US3853869A - 7-(1-ethyl-2-methylindol-3-yl) 7-(substituted)-5,7-dihydrofuro (3,4-b) pyrazin-5-one - Google Patents
7-(1-ethyl-2-methylindol-3-yl) 7-(substituted)-5,7-dihydrofuro (3,4-b) pyrazin-5-one Download PDFInfo
- Publication number
- US3853869A US3853869A US00352832A US35283273A US3853869A US 3853869 A US3853869 A US 3853869A US 00352832 A US00352832 A US 00352832A US 35283273 A US35283273 A US 35283273A US 3853869 A US3853869 A US 3853869A
- Authority
- US
- United States
- Prior art keywords
- mark
- solvent
- sheet
- benzene
- ethyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- -1 7-(1-ethyl-2-methylindol-3-yl) 7-(substituted)-5,7-dihydrofuro (3,4-b) pyrazin-5-one Chemical class 0.000 title description 7
- 239000003593 chromogenic compound Substances 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 abstract description 64
- 125000004432 carbon atom Chemical group C* 0.000 abstract description 6
- CIUQDSCDWFSTQR-UHFFFAOYSA-N [C]1=CC=CC=C1 Chemical compound [C]1=CC=CC=C1 CIUQDSCDWFSTQR-UHFFFAOYSA-N 0.000 abstract description 3
- 239000000975 dye Substances 0.000 abstract description 3
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 3
- 239000001257 hydrogen Substances 0.000 abstract description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 abstract description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 63
- 239000002904 solvent Substances 0.000 description 28
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 24
- 239000000203 mixture Substances 0.000 description 17
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 239000007788 liquid Substances 0.000 description 15
- 239000002775 capsule Substances 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 14
- 229920005989 resin Polymers 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 10
- 230000002378 acidificating effect Effects 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 10
- 229910021529 ammonia Inorganic materials 0.000 description 8
- 239000004927 clay Substances 0.000 description 7
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- SIKJAQJRHWYJAI-UHFFFAOYSA-N benzopyrrole Natural products C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000003094 microcapsule Substances 0.000 description 5
- 239000003208 petroleum Substances 0.000 description 5
- 239000000376 reactant Substances 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 229960000892 attapulgite Drugs 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 150000002576 ketones Chemical class 0.000 description 4
- 229910052625 palygorskite Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical class NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 229920000084 Gum arabic Polymers 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000000205 acacia gum Substances 0.000 description 3
- 235000010489 acacia gum Nutrition 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- YXVFYQXJAXKLAK-UHFFFAOYSA-N biphenyl-4-ol Chemical compound C1=CC(O)=CC=C1C1=CC=CC=C1 YXVFYQXJAXKLAK-UHFFFAOYSA-N 0.000 description 3
- 239000008199 coating composition Substances 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 3
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 150000003216 pyrazines Chemical class 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 2
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 2
- QHPQWRBYOIRBIT-UHFFFAOYSA-N 4-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C=C1 QHPQWRBYOIRBIT-UHFFFAOYSA-N 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 241000978776 Senegalia senegal Species 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000002178 crystalline material Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 150000004715 keto acids Chemical class 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 229940090668 parachlorophenol Drugs 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- ZUCRGHABDDWQPY-UHFFFAOYSA-N pyrazine-2,3-dicarboxylic acid Chemical compound OC(=O)C1=NC=CN=C1C(O)=O ZUCRGHABDDWQPY-UHFFFAOYSA-N 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 1
- HUTNOYOBQPAKIA-UHFFFAOYSA-N 1h-pyrazin-2-one Chemical compound OC1=CN=CC=N1 HUTNOYOBQPAKIA-UHFFFAOYSA-N 0.000 description 1
- ODQSBWZDOSNPAH-UHFFFAOYSA-N 3-ethoxy-n,n-diethylaniline Chemical compound CCOC1=CC=CC(N(CC)CC)=C1 ODQSBWZDOSNPAH-UHFFFAOYSA-N 0.000 description 1
- 244000171897 Acacia nilotica subsp nilotica Species 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical group OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000001263 FEMA 3042 Substances 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- YIOQCYXPSWJYHB-UHFFFAOYSA-N acetylene;phenol Chemical group C#C.OC1=CC=CC=C1 YIOQCYXPSWJYHB-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001448 anilines Chemical class 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- FNAQSUUGMSOBHW-UHFFFAOYSA-H calcium citrate Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O FNAQSUUGMSOBHW-UHFFFAOYSA-H 0.000 description 1
- 239000001354 calcium citrate Substances 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229940096529 carboxypolymethylene Drugs 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000586 desensitisation Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- GXGAKHNRMVGRPK-UHFFFAOYSA-N dimagnesium;dioxido-bis[[oxido(oxo)silyl]oxy]silane Chemical compound [Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O GXGAKHNRMVGRPK-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 229960004756 ethanol Drugs 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- UPBDXRPQPOWRKR-UHFFFAOYSA-N furan-2,5-dione;methoxyethene Chemical compound COC=C.O=C1OC(=O)C=C1 UPBDXRPQPOWRKR-UHFFFAOYSA-N 0.000 description 1
- DDSRCCOGHFIQDX-UHFFFAOYSA-N furan-2,5-dione;methoxymethane Chemical compound COC.O=C1OC(=O)C=C1 DDSRCCOGHFIQDX-UHFFFAOYSA-N 0.000 description 1
- MCQOWYALZVKMAR-UHFFFAOYSA-N furo[3,4-b]pyridine-5,7-dione Chemical compound C1=CC=C2C(=O)OC(=O)C2=N1 MCQOWYALZVKMAR-UHFFFAOYSA-N 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229910052621 halloysite Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 150000002475 indoles Chemical class 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229940099273 magnesium trisilicate Drugs 0.000 description 1
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 1
- 235000019793 magnesium trisilicate Nutrition 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- CWOMTHDOJCARBY-UHFFFAOYSA-N n,n,3-trimethylaniline Chemical compound CN(C)C1=CC=CC(C)=C1 CWOMTHDOJCARBY-UHFFFAOYSA-N 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000005506 phthalide group Chemical group 0.000 description 1
- 229920002432 poly(vinyl methyl ether) polymer Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 1
- 229940033123 tannic acid Drugs 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 235000013337 tricalcium citrate Nutrition 0.000 description 1
- SWGJCIMEBVHMTA-UHFFFAOYSA-K trisodium;6-oxido-4-sulfo-5-[(4-sulfonatonaphthalen-1-yl)diazenyl]naphthalene-2-sulfonate Chemical compound [Na+].[Na+].[Na+].C1=CC=C2C(N=NC3=C4C(=CC(=CC4=CC=C3O)S([O-])(=O)=O)S([O-])(=O)=O)=CC=C(S([O-])(=O)=O)C2=C1 SWGJCIMEBVHMTA-UHFFFAOYSA-K 0.000 description 1
- 229920006163 vinyl copolymer Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229920003176 water-insoluble polymer Polymers 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/124—Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components
- B41M5/132—Chemical colour-forming components; Additives or binders therefor
- B41M5/136—Organic colour formers, e.g. leuco dyes
- B41M5/145—Organic colour formers, e.g. leuco dyes with a lactone or lactam ring
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B11/00—Diaryl- or thriarylmethane dyes
- C09B11/04—Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
- C09B11/26—Triarylmethane dyes in which at least one of the aromatic nuclei is heterocyclic
Definitions
- each X is wherein each R is hydrogen, an alkyl radical having 1 to 4 carbon atoms, an alkoxy radical having 1 to 4 carbon atoms or a phenyl radical.
- R is hydrogen, an alkyl radical having 1 to 4 carbon atoms, an alkoxy radical having 1 to 4 carbon atoms or a phenyl radical.
- This invention relates to chromogenic compounds. These colorless, but colorable dyes are employed in pressure-sensitive record material and in mark-forming manifold systems. In another aspect, this invention relates to a method of marking on a substrate by developing dark-colored materials from these colorless chromogenic compounds.
- pyridine and pyrazine compounds of this invention now have been found. These compounds have an extraordinary amount of fade resistance and a high degree of tinctorial power. Also, these colorless, but colarable reactants are synthesized in a single step process.
- the pyridine and pyrazine compounds of this invention are represented by the formula: 40
- each R is hydrogen, an alkyl radical having 1 to 4 carbon atoms, an alkoxy radical having I to 4 carbon atoms or'a phenyl radical.
- Pressure-sensitive mark-forming systems provide a marking system of'disposing on and/or within sheet support material the unreacted mark-forming components (at least one of which is a polymeric material) and a liquid solvent in which each of the mark-forming components is soluble, said liquid solvent being present in such form that it is maintained isolated by apressurerupturable barrier from at least one of the markforming components until the application of pressure causes a breach or rupture of the barrier'in the area delineated by the pressure pattern.
- the mark-forming components thereby are brought into reactive contact, producing a distinctive mark.
- the acidic materials employed in this invention can be any compound within the definition of a Lewis acid, i.e., an electron acceptor.
- acidic organic polymers such as phenolic polymers are employed as the same solvent with the substantially colorless chromogenic compounds allows penetration of the color into the support sheet, if porous, e.g., paper, so that the colored form of the chromogenic compound sinks into the body of the sheet and is not merely on the surface of the sheet. This feature protects against erasure of recorded data by attrition of the surface of the record sheet.
- the polymeric mark-forming components should have a common solubility with the chromogenic compound in at least one liquid solvent when the acid-reacting material is a phenolic or other organic acidic polymer. It is also noted that in a single system several chromogenic compounds can be used with the same or different polymeric materials. Several polymeric materials can be reactively contacted with a single chromogenic compound or with a mixture of chromogenic compounds.
- the solvent is maintained in physical isolation in minute droplets until such time as it is released by application of pressure.
- isolation is maintained by individual encapsulation of thesolvent droplets in a microcapsule according to the procedures described, for example, in U.S. Pat. No. 2,712,507, issued to Barrett K. Green on July 5, 1955; 2,730,457, issued to Barrett K. Green and Lowell Schleicher on Jan. 10, 1956; U.S. Pat. No. 2,800,457, issued to Barret K. Green and Lowell Schleicher on July 23, 1957; and U.S. Pat. No. 2,800,458, issued to Barrett K. Green on July 23, 1957, reissued as U.S. Pat. No. Re. 24,899 on Nov. 29, 1960.
- the microscopic capsules when disposed within or upon a supporting web as a multiplicity in contiguous juxtaposition, are rupturable by pressure, such as normal marking pressures utilized, for example, in writing or typing operations.
- the material or'materials chosen as the wall material of the microcapsule in addition to being pressure rupturable, must be inert with respect to the contents of the capsule and the other mark-forming components so that the wall material remains intact under normal storage conditions until such time as it is released by the application of marking pressure.
- Examples of such wall materials are gelatin, gum arabic and many others thoroughly described in the aforementioned patents.
- the capsule size should not exceed 50 microns in diameter. Preferably, the capsules should be smaller than 15 microns in diameter.
- the acidic polymeric material useful in this invention include phenol polymers, phenol acetylene polymers, maleic acid-rosin 're'sins, partially or wholly hydrolyzed styrene-maleic anhydride copolymers and ethylenemaleic anhydride copolymers, carboxy polymethylene and wholly or partially hydrolyzed vinyl methyl ether maleic anhydride copolymerand mixtures thereof.
- phenolic polymers found useful are alkylphenol-acetylene resins, which are soluble in common organic solvents and possess permanent fusibility in the absence of being treated by cross-linking materials.
- a specific group of uscfulphenolic polymers are mem bers of the type commonly referred to us novolacs, (as sold by Union Carbide Corp., New York, N. Y.) which are characterized by solubility in common organic solvents and which are, in the absence of cross linking agents, permanently fusible.
- the phenolic polymer material found useful in practicing this invention is characterized by the presence of free hydroxyl groups and the absence of groups such as methylol, which tend to promote infusibility or cross-linking of the polymer, and by their solubility in organic solvents and relative insolubility in aqueous media. Again, obviously, mixtures of these phenol-aldehyde polymers can be employed.
- Resoles if they are still soluble, are used, though subject to change in properties upon aging.
- a laboratory method useful in the selection of suitable phenolic resins is the determination of the infrared absorption pattern. It has been found that phenolic resins showing an absorption in the 3,200-3,500 cm region (which is indicative of the free hydroxyl groups) and not having an absorption in the l,600-l,700 cm region are suitable. The latter absorption region is indicative of the desensitization of the hydroxyl groups and, consequently, makes such groups unavailable for reaction with the chromogenic materials.
- maleic anhydride copolymers are described in the literature, such as, for example, on the maleic anhydride vinyl copolymers, as disclosed in the publication, Vinyl and Related Polymers," by Calvin E. Schildknecht, second printing, published April, I959, by John Wiley & Sons, Incorporated. See pages 65 to 68 (styrene-maleic anhydride copolymer), 628 to 630 (vinyl methyl) ether-maleic anhydride copolymer, and 530 to 531 (ethylene-maleic anhydride copolymer);
- the liquid solvent chosen must'be capable of dissolving the mark-forming components.
- the solvent can be volatile or non-volatile, and a single or multiple component solvent may be used which is wholly or partially volatile.
- volatile solvents useful in the aforedescribed basic chromogen-acidic polymer are toluene, petroleum, distillate, perchloroethylene, and xylene.
- non-volatile solvents are high-boiling point petroleum fractions and chlorinated biphenyls.
- the solvent chosen should be capable of dissolving at least 0.3%, on a weight basis, of the chromogenic compound and about a 3-5%, on a weight basis, of the polymeric material to form an efficient reaction.
- the solvent should be capable of dissolving an excess of the polymeric material, so as to provide every opportunity for utilization of the chromogenic compound and, thus, to assure the maximum coloration at a reaction site.
- a further criterion of the solvent is that it must not interfere with the mark-forming reaction.
- the presence of the solvent can interfere with the mark-forming reaction or diminish the intensity of the mark, in which case the solvent chosen should be sufficiently vaporizable to assure its removal from the reaction site after having, through solution, brought the mark-forming components into intimate admisture, so that the mark-forming contact proceeds.
- the mark-forming reaction requires an intimate mixture of the components to be brought about through solution of said components, one or more of the mark-forming components can be dissolved in the isolated solvent droplets, the only requirement being that at least one of the components essential to the mark-forming reaction be maintained isolated until reactively contacted with the other.
- the mark-forming components are so chosen as to produce a mark upon application of pressure at room temperature (20 to 25C).
- the present invention includes a system in which the solvent component is not liquid at temperatures around room temperature but is liquid and in condition for forming solutions only at elevated temperatures.
- the support member on which the components of the system are disposed may comprise a single or dual sheet assembly.
- the record material is referred to as a self-contained system.
- the record material is referred to as a transfer" sysvtem.
- a transfer sysvtem.
- uch a system can also be referred to as a twofold" system, in that at least two sheets are required and each sheet includes a component, or components, essential to the mark-forming reaction.
- a copious amount of the colored reaction product in liquid form is produced on a surface of one sheet, it can produce a mark by transfer to a second shet as a colored mark.
- microcapsules are employed, they can be present in the support material either disposed therethroughout or as a coating thereon, or both.
- the capsules can be applied to the sheet mate rial while still dispersed in the liquid vehicle in which they were manufactured, or, if desired, separated and the separated capsules thereafter dispersed in a solution of the polymeric component (for instance, 30 grams of water and 53 grams of a 1% aqueous solution of polyvinyl methyl ether maleic anhydride) to form a coating composition in which, because of the inertness of the solution and the capsules, both retain their indentiy and physical integrity.
- a solution of the polymeric component for instance, 30 grams of water and 53 grams of a 1% aqueous solution of polyvinyl methyl ether maleic anhydride
- this composition When this composition is disposed as a film on the support material and dried, the capsules are held therein subject to rupture to release the liquid contained.
- This latter technique relying on the incompatibility of the microcapsule and the dispersing medium of the film-forming mark-forming component, allows for a method of preparing a sensitive record coating with the capsules interspersed directly in a dry film of the polymeric material as it is laid down from the solution.
- a further alternative is to disperse in a liquid medium one or more mark-forming components, insoluble therein, and disperse in said medium the insoluble microcapsules, with the result that all components of the mark-forming system can be disposed on or within the support sheet in the one operation. Obviously, the several components can be applied individually.
- Suitable lower amounts include, in the case of the chro mogenic material, about 0.005 to 0.075 pound per ream (a ream in this application meaning five hundred (500) sheets of 25 X38 inch paper, totaling 3,300 square feet); in the case of the solvent, about I to 3 pounds per ream; and in the case of the polymer, about A: pound per ream.
- the upper limit is primarily a matter of economic consideration.
- the slurry of capsules can be applied to a wet web of paper as it exists on the screen ofa Fourdrinier paper machine, so as to sink into the paper web a distance depending on the freeness of the pulp and the water content of the web at the point of application.
- the capsules can be placed directly in the paper or in a support sheet. Not only capsule structures, but films which hold a multitude of droplets for local release in an area subject to pressure may be utilized. (See U.S. Pat. No. 2,299,694, which issued Oct. 20, 1942, to B. K. Green.)
- the acidic organic polymeric component With respect to the acidic organic polymeric component, a solution thereof in an evaporable solvent is introduced into twice as much water and agitated while the evaporable solvent is blown off by an air blast. This leaves an aqueous colloidal dispersion slurry of the polymeric material, which can be applied to the paper so as to leave a surface residue, or the slurry can be ap plied to paper at the size-press station of a papermaking machine by roller.
- the water-insoluble polymer is ground to the desired particle size in a ball mill with water, preferably with a dispersing agent, such as a small quantity of sodium silicate.
- a binder material of hydrophilic properties is ground with the phenolic material, the binder itself may act as a dispersant. lf desired, an amount of binder material of up to 40%, by weight, of the employed amount of the polymeric material can be added to the ball-milled slurry of materials, such binder materials being of the paper coating binder class, including gum arabic, casein, hydroxyethylcellulose, and latex (such as styrene-butadiene copolymer). If desired, oil adsorbents in the form of fullers earths may be added to the polymeric material particles to assist in retaining, in situ, the liquid droplets to be transferred to it in data-representing configuration, for the purpose of preventing bleeding" of the print.
- Another way of applying the ch romogenic or polymeric material individually to a single sheet of paper is by immersing a sheet of paper in a 1 to 10% solution of the material in an evaporable solvent. Obviously, this must be done alone for each reactant, because if the other reactant material were present,it would resultin a premature coloration over the sheet area.
- a dried sheet with one component then can be coated with a solution of the other component, the solvent of which is a non-solvent to the already supplied component.
- the polymeric material can be dissolved in ink composition vehicles to form a printing ink" of colorless character and, thus, can be used to spot-print a proposed record sheet unit sensitized for recording in a reaction-produced color in those areas by application of a solution of the chromogenic material.
- a printing ink can be made of up to 75% weight, of the phenolic polymeric material in a petroleum solvent to a viscosity suitable for printing purposes.
- the relative amounts of components to be used are the most convenient and economical amounts consistent with the proper visibility of the recorded data.
- the resolution of the recorded data is, among other things, dependent on particle size, distribution and amount of particles, liquid solvent migration, chemical reaction efficiency, and other factors, all of which are things that can be worked out empirically by one familiar with the art, and which do not determine the principle of the invention, which, in part, involves means for enabling the bringing into solution, by marking pressure, of two normally solid components in a common liquid solvent component held isolated as liquid droplets, preferably in marking-pressurerupturable capsules having film walls, or else held isolated in a continuous marking-pressure-rupturable film as a discontinuous phase.
- the acidic mark-forming component(s) reacts with the basic chromogenic material(s) to effect distinctive color formation or color change.
- the acidic organic polymer it is desirable to include other materials to supplement the reactants. For example, kaolin can be added to improve the transfer ofthe liquid and/or the dissolved materials between the sheets.
- compositions of the mark-forming materials into their supporting sheets.
- An example of the compositions which can be coated onto the surface of an underlying sheet of a two-sheet system to react with the capsule coating on the underside of any overlying sheet is as follows:
- the benzene was dried (Na SO and evaporated to a small volume and chromatographed on Alumina, eluting with benzene, then benzene: ether and then ether and then ethyl acetate.
- the concentrates were dissolved in benzene and pet ether added and seeds were added. After standing ,over night, filtering and drying, 2.3 g. of nicely crystalline material was obtained.
- the material had a nondescript but can be characterized by its T.L.C. characteristics which are on Silica Gel very bright green aging to a brownish-black. lts color (benzene soln.) on resin sheets are bright green and on Silton a dark green. Note 1: A longer reflux period did not result in a higher yield.
- resin unless otherwise stated, is 80 parts by weight para-tertiary butyl phenol and parts by weight para-chlorophenol and clay, unless otherwise stated, is silton.
- keto-acid was allowed to react with an indole, pyrrole or substituted aniline by heating a few mgs of each with a few drops of acetic anhydride, diluting with water, ammonia and extracting the reaction mixture with benzene.
- the benzene layer was washed with water and applied to paper coated with resin or clay.
- the colors are tabulated below:
- EXAMPLE X Prints were made on sensitized sheets with 3 compounds. The following table consists of the reflective intensities obtained on a variety of prints. R is defined as:
- the reflectance values were converted to Kubelka- Munk functions (K/S) as shown in the table. The calculations and use of these functions are described by Dr. G. Kortun et al. in Angewandte Chemie, International Edition, 2, pp. 333-341 (1963). These functions are a reliable measure of the quantity of color present per unit area of print tested. While reflectance values (R) provide a measure of color intensity, Kubelka-Munk functions (K/S) provide a measure of quantity of color present. The Kubelka-Munk rules (K/S) in the table demonstrate the high degree of tinctorialpower of the compounds of this invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Color Printing (AREA)
Abstract
A novel chromogenic compound of normally colorless form is disclosed, having the structural formula:
WHEREIN EACH X is
WHEREIN EACH R is hydrogen, an alkyl radical having 1 to 4 carbon atoms, an alkoxy radical having 1 to 4 carbon atoms or a phenyl radical. These colorless, but colorable dyes are employed in pressure-sensitive record material and mark-forming manifold systems.
WHEREIN EACH X is
WHEREIN EACH R is hydrogen, an alkyl radical having 1 to 4 carbon atoms, an alkoxy radical having 1 to 4 carbon atoms or a phenyl radical. These colorless, but colorable dyes are employed in pressure-sensitive record material and mark-forming manifold systems.
Description
United States Patent [191 Farber 7-( l-ETHYL-Z-METHYLINDOL-S-YL) 7-(SUBSTITUTED)-5,7-DIHYDROFURO (3,4-B) PYRAZHJ-S-ONE [75] Inventor: Sheldon Farber, Appleton, Wis.
[73] Assignee: The National Cash Register Company, Dayton, Ohio 22 Filed: Apr. 19, 1973 21 Appl. No.: 352,832
Related US. Application Data [62] Division of Ser. No. 205,325, Dec. 6, 1971, Pat. No.
' [52] US. Cl.. 260/250 BC, 1l7/36.2, 260/32614 R,
260/295 B [51] Int. Cl C07d 51/76 [58] Field of Search 260/250 BC, 250 B [56] References Cited UNITED STATES PATENTS 3,647,792 3/1972 Evers 260/250 BC Primary ExaminerDonald G. Daus Assistant ExaminerRalph D. McCloud Attorney, Agent, or FirmE. Frank McKinney; Robert J. Shafer [57] ABSTRACT A novel chromogenic compound of normally colorless [451 Dec. 10, 1974 form is disclosed, having the structural formula:
X x I x x wherein each X is wherein each R is hydrogen, an alkyl radical having 1 to 4 carbon atoms, an alkoxy radical having 1 to 4 carbon atoms or a phenyl radical. These colorless, but colorable dyes are employed in pressure-sensitive record material and mark-forming manifold systems.
1 Claim, N0 Drawings 7-(1-ETHYL-2-METHYLINDOL-3-YL) 7-(SUBSTITUTED)-5,7-DIHYDROFURO (3,4-B)
mZlN--0 @icm wherein X is one of the following:
This is a division of application Ser. No. 205,325, filed Dec. 6, 1971 now U.S. Pat. No. 3,775,424, dated Mar. 7, l973.
This invention relates to chromogenic compounds. These colorless, but colorable dyes are employed in pressure-sensitive record material and in mark-forming manifold systems. In another aspect, this invention relates to a method of marking on a substrate by developing dark-colored materials from these colorless chromogenic compounds.
Pressure sensitive recording sheets employing various phthalides, pyromellitides and the like are known in the art. For example, see U.S. Pat. Nos. 3,540,909 through 3,540,914.
The pyridine and pyrazine compounds of this invention now have been found. These compounds have an extraordinary amount of fade resistance and a high degree of tinctorial power. Also, these colorless, but colarable reactants are synthesized in a single step process.
CH c n Other objects, aspects and advantages of this invention will be apparent to one skilled in the art from the following disclosure and appended claims.
The pyridine and pyrazine compounds of this invention are represented by the formula: 40
cu a en I -0 l l n wherein each X is:
. I R it 2 @I Other examples of these compounds are represented by the formula:
wherein both X's are:
wherein each R is hydrogen, an alkyl radical having 1 to 4 carbon atoms, an alkoxy radical having I to 4 carbon atoms or'a phenyl radical.
Specific examples of these compounds are represented by the following formula:
7 (I) 9 U 1 (ll) or I C" r l l 3 or N (2' N cu c H N l 3 z 5 cu CH 3, (M I 10 g n H I c 3 l5 CH Still other examples of these compounds are repre- Additional examples of these compounds are repre' sented by the formula: sented by the formula:
o a, c=0 g CH N wherein X is one of the following: wherein both Xs are:
a s a I g ll; 62
Pressure-sensitive mark-forming systems provide a marking system of'disposing on and/or within sheet support material the unreacted mark-forming components (at least one of which is a polymeric material) and a liquid solvent in which each of the mark-forming components is soluble, said liquid solvent being present in such form that it is maintained isolated by apressurerupturable barrier from at least one of the markforming components until the application of pressure causes a breach or rupture of the barrier'in the area delineated by the pressure pattern. The mark-forming components thereby are brought into reactive contact, producing a distinctive mark.
The method of marking of this invention, i.e., by developing a dark-colored material from the substantially colorless or slightly colored chromogenic compounds comprises providing a chromogenic compound selected from among the above-mentioned compounds and bringing such chromogenic compound into reactive contact in areas where marking is desired with an acidic color-activating substance to produce a darkcolored resonant form of the chromogenic compound by the action thereon in said areas of the said acidic substance.
The acidic materials employed in this invention can be any compound within the definition of a Lewis acid, i.e., an electron acceptor. Preferably, acidic organic polymers such as phenolic polymers are employed as the same solvent with the substantially colorless chromogenic compounds allows penetration of the color into the support sheet, if porous, e.g., paper, so that the colored form of the chromogenic compound sinks into the body of the sheet and is not merely on the surface of the sheet. This feature protects against erasure of recorded data by attrition of the surface of the record sheet.
It is noted that the polymeric mark-forming components should have a common solubility with the chromogenic compound in at least one liquid solvent when the acid-reacting material is a phenolic or other organic acidic polymer. It is also noted that in a single system several chromogenic compounds can be used with the same or different polymeric materials. Several polymeric materials can be reactively contacted with a single chromogenic compound or with a mixture of chromogenic compounds.
As mentioned above, the solvent is maintained in physical isolation in minute droplets until such time as it is released by application of pressure. This is accomplished by several known techniques, but preferably isolation is maintained by individual encapsulation of thesolvent droplets in a microcapsule according to the procedures described, for example, in U.S. Pat. No. 2,712,507, issued to Barrett K. Green on July 5, 1955; 2,730,457, issued to Barrett K. Green and Lowell Schleicher on Jan. 10, 1956; U.S. Pat. No. 2,800,457, issued to Barret K. Green and Lowell Schleicher on July 23, 1957; and U.S. Pat. No. 2,800,458, issued to Barrett K. Green on July 23, 1957, reissued as U.S. Pat. No. Re. 24,899 on Nov. 29, 1960. The microscopic capsules, when disposed within or upon a supporting web as a multiplicity in contiguous juxtaposition, are rupturable by pressure, such as normal marking pressures utilized, for example, in writing or typing operations.
The material or'materials chosen as the wall material of the microcapsule, in addition to being pressure rupturable, must be inert with respect to the contents of the capsule and the other mark-forming components so that the wall material remains intact under normal storage conditions until such time as it is released by the application of marking pressure. Examples of such wall materials are gelatin, gum arabic and many others thoroughly described in the aforementioned patents.
For use in record material, the capsule size should not exceed 50 microns in diameter. Preferably, the capsules should be smaller than 15 microns in diameter.
The acidic polymeric material useful in this invention include phenol polymers, phenol acetylene polymers, maleic acid-rosin 're'sins, partially or wholly hydrolyzed styrene-maleic anhydride copolymers and ethylenemaleic anhydride copolymers, carboxy polymethylene and wholly or partially hydrolyzed vinyl methyl ether maleic anhydride copolymerand mixtures thereof.
Among the phenolic polymers found useful are alkylphenol-acetylene resins, which are soluble in common organic solvents and possess permanent fusibility in the absence of being treated by cross-linking materials. A specific group of uscfulphenolic polymers are mem bers of the type commonly referred to us novolacs, (as sold by Union Carbide Corp., New York, N. Y.) which are characterized by solubility in common organic solvents and which are, in the absence of cross linking agents, permanently fusible. Generally, the phenolic polymer material found useful in practicing this invention is characterized by the presence of free hydroxyl groups and the absence of groups such as methylol, which tend to promote infusibility or cross-linking of the polymer, and by their solubility in organic solvents and relative insolubility in aqueous media. Again, obviously, mixtures of these phenol-aldehyde polymers can be employed.
Resoles, if they are still soluble, are used, though subject to change in properties upon aging.
A laboratory method useful in the selection of suitable phenolic resins is the determination of the infrared absorption pattern. It has been found that phenolic resins showing an absorption in the 3,200-3,500 cm region (which is indicative of the free hydroxyl groups) and not having an absorption in the l,600-l,700 cm region are suitable. The latter absorption region is indicative of the desensitization of the hydroxyl groups and, consequently, makes such groups unavailable for reaction with the chromogenic materials.
The preparation of the phenolic formaldehyde polymeric materials for practicing this invention is described in Industrial and Engineering Chemistry," vol. 43, pages I34 to I41, January, 1951, and a particular polymer thereof is described in Example 1 of U.S. Pat. No. 2,052,293, issued to Herbert Honel on Aug. 25, 1936, and the preparation of the phenol-acetylene polymers is described in Industrial and Engineering Chemistry," vol. 41, pages 73 to 77, January, 1949.
The preparation of the maleic anhydride copolymers is described in the literature, such as, for example, on the maleic anhydride vinyl copolymers, as disclosed in the publication, Vinyl and Related Polymers," by Calvin E. Schildknecht, second printing, published April, I959, by John Wiley & Sons, Incorporated. See pages 65 to 68 (styrene-maleic anhydride copolymer), 628 to 630 (vinyl methyl) ether-maleic anhydride copolymer, and 530 to 531 (ethylene-maleic anhydride copolymer);
When the acidic material is one of the aforementioned organic polymers, the liquid solvent chosen must'be capable of dissolving the mark-forming components. The solvent can be volatile or non-volatile, and a single or multiple component solvent may be used which is wholly or partially volatile. Examples of volatile solvents useful in the aforedescribed basic chromogen-acidic polymer are toluene, petroleum, distillate, perchloroethylene, and xylene. Examples of non-volatile solvents are high-boiling point petroleum fractions and chlorinated biphenyls.
Generally, the solvent chosen should be capable of dissolving at least 0.3%, on a weight basis, of the chromogenic compound and about a 3-5%, on a weight basis, of the polymeric material to form an efficient reaction. However, in the preferred system, the solvent should be capable of dissolving an excess of the polymeric material, so as to provide every opportunity for utilization of the chromogenic compound and, thus, to assure the maximum coloration at a reaction site.
A further criterion of the solvent is that it must not interfere with the mark-forming reaction. In some instances, the presence of the solvent can interfere with the mark-forming reaction or diminish the intensity of the mark, in which case the solvent chosen should be sufficiently vaporizable to assure its removal from the reaction site after having, through solution, brought the mark-forming components into intimate admisture, so that the mark-forming contact proceeds.
Since the mark-forming reaction requires an intimate mixture of the components to be brought about through solution of said components, one or more of the mark-forming components can be dissolved in the isolated solvent droplets, the only requirement being that at least one of the components essential to the mark-forming reaction be maintained isolated until reactively contacted with the other.
In the usual case, the mark-forming components are so chosen as to produce a mark upon application of pressure at room temperature (20 to 25C). However, the present invention includes a system in which the solvent component is not liquid at temperatures around room temperature but is liquid and in condition for forming solutions only at elevated temperatures.
The support member on which the components of the system are disposed may comprise a single or dual sheet assembly. In the case where all components are disposed on a single sheet, the record material is referred to as a self-contained system. Where there must be a migration of the solvent, with or without mark-forming component, from one sheet to another, the record material is referred to as a transfer" sysvtem. (Such a system can also be referred to as a twofold" system, in that at least two sheets are required and each sheet includes a component, or components, essential to the mark-forming reaction.) Where a copious amount of the colored reaction product in liquid form is produced on a surface of one sheet, it can produce a mark by transfer to a second shet as a colored mark.
In the preferred case, where microcapsules are employed, they can be present in the support material either disposed therethroughout or as a coating thereon, or both. The capsules can be applied to the sheet mate rial while still dispersed in the liquid vehicle in which they were manufactured, or, if desired, separated and the separated capsules thereafter dispersed in a solution of the polymeric component (for instance, 30 grams of water and 53 grams of a 1% aqueous solution of polyvinyl methyl ether maleic anhydride) to form a coating composition in which, because of the inertness of the solution and the capsules, both retain their indentiy and physical integrity. When this composition is disposed as a film on the support material and dried, the capsules are held therein subject to rupture to release the liquid contained. This latter technique, relying on the incompatibility of the microcapsule and the dispersing medium of the film-forming mark-forming component, allows for a method of preparing a sensitive record coating with the capsules interspersed directly in a dry film of the polymeric material as it is laid down from the solution. A further alternative is to disperse in a liquid medium one or more mark-forming components, insoluble therein, and disperse in said medium the insoluble microcapsules, with the result that all components of the mark-forming system can be disposed on or within the support sheet in the one operation. Obviously, the several components can be applied individually.
The respective amounts of the several components vary, depending primarily upon the nature of the materials and the architecture of the record material unit. Suitable lower amounts include, in the case of the chro mogenic material, about 0.005 to 0.075 pound per ream (a ream in this application meaning five hundred (500) sheets of 25 X38 inch paper, totaling 3,300 square feet); in the case of the solvent, about I to 3 pounds per ream; and in the case of the polymer, about A: pound per ream. In all instances, the upper limit is primarily a matter of economic consideration.
In the instance where the mark-forming components are interspersed throughout a single support sheet material (so-called self-contained unit), the following technique or procedure has been found useful:
The slurry of capsules can be applied to a wet web of paper as it exists on the screen ofa Fourdrinier paper machine, so as to sink into the paper web a distance depending on the freeness of the pulp and the water content of the web at the point of application.
The capsules can be placed directly in the paper or in a support sheet. Not only capsule structures, but films which hold a multitude of droplets for local release in an area subject to pressure may be utilized. (See U.S. Pat. No. 2,299,694, which issued Oct. 20, 1942, to B. K. Green.)
With respect to the acidic organic polymeric component, a solution thereof in an evaporable solvent is introduced into twice as much water and agitated while the evaporable solvent is blown off by an air blast. This leaves an aqueous colloidal dispersion slurry of the polymeric material, which can be applied to the paper so as to leave a surface residue, or the slurry can be ap plied to paper at the size-press station of a papermaking machine by roller. In another method of making a polymer-sensitized sheet, the water-insoluble polymer is ground to the desired particle size in a ball mill with water, preferably with a dispersing agent, such as a small quantity of sodium silicate. If a binder material of hydrophilic properties is ground with the phenolic material, the binder itself may act as a dispersant. lf desired, an amount of binder material of up to 40%, by weight, of the employed amount of the polymeric material can be added to the ball-milled slurry of materials, such binder materials being of the paper coating binder class, including gum arabic, casein, hydroxyethylcellulose, and latex (such as styrene-butadiene copolymer). If desired, oil adsorbents in the form of fullers earths may be added to the polymeric material particles to assist in retaining, in situ, the liquid droplets to be transferred to it in data-representing configuration, for the purpose of preventing bleeding" of the print.
Another way of applying the ch romogenic or polymeric material individually to a single sheet of paper is by immersing a sheet of paper in a 1 to 10% solution of the material in an evaporable solvent. Obviously, this must be done alone for each reactant, because if the other reactant material were present,it would resultin a premature coloration over the sheet area. A dried sheet with one component then can be coated with a solution of the other component, the solvent of which is a non-solvent to the already supplied component.
The polymeric material can be dissolved in ink composition vehicles to form a printing ink" of colorless character and, thus, can be used to spot-print a proposed record sheet unit sensitized for recording in a reaction-produced color in those areas by application of a solution of the chromogenic material.
In the case of phenolic polymer, a printing ink can be made of up to 75% weight, of the phenolic polymeric material in a petroleum solvent to a viscosity suitable for printing purposes. The relative amounts of components to be used are the most convenient and economical amounts consistent with the proper visibility of the recorded data. The resolution of the recorded data is, among other things, dependent on particle size, distribution and amount of particles, liquid solvent migration, chemical reaction efficiency, and other factors, all of which are things that can be worked out empirically by one familiar with the art, and which do not determine the principle of the invention, which, in part, involves means for enabling the bringing into solution, by marking pressure, of two normally solid components in a common liquid solvent component held isolated as liquid droplets, preferably in marking-pressurerupturable capsules having film walls, or else held isolated in a continuous marking-pressure-rupturable film as a discontinuous phase.
In the base-acid color system of this invention the acidic mark-forming component(s) reacts with the basic chromogenic material(s) to effect distinctive color formation or color change. In a multi-sheet system in which an acidic organic polymer is employed, it is desirable to include other materials to supplement the reactants. For example, kaolin can be added to improve the transfer ofthe liquid and/or the dissolved materials between the sheets. In addition, other materials such as bcntonite, attapulgite, talc, feldspar, halloysite, magnesium trisilicate, silica 'gel, propyllite, zinc sulfide, calcium sulfate, calcium citrate, calcium phosphate, calcium fluoride, barium sulfate and tannic acid can be included.
Various methods known to the prior art and disclosed in the aforementioned application Ser. No. 392,404 to Miller et al. and US. Pat. application Ser. No. 420,193 to Phillips, et al. can be employed in coating compositions of the mark-forming materials into their supporting sheets. An example of the compositions which can be coated onto the surface of an underlying sheet of a two-sheet system to react with the capsule coating on the underside of any overlying sheet is as follows:
Coating Composition Percent by Weight Phenolic polymer mixture Paper coating kaolin (white) 57 Calcium carbonate l2 Styrene butadiene latex 4 Ethylated starch 8 Gum arabic l The advantages of this invention are further illustrated by the following examples. The reactants and the proportions and other specific conditions are represented as being typical and should not be construed to limit the invention unduly.
EXAMPLE 1 Preparation of 7,7-bis-(3-methyl-diethylaminophen-4- yl)-5,7-dihydrofuro [3,4-b] pyrazine-5-one 16.8 g. mmols) of 2,3-pyrazine dicarboxylic acid was dissolved in 100 ml of hot acetic anhydride. When all was dissolved, 40.75 g. of N,N-dimethyl-m-toluidine was added and the reaction mixture refluxed 10 minutes (Note l and poured into ice and neutralized with ammonia. The aqueous was extracted with benzene and the benzene washed with water. The benzene was dried (Na SO and evaporated to a small volume and chromatographed on Alumina, eluting with benzene, then benzene: ether and then ether and then ethyl acetate. The concentrates were dissolved in benzene and pet ether added and seeds were added. After standing ,over night, filtering and drying, 2.3 g. of nicely crystalline material was obtained. Added petroleum ether to the mother liquor and a 3.75 g. more material obtained. Total weight obtained 6.05 g. (13%). The material had a nondescript but can be characterized by its T.L.C. characteristics which are on Silica Gel very bright green aging to a brownish-black. lts color (benzene soln.) on resin sheets are bright green and on Silton a dark green. Note 1: A longer reflux period did not result in a higher yield.
In this and the following example, resin, unless otherwise stated, is 80 parts by weight para-tertiary butyl phenol and parts by weight para-chlorophenol and clay, unless otherwise stated, is silton.
EXAMPLE ll Preparation of 7-(l-ethyl-2-methylindol-3-yl)-7-(3- methyl-dimethylaminophen-4-yl)-5,7- dihydrofuro[ 3,4-blpyr-idin -7-one EXAMPLE lll Preparation of 7-(l-ethyl-2-methylindol-3-yl)-7-(3- ethoxydiethylaminophen-4-yl )-5 ,7-dihydrofu ro 3,4- b]pyrazin-5-one A mixture of 4.65 g. (15 mmols) of (l-ethyl-Z- methylindol-Il-yl)-2-carboxy-pyrazine-S-yl ketone, 2.9 g. (15 mmols) of m-ethoxydiethylaminobenzene and 21 ml of acetic anhydride were heated at l20-l30C for 15 minutes. The mixture was poured into ice and ammonia and extracted with 500 ml of benzene and dried (Na SO,). The solvent was evaporated and the residual oil triturated with petroleum ether. An amorphous solid was obtained, 4.0 g. which had a single spot on thin layer chromotography. A benzene solution of this material when contacted to a sheet coated with clay or resin gave a blue color.
A few mgs of the above keto-acid was allowed to react with a substituted indole or aniline in mg quantities in the presence of a few drops of acetic anhydride. After adding water and ammonia the mixture was extracted with benzene applied to paper coated with resin or clay. The resultant colors are tabulated below.
O aflf Blue Purple a Green Gree n Blue e; @l, Blue Blue Purple P urple N I C;
Color Resin Sllton Green Blue Purple Purple Red Red Red Red C CH3, 3
l l' n EXAMPLE IV Preparation of 7,7-bis-( l-methyl-2-phenylindol-3-yl)- 5 ,7-dihydrofuro[ 3,4-b]pyrazin-5- one Where X ls: Resin Silton 5 9c} Green Green M rc fl m m Purple Purple i Q cu;
cfl Green Green Purple Purple m Purple Purple l: CH c n EXAMPLE V Preparation of 7-(l-ethyl-2-methylindol-3-yl)-7-(lmethyl-2-phenylindol-3-yl )-5 ,7-dihydrofuro[ 3,4-b] pyrazin-S-one A mixture of 3.0 g. (14.2 mmols) of l-ethyl-Z-methyl indol-3-yl)-(2-carboxy-pyrazin-5-yl) ketone 4.3 g. 14.2 mmols) of l-methyl-2-phenylindole and 15 ml of acetic anhydride was refluxed 5 minutes and poured into ice and ammonia and extracted twice with benzene. The benzene was washed with water and dried. Evaporation afforded 4.7 g. of material (68%), m.p. 2401C. A benzene solution of this material when applied to paper coated with resin or clay CF sheets, turned it purple.
The above keto-acid was allowed to react with an indole, pyrrole or substituted aniline by heating a few mgs of each with a few drops of acetic anhydride, diluting with water, ammonia and extracting the reaction mixture with benzene. The benzene layer was washed with water and applied to paper coated with resin or clay. The colors are tabulated below:
C t "3 c W@ Purple Purple W) I I d Red I CH5 N a Blue Blue Purple CH3 1 31. I n
EXAMPLE Vl Preparation of l-ethyl-2-methylindol-3-yl) (2-carboxypyridin-Il-yl) ketone A mixture of 2.3,-pyridinedicarboxylic anhydride 14.9 g. mrnols) and l-ethyl-Z-methylindole 15.9 g. (100 mmols) were heated on a steam bath for 72 hours. The reaction mixture was extracted with dilute ammonia and filtered. The filtrate was washed with benzene and filtered again. The pH of the filtrate was then adjusted to 4.4 and the resultant precipitate filtered, washed with water and recrystallized from alco hol. This afforded l2.5 g, (36%) of air dried material. Repeated recrystallization of a sample of this material from alcohol gave a constant mp of l86-8 C (first melting at lO5-7 C and resolidifying). This sample was dried for analysis. Calculated for C H N O C, 70.l2; H. 5.23; N 909. Found: C, 69.83; H. 5.24; N, 8.83.
A few rngs of the above anhydride were allowed to react with a few mgs of an indole in the presence of a few drops of acetic anhydride for one minute. The mixture was diluted with water and ammonia added. The reaction mixture was then extracted with benzene and the benzene washed with water. The colors obtained when this solution was applied to paper coated with resin or clay are tabulated below.
Color m Red-Purple l on C1,;
Purple l (llw Red-Purple I d C;
EXAMPLE Vll Preparation of 7,7-bis-(l,2-dimethylindol-3-yl)-S.7- dihydrofuro [3,4-b1pyridin-7-one A mixture of 2,3-pyridinedicarboxylic anhydride l.5 g. (10 mmols), l,2-dimethylindole, 3.64 g. (25 mmols) and 10 ml of acetic anhydride were refluxed for one half hour and poured into ice and 5% sodium bicarbonate solution. The aqueous layer (pH 8) was extracted with benzene and the benzene layer washed with water and dried (sodium sulfate). On evaporation of the benzene and washing of crystalline material. T.L.C. of this material revealed two spots which indicated that an ismeric mixture was obtained. A solution of this material when contacted with either paper coated with resin or clay gave a bright purple color.
On recrystallization and chromatography a single isomer (faster moving on TLC) was obtained mp 257.5-8 C.
EXAMPLE Vlll Preparation of l-ethyl-2-methylindol-3-yl) (Z-carboxy pyrazin-3-yl) ketone not carried out A mixture of 6.3 g. (50 mmols) of 2,3-pyrazine dicar- 50 boxylic anhydride and 7.85 g. (50 mmols) of l-ethyl-2- methylindole were heated over night on-the steam bath. The molten mixture was cooled, extracted with dilute ammonia and brought to a pH of 4. Filtered and recrystallized from alcohol. This afforded 3.15 g. of
material mp l85-9 C.
A mixture of 15.0 g. of pyrazine dicarboxylic acid and ml of acetic anhydride were heated on a steam bath 16 hours and allowed to cool. The resultant voluminous precipitate was filtered, washed with acetic acid and vacuum dried at C. A yield of 12.0 g. (91.5%) was obtained mp 203 C. This material was. used without further purification.
EXAMPLE X Prints were made on sensitized sheets with 3 compounds. The following table consists of the reflective intensities obtained on a variety of prints. R is defined as:
Reflectance of Print/Reflectance of Background A value of L000 would indicate no color. Therefore, the more reflectance the higher the R value and the more absorbance of light, i.e., the more intense the color the lower the R value. If R increases with time, the print fades. Compounds which exhibit good fade resistance will demonstrate small increases in R with the passage of time.
Fresh Print Print, 4 Hours Old Print, 8 Weeks Old a 5 K is 5 K Is 5 K /s 1 80-Resin* 0, 275 0.956 0.215 1.433 0.225 1.335 Paraphenylphenol 0. 242 1. 187 0. 238 1. 220 0. 222 1. 363 Silton 0. 3. 600 0. 118 3. 297 0. 2. 408 i C", O Attapu lgite 0. 173 1. 977 0. 2. 205 0. 202 1. 576 Ca :0 N
c 80-20 Resin* 0. 202 1. 576 0. 1. 868 0. 210 1 1. 486 n x o Paraphenylphenol 0. 178 1. 898 0. 178 1. 898 0. 19B 1. 624 en, ,0 Silton 0. 078 5. 450 0. 083 5. 066 0. 170 2. 026 c Attapulgite 0. 118 3. 297 0. 178 1. 898 0. 170 2. 02-3 80-20 Resin 0.210 1.486 0. 1.727 Paraphenylphenol 0. 190 1. 727' 0. 178 1. 898 Silton 0.138 2.692 0.205 1.542 Attapulgite 0.215 1.433 0.343 0.630
' 80 parts by weight para-tertiary-butylphenol and 20 parts by weight para-chlorophenol These reflective values demonstrate the extraordinary fade resistance of the pyridine and pyrazine compounds of this invention. In some cases, there was little, if any, increase in R with time, thereby demonstrating little or no fade. In fact, the reflective values decrease with time indicating they become more intense with agmg.
The reflectance values were converted to Kubelka- Munk functions (K/S) as shown in the table. The calculations and use of these functions are described by Dr. G. Kortun et al. in Angewandte Chemie, International Edition, 2, pp. 333-341 (1963). These functions are a reliable measure of the quantity of color present per unit area of print tested. While reflectance values (R) provide a measure of color intensity, Kubelka-Munk functions (K/S) provide a measure of quantity of color present. The Kubelka-Munk rules (K/S) in the table demonstrate the high degree of tinctorialpower of the compounds of this invention.
Although this invention has been described in considerable detail, it must be understood that such detail is for the purpose of illustration only and that many variations and modifications can be made by one skilled in the art without departing from the scope and spirit thereofl What is claimed is: l. A chromogenic compound represented by the for- 5 mula:
C l I I cu, C =0 0;! QR
Claims (1)
1. A CHROMOGENIC COMPOUND REPRESENTED BY THE FORMULA:
Priority Applications (9)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| BE791793D BE791793A (en) | 1971-12-06 | CHROMOGENIC COMPOUNDS | |
| US00205325A US3775424A (en) | 1971-12-06 | 1971-12-06 | Furo(3,4-b)pyridine-7(5h)-ones |
| CA152,803A CA971172A (en) | 1971-12-06 | 1972-09-28 | Chromogenic material |
| GB5230672A GB1367569A (en) | 1971-12-06 | 1972-11-13 | Chromogenic pyridine and pyrazine compounds |
| JP47119724A JPS5116807B2 (en) | 1971-12-06 | 1972-11-29 | |
| FR7242985A FR2169803B3 (en) | 1971-12-06 | 1972-12-04 | |
| DE2259409A DE2259409C2 (en) | 1971-12-06 | 1972-12-05 | Chromogenic furo [3,4-b] pyridin-7-ones and pyrazin-5-ones |
| US00352832A US3853869A (en) | 1971-12-06 | 1973-04-19 | 7-(1-ethyl-2-methylindol-3-yl) 7-(substituted)-5,7-dihydrofuro (3,4-b) pyrazin-5-one |
| DE19752520148 DE2520148A1 (en) | 1971-12-06 | 1975-05-06 | CHROMOGENIC QUINOXALINE COMPOUNDS |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US20532571A | 1971-12-06 | 1971-12-06 | |
| US00352832A US3853869A (en) | 1971-12-06 | 1973-04-19 | 7-(1-ethyl-2-methylindol-3-yl) 7-(substituted)-5,7-dihydrofuro (3,4-b) pyrazin-5-one |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3853869A true US3853869A (en) | 1974-12-10 |
Family
ID=26900330
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00205325A Expired - Lifetime US3775424A (en) | 1971-12-06 | 1971-12-06 | Furo(3,4-b)pyridine-7(5h)-ones |
| US00352832A Expired - Lifetime US3853869A (en) | 1971-12-06 | 1973-04-19 | 7-(1-ethyl-2-methylindol-3-yl) 7-(substituted)-5,7-dihydrofuro (3,4-b) pyrazin-5-one |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00205325A Expired - Lifetime US3775424A (en) | 1971-12-06 | 1971-12-06 | Furo(3,4-b)pyridine-7(5h)-ones |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US3775424A (en) |
| JP (1) | JPS5116807B2 (en) |
| BE (1) | BE791793A (en) |
| CA (1) | CA971172A (en) |
| FR (1) | FR2169803B3 (en) |
| GB (1) | GB1367569A (en) |
Cited By (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3936564A (en) * | 1973-07-24 | 1976-02-03 | Hodogaya Chemical Co., Ltd. | Pressure-sensitive copying paper containing lactone compounds of pyridine-carboxylic acid |
| DE2842263A1 (en) * | 1977-09-29 | 1979-04-05 | Appleton Paper Inc | PRODUCTION OF CHROMOGENIC PYRIDINE COMPOUNDS |
| US4243250A (en) * | 1979-06-14 | 1981-01-06 | Sterling Drug Inc. | Carbonless duplicating systems |
| US4246318A (en) * | 1979-04-09 | 1981-01-20 | Appleton Papers Inc. | Thermally-responsive record material |
| US4275206A (en) * | 1979-03-05 | 1981-06-23 | Appleton Papers Inc. | Lactone compounds containing an indolizine radical |
| US4275905A (en) * | 1978-12-29 | 1981-06-30 | Appleton Papers Inc. | Pressure-sensitive record material |
| FR2481286A1 (en) * | 1980-04-28 | 1981-10-30 | Yamamoto Kagaku Gosei Kk | CHROMOGENIC MATERIAL OF THE AZAPHTALIDE CLASS, PROCESS FOR PREPARING THE SAME, CHROMOGENIC SOLUTION AND RECORDING MEDIUM CONTAINING THE SAME |
| US4299411A (en) * | 1978-12-29 | 1981-11-10 | Appleton Papers Inc. | Pressure-sensitive record material |
| FR2553425A1 (en) * | 1983-10-18 | 1985-04-19 | Yamada Chem Co | NOVEL CHROMOGENIC AZAPHTALIDE COMPOUNDS AND PRESSURE-SENSITIVE RECORDING MATERIAL COMPRISING THESE COMPOUNDS |
| EP0124377A3 (en) * | 1983-04-28 | 1985-08-14 | Yamamoto Kagaku Gosei Co., Ltd. | Chromogenic compounds |
| US4564679A (en) * | 1981-06-23 | 1986-01-14 | Yamada Chemical Co., Ltd. | Chromogenic compounds |
| US5041547A (en) * | 1986-08-28 | 1991-08-20 | Appleton Papers Inc. | Chromogenic substituted 4,7-diazaphthalides |
| US5220036A (en) * | 1985-12-16 | 1993-06-15 | Polaroid Corporation | Thiolactone dye precursors |
| EP0688759A1 (en) | 1994-06-23 | 1995-12-27 | Fuji Photo Film Co., Ltd. | Alpha-resorcylic acid ester derivatives and recording materials incorporating them |
| US6294502B1 (en) | 1998-05-22 | 2001-09-25 | Bayer Aktiengesellschaft | Thermally-responsive record material |
| US20040169071A1 (en) * | 2003-02-28 | 2004-09-02 | Appleton Papers Inc. | Token array and method employing authentication tokens bearing scent formulation information |
| US20040214134A1 (en) * | 2003-04-22 | 2004-10-28 | Appleton Papers Inc. | Dental articulation kit and method |
| US20040251309A1 (en) * | 2003-06-10 | 2004-12-16 | Appleton Papers Inc. | Token bearing magnetc image information in registration with visible image information |
| US20060063125A1 (en) * | 2003-04-22 | 2006-03-23 | Hamilton Timothy F | Method and device for enhanced dental articulation |
| US20090087767A1 (en) * | 2007-10-01 | 2009-04-02 | Fuji Xerox Co., Ltd. | Color toner for flash fusing, method for producing the same, and electrostatic image developer, process cartridge, and image forming apparatus using the same |
| WO2010090213A1 (en) | 2009-02-04 | 2010-08-12 | 富士フイルム株式会社 | Thermal distribution display and method for confirming thermal distribution |
| WO2014124052A1 (en) | 2013-02-06 | 2014-08-14 | Fujifilm Hunt Chemicals, Inc. | Chemical coating for a laser-markable material |
| US9409219B2 (en) | 2011-02-07 | 2016-08-09 | Valspar Sourcing, Inc. | Compositions for containers and other articles and methods of using same |
| US9475328B2 (en) | 2012-08-09 | 2016-10-25 | Valspar Sourcing, Inc. | Developer for thermally responsive record materials |
| US9724276B2 (en) | 2012-08-09 | 2017-08-08 | Valspar Sourcing, Inc. | Dental materials and method of manufacture |
| US9944749B2 (en) | 2012-08-09 | 2018-04-17 | Swimc, Llc | Polycarbonates |
| US10113027B2 (en) | 2014-04-14 | 2018-10-30 | Swimc Llc | Methods of preparing compositions for containers and other articles and methods of using same |
| US10316211B2 (en) | 2012-08-09 | 2019-06-11 | Swimc Llc | Stabilizer and coating compositions thereof |
| US10435199B2 (en) | 2012-08-09 | 2019-10-08 | Swimc Llc | Compositions for containers and other articles and methods of using same |
| US10526502B2 (en) | 2012-08-09 | 2020-01-07 | Swimc Llc | Container coating system |
| US11130881B2 (en) | 2010-04-16 | 2021-09-28 | Swimc Llc | Coating compositions for packaging articles and methods of coating |
| US11130835B2 (en) | 2015-11-03 | 2021-09-28 | Swimc Llc | Liquid epoxy resin composition useful for making polymers |
Families Citing this family (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS49118514A (en) * | 1973-03-15 | 1974-11-13 | ||
| JPS5124362B2 (en) * | 1973-03-15 | 1976-07-23 | ||
| JPS49119718A (en) * | 1973-03-23 | 1974-11-15 | ||
| US4211872A (en) * | 1978-12-11 | 1980-07-08 | Hung William M | Substituted furopyridinones and furopyrazinones |
| CA1137477A (en) * | 1978-12-11 | 1982-12-14 | Paul J. Schmidt | Substituted furopyridinones and furopyrazinines as color formers in pressure- sensitive and thermal imaging systems |
| US4337340A (en) * | 1979-06-14 | 1982-06-29 | Sterling Drug Inc. | Processes for preparing substituted furopyridinones and furopyrazinones |
| US4508897A (en) * | 1981-12-23 | 1985-04-02 | Ciba Geigy Corporation | Preparation of chromogenic azaphthalides |
| US4668790A (en) * | 1981-12-23 | 1987-05-26 | Ciba-Geigy Corporation | Chromogenic dihydrofuropyridinones |
| CH653353A5 (en) * | 1983-05-09 | 1985-12-31 | Ciba Geigy Ag | CHROMOGENIC 3,3-BISINDOLYL-4-AZAPHTHALIDE. |
| CH664578A5 (en) * | 1985-01-15 | 1988-03-15 | Ciba Geigy Ag | RING SUBSTITUTED 4-AZAPHTHALID. |
| GB8504631D0 (en) | 1985-02-22 | 1985-03-27 | Ici Plc | Chromogenic compounds |
| US4660060A (en) * | 1985-06-17 | 1987-04-21 | The Hilton-Davis Chemical Co. | Imaging systems containing 3-(indol-3-yl)-3-(4-substituted aminophenyl)phthalides |
| JPS63113446A (en) * | 1986-10-30 | 1988-05-18 | Fuji Photo Film Co Ltd | Photosensitive material |
| JPH04338758A (en) * | 1991-05-15 | 1992-11-26 | Brother Ind Ltd | Image recording method |
| JPH0592674A (en) * | 1991-10-02 | 1993-04-16 | Brother Ind Ltd | Image-receiving sheet |
| JPH06324511A (en) * | 1993-05-14 | 1994-11-25 | Brother Ind Ltd | Photosensitive microcapsule type toner |
| JP3362745B2 (en) * | 1993-07-28 | 2003-01-07 | ブラザー工業株式会社 | Photosensitive microcapsule type toner |
| JPH10129021A (en) * | 1996-10-25 | 1998-05-19 | Fuji Photo Film Co Ltd | Thermal recorder system |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3647792A (en) * | 1970-05-04 | 1972-03-07 | Int Flavors & Fragrances Inc | Heterocyclic pyrazines |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS492239A (en) * | 1972-04-22 | 1974-01-10 | ||
| JPS4918725A (en) * | 1972-06-13 | 1974-02-19 |
-
0
- BE BE791793D patent/BE791793A/en not_active IP Right Cessation
-
1971
- 1971-12-06 US US00205325A patent/US3775424A/en not_active Expired - Lifetime
-
1972
- 1972-09-28 CA CA152,803A patent/CA971172A/en not_active Expired
- 1972-11-13 GB GB5230672A patent/GB1367569A/en not_active Expired
- 1972-11-29 JP JP47119724A patent/JPS5116807B2/ja not_active Expired
- 1972-12-04 FR FR7242985A patent/FR2169803B3/fr not_active Expired
-
1973
- 1973-04-19 US US00352832A patent/US3853869A/en not_active Expired - Lifetime
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3647792A (en) * | 1970-05-04 | 1972-03-07 | Int Flavors & Fragrances Inc | Heterocyclic pyrazines |
Cited By (49)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3936564A (en) * | 1973-07-24 | 1976-02-03 | Hodogaya Chemical Co., Ltd. | Pressure-sensitive copying paper containing lactone compounds of pyridine-carboxylic acid |
| DE2842263A1 (en) * | 1977-09-29 | 1979-04-05 | Appleton Paper Inc | PRODUCTION OF CHROMOGENIC PYRIDINE COMPOUNDS |
| FR2408609A1 (en) * | 1977-09-29 | 1979-06-08 | Appleton Paper Inc | PROCESS FOR THE PRODUCTION OF AN (INDOLYL) - (DIALKYLAMINOPHENYL) -5,7-DIHYDROFURO- (3,4-B) -PYRIDINE-5- OR -7-ONE |
| US4275905A (en) * | 1978-12-29 | 1981-06-30 | Appleton Papers Inc. | Pressure-sensitive record material |
| US4299411A (en) * | 1978-12-29 | 1981-11-10 | Appleton Papers Inc. | Pressure-sensitive record material |
| US4275206A (en) * | 1979-03-05 | 1981-06-23 | Appleton Papers Inc. | Lactone compounds containing an indolizine radical |
| US4246318A (en) * | 1979-04-09 | 1981-01-20 | Appleton Papers Inc. | Thermally-responsive record material |
| US4243250A (en) * | 1979-06-14 | 1981-01-06 | Sterling Drug Inc. | Carbonless duplicating systems |
| FR2481286A1 (en) * | 1980-04-28 | 1981-10-30 | Yamamoto Kagaku Gosei Kk | CHROMOGENIC MATERIAL OF THE AZAPHTALIDE CLASS, PROCESS FOR PREPARING THE SAME, CHROMOGENIC SOLUTION AND RECORDING MEDIUM CONTAINING THE SAME |
| US4564679A (en) * | 1981-06-23 | 1986-01-14 | Yamada Chemical Co., Ltd. | Chromogenic compounds |
| AU570042B2 (en) * | 1983-04-28 | 1988-03-03 | Yamamoto Kagaku Gosei Co. Ltd. | Spiro compounds |
| EP0124377A3 (en) * | 1983-04-28 | 1985-08-14 | Yamamoto Kagaku Gosei Co., Ltd. | Chromogenic compounds |
| FR2553425A1 (en) * | 1983-10-18 | 1985-04-19 | Yamada Chem Co | NOVEL CHROMOGENIC AZAPHTALIDE COMPOUNDS AND PRESSURE-SENSITIVE RECORDING MATERIAL COMPRISING THESE COMPOUNDS |
| US4747875A (en) * | 1983-10-18 | 1988-05-31 | Yamada Chemical Co., Ltd. | Chromogenic azaphthalide compound and a colour-forming recording composition containing the same |
| US5220036A (en) * | 1985-12-16 | 1993-06-15 | Polaroid Corporation | Thiolactone dye precursors |
| US5041547A (en) * | 1986-08-28 | 1991-08-20 | Appleton Papers Inc. | Chromogenic substituted 4,7-diazaphthalides |
| EP0688759A1 (en) | 1994-06-23 | 1995-12-27 | Fuji Photo Film Co., Ltd. | Alpha-resorcylic acid ester derivatives and recording materials incorporating them |
| US6294502B1 (en) | 1998-05-22 | 2001-09-25 | Bayer Aktiengesellschaft | Thermally-responsive record material |
| US20040169071A1 (en) * | 2003-02-28 | 2004-09-02 | Appleton Papers Inc. | Token array and method employing authentication tokens bearing scent formulation information |
| US7108190B2 (en) | 2003-02-28 | 2006-09-19 | Appleton Papers Inc. | Token array and method employing authentication tokens bearing scent formulation information |
| US20040214134A1 (en) * | 2003-04-22 | 2004-10-28 | Appleton Papers Inc. | Dental articulation kit and method |
| US6932602B2 (en) | 2003-04-22 | 2005-08-23 | Appleton Papers Inc. | Dental articulation kit and method |
| US20060063125A1 (en) * | 2003-04-22 | 2006-03-23 | Hamilton Timothy F | Method and device for enhanced dental articulation |
| US20040251309A1 (en) * | 2003-06-10 | 2004-12-16 | Appleton Papers Inc. | Token bearing magnetc image information in registration with visible image information |
| US20090087767A1 (en) * | 2007-10-01 | 2009-04-02 | Fuji Xerox Co., Ltd. | Color toner for flash fusing, method for producing the same, and electrostatic image developer, process cartridge, and image forming apparatus using the same |
| US8097389B2 (en) | 2007-10-01 | 2012-01-17 | Fuji Xerox Co., Ltd. | Color toner for flash fusing, method for producing the same, and electrostatic image developer, process cartridge, and image forming apparatus using the same |
| WO2010090213A1 (en) | 2009-02-04 | 2010-08-12 | 富士フイルム株式会社 | Thermal distribution display and method for confirming thermal distribution |
| US12234371B2 (en) | 2010-04-16 | 2025-02-25 | Swimc Llc | Coating compositions for packaging articles and methods of coating |
| US11130881B2 (en) | 2010-04-16 | 2021-09-28 | Swimc Llc | Coating compositions for packaging articles and methods of coating |
| US10294388B2 (en) | 2011-02-07 | 2019-05-21 | Swimc Llc | Compositions for containers and other articles and methods of using same |
| US9409219B2 (en) | 2011-02-07 | 2016-08-09 | Valspar Sourcing, Inc. | Compositions for containers and other articles and methods of using same |
| US11634607B2 (en) | 2011-02-07 | 2023-04-25 | Swimc Llc | Compositions for containers and other articles and methods of using same |
| US11053409B2 (en) | 2011-02-07 | 2021-07-06 | Jeffrey Niederst | Compositions for containers and other articles and methods of using same |
| US11628974B2 (en) | 2012-08-09 | 2023-04-18 | Swimc Llc | Compositions for containers and other articles and methods of using same |
| US10316211B2 (en) | 2012-08-09 | 2019-06-11 | Swimc Llc | Stabilizer and coating compositions thereof |
| US10435199B2 (en) | 2012-08-09 | 2019-10-08 | Swimc Llc | Compositions for containers and other articles and methods of using same |
| US10526502B2 (en) | 2012-08-09 | 2020-01-07 | Swimc Llc | Container coating system |
| US9724276B2 (en) | 2012-08-09 | 2017-08-08 | Valspar Sourcing, Inc. | Dental materials and method of manufacture |
| US10894632B2 (en) | 2012-08-09 | 2021-01-19 | Swimc Llc | Compositions for containers and other articles and methods of using same |
| US9475328B2 (en) | 2012-08-09 | 2016-10-25 | Valspar Sourcing, Inc. | Developer for thermally responsive record materials |
| US12043448B2 (en) | 2012-08-09 | 2024-07-23 | Swimc Llc | Compositions for containers and other articles and methods of using same |
| US11306218B2 (en) | 2012-08-09 | 2022-04-19 | Swimc Llc | Container coating system |
| US9944749B2 (en) | 2012-08-09 | 2018-04-17 | Swimc, Llc | Polycarbonates |
| WO2014124052A1 (en) | 2013-02-06 | 2014-08-14 | Fujifilm Hunt Chemicals, Inc. | Chemical coating for a laser-markable material |
| US10745514B2 (en) | 2014-04-14 | 2020-08-18 | Swimc Llc | Methods of preparing compositions for containers and other articles and methods of using same |
| US11525018B2 (en) | 2014-04-14 | 2022-12-13 | Swimc Llc | Methods of preparing compositions for containers and other articles and methods of using same |
| US10113027B2 (en) | 2014-04-14 | 2018-10-30 | Swimc Llc | Methods of preparing compositions for containers and other articles and methods of using same |
| US11130835B2 (en) | 2015-11-03 | 2021-09-28 | Swimc Llc | Liquid epoxy resin composition useful for making polymers |
| US12351677B2 (en) | 2015-11-03 | 2025-07-08 | Swimc Llc | Liquid epoxy resin composition useful for making polymers |
Also Published As
| Publication number | Publication date |
|---|---|
| BE791793A (en) | 1973-03-16 |
| US3775424A (en) | 1973-11-27 |
| FR2169803B3 (en) | 1976-01-09 |
| FR2169803A1 (en) | 1973-09-14 |
| JPS5116807B2 (en) | 1976-05-27 |
| CA971172A (en) | 1975-07-15 |
| JPS4865011A (en) | 1973-09-07 |
| GB1367569A (en) | 1974-09-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3853869A (en) | 7-(1-ethyl-2-methylindol-3-yl) 7-(substituted)-5,7-dihydrofuro (3,4-b) pyrazin-5-one | |
| US3681390A (en) | Dialkylamino fluoran chromogenic compounds | |
| US3540911A (en) | Pressure sensitive record sheets employing 3 - (phenyl) - 3-(indol - 3 - yl)-phthalides | |
| US3540913A (en) | Pressure sensitive recording sheet employing substituted indole phthalides | |
| US3624107A (en) | Nitro- and amino-substituted fluorans | |
| US3736337A (en) | Tetrahalogenated chromogenic compounds and their use | |
| US4154463A (en) | Pressure-sensitive or heat-sensitive recording material containing a carbazolyl methane compound | |
| CA1052381A (en) | Heterocyclic substituted fluorans | |
| US3491117A (en) | Indole substituted pyromellitides | |
| US3642828A (en) | Alkyl or halo substituted tetrahalofluorans | |
| US3703397A (en) | Mark-forming record materials and process for their use | |
| US3769057A (en) | Pressure-sensitive record sheets employing amido- and sulfonamido-substituted fluorans | |
| US3746562A (en) | Mark forming record materials | |
| US3849164A (en) | Pressure-sensitive record unit comprising a mixture of two chromogenic compounds | |
| US3804855A (en) | Naphthalide compounds | |
| US3787325A (en) | Alkylamino spiro {8 12-h{8 1{9 benzopyran {8 3,2f{9 {14 quinoline-12,1{40 phthalide | |
| US3654314A (en) | Tetrachlorinated chromogenic compounds | |
| US3883557A (en) | Trimethylfluoran compounds | |
| US3721576A (en) | Mark forming record materials and process for their use | |
| US3730755A (en) | Pressure-sensitive record materials | |
| US3764369A (en) | Pressure sensitive recording unit | |
| US4503227A (en) | Chromogenic dihydroquinazolines | |
| US3857675A (en) | Mixtures of two chromogenic compounds | |
| US3694461A (en) | Chromogenic compounds | |
| US3715226A (en) | Mark-forming record materials |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: APPLETON PAPERS INC. Free format text: MERGER;ASSIGNORS:TUVACHE, INC.;GERMAINE MONTEIL COSMETIQUES CORPORATION (CHANGED TO APPLETON PAPERS);REEL/FRAME:004108/0262 Effective date: 19811215 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES) |
|
| AS | Assignment |
Owner name: WTA INC., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:APPLETON PAPERS INC., A CORPORTION OF DE;REEL/FRAME:005699/0768 Effective date: 19910214 |