US5023367A - Linear, low-molecular-weight polyester-based polyol - Google Patents
Linear, low-molecular-weight polyester-based polyol Download PDFInfo
- Publication number
- US5023367A US5023367A US07/355,158 US35515889A US5023367A US 5023367 A US5023367 A US 5023367A US 35515889 A US35515889 A US 35515889A US 5023367 A US5023367 A US 5023367A
- Authority
- US
- United States
- Prior art keywords
- polyol
- weight
- low
- linear
- cyclohexane dimethanol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920005862 polyol Polymers 0.000 title claims abstract description 36
- 150000003077 polyols Chemical class 0.000 title claims abstract description 35
- 229920000728 polyester Polymers 0.000 title claims abstract description 6
- 239000007787 solid Substances 0.000 claims abstract description 17
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 13
- VEIOBOXBGYWJIT-UHFFFAOYSA-N cyclohexane;methanol Chemical compound OC.OC.C1CCCCC1 VEIOBOXBGYWJIT-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000002253 acid Substances 0.000 claims description 12
- 239000007795 chemical reaction product Substances 0.000 claims description 4
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 abstract 1
- 101150035983 str1 gene Proteins 0.000 abstract 1
- 239000000047 product Substances 0.000 description 17
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- 150000002009 diols Chemical class 0.000 description 10
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 9
- 239000010408 film Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000005809 transesterification reaction Methods 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 238000000998 batch distillation Methods 0.000 description 5
- 150000004702 methyl esters Chemical class 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 150000005690 diesters Chemical class 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 4
- 229920003270 Cymel® Polymers 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000008199 coating composition Substances 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 210000003298 dental enamel Anatomy 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 2
- BNCADMBVWNPPIZ-UHFFFAOYSA-N 2-n,2-n,4-n,4-n,6-n,6-n-hexakis(methoxymethyl)-1,3,5-triazine-2,4,6-triamine Chemical compound COCN(COC)C1=NC(N(COC)COC)=NC(N(COC)COC)=N1 BNCADMBVWNPPIZ-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 125000005907 alkyl ester group Chemical group 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- -1 titanium alkoxide Chemical class 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- SZCWBURCISJFEZ-UHFFFAOYSA-N (3-hydroxy-2,2-dimethylpropyl) 3-hydroxy-2,2-dimethylpropanoate Chemical compound OCC(C)(C)COC(=O)C(C)(C)CO SZCWBURCISJFEZ-UHFFFAOYSA-N 0.000 description 1
- ZWVMLYRJXORSEP-UHFFFAOYSA-N 1,2,6-Hexanetriol Chemical compound OCCCCC(O)CO ZWVMLYRJXORSEP-UHFFFAOYSA-N 0.000 description 1
- PTBDIHRZYDMNKB-UHFFFAOYSA-N 2,2-Bis(hydroxymethyl)propionic acid Chemical compound OCC(C)(CO)C(O)=O PTBDIHRZYDMNKB-UHFFFAOYSA-N 0.000 description 1
- BXGYYDRIMBPOMN-UHFFFAOYSA-N 2-(hydroxymethoxy)ethoxymethanol Chemical compound OCOCCOCO BXGYYDRIMBPOMN-UHFFFAOYSA-N 0.000 description 1
- XOGJBKWFLRETGW-UHFFFAOYSA-N 5-aminotriazine-4-carbaldehyde Chemical class NC1=CN=NN=C1C=O XOGJBKWFLRETGW-UHFFFAOYSA-N 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- UDSFAEKRVUSQDD-UHFFFAOYSA-N Dimethyl adipate Chemical compound COC(=O)CCCCC(=O)OC UDSFAEKRVUSQDD-UHFFFAOYSA-N 0.000 description 1
- MUXOBHXGJLMRAB-UHFFFAOYSA-N Dimethyl succinate Chemical compound COC(=O)CCC(=O)OC MUXOBHXGJLMRAB-UHFFFAOYSA-N 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001279 adipic acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- QYMFNZIUDRQRSA-UHFFFAOYSA-N dimethyl butanedioate;dimethyl hexanedioate;dimethyl pentanedioate Chemical compound COC(=O)CCC(=O)OC.COC(=O)CCCC(=O)OC.COC(=O)CCCCC(=O)OC QYMFNZIUDRQRSA-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- XTDYIOOONNVFMA-UHFFFAOYSA-N dimethyl pentanedioate Chemical compound COC(=O)CCCC(=O)OC XTDYIOOONNVFMA-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000011552 falling film Substances 0.000 description 1
- HOXINJBQVZWYGZ-UHFFFAOYSA-N fenbutatin oxide Chemical compound C=1C=CC=CC=1C(C)(C)C[Sn](O[Sn](CC(C)(C)C=1C=CC=CC=1)(CC(C)(C)C=1C=CC=CC=1)CC(C)(C)C=1C=CC=CC=1)(CC(C)(C)C=1C=CC=CC=1)CC(C)(C)C1=CC=CC=C1 HOXINJBQVZWYGZ-UHFFFAOYSA-N 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N glutaric acid Chemical compound OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 150000002311 glutaric acids Chemical class 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- FHKSXSQHXQEMOK-UHFFFAOYSA-N hexane-1,2-diol Chemical compound CCCCC(O)CO FHKSXSQHXQEMOK-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000622 liquid--liquid extraction Methods 0.000 description 1
- 238000013035 low temperature curing Methods 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 150000002697 manganese compounds Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 235000011044 succinic acid Nutrition 0.000 description 1
- 150000003444 succinic acids Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- QQOWHRYOXYEMTL-UHFFFAOYSA-N triazin-4-amine Chemical class N=C1C=CN=NN1 QQOWHRYOXYEMTL-UHFFFAOYSA-N 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- 150000004072 triols Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/199—Acids or hydroxy compounds containing cycloaliphatic rings
Definitions
- This invention is in the field of certain linear, low molecular weight polyester-based polyols having terminal primary hydroxy groups, comparatively low viscosities and comparatively high solids contents.
- This invention is also in the field of coating compositions containing these polyols with a cross-linking agent such as aminotriazine compounds and resins such as melamine-formaldehyde resins, urea-formaldehyde resins, epoxy resins, isocyanates or acrylic polymers containing reactive groups, such as hydroxyl groups, carboxyl groups, amide groups, amine groups and the like.
- This invention relates to a linear, low-molecular weight polyester-based polyol having terminal primary hydroxy groups, comparatively low viscosity and a comparatively high solids content.
- the invention also relates to a process for the preparation of said polyol.
- the polyols of the present invention can be prepared by transesterifying a mixture of the alkyl esters of aliphatic dibasic acids or esterifying a mixture of the acids. It is preferred to start with the methyl esters of adipic, glutaric and succinic acids, although other lower alkyl esters could be used, such as the ethyl, propyl and butyl esters and the like, but cost factors generally remove them from consideration and nothing of value is to be gained by their use.
- this mixture of methyl esters is available commercially and is therefore additionally preferred, for this reason.
- These methyl esters have a mole ratio of about 0.5:1.5:0.6, dimethyl adipate, dimethyl glutarate and dimethyl succinate respectively. Variations of this mole ratio can be tolerated depending upon the desired properties of the final product. Lower viscosities are obtainable with higher levels of glutarate, for example.
- Dibasic acids that are acceptable are succinic, glutaric, adipic, pimelic, suberic, azelaic and sebacic and higher homologs or mixtures thereof.
- methyl esters sometimes referred to as dibasic esters or DBE for brevity, are mixed with a diol or triol containing at least two primary hydroxyl groups.
- the preferred diol is cyclohexane dimethanol, CHDM.
- diols and triols with primary hydroxyls examples include neopentyl glycol; 1,4-butanediol;1,6-hexanediol; 1,2,6-hexanetriol; trimethylol ethane; trimethylol propane; ethylene glycol; diethylene glycol; dimethylolpropionic acid; and 2,2-dimethyl-3-hydroxypropyl-2,2-dimethyl-3-hydroxypropionate and the like.
- Diols with a mixture of primary and secondary hydroxyls are less desirable, but may be used, and include propylene glycol and 1,2-hexylene glycol. Mixtures of diols may also be used.
- a catalyst is employed for the esterification/transesterification reaction for the purpose of lowering reaction temperatures and reducing color development in the product.
- Typical catalysts that may be employed are the alkoxides of titanium, soluble tin compounds such as dibutyl tin dilaurate and soluble manganese compounds such as Mn(OAc) 2 .
- Catalyst levels of 0.005 to 1.0% by weight can be used with typical levels of 0.01 to 0.1% on the same basis.
- the mixed methyl esters are combined with CHDM in a suitable reaction vessel and heated in the presence of a conventional transesterification catalyst, such as a titanium alkoxide, in order to accomplish transesterification.
- a conventional transesterification catalyst such as a titanium alkoxide
- the methanol is split off during the heating step and is easily removed as free methanol until the new reaction product is devoid of or substantially completely free of methanol.
- the resultant product will contain, as a general rule, some varying amounts of unreacted cyclohexane dimethanol depending on the initial mole ratio of the reactants and the technique used to remove the cyclohexane dimethanol.
- the initial starting mole ratios of the dimethyl esters, also referred to as dibasic esters, considered as a whole and as one entity, tothecyclohexane dimethanol can be varied between about 1.0:1.5 and 1.0:10.0 respectively but preferably between about 1.0:2.0 and 1.0:4.0 respectively.
- the ultimately produced polyol will be devoid of or substantially completely free of any cyclohexane dimethanol.
- the expressions devoid of or substantially completely free of means less than about 12% and preferably less than about 4% by weight based on the total weight of the final polyol reaction product.
- the conventional technique used to remove the unreacted diol is batch distillation.
- the preferred technique uses continuous rapid stripping of the CHDM immediately followed by cooling the product to prevent chemical reaction and equilibration.
- Continuous large-scale rapid stripping can be accomplished using several processes including continuous column distillation, shell-and-tube evaporators and falling-film evaporator-strippers, to name several examples. It is conceivable that other techniques could be applied to remove excess diol, including liquid-liquid extraction or crystallization.
- a useful laboratory technique to demonstrate the importance of rapid stripping and immediate cooling utilizes a rotary evaporator and an oil bath.
- the charge is a mole ratio of 1:3, dibasic acid to cyclohexane dimethanol transesterification product into the rotary evaporator at an absolute pressure of 1-2 Torr and an oil bath temperature of 180°-185° C. for eight minutes. 43% of the charge is volatilized and the resultant product has a viscosity of 13,800 cps at 25° C. and a 60 minute solids content of 98.8%.
- a wiped-film evaporator is used to accomplish the rapid stripping of the CHDM.
- a wiped-film evaporator such as the Artisan Rototherm® thin-film evaporator consists of a heated cylindrical chamber with a feed inlet at the top above a rotatable heated cylindrical member or drum onto which the feed flows. A top exit is provided for the CHDM vapor to escape. An outlet is provided at the bottom from which the desired polyol product emerges.
- the rotatable drum is attached to an electric motor which provides the rotation.
- the temperature of the heated film is about 350° F. and the absolute pressure is about 2 mm.
- the residence time of the material being treated varies from about 30 seconds to 2 minutes.
- the product leaving at the outlet passes through a heat-exchanger which cools it to approximately 200° F. before it flows into the product storage vessel.
- the polyols of the present invention can be used as coating compositions without modification when combined with any one or more of a host of crosslinking agents such-as polyisocyanates or aminotriazine-aldehydes such as the melamine formaldehyde resins as shown in the U.S. Pat. No. 2,197,357 or the urea-formaldehyde resins and the like.
- a host of crosslinking agents such-as polyisocyanates or aminotriazine-aldehydes such as the melamine formaldehyde resins as shown in the U.S. Pat. No. 2,197,357 or the urea-formaldehyde resins and the like.
- the contents of the reactor were heated to 125° C. with agitation, and then 12.3 parts of titanium tetrabutoxide were added. Heating was continued while a nitrogen flow of 100 ml/min. into the reactor was maintained. When the temperature reached 160° C., the temperature was maintained at that level, and 29 parts of DBE (82.2 moles) were then metered into the reactor over a 3 hour period with continuous agitation. During the DBE addition period, methanol vapor was evolved continuously and condensed with a water-cooled glass condenser to recover 7.4 parts of liquid methanol.
- This product was then processed in a 1/4 square foot Artisan Rototherm wiped-film evaporator.
- the feed rate was set at 19 ml per minute with a product outlet temperature of 175° C. at a pressure of approximately 1 Torr.
- the product was passed through a cooled outlet pipe to adjust the final product temperature to 95° C.
- the finished product had a viscosity of 9000 cps at 25° C. and showed 98% solids content in a one hour test.
- a coating compostion is prepared by mixing the following ingredients:
- the coating is applied by draw down bar to yield approximately 1 mil film thickness on a phosphate treated steel panel which is then placed in a forced draft convection oven and cured under the following several conditions of varying time and temperature:
- the following example illustrates the improved coating properties that result when a polyol of the present invention is used as a minor component of the binder system.
- the ingredient listed below are blended in a suitable container.
- the coating mix is applied by draw down bar to iron phosphated cold rolled steel and cured for 20 min. at 150° C. in a forced draft convection oven.
- the properties are set forth hereinbelow.
- a pigmented enamel is prepared by grinding titanium dioxide in a polyol of the present invention.
- the enamel thus prepared has very high solids and excellent low temperature cure properties as illustrated hereinbelow.
- a room temperature curing coating composition is prepared by mixing the polyol of Example 1 with an isocyanate crosslinking agent in the manner described below.
- the coating may be either sprayed or applied by draw down bar to a steel panel with the resultant film properties.
- Coating is tack-free after 6 hours.
- the amount of the bracketed moiety, when n is 1 or 2, is at least 70% by weight when m is 2 to 10 inclusive. It is preferred that such moiety is sufficient to provide a weight average molecular weight of between about 300 and 600 and preferably between about 350 and 500.
- the final reacted mole ratio of the dibasic acid to the cyclohexane dimethanol is between about 1.0:1.7 and 1.0:2.3 respectively.
- the process of the present invention requires a stripping temperature of from about 150° C. to 225° C. at an absolute pressure of from about 0.05 to 100 Torr for a period of time from about 10 seconds to 10 minutes.
- a temperature from about 160° C. to 210° C. and at an absolute pressure of from about 0.1 to 2.00 Torr and for a period of time from about 20 seconds to about 2 minutes.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyurethanes Or Polyureas (AREA)
- Paints Or Removers (AREA)
Abstract
This invention relates to a linear, low-molecular-weight polyester-based polyol having terminal primary hydroxyl groups, low viscosity, high solids content and having the structural formula: ##STR1## where n is 1 or 2 and at least 70% by weight is n=1, and m=2-10, said polyol being substantially free of cyclohexane dimethanol.
Description
This application is a continuation of application Ser. No. 453,222, filed on Dec. 27, 1982, now U.S. Pat. No. 4,902,821.
This invention is in the field of certain linear, low molecular weight polyester-based polyols having terminal primary hydroxy groups, comparatively low viscosities and comparatively high solids contents. This invention is also in the field of coating compositions containing these polyols with a cross-linking agent such as aminotriazine compounds and resins such as melamine-formaldehyde resins, urea-formaldehyde resins, epoxy resins, isocyanates or acrylic polymers containing reactive groups, such as hydroxyl groups, carboxyl groups, amide groups, amine groups and the like.
The instant applicants are aware of the following U.S. Pat. Nos. 4,018,848; 4,119,762; 4,192,826; 4,222,911; and British 1,561,076, all of which patents are incorporated herein by reference.
This invention relates to a linear, low-molecular weight polyester-based polyol having terminal primary hydroxy groups, comparatively low viscosity and a comparatively high solids content. The invention also relates to a process for the preparation of said polyol. The polyols of the present invention can be prepared by transesterifying a mixture of the alkyl esters of aliphatic dibasic acids or esterifying a mixture of the acids. It is preferred to start with the methyl esters of adipic, glutaric and succinic acids, although other lower alkyl esters could be used, such as the ethyl, propyl and butyl esters and the like, but cost factors generally remove them from consideration and nothing of value is to be gained by their use. Furthermore, this mixture of methyl esters is available commercially and is therefore additionally preferred, for this reason. These methyl esters, as available commercially, have a mole ratio of about 0.5:1.5:0.6, dimethyl adipate, dimethyl glutarate and dimethyl succinate respectively. Variations of this mole ratio can be tolerated depending upon the desired properties of the final product. Lower viscosities are obtainable with higher levels of glutarate, for example. Nor is it necessarily limited to a mixture of the three esters. It is also possible to use mixtures of only two dibasic esters or a single dibasic ester if desired. The same would apply to the dibasic acids as well, mixtures of the acids or single compounds being acceptable. Dibasic acids that are acceptable are succinic, glutaric, adipic, pimelic, suberic, azelaic and sebacic and higher homologs or mixtures thereof.
These methyl esters, sometimes referred to as dibasic esters or DBE for brevity, are mixed with a diol or triol containing at least two primary hydroxyl groups. The preferred diol is cyclohexane dimethanol, CHDM. Examples of other diols and triols with primary hydroxyls that could be used include neopentyl glycol; 1,4-butanediol;1,6-hexanediol; 1,2,6-hexanetriol; trimethylol ethane; trimethylol propane; ethylene glycol; diethylene glycol; dimethylolpropionic acid; and 2,2-dimethyl-3-hydroxypropyl-2,2-dimethyl-3-hydroxypropionate and the like. Diols with a mixture of primary and secondary hydroxyls are less desirable, but may be used, and include propylene glycol and 1,2-hexylene glycol. Mixtures of diols may also be used.
Usually a catalyst is employed for the esterification/transesterification reaction for the purpose of lowering reaction temperatures and reducing color development in the product. Typical catalysts that may be employed are the alkoxides of titanium, soluble tin compounds such as dibutyl tin dilaurate and soluble manganese compounds such as Mn(OAc)2. Catalyst levels of 0.005 to 1.0% by weight can be used with typical levels of 0.01 to 0.1% on the same basis.
In the preferred embodiment, the mixed methyl esters are combined with CHDM in a suitable reaction vessel and heated in the presence of a conventional transesterification catalyst, such as a titanium alkoxide, in order to accomplish transesterification. The methanol is split off during the heating step and is easily removed as free methanol until the new reaction product is devoid of or substantially completely free of methanol. The resultant product will contain, as a general rule, some varying amounts of unreacted cyclohexane dimethanol depending on the initial mole ratio of the reactants and the technique used to remove the cyclohexane dimethanol. The initial starting mole ratios of the dimethyl esters, also referred to as dibasic esters, considered as a whole and as one entity, tothecyclohexane dimethanol can be varied between about 1.0:1.5 and 1.0:10.0 respectively but preferably between about 1.0:2.0 and 1.0:4.0 respectively.
The ultimately produced polyol will be devoid of or substantially completely free of any cyclohexane dimethanol. The expressions devoid of or substantially completely free of means less than about 12% and preferably less than about 4% by weight based on the total weight of the final polyol reaction product.
The conventional technique used to remove the unreacted diol is batch distillation. The preferred technique uses continuous rapid stripping of the CHDM immediately followed by cooling the product to prevent chemical reaction and equilibration. Continuous large-scale rapid stripping can be accomplished using several processes including continuous column distillation, shell-and-tube evaporators and falling-film evaporator-strippers, to name several examples. It is conceivable that other techniques could be applied to remove excess diol, including liquid-liquid extraction or crystallization.
A useful laboratory technique to demonstrate the importance of rapid stripping and immediate cooling utilizes a rotary evaporator and an oil bath. The charge is a mole ratio of 1:3, dibasic acid to cyclohexane dimethanol transesterification product into the rotary evaporator at an absolute pressure of 1-2 Torr and an oil bath temperature of 180°-185° C. for eight minutes. 43% of the charge is volatilized and the resultant product has a viscosity of 13,800 cps at 25° C. and a 60 minute solids content of 98.8%.
If one were to use the batch distillation technique one experiences high viscosity and low solids content. The reason for these adverse results may be caused by the product equilibrating chemically toward the most probable component distribution during the slow batch distillation. Actually, batch polyesterification and transesterification reactions such as this normally lead to equilibrium product distributions dictated by simple statistical considerations. Therefore, a batch distillation of a high glycol-to-acid polyol to a lower glycol/acid mole ratio may tend to give the same equilibrium product one would obtain by running the whole transesterification reaction at the final mole ratio.
Surprisingly, it was found that rapid stripping of a 3:1 mole-ratio CHDM:DBE polyester polyol feed using a wiped-film evaporator followed by rapid cooling removed approximately 35% of the total weight of feed as CHDM and gave products which combined both low viscosity, on the order of 10,000 cps at 25° C., and high solids content, on the order of 98%. In contrast, conventional batch distillation removing the same weight of CHDM with or without rapid-cooling gives products with much higher viscosities, on the order of 18,000 cps or higher at 25° C., and lower solids content, on the order of 90%. These properties are extremely important in the formulation, application, and performance of high-solids coatings, as will be shown elsewhere in this application.
In principal, the same technique is applicable to other ester polyols as well. The maximum positive effect is achievable when all of the reactive groups have equal chemical reactivity. Thus, a diol with one primary and one secondary hydroxyl group will naturally yield a diester high in secondary hydroxyls, because the primaries will have reacted first to form the diester. Further, it will be much harder to get chain extension once one has diester, since the secondary hydroxyl end groups are not very reactive. In a case like this, one would be able to get a good yield of diester starting with a low diol:acid ratio, not much over 2:1. Following the same line of reasoning, one should be able to remove excess diol molecules easily without significant chain extension, so it should be possible to get extremely high solids.
In one embodiment, a wiped-film evaporator is used to accomplish the rapid stripping of the CHDM.
A wiped-film evaporator, such as the Artisan Rototherm® thin-film evaporator consists of a heated cylindrical chamber with a feed inlet at the top above a rotatable heated cylindrical member or drum onto which the feed flows. A top exit is provided for the CHDM vapor to escape. An outlet is provided at the bottom from which the desired polyol product emerges. The rotatable drum is attached to an electric motor which provides the rotation. The temperature of the heated film is about 350° F. and the absolute pressure is about 2 mm. The residence time of the material being treated varies from about 30 seconds to 2 minutes. The product leaving at the outlet passes through a heat-exchanger which cools it to approximately 200° F. before it flows into the product storage vessel.
The polyols of the present invention can be used as coating compositions without modification when combined with any one or more of a host of crosslinking agents such-as polyisocyanates or aminotriazine-aldehydes such as the melamine formaldehyde resins as shown in the U.S. Pat. No. 2,197,357 or the urea-formaldehyde resins and the like. One can also use the acrylic copolymers containing alcoholic hydroxy groups, with or without other reactive groups such as carboxyl groups, amide groups, amine groups and the like as shown in the U.S. Pat. Nos. 3,663,389, 3,894,993 and 3,945,961. These patents are incorporated herein by reference.
Other conventional additives may also be used such as pigments, catalysts and the like.
In order that the concept of the present invention may be more completely understood, the following examples are set forth in which all parts are parts by weight unless otherwise indicated. These examples are set forth primarily for the purpose of illustration and any specific enumeration of detail contained herein should not be interpreted as a limitation on the case except as is indicated in the appended claims.
Into a suitable glass reactor, the following ingredients were charged:
98.27 parts CHDM (309.6 moles)
7.37 parts DBE (20.9 moles)
Using a mantle, the contents of the reactor were heated to 125° C. with agitation, and then 12.3 parts of titanium tetrabutoxide were added. Heating was continued while a nitrogen flow of 100 ml/min. into the reactor was maintained. When the temperature reached 160° C., the temperature was maintained at that level, and 29 parts of DBE (82.2 moles) were then metered into the reactor over a 3 hour period with continuous agitation. During the DBE addition period, methanol vapor was evolved continuously and condensed with a water-cooled glass condenser to recover 7.4 parts of liquid methanol.
This product was then processed in a 1/4 square foot Artisan Rototherm wiped-film evaporator. The feed rate was set at 19 ml per minute with a product outlet temperature of 175° C. at a pressure of approximately 1 Torr. The product was passed through a cooled outlet pipe to adjust the final product temperature to 95° C. The finished product had a viscosity of 9000 cps at 25° C. and showed 98% solids content in a one hour test.
The following examples are illustrative of the utility of the present invention:
A coating compostion is prepared by mixing the following ingredients:
______________________________________ Formulation Parts ______________________________________ Polyol from Example 1 60 Hexakis (methoxymethyl) melamine.sup.(1) 40 n-Butanol 10 Flow control agent.sup.(2) 0.4 Acid catalyst.sup.(3) 2 % Solids = 89.5 Viscosity = 880 cps ______________________________________ .sup.(1) Cymel 303, American Cyanamid Company .sup.(2) 3 M Co. (a fluorocarbon) .sup.(3) King Industries, Inc. DNNDSA
The coating is applied by draw down bar to yield approximately 1 mil film thickness on a phosphate treated steel panel which is then placed in a forced draft convection oven and cured under the following several conditions of varying time and temperature:
______________________________________ Time, min. 20 15 10 5 Temp, °F. 200 225 250 275 ______________________________________ Pencil Hardness H-2H H-2H H-2H H-2H Double MEK Rubs 100 100 100 100 Reverse Impact, in. lb. 80+ 80+ 80+ 80 ______________________________________
The following example illustrates the improved coating properties that result when a polyol of the present invention is used as a minor component of the binder system.
The ingredient listed below are blended in a suitable container.
______________________________________ Formulation 1 2 3 ______________________________________ Acrylic Resin.sup.(1) 200 280 240 Hexakis(methoxymethyl) 25 50 60 melamine.sup.(2) Polyol of Example 1 -- 10 20 Isopropanol 25 42 44 Xylene -- 18 36 DNNDSA.sup.(3) Amine Blocked 2.5 4.0 4.0 Catalyst Acrylic/Mel/Polyol Ratio 80/20/-- 70/25/5 60/30/10 ______________________________________ .sup.(1) Rohm & Haas Co. .sup.(2) Cymel 303, American Cyanamid Co. .sup.(3) King Industries, Inc.
The coating mix is applied by draw down bar to iron phosphated cold rolled steel and cured for 20 min. at 150° C. in a forced draft convection oven. The properties are set forth hereinbelow.
______________________________________ 1 2 3 ______________________________________ Pencil Hardness 2-3H 4-5H 2-3H Double MEK Rubs 100+ 100+ 100+ Adhesion Loss, % 0 0 0 Impact, reverse 30-40 80+ 80+ direct 80+ 80+ 70/80 Water Immersion 250 hr, 50° C. Blister Rating Few 8 Very Few 8 Very Few 8 ______________________________________
In this example a pigmented enamel is prepared by grinding titanium dioxide in a polyol of the present invention. The enamel thus prepared has very high solids and excellent low temperature cure properties as illustrated hereinbelow.
______________________________________ Mix in a suitable container: Titanium dioxide 550 parts Polyol of Example 1 250 n-Butanol 75 Cellosolve Acetate 125 Disperse on Cowles Dissolver Let Down Acrylic resin.sup.(1) 333 Hexakis(methoxylmethyl)melamine.sup.(2) 200 n-Butanol 30 % Solids, wt. 80 Viscosity, cps 440 Polyol/Acrylic/Mel 50/50/40 ______________________________________ Film Properties White Enamel ______________________________________ Cure: Time, min. 15 15 30 Temp. °C. 121 93 82 Catalyst: DNNDSA, % TRS 0.6 2.0 2.75 Pencil Hardness 2-3H H-2H H-2H MEK Rubs 200 200 170 Reverse Imp. 80+ 80+ 80+ Gloss, 60° 89 91 91 Water Immersion 250 hr., 50° C. Gloss, 60° 89 90 86 ______________________________________ TRS = Total Resin Solids .sup.(1) King Industries .sup.(2) Cymel 303, American Cyanamid Co.
A room temperature curing coating composition is prepared by mixing the polyol of Example 1 with an isocyanate crosslinking agent in the manner described below.
______________________________________ Components Parts ______________________________________ Polyol of Example 1 100 Polyisocyanate.sup.(1) 82 Xylene 30 2-Ethoxyethyl acetate 30 % Solids = 75 Viscosity = 60 sec. Ford 4 Cup ______________________________________
The coating may be either sprayed or applied by draw down bar to a steel panel with the resultant film properties.
______________________________________ After 24 hr aging of the coated panel at room temperature: ______________________________________ Pencil Hardness 5-6H MEK Rubs 200 Impact, reverse 160 in. lb. direct 160 in. lb. ______________________________________ .sup.(1) Mobay Chemical Corp.
Coating is tack-free after 6 hours.
In the polyols of the present invention, the amount of the bracketed moiety, when n is 1 or 2, is at least 70% by weight when m is 2 to 10 inclusive. It is preferred that such moiety is sufficient to provide a weight average molecular weight of between about 300 and 600 and preferably between about 350 and 500. The final reacted mole ratio of the dibasic acid to the cyclohexane dimethanol is between about 1.0:1.7 and 1.0:2.3 respectively.
The process of the present invention requires a stripping temperature of from about 150° C. to 225° C. at an absolute pressure of from about 0.05 to 100 Torr for a period of time from about 10 seconds to 10 minutes.
It is preferred to use a temperature from about 160° C. to 210° C. and at an absolute pressure of from about 0.1 to 2.00 Torr and for a period of time from about 20 seconds to about 2 minutes.
Claims (8)
1. A linear, low molecular weight; polyester-based polyol having terminal primary hydroxyl groups, low viscosity, high solids content and having the structural formula: ##STR2## where n is 1 or 2 and at least 70% by weight is n=1; and m=2-10 said polyol having less than 4% by weight based on total weight of the final polyol reaction product of cyclohexane dimethanol.
2. The polyol according to claim 1 in which the mole ratio of the dibasic acid to the cyclohexane dimethanol is between about 1.0:1.7 and 1.0:2.3 respectively.
3. The polyol according to claim 1 in which the weight average molecular weight is between about 300 and 600.
4. The polyol according to claim 1 in which the weight average molecular weight is between about 350 and 500.
5. A linear, low-molecular-weight polyester based polyol having terminal primary hydroxyl groups, low viscosity, high solids content and having the structural formula: ##STR3## where n is 1 or 2 and at leat 70% by weight is n=1; and m=2-4, said polyol having less than 4% by weight based on total weight of the final polyol reaction product of cyclohexane dimethanol.
6. The polyol according to claim 5 in which the mole ratio of the dibasic acid to the cyclohexane dimethanol is between about 1.0:1.7 and 1.0:2.3 respectively.
7. The polyol according to claim 5 in which the weight average molecular weight is between about 300 and 600.
8. The polyol according to claim 5 in which the weight average molecular weight is between 350 and 500.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/355,158 US5023367A (en) | 1982-12-27 | 1989-05-22 | Linear, low-molecular-weight polyester-based polyol |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/453,222 US4902821A (en) | 1982-12-27 | 1982-12-27 | Process for preparing linear, low molecular weight polyester-based polyol |
US07/355,158 US5023367A (en) | 1982-12-27 | 1989-05-22 | Linear, low-molecular-weight polyester-based polyol |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/453,222 Continuation US4902821A (en) | 1982-12-27 | 1982-12-27 | Process for preparing linear, low molecular weight polyester-based polyol |
Publications (1)
Publication Number | Publication Date |
---|---|
US5023367A true US5023367A (en) | 1991-06-11 |
Family
ID=26998728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/355,158 Expired - Lifetime US5023367A (en) | 1982-12-27 | 1989-05-22 | Linear, low-molecular-weight polyester-based polyol |
Country Status (1)
Country | Link |
---|---|
US (1) | US5023367A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040171755A1 (en) * | 2000-02-08 | 2004-09-02 | Yokoyama Thomas W. | Low VOC, coating compositions having improved flexibility and impact resistance based upon nonlinear, low-molecular weight polyester polyol resins |
US20070244258A1 (en) * | 2006-03-29 | 2007-10-18 | Shanti Swarup | Clear coating compositions with improved scratch resistance |
US20090178306A1 (en) * | 2006-05-18 | 2009-07-16 | Dow Global Technologies Inc. | Polyurethane elastomer with enhanced hydrolysis resistance |
US20100052202A1 (en) * | 2008-08-29 | 2010-03-04 | Brigitta Otto | Method for producing polymers with a neutral color tone |
US20100204388A1 (en) * | 2009-02-06 | 2010-08-12 | Eastman Chemical Company | Coating compositions containing acrylic and aliphatic polyester blends |
US20100204363A1 (en) * | 2009-02-06 | 2010-08-12 | Eastman Chemical Company | Coating compositions containing tetramethyl cyclobutanediol |
US20100204401A1 (en) * | 2009-02-06 | 2010-08-12 | Eastman Chemical Company | Aliphatic polyester coating compositions containing tetramethyl cyclobutanediol |
US20100204413A1 (en) * | 2009-02-06 | 2010-08-12 | Eastman Chemical Company | Unsaturated polyester resin compositions containing 2,2,2,4-tetramethyl-1,3-cyclobutanediol and articles made therefrom |
US20100204392A1 (en) * | 2009-02-06 | 2010-08-12 | Eastman Chemical Company | Thermosetting polyester coating compositions containing tetramethyl cyclobutanediol |
US9487619B2 (en) | 2014-10-27 | 2016-11-08 | Eastman Chemical Company | Carboxyl functional curable polyesters containing tetra-alkyl cyclobutanediol |
US9598602B2 (en) | 2014-11-13 | 2017-03-21 | Eastman Chemical Company | Thermosetting compositions based on phenolic resins and curable poleyester resins made with diketene or beta-ketoacetate containing compounds |
US9650539B2 (en) | 2014-10-27 | 2017-05-16 | Eastman Chemical Company | Thermosetting compositions based on unsaturated polyesters and phenolic resins |
US9988553B2 (en) | 2016-02-22 | 2018-06-05 | Eastman Chemical Company | Thermosetting coating compositions |
US10011737B2 (en) | 2016-03-23 | 2018-07-03 | Eastman Chemical Company | Curable polyester polyols and their use in thermosetting soft feel coating formulations |
US10526444B2 (en) | 2015-09-25 | 2020-01-07 | Eastman Chemical Company | Polymers containing cyclobutanediol and 2,2-bis(hydroxymethyl)alkylcarboxylic acid |
US10676565B2 (en) | 2015-05-19 | 2020-06-09 | Eastman Chemical Company | Aliphatic polyester coating compositions containing tetramethyl cyclobutanediol |
US12037521B2 (en) | 2018-12-06 | 2024-07-16 | Eastman Chemical (China) Co., Ltd. | Adhesive compositions with polyesters comprising 2,2,4,4-tetraalkyl-1,3-cyclobutanediol and methods of making the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4000214A (en) * | 1973-05-29 | 1976-12-28 | Reichhold Chemicals, Inc. | Urethane additive to a standard epoxy resin to improve adhesion to vinyl materials |
US4018848A (en) * | 1974-12-24 | 1977-04-19 | E. I. Du Pont De Nemours And Company | High solids can coating compositions based on epoxy resin, crosslinking agent, flexibilizing polyol, co-reactive acid catalyst, and surface modifier |
US4119762A (en) * | 1976-10-20 | 1978-10-10 | Monsanto Company | Coating compositions comprising alkoxymethylaminotriazines and polyols |
US4192826A (en) * | 1976-07-12 | 1980-03-11 | E. I. Du Pont De Nemours And Company | Thermosetting, electrostatically sprayable compositions containing blocked acid catalyst |
US4222911A (en) * | 1978-08-07 | 1980-09-16 | Ppg Industries, Inc. | Polyester diol extended uralkyd resin and coating compositions containing the same |
US4284750A (en) * | 1980-06-20 | 1981-08-18 | Morton-Norwich Products, Inc. | Polyurethane resins |
-
1989
- 1989-05-22 US US07/355,158 patent/US5023367A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4000214A (en) * | 1973-05-29 | 1976-12-28 | Reichhold Chemicals, Inc. | Urethane additive to a standard epoxy resin to improve adhesion to vinyl materials |
US4018848A (en) * | 1974-12-24 | 1977-04-19 | E. I. Du Pont De Nemours And Company | High solids can coating compositions based on epoxy resin, crosslinking agent, flexibilizing polyol, co-reactive acid catalyst, and surface modifier |
US4192826A (en) * | 1976-07-12 | 1980-03-11 | E. I. Du Pont De Nemours And Company | Thermosetting, electrostatically sprayable compositions containing blocked acid catalyst |
US4119762A (en) * | 1976-10-20 | 1978-10-10 | Monsanto Company | Coating compositions comprising alkoxymethylaminotriazines and polyols |
US4222911A (en) * | 1978-08-07 | 1980-09-16 | Ppg Industries, Inc. | Polyester diol extended uralkyd resin and coating compositions containing the same |
US4284750A (en) * | 1980-06-20 | 1981-08-18 | Morton-Norwich Products, Inc. | Polyurethane resins |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040171755A1 (en) * | 2000-02-08 | 2004-09-02 | Yokoyama Thomas W. | Low VOC, coating compositions having improved flexibility and impact resistance based upon nonlinear, low-molecular weight polyester polyol resins |
US6992133B2 (en) | 2000-02-08 | 2006-01-31 | Cph Innovations Corp. | Low VOC, coating compositions having improved flexibility and impact resistance based upon nonlinear, low-molecular weight polyester polyol resins |
US20070244258A1 (en) * | 2006-03-29 | 2007-10-18 | Shanti Swarup | Clear coating compositions with improved scratch resistance |
US20090178306A1 (en) * | 2006-05-18 | 2009-07-16 | Dow Global Technologies Inc. | Polyurethane elastomer with enhanced hydrolysis resistance |
US20100052202A1 (en) * | 2008-08-29 | 2010-03-04 | Brigitta Otto | Method for producing polymers with a neutral color tone |
US8907009B2 (en) | 2008-08-29 | 2014-12-09 | Lurgi Zimmer Gmbh | Method for producing polymers with a neutral color tone |
US8524834B2 (en) | 2009-02-06 | 2013-09-03 | Eastman Chemical Company | Coating compositions containing tetramethyl cyclobutanediol |
US9029461B2 (en) | 2009-02-06 | 2015-05-12 | Eastman Chemical Company | Aliphatic polyester coating compositions containing tetramethyl cyclobutanediol |
US20100204413A1 (en) * | 2009-02-06 | 2010-08-12 | Eastman Chemical Company | Unsaturated polyester resin compositions containing 2,2,2,4-tetramethyl-1,3-cyclobutanediol and articles made therefrom |
US20100204392A1 (en) * | 2009-02-06 | 2010-08-12 | Eastman Chemical Company | Thermosetting polyester coating compositions containing tetramethyl cyclobutanediol |
US8163850B2 (en) | 2009-02-06 | 2012-04-24 | Eastman Chemical Company | Thermosetting polyester coating compositions containing tetramethyl cyclobutanediol |
US8168721B2 (en) | 2009-02-06 | 2012-05-01 | Eastman Chemical Company | Coating compositions containing tetramethyl cyclobutanediol |
US8324316B2 (en) | 2009-02-06 | 2012-12-04 | Eastman Chemical Company | Unsaturated polyester resin compositions containing 2,2,2,4-tetramethyl-1,3-cyclobutanediol and articles made therefrom |
US8519055B2 (en) | 2009-02-06 | 2013-08-27 | Eastman Chemical Company | Thermosetting polyester coating compositions containing tetramethyl cyclobutanediol |
US20100204363A1 (en) * | 2009-02-06 | 2010-08-12 | Eastman Chemical Company | Coating compositions containing tetramethyl cyclobutanediol |
US20100204388A1 (en) * | 2009-02-06 | 2010-08-12 | Eastman Chemical Company | Coating compositions containing acrylic and aliphatic polyester blends |
US9029460B2 (en) | 2009-02-06 | 2015-05-12 | Stacey James Marsh | Coating compositions containing acrylic and aliphatic polyester blends |
US20100204401A1 (en) * | 2009-02-06 | 2010-08-12 | Eastman Chemical Company | Aliphatic polyester coating compositions containing tetramethyl cyclobutanediol |
US9487619B2 (en) | 2014-10-27 | 2016-11-08 | Eastman Chemical Company | Carboxyl functional curable polyesters containing tetra-alkyl cyclobutanediol |
US9650539B2 (en) | 2014-10-27 | 2017-05-16 | Eastman Chemical Company | Thermosetting compositions based on unsaturated polyesters and phenolic resins |
US9598602B2 (en) | 2014-11-13 | 2017-03-21 | Eastman Chemical Company | Thermosetting compositions based on phenolic resins and curable poleyester resins made with diketene or beta-ketoacetate containing compounds |
US10676565B2 (en) | 2015-05-19 | 2020-06-09 | Eastman Chemical Company | Aliphatic polyester coating compositions containing tetramethyl cyclobutanediol |
US10526444B2 (en) | 2015-09-25 | 2020-01-07 | Eastman Chemical Company | Polymers containing cyclobutanediol and 2,2-bis(hydroxymethyl)alkylcarboxylic acid |
US9988553B2 (en) | 2016-02-22 | 2018-06-05 | Eastman Chemical Company | Thermosetting coating compositions |
US10011737B2 (en) | 2016-03-23 | 2018-07-03 | Eastman Chemical Company | Curable polyester polyols and their use in thermosetting soft feel coating formulations |
US12037521B2 (en) | 2018-12-06 | 2024-07-16 | Eastman Chemical (China) Co., Ltd. | Adhesive compositions with polyesters comprising 2,2,4,4-tetraalkyl-1,3-cyclobutanediol and methods of making the same |
US12065592B2 (en) | 2018-12-06 | 2024-08-20 | Eastman Chemical (China) Co., Ltd. | Adhesive compositions with polyesters comprising 2,2,4,4-tetraalkyl-1,3-cyclobutanediol |
US12359106B2 (en) | 2018-12-06 | 2025-07-15 | Eastman Chemical (China) Co., Ltd. | Adhesive compositions including 1,4-cyclohexanedimethanol and methods of making the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5023367A (en) | Linear, low-molecular-weight polyester-based polyol | |
US4922002A (en) | Linear, low-molecular-weight polyester-based polyol | |
US4888441A (en) | Preparation of linear, low-molecular-weight polyester-based polyols | |
US3836491A (en) | Novel compositions comprising polyisocyanates and hydroxybenzoic acid capped polymers curable with tertiary amines and process of curing same | |
KR100254747B1 (en) | Water dispersible polyurethane polyols and their use in binding agents | |
US4172822A (en) | Aqueous coating compositions containing polyester containing carboxyl groups | |
CA2026499C (en) | Water-dispersible binder composition, a process for the production of a stoving filler and a coating prepared therefrom | |
US5294665A (en) | Water soluble or water dispersible polyisocyanate mixtures and their use in stoving compositions | |
JP5060920B2 (en) | Aqueous or water-dilutable blocked polyisocyanates and their use to form polyurethane transparent coatings with substantially reduced thermal yellowing | |
US5004779A (en) | Process for the preparation of aqueous, oxidatively drying alkyd resins and their use in or as aqueous lacquers and coating compounds | |
US4116902A (en) | Polyurethane-modified alkyd resin | |
US4151152A (en) | Stable fast-setting varnishes based on polyesters and blocked aliphatic diisocyanate | |
JPH0617002A (en) | Water-base coating composition and its use for forming flexible coating | |
US5523377A (en) | Blocked polyisocyanates | |
US4113702A (en) | Method of preparing polyester varnish resins of low viscosity | |
JP4335433B2 (en) | Hydroxy functional oligomer for high solid coating | |
JP2002539285A (en) | Polyurethanes and the use of said substances for producing solvent-free paints | |
EP0610450A1 (en) | Coating agents, process for their manufacture and their use to produce coatings | |
US4705839A (en) | Urethane nonaqueous dispersion for automotive base coat/clear coat applications | |
EP0141025A1 (en) | Storage stable one component urethane compounds and method for making and using same | |
US4395529A (en) | Coating powders for protective films based on epsilon-caprolactam blocked isocyanates | |
JP3103147B2 (en) | Binder composition for baking lacquers and method of making a coating therefrom | |
EP0553702A2 (en) | Carboxy-functional polyurethane and curable coating composition | |
US4902821A (en) | Process for preparing linear, low molecular weight polyester-based polyol | |
US4316940A (en) | High-solids polyester and aminoplast coating composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |