieve a homogeneous single phase during the melt process.
- a molar ratio in excess of about 7:1 fatty acid (e.g., myristic acid) to drug results in a homogeneous melt using this technique.
- the molar ratio needed to obtain a homogeneous melt may depend on the type and quantity of additional excipients added.
- some fat or wax excipients such as natural waxes (eg, beeswax and carnauba wax) may contain free fatty acids or other components that can interact ionically with the drug.
- Such fat or wax excipients may reduce the amount of fatty acid excipient required to obtain a homogeneous melt as compared to fat or wax excipients that do not interact with the drug.
- the molar ratio of fatty acid or fatty amine to drug is from about 1:1 to about 15:1, preferably from about 6:1 to about 15:1.
- molar ratios greater than 15:1, for example 15:1 to 25:1, preferably 15:1-20:1 may be required depending on the fatty acid or fatty amine, the drug to be formulated, and/or the additional excipient(s).
- a solvent evaporation technique to produce drug containing multiparticulates.
- drug and one or more excipients are co-dissolved in a mutual solvent and multiparticulates can subsequently be produced by several techniques including, but not limited to, forming an emulsion in water or other appropriate media, spray drying or by evaporating the solvent from the bulk solution and milling the resulting material.
- processing conditions can be used to influence the dispersion of the drug within water-insoluble or slowly water soluble materials.
- the temperature, agitation rate and time of processing will influence the degree of dissolution achieved. More specifically, a more homogenous dispersion may be achieved with a higher temperature, faster stirring rate and/or longer processing time.
- Ultrasound can also be applied to the molten mixture to increase the degree of dispersion and/or the rate of dissolution of the drug.
- the drug in a particulate form is homogeneously dispersed in a water-insoluble or slowly water soluble material.
- the drug powder itself may be milled to generate fine particles prior to formulation. The process of jet milling, known in the pharmaceutical art, can be used for this purpose.
- drug in a particulate form is homogeneously dispersed in a wax or wax like substance by heating the wax or wax like substance above its melting point and adding the drug particles while stirring the mixture.
- a pharmaceutically acceptable surfactant may be added to the mixture to facilitate the dispersion of the drug particles.
- drug containing multiparticulates or drug particles are encapsulated.
- Drug containing multiparticulates can be encapsulated in water insoluble materials, slowly water soluble materials, organic insoluble materials and/or materials with pH dependent solubilities.
- any coating procedure which provides a contiguous coating on each multiparticulate can be used.
- Coating procedures known in the arts include, but are not limited to, fluid bed coating processes and microencapsulation. Detailed descriptions of these processes can be found in “Remington—The science and practice of pharmacy”, 20th Edition, Jennaro et al., (Phila, Lippencott, Williams, and Wilkens, 2000.
- the water-insoluble coating materials may be selected from natural or synthetic film-formers used alone, in admixture with each other, or in admixture with plasticizers, pigments and other substances to alter the characteristics of the coating.
- a water-insoluble but water-permeable diffusion barrier may contain ethyl cellulose, methyl cellulose and mixtures thereof.
- the water-permeable diffusion barrier may also include ammonio methacrylate copolymers sold under the trade name EUDRAGIT® (Rohm Pharma), such as EUDRAGIT RS, EUDRAGIT RL, EUDRAGIT NE and mixtures thereof.
- Other synthetic polymers for example, polyvinyl acetate (available under the trade name KOLLICOAT®), can also be used to form water-insoluble but permeable coatings.
- the coating may also include a water-insoluble but enzymatically degradable material.
- the substrates of digestive enzymes are naturally water-insoluble and can be utilized in the formulation without further processing.
- Solid esters of fatty acids which are hydrolyzed by lipases, can be spray coated onto multiparticulates or drug particles. Mixtures of waxes (beeswax, carnauba wax, etc.) with glyceryl monostearate, stearic acid, palmitic acid, glyceryl monopalmitate and cetyl alcohol will also form films that are dissolved slowly or broken down in the GI tract. Zein is an example of a naturally water-insoluble protein.
- chemical cross-linking agents are used.
- aldehydes e.g., gluteraldehyde and formaldehyde
- epoxy compounds e.g., carbodiimides, and genipin.
- oxidized and native sugars have been used to cross-link gelatin.
- Cross-linking can also be accomplished using enzymatic means; for example, transglutaminase has been approved as a GRAS substance for cross-linking seafood products.
- cross-linking can be initiated by physical means, for example application of a stimulus, such as heat, UV irradiation, and gamma irradiation.
- a water soluble protein can be spray coated onto the multiparticulates and subsequently cross-linked by one of the methods described above.
- drug containing multiparticulates can be microencapsulated within protein by coacervation-phase separation, for example, by the addition of salts and subsequently cross-linked.
- suitable proteins for this purpose include gelatin, albumin, casein, and gluten.
- Polysaccharides can also be cross-linked to form a water-insoluble network. For many polysaccharides, this can be accomplished by reaction with calcium salts or multivalent cations which cross-link the main polymer chains. Pectin, alginate, dextran, amylose and guar gum are subject to cross-linking in the presence of multivalent cations. Complexes between oppositely charged polysaccharides can also be formed; pectin and chitosan, for example, can be complexed via electrostatic interactions. Insoluble coatings can be formed on particles in this fashion. It should be noted that in many cases polysaccharides are broken down specifically by enzymes produced by bacteria within the colon.
- a water-insoluble but enzymatically degradable coating including both a protein and a polysaccharide can be produced if the components are oppositely charged polyelectrolytes. Under the proper temperature, pH, and concentrations, the two polymers can interact through their opposite electrical charges and form a water-insoluble complex. If a core particle is present at the time the complex phase separates, it will be coated. For example, gelatin and gum arabic can be coated onto a core particle utilizing this process.
- the complex can be made irreversibly insoluble by subsequent cross-linking induced by chemical or physical means.
- Coating materials may also include a pH sensitive polymer which is insoluble in the acid environment of the stomach, and soluble in the more basic environment of the GI tract.
- enteric coatings create a dosage form designed to prevent drug release in the stomach. Preventing drug release in the stomach has the advantage of reducing side effects associated with irritation of the gastric mucosa and/or of minimizing exposure of drug to very low pH. Avoiding release within the stomach can be achieved using enteric coatings known in the art.
- the enteric coated formulation remains intact or substantially intact in the stomach, however, once the formulation reaches the small intestines, the enteric coating dissolves and exposes either drug-containing carrier particles or drug-containing carrier particles coated with extended release coating.
- Enteric coated particles can be prepared as described in “Pharmaceutical dosage form tablets”, eds. Liberman et.al. (New York, Marcel Dekker, Inc., 1989), “Remington—The science and practice of pharmacy”, 20th ed., Lippincott Williams & Wilkins, Baltimore, Md., 2000, and “Pharmaceutical dosage forms and drug delivery systems”, 6th Edition, Ansel et.al., (Media, Pa.: Williams and Wilkins, 1995).
- suitable coating materials include, but are not limited to, cellulose polymers, such as cellulose acetate phthalate, hydroxypropyl cellulose, hydroxypropyl methylcellulose phthalate and hydroxypropyl methylcellulose acetate succinate; polyvinyl acetate phthalate, acrylic acid polymers and copolymers, and certain methacrylic resins that are commercially available under the trade name EUDRAGIT® (Rohm Pharma). Additionally the coating material may contain conventional carriers such as plasticizers, pigments, colorants, glidants, stabilization agents, and surfactants.
- the particles may be desirable to coat the particles with a coating which is soluble in aqueous solutions but insoluble in hydroalcoholic solutions.
- the coating material may or may not have pH sensitive solubility in aqueous solutions.
- insoluble polymers and pH dependent polymers can produce a pH dependent sustained release profile.
- insoluble polymers e.g., ethylcellulose
- water-soluble polymers e.g., HPMC or PEG
- pH dependent swellable polymers e.g., carboxyvinylpolymer
- the particles are coated with cellulose acetate phthalate.
- Cellulose acetate phthalate is typically used as an enteric coating.
- Oxidation of one or more components may occur during the formulation process itself or during the shelf-life of the composition. Oxidation may result from exposure to the oxygen content of air or, alternatively, may be related to impurities in the excipients. For example, highly reactive species such as peroxides, hydro-peroxides, superoxides, hypochlorites and/or formic acid may be present in excipients as manufacturing or raw-material-related impurities. Also, trace metal impurities in excipients, such as iron and copper, can catalyze oxidation reactions.
- an antioxidant may be included in the composition to mitigate the degradation of the drug in such cases. If the source of oxidation is a reactive manufacturing-related impurity in one or more of the excipients, the anti-oxidant can be co-melted with the excipient(s) in order to protect the drug from these reactive species.
- Chelating agents may also be employed to scavenge trace metals. Controls over the exposure to environmental oxygen may also be employed. For example, in embodiments where a melt process is employed, a closed tank can be used. An inert gas, such as nitrogen or argon, can be sparged through the melt and/or introduced into the head space of the tank. The inert can also be introduced following vacuum removal of environmental oxygen.
- a closed tank can be used.
- An inert gas such as nitrogen or argon
- Suitable antioxidants include, but are not limited to, butylated hydroxytoluene (BHT); ascorbic acid, its salts and esters; Vitamin E, tocopherol and its salts; sulfites such as sodium metabisulphite; cysteine and its derivatives; citric acid; propyl gallate; and butylated hydroxyanisole (BHA).
- BHT butylated hydroxytoluene
- ascorbic acid its salts and esters
- Vitamin E tocopherol and its salts
- sulfites such as sodium metabisulphite
- cysteine and its derivatives citric acid
- propyl gallate propyl gallate
- BHA butylated hydroxyanisole
- Suitable chelating agents include, but are not limited to, EDTA, a salt of EDTA, desferrioxamine B, deferoxamine, dithiocarb sodium, penicillamine, pentetate calcium, a sodium salt of pentetic acid, succimer, trientine, nitrilotriacetic acid, trans-diaminocyclohexanetetraacetic acid (DCTA), diethylenetriamine-pentaacetic acid, bis(aminoethyl)glycolether-N,N,N′,N′-tetraacetic acid, iminodiacetic acid, citric acid, tartaric acid, fumaric acid, or a salt thereof.
- DCTA trans-diaminocyclohexanetetraacetic acid
- the concentration of the antioxidant is generally from about 0.001% to about 1% w/w, preferably from about 0.01% to about 0.5% w/w. However, concentrations of less than 0.001% or greater than 0.5% may be used, provided the concentration is sufficient to stabilize the formulation and is non-toxic.
- a drug is partially dissolved within a water-insoluble or slowly water soluble material during the manufacturing process, for example, by mixing at a temperature above the melting point of the excipients, and the mixture is formulated into multiparticulates.
- a drug is fully dissolved within a water-insoluble or slowly water soluble material during the manufacturing process, for example, by mixing at a temperature above the melting point of the excipients, and the mixture is formulated into multiparticulates.
- the drug containing multiparticulates where the drug is homogeneously dispersed in a particulate form, or has been partially or fully dissolved within one or more excipients during the manufacturing process, are coated with one or more coatings to form coated multiparticulates.
- multiparticulates, coated multiparticulates, or a mixture thereof are formed into a solid dosage form suitable for oral administration.
- multiparticulates or coated multiparticulates can be incorporated into hard shell capsules, dispersed within a soft gelatin capsule, or tableted by compression.
- Appropriate excipients such as magnesium stearate as a lubricant, colloidal silicon dioxide as a glidant, sodium starch glycolide, sodium croscarmellose or crospovidone as a disintegrant, and lactose or microcrystalline cellulose as fillers may be included.
- hard shell capsules examples include capsules formed from gelatin, hydroxypropylmethylcellulose, polysaccharide, and other pharmaceutically acceptable polymer materials.
- hydroxypropylmethylcellulose capsules marketed under the trade name Vcaps®, can be employed.
- drug containing multiparticulates are blended with extragranular material and filled into hard shell capsules.
- the extragranular material can serve several functions.
- One or more extragranular materials, such as lubricants or glidants, can be used to keep the multiparticulates from sticking together.
- suitable materials for this purpose include, but are not limited to, magnesium stearate, zinc stearate, colloidal silicone dioxide, talc, starch, calcium stearate, hydrogenated vegetable oils, stearic acid, sodium stearyl fumarate, sodium benzoate, sodium acetate, leucine, sodium oleate, sodium lauryl sulfate, magnesium lauryl sulfate and polyethylene glycol.
- the extragranular material is a natural or synthetic gel forming excipient, added to form a gel or viscous environment around the particles when exposed to an aqueous environment.
- Extragranular material of this type can be used to modulate the release of drug from the dosage form.
- suitable materials include, but are not limited to, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, polyvinyl pyrrolidone and sodium alginate.
- the compositions are coated with an enteric coating.
- Enteric coatings known in the art are applied directly to the abuse-deterrent multiparticulate or coated multiparticulate compositions or are applied to the surface of a capsule or tablet containing the abuse deterrent multiparticulate and/or coated multiparticulate compositions.
- Enteric coatings known in the art include, for example, acrylic polymers that are commercially available under the trade name EUDRAGIT®, cellulose acetate phthalate, hydroxypropylmethyl-cellulose phthalate, polyvinylacetate phthalate, shellac, hydroxypropyl-methylcellulose succinate, cellulose acetate trimelliate or mixtures thereof.
- the particles are coated with cellulose acetate phthalate.
- Dosage forms can include one or more drugs.
- the dosage form includes two or more drugs they can be Scheduled drugs or can be a combination of Scheduled and non-Scheduled drugs.
- the drugs can be incorporated into the same multiparticulates.
- the drugs can be incorporated into separate multiparticulate compositions where the Scheduled drugs are incorporated into abuse deterrent multiparticulate compositions and the non-Scheduled drugs are incorporated into abuse deterrent multiparticulate compositions, sustained release compositions known in the art or immediate release compositions known in the art.
- the compositions containing the different drugs can be formulated into a single solid dosage form suitable for oral administration; for example, they can be incorporated into a hard capsule shell, or combined with appropriate excipients and compressed into a tablet form.
- non-scheduled drugs examples include, but are not limited to, aspirin, acetaminophen, non-steroidal anti-inflammatory drugs, cyclooxygenase II inhibitors, N-methyl-D-aspartate receptor antagonists, glycine receptor antagonists, triptans, dextromethorphan, promethazine, fiorinal, guaifenesin, butalbital, and caffeine.
- Immediate release multiparticulates can be made utilizing standard methodologies and formulated along with abuse-deterrent multiparticulate and/or coated multiparticulate compositions in a suitable oral dosage form.
- a coating containing drug which is available for immediate release can be placed on a tablet containing abuse-deterrent multiparticulate and/or coated multiparticulate compositions plus appropriate excipients.
- an immediate dose of drug can be granulated or blended with rapidly dissolving excipients and subsequently compressed (1) as one layer of bi-layer tablets in which the abuse-deterrent multiparticulate and/or coated multiparticulate compositions are compressed as the other layer, or (2) as the outer layer of compression-coated tablets in which the abuse-deterrent multiparticulate and/or coated multiparticulate compositions are compressed as the inner core, or (3) into tablets in which abuse-deterrent multiparticulate and/or coated multiparticulate compositions are embedded.
- the immediate release portion of the dosage form contains a lipophilic drug derivative.
- a lipophilic drug derivative for example, salt derivatives or complexes that are insoluble at a neutral pH but dissociate, thereby releasing the parent compound, at an acidic pH are ideal for immediate release within the stomach.
- Exemplary salts, such as salts of oxycodone, that may exhibit this property include, but are not limited to, the tannate, phthalate, salicylate, gallate, pectinate, phytate, saccharinate, asesulfamate and terephthalate salts.
- salts or complexes in the immediate release portion of the dosage form reduces the abuse potential of the immediate release dose if the formulation is crushed and (1) snorted or (2) dissolved in water since these salts will be poorly soluble under these conditions. It is understood by the one of ordinary skill in the art that such salts or complexes may also be used to formulate an immediate release dosage form without a sustained release portion.
- ingredients can be added to deter chewing or snorting of the final formulation.
- an intensely bitter substance may deter chewing
- an intensely spicy ingredient such as capsaicin
- the addition of a colored dye which would stain the skin and mucosal surface of the nose following snorting may also serve to reduce this practice.
- the contemplated compositions comprising a plurality of multiparticulates comprise one or more additional excipients that are combined with the multiparticulates.
- the one or more additional excipients comprise diluents, lubricants, gel forming excipients, and combinations thereof.
- each multiparticulate or coated multiparticulate comprises optional excipients including, but are not limited to diluents, binders, lubricants, disintigrants, colorants, plasticizers and the like.
- Diluents, also termed “fillers,” are typically necessary to increase the bulk of a solid dosage form so that a practical size is provided for compression of tablets.
- diluents include cellulose, dry starch, microcrystalline cellulose, dicalcium phosphate, calcium sulfate, sodium chloride confectioner's sugar, compressible sugar, dextrates, dextrin, dextrose, sucrose, mannitol, powdered cellulose, sorbitol, and lactose.
- Binders are used to impart cohesive qualities powdered materials and can include materials such as starch, gelatin, sugars, natural and synthetic gums, polyethylene glycol, ethylcellulose, methylcellulose, hydroxypropylmethyl-cellulose, carboxymethylcellulose, waxes and polyvinyl pyrrolidone.
- Lubricants are used to facilitate tablet and capsule manufacture.
- examples of lubricants include talc, magnesium stearate, zinc starate, calcium stearate, hydrogenated vegetable oils stearic acid, sodium stearyl fumarate, sodium benzoate, sodium acetate, leucine, sodium oleate, sodium lauryl sulfate, magnesium lauryl sulfate and polyethylene glycol.
- Disintegrants can be added to pharmaceutical formulations in order to facilitate “breakup” or disintegration after administration.
- Materials used for this purpose include starches, clays, celluloses, aligns, gums, and cross-linked polymers.
- plasticizer may be included in coating materials to alter their mechanical properties.
- plasticizers include benzyl benzoate, chlorobutanol, dibutyl sebacate, diethyl phthalate, glycerin, mineral oil, polyethylene glycol, sorbitol, triacetin, triethyl citrate, glycerol, etc.
- One or more surfactants may also be added to the final dosage form to modulate the release of drug from the multiparticulate composition.
- surfactants include, but are not limited to, lecithin, sodium dodecyl sulfate, poloxamer, Cremophor, polysorbates, and polyoxyglycerides.
- coloring and flavoring agents may also be incorporated into the composition.
- compositions described herein can be made using a variety of techniques known in the art including, but not limited to, spray congealing, spray chilling, spray drying, extrusion, bulk congealing into capsules and bulk congealing with subsequent milling.
- beads containing the active agent or a fatty acid salt thereof and excipients are prepared via spray congealing utilizing a spinning disc atomization process. In this process, a molten mixture or solution of the active agent and excipients is pumped onto a heated, rotating disc. The disc generates centrifugal force which distributes the melt as a uniform sheet and accelerates it toward the edge of the disc where it forms ligaments that break into droplets that rapidly congeal into beads having diameters in microns.
- the disc can alternatively incorporate vanes that channel the melt at the periphery of the disc.
- vanes that channel the melt at the periphery of the disc.
- Process parameters such as disc speed, melt feed rate, melt feed temperature, and/or air flow can affect bead size and/or bead size distribution. Under some circumstances, feed rate has little effect on the median bead size or distribution (span). In some instances, bead size can be decreased with increased disc speed and low air flow rates. In still other instances, the span can be decreased with increased disc speed and high feed temperatures.
- the temperature at which the melt is manufactured is controlled in order to avoid significant degradation of drug and/or carrier material.
- the melt preparation and processing temperature is higher than the melting point of the bead formulation, i.e. the temperature at which the melt is completely liquid, by 1-30° C., preferably 1-5° C. higher, to minimize potential product degradation and/or adverse side reactions.
- Melt feed temperature the temperature at which the melt is fed onto, e.g., a spray congealing device, should also be 1-30° C. higher than the melting point., preferably be 3-10° C. higher than the melting point to minimize the amount of heat that needs to dissipate from the beads before they congeal.
- the multiparticulates have a D(0.1) particle size from about 50 to about 250 ⁇ m, preferably from about 140 to about 190 ⁇ m; a D(0.5) median particle size from about 150 to about 750 ⁇ m, preferably from about 200 to about 400 ⁇ m; and a D(0.9) particle size from about 200 to about 2500 ⁇ m, preferably from about 400 to about 700 ⁇ m.
- the multiparticulates are characterized by a span (i.e., [D(0.9) ⁇ D(0.1)]/D(0.5)) less than 5, preferably less than 2, and more preferably less than 1.4.
- multiparticulates having a span of less than 1.4 are less prone to segregation during processing and/or are more likely to achieve the desired pharmacokinetic profile.
- D(0.1), D(0.5) and D(0.9) are defined as the diameters where 10%, 50% or 90% w/w of the microparticles have a smaller diameter, respectively, when measured, e.g., using a laser diffraction technique.
- the terms “D(0.5)” and “median particle size” are used interchangeably herein.
- the multiparticulates can be any geometrical shape. In some embodiments, the multiparticulates may be irregular, oblong or spherical in shape. In a preferred embodiment, the multiparticulates are substantially round or spherical in shape (e.g., beads).
- Disc speed, feed rate and air flow rate depend on the melt formulation and desired size and span. Bead with spans less than 5 may be produced. Conditions that yield a narrow span are preferred to avoid significant particle segregation during downstream processing. A span of less than about 2, and more preferably less than about 1.4 is preferred.
- the formulation can provide a sustained release of drug over an extended time period. This is a natural consequence of the fact that, in the formulations described herein, drug is slowly released from a predominantly water-insoluble, hydrophobic matrix as it passes through the GI tract.
- the barrier components may be degraded as the matrix passes through the GI tract, for example, by enzymes, the surfactant action of bile acids, and/or mechanical erosion.
- an immediate release of drug is achieved within the stomach in order to provide rapid therapeutic onset.
- the pharmaceutical drug composition is generally administered orally.
- the appropriate dosage formulations can be obtained by calculation of the pharmacokinetics of the formulation, then adjusting using routine techniques to yield the appropriate drug levels based on the approved dosage forms.
- Any suitable amount of drug containing multiparticulates or coated multiparticulates can be included in the final formulation. The selection of a suitable amount of drug containing multiparticulates depends on the dosage desired and is readily determined by those skilled in the art.
- some embodiments may also be administered by other routes, including, but not limited to, rectal and nasal administration. Some embodiments may also be suitable for formulation as oral liquids.
- Example 2 In vitro testing was conducted in order to assess the influence of crushing of the multiparticulates produced in Example 1 on the release in simulated stomach conditions.
- Multiparticulates (Formulations A, B, C or D, all 20-40 mesh in starting particle size) and OxyContin® tablets were crushed using a glass mortar and pestle.
- the resulting crushed material was placed in a dissolution vessel equipped with paddles (USP Apparatus II). 900 mL of 0.1N HCl pre-warmed to 37° C. was added to the vessels and stirred for 15 minutes. After 15 minutes the amount of oxycodone released was determined. The results are shown in Table 2.
- Example 1 release only a fraction of the total drug load in simulated stomach conditions when crushed.
- OxyContin® a currently marketed sustained release composition, OxyContin®, releases approximately 96% of the drug load when crushed and exposed to identical conditions.
- the resulting molten solution was transferred to a feed kettle and continuously metered onto a spinning disc atomizer (see FIG. 1 ) in order to form solid, spherical multiparticulates.
- These multiparticulates can be optionally spay coated with, for example, cellulose acetate phthalate.
- the drug-containing particles from Example 3 can be spray coated with cellulose acetate phthalate.
- the drug containing multiparticulates from Examples 1, 3, 4, and 5 can be blended with one or more suitable lubricants and, optionally, one or more glidants, and incorporated into an appropriately sized hard shell capsules.
- the formulations in Table 5 were prepared using laboratory-scale melt and spray congealing process using a spray nozzle to form beads.
- Base formulation components [stearic acid (SA), beeswax (BW) and carnauba wax (CW)] were successively added to a stainless steel beaker equipped with a heating water jacket and allowed to melt with stirring at a controlled temperature of approximately 85° C.
- Additives such as polymers (PVP K29/32, Polyvinyl Pyrrolidone), surfactants such as Gelucire 50/13 (Gattefosse, mono- and di-C 16 and C 18 fatty acid esters of polyethylene glycol, a blend of mono-, di-, and tri-glycerides of C 16 and C 18 and some free PEG and fatty acids), Poloxamer 407 (BASF, triblock copolymer consisting of a central hydrophobic block of polypropylene glycol flanked by two hydrophilic blocks of polyethylene glycol), and/or Span 60 (Sorbitan Monostearate) were added in the amount set forth in Table 5, below, and allowed to dissolve in the melt. Oxymorphone free base, the active pharmaceutical ingredient (API), was then added and mixed until complete dissolution ocurred, resulting in a clear melt. The formulation was kept blanketed with inert gas throughout the melt manufacture.
- surfactants such as Gelucire 50/13 (Gattefosse,
- Beads were produced by spraying the melt into an enclosure lined with a plastic sheeting.
- the melt was sprayed into the enclosure using a syringe equipped with a plastic pressure nozzle at its end. See FIG. 2 .
- the syringe plunger was pressed through the barrel using a pneumatic piston.
- the piston was activated with an air pressure sufficient to press the melt through the barrel at a speed high enough to atomize the melt and produce beads.
- Spraying was oriented at approximately 45° angle to provide maximum contact time with room air and thereby allow the beads to cool and congeal before they collect at the bottom of the enclosure. Microscopic examination showed that the resulting product is composed of regular, spherical particles. Particle size can be decreased by increasing air pressure.
- the same procedure as in Example 6 was used to produce beads of Oxycodone formulation.
- the basic formulation includes the drug, a fatty acid [lauric acid (LA), myristic acid (MA) or stearic acid (SA)], beeswax (BW), carnauba wax (CW) and/or microcrystalline wax (MW, multi-wax).
- LA lauric acid
- MA myristic acid
- SA stearic acid
- BW beeswax
- CW carnauba wax
- MW microcrystalline wax
- the melt was manufactured in a jacketed 1300 L stainless steel vessel.
- Manufacture started by heating the jacket to 85° C. and adding MA to the vessel from the open top of the vessel. The vessel lid was then closed and the MA was melted completely with mixing. The remaining excipients (BW and CW) and the API were vacuum-transferred individually into the melt from the bottom of the vessel.
- the melt was pumped at a controlled flow rate and temperature onto the center of a 12′′ diameter spinning disc.
- the beads were collected at the bottom of a large bead collection chamber.
- a fan at the top of the chamber was used to pump air with controlled temperature through the collection chamber. See FIG. 3 .
- a 4-factor (feed temperature, disc speed, melt feed rate and fan speed), 2 level, 1 ⁇ 2 factorial design of experiments (DOE) with 4 center-points was conducted to identify critical process parameters and determine their effects on particle size and bead temperature. Eight (8) additional runs were also conducted to extend the range of disc speed and feed rate. Experimental runs were started when process parameters reached their set points. A representative sample from each run was tested for particle size using a Malvern MasterSizer S laser diffraction instrument. Experimental data were analyzed using the Stat-Ease Design Expert Software, Version 7.
- FIG. 4 shows a good correlation between the predicted median particle size and the actual median particle size for particles made using the process described above.
- FIG. 5 shows that the size of the beads made by this process decreases with increasing disc speed.
- FIG. 6 shows that, at low fan speed (29 Hz), the span ([(0.9) ⁇ D(0.1)]/D(0.5)) decreases with increasing disc speed. At high fan speed (32 Hz), the span increases. The large span is an indication of less control over the atomization process at the higher fan speed. High air flow rates associated with high fan speed are thought to interfere with the normal melt spray travel path off the edge of the disc. A similar effect was observed for melts at lower temperature.
- a low span ( ⁇ 5) is desirable to minimize segregation of the beads by size during downstream processing such as blending and encapsulation.
- a span ⁇ 1.4 is preferred to minimize segregation.
- a low span may also provide a more desirable pharmacokinetic profile.
- Bead segregation during encapsulation can also result in capsules with varying dissolution or release profile. Blending the beads with small levels of additives such as colloidal silicon dioxide serves to reduce the severity of bead segregation.
- Samples of oxycodone base; a physical mix (i.e., a non-melted mix) of oxycodone base and a model fatty acid (myristic acid); and a congealed melt of oxycodone base and myristic acid were prepared.
- the samples were tested by Fourier Transform Infrared (FTIR) spectroscopy, Solid State Carbon-13 (C 13 ) nuclear magnetic resonance (NMR), and Solution C-13 and Proton (H 1 ) NMR.
- FTIR Fourier Transform Infrared
- the FTIR study showed the presence of an IR band at or near 1571 cm ⁇ 1 in the Oxycodone/myristic acid congealed melt not seen in either the free base or Oxycodone/myristic acid physical blend.
- the band was assigned to a salt of myristic acid and oxycodone formed by interaction of the carboxylic group of myristic acid with the nitrogen in the tertiary amine group of oxycodone.
- Solid state C 13 NMR showed significant changes to the oxycodone signals in the congealed melt. For example, significant shifts were observed in the chemical shifts for the bridge carbon atoms adjacent the oxycodone tertiary amine.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Emergency Medicine (AREA)
- Botany (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Composite Materials (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This application claims the benefit of U.S. Patent Appl. Ser. No. 61/285,231, filed Dec. 10, 2009, which is a continuation-in-part of U.S. patent application Ser. No. 12/112,937, filed Apr. 30, 2008 (a continuation-in-part of U.S. patent application Ser. No. 10/614,866, filed Jul. 7, 2003, now U.S. Pat. No. 7,399,488) and a continuation-in-part of U.S. patent application Ser. No. 12/473,073, filed on May 27, 2009 (a continuation-in-part of U.S. patent application Ser. No. 12/112,993, filed Apr. 30, 2008, which is a divisional of U.S. patent application Ser. No. 10/614,866 filed Jul. 7, 2003), both of which claim priority to U.S. Patent Appl. Ser. No. 60/393,876 filed Jul. 5, 2002; U.S. Patent Appl. Ser. No. 60/436,523 filed Dec. 23, 2002; U.S. Patent Appl. Ser. No. 60/443,226 filed Jan. 28, 2003; U.S. Patent Appl. Ser. No. 60/463,514 filed Apr. 15, 2003; and U.S. Patent Appl. Ser. No. 60/463,518 filed Apr. 15, 2003, the disclosures of all of which are incorporated by reference as if fully set forth herein.
- The present invention is generally in the field of pharmaceutical compositions, specifically compositions that are designed to reduce the potential for improper administration of drugs, such as those subject to abuse and methods of making thereof.
- Oxycodone, morphine, and other opioid analgesics are successful and therapeutically useful medications, e.g., as pain killers, when administered orally. Unfortunately, they also pose a severe threat for willful abuse due to their ability to alter mood and/or cause a sense of euphoria. Traditional sustained release formulations of such drugs, which contain a relatively large amount of drug meant to be released from the formulation over an sustained time period, are particularly attractive to abusers since the sustained release action can be destroyed by crushing or grinding the formulation. The resulting material (i.e., the crushed formulation) can no longer control the release of drug. Depending on the drug, abusers can then (1) snort the material, (2) swallow the material or (3) dissolve the material in water and subsequently inject it intravenously. The dose of drug contained in the formulation is absorbed immediately through the nasal or GI mucosa (e.g., snorting or swallowing, respectively) or is administered in a bolus to the systemic circulation (e.g., IV injection). These abuse methods result in the rapid bioavailability of relatively high doses of drug, giving the abuser a “high”. Since relatively simple methods (crushing, grinding, chewing and/or dissolution in water) can be used to transform such formulations into an abusable form, they provide virtually no deterrent to a potential abuser.
- For example, in recent years, there have been numerous reports of diversion and abuse of sustained release formulations of opioids such as oxycodone, oxymorphone and morphine. According to a report from the Abuse and Mental Health Services Administration, results from the 2007 National Survey on Drug Use and Health: National Findings (Rockville, Md.: US Dept. of Health and Human Services), showed that in both 2006 and 2007, an estimated 5.2 million persons aged 12 or older (2.1 percent in each year) were current nonmedical users of prescription pain relievers. Additionally, from 2002 to 2007, there was an increase among young adults aged 18 to 25 in the rate of current use of prescription pain relievers, from 4.1 to 4.6 percent. Data from this survey also supports the notion that sustained-release formulations susceptible to tampering methods such as chewing, crushing and grinding likely contributes to the increasing rates of prescription pain reliever abuse. For example, in 2007, there were an estimated 554,000 new nonmedical users of OxyContin® (a sustained release formulation of the active drug oxycodone).
- Oxycodone is a controlled substance in Schedule II of the Controlled Substances Act (CSA), which is administered by the Drug Enforcement Administration (DEA). Despite the fact that Schedule II provides the maximum amount of control possible under the CSA for approved drug products, in practice it is difficult for law enforcement agencies to control the diversion or misuse of legitimate prescriptions. Although abuse, misuse, and diversion are potential problems for all opioids, including Oxycodone, opioids are a very important part of the medical armamentarium for the management of pain when used appropriately under the careful supervision of a physician.
- U.S. Pat. No. 3,980,766 to Shaw et al. (“Shaw”), U.S. Pat. No. 4,070,494 to Hoffmeister et al. (“Hoffmeister”), and U.S. Pat. No. 6,309,668 to Bastin et al. (“Bastin”) describe formulations designed to prevent the injection of compositions meant for oral administration.
- Shaw describes the incorporation of an ingestible solid which causes a rapid increase in viscosity upon concentration of an aqueous solution thereof.
- Hoffmeister describes the incorporation of a non-toxic, water gelable material in an amount sufficient to render the drug resistant to aqueous extraction.
- Bastin describes a tablet for oral administration containing two or more layers containing one or more drugs and one or more gelling agents within separate layers of the tablet. The resulting tablet forms a gel when combined with the volume of water necessary to dissolve the drug allegedly reducing the extractability of the drug from the tablet.
- It should be noted that although these compositions allegedly preclude abuse by injection, this approach fails to prohibit rapid dissolution of the drug once the dosage form is crushed into smaller particles or pieces. Thus, these formulations are vulnerable to abuse by crushing and swallowing or snorting the formulation, which are commonly reported methods of abuse.
- U.S. Pat. Nos. 3,773,955 and 3,966,940 to Pachter et al. describe formulations containing a combination of opioid agonists and antagonists, in which the antagonist does not block the therapeutic effect when the admixture is administered orally, but which does not produce analgesia, euphoria or physical dependence when administered parenterally by an abuser.
- U.S. Pat. No. 4,457,933 to Gordon et al. describes a method for decreasing both the oral and parenteral abuse potential of strong analgetic agents by combining an analgesic dose of the analgetic agent with an antagonist in specific, relatively narrow ratios.
- U.S. Pat. Nos. 6,277,384, 6,375,957 and 6,475,494 to Kaiko et al. describe oral dosage forms including a combination of an orally active opioid agonist and an orally active opioid antagonist in a ratio that, when delivered orally, is analgesically effective but that is aversive in a physically dependent subject. While such a formulation may be successful in deterring abuse, it also has the potential to produce adverse effects in legitimate patients.
- The FDA recently approved two sustained release formulations of opioid active ingredients with tamper resistant features. A sustained release oxycodone tablet, designed to resist crushing and to gel in the presence of water, is currently available. Also, a multiparticulate-in-capsule product containing morphine and a sequestered naltrexone is also commercially available; this product is designed to release naltrexone (an opioid antagonist) to counteract the euphoric effects of the opioid active ingredient when the formulation is crushed, chewed or dissolved. While such formulations offer an improvement over previously available formulations with respect to susceptibility to tampering, there are disadvantages associated with the available products. For example, tablet formulations that are difficult to crush, but not crush-proof, can still be chopped or shredded into small particles and do not address the needs of patients with difficulty swallowing, and formulations containing antagonists have the potential to cause harm to legitimate patients.
- It is therefore an object of the present invention to provide a pharmaceutical composition (e.g., a multiparticulate composition) that reduces the potential for improper administration of drugs without the addition of aversive agents or antagonists, which have the potential to cause harm to legitimate patients. Such a formulation significantly reduces the potential for improper administration or use of drugs but, when administered as directed, is capable of delivering a therapeutically effective dose. Methods of making and using such a formulation are also provided.
- An abuse-deterrent pharmaceutical composition and methods of making and using thereof have been developed. The compositions can be used to reduce the likelihood of improper administration of drugs, especially drugs prone to abuse such as oxycodone. The technology is useful for a number of other drugs where sustained release oral delivery is desired, and there is potential for abuse if the drug dose is made immediately available for nasal, intravenous (IV) or oral administration. In a preferred embodiment, the drug is formulated into multiparticulates containing lipophilic or water-insoluble materials. In some embodiments, the drug is modified to increase its lipophilicity prior to or during the formulation of the multiparticulates. For example, the composition is formulated with one or more excipients that interact ionically with the drug to obtain a more lipopholic drug derivative. The composition is then formulated as multiparticulates. In another embodiment, the multiparticulates are produced using a spray congealing process. In other embodiments, the formulation contains lipophilic or water-insoluble materials or is made using a process which increases the lipophilicity and/or water-insolubility of the composition. In some embodiments, the composition additionally contains one or more antioxidants, surfactants, or polymers.
- The abuse-deterrent composition retards the release of drug even if the physical integrity of the dosage form is compromised (for example, by chopping with a blade or crushing) and the resulting material is placed in water, snorted, or swallowed. However, when administered as directed, the drug is released slowly, typically over a period of 6-24 hours, from the composition as the composition is broken down or dissolved gradually within the GI tract by a combination of surfactant action of bile acids, diffusion, mechanical erosion and, in some embodiments, enzymatic degradation.
- The multiparticulates or microparticulates described herein can be made using a variety of techniques known in the art including, but not limited to, spray congealing, spray chilling, extrusion, spray drying, and bulk congealing with subsequent milling. In one embodiment, beads or particles containing the active agent (e.g., a fatty acid salt of the active agent) and excipients are prepared using a spray congealing process.
- In one embodiment, the multiparticulates have a D(0.1) particle size from about 50 to about 250 μm, preferably from about 140 to about 190 μm; a D(0.5) median particle size from about 150 to about 750 μm, preferably from about 200 to about 400 μm; and a D(0.9) particle size from about 200 to about 1200 μm, preferably from about 400 to about 700 μm. The multiparticulates are characterized by a span (i.e., [D(0.9)−D(0.1)]/D(0.5)) less than 5, preferably less than 2, and more preferably less than 1.4. In some embodiments, multiparticultes having a span of less than 1.4 are less prone to segregation during processing and/or achieve the desired pharmacokinetic profile. D(0.1), D(0.5) and D(0.9) are defined as the diameters where 10%, 50% or 90% w/w of the multiparticulates have a smaller diameter, respectively, when measured, e.g., using a laser diffraction technique. The terms “D(0.5)” and “median particle size” are used interchangeably herein. The multiparticulates can be any geometrical shape. In some embodiments, the multiparticulates may be irregular, oblong or spherical in shape. In a preferred embodiment, the multiparticulates are substantially round or spherical in shape (e.g., beads).
- In some embodiments, the individual drug-containing multiparticulates are coated with one or more independent coating layers. At least one of the coating materials is water-insoluble and/or organic solvent-insoluble, so that in vitro dissolution of the formulation will require more than one step. Thus, the drug is not easily extractable from the formulations by conventional chemical means. In contrast, when administered to the gastrointestinal tract via swallowing, the drug will gradually be released from the coated multiparticulates as a consequence of diffusion, the gradual break down of the formulation via surfactant action of bile acids, mechanical erosion and, in some embodiments, enzymatic degradation. The particles can be coated using a variety of techniques known in the art including, but not limited to, wet granulation processes, spray coating processes, and/or coacervation processes.
- The pharmaceutical composition, when administered orally, results in a desired drug release profile. The release profile provides a therapeutic effect for an extended period of time, typically from 6 to 24 hours, preferably from 12 to 24 hours. Additional compositions may achieve a small immediate release dose that precedes the extended release of drug. The compositions disclosed herein may optionally contain a drug having no appreciable abuse potential.
-
FIG. 1 is a picture of a portion of a spinning disc atomizer. -
FIG. 2 is a diagram of an exemplary pressure nozzle for the preparation of multiparticulates. -
FIG. 3 is a diagram of a large scale apparatus for the production of multiparticulates, where the apparatus comprises a large scale spinning disc atomizer. -
FIG. 4 is a graph comparing a model predicted particule size in microns with the actual median particle size in microns. -
FIG. 5 is a graph showing the D(0.5) median particle size in microns as a function of disc speed (rpm) and fan setting at high feed temperature setting of 90° C., and medium feed rate (pump setting of 3.75 Hz). -
FIG. 6 is a graph showing the effect of disc speed, and air flow rate on the bead size distribution (span) at 90° C. - Disclosed herein are abuse-deterrent pharmaceutical compositions and the method of making and using the compositions.
- As used herein, “composition” refers to the drug dosage unit for administration to a patient. “Composition” may also be used in reference solely to the active ingredient, or to a formulation containing the active ingredient.
- The currently available extended release dosage forms containing narcotic analgesics and other drugs are subject to misuse, in part, because mechanical destruction of the dosage form exposes the encapsulated drug and allows for rapid dissolution of the drug into aqueous media. Three properties of the dosage form that contribute to this outcome are, (1) the high water solubility of the drug salt form; (2) the lack of protection offered by the hydrophilic and/or water soluble excipients in the formulation; and (3) the ease with which the surface area of the formulation is increased by simple chewing or crushing. Susceptibility to simple methods such as chewing or crushing is particularly problematic for monolithic controlled-release dosage forms. For monolithic dosage forms, such as tablets, even splitting the unit into a few pieces (without completely crushing it) can result in a dramatic increase in the dissolution rate.
- In the compositions disclosed herein, one or more of these properties are altered in order to achieve an abuse-deterrent composition. Specifically, in the one embodiment, the drug is modified to increase its lipophilicity and reduce its water solubility. The modified drug is homogeneously dispersed within one or more excipients that are either slowly soluble or not soluble in water. Dispersion within these materials further reduces the accessibility of the drug when crushed and exposed to an aqueous media. In some embodiments, the drug may be partially or fully dispersed in the excipients on a molecular level. The intimate mixture of modified drug and excipients is subsequently formulated into multiparticulates, producing a formulation whose surface area is minimally influenced by chewing or crushing.
- The terms “tamper resistant composition,” “abuse-deterrent composition” or “abuse-deterrent formulation” are used interchangeably herein to refer to compositions that reduce the potential for improper administration of drugs but that deliver a therapeutically effective dose when administered as directed. Improper administration includes tampering with the dosage form and/or administering the drug by any route other than instructed. For example, for a tablet or capsule, methods of tampering with the dosage form may include, but are not limited to, breaking, crushing, grinding, chewing and/or dissolving the tablet or the contents of the capsule. For oral administration, improper administration includes administering the drug by any route other than via swallowing.
- The abuse deterrent compositions preferably contain a drug modified to increase its lipophilicity. In some embodiments, the drug is homogenously dispersed within multiparticulates composed of a material that is either slowly soluble in water or water insoluble. The compositions maintain a slow release of drug if the dosage form is chopped or crushed and the resulting material is placed in water, snorted, or swallowed since most of the drug will remain associated with or entrapped within portions of the core material of the multiparticulates. In other embodiments, the drug containing multiparticulates are coated with one or more coating layers, where at least one coating is water insoluble and/or organic solvent insoluble. The components of the resulting coated multiparticulates are not mutually soluble in water or organic solvents. Therefore, extraction of the drug from the formulation cannot be carried out in one step. However, when administered as directed, the drug is slowly released from the formulation via diffusion and erosion within the environment of the gastrointestinal tract.
- A. Drugs to be Formulated
- There are many drugs which can be delivered using the compositions described herein. The Controlled Substances Act (CSA), Title II of the Comprehensive Drug Abuse Prevention and Control Act of 1970, places all substances that are regulated under existing federal law into one of five schedules based upon the substance's medicinal value, harmfulness, and potential for abuse or addiction. Drugs that are preferred include those classified as Schedule II, III, IV and V drugs. Drugs that are most preferable include those, like oxycodone, that are currently formulated as extended or controlled release compositions, where drug release is intended to occur over a prolonged period of time through the gastrointestinal tract, and immediate or burst release, for example, by inhalation or injection, is undesirable. As used herein, drugs prone to abuse refer to controlled substance specified as schedule II, III, IV and V drugs. Other opioid analgesics that can be incorporated into the compositions described herein include morphine and hydromorphone.
- The terms “drug”, “active agent”, and “pharmacologically active agent” are used interchangeably herein to refer to a chemical compound that induces a desired pharmacological, physiological effect. The terms also encompass pharmaceutically acceptable derivatives of those active agents specifically mentioned herein, including, but not limited to, salts, solvates, hydrates, complexes with one or more molecules, prodrugs, active metabolites, and derivatives and analogs. When the terms “active agent”, “pharmacologically active agent” and “drug”are used, or when a particular drug, such as oxycodone, is identified, it is to be understood as including the active agent per se as well as pharmaceutically acceptable salts, solvates, hydrates, complexes with one or more molecules, prodrugs, active metabolites, and analogs.
- Examples of preferred drugs include 1-phenylcyclohexylamine, 1-piperidinocyclohexanecarbonitrile, alfentanil, alphacetylmethadol, alphaprodine, alprazolam, amobarbital, amphetamine, anileridine, apomorphine, aprobarbital, barbital, barbituric acid derivative, bemidone, benzoylecgonine, benzphetamine, betacetylmethadol, betaprodine, bezitramide, bromazepam, buprenorphine, butabarbital, butalbital, butorphanol, camazepam, cathine, chloral, chlordiazepoxide, clobazam, clonazepam, clorazepate, clotiazepam, cloxazolam, cocaine, codeine, chlorphentermine, delorazepam, dexfenfluramine, dextromoramide, dextropropoxyphen, dezocine, diazepam, diethylpropion, difenoxin, dihydrocodeine, dihydromorphine, dioxaphentyl butyrate, dipanone, diphenoxylate, diprenorphine, ecgonine, enadoline, eptazocine, estazolam, ethoheptazine, ethyl loflazepate, ethylmorphine, etorphine, femproponex, fencamfamin, fenfluramine, fentanyl, fludiazepam, flunitrazepam, flurazepam, glutethimide, halazepam, haloxazolam, hexalgon, hydrocodone, hydromorphone, isomethadone, hydrocodone, ketamine, ketazolam, ketobemidone, levanone, levoalphacetylmethadol, levomethadone, levomethadyl acetate, levomethorphan, levorphanol, lofentanil, loperamide, loprazolam, lorazepam, lormetazepam, lysergic acid, lysergic acid amide, mazindol, medazepam, mefenorex, meperidine, meptazinol, metazocine, methadone, methamphetamine, methohexital, methotrimeprazine, methyldihydromorphinone, methylphenidate, methylphenobarbital, metopon, morphine, nabilone, nalbuphine, nalbupine, nalorphine, narceine, nefopam, nicomorphine, nimetazepam, nitrazepam, nordiazepam, normethadone, normorphine, oxazepam, oxazolam, oxycodone, oxymorphone, pentazocine, pentobarbital, phenadoxone, phenazocine, phencyclidine, phendimetrazine, phenmetrazine, pheneridine, piminodine, prodilidine, properidine, propoxyphene, racemethorphan, racemorphan, racemoramide, remifentanil, secobarbital, sufentanil, talbutal, thebaine, thiamylal, thiopental, tramadol, trimeperidine, and vinbarbital.
- In addition to the compounds above, the following scheduled drugs may be incorporated into the composition: allobarbitone, alprazolam, amylobarbitone, aprobarbital, barbital, barbitone, benzphetamine, brallobarbital, bromazepam, brotizolam, buspirone, butalbital, butobarbitone, butorphanol, camazepam, captodiame, carbromal, carfentanil, carpipramine, cathine, chloral, chloral betaine, chloral hydrate, chloralose, chlordiazepoxide, chlorhexadol, chlormethiazole edisylate, chlormezanone, cinolazepam, clobazam, potassium clorazepate, clotiazepam, cloxazolam, cyclobarbitone, delorazepam, dexfenfluramine, diazepam, diethylpropion, difebarbamate, difenoxin, enciprazine, estazolam, ethyl loflazepate, etizolam, febarbamate, fencamfamin, fenfluramine, fenproporex, fluanisone, fludiazepam, flunitraam, flunitrazepam, flurazepam, flutoprazepam, gepirone, glutethimide, halazepam, haloxazolam, hexobarbitone, ibomal, ipsapirone, ketazolam, loprazolam mesylate, lorazepam, lormetazepam, mazindol, mebutamate, medazepam, mefenorex, mephobarbital, meprobamate, metaclazepam, methaqualone, methohexital, methylpentynol, methylphenobarbital, midazolam, milazolam, morphine, nimetazepam, nitrazepam, nordiazepam, oxazepam, oxazolam, paraldehyde, pemoline, pentabarbitone, pentazocine, pentobarbital, phencyclidine, phenobarbital, phendimetrazine, phenmetrazine, phenprobamate, phentei mine, phenyacetone, pinazepam, pipradol, prazepam, proxibarbal, quazepam, quinalbaritone, secobarbital, secbutobarbitone, sibutramine, temazepam, tetrazepam, triazolam, triclofos, zalepan, zaleplon, zolazepam, zolpidem, and zopiclone.
- Certain compounds described herein may exist in particular geometric or stereoisomeric forms. The composition disclosed herein contemplates all such compounds, including cis- and trans-isomers, R- and S-enantiomers, diastereomers, (d)-isomers, (l)-isomers, the racemic mixtures thereof, compounds of different spacial conformations, and other mixtures thereof, as falling within the scope of the invention. Additional asymmetric carbon atoms may be present in a substituent such as an alkyl group. All such isomers, as well as mixtures thereof, are intended to be included in this invention.
- As used herein, “pharmaceutically acceptable salts” refer to derivatives of the disclosed compounds wherein the parent compound is modified by making salts thereof. Pharmaceutically acceptable salts include salts of acidic (e.g., a carboxylic acid) or basic groups (e.g., a primary, secondary or tertiary amine) present in compounds disclosed herein. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. The pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. For example, such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, lauric, capric, myristic, palmitic, stearic, oleic, linoleic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, tolunesulfonic, methanesulfonic, ethane disulfonic, oxalic, and isethionic.
- The pharmaceutically acceptable salts of the compounds can be synthesized from the parent compound (e.g., the unprotonated base form of the compound, often referred to as the “free base” of the compound), which contains a basic or acidic moiety, by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, non-aqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 20th ed., Lippincott Williams & Wilkins, Baltimore, Md., 2000, p. 704, the disclosure of which is hereby incorporated by reference.
- Pharmaceutically acceptable salts may also be prepared by reacting the free acid or base forms of compounds with an appropriate base or acid, respectively, in a melt process, optionally in the presence of other pharmaceutically acceptable excipients (e.g., waxes). As used herein, the term “melt process” refers to a process where the free acid or base forms of the compounds are dissolved in one or more excipients that are in molten form (i.e., it is a solid at room temperature) to make a solution wherein the base or acid interacts with the free acid or base form of the compounds, respectively, to form the desired pharmaceutically acceptable salt.
- Optionally, the composition described herein can further include a drug having no appreciable abuse potential.
- B. Drug Modification
- In some embodiments, the dissolution and/or solubility characteristics of a drug are altered. Modification of the drug to produce a more lipophilic and/or less soluble derivative serves to reduce the dissolution rate and/or solubility of the drug in aqueous media, such as water, and thus reduce the aqueous extractability of the drug. Furthermore, if the drug is made more lipophilic, it can be dissolved in a molten fatty substance and/or wax like mixture; that is, the more lipophilic form of the drug is substantially more soluble in the molten fatty substance and/or wax-like mixture, as opposed to being mostly suspended or dispersed as solid particles in the molten fatty substance and/or wax-like mixture. Solubilization of the drug in lipophilic excipients can enhance the abuse-deterrent properties of multiparticulates formulated from the mixture as it is more difficult to extract drug from an intimately dispersed composition. Furthermore, such a composition is capable of controlling the release of drug, even when formulated into relatively small multiparticulates. Microparticulate compositions, in contrast to monolithic compositions, are inherently less susceptible to tampering by mechanisms such as chewing or crushing that are intended to increase the surface area and, consequently, the release rate of drug.
- The terms “lipophilic derivative” and “lipophililic drug derivative”, as used herein, refer to derivatives of the drug that are less soluble or dissolve less rapidly in water than more soluble salts of the drug; the more soluble salts being selected from either base addition salts (for acidic drugs) or acid addition salts (for basic drugs), such as by the addition of inorganic acids. The examples of the latter include but are not limited to hydrohalics, sulfates, and nitrates. In some embodiments, a “lipophilic derivative” or “lipophililic drug derivative”, is formed when the drug interacts ionically with one or more organic excipients. Ionic interactions include, but are not limited to, interactions between ionic moieties on a drug (e.g., cationic moieties or anionic moieties) and one or more ionic components (e.g., cationic moieties or anionic moieties) contained in the one or more organic excipients. In some embodiments, ionic interactions include, but are not limited to, the formation of salts. In other embodiments, ionic interactions include hydrogen-bonding interactions between basic drugs and acids (e.g., a nitrogen atom on the drug and the hydrogen atom on the carboxylic acid of the fatty acid) or acidic drugs and bases (e.g., a carboxylic acid hydrogen atom and the nitrogen atom of the fatty amine). As used herein, the term “fatty amine” includes, but is not limited to, C5-C30 fatty amines including octyl amine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine, and palmitylamine.
- Exemplary methods that can be used to alter the drug's lipophilicity and/or aqueous solubility are described below. It is understood that two or more approaches can be combined to achieve a desired dissolution and/or solubility profile.
- In one embodiment, the drug's lipophilicity/solubility is modified by forming an ionic interaction (e.g., forming a salt) between a drug molecule and a charged lipophilic compound. In this case the lipophilicity of the resulting salt can be manipulated by varying the lipophilicity of the counter-ion. In general, lipophilic acids or amines with chain lengths between C5-C30 are lipophilic counter-ion candidates. Some specific examples include, but are not limited to, linoleic acid, octanoic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, octyl amine, lauryl amine, stearyl amine, palmityl amine, linoleyl amine, and oleyl amine.
- The formation of an ionic interaction (e.g., forming a salt) between a pharmaceutically active agent and an excipient such as a fatty acid or amine can be accomplished by a melt process, with or without the use of a solvent. In some embodiments, one or more fatty acids or amines are heated above their melting point and the pharmaceutically active agent, in free base or acid form, is added to the molten fatty acid or amine either directly or after dissolution of the active agent in an appropriate solvent, such as ethanol or methylene chloride. When the active agent interacts ionically with the fatty acid or fatty amine the interaction can be such that, e.g., the fatty acid protonates a protonatable moiety on the active agent (e.g., a primary, secondary or tertiary amine) thereby placing a charge on the moiety and generating an ionized moiety (e.g., a protonated amine or ammonium moiety) on the active agent. The ionized moiety, in turn, interacts with the carboxylate ion of the fatty acid, which is itself ionized. In some embodiments, the interaction between the ionized moiety of the active agent and the carboxylate ion of the fatty acid can be intimate (e.g., an intimate ion pair), it can be separated by solvent or it can be separated by one or more excipient molecules. The fatty acids or amines are present, preferably, in an amount one to fifteen times the molar amount of the pharmaceutically active agent, more preferably, two to ten times the molar amount of the pharmaceutically active agent. The mass of fatty acid or amine required to dissolve the active agent is a function of the chain length of the fatty acid or amine. Some factors determining the amount of fatty acid or amine required to dissolve a given amount of active agent include but are not limited to base strength, acid strength, steric hindrance, and the ability of the active agent to form non-covalent interactions with the fatty acid or fatty amine (e.g., hydrogen bonding).
- Other salts of the pharmaceutically active agent, which are contemplated by the present invention in order to alter the solubility and/or dissolution rate relative to the parent drug compound (e.g., the free acid or free base form of the compound) include, but are not limited to, pectinate, tannate, phytate, salicylate, saccharinate, acesulfamate, gallate, and terephthalate salts.
- In some embodiments, salts of the pharmaceutically active agent, which are contemplated by the present invention, include those salts where the counter-ion is polymeric in nature. For example, anionic copolymers based on methacrylic acid and methyl methacrylate sold under the trade name Eudragit (e.g., Eudragit L100 and Eudragit S100), acrylic acid polymers, and crosslinked acrylic acid polymers may be used to form a salt with drug molecules. Naturally occurring polymers and their derivatives, for example, carboxymethylcellulose, may also be used to form a salt with the drug molecules. In the case of polymeric counter-ions, the number of drug molecules reacted with the polymer to form a salt may or may not be equimolar with respect to the number of salt-forming sites on the polymer chain.
- In another embodiment, a drug is covalently modified to increase its lipophilicity. For example, a lipophilic compound can be covalently attached to a drug molecule via an ester or amide linkage. Such drug derivatives are cleaved in vivo, thus releasing the parent compound.
- In one embodiment, the drug is made more lipophilic by eliminating or reducing the overall charge of the drug molecule. For example, for a basic drug, a water soluble salt (such as hydrochloride, sulfate, or maleate) can be converted to a free base using techniques known in the art. In the case of an acidic drug, a water soluble salt (such as sodium, potassium, or the like) can be converted to a free acid.
- C. Drug Containing Multiparticulates
- In some embodiments, the drug is formulated with one or more excipients to form multiparticulates. As used herein, the terms “multiparticulate,” “particle”, “microparticle,” and “bead,” which are used interchangeably, refer to a composition containing a drug dispersed within one or more excipients. The terms “coated multiparticulate” and “coated microparticle,” which are used interchangeably, refer to a composition containing a drug containing multiparticulate coated with one or more coating layers of material. Multiparticulates and coated multiparticulates have a size of from about 1 to about 3000 microns in diameter, for example, from about 10 to about 3000 microns, from about 100 to about 1000 microns, from about 500 to about 2000 microns, from about 1000 to about 3000 microns, from about 500 to about 1500 microns or from about 1 to about 1000 microns.
- In one embodiment, the multiparticulates have a D(0.1) particle size from about 50 to about 250 μm, preferably from about 140 to about 190 μm; a D(0.5) median particle size from about 150 to about 750 μm, preferably from about 200 to about 400 μm; and a D(0.9) particle size from about 200 to about 1200 μm, preferably from about 400 to about 700 μm. The multiparticulates are characterized by a span (i.e., [D(0.9)−D(0.1)]/D(0.5)) less than 5, preferably less than 2, and more preferably less than 1.4. In some embodiments, multiparticulates having a span of less than 1.4 are less prone to segregation during processing and/or are more likely to achieve the desired pharmacokinetic profile. D(0.1), D(0.5) and D(0.9) are defined as the diameters where 10%, 50% or 90% w/w of the microparticles have a smaller diameter, respectively, when measured, e.g., using a laser diffraction technique. The multiparticulates can be any geometrical shape. In some embodiments, the multiparticulates may be irregular, oblong or spherical in shape. In a preferred embodiment, the multiparticulates are substantially round or spherical in shape (e.g., beads).
- The term “solid dispersion” is defined as a system having small particles of drug, typically of less than 400 μm in size, more typically less than 100 μm in size, and most typically less than 10 μm in size, of one phase dispersed in another phase (the carrier phase). The term “solid solution” is defined as a system in a solid state wherein the drug is molecularly dispersed throughout a matrix such that the system is chemically and physically uniform or homogenous throughout.
- In one embodiment, the multiparticulates contain a solid dispersion of drug in one or more excipients. In some embodiments, the one or more excipients have a low peroxide content in order to reduce oxidation of the drug or excipients.
- The solid dispersion can be created by homogeneously dispersing the drug, in the form of fine particles, within the one or more excipients. More preferably, the solid dispersion is formed by partially dissolving the drug in molten excipient(s) or partially dissolving the drug with the excipient(s) in a mutual solvent (e.g., methylene choloride) during the formulation of the multiparticulates. In another embodiment, the multiparticulates contain a solid solution of drug and one or more excipients. In some embodiments, to create a solid solution, the drug is completely solubilized in the molten excipient(s) or completely dissolved with the excipient(s) in a co-solvent (e.g., methylene chloride) during the formulation of the multiparticulates. This is accomplished through the selection of materials and the manner in which they are processed.
- Preferred excipients appropriate for the preparation of drug containing multiparticulates, or that are found in the final formulation, either dissolve slowly in water or are insoluble in water. As used herein, the term “dissolves slowly in water” refers to materials that are not completely dissolved in water within a period of 30 minutes. Suitable materials include fats, fatty substances, waxes, wax-like substances and mixtures thereof. Suitable fats and fatty substances include fatty alcohols (such as lauryl, myristyl stearyl, cetyl or cetostearyl alcohol), fatty acids and derivatives, including but not limited, to the conjugate bases of the fatty acid (i.e., the carboxylate ion), fatty acid esters, fatty acid glycerides (mono-, di- and tri-glycerides), fatty amines, and hydrogenated fats. Specific examples include, but are not limited to stearic acid, palmitic acid, myristic acid, lauric acid, capric acid, hydrogenated vegetable oil, hydrogenated cottonseed oil, hydrogenated castor oil, hydrogenated oils available under the trade name Sterotex®, cocoa butter, glyceryl behenate (available under the trade name COMPRITOL 888®), glyceryl dipalmitostearate (available under the trade name PRECIROL®), and stearyl alcohol. Suitable waxes and wax-like materials include natural or synthetic waxes, hydrocarbons, and normal waxes. Specific examples of waxes include beeswax, glycowax, castor wax, carnauba wax, paraffins, microcrystalline wax and candelilla wax. As used herein, a wax-like material is defined as any material which is normally solid at room temperature and has a melting point of from about 30 to 300° C. Certain polymers may also be used as excipients in the formulation of drug containing multiparticulates. Suitable polymers include ethylcellulose and other natural or synthetic cellulose derivatives. Polymers which are slowly soluble and form a gel in an aqueous environment, such as hydroxypropyl methylcellulose or polyethylene oxide (e.g., PEO-PPO block copolymers) may also be suitable as excipients for drug containing multiparticulates.
- In some cases, it may be desirable to incorporate one or more substances into the formulations contemplated herein to change the dissolution behavior or the physical and/or chemical stability of the formulation. In some embodiments, these substances alter the rate of water penetration into the hydrophobic drug containing multiparticulates, thereby changing the dissolution behavior of the formulation. Non-limiting examples of such substances include rate-controlling (wicking) agents. Such agents may be formulated along with the fats or waxes listed above. Examples of rate-controlling materials include certain starch derivatives (e.g., waxy maltodextrin and drum dried corn starch), cellulose derivatives (e.g., hydroxypropylmethylcellulose, hydroxypropylcellulose, methylcellulose, and carboxymethylcellulose), polyvinyl pyrrolidone, alginic acid, and lactose or mixtures thereof.
- Additionally, a pharmaceutically acceptable surfactant, for example, lecithin, sodium dodecyl sulfate, poloxamer, Cremophor (polyethoxylated castor oil), Polyoxylglycerides (e.g., polyethylene glycol fatty acid esters), sorbitan stearates, or polysorbates, or mixtures of two or more surfactants, may be added to alter the dissolution behavior of the multiparticulates. Other acceptable surfactants include inorganic salts of fatty acids (e.g., potassium and sodium salts of fatty acids). Mixtures of mono-, di- and tri-glycerides and mono- and di-fatty acid esters of polyethylene glycol, available under the trade name such as GELUCIRE® or Myrj® are also suitable. In some embodiments, the surfactants are present in the multiparticulates, are applied to the surface to the multiparticulates, are blended with the multiparticulates or a combination thereof. Other inactive ingredients, such as hydroxypropylmethylcellulose, poloxamer or polyvinyl pyrrolidone may also be added as needed to impart a desiable attribute such as inhibiting crystallization of one or more components of the multiparticulates.
- In some cases, suitable antioxidants may be added to the composition. Anti-oxidants include, but are not limited to, butylated hydroxytoluene (BHT); ascorbic acid, its salts and esters; Vitamin E, tocopherol and its salts; sulfites such as sodium metabisulphite; cysteine and its derivatives; citric acid; propyl gallate, and butylated hydroxyanisole (BHA). Chelating agents may also be needed. Suitable chelating agents include, but are not limited to, EDTA, a salt of EDTA, desferrioxamine B, deferoxamine, dithiocarb sodium, penicillamine, pentetate calcium, a sodium salt of pentetic acid, succimer, trientine, nitrilotriacetic acid, trans-diaminocyclohexanetetraacetic acid (DCTA), diethylenetriamine-pentaacetic acid, bis(aminoethyl)glycolether-N,N,N′,N′-tetraacetic acid, iminodiacetic acid, citric acid, tartaric acid, fumaric acid, or a salt thereof.
- Encapsulation or incorporation of drug into excipient(s) to produce drug containing multiparticulates can be achieved through known pharmaceutical formulation techniques. To create a composition that protects drug from exposure upon mechanical disruption (e.g., grinding, chewing, or chopping), the drug is intimately dispersed within the one or more excipients. In the case of formulation in fats, waxes or wax-like materials, the one or more excipients are heated above their melting temperature and the drug is added to form a mixture where drug particles are suspended in the one or more excipients, where the drug is dissolved in the one or more excipients, or a mixture where a portion of the drug particles are suspended in the one or more excipients and another portion of the drug is dissolved in the one or more excipients. Multiparticulates can be subsequently formulated through several methods including, but not limited to, spray congealing, spray chilling, spray drying, extrusion, bulk congealing into capsules and bulk congealing with subsequent milling. In a preferred process, one or more excipients are heated above its melting temperature, the drug is added, and the molten excipient-drug mixture is congealed to form solid, spherical particles via a spraying process using one or more nozzles, a spinning cylinder or a spinning disc. Alternatively, the molten excipient-drug mixture can be extruded and pelletized to form pellets or beads. Descriptions of these processes can be found in “Remington—The science and practice of pharmacy”, 20th Edition, Jennaro et.al., (Phila, Lippencott, Williams, and Wilkens, 2000.
- In a preferred process, spherical or substantially spherical particles are produced. Spherical particles may introduce an additional barrier to deter tampering with the composition. Smaller, round or substantially round particles act as “ball bearings” that are more difficult to crush or grind, and if crushed, do not allow for significant enough decrease in particle size or surface areas of the particles in order to have a significant and adverse effect on release rate.
- In a preferred embodiment, multiparticulates include a solid solution of drug and one or more excipients. One approach to achieving a solid solution is to formulate a salt composed of a pharmaceutically active agent and one or more fatty acids or amines along with other waxy and/or fatty excipients. In this embodiment, the salt may be formed during the formulation process itself. To accomplish this, the one or more fatty acids or amines are melted and mixed with the free base or acid form of the active agent at a temperature above the melting point(s) of the fatty acid(s) or amine(s). One or more additional excipients including but not limited to fat, fatty substance(s), wax, wax-like substance(s), polymeric substances, or antioxidants can be included in the molten mixture. The molten solution is then formulated into muliparticulates via, e.g., spray congealing, spray chilling, spray drying, extrusion, bulk congealing into capsules and bulk congealing with subsequent milling.
- In some embodiments, the molar concentration of fatty acid or amine may need to be higher than that of the drug in order to achieve a homogeneous single phase during the melt process. For example, it has been found that, for oxycodone, a molar ratio in excess of about 7:1 fatty acid (e.g., myristic acid) to drug results in a homogeneous melt using this technique. The molar ratio needed to obtain a homogeneous melt may depend on the type and quantity of additional excipients added. For example, some fat or wax excipients, such as natural waxes (eg, beeswax and carnauba wax) may contain free fatty acids or other components that can interact ionically with the drug. Such fat or wax excipients may reduce the amount of fatty acid excipient required to obtain a homogeneous melt as compared to fat or wax excipients that do not interact with the drug. In one embodiment, the molar ratio of fatty acid or fatty amine to drug is from about 1:1 to about 15:1, preferably from about 6:1 to about 15:1. However, molar ratios greater than 15:1, for example 15:1 to 25:1, preferably 15:1-20:1, may be required depending on the fatty acid or fatty amine, the drug to be formulated, and/or the additional excipient(s).
- For some excipients it may be desirable to use a solvent evaporation technique to produce drug containing multiparticulates. In this case drug and one or more excipients are co-dissolved in a mutual solvent and multiparticulates can subsequently be produced by several techniques including, but not limited to, forming an emulsion in water or other appropriate media, spray drying or by evaporating the solvent from the bulk solution and milling the resulting material.
- In addition to modification of the drug itself, processing conditions can be used to influence the dispersion of the drug within water-insoluble or slowly water soluble materials. For example, in the case where the water insoluble or slowly soluble material is melted and the drug is fully or partially dissolved under stirring conditions, the temperature, agitation rate and time of processing will influence the degree of dissolution achieved. More specifically, a more homogenous dispersion may be achieved with a higher temperature, faster stirring rate and/or longer processing time. Ultrasound can also be applied to the molten mixture to increase the degree of dispersion and/or the rate of dissolution of the drug.
- In some embodiments, the drug in a particulate form is homogeneously dispersed in a water-insoluble or slowly water soluble material. To minimize the size of the drug particles within the composition, the drug powder itself may be milled to generate fine particles prior to formulation. The process of jet milling, known in the pharmaceutical art, can be used for this purpose. In some embodiments drug in a particulate form is homogeneously dispersed in a wax or wax like substance by heating the wax or wax like substance above its melting point and adding the drug particles while stirring the mixture. In this case a pharmaceutically acceptable surfactant may be added to the mixture to facilitate the dispersion of the drug particles.
- D. Coated Drug Containing Multiparticulates
- In some embodiments, drug containing multiparticulates or drug particles are encapsulated. Drug containing multiparticulates can be encapsulated in water insoluble materials, slowly water soluble materials, organic insoluble materials and/or materials with pH dependent solubilities.
- In general, any coating procedure which provides a contiguous coating on each multiparticulate can be used. Coating procedures known in the arts include, but are not limited to, fluid bed coating processes and microencapsulation. Detailed descriptions of these processes can be found in “Remington—The science and practice of pharmacy”, 20th Edition, Jennaro et al., (Phila, Lippencott, Williams, and Wilkens, 2000.
- The water-insoluble coating materials may be selected from natural or synthetic film-formers used alone, in admixture with each other, or in admixture with plasticizers, pigments and other substances to alter the characteristics of the coating. A water-insoluble but water-permeable diffusion barrier may contain ethyl cellulose, methyl cellulose and mixtures thereof. The water-permeable diffusion barrier may also include ammonio methacrylate copolymers sold under the trade name EUDRAGIT® (Rohm Pharma), such as EUDRAGIT RS, EUDRAGIT RL, EUDRAGIT NE and mixtures thereof. Other synthetic polymers, for example, polyvinyl acetate (available under the trade name KOLLICOAT®), can also be used to form water-insoluble but permeable coatings.
- The coating may also include a water-insoluble but enzymatically degradable material. In some instances the substrates of digestive enzymes are naturally water-insoluble and can be utilized in the formulation without further processing. Solid esters of fatty acids, which are hydrolyzed by lipases, can be spray coated onto multiparticulates or drug particles. Mixtures of waxes (beeswax, carnauba wax, etc.) with glyceryl monostearate, stearic acid, palmitic acid, glyceryl monopalmitate and cetyl alcohol will also form films that are dissolved slowly or broken down in the GI tract. Zein is an example of a naturally water-insoluble protein. It can be coated onto drug containing multiparticulates or drug particles by spray coating or by wet granulation techniques. In addition to naturally water-insoluble materials, some substrates of digestive enzymes can be treated with cross-linking procedures, resulting in the formation of non-soluble networks. Many methods of cross-linking proteins, initiated by both chemical and physical means, have been reported. In some embodiments, chemical cross-linking agents are used. Examples of chemical cross-linking agents include, but are not limited to, aldehydes (e.g., gluteraldehyde and formaldehyde), epoxy compounds, carbodiimides, and genipin. In addition to these cross-linking agents, oxidized and native sugars have been used to cross-link gelatin. Cross-linking can also be accomplished using enzymatic means; for example, transglutaminase has been approved as a GRAS substance for cross-linking seafood products. Finally, cross-linking can be initiated by physical means, for example application of a stimulus, such as heat, UV irradiation, and gamma irradiation.
- To produce a coating layer of cross-linked protein surrounding drug containing multiparticulates or drug particles, a water soluble protein can be spray coated onto the multiparticulates and subsequently cross-linked by one of the methods described above. Alternatively, drug containing multiparticulates can be microencapsulated within protein by coacervation-phase separation, for example, by the addition of salts and subsequently cross-linked. Some suitable proteins for this purpose include gelatin, albumin, casein, and gluten.
- Polysaccharides can also be cross-linked to form a water-insoluble network. For many polysaccharides, this can be accomplished by reaction with calcium salts or multivalent cations which cross-link the main polymer chains. Pectin, alginate, dextran, amylose and guar gum are subject to cross-linking in the presence of multivalent cations. Complexes between oppositely charged polysaccharides can also be formed; pectin and chitosan, for example, can be complexed via electrostatic interactions. Insoluble coatings can be formed on particles in this fashion. It should be noted that in many cases polysaccharides are broken down specifically by enzymes produced by bacteria within the colon.
- In some cases a water-insoluble but enzymatically degradable coating including both a protein and a polysaccharide can be produced if the components are oppositely charged polyelectrolytes. Under the proper temperature, pH, and concentrations, the two polymers can interact through their opposite electrical charges and form a water-insoluble complex. If a core particle is present at the time the complex phase separates, it will be coated. For example, gelatin and gum arabic can be coated onto a core particle utilizing this process. Optionally, the complex can be made irreversibly insoluble by subsequent cross-linking induced by chemical or physical means.
- Coating materials may also include a pH sensitive polymer which is insoluble in the acid environment of the stomach, and soluble in the more basic environment of the GI tract. These coatings, referred to as enteric coatings, create a dosage form designed to prevent drug release in the stomach. Preventing drug release in the stomach has the advantage of reducing side effects associated with irritation of the gastric mucosa and/or of minimizing exposure of drug to very low pH. Avoiding release within the stomach can be achieved using enteric coatings known in the art. The enteric coated formulation remains intact or substantially intact in the stomach, however, once the formulation reaches the small intestines, the enteric coating dissolves and exposes either drug-containing carrier particles or drug-containing carrier particles coated with extended release coating.
- Enteric coated particles can be prepared as described in “Pharmaceutical dosage form tablets”, eds. Liberman et.al. (New York, Marcel Dekker, Inc., 1989), “Remington—The science and practice of pharmacy”, 20th ed., Lippincott Williams & Wilkins, Baltimore, Md., 2000, and “Pharmaceutical dosage forms and drug delivery systems”, 6th Edition, Ansel et.al., (Media, Pa.: Williams and Wilkins, 1995). Examples of suitable coating materials include, but are not limited to, cellulose polymers, such as cellulose acetate phthalate, hydroxypropyl cellulose, hydroxypropyl methylcellulose phthalate and hydroxypropyl methylcellulose acetate succinate; polyvinyl acetate phthalate, acrylic acid polymers and copolymers, and certain methacrylic resins that are commercially available under the trade name EUDRAGIT® (Rohm Pharma). Additionally the coating material may contain conventional carriers such as plasticizers, pigments, colorants, glidants, stabilization agents, and surfactants.
- In some cases it may be desirable to coat the particles with a coating which is soluble in aqueous solutions but insoluble in hydroalcoholic solutions. In this case the coating material may or may not have pH sensitive solubility in aqueous solutions.
- In other cases it may be desirable to combine coating materials to produce a tailored release of drug. For example, combinations of insoluble polymers and pH dependent polymers can produce a pH dependent sustained release profile. Combinations of insoluble polymers (e.g., ethylcellulose), water-soluble polymers (e.g., HPMC or PEG) and pH dependent swellable polymers (e.g., carboxyvinylpolymer) have also been reported to produce pH dependent sustained release profiles.
- In one embodiment, the particles are coated with cellulose acetate phthalate. Cellulose acetate phthalate is typically used as an enteric coating.
- E. Control of Oxidative Degradation
- In some cases it may be necessary to prevent oxidative degradation of the active pharmaceutical ingredient and/or the one or more inactive excipients in the composition. Oxidation of one or more components may occur during the formulation process itself or during the shelf-life of the composition. Oxidation may result from exposure to the oxygen content of air or, alternatively, may be related to impurities in the excipients. For example, highly reactive species such as peroxides, hydro-peroxides, superoxides, hypochlorites and/or formic acid may be present in excipients as manufacturing or raw-material-related impurities. Also, trace metal impurities in excipients, such as iron and copper, can catalyze oxidation reactions. Several approaches may be taken to reduce or eliminate reactions involving oxygen in the composition. In one embodiment, an antioxidant may be included in the composition to mitigate the degradation of the drug in such cases. If the source of oxidation is a reactive manufacturing-related impurity in one or more of the excipients, the anti-oxidant can be co-melted with the excipient(s) in order to protect the drug from these reactive species.
- Chelating agents may also be employed to scavenge trace metals. Controls over the exposure to environmental oxygen may also be employed. For example, in embodiments where a melt process is employed, a closed tank can be used. An inert gas, such as nitrogen or argon, can be sparged through the melt and/or introduced into the head space of the tank. The inert can also be introduced following vacuum removal of environmental oxygen.
- Suitable antioxidants include, but are not limited to, butylated hydroxytoluene (BHT); ascorbic acid, its salts and esters; Vitamin E, tocopherol and its salts; sulfites such as sodium metabisulphite; cysteine and its derivatives; citric acid; propyl gallate; and butylated hydroxyanisole (BHA). Suitable chelating agents include, but are not limited to, EDTA, a salt of EDTA, desferrioxamine B, deferoxamine, dithiocarb sodium, penicillamine, pentetate calcium, a sodium salt of pentetic acid, succimer, trientine, nitrilotriacetic acid, trans-diaminocyclohexanetetraacetic acid (DCTA), diethylenetriamine-pentaacetic acid, bis(aminoethyl)glycolether-N,N,N′,N′-tetraacetic acid, iminodiacetic acid, citric acid, tartaric acid, fumaric acid, or a salt thereof.
- The concentration of the antioxidant is generally from about 0.001% to about 1% w/w, preferably from about 0.01% to about 0.5% w/w. However, concentrations of less than 0.001% or greater than 0.5% may be used, provided the concentration is sufficient to stabilize the formulation and is non-toxic.
- In some instances it may be advantageous to reduce or eliminate the presence of reactive species within the excipients. This is particularly true for embodiments in which a hot melt process is used to create a solid dispersion or solid solution. It has been demonstrated that controlling the peroxide value in carnauba wax, for example, can reduce the formation of oxidation by-products. Depending on the specific ratio used in the formulation, waxy materials, such as carnauba wax, with a peroxide value less than 25 ppm, more preferably less than 5 ppm, and most preferably less than 3 ppm are preferred in some embodiments.
- F. Dosage Forms
- In one embodiment a drug is partially dissolved within a water-insoluble or slowly water soluble material during the manufacturing process, for example, by mixing at a temperature above the melting point of the excipients, and the mixture is formulated into multiparticulates. In a preferred embodiment a drug is fully dissolved within a water-insoluble or slowly water soluble material during the manufacturing process, for example, by mixing at a temperature above the melting point of the excipients, and the mixture is formulated into multiparticulates. In still a further embodiment, the drug containing multiparticulates, where the drug is homogeneously dispersed in a particulate form, or has been partially or fully dissolved within one or more excipients during the manufacturing process, are coated with one or more coatings to form coated multiparticulates.
- The multiparticulates, coated multiparticulates, or a mixture thereof are formed into a solid dosage form suitable for oral administration. For example, multiparticulates or coated multiparticulates can be incorporated into hard shell capsules, dispersed within a soft gelatin capsule, or tableted by compression. Appropriate excipients, such as magnesium stearate as a lubricant, colloidal silicon dioxide as a glidant, sodium starch glycolide, sodium croscarmellose or crospovidone as a disintegrant, and lactose or microcrystalline cellulose as fillers may be included.
- Examples of suitable hard shell capsules include capsules formed from gelatin, hydroxypropylmethylcellulose, polysaccharide, and other pharmaceutically acceptable polymer materials. In some embodiments hydroxypropylmethylcellulose capsules, marketed under the trade name Vcaps®, can be employed.
- In some embodiments, drug containing multiparticulates are blended with extragranular material and filled into hard shell capsules. The extragranular material can serve several functions. One or more extragranular materials, such as lubricants or glidants, can be used to keep the multiparticulates from sticking together. Examples of suitable materials for this purpose include, but are not limited to, magnesium stearate, zinc stearate, colloidal silicone dioxide, talc, starch, calcium stearate, hydrogenated vegetable oils, stearic acid, sodium stearyl fumarate, sodium benzoate, sodium acetate, leucine, sodium oleate, sodium lauryl sulfate, magnesium lauryl sulfate and polyethylene glycol. In other embodiments, the extragranular material is a natural or synthetic gel forming excipient, added to form a gel or viscous environment around the particles when exposed to an aqueous environment. Extragranular material of this type can be used to modulate the release of drug from the dosage form. Examples of suitable materials include, but are not limited to, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, polyvinyl pyrrolidone and sodium alginate.
- In some embodiments, the compositions are coated with an enteric coating. Enteric coatings known in the art are applied directly to the abuse-deterrent multiparticulate or coated multiparticulate compositions or are applied to the surface of a capsule or tablet containing the abuse deterrent multiparticulate and/or coated multiparticulate compositions. Enteric coatings known in the art include, for example, acrylic polymers that are commercially available under the trade name EUDRAGIT®, cellulose acetate phthalate, hydroxypropylmethyl-cellulose phthalate, polyvinylacetate phthalate, shellac, hydroxypropyl-methylcellulose succinate, cellulose acetate trimelliate or mixtures thereof. In one embodiment, the particles are coated with cellulose acetate phthalate.
- Dosage forms can include one or more drugs. When the dosage form includes two or more drugs they can be Scheduled drugs or can be a combination of Scheduled and non-Scheduled drugs. The drugs can be incorporated into the same multiparticulates. Alternatively, the drugs can be incorporated into separate multiparticulate compositions where the Scheduled drugs are incorporated into abuse deterrent multiparticulate compositions and the non-Scheduled drugs are incorporated into abuse deterrent multiparticulate compositions, sustained release compositions known in the art or immediate release compositions known in the art. The compositions containing the different drugs can be formulated into a single solid dosage form suitable for oral administration; for example, they can be incorporated into a hard capsule shell, or combined with appropriate excipients and compressed into a tablet form.
- Examples of non-scheduled drugs that may be included in dosage forms described herein include, but are not limited to, aspirin, acetaminophen, non-steroidal anti-inflammatory drugs, cyclooxygenase II inhibitors, N-methyl-D-aspartate receptor antagonists, glycine receptor antagonists, triptans, dextromethorphan, promethazine, fiorinal, guaifenesin, butalbital, and caffeine.
- An immediate release dose can be incorporated into the formulation in several ways. Immediate release multiparticulates can be made utilizing standard methodologies and formulated along with abuse-deterrent multiparticulate and/or coated multiparticulate compositions in a suitable oral dosage form. Alternatively, a coating containing drug which is available for immediate release can be placed on a tablet containing abuse-deterrent multiparticulate and/or coated multiparticulate compositions plus appropriate excipients. Additionally, an immediate dose of drug can be granulated or blended with rapidly dissolving excipients and subsequently compressed (1) as one layer of bi-layer tablets in which the abuse-deterrent multiparticulate and/or coated multiparticulate compositions are compressed as the other layer, or (2) as the outer layer of compression-coated tablets in which the abuse-deterrent multiparticulate and/or coated multiparticulate compositions are compressed as the inner core, or (3) into tablets in which abuse-deterrent multiparticulate and/or coated multiparticulate compositions are embedded.
- In some embodiments, the immediate release portion of the dosage form contains a lipophilic drug derivative. For example, salt derivatives or complexes that are insoluble at a neutral pH but dissociate, thereby releasing the parent compound, at an acidic pH are ideal for immediate release within the stomach. Exemplary salts, such as salts of oxycodone, that may exhibit this property include, but are not limited to, the tannate, phthalate, salicylate, gallate, pectinate, phytate, saccharinate, asesulfamate and terephthalate salts. Use of salts or complexes in the immediate release portion of the dosage form reduces the abuse potential of the immediate release dose if the formulation is crushed and (1) snorted or (2) dissolved in water since these salts will be poorly soluble under these conditions. It is understood by the one of ordinary skill in the art that such salts or complexes may also be used to formulate an immediate release dosage form without a sustained release portion.
- Additional mechanisms to reduce the potential for abuse can also be incorporated during the process of formulating tablets or capsules. For example, ingredients can be added to deter chewing or snorting of the final formulation. For example, an intensely bitter substance may deter chewing, while an intensely spicy ingredient, such as capsaicin, may deter snorting. The addition of a colored dye, which would stain the skin and mucosal surface of the nose following snorting may also serve to reduce this practice.
- In some embodiments, the contemplated compositions comprising a plurality of multiparticulates comprise one or more additional excipients that are combined with the multiparticulates. The one or more additional excipients comprise diluents, lubricants, gel forming excipients, and combinations thereof. In other embodiments, each multiparticulate or coated multiparticulate comprises optional excipients including, but are not limited to diluents, binders, lubricants, disintigrants, colorants, plasticizers and the like. Diluents, also termed “fillers,” are typically necessary to increase the bulk of a solid dosage form so that a practical size is provided for compression of tablets. Examples of diluents include cellulose, dry starch, microcrystalline cellulose, dicalcium phosphate, calcium sulfate, sodium chloride confectioner's sugar, compressible sugar, dextrates, dextrin, dextrose, sucrose, mannitol, powdered cellulose, sorbitol, and lactose.
- Binders are used to impart cohesive qualities powdered materials and can include materials such as starch, gelatin, sugars, natural and synthetic gums, polyethylene glycol, ethylcellulose, methylcellulose, hydroxypropylmethyl-cellulose, carboxymethylcellulose, waxes and polyvinyl pyrrolidone.
- Lubricants are used to facilitate tablet and capsule manufacture. Examples of lubricants include talc, magnesium stearate, zinc starate, calcium stearate, hydrogenated vegetable oils stearic acid, sodium stearyl fumarate, sodium benzoate, sodium acetate, leucine, sodium oleate, sodium lauryl sulfate, magnesium lauryl sulfate and polyethylene glycol.
- Disintegrants can be added to pharmaceutical formulations in order to facilitate “breakup” or disintegration after administration. Materials used for this purpose include starches, clays, celluloses, aligns, gums, and cross-linked polymers.
- A plasticizer may be included in coating materials to alter their mechanical properties. Examples of plasticizers include benzyl benzoate, chlorobutanol, dibutyl sebacate, diethyl phthalate, glycerin, mineral oil, polyethylene glycol, sorbitol, triacetin, triethyl citrate, glycerol, etc.
- One or more surfactants may also be added to the final dosage form to modulate the release of drug from the multiparticulate composition. Examples include, but are not limited to, lecithin, sodium dodecyl sulfate, poloxamer, Cremophor, polysorbates, and polyoxyglycerides.
- In addition to the additives above, coloring and flavoring agents may also be incorporated into the composition.
- The compositions described herein can be made using a variety of techniques known in the art including, but not limited to, spray congealing, spray chilling, spray drying, extrusion, bulk congealing into capsules and bulk congealing with subsequent milling. In one embodiment, beads containing the active agent or a fatty acid salt thereof and excipients are prepared via spray congealing utilizing a spinning disc atomization process. In this process, a molten mixture or solution of the active agent and excipients is pumped onto a heated, rotating disc. The disc generates centrifugal force which distributes the melt as a uniform sheet and accelerates it toward the edge of the disc where it forms ligaments that break into droplets that rapidly congeal into beads having diameters in microns. The disc can alternatively incorporate vanes that channel the melt at the periphery of the disc. A general description of apparatuses that employ such a rotating disc may be found, e.g., in U.S. Pat. Nos. 7,261,529 and 3,015,128, both of which are incorporated by reference as if fully set forth herein.
- Process parameters such as disc speed, melt feed rate, melt feed temperature, and/or air flow can affect bead size and/or bead size distribution. Under some circumstances, feed rate has little effect on the median bead size or distribution (span). In some instances, bead size can be decreased with increased disc speed and low air flow rates. In still other instances, the span can be decreased with increased disc speed and high feed temperatures.
- In some embodiments, the temperature at which the melt is manufactured is controlled in order to avoid significant degradation of drug and/or carrier material. In some embodiments, the melt preparation and processing temperature is higher than the melting point of the bead formulation, i.e. the temperature at which the melt is completely liquid, by 1-30° C., preferably 1-5° C. higher, to minimize potential product degradation and/or adverse side reactions.
- Melt feed temperature, the temperature at which the melt is fed onto, e.g., a spray congealing device, should also be 1-30° C. higher than the melting point., preferably be 3-10° C. higher than the melting point to minimize the amount of heat that needs to dissipate from the beads before they congeal.
- In one embodiment, the multiparticulates have a D(0.1) particle size from about 50 to about 250 μm, preferably from about 140 to about 190 μm; a D(0.5) median particle size from about 150 to about 750 μm, preferably from about 200 to about 400 μm; and a D(0.9) particle size from about 200 to about 2500 μm, preferably from about 400 to about 700 μm. The multiparticulates are characterized by a span (i.e., [D(0.9)−D(0.1)]/D(0.5)) less than 5, preferably less than 2, and more preferably less than 1.4. In some embodiments, multiparticulates having a span of less than 1.4 are less prone to segregation during processing and/or are more likely to achieve the desired pharmacokinetic profile. D(0.1), D(0.5) and D(0.9) are defined as the diameters where 10%, 50% or 90% w/w of the microparticles have a smaller diameter, respectively, when measured, e.g., using a laser diffraction technique. The terms “D(0.5)” and “median particle size” are used interchangeably herein. The multiparticulates can be any geometrical shape. In some embodiments, the multiparticulates may be irregular, oblong or spherical in shape. In a preferred embodiment, the multiparticulates are substantially round or spherical in shape (e.g., beads).
- Disc speed, feed rate and air flow rate depend on the melt formulation and desired size and span. Bead with spans less than 5 may be produced. Conditions that yield a narrow span are preferred to avoid significant particle segregation during downstream processing. A span of less than about 2, and more preferably less than about 1.4 is preferred.
- In addition to providing a deterrent to common methods of abuse/diversion, the formulation can provide a sustained release of drug over an extended time period. This is a natural consequence of the fact that, in the formulations described herein, drug is slowly released from a predominantly water-insoluble, hydrophobic matrix as it passes through the GI tract. The barrier components may be degraded as the matrix passes through the GI tract, for example, by enzymes, the surfactant action of bile acids, and/or mechanical erosion.
- In some embodiments, an immediate release of drug is achieved within the stomach in order to provide rapid therapeutic onset.
- The pharmaceutical drug composition is generally administered orally. The appropriate dosage formulations can be obtained by calculation of the pharmacokinetics of the formulation, then adjusting using routine techniques to yield the appropriate drug levels based on the approved dosage forms. Any suitable amount of drug containing multiparticulates or coated multiparticulates can be included in the final formulation. The selection of a suitable amount of drug containing multiparticulates depends on the dosage desired and is readily determined by those skilled in the art.
- In addition to oral administration, some embodiments may also be administered by other routes, including, but not limited to, rectal and nasal administration. Some embodiments may also be suitable for formulation as oral liquids.
- The present composition and method of making and using the composition will be further understood by reference to the following non-limiting examples.
-
-
TABLE 1 Compositions Compo- Compo- Compo- Compo- sition of sition of sition of sition of Formu- Formu- Formu- Formu- Ingredient lation A lation B lation C lation D Oxycodone Base 5 g 5 g 10 g 5 g Myristic Acid — — 50 g 30 g Stearic Acid 34 g 34 g — — Yellow Beeswax 10 g — 10 g 10 g Carnauba wax 5 g 10 g 20 g 10 g -
- 1. Fatty acid (myristic or stearic acid) was melted in an erlenmeyer flask in a silicone oil bath at 100° C. The mixture was stirred and kept under an argon blanket for this and all subsequent steps.
- 2. Oxycodone base was introduced into the molten fatty acid and the melt was stirred until the oxycodone base was completely dissolved and a clear liquid was formed.
- 3. Yellow beeswax was added and dissolved under constant stirring.
- 4. Carnauba wax was added and dissolved under constant stirring.
- 5. The resulting homogeneous molten solution was poured onto aluminum foil and allowed to solidify at room temperature.
- 6. The bulk material obtained was combined with small quantities of dry ice and subjected to size reduction in a mortar and pestle.
- 7. The dry ice was allowed to dissipate and the particles were sieved to obtain various size ranges. Particles 20-40 mesh in size (400-841 micron) were subjected to testing.
- In vitro testing was conducted in order to assess the influence of crushing of the multiparticulates produced in Example 1 on the release in simulated stomach conditions. A currently marketed sustained release formulation of oxycodone, OxyContin®, was also subjected to crushing and dissolution for comparison purposes.
- Multiparticulates (Formulations A, B, C or D, all 20-40 mesh in starting particle size) and OxyContin® tablets were crushed using a glass mortar and pestle. The resulting crushed material was placed in a dissolution vessel equipped with paddles (USP Apparatus II). 900 mL of 0.1N HCl pre-warmed to 37° C. was added to the vessels and stirred for 15 minutes. After 15 minutes the amount of oxycodone released was determined. The results are shown in Table 2.
-
TABLE 2 Drug Release from Crushed Compositions % Released in 15 minutes in 0.1N HCl Sample (n = 3) Oxycontin ® (40 mg Tablet) 95.6 +/− 2.7 Formulation A 31.6 +/− 2.6 (multiparticulates containing 40 mg oxycodone HCl equivalent) Formulation B 19.7 +/− 1.4 (multiparticulates containing 40 mg oxycodone HCl equivalent) Formulation C 14.8 +/− 1.1 (multiparticulates containing 20 mg oxycodone HCl equivalent) Formulation D 18.2 +/− 1.6 (multiparticulates containing 20 mg oxycodone HCl equivalent) - As illustrated in the table above, the multiparticulate compositions of Example 1 release only a fraction of the total drug load in simulated stomach conditions when crushed. In contrast, a currently marketed sustained release composition, OxyContin®, releases approximately 96% of the drug load when crushed and exposed to identical conditions.
-
- Batch size: 1000 g
-
TABLE 3 Composition Component Quantity(g)/Batch Oxycodone base 91 Myristic acid 545 Beeswax 182 Carnauba Wax 182 Total 1000.0 -
- 1. Myristic acid was melted at 85° C. in a silicone oil bath while constantly flowing argon above the surface of the solution.
- 2. Beeswax was added to the molten fatty acid and mixed until a clear, homogeneous solution was obtained.
- 3. Carnauba wax was added to the molten solution and mixed until a clear, homogeneous solution was obtained.
- 4. Oxycodone base was added to the molten solution and mixed until a clear, homogeneous solution was obtained.
- The resulting molten solution was transferred to a feed kettle and continuously metered onto a spinning disc atomizer (see
FIG. 1 ) in order to form solid, spherical multiparticulates. These multiparticulates can be optionally spay coated with, for example, cellulose acetate phthalate. - The drug-containing particles from Example 3 can be spray coated with cellulose acetate phthalate.
-
- Batch size: 630.6 g
-
TABLE 4 Composition Component Quantity(g)/Batch Oxymorphone base 60 Stearic Acid 420 Beeswax 30 Carnauba Wax NF 120 Butylated Hydroxyanisole 0.6 Total 630.6 -
- 1. Stearic acid was melted in an erlenmeyer flask in a silicone oil bath at 100° C. Note the composition was subjected to stirring and was kept under an argon blanket for this and all subsequent steps.
- 2. Butylated hydroxyanisole was added to the molten stearic acid while mixing.
- 3. Oxymorphone base was introduced into the molten fatty acid and the melt was stirred until all oxymorphone base dissolved and a clear liquid was formed.
- 4. Beeswax was added and dissolved under constant stirring.
- 5. Carnauba wax was added and dissolved under constant stirring.
- 6. The resulting homogeneous molten solution was poured onto aluminum foil and allowed to solidify at room temperature.
- 7. The bulk wax obtained was combined with dry ice and subjected to size reduction in a mortar and pestle.
- 8. The dry ice was allowed to dissipate and the particles were sieved to obtain particles in the 40-80 mesh size range.
- The drug containing multiparticulates from Examples 1, 3, 4, and 5 can be blended with one or more suitable lubricants and, optionally, one or more glidants, and incorporated into an appropriately sized hard shell capsules.
- The formulations in Table 5 were prepared using laboratory-scale melt and spray congealing process using a spray nozzle to form beads. Base formulation components [stearic acid (SA), beeswax (BW) and carnauba wax (CW)] were successively added to a stainless steel beaker equipped with a heating water jacket and allowed to melt with stirring at a controlled temperature of approximately 85° C. Additives such as polymers (PVP K29/32, Polyvinyl Pyrrolidone), surfactants such as Gelucire 50/13 (Gattefosse, mono- and di-C16 and C18 fatty acid esters of polyethylene glycol, a blend of mono-, di-, and tri-glycerides of C16 and C18 and some free PEG and fatty acids), Poloxamer 407 (BASF, triblock copolymer consisting of a central hydrophobic block of polypropylene glycol flanked by two hydrophilic blocks of polyethylene glycol), and/or Span 60 (Sorbitan Monostearate) were added in the amount set forth in Table 5, below, and allowed to dissolve in the melt. Oxymorphone free base, the active pharmaceutical ingredient (API), was then added and mixed until complete dissolution ocurred, resulting in a clear melt. The formulation was kept blanketed with inert gas throughout the melt manufacture.
- Beads were produced by spraying the melt into an enclosure lined with a plastic sheeting. The melt was sprayed into the enclosure using a syringe equipped with a plastic pressure nozzle at its end. See
FIG. 2 . The syringe plunger was pressed through the barrel using a pneumatic piston. The piston was activated with an air pressure sufficient to press the melt through the barrel at a speed high enough to atomize the melt and produce beads. Spraying was oriented at approximately 45° angle to provide maximum contact time with room air and thereby allow the beads to cool and congeal before they collect at the bottom of the enclosure. Microscopic examination showed that the resulting product is composed of regular, spherical particles. Particle size can be decreased by increasing air pressure. -
TABLE 5 Oxymorphone Formulations prepared using a spray nozzle Parts w/w of each Base % of each additive Formulation Formulation formulation component Poloxamer Gelucire Span PVP D(0.5) # API SA BW CW 407 50/13 60 K29/32 (μm) I 1 8 1 2 0 0 0 0 540 II 1 8 1 2 0 0 0 0 450 III 1 8 3 3 0 0 0 0 435 IV 1 9 1 2 0 0 0 0 388 V 1 8 1 2 0 0 5% 0 416 VI 1 9 1 2 0 0 0 5% 511 VIII 1 8 1 2 2.5% 0 0 0 499 IX 1 8 1 2 0 2.5% 0 0 381 X 1 8 1 2 0 1.5% 3% 366 - The same procedure as in Example 6 was used to produce beads of Oxycodone formulation. The basic formulation includes the drug, a fatty acid [lauric acid (LA), myristic acid (MA) or stearic acid (SA)], beeswax (BW), carnauba wax (CW) and/or microcrystalline wax (MW, multi-wax). Table 6 lists the formulations and their median particle size.
-
TABLE 6 Oxycodone Formulations Prepared using a Spray Nozzle Parts w/w of each Base % of each additive Formulation Formulation Component Gelucire PEG D(0.5) # API LA MA SA BW CW MW 50/13 LA 1450 (μm) I 1 0 6 0 0.5 3.5 0 0 0 0 197 II 1 0 6 0 0.5 3.5 0 0 0 0 206 III 1 0 0 8 2 2 0 3 0 0 237 IV 1 0 0 9 0 0 3 3 0 0 250 V 1 0 0 8 1 2 0 2 0 0 447 VI 1 0 0 8 1 2 0 2 5 0 345 VIII 1 0 0 8 1 2 0 1.5 0 1.5 292 IX 1 5 0 0 3 3 0 0 0 0 296 - In this example, the melt was manufactured in a jacketed 1300 L stainless steel vessel. Manufacture started by heating the jacket to 85° C. and adding MA to the vessel from the open top of the vessel. The vessel lid was then closed and the MA was melted completely with mixing. The remaining excipients (BW and CW) and the API were vacuum-transferred individually into the melt from the bottom of the vessel. The melt was pumped at a controlled flow rate and temperature onto the center of a 12″ diameter spinning disc. The beads were collected at the bottom of a large bead collection chamber. A fan at the top of the chamber was used to pump air with controlled temperature through the collection chamber. See
FIG. 3 . A 4-factor (feed temperature, disc speed, melt feed rate and fan speed), 2 level, ½ factorial design of experiments (DOE) with 4 center-points was conducted to identify critical process parameters and determine their effects on particle size and bead temperature. Eight (8) additional runs were also conducted to extend the range of disc speed and feed rate. Experimental runs were started when process parameters reached their set points. A representative sample from each run was tested for particle size using a Malvern MasterSizer S laser diffraction instrument. Experimental data were analyzed using the Stat-Ease Design Expert Software, Version 7. -
FIG. 4 shows a good correlation between the predicted median particle size and the actual median particle size for particles made using the process described above.FIG. 5 shows that the size of the beads made by this process decreases with increasing disc speed.FIG. 6 shows that, at low fan speed (29 Hz), the span ([(0.9)−D(0.1)]/D(0.5)) decreases with increasing disc speed. At high fan speed (32 Hz), the span increases. The large span is an indication of less control over the atomization process at the higher fan speed. High air flow rates associated with high fan speed are thought to interfere with the normal melt spray travel path off the edge of the disc. A similar effect was observed for melts at lower temperature. - A low span (<5) is desirable to minimize segregation of the beads by size during downstream processing such as blending and encapsulation. A span <1.4 is preferred to minimize segregation. A low span may also provide a more desirable pharmacokinetic profile.
- Bead segregation during encapsulation can also result in capsules with varying dissolution or release profile. Blending the beads with small levels of additives such as colloidal silicon dioxide serves to reduce the severity of bead segregation.
- Samples of oxycodone base; a physical mix (i.e., a non-melted mix) of oxycodone base and a model fatty acid (myristic acid); and a congealed melt of oxycodone base and myristic acid were prepared. The samples were tested by Fourier Transform Infrared (FTIR) spectroscopy, Solid State Carbon-13 (C13) nuclear magnetic resonance (NMR), and Solution C-13 and Proton (H1) NMR.
- The FTIR study showed the presence of an IR band at or near 1571 cm−1 in the Oxycodone/myristic acid congealed melt not seen in either the free base or Oxycodone/myristic acid physical blend. The band was assigned to a salt of myristic acid and oxycodone formed by interaction of the carboxylic group of myristic acid with the nitrogen in the tertiary amine group of oxycodone. Solid state C13 NMR showed significant changes to the oxycodone signals in the congealed melt. For example, significant shifts were observed in the chemical shifts for the bridge carbon atoms adjacent the oxycodone tertiary amine. These results suggest the presence of a long-lived and stable complex or salt of oxycodone and myristic acid.
- Although the invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims. Modifications of the above-described modes for carrying out the invention that are within the skill in medicine, pharmacology, microbiology, and/or related fields are intended to be within the scope of the following claims.
- All publications (e.g., non-patent literature), patent application publications, and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All such publications (e.g., non-patent literature), patent application publications, and patent applications are herein incorporated by reference to the same extent as if each individual publication, patent, patent application publication, or patent application was specifically and individually set forth herein in its entirety.
Claims (29)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/017,097 US20180369236A1 (en) | 2002-07-05 | 2018-06-25 | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
US16/413,242 US10668060B2 (en) | 2009-12-10 | 2019-05-15 | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39387602P | 2002-07-05 | 2002-07-05 | |
US43652302P | 2002-12-23 | 2002-12-23 | |
US44322603P | 2003-01-28 | 2003-01-28 | |
US46351403P | 2003-04-15 | 2003-04-15 | |
US46351803P | 2003-04-15 | 2003-04-15 | |
US28523109P | 2009-12-10 | 2009-12-10 | |
US12/965,572 US8840928B2 (en) | 2002-07-05 | 2010-12-10 | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
US14/320,086 US9682075B2 (en) | 2002-07-05 | 2014-06-30 | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
US15/606,112 US10004729B2 (en) | 2002-07-05 | 2017-05-26 | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
US16/017,097 US20180369236A1 (en) | 2002-07-05 | 2018-06-25 | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/606,112 Continuation US10004729B2 (en) | 2002-07-05 | 2017-05-26 | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/413,242 Continuation US10668060B2 (en) | 2009-12-10 | 2019-05-15 | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180369236A1 true US20180369236A1 (en) | 2018-12-27 |
Family
ID=64691707
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/606,112 Active US10004729B2 (en) | 2002-07-05 | 2017-05-26 | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
US16/017,097 Abandoned US20180369236A1 (en) | 2002-07-05 | 2018-06-25 | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/606,112 Active US10004729B2 (en) | 2002-07-05 | 2017-05-26 | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
Country Status (1)
Country | Link |
---|---|
US (2) | US10004729B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190167662A1 (en) * | 2002-07-05 | 2019-06-06 | Collegium Pharmaceutical, Inc. | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
US10525053B2 (en) | 2002-07-05 | 2020-01-07 | Collegium Pharmaceutical, Inc. | Abuse-deterrent pharmaceutical compositions of opioids and other drugs |
US10646485B2 (en) | 2016-06-23 | 2020-05-12 | Collegium Pharmaceutical, Inc. | Process of making stable abuse-deterrent oral formulations |
US10668060B2 (en) | 2009-12-10 | 2020-06-02 | Collegium Pharmaceutical, Inc. | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
US11541125B2 (en) | 2016-12-19 | 2023-01-03 | The Regents Of The University Of California | Noncrushable pill formulations |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10004729B2 (en) * | 2002-07-05 | 2018-06-26 | Collegium Pharmaceutical, Inc. | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
JP4694207B2 (en) * | 2002-07-05 | 2011-06-08 | コルジウム ファーマシューティカル, インコーポレイテッド | Abuse deterrent pharmaceutical compositions for opioids and other drugs |
KR102810926B1 (en) | 2017-12-20 | 2025-05-22 | 퍼듀 퍼머 엘피 | Abuse-deterrent morphine sulfate formulation |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010006650A1 (en) * | 1997-09-19 | 2001-07-05 | Beth A. Burnside | Solid solution beadlet |
US7399488B2 (en) * | 2002-07-05 | 2008-07-15 | Collegium Pharmaceutical, Inc. | Abuse-deterrent pharmaceutical compositions of opiods and other drugs |
US7771707B2 (en) * | 2004-06-12 | 2010-08-10 | Collegium Pharmaceutical, Inc. | Abuse-deterrent drug formulations |
US8557291B2 (en) * | 2002-07-05 | 2013-10-15 | Collegium Pharmaceutical, Inc. | Abuse-deterrent pharmaceutical compositions of opioids and other drugs |
US8840928B2 (en) * | 2002-07-05 | 2014-09-23 | Collegium Pharmaceutical, Inc. | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
US9737530B1 (en) * | 2016-06-23 | 2017-08-22 | Collegium Pharmaceutical, Inc. | Process of making stable abuse-deterrent oral formulations |
US10004729B2 (en) * | 2002-07-05 | 2018-06-26 | Collegium Pharmaceutical, Inc. | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
US20190262335A1 (en) * | 2009-12-10 | 2019-08-29 | Collegium Pharmaceutical, Inc. | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
Family Cites Families (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2404319A (en) | 1941-06-28 | 1946-07-16 | Wm S Merrell Co | Butanolamine salts of theophylline |
US3015128A (en) | 1960-08-18 | 1962-01-02 | Southwest Res Inst | Encapsulating apparatus |
US3146167A (en) | 1961-10-05 | 1964-08-25 | Smith Kline French Lab | Method of preparing sustained release pellets and products thereof |
US3172816A (en) | 1963-01-28 | 1965-03-09 | Smith Kline French Lab | Method of increasing the oil solubility of compounds and products thereof |
US3336200A (en) | 1963-05-28 | 1967-08-15 | Warner Lambert Pharmaceutical | Tablet structure |
US3773955A (en) | 1970-08-03 | 1973-11-20 | Bristol Myers Co | Analgetic compositions |
US3980766A (en) | 1973-08-13 | 1976-09-14 | West Laboratories, Inc. | Orally administered drug composition for therapy in the treatment of narcotic drug addiction |
US3966940A (en) | 1973-11-09 | 1976-06-29 | Bristol-Myers Company | Analgetic compositions |
DE2426812A1 (en) | 1974-06-04 | 1976-01-02 | Klinge Co Chem Pharm Fab | PROCESS FOR THE MANUFACTURING OF GRANULES |
DE2530563C2 (en) | 1975-07-09 | 1986-07-24 | Bayer Ag, 5090 Leverkusen | Analgesic drugs with reduced potential for abuse |
US4722941A (en) | 1978-06-07 | 1988-02-02 | Kali-Chemie Pharma Gmbh | Readily absorbable pharmaceutical compositions of per se poorly absorbable pharmacologically active agents and preparation thereof |
US4457933A (en) | 1980-01-24 | 1984-07-03 | Bristol-Myers Company | Prevention of analgesic abuse |
DK149776C (en) | 1984-01-06 | 1987-04-21 | Orion Yhtymae Oy | ANTIBIOTIC EFFECT OF ERYTHROMYCIN COMPOUND AND PREPARATION CONTAINING THE COMPOUND |
US4675140A (en) | 1984-05-18 | 1987-06-23 | Washington University Technology Associates | Method for coating particles or liquid droplets |
EP0179583A1 (en) | 1984-10-04 | 1986-04-30 | Merck & Co. Inc. | A system for enhancing the water dissolution rate and solubility of poorly soluble drugs |
US4569937A (en) | 1985-02-11 | 1986-02-11 | E. I. Du Pont De Nemours And Company | Analgesic mixture of oxycodone and ibuprofen |
US4861598A (en) | 1986-07-18 | 1989-08-29 | Euroceltique, S.A. | Controlled release bases for pharmaceuticals |
JPH0819004B2 (en) | 1986-12-26 | 1996-02-28 | 日清製粉株式会社 | Sustained-release pharmaceutical preparation |
IL92343A0 (en) | 1988-12-20 | 1990-07-26 | Gist Brocades Nv | Granulate for multiparticulate controlled release oral compositions,their preparation and oral pharmaceutical compositions containing them |
TW225536B (en) | 1990-08-23 | 1994-06-21 | Ciba Geigy Ag | |
US5266331A (en) | 1991-11-27 | 1993-11-30 | Euroceltique, S.A. | Controlled release oxycodone compositions |
US5656295A (en) | 1991-11-27 | 1997-08-12 | Euro-Celtique, S.A. | Controlled release oxycodone compositions |
US5958459A (en) | 1991-12-24 | 1999-09-28 | Purdue Pharma L.P. | Opioid formulations having extended controlled released |
US5580578A (en) | 1992-01-27 | 1996-12-03 | Euro-Celtique, S.A. | Controlled release formulations coated with aqueous dispersions of acrylic polymers |
US5968551A (en) | 1991-12-24 | 1999-10-19 | Purdue Pharma L.P. | Orally administrable opioid formulations having extended duration of effect |
SI9200139A (en) | 1992-07-08 | 1994-03-31 | Lek Tovarna Farmacevtskih | New inclusion complex of clavulanic acid with hydrophylyc and hydropholyc beta-cyclodextrin derivates for production of them |
US5324351A (en) | 1992-08-13 | 1994-06-28 | Euroceltique | Aqueous dispersions of zein and preparation thereof |
JP2616252B2 (en) | 1992-10-16 | 1997-06-04 | 日本新薬株式会社 | Preparation of wax matrix |
DK0689438T3 (en) | 1993-03-26 | 2003-09-29 | Franciscus Wilhelmus He Merkus | Pharmaceuticals for intranasal administration of apomorphine |
US5656291A (en) | 1994-03-16 | 1997-08-12 | Pharmacia & Upjohn Aktiebolag | Controlled release preparation |
IL110014A (en) | 1993-07-01 | 1999-11-30 | Euro Celtique Sa | Solid controlled-release oral dosage forms of opioid analgesics |
EP1442745A1 (en) | 1993-10-07 | 2004-08-04 | Euro-Celtique | Orally administrable opioid formulations having extended duration of effect |
KR100354702B1 (en) | 1993-11-23 | 2002-12-28 | 유로-셀티크 소시에떼 아노뉨 | Manufacturing method and sustained release composition of pharmaceutical composition |
US5891471A (en) | 1993-11-23 | 1999-04-06 | Euro-Celtique, S.A. | Pharmaceutical multiparticulates |
GB9401894D0 (en) | 1994-02-01 | 1994-03-30 | Rhone Poulenc Rorer Ltd | New compositions of matter |
DE4413350A1 (en) | 1994-04-18 | 1995-10-19 | Basf Ag | Retard matrix pellets and process for their production |
US5460826A (en) | 1994-06-27 | 1995-10-24 | Alza Corporation | Morphine therapy |
US6491945B1 (en) | 1994-09-16 | 2002-12-10 | Alza Corporation | Hydrocodone therapy |
GB9422154D0 (en) | 1994-11-03 | 1994-12-21 | Euro Celtique Sa | Pharmaceutical compositions and method of producing the same |
US5965161A (en) | 1994-11-04 | 1999-10-12 | Euro-Celtique, S.A. | Extruded multi-particulates |
US5756123A (en) | 1994-12-01 | 1998-05-26 | Japan Elanco Co., Ltd. | Capsule shell |
AUPN603895A0 (en) | 1995-10-19 | 1995-11-09 | University Of Queensland, The | Production of analgesic synergy by co-administration of sub-analgesic doses of two strong opioids |
DE19607395C2 (en) | 1996-02-28 | 2002-11-21 | Lohmann Therapie Syst Lts | Salts from a cationic narcotic analgesic with an anionic non-narcotic analgesic, process for their preparation and the pharmaceutical preparations containing these salts |
JP2000512649A (en) | 1996-06-27 | 2000-09-26 | ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ | Sustained release sufentanil composition |
AU712546B2 (en) | 1996-07-11 | 1999-11-11 | Farmarc Nederland Bv | Inclusion complex containing indole selective serotonin agonist |
US5914129A (en) | 1996-07-23 | 1999-06-22 | Mauskop; Alexander | Analgesic composition for treatment of migraine headaches |
WO1998010649A1 (en) | 1996-09-13 | 1998-03-19 | University Technology Corporation | Biocompatible cationic detergents and uses therefor |
WO1998018827A1 (en) | 1996-10-28 | 1998-05-07 | Farmarc Nederland B.V. | Inclusion complexes of beta-2-andrenergics for oral mucosal delivery |
US6306438B1 (en) | 1997-07-02 | 2001-10-23 | Euro-Celtique, S.A. | Stabilized sustained release tramadol formulations |
CZ299283B6 (en) | 1997-12-22 | 2008-06-04 | Euro-Celtique, S. A. | Dosage form for oral administration |
US6375957B1 (en) | 1997-12-22 | 2002-04-23 | Euro-Celtique, S.A. | Opioid agonist/opioid antagonist/acetaminophen combinations |
KR100591027B1 (en) | 1997-12-26 | 2006-06-22 | 아스텔라스세이야쿠 가부시키가이샤 | Sustained release pharmaceutical composition |
FR2775188B1 (en) | 1998-02-23 | 2001-03-09 | Lipha | IMMEDIATE RELEASE ORAL EXTENDED RELEASE GALENIC FORM COMPRISING AN ABSORPTION PROMOTING AGENT AND USE OF THE ABSORPTION PROMOTING AGENT |
US6048736A (en) | 1998-04-29 | 2000-04-11 | Kosak; Kenneth M. | Cyclodextrin polymers for carrying and releasing drugs |
US6248363B1 (en) | 1999-11-23 | 2001-06-19 | Lipocine, Inc. | Solid carriers for improved delivery of active ingredients in pharmaceutical compositions |
US6294192B1 (en) | 1999-02-26 | 2001-09-25 | Lipocine, Inc. | Triglyceride-free compositions and methods for improved delivery of hydrophobic therapeutic agents |
BR0009176A (en) | 1999-03-24 | 2001-12-18 | Fmc Corp | Granular particle, dosage form, method for preparing a granular particle, dry mixtures, and granular formulation |
CA2273808A1 (en) | 1999-06-09 | 2000-12-09 | Jaromir Friedrich | Method and apparatus for granulating bee wax |
AU6381300A (en) | 1999-07-29 | 2001-02-19 | Roxane Laboratories, Inc. | Opioid sustained-released formulation |
DE19940740A1 (en) | 1999-08-31 | 2001-03-01 | Gruenenthal Gmbh | Pharmaceutical salts |
CA2400567C (en) | 2000-02-08 | 2008-01-15 | Euro-Celtique S.A. | Tamper-resistant oral opioid agonist formulations |
CA2401424C (en) | 2000-03-28 | 2011-02-08 | Farmarc Nederland Bv | Alprazolam inclusion complexes and pharmaceutical compositions thereof |
KR100902625B1 (en) | 2000-08-15 | 2009-06-15 | 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 일리노이 | Microparticles |
UA81224C2 (en) | 2001-05-02 | 2007-12-25 | Euro Celtic S A | Dosage form of oxycodone and use thereof |
ES2292775T3 (en) | 2001-07-06 | 2008-03-16 | Penwest Pharmaceuticals Co. | FORMULATIONS OF PROLONGED RELEASE OF OXIMORPHONE. |
US7141250B2 (en) | 2001-08-06 | 2006-11-28 | Euro-Celtique S.A. | Pharmaceutical formulation containing bittering agent |
WO2003020241A2 (en) | 2001-09-05 | 2003-03-13 | Vectura Limited | Functional powders for oral delivery |
US20030059397A1 (en) | 2001-09-17 | 2003-03-27 | Lyn Hughes | Dosage forms |
CA2466868C (en) | 2001-12-21 | 2010-06-22 | Shire Laboratories Inc. | Oral capsule formulation with increased physical stability |
US8323692B2 (en) | 2002-02-21 | 2012-12-04 | Valeant International Bermuda | Controlled release dosage forms |
US7670612B2 (en) | 2002-04-10 | 2010-03-02 | Innercap Technologies, Inc. | Multi-phase, multi-compartment capsular delivery apparatus and methods for using same |
EP1551402A4 (en) | 2002-09-23 | 2009-05-27 | Verion Inc | Abuse-resistant pharmaceutical compositions |
US20040062778A1 (en) | 2002-09-26 | 2004-04-01 | Adi Shefer | Surface dissolution and/or bulk erosion controlled release compositions and devices |
CN1777411B (en) | 2003-02-24 | 2013-01-02 | 药品生产公司 | Transmucosal drug delivery system |
US20050181050A1 (en) | 2004-01-28 | 2005-08-18 | Collegium Pharmaceutical, Inc. | Dosage forms using drug-loaded ion exchange resins |
EP1811933B1 (en) | 2004-09-28 | 2016-03-23 | Atrium Medical Corporation | Barrier layer |
US7261529B2 (en) | 2005-09-07 | 2007-08-28 | Southwest Research Institute | Apparatus for preparing biodegradable microparticle formulations containing pharmaceutically active agents |
-
2017
- 2017-05-26 US US15/606,112 patent/US10004729B2/en active Active
-
2018
- 2018-06-25 US US16/017,097 patent/US20180369236A1/en not_active Abandoned
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010006650A1 (en) * | 1997-09-19 | 2001-07-05 | Beth A. Burnside | Solid solution beadlet |
US9592200B2 (en) * | 2002-07-05 | 2017-03-14 | Collegium Pharmaceutical, Inc. | Abuse-deterrent pharmaceutical compositions of opioids and other drugs |
US7399488B2 (en) * | 2002-07-05 | 2008-07-15 | Collegium Pharmaceutical, Inc. | Abuse-deterrent pharmaceutical compositions of opiods and other drugs |
US10004729B2 (en) * | 2002-07-05 | 2018-06-26 | Collegium Pharmaceutical, Inc. | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
US8557291B2 (en) * | 2002-07-05 | 2013-10-15 | Collegium Pharmaceutical, Inc. | Abuse-deterrent pharmaceutical compositions of opioids and other drugs |
US9682075B2 (en) * | 2002-07-05 | 2017-06-20 | Collegium Pharmaceutical, Inc. | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
US8840928B2 (en) * | 2002-07-05 | 2014-09-23 | Collegium Pharmaceutical, Inc. | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
US9044398B2 (en) * | 2002-07-05 | 2015-06-02 | Collegium Pharmaceutical, Inc. | Abuse-deterrent pharmaceutical compositions of opiods and other drugs |
US9248195B2 (en) * | 2002-07-05 | 2016-02-02 | Collegium Pharmaceutical, Inc. | Abuse-deterrent pharmaceutical compositions of opioids and other drugs |
US8758813B2 (en) * | 2004-06-12 | 2014-06-24 | Collegium Pharmaceutical, Inc. | Abuse-deterrent drug formulations |
US7771707B2 (en) * | 2004-06-12 | 2010-08-10 | Collegium Pharmaceutical, Inc. | Abuse-deterrent drug formulations |
US9763883B2 (en) * | 2004-06-12 | 2017-09-19 | Collegium Pharmaceutical, Inc. | Abuse-deterrent drug formulations |
US8449909B2 (en) * | 2004-06-12 | 2013-05-28 | Collegium Pharmaceutical, Inc. | Abuse-deterrent drug formulations |
US20190262335A1 (en) * | 2009-12-10 | 2019-08-29 | Collegium Pharmaceutical, Inc. | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
US9737530B1 (en) * | 2016-06-23 | 2017-08-22 | Collegium Pharmaceutical, Inc. | Process of making stable abuse-deterrent oral formulations |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190167662A1 (en) * | 2002-07-05 | 2019-06-06 | Collegium Pharmaceutical, Inc. | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
US10525053B2 (en) | 2002-07-05 | 2020-01-07 | Collegium Pharmaceutical, Inc. | Abuse-deterrent pharmaceutical compositions of opioids and other drugs |
US10525052B2 (en) | 2004-06-12 | 2020-01-07 | Collegium Pharmaceutical, Inc. | Abuse-deterrent drug formulations |
US10668060B2 (en) | 2009-12-10 | 2020-06-02 | Collegium Pharmaceutical, Inc. | Tamper-resistant pharmaceutical compositions of opioids and other drugs |
US10646485B2 (en) | 2016-06-23 | 2020-05-12 | Collegium Pharmaceutical, Inc. | Process of making stable abuse-deterrent oral formulations |
US11541125B2 (en) | 2016-12-19 | 2023-01-03 | The Regents Of The University Of California | Noncrushable pill formulations |
Also Published As
Publication number | Publication date |
---|---|
US20170319575A1 (en) | 2017-11-09 |
US10004729B2 (en) | 2018-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190167662A1 (en) | Tamper-resistant pharmaceutical compositions of opioids and other drugs | |
US10525053B2 (en) | Abuse-deterrent pharmaceutical compositions of opioids and other drugs | |
US9248195B2 (en) | Abuse-deterrent pharmaceutical compositions of opioids and other drugs | |
US10004729B2 (en) | Tamper-resistant pharmaceutical compositions of opioids and other drugs | |
US10668060B2 (en) | Tamper-resistant pharmaceutical compositions of opioids and other drugs | |
US7399488B2 (en) | Abuse-deterrent pharmaceutical compositions of opiods and other drugs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: COLLEGIUM PHARMACEUTICAL, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RARIY, ROMAN V.;FLEMING, ALISON B.;HIRSH, JANE C.;AND OTHERS;SIGNING DATES FROM 20130126 TO 20130206;REEL/FRAME:049441/0650 |
|
AS | Assignment |
Owner name: BIOPHARMA CREDIT PLC, UNITED KINGDOM Free format text: SECURITY INTEREST;ASSIGNOR:COLLEGIUM PHARMACEUTICAL, INC.;REEL/FRAME:051817/0583 Effective date: 20200213 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |