US20220090334A1 - Cutting bit and compact - Google Patents
Cutting bit and compact Download PDFInfo
- Publication number
- US20220090334A1 US20220090334A1 US17/458,729 US202117458729A US2022090334A1 US 20220090334 A1 US20220090334 A1 US 20220090334A1 US 202117458729 A US202117458729 A US 202117458729A US 2022090334 A1 US2022090334 A1 US 2022090334A1
- Authority
- US
- United States
- Prior art keywords
- cutting bit
- bit
- protective ring
- central shaft
- various embodiments
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000001681 protective effect Effects 0.000 claims abstract description 68
- 229910003460 diamond Inorganic materials 0.000 claims abstract description 32
- 239000010432 diamond Substances 0.000 claims abstract description 32
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 15
- 239000010941 cobalt Substances 0.000 claims description 14
- 229910017052 cobalt Inorganic materials 0.000 claims description 14
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 14
- 239000011159 matrix material Substances 0.000 claims description 13
- 238000005219 brazing Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 25
- 229910000831 Steel Inorganic materials 0.000 abstract description 10
- 239000010959 steel Substances 0.000 abstract description 10
- 238000005299 abrasion Methods 0.000 abstract 2
- 230000037431 insertion Effects 0.000 abstract 1
- 238000003780 insertion Methods 0.000 abstract 1
- 108010038204 cytoplasmic linker protein 190 Proteins 0.000 description 9
- 229910000851 Alloy steel Inorganic materials 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000005065 mining Methods 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 description 1
- QIJNJJZPYXGIQM-UHFFFAOYSA-N 1lambda4,2lambda4-dimolybdacyclopropa-1,2,3-triene Chemical compound [Mo]=C=[Mo] QIJNJJZPYXGIQM-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910039444 MoC Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- -1 without limitation Chemical class 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21C—MINING OR QUARRYING
- E21C35/00—Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
- E21C35/18—Mining picks; Holders therefor
- E21C35/183—Mining picks; Holders therefor with inserts or layers of wear-resisting material
- E21C35/1837—Mining picks; Holders therefor with inserts or layers of wear-resisting material characterised by the shape
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C23/00—Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
- E01C23/06—Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
- E01C23/08—Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades
- E01C23/085—Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades using power-driven tools, e.g. vibratory tools
- E01C23/088—Rotary tools, e.g. milling drums
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B10/00—Drill bits
- E21B10/46—Drill bits characterised by wear resisting parts, e.g. diamond inserts
- E21B10/56—Button-type inserts
- E21B10/567—Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
- E21B10/573—Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts characterised by support details, e.g. the substrate construction or the interface between the substrate and the cutting element
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B10/00—Drill bits
- E21B10/46—Drill bits characterised by wear resisting parts, e.g. diamond inserts
- E21B10/56—Button-type inserts
- E21B10/567—Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
- E21B10/573—Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts characterised by support details, e.g. the substrate construction or the interface between the substrate and the cutting element
- E21B10/5735—Interface between the substrate and the cutting element
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21C—MINING OR QUARRYING
- E21C35/00—Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
- E21C35/18—Mining picks; Holders therefor
- E21C35/183—Mining picks; Holders therefor with inserts or layers of wear-resisting material
- E21C35/1831—Fixing methods or devices
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21C—MINING OR QUARRYING
- E21C35/00—Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
- E21C35/18—Mining picks; Holders therefor
- E21C35/183—Mining picks; Holders therefor with inserts or layers of wear-resisting material
- E21C35/1835—Chemical composition or specific material
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21C—MINING OR QUARRYING
- E21C35/00—Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
- E21C35/18—Mining picks; Holders therefor
- E21C35/19—Means for fixing picks or holders
- E21C35/197—Means for fixing picks or holders using sleeves, rings or the like, as main fixing elements
Definitions
- the present disclosure relates to the field of rotary driven and cylindrical cutting devices and tools for use in road reclaiming, earthworking, milling, mining and other in situ disintegration of materials. More particularly, the disclosure relates to a cutting bit, compact, and/or combination cutting bit and compact for such cutting devices and tools.
- tungsten carbide bits which are carried by a motor driven rotatable cutting wheel and forced against the hard surface to be broken, cut up, or excavated.
- the individual bits include a steel body in which a tungsten carbide or polycrystalline diamond coated compact is mounted. As the cutting wheel rotates, the bits and compacts are carried through a circular orbit such that the distal ends of the bits and tungsten carbide inserts strike and penetrate the surface to be cut. Each bit and compact thus removes a small amount of the material as the cutting wheel rotates and successively forces the bits and compacts into the surface being excavated.
- FIG. 1 illustrates an exploded side view of a bit assembly, according to various examples of embodiments
- FIG. 2 illustrates a perspective view of the bit assembly of FIG. 1 ;
- FIG. 3 illustrates a first side view of the bit assembly of FIG. 1 ;
- FIG. 4 illustrates a second side view of the bit assembly of FIG. 1 ;
- FIG. 5 illustrates a third side view of the bit assembly of FIG. 1 ;
- FIG. 6 illustrates a top view of the bit assembly of FIG. 1 ;
- FIG. 7 illustrates a bottom view of the bit assembly of FIG. 1 ;
- FIG. 8 illustrates a perspective view of a bit assembly, according to various examples of embodiments.
- FIG. 9 illustrates a side view of the bit assembly of FIG. 8 ;
- FIG. 10 illustrates a bottom view of the bit assembly of FIG. 8 ;
- FIG. 11 illustrates a side view of the bit assembly of FIG. 8 with a nut removed
- FIG. 12 illustrates a bottom view of the bit assembly of FIG. 11 ;
- FIG. 13 illustrates a perspective view of a nut of the bit assembly of FIG. 8 , according to various examples of embodiments
- FIG. 14 illustrates a top view of the nut of FIG. 14 ;
- FIG. 15 illustrates a sectional view of the nut of FIG. 14 ;
- FIG. 16 illustrates a side view of the nut of FIG. 14 , with a pin removed;
- FIG. 17 illustrates a perspective view of a shaft section of the bit assembly of FIG. 8 , according to various examples of embodiments
- FIG. 18 illustrates a side view of the shaft section of FIG. 17 ;
- FIG. 19 illustrate a bottom view of the shaft section of FIG. 17 ;
- FIG. 20 illustrates a side view of a bit assembly having a spline, according to various examples of embodiments
- FIG. 21 illustrates a side view of a bit assembly having a spline, according to various examples of embodiments
- FIG. 22 illustrates a side view of a bit assembly having a spline, according to various examples of embodiments
- FIG. 23 illustrates a perspective view of a bit assembly, according to various examples of embodiments.
- FIG. 24 illustrates a first side view of the bit assembly of FIG. 23 ;
- FIG. 25 illustrates a second side view of the bit assembly of FIG. 23 ;
- FIG. 26 illustrates a third side view of the bit assembly of FIG. 23 ;
- FIG. 27 illustrates a top view of the bit assembly of FIG. 23 ;
- FIG. 28 illustrates a bottom view of the bit assembly of FIG. 23 ;
- FIG. 29 illustrates a side view of a bit including the bit assembly of FIG. 23 , according to various examples of embodiments.
- FIG. 30 illustrates a perspective view of a bit assembly, according to various examples of embodiments.
- FIG. 31 illustrates a first side view of the bit assembly of FIG. 30 ;
- FIG. 32 illustrates a second side view of the bit assembly of FIG. 30 ;
- FIG. 33 illustrates a third side view of the bit assembly of FIG. 30 ;
- FIG. 34 illustrates a top view of the bit assembly of FIG. 30 ;
- FIG. 35 illustrates a bottom view of the bit assembly of FIG. 30 ;
- FIG. 36 illustrates a perspective view of a bit assembly, according to various examples of embodiments.
- FIG. 37 illustrates a first side view of the bit assembly of FIG. 36 ;
- FIG. 38 illustrates a second side view of the bit assembly of FIG. 36 ;
- FIG. 39 illustrates a third side view of the bit assembly of FIG. 36 ;
- FIG. 40 illustrates a top view of the bit assembly of FIG. 36 ;
- FIG. 41 illustrates a bottom view of the bit assembly of FIG. 36 ;
- FIG. 42 illustrates a side view of a bit assembly, according to various examples of embodiments.
- FIG. 43 illustrates a side sectional view of the bit assembly of FIG. 42 ;
- FIG. 44 illustrates a top view of the bit assembly of FIG. 42 ;
- FIG. 45 illustrates a side view of the bit assembly of FIG. 42 , according to various examples of embodiments.
- FIG. 46 illustrates a side view of a compact of the bit assembly of FIG. 42 , according to various examples of embodiments
- FIG. 47 illustrates a sectional view of the compact of FIG. 46 ;
- FIG. 48 illustrates a top view of the compact of FIG. 46 ;
- FIG. 49 illustrates a bottom view of the compact of FIG. 46 ;
- FIG. 50 illustrates a perspective view of a protective ring or mount of the bit assembly of FIG. 42 , according to various examples of embodiments
- FIG. 51 illustrates a side view of the protective ring or mount of FIG. 50 ;
- FIG. 52 illustrates a sectional view of the protective ring or mount of FIG. 50 ;
- FIG. 53 illustrates a top view of the protective ring or mount of FIG. 50 ;
- FIG. 54 illustrates a perspective view of a shank of the bit assembly of FIG. 42 , according to various examples of embodiments
- FIG. 55 illustrates a side view of the shank of FIG. 54 ;
- FIG. 56 illustrates a top view of the bit assembly of FIG. 54 ;
- FIG. 57 illustrates a perspective view of an expander bolt of the bit assembly of FIG. 42 , according to various examples of embodiments
- FIG. 58 illustrates a side view of the expander bolt of FIG. 56 ;
- FIG. 59 illustrates a sectional view of the expander bolt of FIG. 56 ;
- FIG. 60 illustrates a top view of the expander bolt of FIG. 56 .
- FIG. 61 illustrates a bit according to various examples of embodiments, provided in a bit holder.
- the cutting bit includes a compact, at least one protective ring and a holding assembly including a shaft.
- cutting bit 10 is illustrated.
- bit 10 is adapted to rotate while provided partially in and relative to a bit holder (no shown).
- cutting bit 10 includes a compact 100 .
- compact 100 is ballistic shaped.
- the shape of compact 100 helps deflect force vectors at any harmonious direction (e.g., while rotating about a central uniform axis).
- compact 100 is a ballistic polycrystalline diamond compact.
- compact 100 includes polycrystalline diamond (e.g., man-made polycrystalline diamond) affixed to a high cobalt matrix straight grade tungsten carbide.
- the polycrystalline diamond (e.g., man-made polycrystalline diamond) is affixed to the high cobalt matrix straight grade tungsten carbide utilizing high pressure technology.
- the cobalt content is at least 15% in the matrix.
- the polycrystalline diamond material is defined as having a low coefficient of friction.
- virgin tungsten carbide substrate is at least 0.4 inches in length and is concentric in shape to be at least 0.25 inches in diameter and be precision centerless ground to about four RMS and within a tolerance of about 0.001 inches in diameter.
- cutting bit 10 includes a first or top protective ring 110 .
- top protective ring 110 has a frusto-conical shape, and defines a cavity in its top 112 to permit, and/or adapted for, a braze fit for ballistic compact 100 .
- top protective ring 110 is made of solid carbide and is a straight grade.
- top protective ring 110 helps protect at least a portion of a holding assembly 120 .
- top protective ring 110 is made of a mining grade of carbide with a minimum of about 6% cobalt binder in the matrix. The top protective ring may be recycled as a function of the value.
- compact 10 is brazed into a cavity defined in top 112 of top protective ring 110 .
- cutting bit 10 includes a second or base protective ring 130 .
- base protective ring 130 has a general frusto-conical or umbrella shape, and mates concentrically to a top portion 142 of a central shaft 140 and top protective ring 110 .
- base protective ring 130 is shaped or designed to deflect material such as flyby material when bit 10 performs a cutting action.
- carbide in compact 100 , first protective ring 110 and/or second protective ring 130 helps to protect one or more components (e.g., exposed components) of holding assembly 120 .
- base protective ring 130 is made of a wear grade of carbide with a minimum of 10% (e.g., about 15%) cobalt binder in the matrix. The base protective ring may be recycled as a function of the value.
- holding assembly 120 includes central shaft 140 .
- central shaft 140 aligns components of bit 10 concentrically to a longitudinal axis 150 of central shaft 140 .
- central shaft 140 has a diameter (e.g., a large diameter) that may be varied and/or sized to fit a diameter of a bore or borehole of a bit holder.
- the fit between the central shaft and the diameter of the borehole of the bit holder allows rotation of the central shaft relative to the bit holder.
- central shaft 140 is brazed to a baseplate 160 .
- central shaft 140 and baseplate together serve as a backbone of bit 10 .
- central shaft 140 is made of steel (e.g., aircraft quality alloy steel).
- central shaft 140 is heat treated to a minimum hardness level of 38 Rc (Rockwell hardness).
- holding assembly 120 includes baseplate 160 .
- baseplate 160 includes a flange 162 sized and/or shaped to fit a cavity defined in a bottom portion 134 of base protective ring 130 .
- baseplate 160 defines a through bore that allows central shaft 140 to extend through baseplate 160 to mate a top portion 142 of central shaft 140 with a counterbore defined in baseplate 160 .
- baseplate 160 includes a bottom portion 164 having a geometric shape (e.g., polygonal, hexagonal, octagonal, etc.) that allows the shape (and bit 10 ) to be engaged or retained by a wrench or tool while a locknut 170 included in holding assembly 120 is rotated about a lower end 144 of central shaft 140 .
- baseplate 160 also defines a bore in bottom portion 164 .
- baseplate 160 is made of steel (e.g., aircraft alloy steel).
- baseplate 160 is heat treated to a minimum hardness of about 39 Rc. It should be appreciated, however, that the baseplate may be made of other or additional suitable materials including carbide.
- holding assembly 120 includes a first washer 180 (e.g., diamond coated washer).
- first washer 180 is pressed, press fit and/or otherwise mounted into, and/or coupled to, baseplate 160 (e.g., the bore defined in bottom portion 164 of baseplate 160 ).
- first washer 180 is pressed tightly into the bore defined in bottom portion 164 of baseplate 160 to be fixed relative to baseplate 160 even as rotating forces are applied when bit 10 is in use (e.g., to cut a work piece material).
- first washer 180 is coupled to base plate 160 so as to not rotate or loosen relative to baseplate 160 and so as to be at least mostly surrounded by heat treated steel of base plate 160 .
- holding assembly 120 includes a second washer 185 (e.g., diamond coated washer).
- second washer 185 is at least partially provided in and/or fits loosely in or near the bore defined in bottom portion 164 of base plate 160 .
- second washer 185 is adapted or allowed to spin (e.g. spin freely) relative to the first washer 180 (e.g., to help pass off friction and loose cut work piece material).
- second washer 185 helps allow other components of bit 10 to rotate on, about or around longitudinal axis 150 of central shaft 140 relative to a bit holder.
- second washer 185 is coated with a high lubricant to help resist and/or reduce friction and/or wear. In various embodiments, little, negligible or no heat is generated from contact between first washer 180 and second washer 185 .
- holding assembly 120 includes a spring clip 190 (e.g., a lightning bolt spring clip).
- spring clip 190 is loosely mounted or provided around or on at least a portion of central shaft 140 .
- spring clip 190 is heat treated to a minimum hardness of about 48 Rc.
- spring clip 190 helps retain (e.g., loosely retain) bit 10 in a bit holder.
- a variety of sizes of spring clip may be utilized depending on the configuration of a bit holder.
- spring clip 190 collapses and/or is adapted to collapse into a bore of a bit holder or desired holding mechanism.
- a tab of spring clip 190 engages (e.g., uniformly) to help make spring clip 190 form and/or work as a solid tube while inserted in a bit holder.
- spring clip 190 also includes negative tabs (e.g., three negative tabs) to help retain spring clip 190 relative to central shaft 140 and/or bit 10 (e.g., when bit 10 is removed from a bit holder).
- holding assembly 140 includes locknut, nut or other threaded fastener 170 .
- locknut 170 is threaded, tightened (e.g., loosely tightened) or otherwise removably fastened to a threaded lower end 144 of central shaft 140 to help prevent loss or separation of a bit 10 relative to a bit holder.
- bit 10 is rotatably coupled to a bit holder by loosely or partially tightening nut 170 once at least a portion of bit 10 is in a bit holder.
- bit 10 may be adapted to not rotate relative to a bit holder (e.g., by being coupled and or tightened or locked in place relative to the bit holder).
- cutting bit 20 includes compact 100 .
- cutting bit 20 includes first or top protective ring 110 .
- top protective ring 110 helps protect at least a portion of a holding assembly 220 .
- cutting bit 20 includes second or base protective ring 130 .
- base protective ring 130 has a general frusto-conical or umbrella shape, and mates concentrically to a top portion of a central shaft 240 and top protective ring 110 .
- base protective ring 130 is shaped or designed to deflect material such as flyby material when bit 20 performs a cutting action.
- carbide helps to protect one or more components (e.g., exposed components) of holding assembly 220 .
- holding assembly 220 includes central shaft 240 .
- central shaft 240 aligns components of bit 20 concentrically to a longitudinal axis of central shaft 240 .
- central shaft 240 is braised to baseplate 160 .
- central shaft 240 and baseplate together serve as a backbone of bit 20 .
- central shaft 240 includes a first shaft section 243 and a second shaft section 247 .
- first shaft section 243 is made of carbide (e.g., a wear grade of carbide).
- second shaft section is made of steel (e.g., aircraft quality alloy steel).
- second shaft section 247 of central shaft 240 is heat treated to a minimum hardness level of 38 Rc (Rockwell hardness).
- first shaft section 243 is coupled to second shaft section 247 (e.g., by machine weld and/or by threading the shaft sections 243 / 247 together).
- second shaft section 247 may have a first end 245 having a bore 249 (e.g., with internal threading) adapted to receive external threading of an end of a first shaft section.
- holding assembly 120 includes baseplate 160 .
- baseplate 160 includes a flange sized and/or shaped to fit a cavity defined in a bottom portion 134 of base protective ring 130 .
- baseplate 160 defines a through bore that allows central shaft 240 to extend through baseplate 160 to mate a top portion of central shaft 240 with a counterbore defined in baseplate 160 .
- baseplate 160 includes a bottom portion 164 having a geometric shape that allows the shape (and bit 20 ) to be engaged or retained by a wrench or tool while a fastener or nut 270 included in holding assembly 220 is rotated about a lower end 244 of central shaft 240 .
- baseplate 160 also defines a bore in bottom portion 164 .
- holding assembly 240 includes a nut or other threaded fastener 270 .
- nut 270 is threaded, tightened (e.g., loosely tightened) or otherwise removably fastened to a threaded lower end 244 of central shaft 240 (e.g., to help prevent loss or separation of a bit 20 relative to a bit holder).
- nut 270 includes a pin 275 (e.g., a dowel pin).
- pin 275 is tack welded to nut 270 .
- cutting bit 20 includes compact 100 .
- cutting bit 30 includes first or top protective ring 110 .
- top protective ring 110 helps protect at least a portion of a holding assembly 320 .
- cutting bit 30 includes a second or base protective ring 330 .
- base protective ring 330 has a general frusto-conical or umbrella shape, and is coupled to a top portion 342 of a central shaft 340 .
- base protective ring 330 is shaped or designed to deflect material such as flyby material when bit 30 performs a cutting action.
- carbide helps to protect one or more components (e.g., exposed components) of holding assembly 320 .
- base protective ring 330 is made of a wear grade of carbide with a minimum of 10% cobalt binder in the matrix. The base protective ring may be recycled as a function of the value.
- holding assembly 320 includes baseplate 360 .
- baseplate 360 includes a flange sized and/or shaped to fit a cavity defined in a bottom portion 334 of base protective ring 330 .
- baseplate 360 defines a through bore that allows a splined top portion 342 of central shaft 340 to be coupled to the through bore.
- one or both of the baseplate and the base protective ring define a borehole and/or cavity to mate with a spline of a top portion 342 of central shaft 340 . It should be appreciated that the borehole defined in the baseplate and/or the base protective ring may be splined.
- a variety of central shafts and/or central shaft configurations may be utilized in connection with baseplate 360 and base protective ring 330 of illustrated cutting bit, compact, and/or cutting bit and compact combination.
- baseplate 360 is made of steel (e.g., aircraft alloy steel). In various embodiments, baseplate 360 is heat treated to a minimum hardness of about 39 Rc. It should be appreciated, however, that the baseplate may be made of other or additional suitable materials including carbide.
- central shafts 440 / 540 may be utilized (e.g., splined, threaded or otherwise coupled to baseplate 360 or another baseplate embodiment).
- cutting bit 60 includes a compact 600 , at least one protective ring 610 , a holding assembly 620 including a shaft 640 , and a spring clip 690 .
- bit 40 / 50 include coated washers to lessen resistance to rotations and/or extend life of bit 40 / 50 .
- cutting bit 70 includes a compact 700 , at least one protective ring 710 and a holding assembly 720 including a shaft 740 .
- cutting bit 70 includes one or more washers.
- holding assembly 720 includes a first washer (e.g., diamond coated washer) (not shown).
- the first washer is pressed, press fit and/or otherwise mounted into, and/or coupled to, a baseplate 760 (e.g., a bore defined in a bottom portion of baseplate 760 ).
- the first washer is pressed tightly into the bore defined in bottom portion of baseplate 760 to be fixed relative to baseplate 760 even as rotating forces are applied when bit 70 is in use (e.g., to cut a work piece material).
- the first washer is coupled to base plate 760 so as to not rotate or loosen relative to baseplate 760 and so as to be at least mostly surrounded by heat treated steel of base plate 760 .
- holding assembly 720 includes a second washer 785 (e.g., diamond coated washer).
- second washer 785 is provided at least partially in and/or fits loosely in or near the bore defined in the bottom portion of base plate 760 .
- second washer 785 is adapted or allowed to spin (e.g. spin freely) relative to the first washer (e.g., to help pass off friction and loose cut work piece material).
- second washer 785 helps allow other components of bit 70 to rotate on, about or around a longitudinal axis of central shaft 740 relative to a bit holder.
- second washer 785 is coated with a high lubricant to help resist and/or reduce friction and/or wear.
- shaft 740 includes a proximate end portion, and a distal end portion 744 .
- a cavity 746 is defined in the perimeter near distal end portion 744 for engagement with a cotter pin 775 .
- cutting bit 80 includes a compact 800 , at least one protective ring 810 , and a holding assembly 820 including a shaft 840 .
- compact 800 has an eighty degree point.
- compact 800 is brazed into protective ring 810 .
- compact 800 , protective ring 810 and/or shaft 840 are integral or coupled together (e.g., brazed) to form an assembly. In various embodiments, the assembly may be removed or replaced when worn or damaged.
- cutting bit 90 includes a compact 900 , a protective ring 910 and a holding member 920 .
- compact 900 is ballistic shaped.
- the shape of compact 900 helps deflect force vectors at any harmonious direction (e.g., while rotating about a central uniform axis).
- compact 900 is a ballistic polycrystalline diamond compact.
- compact 900 includes polycrystalline diamond (e.g., man-made polycrystalline diamond) affixed to a high cobalt matrix straight grade tungsten carbide.
- the polycrystalline diamond e.g., man-made polycrystalline diamond
- the cobalt content is at least 15% in the matrix.
- the polycrystalline diamond material is defined as having a low coefficient of friction.
- virgin tungsten carbide substrate is at least 0.4 inches in length and is concentric in shape to be at least 0.25 inches in diameter and be precision centerless ground to about 4 RMS and within a tolerance of about 0.001 inches in diameter.
- cutting bit 90 includes a first or top protective ring 910 .
- top protective ring 910 has a frusto-parabolic shape, and defines a first cavity 911 in a top 912 of top protective ring 910 to permit a braze fit for ballistic compact 900 .
- top protective ring 910 defines a second cavity 913 in a base portion 914 of top protective ring 910 to permit a braze fit for a component of holding assembly 920 .
- top protective ring 910 is made of solid carbide and is a straight grade.
- top protective ring 910 helps protect at least a portion of holding assembly 920 .
- top protective ring 910 is made of a mining grade of carbide with a minimum of 6% cobalt binder in the matrix. The top protective ring may be recycled as a function of the value.
- cutting bit 90 includes holding assembly 920 .
- One or more holding assembly components may be integral.
- holding assembly 920 including a central shaft 940 and a baseplate 960 may be integral or coupled to form a rumbler shank 955 .
- baseplate 960 includes a bottom portion 964 having a geometric shape that allows the shape (and bit 90 ) to be engaged or retained by a wrench or tool.
- baseplate 160 also includes transition 963 that approximates a truncated cone (e.g.
- transition 963 is shaped or designed to deflect material such as flyby material when bit 90 performs a cutting action.
- baseplate 960 is made of carbide.
- central shaft 940 of rumbler shank 955 may define an internal borehole 945 and relief slots 965 extending from the outer diameter of shaft 940 through to borehole 945 .
- internal borehole 945 may be threaded.
- a bolt 970 e.g., a tapered, frustoconcial or ballistic bolt
- external threading 972 is threaded into internal borehole 945 of central shaft 940 to expand one or more relief slots 965 and outer diameter of at least a portion of shaft 940 (e.g., to help retain bit 90 in a holder).
- carbide helps to protect one or more components (e.g., exposed components) of holding assembly 920 .
- protective ring 910 is made of a wear grade of carbide with a minimum of 10% cobalt binder in the matrix. The protective ring may be recycled as a function of the value.
- central shaft 940 is made of steel (e.g., aircraft quality alloy steel). In various embodiments, central shaft 940 is heat treated to a minimum hardness level of 38 Rc.
- bit according to various examples of embodiments may be provided in a bit holder 97 .
- references to relative positions e.g., “top” and “bottom” in this description are merely used to identify various elements as are oriented in the Figures. It should be recognized that the orientation of particular components may vary greatly depending on the application in which they are used.
- the term “coupled” means the joining of two members directly or indirectly to one another. Such joining may be stationary in nature or moveable in nature. Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another. Such joining may be permanent in nature or may be removable or releasable in nature.
- the cutting element may include any number of other materials having increased hardness including diamond, natural diamond, synthetic diamond, vapor deposited diamond, silicon bonded diamond, cobalt bonded diamond, thermally stable diamond, infiltrated diamond, layered diamond, cubic boron nitride, diamond impregnated matrix, diamond impregnated carbide, metal catalyzed diamond, other materials and/or compositions having a hardness similar to diamond, and/or combinations thereof.
- the collars are disclosed herein as made of various grades of tungsten carbide, the collars may include other hardened materials such as other carbides including, without limitation, chromium carbide, molybdenum carbide, niobium carbide, tantalum carbide, titanium carbide, vanadium carbide, a tungsten carbide cobalt composite, and/or other materials or compositions having a hardness similar to tungsten carbide, and/or combinations thereof.
- other hardened materials such as other carbides including, without limitation, chromium carbide, molybdenum carbide, niobium carbide, tantalum carbide, titanium carbide, vanadium carbide, a tungsten carbide cobalt composite, and/or other materials or compositions having a hardness similar to tungsten carbide, and/or combinations thereof.
- elements shown as integrally formed may be constructed of multiple parts or elements show as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied (e.g., by variations in the number of engagement slots or size of the engagement slots or type of engagement).
- the order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments.
- Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the various examples of embodiments without departing from the spirit or scope of the present inventions.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Earth Drilling (AREA)
Abstract
A replaceable cutting bit for insertion in a bit holder. The cutting bit includes a carbide ballistic compact having polycrystalline diamond layer brazed into a cavity defined in a protective ring. The cutting bit further includes a steel base having a hexagonal portion adapted for engagement with a wrench of other tool. The steel base defines a cavity into which a first hardened washer coated with abrasion resistant material is provided. The cutting bit further includes a second hardened washer coated with abrasion resistant material that is adapted to rotate relative to the first washer when the cutting bit is in operation in a bit holder.
Description
- This application claims priority to United States Provisional Application Nos. 63/070,894, filed Aug. 27, 2020, entitled “CUTTING BIT AND COMPACT,” and 63/218,531, filed Jul. 6, 2021, entitled “CUTTING BIT AND COMPACT,” the contents of each of which are hereby incorporated by reference in their entirety.
- The present disclosure relates to the field of rotary driven and cylindrical cutting devices and tools for use in road reclaiming, earthworking, milling, mining and other in situ disintegration of materials. More particularly, the disclosure relates to a cutting bit, compact, and/or combination cutting bit and compact for such cutting devices and tools.
- It is known to break or cut up pavements and other hard surfaces utilizing a plurality of tungsten carbide bits which are carried by a motor driven rotatable cutting wheel and forced against the hard surface to be broken, cut up, or excavated. The individual bits include a steel body in which a tungsten carbide or polycrystalline diamond coated compact is mounted. As the cutting wheel rotates, the bits and compacts are carried through a circular orbit such that the distal ends of the bits and tungsten carbide inserts strike and penetrate the surface to be cut. Each bit and compact thus removes a small amount of the material as the cutting wheel rotates and successively forces the bits and compacts into the surface being excavated.
- Because of the large numbers of bits and compacts which are used in a typical excavating machine, it is very important that each bit and compact have a long useful life and neither crack or wear unduly during normal use.
- There is a need for an improved cutting bit and/or compact. There is a need in the art for a cutting bit and/or compact that wears longer and/or more evenly to decrease the time and costs of repair and replacement.
- Accordingly, an improved cutting bit and compact is provided.
- Various examples of embodiments of the systems, devices, and methods according to this invention will be described in detail, with reference to the following figures, wherein:
-
FIG. 1 illustrates an exploded side view of a bit assembly, according to various examples of embodiments; -
FIG. 2 illustrates a perspective view of the bit assembly ofFIG. 1 ; -
FIG. 3 illustrates a first side view of the bit assembly ofFIG. 1 ; -
FIG. 4 illustrates a second side view of the bit assembly ofFIG. 1 ; -
FIG. 5 illustrates a third side view of the bit assembly ofFIG. 1 ; -
FIG. 6 illustrates a top view of the bit assembly ofFIG. 1 ; -
FIG. 7 illustrates a bottom view of the bit assembly ofFIG. 1 ; -
FIG. 8 illustrates a perspective view of a bit assembly, according to various examples of embodiments; -
FIG. 9 illustrates a side view of the bit assembly ofFIG. 8 ; -
FIG. 10 illustrates a bottom view of the bit assembly ofFIG. 8 ; -
FIG. 11 illustrates a side view of the bit assembly ofFIG. 8 with a nut removed; -
FIG. 12 illustrates a bottom view of the bit assembly ofFIG. 11 ; -
FIG. 13 illustrates a perspective view of a nut of the bit assembly ofFIG. 8 , according to various examples of embodiments; -
FIG. 14 illustrates a top view of the nut ofFIG. 14 ; -
FIG. 15 illustrates a sectional view of the nut ofFIG. 14 ; -
FIG. 16 illustrates a side view of the nut ofFIG. 14 , with a pin removed; -
FIG. 17 illustrates a perspective view of a shaft section of the bit assembly ofFIG. 8 , according to various examples of embodiments; -
FIG. 18 illustrates a side view of the shaft section ofFIG. 17 ; -
FIG. 19 illustrate a bottom view of the shaft section ofFIG. 17 ; -
FIG. 20 illustrates a side view of a bit assembly having a spline, according to various examples of embodiments; -
FIG. 21 illustrates a side view of a bit assembly having a spline, according to various examples of embodiments; -
FIG. 22 illustrates a side view of a bit assembly having a spline, according to various examples of embodiments; -
FIG. 23 illustrates a perspective view of a bit assembly, according to various examples of embodiments; -
FIG. 24 illustrates a first side view of the bit assembly ofFIG. 23 ; -
FIG. 25 illustrates a second side view of the bit assembly ofFIG. 23 ; -
FIG. 26 illustrates a third side view of the bit assembly ofFIG. 23 ; -
FIG. 27 illustrates a top view of the bit assembly ofFIG. 23 ; -
FIG. 28 illustrates a bottom view of the bit assembly ofFIG. 23 ; -
FIG. 29 illustrates a side view of a bit including the bit assembly ofFIG. 23 , according to various examples of embodiments; -
FIG. 30 illustrates a perspective view of a bit assembly, according to various examples of embodiments; -
FIG. 31 illustrates a first side view of the bit assembly ofFIG. 30 ; -
FIG. 32 illustrates a second side view of the bit assembly ofFIG. 30 ; -
FIG. 33 illustrates a third side view of the bit assembly ofFIG. 30 ; -
FIG. 34 illustrates a top view of the bit assembly ofFIG. 30 ; -
FIG. 35 illustrates a bottom view of the bit assembly ofFIG. 30 ; -
FIG. 36 illustrates a perspective view of a bit assembly, according to various examples of embodiments; -
FIG. 37 illustrates a first side view of the bit assembly ofFIG. 36 ; -
FIG. 38 illustrates a second side view of the bit assembly ofFIG. 36 ; -
FIG. 39 illustrates a third side view of the bit assembly ofFIG. 36 ; -
FIG. 40 illustrates a top view of the bit assembly ofFIG. 36 ; -
FIG. 41 illustrates a bottom view of the bit assembly ofFIG. 36 ; -
FIG. 42 illustrates a side view of a bit assembly, according to various examples of embodiments; -
FIG. 43 illustrates a side sectional view of the bit assembly ofFIG. 42 ; -
FIG. 44 illustrates a top view of the bit assembly ofFIG. 42 ; -
FIG. 45 illustrates a side view of the bit assembly ofFIG. 42 , according to various examples of embodiments; -
FIG. 46 illustrates a side view of a compact of the bit assembly ofFIG. 42 , according to various examples of embodiments; -
FIG. 47 illustrates a sectional view of the compact ofFIG. 46 ; -
FIG. 48 illustrates a top view of the compact ofFIG. 46 ; -
FIG. 49 illustrates a bottom view of the compact ofFIG. 46 ; -
FIG. 50 illustrates a perspective view of a protective ring or mount of the bit assembly ofFIG. 42 , according to various examples of embodiments; -
FIG. 51 illustrates a side view of the protective ring or mount ofFIG. 50 ; -
FIG. 52 illustrates a sectional view of the protective ring or mount ofFIG. 50 ; -
FIG. 53 illustrates a top view of the protective ring or mount ofFIG. 50 ; -
FIG. 54 illustrates a perspective view of a shank of the bit assembly ofFIG. 42 , according to various examples of embodiments; -
FIG. 55 illustrates a side view of the shank ofFIG. 54 ; -
FIG. 56 illustrates a top view of the bit assembly ofFIG. 54 ; -
FIG. 57 illustrates a perspective view of an expander bolt of the bit assembly ofFIG. 42 , according to various examples of embodiments; -
FIG. 58 illustrates a side view of the expander bolt ofFIG. 56 ; -
FIG. 59 illustrates a sectional view of the expander bolt ofFIG. 56 ; -
FIG. 60 illustrates a top view of the expander bolt ofFIG. 56 ; and -
FIG. 61 illustrates a bit according to various examples of embodiments, provided in a bit holder. - It should be understood that the drawings are not necessarily to scale. In certain instances, details that are not necessary to the understanding of the invention or render other details difficult to perceive may have been omitted. It should be understood, of course, that the invention is not necessarily limited to the particular embodiments illustrated herein.
- Referring to the Figures, various embodiments of a cutting bit, compact, and/or cutting bit and compact combination are provided. In various examples of embodiments, the cutting bit includes a compact, at least one protective ring and a holding assembly including a shaft.
- Referring to
FIGS. 1-7 , anexample cutting bit 10 is illustrated. In various embodiments,bit 10 is adapted to rotate while provided partially in and relative to a bit holder (no shown). In various embodiments, cuttingbit 10 includes a compact 100. In various embodiments, compact 100 is ballistic shaped. In various embodiments, the shape of compact 100 helps deflect force vectors at any harmonious direction (e.g., while rotating about a central uniform axis). In various examples of embodiments, compact 100 is a ballistic polycrystalline diamond compact. In various embodiments, compact 100 includes polycrystalline diamond (e.g., man-made polycrystalline diamond) affixed to a high cobalt matrix straight grade tungsten carbide. In various embodiments, the polycrystalline diamond (e.g., man-made polycrystalline diamond) is affixed to the high cobalt matrix straight grade tungsten carbide utilizing high pressure technology. In various embodiments, the cobalt content is at least 15% in the matrix. In various embodiments, the polycrystalline diamond material is defined as having a low coefficient of friction. In various embodiments, virgin tungsten carbide substrate is at least 0.4 inches in length and is concentric in shape to be at least 0.25 inches in diameter and be precision centerless ground to about four RMS and within a tolerance of about 0.001 inches in diameter. - In various examples of embodiments, cutting
bit 10 includes a first or topprotective ring 110. In various embodiments, topprotective ring 110 has a frusto-conical shape, and defines a cavity in its top 112 to permit, and/or adapted for, a braze fit for ballistic compact 100. In various embodiments, topprotective ring 110 is made of solid carbide and is a straight grade. In various embodiments, topprotective ring 110 helps protect at least a portion of a holdingassembly 120. In various embodiments, topprotective ring 110 is made of a mining grade of carbide with a minimum of about 6% cobalt binder in the matrix. The top protective ring may be recycled as a function of the value. In various examples of embodiments, compact 10 is brazed into a cavity defined intop 112 of topprotective ring 110. - In various examples of embodiments, cutting
bit 10 includes a second or baseprotective ring 130. In various embodiments, baseprotective ring 130 has a general frusto-conical or umbrella shape, and mates concentrically to atop portion 142 of acentral shaft 140 and topprotective ring 110. In operation, in various embodiments, baseprotective ring 130 is shaped or designed to deflect material such as flyby material whenbit 10 performs a cutting action. - In various embodiments, carbide in compact 100, first
protective ring 110 and/or secondprotective ring 130 helps to protect one or more components (e.g., exposed components) of holdingassembly 120. In various embodiments, baseprotective ring 130 is made of a wear grade of carbide with a minimum of 10% (e.g., about 15%) cobalt binder in the matrix. The base protective ring may be recycled as a function of the value. - In various examples of embodiments, holding
assembly 120 includescentral shaft 140. In various embodiments,central shaft 140 aligns components ofbit 10 concentrically to alongitudinal axis 150 ofcentral shaft 140. In various embodiments,central shaft 140 has a diameter (e.g., a large diameter) that may be varied and/or sized to fit a diameter of a bore or borehole of a bit holder. In various embodiments, the fit between the central shaft and the diameter of the borehole of the bit holder allows rotation of the central shaft relative to the bit holder. In various embodiments,central shaft 140 is brazed to abaseplate 160. In various embodiments,central shaft 140 and baseplate together serve as a backbone ofbit 10. In various embodiments,central shaft 140 is made of steel (e.g., aircraft quality alloy steel). In various embodiments,central shaft 140 is heat treated to a minimum hardness level of 38 Rc (Rockwell hardness). - In various examples of embodiments, holding
assembly 120 includesbaseplate 160. In various embodiments,baseplate 160 includes aflange 162 sized and/or shaped to fit a cavity defined in abottom portion 134 of baseprotective ring 130. In various embodiments,baseplate 160 defines a through bore that allowscentral shaft 140 to extend throughbaseplate 160 to mate atop portion 142 ofcentral shaft 140 with a counterbore defined inbaseplate 160. In various embodiments,baseplate 160 includes abottom portion 164 having a geometric shape (e.g., polygonal, hexagonal, octagonal, etc.) that allows the shape (and bit 10) to be engaged or retained by a wrench or tool while alocknut 170 included in holdingassembly 120 is rotated about alower end 144 ofcentral shaft 140. In various embodiments,baseplate 160 also defines a bore inbottom portion 164. In various embodiments,baseplate 160 is made of steel (e.g., aircraft alloy steel). In various embodiments,baseplate 160 is heat treated to a minimum hardness of about 39 Rc. It should be appreciated, however, that the baseplate may be made of other or additional suitable materials including carbide. - In various examples of embodiments, holding
assembly 120 includes a first washer 180 (e.g., diamond coated washer). In various embodiments,first washer 180 is pressed, press fit and/or otherwise mounted into, and/or coupled to, baseplate 160 (e.g., the bore defined inbottom portion 164 of baseplate 160). In various embodiments,first washer 180 is pressed tightly into the bore defined inbottom portion 164 ofbaseplate 160 to be fixed relative to baseplate 160 even as rotating forces are applied whenbit 10 is in use (e.g., to cut a work piece material). In various embodiments,first washer 180 is coupled tobase plate 160 so as to not rotate or loosen relative tobaseplate 160 and so as to be at least mostly surrounded by heat treated steel ofbase plate 160. - In various examples of embodiments, holding
assembly 120 includes a second washer 185 (e.g., diamond coated washer). In various embodiments,second washer 185 is at least partially provided in and/or fits loosely in or near the bore defined inbottom portion 164 ofbase plate 160. In various embodiments,second washer 185 is adapted or allowed to spin (e.g. spin freely) relative to the first washer 180 (e.g., to help pass off friction and loose cut work piece material). In various embodiments,second washer 185 helps allow other components ofbit 10 to rotate on, about or aroundlongitudinal axis 150 ofcentral shaft 140 relative to a bit holder. In various embodiments,second washer 185 is coated with a high lubricant to help resist and/or reduce friction and/or wear. In various embodiments, little, negligible or no heat is generated from contact betweenfirst washer 180 andsecond washer 185. - In various examples of embodiments, holding
assembly 120 includes a spring clip 190 (e.g., a lightning bolt spring clip). In various embodiments,spring clip 190 is loosely mounted or provided around or on at least a portion ofcentral shaft 140. In various embodiments,spring clip 190 is heat treated to a minimum hardness of about 48 Rc. In various embodiments,spring clip 190 helps retain (e.g., loosely retain)bit 10 in a bit holder. In various embodiments, a variety of sizes of spring clip may be utilized depending on the configuration of a bit holder. In various embodiments of operation or use,spring clip 190 collapses and/or is adapted to collapse into a bore of a bit holder or desired holding mechanism. In various embodiments, a tab ofspring clip 190 engages (e.g., uniformly) to help makespring clip 190 form and/or work as a solid tube while inserted in a bit holder. In various embodiment,spring clip 190 also includes negative tabs (e.g., three negative tabs) to help retainspring clip 190 relative tocentral shaft 140 and/or bit 10 (e.g., whenbit 10 is removed from a bit holder). In various examples of embodiments, holdingassembly 140 includes locknut, nut or other threadedfastener 170. In various embodiments of operation or use,locknut 170 is threaded, tightened (e.g., loosely tightened) or otherwise removably fastened to a threadedlower end 144 ofcentral shaft 140 to help prevent loss or separation of abit 10 relative to a bit holder. - In operation, in various embodiments,
bit 10 is rotatably coupled to a bit holder by loosely or partially tighteningnut 170 once at least a portion ofbit 10 is in a bit holder. In other examples of embodiments, bit 10 may be adapted to not rotate relative to a bit holder (e.g., by being coupled and or tightened or locked in place relative to the bit holder). - Referring to
FIGS. 8-19 , a cuttingbit 20, according to various examples of embodiments is illustrated. In various embodiments, cuttingbit 20 includes compact 100. In various examples of embodiments, cuttingbit 20 includes first or topprotective ring 110. In various embodiments, topprotective ring 110 helps protect at least a portion of a holdingassembly 220. - In various examples of embodiments, cutting
bit 20 includes second or baseprotective ring 130. In various embodiments, baseprotective ring 130 has a general frusto-conical or umbrella shape, and mates concentrically to a top portion of acentral shaft 240 and topprotective ring 110. In various embodiments, baseprotective ring 130 is shaped or designed to deflect material such as flyby material whenbit 20 performs a cutting action. In various embodiments, carbide helps to protect one or more components (e.g., exposed components) of holdingassembly 220. - In various examples of embodiments, holding
assembly 220 includescentral shaft 240. In various embodiments,central shaft 240 aligns components ofbit 20 concentrically to a longitudinal axis ofcentral shaft 240. In various embodiments,central shaft 240 is braised tobaseplate 160. In various embodiments,central shaft 240 and baseplate together serve as a backbone ofbit 20. In various embodiments,central shaft 240 includes afirst shaft section 243 and asecond shaft section 247. In various examples of embodiments,first shaft section 243 is made of carbide (e.g., a wear grade of carbide). In various embodiments, second shaft section is made of steel (e.g., aircraft quality alloy steel). In various embodiments,second shaft section 247 ofcentral shaft 240 is heat treated to a minimum hardness level of 38 Rc (Rockwell hardness). In various embodiments,first shaft section 243 is coupled to second shaft section 247 (e.g., by machine weld and/or by threading theshaft sections 243/247 together). For example, as illustrated inFIGS. 17-18 , in various embodiments,second shaft section 247 may have afirst end 245 having a bore 249 (e.g., with internal threading) adapted to receive external threading of an end of a first shaft section. - Referring again to
FIGS. 8-16 , in various examples of embodiments, holdingassembly 120 includesbaseplate 160. In various embodiments,baseplate 160 includes a flange sized and/or shaped to fit a cavity defined in abottom portion 134 of baseprotective ring 130. In various embodiments,baseplate 160 defines a through bore that allowscentral shaft 240 to extend throughbaseplate 160 to mate a top portion ofcentral shaft 240 with a counterbore defined inbaseplate 160. In various embodiments,baseplate 160 includes abottom portion 164 having a geometric shape that allows the shape (and bit 20) to be engaged or retained by a wrench or tool while a fastener ornut 270 included in holdingassembly 220 is rotated about alower end 244 ofcentral shaft 240. In various embodiments,baseplate 160 also defines a bore inbottom portion 164. - In various examples of embodiments, holding
assembly 240 includes a nut or other threadedfastener 270. In various embodiments of operation or use,nut 270 is threaded, tightened (e.g., loosely tightened) or otherwise removably fastened to a threadedlower end 244 of central shaft 240 (e.g., to help prevent loss or separation of abit 20 relative to a bit holder). In various embodiments,nut 270 includes a pin 275 (e.g., a dowel pin). In various embodiments,pin 275 is tack welded tonut 270. - Referring to
FIG. 20 , another cuttingbit 30, according to various examples of embodiments is illustrated. In various embodiments, cuttingbit 20 includes compact 100. - In various examples of embodiments, cutting
bit 30 includes first or topprotective ring 110. In various embodiments, topprotective ring 110 helps protect at least a portion of a holdingassembly 320. - In various examples of embodiments, cutting
bit 30 includes a second or baseprotective ring 330. In various embodiments, baseprotective ring 330 has a general frusto-conical or umbrella shape, and is coupled to atop portion 342 of acentral shaft 340. In various embodiments, baseprotective ring 330 is shaped or designed to deflect material such as flyby material whenbit 30 performs a cutting action. - In various embodiments, carbide helps to protect one or more components (e.g., exposed components) of holding
assembly 320. In various embodiments, baseprotective ring 330 is made of a wear grade of carbide with a minimum of 10% cobalt binder in the matrix. The base protective ring may be recycled as a function of the value. - In various examples of embodiments, holding
assembly 320 includesbaseplate 360. In various embodiments,baseplate 360 includes a flange sized and/or shaped to fit a cavity defined in abottom portion 334 of baseprotective ring 330. In various embodiments,baseplate 360 defines a through bore that allows a splinedtop portion 342 ofcentral shaft 340 to be coupled to the through bore. In various embodiments, one or both of the baseplate and the base protective ring define a borehole and/or cavity to mate with a spline of atop portion 342 ofcentral shaft 340. It should be appreciated that the borehole defined in the baseplate and/or the base protective ring may be splined. As illustrated, in various embodiments, a variety of central shafts and/or central shaft configurations may be utilized in connection withbaseplate 360 and baseprotective ring 330 of illustrated cutting bit, compact, and/or cutting bit and compact combination. - In various embodiments,
baseplate 360 is made of steel (e.g., aircraft alloy steel). In various embodiments,baseplate 360 is heat treated to a minimum hardness of about 39 Rc. It should be appreciated, however, that the baseplate may be made of other or additional suitable materials including carbide. - Referring now to
FIGS. 21-22 , various embodiments ofbit 40/50 are illustrated. In various embodiments, a variety of central shafts 440/540 may be utilized (e.g., splined, threaded or otherwise coupled tobaseplate 360 or another baseplate embodiment). - Referring now to
FIGS. 23-29 , a cuttingbit 60, compact, and/or cutting bit and compact combination is illustrated, according to various examples of embodiments. In various examples of embodiments, cuttingbit 60 includes a compact 600, at least oneprotective ring 610, a holdingassembly 620 including ashaft 640, and aspring clip 690. In various embodiments, bit 40/50 include coated washers to lessen resistance to rotations and/or extend life ofbit 40/50. - Referring now to
FIGS. 30-35 , a cuttingbit 70, compact, and/or cutting bit and compact combination is illustrated (e.g., a cutting bit for mining applications), according to various examples of embodiments. In various examples of embodiments, cuttingbit 70 includes a compact 700, at least oneprotective ring 710 and a holdingassembly 720 including ashaft 740. In various embodiments, cuttingbit 70 includes one or more washers. In various examples of embodiments, holdingassembly 720 includes a first washer (e.g., diamond coated washer) (not shown). In various embodiments, the first washer is pressed, press fit and/or otherwise mounted into, and/or coupled to, a baseplate 760 (e.g., a bore defined in a bottom portion of baseplate 760). In various embodiments, the first washer is pressed tightly into the bore defined in bottom portion ofbaseplate 760 to be fixed relative to baseplate 760 even as rotating forces are applied whenbit 70 is in use (e.g., to cut a work piece material). In various embodiments, the first washer is coupled tobase plate 760 so as to not rotate or loosen relative tobaseplate 760 and so as to be at least mostly surrounded by heat treated steel ofbase plate 760. - In various examples of embodiments, holding
assembly 720 includes a second washer 785 (e.g., diamond coated washer). In various embodiments,second washer 785 is provided at least partially in and/or fits loosely in or near the bore defined in the bottom portion ofbase plate 760. In various embodiments,second washer 785 is adapted or allowed to spin (e.g. spin freely) relative to the first washer (e.g., to help pass off friction and loose cut work piece material). In various embodiments,second washer 785 helps allow other components ofbit 70 to rotate on, about or around a longitudinal axis ofcentral shaft 740 relative to a bit holder. In various embodiments,second washer 785 is coated with a high lubricant to help resist and/or reduce friction and/or wear. In various embodiments, little, negligible or no heat is generated from contact between the first washer andsecond washer 185. In various embodiments,shaft 740 includes a proximate end portion, and adistal end portion 744. In various examples of embodiments, acavity 746 is defined in the perimeter neardistal end portion 744 for engagement with acotter pin 775. - Referring now to
FIGS. 36-41 , a cuttingbit 80, compact, and/or cutting bit and compact combination (e.g. a universal bit) is illustrated, according to various examples of embodiments. In various examples of embodiments, cuttingbit 80 includes a compact 800, at least oneprotective ring 810, and a holdingassembly 820 including ashaft 840. In various embodiments, compact 800 has an eighty degree point. In various examples of embodiments, compact 800 is brazed intoprotective ring 810. In various embodiments, compact 800,protective ring 810 and/orshaft 840 are integral or coupled together (e.g., brazed) to form an assembly. In various embodiments, the assembly may be removed or replaced when worn or damaged. - Referring now to
FIGS. 42-58 , anexample cutting bit 90 is illustrated. In various embodiments, cuttingbit 90 includes a compact 900, aprotective ring 910 and a holdingmember 920. - Referring more specifically to
FIGS. 42-49 , in various embodiments, compact 900 is ballistic shaped. In various embodiments, the shape of compact 900 helps deflect force vectors at any harmonious direction (e.g., while rotating about a central uniform axis). In various examples of embodiments, compact 900 is a ballistic polycrystalline diamond compact. In various embodiments, compact 900 includes polycrystalline diamond (e.g., man-made polycrystalline diamond) affixed to a high cobalt matrix straight grade tungsten carbide. In various embodiments, the polycrystalline diamond (e.g., man-made polycrystalline diamond) is affixed to the high cobalt matrix straight grade tungsten carbide utilizing high pressure technology. In various embodiments, the cobalt content is at least 15% in the matrix. In various embodiments, the polycrystalline diamond material is defined as having a low coefficient of friction. In various embodiments, virgin tungsten carbide substrate is at least 0.4 inches in length and is concentric in shape to be at least 0.25 inches in diameter and be precision centerless ground to about 4 RMS and within a tolerance of about 0.001 inches in diameter. - Referring now to
FIGS. 42 and 50-53 , in various examples of embodiments, cuttingbit 90 includes a first or topprotective ring 910. In various embodiments, topprotective ring 910 has a frusto-parabolic shape, and defines afirst cavity 911 in a top 912 of topprotective ring 910 to permit a braze fit for ballistic compact 900. In various embodiments, topprotective ring 910 defines asecond cavity 913 in abase portion 914 of topprotective ring 910 to permit a braze fit for a component of holdingassembly 920. In various embodiments, topprotective ring 910 is made of solid carbide and is a straight grade. In various embodiments, topprotective ring 910 helps protect at least a portion of holdingassembly 920. In various embodiments, topprotective ring 910 is made of a mining grade of carbide with a minimum of 6% cobalt binder in the matrix. The top protective ring may be recycled as a function of the value. - Referring now to
FIGS. 42 and 54-56 , in various examples of embodiments, cuttingbit 90 includes holdingassembly 920. One or more holding assembly components may be integral. For example, in various embodiments, holdingassembly 920 including acentral shaft 940 and abaseplate 960, may be integral or coupled to form arumbler shank 955. In various embodiments,baseplate 960 includes abottom portion 964 having a geometric shape that allows the shape (and bit 90) to be engaged or retained by a wrench or tool. In various embodiments,baseplate 160 also includestransition 963 that approximates a truncated cone (e.g. a frusto-conical shape), a truncated paraboloid (a frusto-paraboloidal shape), a truncated neiloid (e.g., a frusto-neiloidal shape), or any axially-revolved profile with an anterior surface that is narrower in diameter or dimension than the diameter or dimension of the geometric shape. In various embodiments,transition 963 is shaped or designed to deflect material such as flyby material whenbit 90 performs a cutting action. In various embodiments,baseplate 960 is made of carbide. - In various embodiments,
central shaft 940 ofrumbler shank 955 may define aninternal borehole 945 andrelief slots 965 extending from the outer diameter ofshaft 940 through toborehole 945. In various embodiments,internal borehole 945 may be threaded. Referring toFIGS. 42-44 and 57-60 , in various embodiments, a bolt 970 (e.g., a tapered, frustoconcial or ballistic bolt) havingexternal threading 972 is threaded intointernal borehole 945 ofcentral shaft 940 to expand one ormore relief slots 965 and outer diameter of at least a portion of shaft 940 (e.g., to help retainbit 90 in a holder). - In various embodiments, carbide helps to protect one or more components (e.g., exposed components) of holding
assembly 920. In various embodiments,protective ring 910 is made of a wear grade of carbide with a minimum of 10% cobalt binder in the matrix. The protective ring may be recycled as a function of the value. - In various embodiments,
central shaft 940 is made of steel (e.g., aircraft quality alloy steel). In various embodiments,central shaft 940 is heat treated to a minimum hardness level of 38 Rc. - Referring now to
FIG. 61 , the bit according to various examples of embodiments may be provided in abit holder 97. - While various measurements, dimensions, and shapes of the various elements are disclosed herein, those skilled in the art will readily appreciate that other dimensions, scale, shapes, etc. may be utilized without materially departing from the novel teachings and advantages disclosed herein.
- As utilized herein, the terms “approximately,” “about,” “substantially,” and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the invention as recited in the appended claims.
- It should be noted that references to relative positions (e.g., “top” and “bottom”) in this description are merely used to identify various elements as are oriented in the Figures. It should be recognized that the orientation of particular components may vary greatly depending on the application in which they are used.
- For the purpose of this disclosure, the term “coupled” means the joining of two members directly or indirectly to one another. Such joining may be stationary in nature or moveable in nature. Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another. Such joining may be permanent in nature or may be removable or releasable in nature.
- It should be appreciated that, while the cutting element is generally disclosed herein as a PCD compact, the cutting element may include any number of other materials having increased hardness including diamond, natural diamond, synthetic diamond, vapor deposited diamond, silicon bonded diamond, cobalt bonded diamond, thermally stable diamond, infiltrated diamond, layered diamond, cubic boron nitride, diamond impregnated matrix, diamond impregnated carbide, metal catalyzed diamond, other materials and/or compositions having a hardness similar to diamond, and/or combinations thereof. It should also be appreciated that, while the collars are disclosed herein as made of various grades of tungsten carbide, the collars may include other hardened materials such as other carbides including, without limitation, chromium carbide, molybdenum carbide, niobium carbide, tantalum carbide, titanium carbide, vanadium carbide, a tungsten carbide cobalt composite, and/or other materials or compositions having a hardness similar to tungsten carbide, and/or combinations thereof.
- It is also important to note that the construction and arrangement of the system, methods, and devices as shown in the various examples of embodiments is illustrative only. Although only a few embodiments have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements show as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied (e.g., by variations in the number of engagement slots or size of the engagement slots or type of engagement). The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the various examples of embodiments without departing from the spirit or scope of the present inventions.
- While this invention has been described in conjunction with the examples of embodiments outlined above, various alternatives, modifications, variations, improvements and/or substantial equivalents, whether known or that are or may be presently foreseen, may become apparent to those having at least ordinary skill in the art. Accordingly, the examples of embodiments of the invention, as set forth above, are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit or scope of the invention. Therefore, the invention is intended to embrace all known or earlier developed alternatives, modifications, variations, improvements and/or substantial equivalents.
Claims (16)
1. A cutting bit comprising:
a base protective ring having a top portion and a bottom portion;
a top protective ring coupled to the top portion of the base protective ring;
a compact provided in a cavity of the top protective ring; and
a cutting bit holding assembly coupled to the bottom portion of the base protective ring, the cutting bit holding assembly comprising a baseplate provided around a top portion of a central shaft, with a cavity defined in a bottom portion of the baseplate;
a first washer provided in the cavity and around the top portion of the central shaft; and
a second washer provided around the central shaft;
wherein the second washer is rotatable or spinnable relative to the first washer.
2. The cutting bit of claim 1 , wherein the second washer is rotatable or spinnable relative to the first washer when the cutting bit holding assembly is coupled to a cutting bit holder.
3. The cutting bit of claim 1 , wherein the compact is made of a polycrystalline diamond layer affixed to a high cobalt matrix straight grade tungsten carbide.
4. The cutting bit of claim 1 , wherein the top protective ring and base protective ring are each made at least partially of tungsten carbide.
5. The cutting bit of claim 4 , wherein the compact, top protective ring, base protective ring are coupled together by brazing.
6. The cutting bit of claim 1 , wherein the compact is ballistic shaped.
7. The cutting bit of claim 1 , wherein baseplate includes a bottom portion having a geometric shape configured for engagement with a wrench.
8. The cutting bit of claim 1 , wherein the geometric shape is an polygonal shape.
9. The cutting bit of claim 1 , further comprising a fastener provided around a bottom portion of the central shaft.
10. The cutting bit of claim 9 , further comprising a spring clip provided around the central shaft between the fastener and the fastener and the baseplate.
11. The cutting hit of claim 1 , wherein the central shaft comprises a top section and a bottom section.
12. The cutting bit of claim 11 , wherein the top section of the central shaft is made, coated or hardened at least partially with tungsten carbide.
13. A cutting bit comprising:
a top protective ring coupled the top portion of a rumbler shank; and
a compact provided in a cavity of the top protective ring;
wherein the rumbler shank comprises a holding assembly having a central shaft and a baseplate.
14. The cutting bit of claim 13 , further comprising a ballistic nut having external threading, the ballistic nut being threaded into a threaded internal borehole defined in the bottom of the central shaft.
15. The cutting bit of claim 13 , wherein the ballistic nut is tapered.
16. The cutting hit of claim 13 , wherein the ballistic nut expands at least one relief slot defined in central shaft as the ballistic nut is threaded into the central shaft.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/458,729 US20220090334A1 (en) | 2020-08-27 | 2021-08-27 | Cutting bit and compact |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US202063070894P | 2020-08-27 | 2020-08-27 | |
| US202163218531P | 2021-07-06 | 2021-07-06 | |
| US17/458,729 US20220090334A1 (en) | 2020-08-27 | 2021-08-27 | Cutting bit and compact |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20220090334A1 true US20220090334A1 (en) | 2022-03-24 |
Family
ID=80741461
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/458,729 Abandoned US20220090334A1 (en) | 2020-08-27 | 2021-08-27 | Cutting bit and compact |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US20220090334A1 (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6196636B1 (en) * | 1999-03-22 | 2001-03-06 | Larry J. McSweeney | Cutting bit insert configured in a polygonal pyramid shape and having a ring mounted in surrounding relationship with the insert |
| US20080035386A1 (en) * | 2006-08-11 | 2008-02-14 | Hall David R | Pick Assembly |
| US20090146491A1 (en) * | 2007-12-05 | 2009-06-11 | Sandvik Intellectual Property Ab | Breaking or excavating tool with cemented tungsten carbide insert and ring |
| US11103939B2 (en) * | 2018-07-18 | 2021-08-31 | The Sollami Company | Rotatable bit cartridge |
-
2021
- 2021-08-27 US US17/458,729 patent/US20220090334A1/en not_active Abandoned
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6196636B1 (en) * | 1999-03-22 | 2001-03-06 | Larry J. McSweeney | Cutting bit insert configured in a polygonal pyramid shape and having a ring mounted in surrounding relationship with the insert |
| US20080035386A1 (en) * | 2006-08-11 | 2008-02-14 | Hall David R | Pick Assembly |
| US20090146491A1 (en) * | 2007-12-05 | 2009-06-11 | Sandvik Intellectual Property Ab | Breaking or excavating tool with cemented tungsten carbide insert and ring |
| US11103939B2 (en) * | 2018-07-18 | 2021-08-31 | The Sollami Company | Rotatable bit cartridge |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7942218B2 (en) | Cutting element apparatuses and drill bits so equipped | |
| EP2890870B1 (en) | Pick assembly, bit assembly and degradation tool | |
| US7744164B2 (en) | Shield of a degradation assembly | |
| US7533739B2 (en) | Cutting element apparatuses and drill bits so equipped | |
| US7445294B2 (en) | Attack tool | |
| US6283234B1 (en) | Apparatus for mounting PCD compacts | |
| US8007050B2 (en) | Degradation assembly | |
| US20080088172A1 (en) | Holder Assembly | |
| US20080036273A1 (en) | Washer for a Degradation Assembly | |
| US8528990B2 (en) | Cutter with diamond bit tip | |
| US20100181820A1 (en) | Wear insert and retainer | |
| CN104995369A (en) | Rolling cutter with bottom support | |
| US20020062996A1 (en) | Rotary contact structures and cutting elements | |
| CN102713147A (en) | Attack tool assembly | |
| CN111971446B (en) | Tools of this type including separable bearing assemblies for mounting roller cones to earth-boring tools | |
| US8449040B2 (en) | Shank for an attack tool | |
| US20220090334A1 (en) | Cutting bit and compact | |
| WO2021017465A1 (en) | Cutter holder | |
| US20040231894A1 (en) | Rotary tools or bits | |
| US12247486B2 (en) | Bolsters for degradation picks | |
| CN108347874A (en) | Tool with hard material | |
| JP2006055993A (en) | Drum grinding wheel and its manufacturing method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CHINA PACIFICARBIDE, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MILLS, RONALD D.;REEL/FRAME:058268/0253 Effective date: 20211109 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |